Loading...
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
14/*
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
23 * page->units: first object offset in a subpage of zspage
24 *
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_owner_priv_1: identifies the huge component page
28 *
29 */
30
31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33#include <linux/module.h>
34#include <linux/kernel.h>
35#include <linux/sched.h>
36#include <linux/magic.h>
37#include <linux/bitops.h>
38#include <linux/errno.h>
39#include <linux/highmem.h>
40#include <linux/string.h>
41#include <linux/slab.h>
42#include <asm/tlbflush.h>
43#include <asm/pgtable.h>
44#include <linux/cpumask.h>
45#include <linux/cpu.h>
46#include <linux/vmalloc.h>
47#include <linux/preempt.h>
48#include <linux/spinlock.h>
49#include <linux/shrinker.h>
50#include <linux/types.h>
51#include <linux/debugfs.h>
52#include <linux/zsmalloc.h>
53#include <linux/zpool.h>
54#include <linux/mount.h>
55#include <linux/migrate.h>
56#include <linux/pagemap.h>
57#include <linux/fs.h>
58
59#define ZSPAGE_MAGIC 0x58
60
61/*
62 * This must be power of 2 and greater than of equal to sizeof(link_free).
63 * These two conditions ensure that any 'struct link_free' itself doesn't
64 * span more than 1 page which avoids complex case of mapping 2 pages simply
65 * to restore link_free pointer values.
66 */
67#define ZS_ALIGN 8
68
69/*
70 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
71 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
72 */
73#define ZS_MAX_ZSPAGE_ORDER 2
74#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
75
76#define ZS_HANDLE_SIZE (sizeof(unsigned long))
77
78/*
79 * Object location (<PFN>, <obj_idx>) is encoded as
80 * as single (unsigned long) handle value.
81 *
82 * Note that object index <obj_idx> starts from 0.
83 *
84 * This is made more complicated by various memory models and PAE.
85 */
86
87#ifndef MAX_POSSIBLE_PHYSMEM_BITS
88#ifdef MAX_PHYSMEM_BITS
89#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
90#else
91/*
92 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
93 * be PAGE_SHIFT
94 */
95#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
96#endif
97#endif
98
99#define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
100
101/*
102 * Memory for allocating for handle keeps object position by
103 * encoding <page, obj_idx> and the encoded value has a room
104 * in least bit(ie, look at obj_to_location).
105 * We use the bit to synchronize between object access by
106 * user and migration.
107 */
108#define HANDLE_PIN_BIT 0
109
110/*
111 * Head in allocated object should have OBJ_ALLOCATED_TAG
112 * to identify the object was allocated or not.
113 * It's okay to add the status bit in the least bit because
114 * header keeps handle which is 4byte-aligned address so we
115 * have room for two bit at least.
116 */
117#define OBJ_ALLOCATED_TAG 1
118#define OBJ_TAG_BITS 1
119#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
120#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
121
122#define FULLNESS_BITS 2
123#define CLASS_BITS 8
124#define ISOLATED_BITS 3
125#define MAGIC_VAL_BITS 8
126
127#define MAX(a, b) ((a) >= (b) ? (a) : (b))
128/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
129#define ZS_MIN_ALLOC_SIZE \
130 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
131/* each chunk includes extra space to keep handle */
132#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
133
134/*
135 * On systems with 4K page size, this gives 255 size classes! There is a
136 * trader-off here:
137 * - Large number of size classes is potentially wasteful as free page are
138 * spread across these classes
139 * - Small number of size classes causes large internal fragmentation
140 * - Probably its better to use specific size classes (empirically
141 * determined). NOTE: all those class sizes must be set as multiple of
142 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
143 *
144 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
145 * (reason above)
146 */
147#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
148#define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
149 ZS_SIZE_CLASS_DELTA) + 1)
150
151enum fullness_group {
152 ZS_EMPTY,
153 ZS_ALMOST_EMPTY,
154 ZS_ALMOST_FULL,
155 ZS_FULL,
156 NR_ZS_FULLNESS,
157};
158
159enum zs_stat_type {
160 CLASS_EMPTY,
161 CLASS_ALMOST_EMPTY,
162 CLASS_ALMOST_FULL,
163 CLASS_FULL,
164 OBJ_ALLOCATED,
165 OBJ_USED,
166 NR_ZS_STAT_TYPE,
167};
168
169struct zs_size_stat {
170 unsigned long objs[NR_ZS_STAT_TYPE];
171};
172
173#ifdef CONFIG_ZSMALLOC_STAT
174static struct dentry *zs_stat_root;
175#endif
176
177#ifdef CONFIG_COMPACTION
178static struct vfsmount *zsmalloc_mnt;
179#endif
180
181/*
182 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
183 * n <= N / f, where
184 * n = number of allocated objects
185 * N = total number of objects zspage can store
186 * f = fullness_threshold_frac
187 *
188 * Similarly, we assign zspage to:
189 * ZS_ALMOST_FULL when n > N / f
190 * ZS_EMPTY when n == 0
191 * ZS_FULL when n == N
192 *
193 * (see: fix_fullness_group())
194 */
195static const int fullness_threshold_frac = 4;
196static size_t huge_class_size;
197
198struct size_class {
199 spinlock_t lock;
200 struct list_head fullness_list[NR_ZS_FULLNESS];
201 /*
202 * Size of objects stored in this class. Must be multiple
203 * of ZS_ALIGN.
