Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * zsmalloc memory allocator
   3 *
   4 * Copyright (C) 2011  Nitin Gupta
   5 * Copyright (C) 2012, 2013 Minchan Kim
   6 *
   7 * This code is released using a dual license strategy: BSD/GPL
   8 * You can choose the license that better fits your requirements.
   9 *
  10 * Released under the terms of 3-clause BSD License
  11 * Released under the terms of GNU General Public License Version 2.0
  12 */
  13
  14/*
  15 * Following is how we use various fields and flags of underlying
  16 * struct page(s) to form a zspage.
  17 *
  18 * Usage of struct page fields:
  19 *	page->private: points to zspage
  20 *	page->freelist(index): links together all component pages of a zspage
  21 *		For the huge page, this is always 0, so we use this field
  22 *		to store handle.
  23 *	page->units: first object offset in a subpage of zspage
  24 *
  25 * Usage of struct page flags:
  26 *	PG_private: identifies the first component page
  27 *	PG_owner_priv_1: identifies the huge component page
  28 *
  29 */
  30
  31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  32
 
 
 
 
 
 
 
  33#include <linux/module.h>
  34#include <linux/kernel.h>
  35#include <linux/sched.h>
  36#include <linux/magic.h>
  37#include <linux/bitops.h>
  38#include <linux/errno.h>
  39#include <linux/highmem.h>
  40#include <linux/string.h>
  41#include <linux/slab.h>
 
  42#include <asm/tlbflush.h>
  43#include <asm/pgtable.h>
  44#include <linux/cpumask.h>
  45#include <linux/cpu.h>
  46#include <linux/vmalloc.h>
  47#include <linux/preempt.h>
  48#include <linux/spinlock.h>
  49#include <linux/shrinker.h>
  50#include <linux/types.h>
  51#include <linux/debugfs.h>
  52#include <linux/zsmalloc.h>
  53#include <linux/zpool.h>
  54#include <linux/mount.h>
  55#include <linux/migrate.h>
 
  56#include <linux/pagemap.h>
  57#include <linux/fs.h>
 
  58
  59#define ZSPAGE_MAGIC	0x58
  60
  61/*
  62 * This must be power of 2 and greater than of equal to sizeof(link_free).
  63 * These two conditions ensure that any 'struct link_free' itself doesn't
  64 * span more than 1 page which avoids complex case of mapping 2 pages simply
  65 * to restore link_free pointer values.
  66 */
  67#define ZS_ALIGN		8
  68
  69/*
  70 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
  71 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
  72 */
  73#define ZS_MAX_ZSPAGE_ORDER 2
  74#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
  75
  76#define ZS_HANDLE_SIZE (sizeof(unsigned long))
  77
  78/*
  79 * Object location (<PFN>, <obj_idx>) is encoded as
  80 * as single (unsigned long) handle value.
  81 *
  82 * Note that object index <obj_idx> starts from 0.
  83 *
  84 * This is made more complicated by various memory models and PAE.
  85 */
  86
  87#ifndef MAX_POSSIBLE_PHYSMEM_BITS
  88#ifdef MAX_PHYSMEM_BITS
  89#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
  90#else
  91/*
  92 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
  93 * be PAGE_SHIFT
  94 */
  95#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
  96#endif
  97#endif
  98
  99#define _PFN_BITS		(MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
 100
 101/*
 102 * Memory for allocating for handle keeps object position by
 103 * encoding <page, obj_idx> and the encoded value has a room
 104 * in least bit(ie, look at obj_to_location).
 105 * We use the bit to synchronize between object access by
 106 * user and migration.
 107 */
 108#define HANDLE_PIN_BIT	0
 109
 110/*
 111 * Head in allocated object should have OBJ_ALLOCATED_TAG
 112 * to identify the object was allocated or not.
 113 * It's okay to add the status bit in the least bit because
 114 * header keeps handle which is 4byte-aligned address so we
 115 * have room for two bit at least.
 116 */
 117#define OBJ_ALLOCATED_TAG 1
 118#define OBJ_TAG_BITS 1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 119#define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
 120#define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
 121
 
 122#define FULLNESS_BITS	2
 123#define CLASS_BITS	8
 124#define ISOLATED_BITS	3
 125#define MAGIC_VAL_BITS	8
 126
 127#define MAX(a, b) ((a) >= (b) ? (a) : (b))
 128/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
 129#define ZS_MIN_ALLOC_SIZE \
 130	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
 131/* each chunk includes extra space to keep handle */
 132#define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
 133
 134/*
 135 * On systems with 4K page size, this gives 255 size classes! There is a
 136 * trader-off here:
 137 *  - Large number of size classes is potentially wasteful as free page are
 138 *    spread across these classes
 139 *  - Small number of size classes causes large internal fragmentation
 140 *  - Probably its better to use specific size classes (empirically
 141 *    determined). NOTE: all those class sizes must be set as multiple of
 142 *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
 143 *
 144 *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
 145 *  (reason above)
 146 */
 147#define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS)
 148#define ZS_SIZE_CLASSES	(DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
 149				      ZS_SIZE_CLASS_DELTA) + 1)
 150
 151enum fullness_group {
 152	ZS_EMPTY,
 153	ZS_ALMOST_EMPTY,
 154	ZS_ALMOST_FULL,
 155	ZS_FULL,
 156	NR_ZS_FULLNESS,
 157};
 158
 159enum zs_stat_type {
 160	CLASS_EMPTY,
 161	CLASS_ALMOST_EMPTY,
 162	CLASS_ALMOST_FULL,
 163	CLASS_FULL,
 164	OBJ_ALLOCATED,
 165	OBJ_USED,
 166	NR_ZS_STAT_TYPE,
 167};
 168
 169struct zs_size_stat {
 170	unsigned long objs[NR_ZS_STAT_TYPE];
 171};
 172
 173#ifdef CONFIG_ZSMALLOC_STAT
 174static struct dentry *zs_stat_root;
 175#endif
 176
 177#ifdef CONFIG_COMPACTION
 178static struct vfsmount *zsmalloc_mnt;
 179#endif
 180
 181/*
 182 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
 183 *	n <= N / f, where
 184 * n = number of allocated objects
 185 * N = total number of objects zspage can store
 186 * f = fullness_threshold_frac
 187 *
 188 * Similarly, we assign zspage to:
 189 *	ZS_ALMOST_FULL	when n > N / f
 190 *	ZS_EMPTY	when n == 0
 191 *	ZS_FULL		when n == N
 192 *
 193 * (see: fix_fullness_group())
 194 */
 195static const int fullness_threshold_frac = 4;
 196static size_t huge_class_size;
 197
 198struct size_class {
 199	spinlock_t lock;
 200	struct list_head fullness_list[NR_ZS_FULLNESS];
 201	/*
 202	 * Size of objects stored in this class. Must be multiple
 203	 * of ZS_ALIGN.
 204	 */
 205	int size;
 206	int objs_per_zspage;
 207	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
 208	int pages_per_zspage;
 209
 210	unsigned int index;
 211	struct zs_size_stat stats;
 212};
 213
 214/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
 215static void SetPageHugeObject(struct page *page)
 216{
 217	SetPageOwnerPriv1(page);
 218}
 219
 220static void ClearPageHugeObject(struct page *page)
 221{
 222	ClearPageOwnerPriv1(page);
 223}
 224
 225static int PageHugeObject(struct page *page)
 226{
 227	return PageOwnerPriv1(page);
 228}
 229
 230/*
 231 * Placed within free objects to form a singly linked list.
 232 * For every zspage, zspage->freeobj gives head of this list.
 233 *
 234 * This must be power of 2 and less than or equal to ZS_ALIGN
 235 */
 236struct link_free {
 237	union {
 238		/*
 239		 * Free object index;
 240		 * It's valid for non-allocated object
 241		 */
 242		unsigned long next;
 243		/*
 244		 * Handle of allocated object.
 245		 */
 246		unsigned long handle;
 
 
 
 
 
 
 247	};
 248};
 249
 250struct zs_pool {
 251	const char *name;
 252
 253	struct size_class *size_class[ZS_SIZE_CLASSES];
 254	struct kmem_cache *handle_cachep;
 255	struct kmem_cache *zspage_cachep;
 256
 257	atomic_long_t pages_allocated;
 258
 259	struct zs_pool_stats stats;
 260
 261	/* Compact classes */
 262	struct shrinker shrinker;
 263
 
 
 
 
 
 
 
 264#ifdef CONFIG_ZSMALLOC_STAT
 265	struct dentry *stat_dentry;
 266#endif
 267#ifdef CONFIG_COMPACTION
 268	struct inode *inode;
 269	struct work_struct free_work;
 270#endif
 
 271};
 272
 273struct zspage {
 274	struct {
 
 275		unsigned int fullness:FULLNESS_BITS;
 276		unsigned int class:CLASS_BITS + 1;
 277		unsigned int isolated:ISOLATED_BITS;
 278		unsigned int magic:MAGIC_VAL_BITS;
 279	};
 280	unsigned int inuse;
 281	unsigned int freeobj;
 282	struct page *first_page;
 283	struct list_head list; /* fullness list */
 284#ifdef CONFIG_COMPACTION
 285	rwlock_t lock;
 
 
 
 286#endif
 
 
 
 287};
 288
 289struct mapping_area {
 290#ifdef CONFIG_PGTABLE_MAPPING
 291	struct vm_struct *vm; /* vm area for mapping object that span pages */
 292#else
 293	char *vm_buf; /* copy buffer for objects that span pages */
 294#endif
 295	char *vm_addr; /* address of kmap_atomic()'ed pages */
 296	enum zs_mapmode vm_mm; /* mapping mode */
 297};
 298
 299#ifdef CONFIG_COMPACTION
 300static int zs_register_migration(struct zs_pool *pool);
 301static void zs_unregister_migration(struct zs_pool *pool);
 
 
 
 
 
 
 
 
 302static void migrate_lock_init(struct zspage *zspage);
 303static void migrate_read_lock(struct zspage *zspage);
 304static void migrate_read_unlock(struct zspage *zspage);
 
 
 
 
 
 305static void kick_deferred_free(struct zs_pool *pool);
 306static void init_deferred_free(struct zs_pool *pool);
 307static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
 308#else
 309static int zsmalloc_mount(void) { return 0; }
 310static void zsmalloc_unmount(void) {}
 311static int zs_register_migration(struct zs_pool *pool) { return 0; }
 312static void zs_unregister_migration(struct zs_pool *pool) {}
 313static void migrate_lock_init(struct zspage *zspage) {}
 314static void migrate_read_lock(struct zspage *zspage) {}
 315static void migrate_read_unlock(struct zspage *zspage) {}
 316static void kick_deferred_free(struct zs_pool *pool) {}
 317static void init_deferred_free(struct zs_pool *pool) {}
 318static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
 319#endif
 320
 321static int create_cache(struct zs_pool *pool)
 322{
 323	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
 324					0, 0, NULL);
 325	if (!pool->handle_cachep)
 326		return 1;
 327
 328	pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
 329					0, 0, NULL);
 330	if (!pool->zspage_cachep) {
 331		kmem_cache_destroy(pool->handle_cachep);
 332		pool->handle_cachep = NULL;
 333		return 1;
 334	}
 335
 336	return 0;
 337}
 338
 339static void destroy_cache(struct zs_pool *pool)
 340{
 341	kmem_cache_destroy(pool->handle_cachep);
 342	kmem_cache_destroy(pool->zspage_cachep);
 343}
 344
 345static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
 346{
 347	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
 348			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
 349}
 350
 351static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
 352{
 353	kmem_cache_free(pool->handle_cachep, (void *)handle);
 354}
 355
 356static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
 357{
 358	return kmem_cache_alloc(pool->zspage_cachep,
 359			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
 360}
 361
 362static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
 363{
 364	kmem_cache_free(pool->zspage_cachep, zspage);
 365}
 366
 
 367static void record_obj(unsigned long handle, unsigned long obj)
 368{
 369	/*
 370	 * lsb of @obj represents handle lock while other bits
 371	 * represent object value the handle is pointing so
 372	 * updating shouldn't do store tearing.
 373	 */
 374	WRITE_ONCE(*(unsigned long *)handle, obj);
 375}
 376
 377/* zpool driver */
 378
 379#ifdef CONFIG_ZPOOL
 380
 381static void *zs_zpool_create(const char *name, gfp_t gfp,
 382			     const struct zpool_ops *zpool_ops,
 383			     struct zpool *zpool)
 384{
 385	/*
 386	 * Ignore global gfp flags: zs_malloc() may be invoked from
 387	 * different contexts and its caller must provide a valid
 388	 * gfp mask.
 389	 */
 390	return zs_create_pool(name);
 
 
 
 
 
 
 
 391}
 392
 393static void zs_zpool_destroy(void *pool)
 394{
 395	zs_destroy_pool(pool);
 396}
 397
 398static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
 399			unsigned long *handle)
 400{
 401	*handle = zs_malloc(pool, size, gfp);
 402	return *handle ? 0 : -1;
 
 
 
 403}
 404static void zs_zpool_free(void *pool, unsigned long handle)
 405{
 406	zs_free(pool, handle);
 407}
 408
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 409static void *zs_zpool_map(void *pool, unsigned long handle,
 410			enum zpool_mapmode mm)
 411{
 412	enum zs_mapmode zs_mm;
 413
 414	switch (mm) {
 415	case ZPOOL_MM_RO:
 416		zs_mm = ZS_MM_RO;
 417		break;
 418	case ZPOOL_MM_WO:
 419		zs_mm = ZS_MM_WO;
 420		break;
 421	case ZPOOL_MM_RW: /* fallthru */
 422	default:
 423		zs_mm = ZS_MM_RW;
 424		break;
 425	}
 426
 427	return zs_map_object(pool, handle, zs_mm);
 428}
 429static void zs_zpool_unmap(void *pool, unsigned long handle)
 430{
 431	zs_unmap_object(pool, handle);
 432}
 433
 434static u64 zs_zpool_total_size(void *pool)
 435{
 436	return zs_get_total_pages(pool) << PAGE_SHIFT;
 437}
 438
 439static struct zpool_driver zs_zpool_driver = {
 440	.type =		"zsmalloc",
 441	.owner =	THIS_MODULE,
 442	.create =	zs_zpool_create,
 443	.destroy =	zs_zpool_destroy,
 444	.malloc =	zs_zpool_malloc,
 445	.free =		zs_zpool_free,
 446	.map =		zs_zpool_map,
 447	.unmap =	zs_zpool_unmap,
 448	.total_size =	zs_zpool_total_size,
 
 
 449};
 450
 451MODULE_ALIAS("zpool-zsmalloc");
 452#endif /* CONFIG_ZPOOL */
 453
 454/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
 455static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
 456
 457static bool is_zspage_isolated(struct zspage *zspage)
 458{
 459	return zspage->isolated;
 460}
 461
 462static __maybe_unused int is_first_page(struct page *page)
 463{
 464	return PagePrivate(page);
 465}
 466
 467/* Protected by class->lock */
 468static inline int get_zspage_inuse(struct zspage *zspage)
 469{
 470	return zspage->inuse;
 471}
 472
 473static inline void set_zspage_inuse(struct zspage *zspage, int val)
 474{
 475	zspage->inuse = val;
 476}
 477
 478static inline void mod_zspage_inuse(struct zspage *zspage, int val)
 479{
 480	zspage->inuse += val;
 481}
 482
 483static inline struct page *get_first_page(struct zspage *zspage)
 484{
 485	struct page *first_page = zspage->first_page;
 486
 487	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
 488	return first_page;
 489}
 490
 491static inline int get_first_obj_offset(struct page *page)
 492{
 493	return page->units;
 494}
 495
 496static inline void set_first_obj_offset(struct page *page, int offset)
 497{
 498	page->units = offset;
 499}
 500
 501static inline unsigned int get_freeobj(struct zspage *zspage)
 502{
 503	return zspage->freeobj;
 504}
 505
 506static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
 507{
 508	zspage->freeobj = obj;
 509}
 510
 511static void get_zspage_mapping(struct zspage *zspage,
 512				unsigned int *class_idx,
 513				enum fullness_group *fullness)
 514{
 515	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
 516
 517	*fullness = zspage->fullness;
 518	*class_idx = zspage->class;
 519}
 520
 
 
 
 
 
 
 521static void set_zspage_mapping(struct zspage *zspage,
 522				unsigned int class_idx,
 523				enum fullness_group fullness)
 524{
 525	zspage->class = class_idx;
 526	zspage->fullness = fullness;
 527}
 528
 529/*
 530 * zsmalloc divides the pool into various size classes where each
 531 * class maintains a list of zspages where each zspage is divided
 532 * into equal sized chunks. Each allocation falls into one of these
 533 * classes depending on its size. This function returns index of the
 534 * size class which has chunk size big enough to hold the give size.
 535 */
 536static int get_size_class_index(int size)
 537{
 538	int idx = 0;
 539
 540	if (likely(size > ZS_MIN_ALLOC_SIZE))
 541		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
 542				ZS_SIZE_CLASS_DELTA);
 543
 544	return min_t(int, ZS_SIZE_CLASSES - 1, idx);
 545}
 546
 547/* type can be of enum type zs_stat_type or fullness_group */
 548static inline void zs_stat_inc(struct size_class *class,
 549				int type, unsigned long cnt)
 550{
 551	class->stats.objs[type] += cnt;
 552}
 553
 554/* type can be of enum type zs_stat_type or fullness_group */
 555static inline void zs_stat_dec(struct size_class *class,
 556				int type, unsigned long cnt)
 557{
 558	class->stats.objs[type] -= cnt;
 559}
 560
 561/* type can be of enum type zs_stat_type or fullness_group */
 562static inline unsigned long zs_stat_get(struct size_class *class,
 563				int type)
 564{
 565	return class->stats.objs[type];
 566}
 567
 568#ifdef CONFIG_ZSMALLOC_STAT
 569
 570static void __init zs_stat_init(void)
 571{
 572	if (!debugfs_initialized()) {
 573		pr_warn("debugfs not available, stat dir not created\n");
 574		return;
 575	}
 576
 577	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
 578	if (!zs_stat_root)
 579		pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
 580}
 581
 582static void __exit zs_stat_exit(void)
 583{
 584	debugfs_remove_recursive(zs_stat_root);
 585}
 586
 587static unsigned long zs_can_compact(struct size_class *class);
 588
 589static int zs_stats_size_show(struct seq_file *s, void *v)
 590{
 591	int i;
 592	struct zs_pool *pool = s->private;
 593	struct size_class *class;
 594	int objs_per_zspage;
 595	unsigned long class_almost_full, class_almost_empty;
 596	unsigned long obj_allocated, obj_used, pages_used, freeable;
 597	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
 598	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
 599	unsigned long total_freeable = 0;
 600
 601	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
 602			"class", "size", "almost_full", "almost_empty",
 603			"obj_allocated", "obj_used", "pages_used",
 604			"pages_per_zspage", "freeable");
 605
 606	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
 607		class = pool->size_class[i];
 608
 609		if (class->index != i)
 610			continue;
 611
 612		spin_lock(&class->lock);
 613		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
 614		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
 615		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
 616		obj_used = zs_stat_get(class, OBJ_USED);
 617		freeable = zs_can_compact(class);
 618		spin_unlock(&class->lock);
 619
 620		objs_per_zspage = class->objs_per_zspage;
 621		pages_used = obj_allocated / objs_per_zspage *
 622				class->pages_per_zspage;
 623
 624		seq_printf(s, " %5u %5u %11lu %12lu %13lu"
 625				" %10lu %10lu %16d %8lu\n",
 626			i, class->size, class_almost_full, class_almost_empty,
 627			obj_allocated, obj_used, pages_used,
 628			class->pages_per_zspage, freeable);
 629
 630		total_class_almost_full += class_almost_full;
 631		total_class_almost_empty += class_almost_empty;
 632		total_objs += obj_allocated;
 633		total_used_objs += obj_used;
 634		total_pages += pages_used;
 635		total_freeable += freeable;
 636	}
 637
 638	seq_puts(s, "\n");
 639	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
 640			"Total", "", total_class_almost_full,
 641			total_class_almost_empty, total_objs,
 642			total_used_objs, total_pages, "", total_freeable);
 643
 644	return 0;
 645}
 646DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
 647
 648static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
 649{
 650	struct dentry *entry;
 651
 652	if (!zs_stat_root) {
 653		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
 654		return;
 655	}
 656
 657	entry = debugfs_create_dir(name, zs_stat_root);
 658	if (!entry) {
 659		pr_warn("debugfs dir <%s> creation failed\n", name);
 660		return;
 661	}
 662	pool->stat_dentry = entry;
 663
 664	entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
 665			pool->stat_dentry, pool, &zs_stats_size_fops);
 666	if (!entry) {
 667		pr_warn("%s: debugfs file entry <%s> creation failed\n",
 668				name, "classes");
 669		debugfs_remove_recursive(pool->stat_dentry);
 670		pool->stat_dentry = NULL;
 671	}
 672}
 673
 674static void zs_pool_stat_destroy(struct zs_pool *pool)
 675{
 676	debugfs_remove_recursive(pool->stat_dentry);
 677}
 678
 679#else /* CONFIG_ZSMALLOC_STAT */
 680static void __init zs_stat_init(void)
 681{
 682}
 683
 684static void __exit zs_stat_exit(void)
 685{
 686}
 687
 688static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
 689{
 690}
 691
 692static inline void zs_pool_stat_destroy(struct zs_pool *pool)
 693{
 694}
 695#endif
 696
 697
 698/*
 699 * For each size class, zspages are divided into different groups
 700 * depending on how "full" they are. This was done so that we could
 701 * easily find empty or nearly empty zspages when we try to shrink
 702 * the pool (not yet implemented). This function returns fullness
 703 * status of the given page.
 704 */
 705static enum fullness_group get_fullness_group(struct size_class *class,
 706						struct zspage *zspage)
 707{
 708	int inuse, objs_per_zspage;
 709	enum fullness_group fg;
 710
 711	inuse = get_zspage_inuse(zspage);
 712	objs_per_zspage = class->objs_per_zspage;
 713
 714	if (inuse == 0)
 715		fg = ZS_EMPTY;
 716	else if (inuse == objs_per_zspage)
 717		fg = ZS_FULL;
 718	else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
 719		fg = ZS_ALMOST_EMPTY;
 720	else
 721		fg = ZS_ALMOST_FULL;
 722
 723	return fg;
 724}
 725
 726/*
 727 * Each size class maintains various freelists and zspages are assigned
 728 * to one of these freelists based on the number of live objects they
 729 * have. This functions inserts the given zspage into the freelist
 730 * identified by <class, fullness_group>.
 731 */
 732static void insert_zspage(struct size_class *class,
 733				struct zspage *zspage,
 734				enum fullness_group fullness)
 735{
 736	struct zspage *head;
 737
 738	zs_stat_inc(class, fullness, 1);
 739	head = list_first_entry_or_null(&class->fullness_list[fullness],
 740					struct zspage, list);
 741	/*
 742	 * We want to see more ZS_FULL pages and less almost empty/full.
 743	 * Put pages with higher ->inuse first.
 744	 */
 745	if (head) {
 746		if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
 747			list_add(&zspage->list, &head->list);
 748			return;
 749		}
 750	}
 751	list_add(&zspage->list, &class->fullness_list[fullness]);
 752}
 753
 754/*
 755 * This function removes the given zspage from the freelist identified
 756 * by <class, fullness_group>.
 757 */
 758static void remove_zspage(struct size_class *class,
 759				struct zspage *zspage,
 760				enum fullness_group fullness)
 761{
 762	VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
 763	VM_BUG_ON(is_zspage_isolated(zspage));
 764
 765	list_del_init(&zspage->list);
 766	zs_stat_dec(class, fullness, 1);
 767}
 768
 769/*
 770 * Each size class maintains zspages in different fullness groups depending
 771 * on the number of live objects they contain. When allocating or freeing
 772 * objects, the fullness status of the page can change, say, from ALMOST_FULL
 773 * to ALMOST_EMPTY when freeing an object. This function checks if such
 774 * a status change has occurred for the given page and accordingly moves the
 775 * page from the freelist of the old fullness group to that of the new
 776 * fullness group.
 777 */
 778static enum fullness_group fix_fullness_group(struct size_class *class,
 779						struct zspage *zspage)
 780{
 781	int class_idx;
 782	enum fullness_group currfg, newfg;
 783
 784	get_zspage_mapping(zspage, &class_idx, &currfg);
 785	newfg = get_fullness_group(class, zspage);
 786	if (newfg == currfg)
 787		goto out;
 788
 789	if (!is_zspage_isolated(zspage)) {
 790		remove_zspage(class, zspage, currfg);
 791		insert_zspage(class, zspage, newfg);
 792	}
 793
 794	set_zspage_mapping(zspage, class_idx, newfg);
 795
 796out:
 797	return newfg;
 798}
 799
 800/*
 801 * We have to decide on how many pages to link together
 802 * to form a zspage for each size class. This is important
 803 * to reduce wastage due to unusable space left at end of
 804 * each zspage which is given as:
 805 *     wastage = Zp % class_size
 806 *     usage = Zp - wastage
 807 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
 808 *
 809 * For example, for size class of 3/8 * PAGE_SIZE, we should
 810 * link together 3 PAGE_SIZE sized pages to form a zspage
 811 * since then we can perfectly fit in 8 such objects.
 812 */
 813static int get_pages_per_zspage(int class_size)
 814{
 815	int i, max_usedpc = 0;
 816	/* zspage order which gives maximum used size per KB */
 817	int max_usedpc_order = 1;
 818
 819	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
 820		int zspage_size;
 821		int waste, usedpc;
 822
 823		zspage_size = i * PAGE_SIZE;
 824		waste = zspage_size % class_size;
 825		usedpc = (zspage_size - waste) * 100 / zspage_size;
 826
 827		if (usedpc > max_usedpc) {
 828			max_usedpc = usedpc;
 829			max_usedpc_order = i;
 830		}
 831	}
 832
 833	return max_usedpc_order;
 834}
 835
 836static struct zspage *get_zspage(struct page *page)
 837{
 838	struct zspage *zspage = (struct zspage *)page->private;
 839
 840	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
 841	return zspage;
 842}
 843
 844static struct page *get_next_page(struct page *page)
 845{
 846	if (unlikely(PageHugeObject(page)))
 
 
 847		return NULL;
 848
 849	return page->freelist;
 850}
 851
 852/**
 853 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
 854 * @obj: the encoded object value
 855 * @page: page object resides in zspage
 856 * @obj_idx: object index
 857 */
 858static void obj_to_location(unsigned long obj, struct page **page,
 859				unsigned int *obj_idx)
 860{
 861	obj >>= OBJ_TAG_BITS;
 862	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
 863	*obj_idx = (obj & OBJ_INDEX_MASK);
 864}
 865
 
 
 
 
 
 
 866/**
 867 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
 868 * @page: page object resides in zspage
 869 * @obj_idx: object index
 870 */
 871static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
 872{
 873	unsigned long obj;
 874
 875	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
 876	obj |= obj_idx & OBJ_INDEX_MASK;
 877	obj <<= OBJ_TAG_BITS;
 878
 879	return obj;
 880}
 881
 882static unsigned long handle_to_obj(unsigned long handle)
 883{
 884	return *(unsigned long *)handle;
 885}
 886
 887static unsigned long obj_to_head(struct page *page, void *obj)
 
 888{
 889	if (unlikely(PageHugeObject(page))) {
 
 
 
 890		VM_BUG_ON_PAGE(!is_first_page(page), page);
 891		return page->index;
 892	} else
 893		return *(unsigned long *)obj;
 894}
 895
 896static inline int testpin_tag(unsigned long handle)
 897{
 898	return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
 899}
 900
 901static inline int trypin_tag(unsigned long handle)
 902{
 903	return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
 904}
 905
 906static void pin_tag(unsigned long handle)
 907{
 908	bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
 909}
 910
 911static void unpin_tag(unsigned long handle)
 
 
 912{
 913	bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
 914}
 
 915
 916static void reset_page(struct page *page)
 917{
 918	__ClearPageMovable(page);
 919	ClearPagePrivate(page);
 920	set_page_private(page, 0);
 921	page_mapcount_reset(page);
 922	ClearPageHugeObject(page);
 923	page->freelist = NULL;
 924}
 925
 926/*
 927 * To prevent zspage destroy during migration, zspage freeing should
 928 * hold locks of all pages in the zspage.
 929 */
 930void lock_zspage(struct zspage *zspage)
 931{
 932	struct page *page = get_first_page(zspage);
 933
 934	do {
 935		lock_page(page);
 936	} while ((page = get_next_page(page)) != NULL);
 937}
 938
 939int trylock_zspage(struct zspage *zspage)
 940{
 941	struct page *cursor, *fail;
 942
 943	for (cursor = get_first_page(zspage); cursor != NULL; cursor =
 944					get_next_page(cursor)) {
 945		if (!trylock_page(cursor)) {
 946			fail = cursor;
 947			goto unlock;
 948		}
 949	}
 950
 951	return 1;
 952unlock:
 953	for (cursor = get_first_page(zspage); cursor != fail; cursor =
 954					get_next_page(cursor))
 955		unlock_page(cursor);
 956
 957	return 0;
 958}
 959
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 960static void __free_zspage(struct zs_pool *pool, struct size_class *class,
 961				struct zspage *zspage)
 962{
 963	struct page *page, *next;
 964	enum fullness_group fg;
 965	unsigned int class_idx;
 966
 967	get_zspage_mapping(zspage, &class_idx, &fg);
 968
 969	assert_spin_locked(&class->lock);
 970
 971	VM_BUG_ON(get_zspage_inuse(zspage));
 972	VM_BUG_ON(fg != ZS_EMPTY);
 973
 
 
 
 974	next = page = get_first_page(zspage);
 975	do {
 976		VM_BUG_ON_PAGE(!PageLocked(page), page);
 977		next = get_next_page(page);
 978		reset_page(page);
 979		unlock_page(page);
 980		dec_zone_page_state(page, NR_ZSPAGES);
 981		put_page(page);
 982		page = next;
 983	} while (page != NULL);
 984
 985	cache_free_zspage(pool, zspage);
 986
 987	zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
 988	atomic_long_sub(class->pages_per_zspage,
 989					&pool->pages_allocated);
 990}
 991
 992static void free_zspage(struct zs_pool *pool, struct size_class *class,
 993				struct zspage *zspage)
 994{
 995	VM_BUG_ON(get_zspage_inuse(zspage));
 996	VM_BUG_ON(list_empty(&zspage->list));
 997
 
 
 
 
 
 998	if (!trylock_zspage(zspage)) {
 999		kick_deferred_free(pool);
1000		return;
1001	}
1002
1003	remove_zspage(class, zspage, ZS_EMPTY);
 
 
 
1004	__free_zspage(pool, class, zspage);
1005}
1006
1007/* Initialize a newly allocated zspage */
1008static void init_zspage(struct size_class *class, struct zspage *zspage)
1009{
1010	unsigned int freeobj = 1;
1011	unsigned long off = 0;
1012	struct page *page = get_first_page(zspage);
1013
1014	while (page) {
1015		struct page *next_page;
1016		struct link_free *link;
1017		void *vaddr;
1018
1019		set_first_obj_offset(page, off);
1020
1021		vaddr = kmap_atomic(page);
1022		link = (struct link_free *)vaddr + off / sizeof(*link);
1023
1024		while ((off += class->size) < PAGE_SIZE) {
1025			link->next = freeobj++ << OBJ_TAG_BITS;
1026			link += class->size / sizeof(*link);
1027		}
1028
1029		/*
1030		 * We now come to the last (full or partial) object on this
1031		 * page, which must point to the first object on the next
1032		 * page (if present)
1033		 */
1034		next_page = get_next_page(page);
1035		if (next_page) {
1036			link->next = freeobj++ << OBJ_TAG_BITS;
1037		} else {
1038			/*
1039			 * Reset OBJ_TAG_BITS bit to last link to tell
1040			 * whether it's allocated object or not.
1041			 */
1042			link->next = -1UL << OBJ_TAG_BITS;
1043		}
1044		kunmap_atomic(vaddr);
1045		page = next_page;
1046		off %= PAGE_SIZE;
1047	}
1048
 
 
 
 
 
1049	set_freeobj(zspage, 0);
1050}
1051
1052static void create_page_chain(struct size_class *class, struct zspage *zspage,
1053				struct page *pages[])
1054{
1055	int i;
1056	struct page *page;
1057	struct page *prev_page = NULL;
1058	int nr_pages = class->pages_per_zspage;
1059
1060	/*
1061	 * Allocate individual pages and link them together as:
1062	 * 1. all pages are linked together using page->freelist
1063	 * 2. each sub-page point to zspage using page->private
1064	 *
1065	 * we set PG_private to identify the first page (i.e. no other sub-page
1066	 * has this flag set).
1067	 */
1068	for (i = 0; i < nr_pages; i++) {
1069		page = pages[i];
1070		set_page_private(page, (unsigned long)zspage);
1071		page->freelist = NULL;
1072		if (i == 0) {
1073			zspage->first_page = page;
1074			SetPagePrivate(page);
1075			if (unlikely(class->objs_per_zspage == 1 &&
1076					class->pages_per_zspage == 1))
1077				SetPageHugeObject(page);
1078		} else {
1079			prev_page->freelist = page;
1080		}
1081		prev_page = page;
1082	}
1083}
1084
1085/*
1086 * Allocate a zspage for the given size class
1087 */
1088static struct zspage *alloc_zspage(struct zs_pool *pool,
1089					struct size_class *class,
1090					gfp_t gfp)
1091{
1092	int i;
1093	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1094	struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1095
1096	if (!zspage)
1097		return NULL;
1098
1099	memset(zspage, 0, sizeof(struct zspage));
1100	zspage->magic = ZSPAGE_MAGIC;
1101	migrate_lock_init(zspage);
1102
1103	for (i = 0; i < class->pages_per_zspage; i++) {
1104		struct page *page;
1105
1106		page = alloc_page(gfp);
1107		if (!page) {
1108			while (--i >= 0) {
1109				dec_zone_page_state(pages[i], NR_ZSPAGES);
1110				__free_page(pages[i]);
1111			}
1112			cache_free_zspage(pool, zspage);
1113			return NULL;
1114		}
1115
1116		inc_zone_page_state(page, NR_ZSPAGES);
1117		pages[i] = page;
1118	}
1119
1120	create_page_chain(class, zspage, pages);
1121	init_zspage(class, zspage);
 
1122
1123	return zspage;
1124}
1125
1126static struct zspage *find_get_zspage(struct size_class *class)
1127{
1128	int i;
1129	struct zspage *zspage;
1130
1131	for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1132		zspage = list_first_entry_or_null(&class->fullness_list[i],
1133				struct zspage, list);
1134		if (zspage)
1135			break;
1136	}
1137
1138	return zspage;
1139}
1140
1141#ifdef CONFIG_PGTABLE_MAPPING
1142static inline int __zs_cpu_up(struct mapping_area *area)
1143{
1144	/*
1145	 * Make sure we don't leak memory if a cpu UP notification
1146	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1147	 */
1148	if (area->vm)
1149		return 0;
1150	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1151	if (!area->vm)
1152		return -ENOMEM;
1153	return 0;
1154}
1155
1156static inline void __zs_cpu_down(struct mapping_area *area)
1157{
1158	if (area->vm)
1159		free_vm_area(area->vm);
1160	area->vm = NULL;
1161}
1162
1163static inline void *__zs_map_object(struct mapping_area *area,
1164				struct page *pages[2], int off, int size)
1165{
1166	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1167	area->vm_addr = area->vm->addr;
1168	return area->vm_addr + off;
1169}
1170
1171static inline void __zs_unmap_object(struct mapping_area *area,
1172				struct page *pages[2], int off, int size)
1173{
1174	unsigned long addr = (unsigned long)area->vm_addr;
1175
1176	unmap_kernel_range(addr, PAGE_SIZE * 2);
1177}
1178
1179#else /* CONFIG_PGTABLE_MAPPING */
1180
1181static inline int __zs_cpu_up(struct mapping_area *area)
1182{
1183	/*
1184	 * Make sure we don't leak memory if a cpu UP notification
1185	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1186	 */
1187	if (area->vm_buf)
1188		return 0;
1189	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1190	if (!area->vm_buf)
1191		return -ENOMEM;
1192	return 0;
1193}
1194
1195static inline void __zs_cpu_down(struct mapping_area *area)
1196{
1197	kfree(area->vm_buf);
1198	area->vm_buf = NULL;
1199}
1200
1201static void *__zs_map_object(struct mapping_area *area,
1202			struct page *pages[2], int off, int size)
1203{
1204	int sizes[2];
1205	void *addr;
1206	char *buf = area->vm_buf;
1207
1208	/* disable page faults to match kmap_atomic() return conditions */
1209	pagefault_disable();
1210
1211	/* no read fastpath */
1212	if (area->vm_mm == ZS_MM_WO)
1213		goto out;
1214
1215	sizes[0] = PAGE_SIZE - off;
1216	sizes[1] = size - sizes[0];
1217
1218	/* copy object to per-cpu buffer */
1219	addr = kmap_atomic(pages[0]);
1220	memcpy(buf, addr + off, sizes[0]);
1221	kunmap_atomic(addr);
1222	addr = kmap_atomic(pages[1]);
1223	memcpy(buf + sizes[0], addr, sizes[1]);
1224	kunmap_atomic(addr);
1225out:
1226	return area->vm_buf;
1227}
1228
1229static void __zs_unmap_object(struct mapping_area *area,
1230			struct page *pages[2], int off, int size)
1231{
1232	int sizes[2];
1233	void *addr;
1234	char *buf;
1235
1236	/* no write fastpath */
1237	if (area->vm_mm == ZS_MM_RO)
1238		goto out;
1239
1240	buf = area->vm_buf;
1241	buf = buf + ZS_HANDLE_SIZE;
1242	size -= ZS_HANDLE_SIZE;
1243	off += ZS_HANDLE_SIZE;
1244
1245	sizes[0] = PAGE_SIZE - off;
1246	sizes[1] = size - sizes[0];
1247
1248	/* copy per-cpu buffer to object */
1249	addr = kmap_atomic(pages[0]);
1250	memcpy(addr + off, buf, sizes[0]);
1251	kunmap_atomic(addr);
1252	addr = kmap_atomic(pages[1]);
1253	memcpy(addr, buf + sizes[0], sizes[1]);
1254	kunmap_atomic(addr);
1255
1256out:
1257	/* enable page faults to match kunmap_atomic() return conditions */
1258	pagefault_enable();
1259}
1260
1261#endif /* CONFIG_PGTABLE_MAPPING */
1262
1263static int zs_cpu_prepare(unsigned int cpu)
1264{
1265	struct mapping_area *area;
1266
1267	area = &per_cpu(zs_map_area, cpu);
1268	return __zs_cpu_up(area);
1269}
1270
1271static int zs_cpu_dead(unsigned int cpu)
1272{
1273	struct mapping_area *area;
1274
1275	area = &per_cpu(zs_map_area, cpu);
1276	__zs_cpu_down(area);
1277	return 0;
1278}
1279
1280static bool can_merge(struct size_class *prev, int pages_per_zspage,
1281					int objs_per_zspage)
1282{
1283	if (prev->pages_per_zspage == pages_per_zspage &&
1284		prev->objs_per_zspage == objs_per_zspage)
1285		return true;
1286
1287	return false;
1288}
1289
1290static bool zspage_full(struct size_class *class, struct zspage *zspage)
1291{
1292	return get_zspage_inuse(zspage) == class->objs_per_zspage;
1293}
1294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1295unsigned long zs_get_total_pages(struct zs_pool *pool)
1296{
1297	return atomic_long_read(&pool->pages_allocated);
1298}
1299EXPORT_SYMBOL_GPL(zs_get_total_pages);
1300
1301/**
1302 * zs_map_object - get address of allocated object from handle.
1303 * @pool: pool from which the object was allocated
1304 * @handle: handle returned from zs_malloc
1305 * @mm: maping mode to use
1306 *
1307 * Before using an object allocated from zs_malloc, it must be mapped using
1308 * this function. When done with the object, it must be unmapped using
1309 * zs_unmap_object.
1310 *
1311 * Only one object can be mapped per cpu at a time. There is no protection
1312 * against nested mappings.
1313 *
1314 * This function returns with preemption and page faults disabled.
1315 */
1316void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1317			enum zs_mapmode mm)
1318{
1319	struct zspage *zspage;
1320	struct page *page;
1321	unsigned long obj, off;
1322	unsigned int obj_idx;
1323
1324	unsigned int class_idx;
1325	enum fullness_group fg;
1326	struct size_class *class;
1327	struct mapping_area *area;
1328	struct page *pages[2];
1329	void *ret;
1330
1331	/*
1332	 * Because we use per-cpu mapping areas shared among the
1333	 * pools/users, we can't allow mapping in interrupt context
1334	 * because it can corrupt another users mappings.
1335	 */
1336	BUG_ON(in_interrupt());
1337
1338	/* From now on, migration cannot move the object */
1339	pin_tag(handle);
1340
1341	obj = handle_to_obj(handle);
1342	obj_to_location(obj, &page, &obj_idx);
1343	zspage = get_zspage(page);
1344
1345	/* migration cannot move any subpage in this zspage */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1346	migrate_read_lock(zspage);
 