204 */
205 int size;
206 int objs_per_zspage;
207 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
208 int pages_per_zspage;
209
210 unsigned int index;
211 struct zs_size_stat stats;
212};
213
214/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
215static void SetPageHugeObject(struct page *page)
216{
217 SetPageOwnerPriv1(page);
218}
219
220static void ClearPageHugeObject(struct page *page)
221{
222 ClearPageOwnerPriv1(page);
223}
224
225static int PageHugeObject(struct page *page)
226{
227 return PageOwnerPriv1(page);
228}
229
230/*
231 * Placed within free objects to form a singly linked list.
232 * For every zspage, zspage->freeobj gives head of this list.
233 *
234 * This must be power of 2 and less than or equal to ZS_ALIGN
235 */
236struct link_free {
237 union {
238 /*
239 * Free object index;
240 * It's valid for non-allocated object
241 */
242 unsigned long next;
243 /*
244 * Handle of allocated object.
245 */
246 unsigned long handle;
247 };
248};
249
250struct zs_pool {
251 const char *name;
252
253 struct size_class *size_class[ZS_SIZE_CLASSES];
254 struct kmem_cache *handle_cachep;
255 struct kmem_cache *zspage_cachep;
256
257 atomic_long_t pages_allocated;
258
259 struct zs_pool_stats stats;
260
261 /* Compact classes */
262 struct shrinker shrinker;
263
264#ifdef CONFIG_ZSMALLOC_STAT
265 struct dentry *stat_dentry;
266#endif
267#ifdef CONFIG_COMPACTION
268 struct inode *inode;
269 struct work_struct free_work;
270#endif
271};
272
273struct zspage {
274 struct {
275 unsigned int fullness:FULLNESS_BITS;
276 unsigned int class:CLASS_BITS + 1;
277 unsigned int isolated:ISOLATED_BITS;
278 unsigned int magic:MAGIC_VAL_BITS;
279 };
280 unsigned int inuse;
281 unsigned int freeobj;
282 struct page *first_page;
283 struct list_head list; /* fullness list */
284#ifdef CONFIG_COMPACTION
285 rwlock_t lock;
286#endif
287};
288
289struct mapping_area {
290#ifdef CONFIG_PGTABLE_MAPPING
291 struct vm_struct *vm; /* vm area for mapping object that span pages */
292#else
293 char *vm_buf; /* copy buffer for objects that span pages */
294#endif
295 char *vm_addr; /* address of kmap_atomic()'ed pages */
296 enum zs_mapmode vm_mm; /* mapping mode */
297};
298
299#ifdef CONFIG_COMPACTION
300static int zs_register_migration(struct zs_pool *pool);
301static void zs_unregister_migration(struct zs_pool *pool);
302static void migrate_lock_init(struct zspage *zspage);
303static void migrate_read_lock(struct zspage *zspage);
304static void migrate_read_unlock(struct zspage *zspage);
305static void kick_deferred_free(struct zs_pool *pool);
306static void init_deferred_free(struct zs_pool *pool);
307static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
308#else
309static int zsmalloc_mount(void) { return 0; }
310static void zsmalloc_unmount(void) {}
311static int zs_register_migration(struct zs_pool *pool) { return 0; }
312static void zs_unregister_migration(struct zs_pool *pool) {}
313static void migrate_lock_init(struct zspage *zspage) {}
314static void migrate_read_lock(struct zspage *zspage) {}
315static void migrate_read_unlock(struct zspage *zspage) {}
316static void kick_deferred_free(struct zs_pool *pool) {}
317static void init_deferred_free(struct zs_pool *pool) {}
318static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
319#endif
320
321static int create_cache(struct zs_pool *pool)
322{
323 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
324 0, 0, NULL);
325 if (!pool->handle_cachep)
326 return 1;
327
328 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
329 0, 0, NULL);
330 if (!pool->zspage_cachep) {
331 kmem_cache_destroy(pool->handle_cachep);
332 pool->handle_cachep = NULL;
333 return 1;
334 }
335
336 return 0;
337}
338
339static void destroy_cache(struct zs_pool *pool)
340{
341 kmem_cache_destroy(pool->handle_cachep);
342 kmem_cache_destroy(pool->zspage_cachep);
343}
344
345static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
346{
347 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