1347
1348	get_zspage_mapping(zspage, &class_idx, &fg);
1349	class = pool->size_class[class_idx];
1350	off = (class->size * obj_idx) & ~PAGE_MASK;
1351
1352	area = &get_cpu_var(zs_map_area);
 
1353	area->vm_mm = mm;
1354	if (off + class->size <= PAGE_SIZE) {
1355		/* this object is contained entirely within a page */
1356		area->vm_addr = kmap_atomic(page);
1357		ret = area->vm_addr + off;
1358		goto out;
1359	}
1360
1361	/* this object spans two pages */
1362	pages[0] = page;
1363	pages[1] = get_next_page(page);
1364	BUG_ON(!pages[1]);
1365
1366	ret = __zs_map_object(area, pages, off, class->size);
1367out:
1368	if (likely(!PageHugeObject(page)))
1369		ret += ZS_HANDLE_SIZE;
1370
1371	return ret;
1372}
1373EXPORT_SYMBOL_GPL(zs_map_object);
1374
1375void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1376{
1377	struct zspage *zspage;
1378	struct page *page;
1379	unsigned long obj, off;
1380	unsigned int obj_idx;
1381
1382	unsigned int class_idx;
1383	enum fullness_group fg;
1384	struct size_class *class;
1385	struct mapping_area *area;
1386
1387	obj = handle_to_obj(handle);
1388	obj_to_location(obj, &page, &obj_idx);
1389	zspage = get_zspage(page);
1390	get_zspage_mapping(zspage, &class_idx, &fg);
1391	class = pool->size_class[class_idx];
1392	off = (class->size * obj_idx) & ~PAGE_MASK;
1393
1394	area = this_cpu_ptr(&zs_map_area);
1395	if (off + class->size <= PAGE_SIZE)
1396		kunmap_atomic(area->vm_addr);
1397	else {
1398		struct page *pages[2];
1399
1400		pages[0] = page;
1401		pages[1] = get_next_page(page);
1402		BUG_ON(!pages[1]);
1403
1404		__zs_unmap_object(area, pages, off, class->size);
1405	}
1406	put_cpu_var(zs_map_area);
1407
1408	migrate_read_unlock(zspage);
1409	unpin_tag(handle);
1410}
1411EXPORT_SYMBOL_GPL(zs_unmap_object);
1412
1413/**
1414 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1415 *                        zsmalloc &size_class.
1416 * @pool: zsmalloc pool to use
1417 *
1418 * The function returns the size of the first huge class - any object of equal
1419 * or bigger size will be stored in zspage consisting of a single physical
1420 * page.
1421 *
1422 * Context: Any context.
1423 *
1424 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1425 */
1426size_t zs_huge_class_size(struct zs_pool *pool)
1427{
1428	return huge_class_size;
1429}
1430EXPORT_SYMBOL_GPL(zs_huge_class_size);
1431
1432static unsigned long obj_malloc(struct size_class *class,
1433				struct zspage *zspage, unsigned long handle)
1434{
1435	int i, nr_page, offset;
1436	unsigned long obj;
1437	struct link_free *link;
 
1438
1439	struct page *m_page;
1440	unsigned long m_offset;
1441	void *vaddr;
1442
 
1443	handle |= OBJ_ALLOCATED_TAG;
1444	obj = get_freeobj(zspage);
1445
1446	offset = obj * class->size;
1447	nr_page = offset >> PAGE_SHIFT;
1448	m_offset = offset & ~PAGE_MASK;
1449	m_page = get_first_page(zspage);
1450
1451	for (i = 0; i < nr_page; i++)
1452		m_page = get_next_page(m_page);
1453
1454	vaddr = kmap_atomic(m_page);
1455	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1456	set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1457	if (likely(!PageHugeObject(m_page)))
1458		/* record handle in the header of allocated chunk */
1459		link->handle = handle;
1460	else
1461		/* record handle to page->index */
1462		zspage->first_page->index = handle;
1463
1464	kunmap_atomic(vaddr);
1465	mod_zspage_inuse(zspage, 1);
1466	zs_stat_inc(class, OBJ_USED, 1);
1467
1468	obj = location_to_obj(m_page, obj);
1469
1470	return obj;
1471}
1472
1473
1474/**
1475 * zs_malloc - Allocate block of given size from pool.
1476 * @pool: pool to allocate from
1477 * @size: size of block to allocate
1478 * @gfp: gfp flags when allocating object
1479 *
1480 * On success, handle to the allocated object is returned,
1481 * otherwise 0.
1482 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1483 */
1484unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1485{
1486	unsigned long handle, obj;
1487	struct size_class *class;
1488	enum fullness_group newfg;
1489	struct zspage *zspage;
1490
1491	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1492		return 0;
1493
1494	handle = cache_alloc_handle(pool, gfp);
1495	if (!handle)
1496		return 0;
1497
1498	/* extra space in chunk to keep the handle */
1499	size += ZS_HANDLE_SIZE;
1500	class = pool->size_class[get_size_class_index(size)];
1501
1502	spin_lock(&class->lock);
 
1503	zspage = find_get_zspage(class);
1504	if (likely(zspage)) {
1505		obj = obj_malloc(class, zspage, handle);
1506		/* Now move the zspage to another fullness group, if required */
1507		fix_fullness_group(class, zspage);
1508		record_obj(handle, obj);
1509		spin_unlock(&class->lock);
 
1510
1511		return handle;
1512	}
1513
1514	spin_unlock(&class->lock);
1515
1516	zspage = alloc_zspage(pool, class, gfp);
1517	if (!zspage) {
1518		cache_free_handle(pool, handle);
1519		return 0;
1520	}
1521
1522	spin_lock(&class->lock);
1523	obj = obj_malloc(class, zspage, handle);
1524	newfg = get_fullness_group(class, zspage);
1525	insert_zspage(class, zspage, newfg);
1526	set_zspage_mapping(zspage, class->index, newfg);
1527	record_obj(handle, obj);
1528	atomic_long_add(class->pages_per_zspage,
1529				&pool->pages_allocated);
1530	zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
 
1531
1532	/* We completely set up zspage so mark them as movable */
1533	SetZsPageMovable(pool, zspage);
1534	spin_unlock(&class->lock);
1535
1536	return handle;
1537}
1538EXPORT_SYMBOL_GPL(zs_malloc);
1539
1540static void obj_free(struct size_class *class, unsigned long obj)
1541{
1542	struct link_free *link;
1543	struct zspage *zspage;
1544	struct page *f_page;
1545	unsigned long f_offset;
1546	unsigned int f_objidx;
1547	void *vaddr;
1548
1549	obj &= ~OBJ_ALLOCATED_TAG;
1550	obj_to_location(obj, &f_page, &f_objidx);
1551	f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1552	zspage = get_zspage(f_page);
1553
1554	vaddr = kmap_atomic(f_page);
1555
1556	/* Insert this object in containing zspage's freelist */
1557	link = (struct link_free *)(vaddr + f_offset);
1558	link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1559	kunmap_atomic(vaddr);
1560	set_freeobj(zspage, f_objidx);
1561	mod_zspage_inuse(zspage, -1);
1562	zs_stat_dec(class, OBJ_USED, 1);
1563}
1564
1565void zs_free(struct zs_pool *pool, unsigned long handle)
1566{
1567	struct zspage *zspage;
1568	struct page *f_page;
1569	unsigned long obj;
1570	unsigned int f_objidx;
1571	int class_idx;
1572	struct size_class *class;
1573	enum fullness_group fullness;
1574	bool isolated;
1575
1576	if (unlikely(!handle))
1577		return;
1578
1579	pin_tag(handle);
 
 
 
 
1580	obj = handle_to_obj(handle);
1581	obj_to_location(obj, &f_page, &f_objidx);
1582	zspage = get_zspage(f_page);
 
1583
1584	migrate_read_lock(zspage);
1585
1586	get_zspage_mapping(zspage, &class_idx, &fullness);
1587	class = pool->size_class[class_idx];
1588
1589	spin_lock(&class->lock);
1590	obj_free(class, obj);
1591	fullness = fix_fullness_group(class, zspage);
1592	if (fullness != ZS_EMPTY) {
1593		migrate_read_unlock(zspage);
1594		goto out;
 
 
 
 
 
1595	}
 
 
1596
1597	isolated = is_zspage_isolated(zspage);
1598	migrate_read_unlock(zspage);
1599	/* If zspage is isolated, zs_page_putback will free the zspage */
1600	if (likely(!isolated))
1601		free_zspage(pool, class, zspage);
1602out:
1603
1604	spin_unlock(&class->lock);
1605	unpin_tag(handle);
1606	cache_free_handle(pool, handle);
1607}
1608EXPORT_SYMBOL_GPL(zs_free);
1609
1610static void zs_object_copy(struct size_class *class, unsigned long dst,
1611				unsigned long src)
1612{
1613	struct page *s_page, *d_page;
1614	unsigned int s_objidx, d_objidx;
1615	unsigned long s_off, d_off;
1616	void *s_addr, *d_addr;
1617	int s_size, d_size, size;
1618	int written = 0;
1619
1620	s_size = d_size = class->size;
1621
1622	obj_to_location(src, &s_page, &s_objidx);
1623	obj_to_location(dst, &d_page, &d_objidx);
1624
1625	s_off = (class->size * s_objidx) & ~PAGE_MASK;
1626	d_off = (class->size * d_objidx) & ~PAGE_MASK;
1627
1628	if (s_off + class->size > PAGE_SIZE)
1629		s_size = PAGE_SIZE - s_off;
1630
1631	if (d_off + class->size > PAGE_SIZE)
1632		d_size = PAGE_SIZE - d_off;
1633
1634	s_addr = kmap_atomic(s_page);
1635	d_addr = kmap_atomic(d_page);
1636
1637	while (1) {
1638		size = min(s_size, d_size);
1639		memcpy(d_addr + d_off, s_addr + s_off, size);
1640		written += size;
1641
1642		if (written == class->size)
1643			break;
1644
1645		s_off += size;
1646		s_size -= size;
1647		d_off += size;
1648		d_size -= size;
1649
 
 
 
 
 
 
 
1650		if (s_off >= PAGE_SIZE) {
1651			kunmap_atomic(d_addr);
1652			kunmap_atomic(s_addr);
1653			s_page = get_next_page(s_page);
1654			s_addr = kmap_atomic(s_page);
1655			d_addr = kmap_atomic(d_page);
1656			s_size = class->size - written;
1657			s_off = 0;
1658		}
1659
1660		if (d_off >= PAGE_SIZE) {
1661			kunmap_atomic(d_addr);
1662			d_page = get_next_page(d_page);
1663			d_addr = kmap_atomic(d_page);
1664			d_size = class->size - written;
1665			d_off = 0;
1666		}
1667	}
1668
1669	kunmap_atomic(d_addr);
1670	kunmap_atomic(s_addr);
1671}
1672
1673/*
1674 * Find alloced object in zspage from index object and
1675 * return handle.
1676 */
1677static unsigned long find_alloced_obj(struct size_class *class,
1678					struct page *page, int *obj_idx)
1679{
1680	unsigned long head;
1681	int offset = 0;
1682	int index = *obj_idx;
1683	unsigned long handle = 0;
1684	void *addr = kmap_atomic(page);
1685
1686	offset = get_first_obj_offset(page);
1687	offset += class->size * index;
1688
1689	while (offset < PAGE_SIZE) {
1690		head = obj_to_head(page, addr + offset);
1691		if (head & OBJ_ALLOCATED_TAG) {
1692			handle = head & ~OBJ_ALLOCATED_TAG;
1693			if (trypin_tag(handle))
1694				break;
1695			handle = 0;
1696		}
1697
1698		offset += class->size;
1699		index++;
1700	}
1701
1702	kunmap_atomic(addr);
1703
1704	*obj_idx = index;
1705
1706	return handle;
1707}
1708
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1709struct zs_compact_control {
1710	/* Source spage for migration which could be a subpage of zspage */
1711	struct page *s_page;
1712	/* Destination page for migration which should be a first page
1713	 * of zspage. */
1714	struct page *d_page;
1715	 /* Starting object index within @s_page which used for live object
1716	  * in the subpage. */
1717	int obj_idx;
1718};
1719
1720static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1721				struct zs_compact_control *cc)
1722{
1723	unsigned long used_obj, free_obj;
1724	unsigned long handle;
1725	struct page *s_page = cc->s_page;
1726	struct page *d_page = cc->d_page;
1727	int obj_idx = cc->obj_idx;
1728	int ret = 0;
1729
1730	while (1) {
1731		handle = find_alloced_obj(class, s_page, &obj_idx);
1732		if (!handle) {
1733			s_page = get_next_page(s_page);
1734			if (!s_page)
1735				break;
1736			obj_idx = 0;
1737			continue;
1738		}
1739
1740		/* Stop if there is no more space */
1741		if (zspage_full(class, get_zspage(d_page))) {
1742			unpin_tag(handle);
1743			ret = -ENOMEM;
1744			break;
1745		}
1746
1747		used_obj = handle_to_obj(handle);
1748		free_obj = obj_malloc(class, get_zspage(d_page), handle);
1749		zs_object_copy(class, free_obj, used_obj);
1750		obj_idx++;
1751		/*
1752		 * record_obj updates handle's value to free_obj and it will
1753		 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1754		 * breaks synchronization using pin_tag(e,g, zs_free) so
1755		 * let's keep the lock bit.
1756		 */
1757		free_obj |= BIT(HANDLE_PIN_BIT);
1758		record_obj(handle, free_obj);
1759		unpin_tag(handle);
1760		obj_free(class, used_obj);
1761	}
1762
1763	/* Remember last position in this iteration */
1764	cc->s_page = s_page;
1765	cc->obj_idx = obj_idx;
1766
1767	return ret;
1768}
1769
1770static struct zspage *isolate_zspage(struct size_class *class, bool source)
1771{
1772	int i;
1773	struct zspage *zspage;
1774	enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1775
1776	if (!source) {
1777		fg[0] = ZS_ALMOST_FULL;
1778		fg[1] = ZS_ALMOST_EMPTY;
1779	}
1780
1781	for (i = 0; i < 2; i++) {
1782		zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1783							struct zspage, list);
1784		if (zspage) {
1785			VM_BUG_ON(is_zspage_isolated(zspage));
1786			remove_zspage(class, zspage, fg[i]);
1787			return zspage;
1788		}
1789	}
1790
1791	return zspage;
1792}
1793
1794/*
1795 * putback_zspage - add @zspage into right class's fullness list
1796 * @class: destination class
1797 * @zspage: target page
1798 *
1799 * Return @zspage's fullness_group
1800 */
1801static enum fullness_group putback_zspage(struct size_class *class,
1802			struct zspage *zspage)
1803{
1804	enum fullness_group fullness;
1805
1806	VM_BUG_ON(is_zspage_isolated(zspage));
1807
1808	fullness = get_fullness_group(class, zspage);
1809	insert_zspage(class, zspage, fullness);
1810	set_zspage_mapping(zspage, class->index, fullness);
1811
1812	return fullness;
1813}
1814
1815#ifdef CONFIG_COMPACTION
1816static struct dentry *zs_mount(struct file_system_type *fs_type,
1817				int flags, const char *dev_name, void *data)
1818{
1819	static const struct dentry_operations ops = {
1820		.d_dname = simple_dname,
1821	};
1822
1823	return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1824}
1825
1826static struct file_system_type zsmalloc_fs = {
1827	.name		= "zsmalloc",
1828	.mount		= zs_mount,
1829	.kill_sb	= kill_anon_super,
1830};
1831
1832static int zsmalloc_mount(void)
1833{
1834	int ret = 0;
1835
1836	zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1837	if (IS_ERR(zsmalloc_mnt))
1838		ret = PTR_ERR(zsmalloc_mnt);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1839
1840	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
1841}
 
1842
1843static void zsmalloc_unmount(void)
 
 
 
 
 
 
 
1844{
1845	kern_unmount(zsmalloc_mnt);
 
 
 
 
1846}
 
1847
1848static void migrate_lock_init(struct zspage *zspage)
1849{
1850	rwlock_init(&zspage->lock);
1851}
1852
1853static void migrate_read_lock(struct zspage *zspage)
1854{
1855	read_lock(&zspage->lock);
1856}
1857
1858static void migrate_read_unlock(struct zspage *zspage)
1859{
1860	read_unlock(&zspage->lock);
1861}
1862
 
1863static void migrate_write_lock(struct zspage *zspage)
1864{
1865	write_lock(&zspage->lock);
1866}
1867
 
 
 
 
 
1868static void migrate_write_unlock(struct zspage *zspage)
1869{
1870	write_unlock(&zspage->lock);
1871}
1872
1873/* Number of isolated subpage for *page migration* in this zspage */
1874static void inc_zspage_isolation(struct zspage *zspage)
1875{
1876	zspage->isolated++;
1877}
1878
1879static void dec_zspage_isolation(struct zspage *zspage)
1880{
 
1881	zspage->isolated--;
1882}
1883
 
 
1884static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1885				struct page *newpage, struct page *oldpage)
1886{
1887	struct page *page;
1888	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1889	int idx = 0;
1890
1891	page = get_first_page(zspage);
1892	do {
1893		if (page == oldpage)
1894			pages[idx] = newpage;
1895		else
1896			pages[idx] = page;
1897		idx++;
1898	} while ((page = get_next_page(page)) != NULL);
1899
1900	create_page_chain(class, zspage, pages);
1901	set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1902	if (unlikely(PageHugeObject(oldpage)))
1903		newpage->index = oldpage->index;
1904	__SetPageMovable(newpage, page_mapping(oldpage));
1905}
1906
1907bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1908{
1909	struct zs_pool *pool;
1910	struct size_class *class;
1911	int class_idx;
1912	enum fullness_group fullness;
1913	struct zspage *zspage;
1914	struct address_space *mapping;
1915
1916	/*
1917	 * Page is locked so zspage couldn't be destroyed. For detail, look at
1918	 * lock_zspage in free_zspage.
1919	 */
1920	VM_BUG_ON_PAGE(!PageMovable(page), page);
1921	VM_BUG_ON_PAGE(PageIsolated(page), page);
1922
1923	zspage = get_zspage(page);
1924
1925	/*
1926	 * Without class lock, fullness could be stale while class_idx is okay
1927	 * because class_idx is constant unless page is freed so we should get
1928	 * fullness again under class lock.
1929	 */
1930	get_zspage_mapping(zspage, &class_idx, &fullness);
1931	mapping = page_mapping(page);
1932	pool = mapping->private_data;
1933	class = pool->size_class[class_idx];
1934
1935	spin_lock(&class->lock);
1936	if (get_zspage_inuse(zspage) == 0) {
1937		spin_unlock(&class->lock);
1938		return false;
1939	}
1940
1941	/* zspage is isolated for object migration */
1942	if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1943		spin_unlock(&class->lock);
1944		return false;
1945	}
1946
1947	/*
1948	 * If this is first time isolation for the zspage, isolate zspage from
1949	 * size_class to prevent further object allocation from the zspage.
1950	 */
1951	if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1952		get_zspage_mapping(zspage, &class_idx, &fullness);
1953		remove_zspage(class, zspage, fullness);
1954	}
1955
1956	inc_zspage_isolation(zspage);
1957	spin_unlock(&class->lock);
1958
1959	return true;
1960}
1961
1962int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1963		struct page *page, enum migrate_mode mode)
1964{
1965	struct zs_pool *pool;
1966	struct size_class *class;
1967	int class_idx;
1968	enum fullness_group fullness;
1969	struct zspage *zspage;
1970	struct page *dummy;
1971	void *s_addr, *d_addr, *addr;
1972	int offset, pos;
1973	unsigned long handle, head;
1974	unsigned long old_obj, new_obj;
1975	unsigned int obj_idx;
1976	int ret = -EAGAIN;
1977
1978	/*
1979	 * We cannot support the _NO_COPY case here, because copy needs to
1980	 * happen under the zs lock, which does not work with
1981	 * MIGRATE_SYNC_NO_COPY workflow.
1982	 */
1983	if (mode == MIGRATE_SYNC_NO_COPY)
1984		return -EINVAL;
1985
1986	VM_BUG_ON_PAGE(!PageMovable(page), page);
1987	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1988
 
1989	zspage = get_zspage(page);
 