348 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
349}
350
351static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
352{
353 kmem_cache_free(pool->handle_cachep, (void *)handle);
354}
355
356static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
357{
358 return kmem_cache_alloc(pool->zspage_cachep,
359 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
360}
361
362static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
363{
364 kmem_cache_free(pool->zspage_cachep, zspage);
365}
366
367static void record_obj(unsigned long handle, unsigned long obj)
368{
369 /*
370 * lsb of @obj represents handle lock while other bits
371 * represent object value the handle is pointing so
372 * updating shouldn't do store tearing.
373 */
374 WRITE_ONCE(*(unsigned long *)handle, obj);
375}
376
377/* zpool driver */
378
379#ifdef CONFIG_ZPOOL
380
381static void *zs_zpool_create(const char *name, gfp_t gfp,
382 const struct zpool_ops *zpool_ops,
383 struct zpool *zpool)
384{
385 /*
386 * Ignore global gfp flags: zs_malloc() may be invoked from
387 * different contexts and its caller must provide a valid
388 * gfp mask.
389 */
390 return zs_create_pool(name);
391}
392
393static void zs_zpool_destroy(void *pool)
394{
395 zs_destroy_pool(pool);
396}
397
398static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
399 unsigned long *handle)
400{
401 *handle = zs_malloc(pool, size, gfp);
402 return *handle ? 0 : -1;
403}
404static void zs_zpool_free(void *pool, unsigned long handle)
405{
406 zs_free(pool, handle);
407}
408
409static void *zs_zpool_map(void *pool, unsigned long handle,
410 enum zpool_mapmode mm)
411{
412 enum zs_mapmode zs_mm;
413
414 switch (mm) {
415 case ZPOOL_MM_RO:
416 zs_mm = ZS_MM_RO;
417 break;
418 case ZPOOL_MM_WO:
419 zs_mm = ZS_MM_WO;
420 break;
421 case ZPOOL_MM_RW: /* fallthru */
422 default:
423 zs_mm = ZS_MM_RW;
424 break;
425 }
426
427 return zs_map_object(pool, handle, zs_mm);
428}
429static void zs_zpool_unmap(void *pool, unsigned long handle)
430{
431 zs_unmap_object(pool, handle);
432}
433
434static u64 zs_zpool_total_size(void *pool)
435{
436 return zs_get_total_pages(pool) << PAGE_SHIFT;
437}
438
439static struct zpool_driver zs_zpool_driver = {
440 .type = "zsmalloc",
441 .owner = THIS_MODULE,
442 .create = zs_zpool_create,
443 .destroy = zs_zpool_destroy,
444 .malloc = zs_zpool_malloc,
445 .free = zs_zpool_free,
446 .map = zs_zpool_map,
447 .unmap = zs_zpool_unmap,
448 .total_size = zs_zpool_total_size,
449};
450
451MODULE_ALIAS("zpool-zsmalloc");
452#endif /* CONFIG_ZPOOL */
453
454/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
455static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
456
457static bool is_zspage_isolated(struct zspage *zspage)
458{
459 return zspage->isolated;
460}
461
462static __maybe_unused int is_first_page(struct page *page)
463{
464 return PagePrivate(page);
465}
466
467/* Protected by class->lock */
468static inline int get_zspage_inuse(struct zspage *zspage)
469{
470 return zspage->inuse;
471}
472
473static inline void set_zspage_inuse(struct zspage *zspage, int val)
474{
475 zspage->inuse = val;
476}
477
478static inline void mod_zspage_inuse(struct zspage *zspage, int val)
479{
480 zspage->inuse += val;
481}
482
483static inline struct page *get_first_page(struct zspage *zspage)
484{
485 struct page *first_page = zspage->first_page;
486
487 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
488 return first_page;
489}
490
491static inline int get_first_obj_offset(struct page *page)
492{
493 return page->units;
494}
495
496static inline void set_first_obj_offset(struct page *page, int offset)
497{
498 page->units = offset;
499}
500
501static inline unsigned int get_freeobj(struct zspage *zspage)
502{
503 return zspage->freeobj;
504}
505
506static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
507{
508 zspage->freeobj = obj;
509}
510
511static void get_zspage_mapping(struct zspage *zspage,
512 unsigned int *class_idx,
513 enum fullness_group *fullness)
514{
515 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
516
517 *fullness = zspage->fullness;
518 *class_idx = zspage->class;
519}
520
521static void set_zspage_mapping(struct zspage *zspage,
522 unsigned int class_idx,
523 enum fullness_group fullness)
524{
525 zspage->class = class_idx;
526 zspage->fullness = fullness;
527}
528
529/*
530 * zsmalloc divides the pool into various size classes where each
531 * class maintains a list of zspages where each zspage is divided
532 * into equal sized chunks. Each allocation falls into one of these
533 * classes depending on its size. This function returns index of the
534 * size class which has chunk size big enough to hold the give size.
535 */
536static int get_size_class_index(int size)
537{
538 int idx = 0;
539
540 if (likely(size > ZS_MIN_ALLOC_SIZE))
541 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
542 ZS_SIZE_CLASS_DELTA);
543
544 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
545}
546
547/* type can be of enum type zs_stat_type or fullness_group */
548static inline void zs_stat_inc(struct size_class *class,
549 int type, unsigned long cnt)
550{
551 class->stats.objs[type] += cnt;
552}
553
554/* type can be of enum type zs_stat_type or fullness_group */
555static inline void zs_stat_dec(struct size_class *class,
556 int type, unsigned long cnt)
557{
558 class->stats.objs[type] -= cnt;
559}
560
561/* type can be of enum type zs_stat_type or fullness_group */
562static inline unsigned long zs_stat_get(struct size_class *class,
563 int type)
564{
565 return class->stats.objs[type];
566}
567
568#ifdef CONFIG_ZSMALLOC_STAT
569
570static void __init zs_stat_init(void)
571{
572 if (!debugfs_initialized()) {
573 pr_warn("debugfs not available, stat dir not created\n");
574 return;
575 }
576
577 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
578 if (!zs_stat_root)
579 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
580}
581
582static void __exit zs_stat_exit(void)
583{
584 debugfs_remove_recursive(zs_stat_root);
585}
586
587static unsigned long zs_can_compact(struct size_class *class);
588
589static int zs_stats_size_show(struct seq_file *s, void *v)
590{
591 int i;
592 struct zs_pool *pool = s->private;
593 struct size_class *class;
594 int objs_per_zspage;
595 unsigned long class_almost_full, class_almost_empty;
596 unsigned long obj_allocated, obj_used, pages_used, freeable;
597 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
598 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
599 unsigned long total_freeable = 0;
600
601 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
602 "class", "size", "almost_full", "almost_empty",
603 "obj_allocated", "obj_used", "pages_used",
604 "pages_per_zspage", "freeable");
605
606 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
607 class = pool->size_class[i];
608
609 if (class->index != i)
610 continue;
611
612 spin_lock(&class->lock);
613 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
614 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
615 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
616 obj_used = zs_stat_get(class, OBJ_USED);
617 freeable = zs_can_compact(class);
618 spin_unlock(&class->lock);
619
620 objs_per_zspage = class->objs_per_zspage;
621 pages_used = obj_allocated / objs_per_zspage *
622 class->pages_per_zspage;
623
624 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
625 " %10lu %10lu %16d %8lu\n",
626 i, class->size, class_almost_full, class_almost_empty,
627 obj_allocated, obj_used, pages_used,
628 class->pages_per_zspage, freeable);
629
630 total_class_almost_full += class_almost_full;
631 total_class_almost_empty += class_almost_empty;
632 total_objs += obj_allocated;
633 total_used_objs += obj_used;
634 total_pages += pages_used;
635 total_freeable += freeable;
636 }
637
638 seq_puts(s, "\n");
639 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