1990
1991	/* Concurrent compactor cannot migrate any subpage in zspage */
1992	migrate_write_lock(zspage);
1993	get_zspage_mapping(zspage, &class_idx, &fullness);
1994	pool = mapping->private_data;
1995	class = pool->size_class[class_idx];
1996	offset = get_first_obj_offset(page);
1997
1998	spin_lock(&class->lock);
1999	if (!get_zspage_inuse(zspage)) {
2000		/*
2001		 * Set "offset" to end of the page so that every loops
2002		 * skips unnecessary object scanning.
2003		 */
2004		offset = PAGE_SIZE;
2005	}
2006
2007	pos = offset;
2008	s_addr = kmap_atomic(page);
2009	while (pos < PAGE_SIZE) {
2010		head = obj_to_head(page, s_addr + pos);
2011		if (head & OBJ_ALLOCATED_TAG) {
2012			handle = head & ~OBJ_ALLOCATED_TAG;
2013			if (!trypin_tag(handle))
2014				goto unpin_objects;
2015		}
2016		pos += class->size;
2017	}
2018
2019	/*
2020	 * Here, any user cannot access all objects in the zspage so let's move.
2021	 */
2022	d_addr = kmap_atomic(newpage);
2023	memcpy(d_addr, s_addr, PAGE_SIZE);
2024	kunmap_atomic(d_addr);
2025
2026	for (addr = s_addr + offset; addr < s_addr + pos;
2027					addr += class->size) {
2028		head = obj_to_head(page, addr);
2029		if (head & OBJ_ALLOCATED_TAG) {
2030			handle = head & ~OBJ_ALLOCATED_TAG;
2031			if (!testpin_tag(handle))
2032				BUG();
2033
2034			old_obj = handle_to_obj(handle);
2035			obj_to_location(old_obj, &dummy, &obj_idx);
2036			new_obj = (unsigned long)location_to_obj(newpage,
2037								obj_idx);
2038			new_obj |= BIT(HANDLE_PIN_BIT);
2039			record_obj(handle, new_obj);
2040		}
2041	}
 
2042
2043	replace_sub_page(class, zspage, newpage, page);
2044	get_page(newpage);
2045
2046	dec_zspage_isolation(zspage);
2047
2048	/*
2049	 * Page migration is done so let's putback isolated zspage to
2050	 * the list if @page is final isolated subpage in the zspage.
2051	 */
2052	if (!is_zspage_isolated(zspage))
2053		putback_zspage(class, zspage);
 
 
 
 
 
 
 
2054
2055	reset_page(page);
2056	put_page(page);
2057	page = newpage;
2058
2059	ret = MIGRATEPAGE_SUCCESS;
2060unpin_objects:
2061	for (addr = s_addr + offset; addr < s_addr + pos;
2062						addr += class->size) {
2063		head = obj_to_head(page, addr);
2064		if (head & OBJ_ALLOCATED_TAG) {
2065			handle = head & ~OBJ_ALLOCATED_TAG;
2066			if (!testpin_tag(handle))
2067				BUG();
2068			unpin_tag(handle);
2069		}
2070	}
2071	kunmap_atomic(s_addr);
2072	spin_unlock(&class->lock);
2073	migrate_write_unlock(zspage);
2074
2075	return ret;
2076}
2077
2078void zs_page_putback(struct page *page)
2079{
2080	struct zs_pool *pool;
2081	struct size_class *class;
2082	int class_idx;
2083	enum fullness_group fg;
2084	struct address_space *mapping;
2085	struct zspage *zspage;
2086
2087	VM_BUG_ON_PAGE(!PageMovable(page), page);
2088	VM_BUG_ON_PAGE(!PageIsolated(page), page);
2089
2090	zspage = get_zspage(page);
2091	get_zspage_mapping(zspage, &class_idx, &fg);
2092	mapping = page_mapping(page);
2093	pool = mapping->private_data;
2094	class = pool->size_class[class_idx];
2095
2096	spin_lock(&class->lock);
2097	dec_zspage_isolation(zspage);
2098	if (!is_zspage_isolated(zspage)) {
2099		fg = putback_zspage(class, zspage);
2100		/*
2101		 * Due to page_lock, we cannot free zspage immediately
2102		 * so let's defer.
2103		 */
2104		if (fg == ZS_EMPTY)
2105			schedule_work(&pool->free_work);
2106	}
2107	spin_unlock(&class->lock);
2108}
2109
2110const struct address_space_operations zsmalloc_aops = {
2111	.isolate_page = zs_page_isolate,
2112	.migratepage = zs_page_migrate,
2113	.putback_page = zs_page_putback,
2114};
2115
2116static int zs_register_migration(struct zs_pool *pool)
2117{
2118	pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2119	if (IS_ERR(pool->inode)) {
2120		pool->inode = NULL;
2121		return 1;
2122	}
2123
2124	pool->inode->i_mapping->private_data = pool;
2125	pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2126	return 0;
2127}
2128
2129static void zs_unregister_migration(struct zs_pool *pool)
2130{
2131	flush_work(&pool->free_work);
2132	iput(pool->inode);
2133}
2134
2135/*
2136 * Caller should hold page_lock of all pages in the zspage
2137 * In here, we cannot use zspage meta data.
2138 */
2139static void async_free_zspage(struct work_struct *work)
2140{
2141	int i;
2142	struct size_class *class;
2143	unsigned int class_idx;
2144	enum fullness_group fullness;
2145	struct zspage *zspage, *tmp;
2146	LIST_HEAD(free_pages);
2147	struct zs_pool *pool = container_of(work, struct zs_pool,
2148					free_work);
2149
2150	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2151		class = pool->size_class[i];
2152		if (class->index != i)
2153			continue;
2154
2155		spin_lock(&class->lock);
2156		list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2157		spin_unlock(&class->lock);
2158	}
2159
2160
2161	list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2162		list_del(&zspage->list);
2163		lock_zspage(zspage);
2164
2165		get_zspage_mapping(zspage, &class_idx, &fullness);
2166		VM_BUG_ON(fullness != ZS_EMPTY);
2167		class = pool->size_class[class_idx];
2168		spin_lock(&class->lock);
2169		__free_zspage(pool, pool->size_class[class_idx], zspage);
2170		spin_unlock(&class->lock);
 
 
 
2171	}
2172};
2173
2174static void kick_deferred_free(struct zs_pool *pool)
2175{
2176	schedule_work(&pool->free_work);
2177}
2178
 
 
 
 
 
2179static void init_deferred_free(struct zs_pool *pool)
2180{
2181	INIT_WORK(&pool->free_work, async_free_zspage);
2182}
2183
2184static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2185{
2186	struct page *page = get_first_page(zspage);
2187
2188	do {
2189		WARN_ON(!trylock_page(page));
2190		__SetPageMovable(page, pool->inode->i_mapping);
2191		unlock_page(page);
2192	} while ((page = get_next_page(page)) != NULL);
2193}
 
 
2194#endif
2195
2196/*
2197 *
2198 * Based on the number of unused allocated objects calculate
2199 * and return the number of pages that we can free.
2200 */
2201static unsigned long zs_can_compact(struct size_class *class)
2202{
2203	unsigned long obj_wasted;
2204	unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2205	unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2206
2207	if (obj_allocated <= obj_used)
2208		return 0;
2209
2210	obj_wasted = obj_allocated - obj_used;
2211	obj_wasted /= class->objs_per_zspage;
2212
2213	return obj_wasted * class->pages_per_zspage;
2214}
2215
2216static void __zs_compact(struct zs_pool *pool, struct size_class *class)
 
2217{
2218	struct zs_compact_control cc;
2219	struct zspage *src_zspage;
2220	struct zspage *dst_zspage = NULL;
 
2221
2222	spin_lock(&class->lock);
 
 
 
 
2223	while ((src_zspage = isolate_zspage(class, true))) {
 
 
2224
2225		if (!zs_can_compact(class))
2226			break;
2227
2228		cc.obj_idx = 0;
2229		cc.s_page = get_first_page(src_zspage);
2230
2231		while ((dst_zspage = isolate_zspage(class, false))) {
 
 
2232			cc.d_page = get_first_page(dst_zspage);
2233			/*
2234			 * If there is no more space in dst_page, resched
2235			 * and see if anyone had allocated another zspage.
2236			 */
2237			if (!migrate_zspage(pool, class, &cc))
2238				break;
2239
2240			putback_zspage(class, dst_zspage);
 
 
 
 
2241		}
2242
2243		/* Stop if we couldn't find slot */
2244		if (dst_zspage == NULL)
2245			break;
2246
2247		putback_zspage(class, dst_zspage);
 
 
2248		if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
 
2249			free_zspage(pool, class, src_zspage);
2250			pool->stats.pages_compacted += class->pages_per_zspage;
2251		}
2252		spin_unlock(&class->lock);
 
2253		cond_resched();
2254		spin_lock(&class->lock);
2255	}
2256
2257	if (src_zspage)
2258		putback_zspage(class, src_zspage);
 
 
2259
2260	spin_unlock(&class->lock);
 
 
2261}
2262
2263unsigned long zs_compact(struct zs_pool *pool)
2264{
2265	int i;
2266	struct size_class *class;
 
2267
2268	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2269		class = pool->size_class[i];
2270		if (!class)
2271			continue;
2272		if (class->index != i)
2273			continue;
2274		__zs_compact(pool, class);
2275	}
 
2276
2277	return pool->stats.pages_compacted;
2278}
2279EXPORT_SYMBOL_GPL(zs_compact);
2280
2281void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2282{
2283	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2284}
2285EXPORT_SYMBOL_GPL(zs_pool_stats);
2286
2287static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2288		struct shrink_control *sc)
2289{
2290	unsigned long pages_freed;
2291	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2292			shrinker);
2293
2294	pages_freed = pool->stats.pages_compacted;
2295	/*
2296	 * Compact classes and calculate compaction delta.
2297	 * Can run concurrently with a manually triggered
2298	 * (by user) compaction.
2299	 */
2300	pages_freed = zs_compact(pool) - pages_freed;
2301
2302	return pages_freed ? pages_freed : SHRINK_STOP;
2303}
2304
2305static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2306		struct shrink_control *sc)
2307{
2308	int i;
2309	struct size_class *class;
2310	unsigned long pages_to_free = 0;
2311	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2312			shrinker);
2313
2314	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2315		class = pool->size_class[i];
2316		if (!class)
2317			continue;
2318		if (class->index != i)
2319			continue;
2320
2321		pages_to_free += zs_can_compact(class);
2322	}
2323
2324	return pages_to_free;
2325}
2326
2327static void zs_unregister_shrinker(struct zs_pool *pool)
2328{
2329	unregister_shrinker(&pool->shrinker);
2330}
2331
2332static int zs_register_shrinker(struct zs_pool *pool)
2333{
2334	pool->shrinker.scan_objects = zs_shrinker_scan;
2335	pool->shrinker.count_objects = zs_shrinker_count;
2336	pool->shrinker.batch = 0;
2337	pool->shrinker.seeks = DEFAULT_SEEKS;
2338
2339	return register_shrinker(&pool->shrinker);
 
2340}
2341
2342/**
2343 * zs_create_pool - Creates an allocation pool to work from.
2344 * @name: pool name to be created
2345 *
2346 * This function must be called before anything when using
2347 * the zsmalloc allocator.
2348 *
2349 * On success, a pointer to the newly created pool is returned,
2350 * otherwise NULL.
2351 */
2352struct zs_pool *zs_create_pool(const char *name)
2353{
2354	int i;
2355	struct zs_pool *pool;
2356	struct size_class *prev_class = NULL;
2357
2358	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2359	if (!pool)
2360		return NULL;
2361
2362	init_deferred_free(pool);
 
2363
2364	pool->name = kstrdup(name, GFP_KERNEL);
2365	if (!pool->name)
2366		goto err;
2367
2368	if (create_cache(pool))
2369		goto err;
2370
2371	/*
2372	 * Iterate reversely, because, size of size_class that we want to use
2373	 * for merging should be larger or equal to current size.
2374	 */
2375	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2376		int size;
2377		int pages_per_zspage;
2378		int objs_per_zspage;
2379		struct size_class *class;
2380		int fullness = 0;
2381
2382		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2383		if (size > ZS_MAX_ALLOC_SIZE)
2384			size = ZS_MAX_ALLOC_SIZE;
2385		pages_per_zspage = get_pages_per_zspage(size);
2386		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2387
2388		/*
2389		 * We iterate from biggest down to smallest classes,
2390		 * so huge_class_size holds the size of the first huge
2391		 * class. Any object bigger than or equal to that will
2392		 * endup in the huge class.
2393		 */
2394		if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2395				!huge_class_size) {
2396			huge_class_size = size;
2397			/*
2398			 * The object uses ZS_HANDLE_SIZE bytes to store the
2399			 * handle. We need to subtract it, because zs_malloc()
2400			 * unconditionally adds handle size before it performs
2401			 * size class search - so object may be smaller than
2402			 * huge class size, yet it still can end up in the huge
2403			 * class because it grows by ZS_HANDLE_SIZE extra bytes
2404			 * right before class lookup.
2405			 */
2406			huge_class_size -= (ZS_HANDLE_SIZE - 1);
2407		}
2408
2409		/*
2410		 * size_class is used for normal zsmalloc operation such
2411		 * as alloc/free for that size. Although it is natural that we
2412		 * have one size_class for each size, there is a chance that we
2413		 * can get more memory utilization if we use one size_class for
2414		 * many different sizes whose size_class have same
2415		 * characteristics. So, we makes size_class point to
2416		 * previous size_class if possible.
2417		 */
2418		if (prev_class) {
2419			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2420				pool->size_class[i] = prev_class;
2421				continue;
2422			}
2423		}
2424
2425		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2426		if (!class)
2427			goto err;
2428
2429		class->size = size;
2430		class->index = i;
2431		class->pages_per_zspage = pages_per_zspage;
2432		class->objs_per_zspage = objs_per_zspage;
2433		spin_lock_init(&class->lock);
2434		pool->size_class[i] = class;
2435		for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2436							fullness++)
2437			INIT_LIST_HEAD(&class->fullness_list[fullness]);
2438
2439		prev_class = class;
2440	}
2441
2442	/* debug only, don't abort if it fails */
2443	zs_pool_stat_create(pool, name);
2444
2445	if (zs_register_migration(pool))
2446		goto err;
2447
2448	/*
2449	 * Not critical since shrinker is only used to trigger internal
2450	 * defragmentation of the pool which is pretty optional thing.  If
2451	 * registration fails we still can use the pool normally and user can
2452	 * trigger compaction manually. Thus, ignore return code.
2453	 */
2454	zs_register_shrinker(pool);
2455
 
 
 
 
2456	return pool;
2457
2458err:
2459	zs_destroy_pool(pool);
2460	return NULL;
2461}
2462EXPORT_SYMBOL_GPL(zs_create_pool);
2463
2464void zs_destroy_pool(struct zs_pool *pool)
2465{
2466	int i;
2467
2468	zs_unregister_shrinker(pool);
2469	zs_unregister_migration(pool);
2470	zs_pool_stat_destroy(pool);
2471
2472	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2473		int fg;
2474		struct size_class *class = pool->size_class[i];
2475
2476		if (!class)
2477			continue;
2478
2479		if (class->index != i)
2480			continue;
2481
2482		for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2483			if (!list_empty(&class->fullness_list[fg])) {
2484				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2485					class->size, fg);
2486			}
2487		}
2488		kfree(class);
2489	}
2490
2491	destroy_cache(pool);
2492	kfree(pool->name);
2493	kfree(pool);
2494}
2495EXPORT_SYMBOL_GPL(zs_destroy_pool);
2496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2497static int __init zs_init(void)
2498{
2499	int ret;
2500
2501	ret = zsmalloc_mount();
2502	if (ret)
2503		goto out;
2504
2505	ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2506				zs_cpu_prepare, zs_cpu_dead);
2507	if (ret)
2508		goto hp_setup_fail;
2509
2510#ifdef CONFIG_ZPOOL
2511	zpool_register_driver(&zs_zpool_driver);
2512#endif
2513
2514	zs_stat_init();
2515
2516	return 0;
2517
2518hp_setup_fail:
2519	zsmalloc_unmount();
2520out:
2521	return ret;
2522}
2523
2524static void __exit zs_exit(void)
2525{
2526#ifdef CONFIG_ZPOOL
2527	zpool_unregister_driver(&zs_zpool_driver);
2528#endif
2529	zsmalloc_unmount();
2530	cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2531
2532	zs_stat_exit();
2533}
2534
2535module_init(zs_init);
2536module_exit(zs_exit);
2537
2538MODULE_LICENSE("Dual BSD/GPL");
2539MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
v6.2
   1/*
   2 * zsmalloc memory allocator
   3 *
   4 * Copyright (C) 2011  Nitin Gupta
   5 * Copyright (C) 2012, 2013 Minchan Kim
   6 *
   7 * This code is released using a dual license strategy: BSD/GPL
   8 * You can choose the license that better fits your requirements.
   9 *
  10 * Released under the terms of 3-clause BSD License
  11 * Released under the terms of GNU General Public License Version 2.0
  12 */
  13
  14/*
  15 * Following is how we use various fields and flags of underlying
  16 * struct page(s) to form a zspage.
  17 *
  18 * Usage of struct page fields:
  19 *	page->private: points to zspage
  20 *	page->index: links together all component pages of a zspage
  21 *		For the huge page, this is always 0, so we use this field
  22 *		to store handle.
  23 *	page->page_type: first object offset in a subpage of zspage
  24 *
  25 * Usage of struct page flags:
  26 *	PG_private: identifies the first component page
  27 *	PG_owner_priv_1: identifies the huge component page
  28 *
  29 */
  30
  31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  32
  33/*
  34 * lock ordering:
  35 *	page_lock
  36 *	pool->lock
  37 *	zspage->lock
  38 */
  39
  40#include <linux/module.h>
  41#include <linux/kernel.h>
  42#include <linux/sched.h>
 
  43#include <linux/bitops.h>
  44#include <linux/errno.h>
  45#include <linux/highmem.h>
  46#include <linux/string.h>
  47#include <linux/slab.h>
  48#include <linux/pgtable.h>
  49#include <asm/tlbflush.h>
 
  50#include <linux/cpumask.h>
  51#include <linux/cpu.h>
  52#include <linux/vmalloc.h>
  53#include <linux/preempt.h>
  54#include <linux/spinlock.h>
  55#include <linux/shrinker.h>
  56#include <linux/types.h>
  57#include <linux/debugfs.h>
  58#include <linux/zsmalloc.h>
  59#include <linux/zpool.h>
 
  60#include <linux/migrate.h>
  61#include <linux/wait.h>
  62#include <linux/pagemap.h>
  63#include <linux/fs.h>
  64#include <linux/local_lock.h>
  65
  66#define ZSPAGE_MAGIC	0x58
  67
  68/*
  69 * This must be power of 2 and greater than or equal to sizeof(link_free).
  70 * These two conditions ensure that any 'struct link_free' itself doesn't
  71 * span more than 1 page which avoids complex case of mapping 2 pages simply
  72 * to restore link_free pointer values.
  73 */
  74#define ZS_ALIGN		8
  75
  76/*
  77 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
  78 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
  79 */
  80#define ZS_MAX_ZSPAGE_ORDER 2
  81#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
  82
  83#define ZS_HANDLE_SIZE (sizeof(unsigned long))
  84
  85/*
  86 * Object location (<PFN>, <obj_idx>) is encoded as
  87 * a single (unsigned long) handle value.
  88 *
  89 * Note that object index <obj_idx> starts from 0.
  90 *
  91 * This is made more complicated by various memory models and PAE.
  92 */
  93
  94#ifndef MAX_POSSIBLE_PHYSMEM_BITS
  95#ifdef MAX_PHYSMEM_BITS
  96#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
  97#else
  98/*
  99 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
 100 * be PAGE_SHIFT
 101 */
 102#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
 103#endif
 104#endif
 105
 106#define _PFN_BITS		(MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
 107
 108/*
 
 
 
 
 
 
 
 
 
 109 * Head in allocated object should have OBJ_ALLOCATED_TAG
 110 * to identify the object was allocated or not.
 111 * It's okay to add the status bit in the least bit because
 112 * header keeps handle which is 4byte-aligned address so we
 113 * have room for two bit at least.
 114 */
 115#define OBJ_ALLOCATED_TAG 1
 116
 117#ifdef CONFIG_ZPOOL
 118/*
 119 * The second least-significant bit in the object's header identifies if the
 120 * value stored at the header is a deferred handle from the last reclaim
 121 * attempt.
 122 *
 123 * As noted above, this is valid because we have room for two bits.
 124 */
 125#define OBJ_DEFERRED_HANDLE_TAG	2
 126#define OBJ_TAG_BITS	2
 127#define OBJ_TAG_MASK	(OBJ_ALLOCATED_TAG | OBJ_DEFERRED_HANDLE_TAG)
 128#else
 129#define OBJ_TAG_BITS	1
 130#define OBJ_TAG_MASK	OBJ_ALLOCATED_TAG
 131#endif /* CONFIG_ZPOOL */
 132
 133#define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
 134#define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
 135
 136#define HUGE_BITS	1
 137#define FULLNESS_BITS	2
 138#define CLASS_BITS	8
 139#define ISOLATED_BITS	3
 140#define MAGIC_VAL_BITS	8
 141
 142#define MAX(a, b) ((a) >= (b) ? (a) : (b))
 143/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
 144#define ZS_MIN_ALLOC_SIZE \
 145	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
 146/* each chunk includes extra space to keep handle */
 147#define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
 148
 149/*
 150 * On systems with 4K page size, this gives 255 size classes! There is a
 151 * trader-off here:
 152 *  - Large number of size classes is potentially wasteful as free page are
 153 *    spread across these classes
 154 *  - Small number of size classes causes large internal fragmentation
 155 *  - Probably its better to use specific size classes (empirically
 156 *    determined). NOTE: all those class sizes must be set as multiple of
 157 *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
 158 *
 159 *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
 160 *  (reason above)
 161 */
 162#define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS)
 163#define ZS_SIZE_CLASSES	(DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
 164				      ZS_SIZE_CLASS_DELTA) + 1)
 165
 166enum fullness_group {
 167	ZS_EMPTY,
 168	ZS_ALMOST_EMPTY,
 169	ZS_ALMOST_FULL,
 170	ZS_FULL,
 171	NR_ZS_FULLNESS,
 172};
 173
 174enum class_stat_type {
 175	CLASS_EMPTY,
 176	CLASS_ALMOST_EMPTY,
 177	CLASS_ALMOST_FULL,
 178	CLASS_FULL,
 179	OBJ_ALLOCATED,
 180	OBJ_USED,
 181	NR_ZS_STAT_TYPE,
 182};
 183
 184struct zs_size_stat {
 185	unsigned long objs[NR_ZS_STAT_TYPE];
 186};
 187
 188#ifdef CONFIG_ZSMALLOC_STAT
 189static struct dentry *zs_stat_root;
 190#endif
 191
 
 
 
 
 192/*
 193 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
 194 *	n <= N / f, where
 195 * n = number of allocated objects
 196 * N = total number of objects zspage can store
 197 * f = fullness_threshold_frac
 198 *
 199 * Similarly, we assign zspage to:
 200 *	ZS_ALMOST_FULL	when n > N / f
 201 *	ZS_EMPTY	when n == 0
 202 *	ZS_FULL		when n == N
 203 *
 204 * (see: fix_fullness_group())
 205 */
 206static const int fullness_threshold_frac = 4;
 207static size_t huge_class_size;
 208
 209struct size_class {
 
 210	struct list_head fullness_list[NR_ZS_FULLNESS];
 211	/*
 212	 * Size of objects stored in this class. Must be multiple
 213	 * of ZS_ALIGN.
 214	 */
 215	int size;
 216	int objs_per_zspage;
 217	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
 218	int pages_per_zspage;
 219
 220	unsigned int index;
 221	struct zs_size_stat stats;
 222};
 223
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 224/*
 225 * Placed within free objects to form a singly linked list.
 226 * For every zspage, zspage->freeobj gives head of this list.
 227 *
 228 * This must be power of 2 and less than or equal to ZS_ALIGN
 229 */
 230struct link_free {
 231	union {
 232		/*
 233		 * Free object index;
 234		 * It's valid for non-allocated object
 235		 */
 236		unsigned long next;
 237		/*
 238		 * Handle of allocated object.
 239		 */
 240		unsigned long handle;
 241#ifdef CONFIG_ZPOOL
 242		/*
 243		 * Deferred handle of a reclaimed object.
 244		 */
 245		unsigned long deferred_handle;
 246#endif
 247	};
 248};
 249
 250struct zs_pool {
 251	const char *name;
 252
 253	struct size_class *size_class[ZS_SIZE_CLASSES];
 254	struct kmem_cache *handle_cachep;
 255	struct kmem_cache *zspage_cachep;
 256
 257	atomic_long_t pages_allocated;
 258
 259	struct zs_pool_stats stats;
 260
 261	/* Compact classes */
 262	struct shrinker shrinker;
 263
 264#ifdef CONFIG_ZPOOL
 265	/* List tracking the zspages in LRU order by most recently added object */
 266	struct list_head lru;
 267	struct zpool *zpool;
 268	const struct zpool_ops *zpool_ops;
 269#endif
 270
 271#ifdef CONFIG_ZSMALLOC_STAT
 272	struct dentry *stat_dentry;
 273#endif
 274#ifdef CONFIG_COMPACTION
 
 275	struct work_struct free_work;
 276#endif
 277	spinlock_t lock;
 278};
 279
 280struct zspage {
 281	struct {
 282		unsigned int huge:HUGE_BITS;
 283		unsigned int fullness:FULLNESS_BITS;
 284		unsigned int class:CLASS_BITS + 1;
 285		unsigned int isolated:ISOLATED_BITS;
 286		unsigned int magic:MAGIC_VAL_BITS;
 287	};
 288	unsigned int inuse;
 289	unsigned int freeobj;
 290	struct page *first_page;
 291	struct list_head list; /* fullness list */
 292
 293#ifdef CONFIG_ZPOOL
 294	/* links the zspage to the lru list in the pool */
 295	struct list_head lru;
 296	bool under_reclaim;
 297#endif
 298
 299	struct zs_pool *pool;
 300	rwlock_t lock;
 301};
 302
 303struct mapping_area {
 304	local_lock_t lock;
 
 
 305	char *vm_buf; /* copy buffer for objects that span pages */
 
 306	char *vm_addr; /* address of kmap_atomic()'ed pages */
 307	enum zs_mapmode vm_mm; /* mapping mode */
 308};
 309
 310/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
 311static void SetZsHugePage(struct zspage *zspage)
 312{
 313	zspage->huge = 1;
 314}
 315
 316static bool ZsHugePage(struct zspage *zspage)
 317{
 318	return zspage->huge;
 319}
 320
 321static void migrate_lock_init(struct zspage *zspage);
 322static void migrate_read_lock(struct zspage *zspage);
 323static void migrate_read_unlock(struct zspage *zspage);
 324
 325#ifdef CONFIG_COMPACTION
 326static void migrate_write_lock(struct zspage *zspage);
 327static void migrate_write_lock_nested(struct zspage *zspage);
 328static void migrate_write_unlock(struct zspage *zspage);
 329static void kick_deferred_free(struct zs_pool *pool);
 330static void init_deferred_free(struct zs_pool *pool);
 331static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
 332#else
 333static void migrate_write_lock(struct zspage *zspage) {}
 334static void migrate_write_lock_nested(struct zspage *zspage) {}
 335static void migrate_write_unlock(struct zspage *zspage) {}
 
 
 
 
 336static void kick_deferred_free(struct zs_pool *pool) {}
 337static void init_deferred_free(struct zs_pool *pool) {}
 338static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
 339#endif
 340
 341static int create_cache(struct zs_pool *pool)
 342{
 343	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
 344					0, 0, NULL);
 345	if (!pool->handle_cachep)
 346		return 1;
 347
 348	pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
 349					0, 0, NULL);
 350	if (!pool->zspage_cachep) {
 351		kmem_cache_destroy(pool->handle_cachep);
 352		pool->handle_cachep = NULL;
 353		return 1;
 354	}
 355
 356	return 0;
 357}
 358
 359static void destroy_cache(struct zs_pool *pool)
 360{
 361	kmem_cache_destroy(pool->handle_cachep);
 362	kmem_cache_destroy(pool->zspage_cachep);
 363}
 364
 365static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
 366{
 367	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
 368			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
 369}
 370
 371static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
 372{
 373	kmem_cache_free(pool->handle_cachep, (void *)handle);
 374}
 375
 376static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
 377{
 378	return kmem_cache_zalloc(pool->zspage_cachep,
 379			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
 380}
 381
 382static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
 383{
 384	kmem_cache_free(pool->zspage_cachep, zspage);
 385}
 386
 387/* pool->lock(which owns the handle) synchronizes races */
 388static void record_obj(unsigned long handle, unsigned long obj)
 389{
 390	*(unsigned long *)handle = obj;
 
 
 
 
 
 391}
 392
 393/* zpool driver */
 394
 395#ifdef CONFIG_ZPOOL
 396
 397static void *zs_zpool_create(const char *name, gfp_t gfp,
 398			     const struct zpool_ops *zpool_ops,
 399			     struct zpool *zpool)
 400{
 401	/*
 402	 * Ignore global gfp flags: zs_malloc() may be invoked from
 403	 * different contexts and its caller must provide a valid
 404	 * gfp mask.
 405	 */
 406	struct zs_pool *pool = zs_create_pool(name);
 407
 408	if (pool) {
 409		pool->zpool = zpool;
 410		pool->zpool_ops = zpool_ops;
 411	}
 412
 413	return pool;
 414}
 415
 416static void zs_zpool_destroy(void *pool)
 417{
 418	zs_destroy_pool(pool);
 419}
 420
 421static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
 422			unsigned long *handle)
 423{
 424	*handle = zs_malloc(pool, size, gfp);
 425
 426	if (IS_ERR_VALUE(*handle))
 427		return PTR_ERR((void *)*handle);
 428	return 0;
 429}
 430static void zs_zpool_free(void *pool, unsigned long handle)
 431{
 432	zs_free(pool, handle);
 433}
 434
 435static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries);
 436
 437static int zs_zpool_shrink(void *pool, unsigned int pages,
 438			unsigned int *reclaimed)
 439{
 440	unsigned int total = 0;
 441	int ret = -EINVAL;
 442
 443	while (total < pages) {
 444		ret = zs_reclaim_page(pool, 8);
 445		if (ret < 0)
 446			break;
 447		total++;
 448	}
 449
 450	if (reclaimed)
 451		*reclaimed = total;
 452
 453	return ret;
 454}
 455
 456static void *zs_zpool_map(void *pool, unsigned long handle,
 457			enum zpool_mapmode mm)
 458{
 459	enum zs_mapmode zs_mm;
 460
 461	switch (mm) {
 462	case ZPOOL_MM_RO:
 463		zs_mm = ZS_MM_RO;
 464		break;
 465	case ZPOOL_MM_WO:
 466		zs_mm = ZS_MM_WO;
 467		break;
 468	case ZPOOL_MM_RW:
 469	default:
 470		zs_mm = ZS_MM_RW;
 471		break;
 472	}
 473
 474	return zs_map_object(pool, handle, zs_mm);
 475}
 476static void zs_zpool_unmap(void *pool, unsigned long handle)
 477{
 478	zs_unmap_object(pool, handle);
 479}
 480
 481static u64 zs_zpool_total_size(void *pool)
 482{
 483	return zs_get_total_pages(pool) << PAGE_SHIFT;
 484}
 485
 486static struct zpool_driver zs_zpool_driver = {
 487	.type =			  "zsmalloc",
 488	.owner =		  THIS_MODULE,
 489	.create =		  zs_zpool_create,
 490	.destroy =		  zs_zpool_destroy,
 491	.malloc_support_movable = true,
 492	.malloc =		  zs_zpool_malloc,
 493	.free =			  zs_zpool_free,
 494	.shrink =		  zs_zpool_shrink,
 495	.map =			  zs_zpool_map,
 496	.unmap =		  zs_zpool_unmap,
 497	.total_size =		  zs_zpool_total_size,
 498};
 499
 500MODULE_ALIAS("zpool-zsmalloc");
 501#endif /* CONFIG_ZPOOL */
 502
 503/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
 504static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
 505	.lock	= INIT_LOCAL_LOCK(lock),
 506};
 
 
 
 507
 508static __maybe_unused int is_first_page(struct page *page)
 509{
 510	return PagePrivate(page);
 511}
 512
 513/* Protected by pool->lock */
 514static inline int get_zspage_inuse(struct zspage *zspage)
 515{
 516	return zspage->inuse;
 517}
 518
 
 
 
 
 519
 520static inline void mod_zspage_inuse(struct zspage *zspage, int val)
 521{
 522	zspage->inuse += val;
 523}
 524
 525static inline struct page *get_first_page(struct zspage *zspage)
 526{
 527	struct page *first_page = zspage->first_page;
 528
 529	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
 530	return first_page;
 531}
 532
 533static inline unsigned int get_first_obj_offset(struct page *page)
 534{
 535	return page->page_type;
 536}
 537
 538static inline void set_first_obj_offset(struct page *page, unsigned int offset)
 539{
 540	page->page_type = offset;
 541}
 542
 543static inline unsigned int get_freeobj(struct zspage *zspage)
 544{
 545	return zspage->freeobj;
 546}
 547
 548static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
 549{
 550	zspage->freeobj = obj;
 551}
 552
 553static void get_zspage_mapping(struct zspage *zspage,
 554				unsigned int *class_idx,
 555				enum fullness_group *fullness)
 556{
 557	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
 558
 559	*fullness = zspage->fullness;
 560	*class_idx = zspage->class;
 561}
 562
 563static struct size_class *zspage_class(struct zs_pool *pool,
 564					     struct zspage *zspage)
 565{
 566	return pool->size_class[zspage->class];
 567}
 568
 569static void set_zspage_mapping(struct zspage *zspage,
 570				unsigned int class_idx,
 571				enum fullness_group fullness)
 572{
 573	zspage->class = class_idx;
 574	zspage->fullness = fullness;
 575}
 576
 577/*
 578 * zsmalloc divides the pool into various size classes where each
 579 * class maintains a list of zspages where each zspage is divided
 580 * into equal sized chunks. Each allocation falls into one of these
 581 * classes depending on its size. This function returns index of the
 582 * size class which has chunk size big enough to hold the given size.
 583 */
 584static int get_size_class_index(int size)
 585{
 586	int idx = 0;
 587
 588	if (likely(size > ZS_MIN_ALLOC_SIZE))
 589		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
 590				ZS_SIZE_CLASS_DELTA);
 591
 592	return min_t(int, ZS_SIZE_CLASSES - 1, idx);
 593}
 594
 595/* type can be of enum type class_stat_type or fullness_group */
 596static inline void class_stat_inc(struct size_class *class,
 597				int type, unsigned long cnt)
 598{
 599	class->stats.objs[type] += cnt;
 600}
 601
 602/* type can be of enum type class_stat_type or fullness_group */
 603static inline void class_stat_dec(struct size_class *class,
 604				int type, unsigned long cnt)
 605{
 606	class->stats.objs[type] -= cnt;
 607}
 608
 609/* type can be of enum type class_stat_type or fullness_group */
 610static inline unsigned long zs_stat_get(struct size_class *class,
 611				int type)
 612{
 613	return class->stats.objs[type];
 614}
 615
 616#ifdef CONFIG_ZSMALLOC_STAT
 617
 618static void __init zs_stat_init(void)
 619{
 620	if (!debugfs_initialized()) {
 621		pr_warn("debugfs not available, stat dir not created\n");
 622		return;
 623	}
 624
 625	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
 
 
 626}
 627
 628static void __exit zs_stat_exit(void)
 629{
 630	debugfs_remove_recursive(zs_stat_root);
 631}
 632
 633static unsigned long zs_can_compact(struct size_class *class);
 634
 635static int zs_stats_size_show(struct seq_file *s, void *v)
 636{
 637	int i;
 638	struct zs_pool *pool = s->private;
 639	struct size_class *class;
 640	int objs_per_zspage;
 641	unsigned long class_almost_full, class_almost_empty;
 642	unsigned long obj_allocated, obj_used, pages_used, freeable;
 643	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
 644	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
 645	unsigned long total_freeable = 0;
 646
 647	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
 648			"class", "size", "almost_full", "almost_empty",
 649			"obj_allocated", "obj_used", "pages_used",
 650			"pages_per_zspage", "freeable");
 651
 652	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
 653		class = pool->size_class[i];
 654
 655		if (class->index != i)
 656			continue;
 657
 658		spin_lock(&pool->lock);
 659		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
 660		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
 661		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
 662		obj_used = zs_stat_get(class, OBJ_USED);
 663		freeable = zs_can_compact(class);
 664		spin_unlock(&pool->lock);
 665
 666		objs_per_zspage = class->objs_per_zspage;
 667		pages_used = obj_allocated / objs_per_zspage *
 668				class->pages_per_zspage;
 669
 670		seq_printf(s, " %5u %5u %11lu %12lu %13lu"
 671				" %10lu %10lu %16d %8lu\n",
 672			i, class->size, class_almost_full, class_almost_empty,
 673			obj_allocated, obj_used, pages_used,
 674			class->pages_per_zspage, freeable);
 675
 676		total_class_almost_full += class_almost_full;
 677		total_class_almost_empty += class_almost_empty;
 678		total_objs += obj_allocated;
 679		total_used_objs += obj_used;
 680		total_pages += pages_used;
 681		total_freeable += freeable;
 682	}
 683
 684	seq_puts(s, "\n");
 685	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
 686			"Total", "", total_class_almost_full,
 687			total_class_almost_empty, total_objs,
 688			total_used_objs, total_pages, "", total_freeable);
 689
 690	return 0;
 691}
 692DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
 693
 694static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
 695{
 
 
 696	if (!zs_stat_root) {
 697		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
 698		return;
 699	}
 700
 701	pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
 
 
 
 
 
 702
 703	debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
 704			    &zs_stats_size_fops);
 
 
 
 
 
 
 705}
 706
 707static void zs_pool_stat_destroy(struct zs_pool *pool)
 708{
 709	debugfs_remove_recursive(pool->stat_dentry);
 710}
 711
 712#else /* CONFIG_ZSMALLOC_STAT */
 713static void __init zs_stat_init(void)
 714{
 715}
 716
 717static void __exit zs_stat_exit(void)
 718{
 719}
 720
 721static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
 722{
 723}
 724
 725static inline void zs_pool_stat_destroy(struct zs_pool *pool)
 726{
 727}
 728#endif
 729
 730
 731/*
 732 * For each size class, zspages are divided into different groups
 733 * depending on how "full" they are. This was done so that we could
 734 * easily find empty or nearly empty zspages when we try to shrink
 735 * the pool (not yet implemented). This function returns fullness
 736 * status of the given page.
 737 */
 738static enum fullness_group get_fullness_group(struct size_class *class,
 739						struct zspage *zspage)
 740{
 741	int inuse, objs_per_zspage;
 742	enum fullness_group fg;
 743
 744	inuse = get_zspage_inuse(zspage);
 745	objs_per_zspage = class->objs_per_zspage;
 746
 747	if (inuse == 0)
 748		fg = ZS_EMPTY;
 749	else if (inuse == objs_per_zspage)
 750		fg = ZS_FULL;
 751	else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
 752		fg = ZS_ALMOST_EMPTY;
 753	else
 754		fg = ZS_ALMOST_FULL;
 755
 756	return fg;
 757}
 758
 759/*
 760 * Each size class maintains various freelists and zspages are assigned
 761 * to one of these freelists based on the number of live objects they
 762 * have. This functions inserts the given zspage into the freelist
 763 * identified by <class, fullness_group>.
 764 */
 765static void insert_zspage(struct size_class *class,
 766				struct zspage *zspage,
 767				enum fullness_group fullness)
 768{
 769	struct zspage *head;
 770
 771	class_stat_inc(class, fullness, 1);
 772	head = list_first_entry_or_null(&class->fullness_list[fullness],
 773					struct zspage, list);
 774	/*
 775	 * We want to see more ZS_FULL pages and less almost empty/full.
 776	 * Put pages with higher ->inuse first.
 777	 */
 778	if (head && get_zspage_inuse(zspage) < get_zspage_inuse(head))
 779		list_add(&zspage->list, &head->list);
 780	else
 781		list_add(&zspage->list, &class->fullness_list[fullness]);
 
 
 
 782}
 783
 784/*
 785 * This function removes the given zspage from the freelist identified
 786 * by <class, fullness_group>.
 787 */
 788static void remove_zspage(struct size_class *class,
 789				struct zspage *zspage,
 790				enum fullness_group fullness)
 791{
 792	VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
 
 793
 794	list_del_init(&zspage->list);
 795	class_stat_dec(class, fullness, 1);
 796}
 797
 798/*
 799 * Each size class maintains zspages in different fullness groups depending
 800 * on the number of live objects they contain. When allocating or freeing
 801 * objects, the fullness status of the page can change, say, from ALMOST_FULL
 802 * to ALMOST_EMPTY when freeing an object. This function checks if such
 803 * a status change has occurred for the given page and accordingly moves the
 804 * page from the freelist of the old fullness group to that of the new
 805 * fullness group.
 806 */
 807static enum fullness_group fix_fullness_group(struct size_class *class,
 808						struct zspage *zspage)
 809{
 810	int class_idx;
 811	enum fullness_group currfg, newfg;
 812
 813	get_zspage_mapping(zspage, &class_idx, &currfg);
 814	newfg = get_fullness_group(class, zspage);
 815	if (newfg == currfg)
 816		goto out;
 817
 818	remove_zspage(class, zspage, currfg);
 819	insert_zspage(class, zspage, newfg);
 