640 "Total", "", total_class_almost_full,
641 total_class_almost_empty, total_objs,
642 total_used_objs, total_pages, "", total_freeable);
643
644 return 0;
645}
646DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
647
648static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
649{
650 struct dentry *entry;
651
652 if (!zs_stat_root) {
653 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
654 return;
655 }
656
657 entry = debugfs_create_dir(name, zs_stat_root);
658 if (!entry) {
659 pr_warn("debugfs dir <%s> creation failed\n", name);
660 return;
661 }
662 pool->stat_dentry = entry;
663
664 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
665 pool->stat_dentry, pool, &zs_stats_size_fops);
666 if (!entry) {
667 pr_warn("%s: debugfs file entry <%s> creation failed\n",
668 name, "classes");
669 debugfs_remove_recursive(pool->stat_dentry);
670 pool->stat_dentry = NULL;
671 }
672}
673
674static void zs_pool_stat_destroy(struct zs_pool *pool)
675{
676 debugfs_remove_recursive(pool->stat_dentry);
677}
678
679#else /* CONFIG_ZSMALLOC_STAT */
680static void __init zs_stat_init(void)
681{
682}
683
684static void __exit zs_stat_exit(void)
685{
686}
687
688static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
689{
690}
691
692static inline void zs_pool_stat_destroy(struct zs_pool *pool)
693{
694}
695#endif
696
697
698/*
699 * For each size class, zspages are divided into different groups
700 * depending on how "full" they are. This was done so that we could
701 * easily find empty or nearly empty zspages when we try to shrink
702 * the pool (not yet implemented). This function returns fullness
703 * status of the given page.
704 */
705static enum fullness_group get_fullness_group(struct size_class *class,
706 struct zspage *zspage)
707{
708 int inuse, objs_per_zspage;
709 enum fullness_group fg;
710
711 inuse = get_zspage_inuse(zspage);
712 objs_per_zspage = class->objs_per_zspage;
713
714 if (inuse == 0)
715 fg = ZS_EMPTY;
716 else if (inuse == objs_per_zspage)
717 fg = ZS_FULL;
718 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
719 fg = ZS_ALMOST_EMPTY;
720 else
721 fg = ZS_ALMOST_FULL;
722
723 return fg;
724}
725
726/*
727 * Each size class maintains various freelists and zspages are assigned
728 * to one of these freelists based on the number of live objects they
729 * have. This functions inserts the given zspage into the freelist
730 * identified by <class, fullness_group>.
731 */
732static void insert_zspage(struct size_class *class,
733 struct zspage *zspage,
734 enum fullness_group fullness)
735{
736 struct zspage *head;
737
738 zs_stat_inc(class, fullness, 1);
739 head = list_first_entry_or_null(&class->fullness_list[fullness],
740 struct zspage, list);
741 /*
742 * We want to see more ZS_FULL pages and less almost empty/full.
743 * Put pages with higher ->inuse first.
744 */
745 if (head) {
746 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
747 list_add(&zspage->list, &head->list);
748 return;
749 }
750 }
751 list_add(&zspage->list, &class->fullness_list[fullness]);
752}
753
754/*
755 * This function removes the given zspage from the freelist identified
756 * by <class, fullness_group>.
757 */
758static void remove_zspage(struct size_class *class,
759 struct zspage *zspage,
760 enum fullness_group fullness)
761{
762 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
763 VM_BUG_ON(is_zspage_isolated(zspage));
764
765 list_del_init(&zspage->list);
766 zs_stat_dec(class, fullness, 1);
767}
768
769/*
770 * Each size class maintains zspages in different fullness groups depending
771 * on the number of live objects they contain. When allocating or freeing
772 * objects, the fullness status of the page can change, say, from ALMOST_FULL
773 * to ALMOST_EMPTY when freeing an object. This function checks if such
774 * a status change has occurred for the given page and accordingly moves the
775 * page from the freelist of the old fullness group to that of the new
776 * fullness group.