 
 
 820	set_zspage_mapping(zspage, class_idx, newfg);
 
 821out:
 822	return newfg;
 823}
 824
 825/*
 826 * We have to decide on how many pages to link together
 827 * to form a zspage for each size class. This is important
 828 * to reduce wastage due to unusable space left at end of
 829 * each zspage which is given as:
 830 *     wastage = Zp % class_size
 831 *     usage = Zp - wastage
 832 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
 833 *
 834 * For example, for size class of 3/8 * PAGE_SIZE, we should
 835 * link together 3 PAGE_SIZE sized pages to form a zspage
 836 * since then we can perfectly fit in 8 such objects.
 837 */
 838static int get_pages_per_zspage(int class_size)
 839{
 840	int i, max_usedpc = 0;
 841	/* zspage order which gives maximum used size per KB */
 842	int max_usedpc_order = 1;
 843
 844	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
 845		int zspage_size;
 846		int waste, usedpc;
 847
 848		zspage_size = i * PAGE_SIZE;
 849		waste = zspage_size % class_size;
 850		usedpc = (zspage_size - waste) * 100 / zspage_size;
 851
 852		if (usedpc > max_usedpc) {
 853			max_usedpc = usedpc;
 854			max_usedpc_order = i;
 855		}
 856	}
 857
 858	return max_usedpc_order;
 859}
 860
 861static struct zspage *get_zspage(struct page *page)
 862{
 863	struct zspage *zspage = (struct zspage *)page_private(page);
 864
 865	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
 866	return zspage;
 867}
 868
 869static struct page *get_next_page(struct page *page)
 870{
 871	struct zspage *zspage = get_zspage(page);
 872
 873	if (unlikely(ZsHugePage(zspage)))
 874		return NULL;
 875
 876	return (struct page *)page->index;
 877}
 878
 879/**
 880 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
 881 * @obj: the encoded object value
 882 * @page: page object resides in zspage
 883 * @obj_idx: object index
 884 */
 885static void obj_to_location(unsigned long obj, struct page **page,
 886				unsigned int *obj_idx)
 887{
 888	obj >>= OBJ_TAG_BITS;
 889	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
 890	*obj_idx = (obj & OBJ_INDEX_MASK);
 891}
 892
 893static void obj_to_page(unsigned long obj, struct page **page)
 894{
 895	obj >>= OBJ_TAG_BITS;
 896	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
 897}
 898
 899/**
 900 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
 901 * @page: page object resides in zspage
 902 * @obj_idx: object index
 903 */
 904static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
 905{
 906	unsigned long obj;
 907
 908	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
 909	obj |= obj_idx & OBJ_INDEX_MASK;
 910	obj <<= OBJ_TAG_BITS;
 911
 912	return obj;
 913}
 914
 915static unsigned long handle_to_obj(unsigned long handle)
 916{
 917	return *(unsigned long *)handle;
 918}
 919
 920static bool obj_tagged(struct page *page, void *obj, unsigned long *phandle,
 921		int tag)
 922{
 923	unsigned long handle;
 924	struct zspage *zspage = get_zspage(page);
 925
 926	if (unlikely(ZsHugePage(zspage))) {
 927		VM_BUG_ON_PAGE(!is_first_page(page), page);
 928		handle = page->index;
 929	} else
 930		handle = *(unsigned long *)obj;
 
 931
 932	if (!(handle & tag))
 933		return false;
 
 
 934
 935	/* Clear all tags before returning the handle */
 936	*phandle = handle & ~OBJ_TAG_MASK;
 937	return true;
 938}
 939
 940static inline bool obj_allocated(struct page *page, void *obj, unsigned long *phandle)
 941{
 942	return obj_tagged(page, obj, phandle, OBJ_ALLOCATED_TAG);
 943}
 944
 945#ifdef CONFIG_ZPOOL
 946static bool obj_stores_deferred_handle(struct page *page, void *obj,
 947		unsigned long *phandle)
 948{
 949	return obj_tagged(page, obj, phandle, OBJ_DEFERRED_HANDLE_TAG);
 950}
 951#endif
 952
 953static void reset_page(struct page *page)
 954{
 955	__ClearPageMovable(page);
 956	ClearPagePrivate(page);
 957	set_page_private(page, 0);
 958	page_mapcount_reset(page);
 959	page->index = 0;
 
 960}
 961
 962static int trylock_zspage(struct zspage *zspage)
 
 
 
 
 
 
 
 
 
 
 
 
 
 963{
 964	struct page *cursor, *fail;
 965
 966	for (cursor = get_first_page(zspage); cursor != NULL; cursor =
 967					get_next_page(cursor)) {
 968		if (!trylock_page(cursor)) {
 969			fail = cursor;
 970			goto unlock;
 971		}
 972	}
 973
 974	return 1;
 975unlock:
 976	for (cursor = get_first_page(zspage); cursor != fail; cursor =
 977					get_next_page(cursor))
 978		unlock_page(cursor);
 979
 980	return 0;
 981}
 982
 983#ifdef CONFIG_ZPOOL
 984static unsigned long find_deferred_handle_obj(struct size_class *class,
 985		struct page *page, int *obj_idx);
 986
 987/*
 988 * Free all the deferred handles whose objects are freed in zs_free.
 989 */
 990static void free_handles(struct zs_pool *pool, struct size_class *class,
 991		struct zspage *zspage)
 992{
 993	int obj_idx = 0;
 994	struct page *page = get_first_page(zspage);
 995	unsigned long handle;
 996
 997	while (1) {
 998		handle = find_deferred_handle_obj(class, page, &obj_idx);
 999		if (!handle) {
1000			page = get_next_page(page);
1001			if (!page)
1002				break;
1003			obj_idx = 0;
1004			continue;
1005		}
1006
1007		cache_free_handle(pool, handle);
1008		obj_idx++;
1009	}
1010}
1011#else
1012static inline void free_handles(struct zs_pool *pool, struct size_class *class,
1013		struct zspage *zspage) {}
1014#endif
1015
1016static void __free_zspage(struct zs_pool *pool, struct size_class *class,
1017				struct zspage *zspage)
1018{
1019	struct page *page, *next;
1020	enum fullness_group fg;
1021	unsigned int class_idx;
1022
1023	get_zspage_mapping(zspage, &class_idx, &fg);
1024
1025	assert_spin_locked(&pool->lock);
1026
1027	VM_BUG_ON(get_zspage_inuse(zspage));
1028	VM_BUG_ON(fg != ZS_EMPTY);
1029
1030	/* Free all deferred handles from zs_free */
1031	free_handles(pool, class, zspage);
1032
1033	next = page = get_first_page(zspage);
1034	do {
1035		VM_BUG_ON_PAGE(!PageLocked(page), page);
1036		next = get_next_page(page);
1037		reset_page(page);
1038		unlock_page(page);
1039		dec_zone_page_state(page, NR_ZSPAGES);
1040		put_page(page);
1041		page = next;
1042	} while (page != NULL);
1043
1044	cache_free_zspage(pool, zspage);
1045
1046	class_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
1047	atomic_long_sub(class->pages_per_zspage,
1048					&pool->pages_allocated);
1049}
1050
1051static void free_zspage(struct zs_pool *pool, struct size_class *class,
1052				struct zspage *zspage)
1053{
1054	VM_BUG_ON(get_zspage_inuse(zspage));
1055	VM_BUG_ON(list_empty(&zspage->list));
1056
1057	/*
1058	 * Since zs_free couldn't be sleepable, this function cannot call
1059	 * lock_page. The page locks trylock_zspage got will be released
1060	 * by __free_zspage.
1061	 */
1062	if (!trylock_zspage(zspage)) {
1063		kick_deferred_free(pool);
1064		return;
1065	}
1066
1067	remove_zspage(class, zspage, ZS_EMPTY);
1068#ifdef CONFIG_ZPOOL
1069	list_del(&zspage->lru);
1070#endif
1071	__free_zspage(pool, class, zspage);
1072}
1073
1074/* Initialize a newly allocated zspage */
1075static void init_zspage(struct size_class *class, struct zspage *zspage)
1076{
1077	unsigned int freeobj = 1;
1078	unsigned long off = 0;
1079	struct page *page = get_first_page(zspage);
1080
1081	while (page) {
1082		struct page *next_page;
1083		struct link_free *link;
1084		void *vaddr;
1085
1086		set_first_obj_offset(page, off);
1087
1088		vaddr = kmap_atomic(page);
1089		link = (struct link_free *)vaddr + off / sizeof(*link);
1090
1091		while ((off += class->size) < PAGE_SIZE) {
1092			link->next = freeobj++ << OBJ_TAG_BITS;
1093			link += class->size / sizeof(*link);
1094		}
1095
1096		/*
1097		 * We now come to the last (full or partial) object on this
1098		 * page, which must point to the first object on the next
1099		 * page (if present)
1100		 */
1101		next_page = get_next_page(page);
1102		if (next_page) {
1103			link->next = freeobj++ << OBJ_TAG_BITS;
1104		} else {
1105			/*
1106			 * Reset OBJ_TAG_BITS bit to last link to tell
1107			 * whether it's allocated object or not.
1108			 */
1109			link->next = -1UL << OBJ_TAG_BITS;
1110		}
1111		kunmap_atomic(vaddr);
1112		page = next_page;
1113		off %= PAGE_SIZE;
1114	}
1115
1116#ifdef CONFIG_ZPOOL
1117	INIT_LIST_HEAD(&zspage->lru);
1118	zspage->under_reclaim = false;
1119#endif
1120
1121	set_freeobj(zspage, 0);
1122}
1123
1124static void create_page_chain(struct size_class *class, struct zspage *zspage,
1125				struct page *pages[])
1126{
1127	int i;
1128	struct page *page;
1129	struct page *prev_page = NULL;
1130	int nr_pages = class->pages_per_zspage;
1131
1132	/*
1133	 * Allocate individual pages and link them together as:
1134	 * 1. all pages are linked together using page->index
1135	 * 2. each sub-page point to zspage using page->private
1136	 *
1137	 * we set PG_private to identify the first page (i.e. no other sub-page
1138	 * has this flag set).
1139	 */
1140	for (i = 0; i < nr_pages; i++) {
1141		page = pages[i];
1142		set_page_private(page, (unsigned long)zspage);
1143		page->index = 0;
1144		if (i == 0) {
1145			zspage->first_page = page;
1146			SetPagePrivate(page);
1147			if (unlikely(class->objs_per_zspage == 1 &&
1148					class->pages_per_zspage == 1))
1149				SetZsHugePage(zspage);
1150		} else {
1151			prev_page->index = (unsigned long)page;
1152		}
1153		prev_page = page;
1154	}
1155}
1156
1157/*
1158 * Allocate a zspage for the given size class
1159 */
1160static struct zspage *alloc_zspage(struct zs_pool *pool,
1161					struct size_class *class,
1162					gfp_t gfp)
1163{
1164	int i;
1165	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1166	struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1167
1168	if (!zspage)
1169		return NULL;
1170
 
1171	zspage->magic = ZSPAGE_MAGIC;
1172	migrate_lock_init(zspage);
1173
1174	for (i = 0; i < class->pages_per_zspage; i++) {
1175		struct page *page;
1176
1177		page = alloc_page(gfp);
1178		if (!page) {
1179			while (--i >= 0) {
1180				dec_zone_page_state(pages[i], NR_ZSPAGES);
1181				__free_page(pages[i]);
1182			}
1183			cache_free_zspage(pool, zspage);
1184			return NULL;
1185		}
1186
1187		inc_zone_page_state(page, NR_ZSPAGES);
1188		pages[i] = page;
1189	}
1190
1191	create_page_chain(class, zspage, pages);
1192	init_zspage(class, zspage);
1193	zspage->pool = pool;
1194
1195	return zspage;
1196}
1197
1198static struct zspage *find_get_zspage(struct size_class *class)
1199{
1200	int i;
1201	struct zspage *zspage;
1202
1203	for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1204		zspage = list_first_entry_or_null(&class->fullness_list[i],
1205				struct zspage, list);
1206		if (zspage)
1207			break;
1208	}
1209
1210	return zspage;
1211}
1212
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1213static inline int __zs_cpu_up(struct mapping_area *area)
1214{
1215	/*
1216	 * Make sure we don't leak memory if a cpu UP notification
1217	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1218	 */
1219	if (area->vm_buf)
1220		return 0;
1221	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1222	if (!area->vm_buf)
1223		return -ENOMEM;
1224	return 0;
1225}
1226
1227static inline void __zs_cpu_down(struct mapping_area *area)
1228{
1229	kfree(area->vm_buf);
1230	area->vm_buf = NULL;
1231}
1232
1233static void *__zs_map_object(struct mapping_area *area,
1234			struct page *pages[2], int off, int size)
1235{
1236	int sizes[2];
1237	void *addr;
1238	char *buf = area->vm_buf;
1239
1240	/* disable page faults to match kmap_atomic() return conditions */
1241	pagefault_disable();
1242
1243	/* no read fastpath */
1244	if (area->vm_mm == ZS_MM_WO)
1245		goto out;
1246
1247	sizes[0] = PAGE_SIZE - off;
1248	sizes[1] = size - sizes[0];
1249
1250	/* copy object to per-cpu buffer */
1251	addr = kmap_atomic(pages[0]);
1252	memcpy(buf, addr + off, sizes[0]);
1253	kunmap_atomic(addr);
1254	addr = kmap_atomic(pages[1]);
1255	memcpy(buf + sizes[0], addr, sizes[1]);
1256	kunmap_atomic(addr);
1257out:
1258	return area->vm_buf;
1259}
1260
1261static void __zs_unmap_object(struct mapping_area *area,
1262			struct page *pages[2], int off, int size)
1263{
1264	int sizes[2];
1265	void *addr;
1266	char *buf;
1267
1268	/* no write fastpath */
1269	if (area->vm_mm == ZS_MM_RO)
1270		goto out;
1271
1272	buf = area->vm_buf;
1273	buf = buf + ZS_HANDLE_SIZE;
1274	size -= ZS_HANDLE_SIZE;
1275	off += ZS_HANDLE_SIZE;
1276
1277	sizes[0] = PAGE_SIZE - off;
1278	sizes[1] = size - sizes[0];
1279
1280	/* copy per-cpu buffer to object */
1281	addr = kmap_atomic(pages[0]);
1282	memcpy(addr + off, buf, sizes[0]);
1283	kunmap_atomic(addr);
1284	addr = kmap_atomic(pages[1]);
1285	memcpy(addr, buf + sizes[0], sizes[1]);
1286	kunmap_atomic(addr);
1287
1288out:
1289	/* enable page faults to match kunmap_atomic() return conditions */
1290	pagefault_enable();
1291}
1292
 
 
1293static int zs_cpu_prepare(unsigned int cpu)
1294{
1295	struct mapping_area *area;
1296
1297	area = &per_cpu(zs_map_area, cpu);
1298	return __zs_cpu_up(area);
1299}
1300
1301static int zs_cpu_dead(unsigned int cpu)
1302{
1303	struct mapping_area *area;
1304
1305	area = &per_cpu(zs_map_area, cpu);
1306	__zs_cpu_down(area);
1307	return 0;
1308}
1309
1310static bool can_merge(struct size_class *prev, int pages_per_zspage,
1311					int objs_per_zspage)
1312{
1313	if (prev->pages_per_zspage == pages_per_zspage &&
1314		prev->objs_per_zspage == objs_per_zspage)
1315		return true;
1316
1317	return false;
1318}
1319
1320static bool zspage_full(struct size_class *class, struct zspage *zspage)
1321{
1322	return get_zspage_inuse(zspage) == class->objs_per_zspage;
1323}
1324
1325/**
1326 * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1327 * that hold objects of the provided size.
1328 * @pool: zsmalloc pool to use
1329 * @size: object size
1330 *
1331 * Context: Any context.
1332 *
1333 * Return: the index of the zsmalloc &size_class that hold objects of the
1334 * provided size.
1335 */
1336unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1337{
1338	struct size_class *class;
1339
1340	class = pool->size_class[get_size_class_index(size)];
1341
1342	return class->index;
1343}
1344EXPORT_SYMBOL_GPL(zs_lookup_class_index);
1345
1346unsigned long zs_get_total_pages(struct zs_pool *pool)
1347{
1348	return atomic_long_read(&pool->pages_allocated);
1349}
1350EXPORT_SYMBOL_GPL(zs_get_total_pages);
1351
1352/**
1353 * zs_map_object - get address of allocated object from handle.
1354 * @pool: pool from which the object was allocated
1355 * @handle: handle returned from zs_malloc
1356 * @mm: mapping mode to use
1357 *
1358 * Before using an object allocated from zs_malloc, it must be mapped using
1359 * this function. When done with the object, it must be unmapped using
1360 * zs_unmap_object.
1361 *
1362 * Only one object can be mapped per cpu at a time. There is no protection
1363 * against nested mappings.
1364 *
1365 * This function returns with preemption and page faults disabled.
1366 */
1367void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1368			enum zs_mapmode mm)
1369{
1370	struct zspage *zspage;
1371	struct page *page;
1372	unsigned long obj, off;
1373	unsigned int obj_idx;
1374
 
 
1375	struct size_class *class;
1376	struct mapping_area *area;
1377	struct page *pages[2];
1378	void *ret;
1379
1380	/*
1381	 * Because we use per-cpu mapping areas shared among the
1382	 * pools/users, we can't allow mapping in interrupt context
1383	 * because it can corrupt another users mappings.
1384	 */
1385	BUG_ON(in_interrupt());
1386
1387	/* It guarantees it can get zspage from handle safely */
1388	spin_lock(&pool->lock);
 
1389	obj = handle_to_obj(handle);
1390	obj_to_location(obj, &page, &obj_idx);
1391	zspage = get_zspage(page);
1392
1393#ifdef CONFIG_ZPOOL
1394	/*
1395	 * Move the zspage to front of pool's LRU.
1396	 *
1397	 * Note that this is swap-specific, so by definition there are no ongoing
1398	 * accesses to the memory while the page is swapped out that would make
1399	 * it "hot". A new entry is hot, then ages to the tail until it gets either
1400	 * written back or swaps back in.
1401	 *
1402	 * Furthermore, map is also called during writeback. We must not put an
1403	 * isolated page on the LRU mid-reclaim.
1404	 *
1405	 * As a result, only update the LRU when the page is mapped for write
1406	 * when it's first instantiated.
1407	 *
1408	 * This is a deviation from the other backends, which perform this update
1409	 * in the allocation function (zbud_alloc, z3fold_alloc).
1410	 */
1411	if (mm == ZS_MM_WO) {
1412		if (!list_empty(&zspage->lru))
1413			list_del(&zspage->lru);
1414		list_add(&zspage->lru, &pool->lru);
1415	}
1416#endif
1417
1418	/*
1419	 * migration cannot move any zpages in this zspage. Here, pool->lock
1420	 * is too heavy since callers would take some time until they calls
1421	 * zs_unmap_object API so delegate the locking from class to zspage
1422	 * which is smaller granularity.
1423	 */
1424	migrate_read_lock(zspage);
1425	spin_unlock(&pool->lock);
1426
1427	class = zspage_class(pool, zspage);
 
1428	off = (class->size * obj_idx) & ~PAGE_MASK;
1429
1430	local_lock(&zs_map_area.lock);
1431	area = this_cpu_ptr(&zs_map_area);
1432	area->vm_mm = mm;
1433	if (off + class->size <= PAGE_SIZE) {
1434		/* this object is contained entirely within a page */
1435		area->vm_addr = kmap_atomic(page);
1436		ret = area->vm_addr + off;
1437		goto out;
1438	}
1439
1440	/* this object spans two pages */
1441	pages[0] = page;
1442	pages[1] = get_next_page(page);
1443	BUG_ON(!pages[1]);
1444
1445	ret = __zs_map_object(area, pages, off, class->size);
1446out:
1447	if (likely(!ZsHugePage(zspage)))
1448		ret += ZS_HANDLE_SIZE;
1449
1450	return ret;
1451}
1452EXPORT_SYMBOL_GPL(zs_map_object);
1453
1454void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1455{
1456	struct zspage *zspage;
1457	struct page *page;
1458	unsigned long obj, off;
1459	unsigned int obj_idx;
1460
 
 
1461	struct size_class *class;
1462	struct mapping_area *area;
1463
1464	obj = handle_to_obj(handle);
1465	obj_to_location(obj, &page, &obj_idx);
1466	zspage = get_zspage(page);
1467	class = zspage_class(pool, zspage);
 
1468	off = (class->size * obj_idx) & ~PAGE_MASK;
1469
1470	area = this_cpu_ptr(&zs_map_area);
1471	if (off + class->size <= PAGE_SIZE)
1472		kunmap_atomic(area->vm_addr);
1473	else {
1474		struct page *pages[2];
1475
1476		pages[0] = page;
1477		pages[1] = get_next_page(page);
1478		BUG_ON(!pages[1]);
1479
1480		__zs_unmap_object(area, pages, off, class->size);
1481	}
1482	local_unlock(&zs_map_area.lock);
1483
1484	migrate_read_unlock(zspage);
 
1485}
1486EXPORT_SYMBOL_GPL(zs_unmap_object);
1487
1488/**
1489 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1490 *                        zsmalloc &size_class.
1491 * @pool: zsmalloc pool to use
1492 *
1493 * The function returns the size of the first huge class - any object of equal
1494 * or bigger size will be stored in zspage consisting of a single physical
1495 * page.
1496 *
1497 * Context: Any context.
1498 *
1499 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1500 */
1501size_t zs_huge_class_size(struct zs_pool *pool)
1502{
1503	return huge_class_size;
1504}
1505EXPORT_SYMBOL_GPL(zs_huge_class_size);
1506
1507static unsigned long obj_malloc(struct zs_pool *pool,
1508				struct zspage *zspage, unsigned long handle)
1509{
1510	int i, nr_page, offset;
1511	unsigned long obj;
1512	struct link_free *link;
1513	struct size_class *class;
1514
1515	struct page *m_page;
1516	unsigned long m_offset;
1517	void *vaddr;
1518
1519	class = pool->size_class[zspage->class];
1520	handle |= OBJ_ALLOCATED_TAG;
1521	obj = get_freeobj(zspage);
1522
1523	offset = obj * class->size;
1524	nr_page = offset >> PAGE_SHIFT;
1525	m_offset = offset & ~PAGE_MASK;
1526	m_page = get_first_page(zspage);
1527
1528	for (i = 0; i < nr_page; i++)
1529		m_page = get_next_page(m_page);
1530
1531	vaddr = kmap_atomic(m_page);
1532	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1533	set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1534	if (likely(!ZsHugePage(zspage)))
1535		/* record handle in the header of allocated chunk */
1536		link->handle = handle;
1537	else
1538		/* record handle to page->index */
1539		zspage->first_page->index = handle;
1540
1541	kunmap_atomic(vaddr);
1542	mod_zspage_inuse(zspage, 1);
 
1543
1544	obj = location_to_obj(m_page, obj);
1545
1546	return obj;
1547}
1548
1549
1550/**
1551 * zs_malloc - Allocate block of given size from pool.
1552 * @pool: pool to allocate from
1553 * @size: size of block to allocate
1554 * @gfp: gfp flags when allocating object
1555 *
1556 * On success, handle to the allocated object is returned,
1557 * otherwise an ERR_PTR().
1558 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1559 */
1560unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1561{
1562	unsigned long handle, obj;
1563	struct size_class *class;
1564	enum fullness_group newfg;
1565	struct zspage *zspage;
1566
1567	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1568		return (unsigned long)ERR_PTR(-EINVAL);
1569
1570	handle = cache_alloc_handle(pool, gfp);
1571	if (!handle)
1572		return (unsigned long)ERR_PTR(-ENOMEM);
1573
1574	/* extra space in chunk to keep the handle */
1575	size += ZS_HANDLE_SIZE;
1576	class = pool->size_class[get_size_class_index(size)];
1577
1578	/* pool->lock effectively protects the zpage migration */
1579	spin_lock(&pool->lock);
1580	zspage = find_get_zspage(class);
1581	if (likely(zspage)) {
1582		obj = obj_malloc(pool, zspage, handle);
1583		/* Now move the zspage to another fullness group, if required */
1584		fix_fullness_group(class, zspage);
1585		record_obj(handle, obj);
1586		class_stat_inc(class, OBJ_USED, 1);
1587		spin_unlock(&pool->lock);
1588
1589		return handle;
1590	}
1591
1592	spin_unlock(&pool->lock);
1593
1594	zspage = alloc_zspage(pool, class, gfp);
1595	if (!zspage) {
1596		cache_free_handle(pool, handle);
1597		return (unsigned long)ERR_PTR(-ENOMEM);
1598	}
1599
1600	spin_lock(&pool->lock);
1601	obj = obj_malloc(pool, zspage, handle);
1602	newfg = get_fullness_group(class, zspage);
1603	insert_zspage(class, zspage, newfg);
1604	set_zspage_mapping(zspage, class->index, newfg);
1605	record_obj(handle, obj);
1606	atomic_long_add(class->pages_per_zspage,
1607				&pool->pages_allocated);
1608	class_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1609	class_stat_inc(class, OBJ_USED, 1);
1610
1611	/* We completely set up zspage so mark them as movable */
1612	SetZsPageMovable(pool, zspage);
1613	spin_unlock(&pool->lock);
1614
1615	return handle;
1616}
1617EXPORT_SYMBOL_GPL(zs_malloc);
1618
1619static void obj_free(int class_size, unsigned long obj, unsigned long *handle)
1620{
1621	struct link_free *link;
1622	struct zspage *zspage;
1623	struct page *f_page;
1624	unsigned long f_offset;
1625	unsigned int f_objidx;
1626	void *vaddr;
1627
 
1628	obj_to_location(obj, &f_page, &f_objidx);
1629	f_offset = (class_size * f_objidx) & ~PAGE_MASK;
1630	zspage = get_zspage(f_page);
1631
1632	vaddr = kmap_atomic(f_page);
 
 
1633	link = (struct link_free *)(vaddr + f_offset);
1634
1635	if (handle) {
1636#ifdef CONFIG_ZPOOL
1637		/* Stores the (deferred) handle in the object's header */
1638		*handle |= OBJ_DEFERRED_HANDLE_TAG;
1639		*handle &= ~OBJ_ALLOCATED_TAG;
1640
1641		if (likely(!ZsHugePage(zspage)))
1642			link->deferred_handle = *handle;
1643		else
1644			f_page->index = *handle;
1645#endif
1646	} else {
1647		/* Insert this object in containing zspage's freelist */
1648		if (likely(!ZsHugePage(zspage)))
1649			link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1650		else
1651			f_page->index = 0;
1652		set_freeobj(zspage, f_objidx);
1653	}
1654
1655	kunmap_atomic(vaddr);
 
1656	mod_zspage_inuse(zspage, -1);
 
1657}
1658
1659void zs_free(struct zs_pool *pool, unsigned long handle)
1660{
1661	struct zspage *zspage;
1662	struct page *f_page;
1663	unsigned long obj;
 
 
1664	struct size_class *class;
1665	enum fullness_group fullness;
 
1666
1667	if (IS_ERR_OR_NULL((void *)handle))
1668		return;
1669
1670	/*
1671	 * The pool->lock protects the race with zpage's migration
1672	 * so it's safe to get the page from handle.
1673	 */
1674	spin_lock(&pool->lock);
1675	obj = handle_to_obj(handle);
1676	obj_to_page(obj, &f_page);
1677	zspage = get_zspage(f_page);
1678	class = zspage_class(pool, zspage);
1679
1680	class_stat_dec(class, OBJ_USED, 1);
 
 
 
1681
1682#ifdef CONFIG_ZPOOL
1683	if (zspage->under_reclaim) {
1684		/*
1685		 * Reclaim needs the handles during writeback. It'll free
1686		 * them along with the zspage when it's done with them.
1687		 *
1688		 * Record current deferred handle in the object's header.
1689		 */
1690		obj_free(class->size, obj, &handle);
1691		spin_unlock(&pool->lock);
1692		return;
1693	}
1694#endif
1695	obj_free(class->size, obj, NULL);
1696
1697	fullness = fix_fullness_group(class, zspage);
1698	if (fullness == ZS_EMPTY)
 
 
1699		free_zspage(pool, class, zspage);
 
1700
1701	spin_unlock(&pool->lock);
 
1702	cache_free_handle(pool, handle);
1703}
1704EXPORT_SYMBOL_GPL(zs_free);
1705
1706static void zs_object_copy(struct size_class *class, unsigned long dst,
1707				unsigned long src)
1708{
1709	struct page *s_page, *d_page;
1710	unsigned int s_objidx, d_objidx;
1711	unsigned long s_off, d_off;
1712	void *s_addr, *d_addr;
1713	int s_size, d_size, size;
1714	int written = 0;
1715
1716	s_size = d_size = class->size;
1717
1718	obj_to_location(src, &s_page, &s_objidx);
1719	obj_to_location(dst, &d_page, &d_objidx);
1720
1721	s_off = (class->size * s_objidx) & ~PAGE_MASK;
1722	d_off = (class->size * d_objidx) & ~PAGE_MASK;
1723
1724	if (s_off + class->size > PAGE_SIZE)
1725		s_size = PAGE_SIZE - s_off;
1726
1727	if (d_off + class->size > PAGE_SIZE)
1728		d_size = PAGE_SIZE - d_off;
1729
1730	s_addr = kmap_atomic(s_page);
1731	d_addr = kmap_atomic(d_page);
1732
1733	while (1) {
1734		size = min(s_size, d_size);
1735		memcpy(d_addr + d_off, s_addr + s_off, size);
1736		written += size;
1737
1738		if (written == class->size)
1739			break;
1740
1741		s_off += size;
1742		s_size -= size;
1743		d_off += size;
1744		d_size -= size;
1745
1746		/*
1747		 * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic()
1748		 * calls must occurs in reverse order of calls to kmap_atomic().
1749		 * So, to call kunmap_atomic(s_addr) we should first call
1750		 * kunmap_atomic(d_addr). For more details see
1751		 * Documentation/mm/highmem.rst.
1752		 */
1753		if (s_off >= PAGE_SIZE) {
1754			kunmap_atomic(d_addr);
1755			kunmap_atomic(s_addr);
1756			s_page = get_next_page(s_page);
1757			s_addr = kmap_atomic(s_page);
1758			d_addr = kmap_atomic(d_page);
1759			s_size = class->size - written;
1760			s_off = 0;
1761		}
1762
1763		if (d_off >= PAGE_SIZE) {
1764			kunmap_atomic(d_addr);
1765			d_page = get_next_page(d_page);
1766			d_addr = kmap_atomic(d_page);
1767			d_size = class->size - written;
1768			d_off = 0;
1769		}
1770	}
1771
1772	kunmap_atomic(d_addr);
1773	kunmap_atomic(s_addr);
1774}
1775
1776/*
1777 * Find object with a certain tag in zspage from index object and
1778 * return handle.
1779 */
1780static unsigned long find_tagged_obj(struct size_class *class,
1781					struct page *page, int *obj_idx, int tag)
1782{
1783	unsigned int offset;
 
1784	int index = *obj_idx;
1785	unsigned long handle = 0;
1786	void *addr = kmap_atomic(page);
1787
1788	offset = get_first_obj_offset(page);
1789	offset += class->size * index;
1790
1791	while (offset < PAGE_SIZE) {
1792		if (obj_tagged(page, addr + offset, &handle, tag))
1793			break;
 
 
 
 
 
1794
1795		offset += class->size;
1796		index++;
1797	}
1798
1799	kunmap_atomic(addr);
1800
1801	*obj_idx = index;
1802
1803	return handle;
1804}
1805
1806/*
1807 * Find alloced object in zspage from index object and
1808 * return handle.
1809 */
1810static unsigned long find_alloced_obj(struct size_class *class,
1811					struct page *page, int *obj_idx)
1812{
1813	return find_tagged_obj(class, page, obj_idx, OBJ_ALLOCATED_TAG);
1814}
1815
1816#ifdef CONFIG_ZPOOL
1817/*
1818 * Find object storing a deferred handle in header in zspage from index object
1819 * and return handle.
1820 */
1821static unsigned long find_deferred_handle_obj(struct size_class *class,
1822		struct page *page, int *obj_idx)
1823{
1824	return find_tagged_obj(class, page, obj_idx, OBJ_DEFERRED_HANDLE_TAG);
1825}
1826#endif
1827
1828struct zs_compact_control {
1829	/* Source spage for migration which could be a subpage of zspage */
1830	struct page *s_page;
1831	/* Destination page for migration which should be a first page
1832	 * of zspage. */
1833	struct page *d_page;
1834	 /* Starting object index within @s_page which used for live object
1835	  * in the subpage. */
1836	int obj_idx;
1837};
1838
1839static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1840				struct zs_compact_control *cc)
1841{
1842	unsigned long used_obj, free_obj;
1843	unsigned long handle;
1844	struct page *s_page = cc->s_page;
1845	struct page *d_page = cc->d_page;
1846	int obj_idx = cc->obj_idx;
1847	int ret = 0;
1848
1849	while (1) {
1850		handle = find_alloced_obj(class, s_page, &obj_idx);
1851		if (!handle) {
1852			s_page = get_next_page(s_page);
1853			if (!s_page)
1854				break;
1855			obj_idx = 0;
1856			continue;
1857		}
1858
1859		/* Stop if there is no more space */
1860		if (zspage_full(class, get_zspage(d_page))) {
 
1861			ret = -ENOMEM;
1862			break;
1863		}
1864
1865		used_obj = handle_to_obj(handle);
1866		free_obj = obj_malloc(pool, get_zspage(d_page), handle);
1867		zs_object_copy(class, free_obj, used_obj);
1868		obj_idx++;
 
 
 
 
 
 
 
1869		record_obj(handle, free_obj);
1870		obj_free(class->size, used_obj, NULL);
 
1871	}
1872
1873	/* Remember last position in this iteration */
1874	cc->s_page = s_page;
1875	cc->obj_idx = obj_idx;
1876
1877	return ret;
1878}
1879
1880static struct zspage *isolate_zspage(struct size_class *class, bool source)
1881{
1882	int i;
1883	struct zspage *zspage;
1884	enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1885
1886	if (!source) {
1887		fg[0] = ZS_ALMOST_FULL;
1888		fg[1] = ZS_ALMOST_EMPTY;
1889	}
1890
1891	for (i = 0; i < 2; i++) {
1892		zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1893							struct zspage, list);
1894		if (zspage) {
 
1895			remove_zspage(class, zspage, fg[i]);
1896			return zspage;
1897		}
1898	}
1899
1900	return zspage;
1901}
1902
1903/*
1904 * putback_zspage - add @zspage into right class's fullness list
1905 * @class: destination class
1906 * @zspage: target page
1907 *
1908 * Return @zspage's fullness_group
1909 */
1910static enum fullness_group putback_zspage(struct size_class *class,
1911			struct zspage *zspage)
1912{
1913	enum fullness_group fullness;
1914
 
 
1915	fullness = get_fullness_group(class, zspage);
1916	insert_zspage(class, zspage, fullness);
1917	set_zspage_mapping(zspage, class->index, fullness);
1918
1919	return fullness;
1920}
1921
1922#if defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION)
1923/*
1924 * To prevent zspage destroy during migration, zspage freeing should
1925 * hold locks of all pages in the zspage.
1926 */
1927static void lock_zspage(struct zspage *zspage)
 
 
 
 
 
 
 
 
 
 
 
 
1928{
1929	struct page *curr_page, *page;
1930
1931	/*
1932	 * Pages we haven't locked yet can be migrated off the list while we're
1933	 * trying to lock them, so we need to be careful and only attempt to
1934	 * lock each page under migrate_read_lock(). Otherwise, the page we lock
1935	 * may no longer belong to the zspage. This means that we may wait for
1936	 * the wrong page to unlock, so we must take a reference to the page
1937	 * prior to waiting for it to unlock outside migrate_read_lock().
1938	 */
1939	while (1) {
1940		migrate_read_lock(zspage);
1941		page = get_first_page(zspage);
1942		if (trylock_page(page))
1943			break;
1944		get_page(page);
1945		migrate_read_unlock(zspage);
1946		wait_on_page_locked(page);
1947		put_page(page);
1948	}
1949
1950	curr_page = page;
1951	while ((page = get_next_page(curr_page))) {
1952		if (trylock_page(page)) {
1953			curr_page = page;
1954		} else {
1955			get_page(page);
1956			migrate_read_unlock(zspage);
1957			wait_on_page_locked(page);
1958			put_page(page);
1959			migrate_read_lock(zspage);
1960		}
1961	}
1962	migrate_read_unlock(zspage);
1963}
1964#endif /* defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION) */
1965
1966#ifdef CONFIG_ZPOOL
1967/*
1968 * Unlocks all the pages of the zspage.
1969 *
1970 * pool->lock must be held before this function is called
1971 * to prevent the underlying pages from migrating.
1972 */
1973static void unlock_zspage(struct zspage *zspage)
1974{
1975	struct page *page = get_first_page(zspage);
1976
1977	do {
1978		unlock_page(page);
1979	} while ((page = get_next_page(page)) != NULL);
1980}
1981#endif /* CONFIG_ZPOOL */
1982
1983static void migrate_lock_init(struct zspage *zspage)
1984{
1985	rwlock_init(&zspage->lock);
1986}
1987
1988static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1989{
1990	read_lock(&zspage->lock);
1991}
1992
1993static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1994{
1995	read_unlock(&zspage->lock);
1996}
1997
1998#ifdef CONFIG_COMPACTION
1999static void migrate_write_lock(struct zspage *zspage)
2000{
2001	write_lock(&zspage->lock);
2002}
2003
2004static void migrate_write_lock_nested(struct zspage *zspage)
2005{
2006	write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING);
2007}
2008
2009static void migrate_write_unlock(struct zspage *zspage)
2010{
2011	write_unlock(&zspage->lock);
2012}
2013
2014/* Number of isolated subpage for *page migration* in this zspage */
2015static void inc_zspage_isolation(struct zspage *zspage)
2016{
2017	zspage->isolated++;
2018}
2019
2020static void dec_zspage_isolation(struct zspage *zspage)
2021{
2022	VM_BUG_ON(zspage->isolated == 0);
2023	zspage->isolated--;
2024}
2025
2026static const struct movable_operations zsmalloc_mops;
2027
2028static void replace_sub_page(struct size_class *class, struct zspage *zspage,
2029				struct page *newpage, struct page *oldpage)
2030{
2031	struct page *page;
2032	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
2033	int idx = 0;
2034
2035	page = get_first_page(zspage);
2036	do {
2037		if (page == oldpage)
2038			pages[idx] = newpage;
2039		else
2040			pages[idx] = page;
2041		idx++;
2042	} while ((page = get_next_page(page)) != NULL);
2043
2044	create_page_chain(class, zspage, pages);
2045	set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
2046	if (unlikely(ZsHugePage(zspage)))
2047		newpage->index = oldpage->index;
2048	__SetPageMovable(newpage, &zsmalloc_mops);
2049}
2050
2051static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
2052{
 
 
 
 
2053	struct zspage *zspage;
 
2054
2055	/*
2056	 * Page is locked so zspage couldn't be destroyed. For detail, look at
2057	 * lock_zspage in free_zspage.
2058	 */
2059	VM_BUG_ON_PAGE(!PageMovable(page), page);
2060	VM_BUG_ON_PAGE(PageIsolated(page), page);
2061
2062	zspage = get_zspage(page);
2063	migrate_write_lock(zspage);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2064	inc_zspage_isolation(zspage);
2065	migrate_write_unlock(zspage);
2066
2067	return true;
2068}
2069
2070static int zs_page_migrate(struct page *newpage, struct page *page,
2071		enum migrate_mode mode)
2072{
2073	struct zs_pool *pool;
2074	struct size_class *class;
 
 
2075	struct zspage *zspage;
2076	struct page *dummy;
2077	void *s_addr, *d_addr, *addr;
2078	unsigned int offset;
2079	unsigned long handle;
2080	unsigned long old_obj, new_obj;
2081	unsigned int obj_idx;
 
2082
2083	/*
2084	 * We cannot support the _NO_COPY case here, because copy needs to
2085	 * happen under the zs lock, which does not work with
2086	 * MIGRATE_SYNC_NO_COPY workflow.
2087	 */
2088	if (mode == MIGRATE_SYNC_NO_COPY)
2089		return -EINVAL;
2090
2091	VM_BUG_ON_PAGE(!PageMovable(page), page);
2092	VM_BUG_ON_PAGE(!PageIsolated(page), page);
2093
2094	/* The page is locked, so this pointer must remain valid */
2095	zspage = get_zspage(page);
2096	pool = zspage->pool;
2097
2098	/*
2099	 * The pool's lock protects the race between zpage migration
2100	 * and zs_free.
2101	 */
2102	spin_lock(&pool->lock);
2103	class = zspage_class(pool, zspage);
2104
2105	/* the migrate_write_lock protects zpage access via zs_map_object */
2106	migrate_write_lock(zspage);
 
 
 
 
 