777 */
778static enum fullness_group fix_fullness_group(struct size_class *class,
779 struct zspage *zspage)
780{
781 int class_idx;
782 enum fullness_group currfg, newfg;
783
784 get_zspage_mapping(zspage, &class_idx, &currfg);
785 newfg = get_fullness_group(class, zspage);
786 if (newfg == currfg)
787 goto out;
788
789 if (!is_zspage_isolated(zspage)) {
790 remove_zspage(class, zspage, currfg);
791 insert_zspage(class, zspage, newfg);
792 }
793
794 set_zspage_mapping(zspage, class_idx, newfg);
795
796out:
797 return newfg;
798}
799
800/*
801 * We have to decide on how many pages to link together
802 * to form a zspage for each size class. This is important
803 * to reduce wastage due to unusable space left at end of
804 * each zspage which is given as:
805 * wastage = Zp % class_size
806 * usage = Zp - wastage
807 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
808 *
809 * For example, for size class of 3/8 * PAGE_SIZE, we should
810 * link together 3 PAGE_SIZE sized pages to form a zspage
811 * since then we can perfectly fit in 8 such objects.
812 */
813static int get_pages_per_zspage(int class_size)
814{
815 int i, max_usedpc = 0;
816 /* zspage order which gives maximum used size per KB */
817 int max_usedpc_order = 1;
818
819 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
820 int zspage_size;
821 int waste, usedpc;
822
823 zspage_size = i * PAGE_SIZE;
824 waste = zspage_size % class_size;
825 usedpc = (zspage_size - waste) * 100 / zspage_size;
826
827 if (usedpc > max_usedpc) {
828 max_usedpc = usedpc;
829 max_usedpc_order = i;
830 }
831 }
832
833 return max_usedpc_order;
834}
835
836static struct zspage *get_zspage(struct page *page)
837{
838 struct zspage *zspage = (struct zspage *)page->private;
839
840 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
841 return zspage;
842}
843
844static struct page *get_next_page(struct page *page)
845{
846 if (unlikely(PageHugeObject(page)))
847 return NULL;
848
849 return page->freelist;
850}
851
852/**
853 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
854 * @obj: the encoded object value
855 * @page: page object resides in zspage
856 * @obj_idx: object index
857 */
858static void obj_to_location(unsigned long obj, struct page **page,
859 unsigned int *obj_idx)
860{
861 obj >>= OBJ_TAG_BITS;
862 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
863 *obj_idx = (obj & OBJ_INDEX_MASK);
864}
865
866/**
867 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
868 * @page: page object resides in zspage
869 * @obj_idx: object index
870 */
871static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
872{
873 unsigned long obj;
874
875 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
876 obj |= obj_idx & OBJ_INDEX_MASK;
877 obj <<= OBJ_TAG_BITS;
878
879 return obj;
880}
881
882static unsigned long handle_to_obj(unsigned long handle)
883{
884 return *(unsigned long *)handle;
885}
886
887static unsigned long obj_to_head(struct page *page, void *obj)
888{
889 if (unlikely(PageHugeObject(page))) {
890 VM_BUG_ON_PAGE(!is_first_page(page), page);
891 return page->index;
892 } else
893 return *(unsigned long *)obj;
894}
895
896static inline int testpin_tag(unsigned long handle)
897{
898 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
899}
900
901static inline int trypin_tag(unsigned long handle)
902{
903 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
904}
905
906static void pin_tag(unsigned long handle)
907{
908 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
909}
910
911static void unpin_tag(unsigned long handle)
912{
913 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
914}
915
916static void reset_page(struct page *page)
917{
918 __ClearPageMovable(page);
919 ClearPagePrivate(page);
920 set_page_private(page, 0);
921 page_mapcount_reset(page);
922 ClearPageHugeObject(page);
923 page->freelist = NULL;
924}
925
926/*
927 * To prevent zspage destroy during migration, zspage freeing should
928 * hold locks of all pages in the zspage.