 
2107
2108	offset = get_first_obj_offset(page);
2109	s_addr = kmap_atomic(page);
 
 
 
 
 
 
 
 
 
2110
2111	/*
2112	 * Here, any user cannot access all objects in the zspage so let's move.
2113	 */
2114	d_addr = kmap_atomic(newpage);
2115	memcpy(d_addr, s_addr, PAGE_SIZE);
2116	kunmap_atomic(d_addr);
2117
2118	for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
2119					addr += class->size) {
2120		if (obj_allocated(page, addr, &handle)) {
 
 
 
 
2121
2122			old_obj = handle_to_obj(handle);
2123			obj_to_location(old_obj, &dummy, &obj_idx);
2124			new_obj = (unsigned long)location_to_obj(newpage,
2125								obj_idx);
 
2126			record_obj(handle, new_obj);
2127		}
2128	}
2129	kunmap_atomic(s_addr);
2130
2131	replace_sub_page(class, zspage, newpage, page);
 
 
 
 
2132	/*
2133	 * Since we complete the data copy and set up new zspage structure,
2134	 * it's okay to release the pool's lock.
2135	 */
2136	spin_unlock(&pool->lock);
2137	dec_zspage_isolation(zspage);
2138	migrate_write_unlock(zspage);
2139
2140	get_page(newpage);
2141	if (page_zone(newpage) != page_zone(page)) {
2142		dec_zone_page_state(page, NR_ZSPAGES);
2143		inc_zone_page_state(newpage, NR_ZSPAGES);
2144	}
2145
2146	reset_page(page);
2147	put_page(page);
 
2148
2149	return MIGRATEPAGE_SUCCESS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2150}
2151
2152static void zs_page_putback(struct page *page)
2153{
 
 
 
 
 
2154	struct zspage *zspage;
2155
2156	VM_BUG_ON_PAGE(!PageMovable(page), page);
2157	VM_BUG_ON_PAGE(!PageIsolated(page), page);
2158
2159	zspage = get_zspage(page);
2160	migrate_write_lock(zspage);
 
 
 
 
 
2161	dec_zspage_isolation(zspage);
2162	migrate_write_unlock(zspage);
 
 
 
 
 
 
 
 
 
2163}
2164
2165static const struct movable_operations zsmalloc_mops = {
2166	.isolate_page = zs_page_isolate,
2167	.migrate_page = zs_page_migrate,
2168	.putback_page = zs_page_putback,
2169};
2170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2171/*
2172 * Caller should hold page_lock of all pages in the zspage
2173 * In here, we cannot use zspage meta data.
2174 */
2175static void async_free_zspage(struct work_struct *work)
2176{
2177	int i;
2178	struct size_class *class;
2179	unsigned int class_idx;
2180	enum fullness_group fullness;
2181	struct zspage *zspage, *tmp;
2182	LIST_HEAD(free_pages);
2183	struct zs_pool *pool = container_of(work, struct zs_pool,
2184					free_work);
2185
2186	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2187		class = pool->size_class[i];
2188		if (class->index != i)
2189			continue;
2190
2191		spin_lock(&pool->lock);
2192		list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2193		spin_unlock(&pool->lock);
2194	}
2195
 
2196	list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2197		list_del(&zspage->list);
2198		lock_zspage(zspage);
2199
2200		get_zspage_mapping(zspage, &class_idx, &fullness);
2201		VM_BUG_ON(fullness != ZS_EMPTY);
2202		class = pool->size_class[class_idx];
2203		spin_lock(&pool->lock);
2204#ifdef CONFIG_ZPOOL
2205		list_del(&zspage->lru);
2206#endif
2207		__free_zspage(pool, class, zspage);
2208		spin_unlock(&pool->lock);
2209	}
2210};
2211
2212static void kick_deferred_free(struct zs_pool *pool)
2213{
2214	schedule_work(&pool->free_work);
2215}
2216
2217static void zs_flush_migration(struct zs_pool *pool)
2218{
2219	flush_work(&pool->free_work);
2220}
2221
2222static void init_deferred_free(struct zs_pool *pool)
2223{
2224	INIT_WORK(&pool->free_work, async_free_zspage);
2225}
2226
2227static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2228{
2229	struct page *page = get_first_page(zspage);
2230
2231	do {
2232		WARN_ON(!trylock_page(page));
2233		__SetPageMovable(page, &zsmalloc_mops);
2234		unlock_page(page);
2235	} while ((page = get_next_page(page)) != NULL);
2236}
2237#else
2238static inline void zs_flush_migration(struct zs_pool *pool) { }
2239#endif
2240
2241/*
2242 *
2243 * Based on the number of unused allocated objects calculate
2244 * and return the number of pages that we can free.
2245 */
2246static unsigned long zs_can_compact(struct size_class *class)
2247{
2248	unsigned long obj_wasted;
2249	unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2250	unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2251
2252	if (obj_allocated <= obj_used)
2253		return 0;
2254
2255	obj_wasted = obj_allocated - obj_used;
2256	obj_wasted /= class->objs_per_zspage;
2257
2258	return obj_wasted * class->pages_per_zspage;
2259}
2260
2261static unsigned long __zs_compact(struct zs_pool *pool,
2262				  struct size_class *class)
2263{
2264	struct zs_compact_control cc;
2265	struct zspage *src_zspage;
2266	struct zspage *dst_zspage = NULL;
2267	unsigned long pages_freed = 0;
2268
2269	/*
2270	 * protect the race between zpage migration and zs_free
2271	 * as well as zpage allocation/free
2272	 */
2273	spin_lock(&pool->lock);
2274	while ((src_zspage = isolate_zspage(class, true))) {
2275		/* protect someone accessing the zspage(i.e., zs_map_object) */
2276		migrate_write_lock(src_zspage);
2277
2278		if (!zs_can_compact(class))
2279			break;
2280
2281		cc.obj_idx = 0;
2282		cc.s_page = get_first_page(src_zspage);
2283
2284		while ((dst_zspage = isolate_zspage(class, false))) {
2285			migrate_write_lock_nested(dst_zspage);
2286
2287			cc.d_page = get_first_page(dst_zspage);
2288			/*
2289			 * If there is no more space in dst_page, resched
2290			 * and see if anyone had allocated another zspage.
2291			 */
2292			if (!migrate_zspage(pool, class, &cc))
2293				break;
2294
2295			putback_zspage(class, dst_zspage);
2296			migrate_write_unlock(dst_zspage);
2297			dst_zspage = NULL;
2298			if (spin_is_contended(&pool->lock))
2299				break;
2300		}
2301
2302		/* Stop if we couldn't find slot */
2303		if (dst_zspage == NULL)
2304			break;
2305
2306		putback_zspage(class, dst_zspage);
2307		migrate_write_unlock(dst_zspage);
2308
2309		if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2310			migrate_write_unlock(src_zspage);
2311			free_zspage(pool, class, src_zspage);
2312			pages_freed += class->pages_per_zspage;
2313		} else
2314			migrate_write_unlock(src_zspage);
2315		spin_unlock(&pool->lock);
2316		cond_resched();
2317		spin_lock(&pool->lock);
2318	}
2319
2320	if (src_zspage) {
2321		putback_zspage(class, src_zspage);
2322		migrate_write_unlock(src_zspage);
2323	}
2324
2325	spin_unlock(&pool->lock);
2326
2327	return pages_freed;
2328}
2329
2330unsigned long zs_compact(struct zs_pool *pool)
2331{
2332	int i;
2333	struct size_class *class;
2334	unsigned long pages_freed = 0;
2335
2336	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2337		class = pool->size_class[i];
 
 
2338		if (class->index != i)
2339			continue;
2340		pages_freed += __zs_compact(pool, class);
2341	}
2342	atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2343
2344	return pages_freed;
2345}
2346EXPORT_SYMBOL_GPL(zs_compact);
2347
2348void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2349{
2350	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2351}
2352EXPORT_SYMBOL_GPL(zs_pool_stats);
2353
2354static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2355		struct shrink_control *sc)
2356{
2357	unsigned long pages_freed;
2358	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2359			shrinker);
2360
 
2361	/*
2362	 * Compact classes and calculate compaction delta.
2363	 * Can run concurrently with a manually triggered
2364	 * (by user) compaction.
2365	 */
2366	pages_freed = zs_compact(pool);
2367
2368	return pages_freed ? pages_freed : SHRINK_STOP;
2369}
2370
2371static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2372		struct shrink_control *sc)
2373{
2374	int i;
2375	struct size_class *class;
2376	unsigned long pages_to_free = 0;
2377	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2378			shrinker);
2379
2380	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2381		class = pool->size_class[i];
 
 
2382		if (class->index != i)
2383			continue;
2384
2385		pages_to_free += zs_can_compact(class);
2386	}
2387
2388	return pages_to_free;
2389}
2390
2391static void zs_unregister_shrinker(struct zs_pool *pool)
2392{
2393	unregister_shrinker(&pool->shrinker);
2394}
2395
2396static int zs_register_shrinker(struct zs_pool *pool)
2397{
2398	pool->shrinker.scan_objects = zs_shrinker_scan;
2399	pool->shrinker.count_objects = zs_shrinker_count;
2400	pool->shrinker.batch = 0;
2401	pool->shrinker.seeks = DEFAULT_SEEKS;
2402
2403	return register_shrinker(&pool->shrinker, "mm-zspool:%s",
2404				 pool->name);
2405}
2406
2407/**
2408 * zs_create_pool - Creates an allocation pool to work from.
2409 * @name: pool name to be created
2410 *
2411 * This function must be called before anything when using
2412 * the zsmalloc allocator.
2413 *
2414 * On success, a pointer to the newly created pool is returned,
2415 * otherwise NULL.
2416 */
2417struct zs_pool *zs_create_pool(const char *name)
2418{
2419	int i;
2420	struct zs_pool *pool;
2421	struct size_class *prev_class = NULL;
2422
2423	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2424	if (!pool)
2425		return NULL;
2426
2427	init_deferred_free(pool);
2428	spin_lock_init(&pool->lock);
2429
2430	pool->name = kstrdup(name, GFP_KERNEL);
2431	if (!pool->name)
2432		goto err;
2433
2434	if (create_cache(pool))
2435		goto err;
2436
2437	/*
2438	 * Iterate reversely, because, size of size_class that we want to use
2439	 * for merging should be larger or equal to current size.
2440	 */
2441	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2442		int size;
2443		int pages_per_zspage;
2444		int objs_per_zspage;
2445		struct size_class *class;
2446		int fullness = 0;
2447
2448		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2449		if (size > ZS_MAX_ALLOC_SIZE)
2450			size = ZS_MAX_ALLOC_SIZE;
2451		pages_per_zspage = get_pages_per_zspage(size);
2452		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2453
2454		/*
2455		 * We iterate from biggest down to smallest classes,
2456		 * so huge_class_size holds the size of the first huge
2457		 * class. Any object bigger than or equal to that will
2458		 * endup in the huge class.
2459		 */
2460		if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2461				!huge_class_size) {
2462			huge_class_size = size;
2463			/*
2464			 * The object uses ZS_HANDLE_SIZE bytes to store the
2465			 * handle. We need to subtract it, because zs_malloc()
2466			 * unconditionally adds handle size before it performs
2467			 * size class search - so object may be smaller than
2468			 * huge class size, yet it still can end up in the huge
2469			 * class because it grows by ZS_HANDLE_SIZE extra bytes
2470			 * right before class lookup.
2471			 */
2472			huge_class_size -= (ZS_HANDLE_SIZE - 1);
2473		}
2474
2475		/*
2476		 * size_class is used for normal zsmalloc operation such
2477		 * as alloc/free for that size. Although it is natural that we
2478		 * have one size_class for each size, there is a chance that we
2479		 * can get more memory utilization if we use one size_class for
2480		 * many different sizes whose size_class have same
2481		 * characteristics. So, we makes size_class point to
2482		 * previous size_class if possible.
2483		 */
2484		if (prev_class) {
2485			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2486				pool->size_class[i] = prev_class;
2487				continue;
2488			}
2489		}
2490
2491		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2492		if (!class)
2493			goto err;
2494
2495		class->size = size;
2496		class->index = i;
2497		class->pages_per_zspage = pages_per_zspage;
2498		class->objs_per_zspage = objs_per_zspage;
 
2499		pool->size_class[i] = class;
2500		for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2501							fullness++)
2502			INIT_LIST_HEAD(&class->fullness_list[fullness]);
2503
2504		prev_class = class;
2505	}
2506
2507	/* debug only, don't abort if it fails */
2508	zs_pool_stat_create(pool, name);
2509
 
 
 
2510	/*
2511	 * Not critical since shrinker is only used to trigger internal
2512	 * defragmentation of the pool which is pretty optional thing.  If
2513	 * registration fails we still can use the pool normally and user can
2514	 * trigger compaction manually. Thus, ignore return code.
2515	 */
2516	zs_register_shrinker(pool);
2517
2518#ifdef CONFIG_ZPOOL
2519	INIT_LIST_HEAD(&pool->lru);
2520#endif
2521
2522	return pool;
2523
2524err:
2525	zs_destroy_pool(pool);
2526	return NULL;
2527}
2528EXPORT_SYMBOL_GPL(zs_create_pool);
2529
2530void zs_destroy_pool(struct zs_pool *pool)
2531{
2532	int i;
2533
2534	zs_unregister_shrinker(pool);
2535	zs_flush_migration(pool);
2536	zs_pool_stat_destroy(pool);
2537
2538	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2539		int fg;
2540		struct size_class *class = pool->size_class[i];
2541
2542		if (!class)
2543			continue;
2544
2545		if (class->index != i)
2546			continue;
2547
2548		for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2549			if (!list_empty(&class->fullness_list[fg])) {
2550				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2551					class->size, fg);
2552			}
2553		}
2554		kfree(class);
2555	}
2556
2557	destroy_cache(pool);
2558	kfree(pool->name);
2559	kfree(pool);
2560}
2561EXPORT_SYMBOL_GPL(zs_destroy_pool);
2562
2563#ifdef CONFIG_ZPOOL
2564static void restore_freelist(struct zs_pool *pool, struct size_class *class,
2565		struct zspage *zspage)
2566{
2567	unsigned int obj_idx = 0;
2568	unsigned long handle, off = 0; /* off is within-page offset */
2569	struct page *page = get_first_page(zspage);
2570	struct link_free *prev_free = NULL;
2571	void *prev_page_vaddr = NULL;
2572
2573	/* in case no free object found */
2574	set_freeobj(zspage, (unsigned int)(-1UL));
2575
2576	while (page) {
2577		void *vaddr = kmap_atomic(page);
2578		struct page *next_page;
2579
2580		while (off < PAGE_SIZE) {
2581			void *obj_addr = vaddr + off;
2582
2583			/* skip allocated object */
2584			if (obj_allocated(page, obj_addr, &handle)) {
2585				obj_idx++;
2586				off += class->size;
2587				continue;
2588			}
2589
2590			/* free deferred handle from reclaim attempt */
2591			if (obj_stores_deferred_handle(page, obj_addr, &handle))
2592				cache_free_handle(pool, handle);
2593
2594			if (prev_free)
2595				prev_free->next = obj_idx << OBJ_TAG_BITS;
2596			else /* first free object found */
2597				set_freeobj(zspage, obj_idx);
2598
2599			prev_free = (struct link_free *)vaddr + off / sizeof(*prev_free);
2600			/* if last free object in a previous page, need to unmap */
2601			if (prev_page_vaddr) {
2602				kunmap_atomic(prev_page_vaddr);
2603				prev_page_vaddr = NULL;
2604			}
2605
2606			obj_idx++;
2607			off += class->size;
2608		}
2609
2610		/*
2611		 * Handle the last (full or partial) object on this page.
2612		 */
2613		next_page = get_next_page(page);
2614		if (next_page) {
2615			if (!prev_free || prev_page_vaddr) {
2616				/*
2617				 * There is no free object in this page, so we can safely
2618				 * unmap it.
2619				 */
2620				kunmap_atomic(vaddr);
2621			} else {
2622				/* update prev_page_vaddr since prev_free is on this page */
2623				prev_page_vaddr = vaddr;
2624			}
2625		} else { /* this is the last page */
2626			if (prev_free) {
2627				/*
2628				 * Reset OBJ_TAG_BITS bit to last link to tell
2629				 * whether it's allocated object or not.
2630				 */
2631				prev_free->next = -1UL << OBJ_TAG_BITS;
2632			}
2633
2634			/* unmap previous page (if not done yet) */
2635			if (prev_page_vaddr) {
2636				kunmap_atomic(prev_page_vaddr);
2637				prev_page_vaddr = NULL;
2638			}
2639
2640			kunmap_atomic(vaddr);
2641		}
2642
2643		page = next_page;
2644		off %= PAGE_SIZE;
2645	}
2646}
2647
2648static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries)
2649{
2650	int i, obj_idx, ret = 0;
2651	unsigned long handle;
2652	struct zspage *zspage;
2653	struct page *page;
2654	enum fullness_group fullness;
2655
2656	/* Lock LRU and fullness list */
2657	spin_lock(&pool->lock);
2658	if (list_empty(&pool->lru)) {
2659		spin_unlock(&pool->lock);
2660		return -EINVAL;
2661	}
2662
2663	for (i = 0; i < retries; i++) {
2664		struct size_class *class;
2665
2666		zspage = list_last_entry(&pool->lru, struct zspage, lru);
2667		list_del(&zspage->lru);
2668
2669		/* zs_free may free objects, but not the zspage and handles */
2670		zspage->under_reclaim = true;
2671
2672		class = zspage_class(pool, zspage);
2673		fullness = get_fullness_group(class, zspage);
2674
2675		/* Lock out object allocations and object compaction */
2676		remove_zspage(class, zspage, fullness);
2677
2678		spin_unlock(&pool->lock);
2679		cond_resched();
2680
2681		/* Lock backing pages into place */
2682		lock_zspage(zspage);
2683
2684		obj_idx = 0;
2685		page = get_first_page(zspage);
2686		while (1) {
2687			handle = find_alloced_obj(class, page, &obj_idx);
2688			if (!handle) {
2689				page = get_next_page(page);
2690				if (!page)
2691					break;
2692				obj_idx = 0;
2693				continue;
2694			}
2695
2696			/*
2697			 * This will write the object and call zs_free.
2698			 *
2699			 * zs_free will free the object, but the
2700			 * under_reclaim flag prevents it from freeing
2701			 * the zspage altogether. This is necessary so
2702			 * that we can continue working with the
2703			 * zspage potentially after the last object
2704			 * has been freed.
2705			 */
2706			ret = pool->zpool_ops->evict(pool->zpool, handle);
2707			if (ret)
2708				goto next;
2709
2710			obj_idx++;
2711		}
2712
2713next:
2714		/* For freeing the zspage, or putting it back in the pool and LRU list. */
2715		spin_lock(&pool->lock);
2716		zspage->under_reclaim = false;
2717
2718		if (!get_zspage_inuse(zspage)) {
2719			/*
2720			 * Fullness went stale as zs_free() won't touch it
2721			 * while the page is removed from the pool. Fix it
2722			 * up for the check in __free_zspage().
2723			 */
2724			zspage->fullness = ZS_EMPTY;
2725
2726			__free_zspage(pool, class, zspage);
2727			spin_unlock(&pool->lock);
2728			return 0;
2729		}
2730
2731		/*
2732		 * Eviction fails on one of the handles, so we need to restore zspage.
2733		 * We need to rebuild its freelist (and free stored deferred handles),
2734		 * put it back to the correct size class, and add it to the LRU list.
2735		 */
2736		restore_freelist(pool, class, zspage);
2737		putback_zspage(class, zspage);
2738		list_add(&zspage->lru, &pool->lru);
2739		unlock_zspage(zspage);
2740	}
2741
2742	spin_unlock(&pool->lock);
2743	return -EAGAIN;
2744}
2745#endif /* CONFIG_ZPOOL */
2746
2747static int __init zs_init(void)
2748{
2749	int ret;
2750
 
 
 
 
2751	ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2752				zs_cpu_prepare, zs_cpu_dead);
2753	if (ret)
2754		goto out;
2755
2756#ifdef CONFIG_ZPOOL
2757	zpool_register_driver(&zs_zpool_driver);
2758#endif
2759
2760	zs_stat_init();
2761
2762	return 0;
2763
 
 
2764out:
2765	return ret;
2766}
2767
2768static void __exit zs_exit(void)
2769{
2770#ifdef CONFIG_ZPOOL
2771	zpool_unregister_driver(&zs_zpool_driver);
2772#endif
 
2773	cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2774
2775	zs_stat_exit();
2776}
2777
2778module_init(zs_init);
2779module_exit(zs_exit);
2780
2781MODULE_LICENSE("Dual BSD/GPL");
2782MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");