929 */
930void lock_zspage(struct zspage *zspage)
931{
932 struct page *page = get_first_page(zspage);
933
934 do {
935 lock_page(page);
936 } while ((page = get_next_page(page)) != NULL);
937}
938
939int trylock_zspage(struct zspage *zspage)
940{
941 struct page *cursor, *fail;
942
943 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
944 get_next_page(cursor)) {
945 if (!trylock_page(cursor)) {
946 fail = cursor;
947 goto unlock;
948 }
949 }
950
951 return 1;
952unlock:
953 for (cursor = get_first_page(zspage); cursor != fail; cursor =
954 get_next_page(cursor))
955 unlock_page(cursor);
956
957 return 0;
958}
959
960static void __free_zspage(struct zs_pool *pool, struct size_class *class,
961 struct zspage *zspage)
962{
963 struct page *page, *next;
964 enum fullness_group fg;
965 unsigned int class_idx;
966
967 get_zspage_mapping(zspage, &class_idx, &fg);
968
969 assert_spin_locked(&class->lock);
970
971 VM_BUG_ON(get_zspage_inuse(zspage));
972 VM_BUG_ON(fg != ZS_EMPTY);
973
974 next = page = get_first_page(zspage);
975 do {
976 VM_BUG_ON_PAGE(!PageLocked(page), page);
977 next = get_next_page(page);
978 reset_page(page);
979 unlock_page(page);
980 dec_zone_page_state(page, NR_ZSPAGES);
981 put_page(page);
982 page = next;
983 } while (page != NULL);
984
985 cache_free_zspage(pool, zspage);
986
987 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
988 atomic_long_sub(class->pages_per_zspage,
989 &pool->pages_allocated);
990}
991
992static void free_zspage(struct zs_pool *pool, struct size_class *class,
993 struct zspage *zspage)
994{
995 VM_BUG_ON(get_zspage_inuse(zspage));
996 VM_BUG_ON(list_empty(&zspage->list));
997
998 if (!trylock_zspage(zspage)) {
999 kick_deferred_free(pool);
1000 return;
1001 }
1002
1003 remove_zspage(class, zspage, ZS_EMPTY);
1004 __free_zspage(pool, class, zspage);
1005}
1006
1007/* Initialize a newly allocated zspage */
1008static void init_zspage(struct size_class *class, struct zspage *zspage)
1009{
1010 unsigned int freeobj = 1;
1011 unsigned long off = 0;
1012 struct page *page = get_first_page(zspage);
1013
1014 while (page) {
1015 struct page *next_page;
1016 struct link_free *link;
1017 void *vaddr;
1018
1019 set_first_obj_offset(page, off);
1020
1021 vaddr = kmap_atomic(page);
1022 link = (struct link_free *)vaddr + off / sizeof(*link);
1023
1024 while ((off += class->size) < PAGE_SIZE) {
1025 link->next = freeobj++ << OBJ_TAG_BITS;
1026 link += class->size / sizeof(*link);
1027 }
1028
1029 /*
1030 * We now come to the last (full or partial) object on this
1031 * page, which must point to the first object on the next
1032 * page (if present)
1033 */
1034 next_page = get_next_page(page);
1035 if (next_page) {
1036 link->next = freeobj++ << OBJ_TAG_BITS;
1037 } else {
1038 /*
1039 * Reset OBJ_TAG_BITS bit to last link to tell
1040 * whether it's allocated object or not.
1041 */
1042 link->next = -1UL << OBJ_TAG_BITS;
1043 }
1044 kunmap_atomic(vaddr);
1045 page = next_page;
1046 off %= PAGE_SIZE;
1047 }
1048
1049 set_freeobj(zspage, 0);
1050}
1051
1052static void create_page_chain(struct size_class *class, struct zspage *zspage,
1053 struct page *pages[])
1054{
1055 int i;
1056 struct page *page;
1057 struct page *prev_page = NULL;
1058 int nr_pages = class->pages_per_zspage;
1059
1060 /*
1061 * Allocate individual pages and link them together as:
1062 * 1. all pages are linked together using page->freelist
1063 * 2. each sub-page point to zspage using page->private
1064 *
1065 * we set PG_private to identify the first page (i.e. no other sub-page
1066 * has this flag set).
1067 */
1068 for (i = 0; i < nr_pages; i++) {
1069 page = pages[i];
1070 set_page_private(page, (unsigned long)zspage);
1071 page->freelist = NULL;
1072 if (i == 0) {
1073 zspage->first_page = page;
1074 SetPagePrivate(page);
1075 if (unlikely(class->objs_per_zspage == 1 &&
1076 class->pages_per_zspage == 1))
1077 SetPageHugeObject(page);
1078 } else {
1079 prev_page->freelist = page;
1080 }
1081 prev_page = page;
1082 }
1083}
1084
1085/*
1086 * Allocate a zspage for the given size class
1087 */
1088static struct zspage *alloc_zspage(struct zs_pool *pool,
1089 struct size_class *class,
1090 gfp_t gfp)
1091{
1092 int i;
1093 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1094 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1095
1096 if (!zspage)
1097 return NULL;
1098
1099 memset(zspage, 0, sizeof(struct zspage));
1100 zspage->magic = ZSPAGE_MAGIC;
1101 migrate_lock_init(zspage);
1102
1103 for (i = 0; i < class->pages_per_zspage; i++) {
1104 struct page *page;
1105
1106 page = alloc_page(gfp);
1107 if (!page) {
1108 while (--i >= 0) {
1109 dec_zone_page_state(pages[i], NR_ZSPAGES);
1110 __free_page(pages[i]);
1111 }
1112 cache_free_zspage(pool, zspage);
1113 return NULL;
1114 }
1115
1116 inc_zone_page_state(page, NR_ZSPAGES);
1117 pages[i] = page;
1118 }
1119
1120 create_page_chain(class, zspage, pages);
1121 init_zspage(class, zspage);
1122
1123 return zspage;
1124}
1125
1126static struct zspage *find_get_zspage(struct size_class *class)
1127{
1128 int i;
1129 struct zspage *zspage;
1130
1131 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1132 zspage = list_first_entry_or_null(&class->fullness_list[i],
1133 struct zspage, list);
1134 if (zspage)
1135 break;
1136 }
1137
1138 return zspage;
1139}
1140
1141#ifdef CONFIG_PGTABLE_MAPPING
1142static inline int __zs_cpu_up(struct mapping_area *area)
1143{
1144 /*
1145 * Make sure we don't leak memory if a cpu UP notification
1146 * and zs_init() race and both call zs_cpu_up() on the same cpu
1147 */
1148 if (area->vm)
1149 return 0;
1150 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1151 if (!area->vm)
1152 return -ENOMEM;
1153 return 0;
1154}
1155
1156static inline void __zs_cpu_down(struct mapping_area *area)
1157{
1158 if (area->vm)
1159 free_vm_area(area->vm);
1160 area->vm = NULL;
1161}
1162
1163static inline void *__zs_map_object(struct mapping_area *area,
1164 struct page *pages[2], int off, int size)
1165{
1166 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1167 area->vm_addr = area->vm->addr;
1168 return area->vm_addr + off;
1169}
1170
1171static inline void __zs_unmap_object(struct mapping_area *area,
1172 struct page *pages[2], int off, int size)
1173{
1174 unsigned long addr = (unsigned long)area->vm_addr;
1175
1176 unmap_kernel_range(addr, PAGE_SIZE * 2);
1177}
1178
1179#else /* CONFIG_PGTABLE_MAPPING */
1180
1181static inline int __zs_cpu_up(struct mapping_area *area)
1182{
1183 /*
1184 * Make sure we don't leak memory if a cpu UP notification
1185 * and zs_init() race and both call zs_cpu_up() on the same cpu
1186 */
1187 if (area->vm_buf)
1188 return 0;
1189 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1190 if (!area->vm_buf)
1191 return -ENOMEM;
1192 return 0;
1193}
1194
1195static inline void __zs_cpu_down(struct mapping_area *area)
1196{
1197 kfree(area->vm_buf);
1198 area->vm_buf = NULL;
1199}
1200
1201static void *__zs_map_object(struct mapping_area *area,
1202 struct page *pages[2], int off, int size)
1203{
1204 int sizes[2];
1205 void *addr;
1206 char *buf = area->vm_buf;
1207
1208 /* disable page faults to match kmap_atomic() return conditions */
1209 pagefault_disable();
1210
1211 /* no read fastpath */
1212 if (area->vm_mm == ZS_MM_WO)
1213 goto out;
1214
1215 sizes[0] = PAGE_SIZE - off;
1216 sizes[1] = size - sizes[0];
1217
1218 /* copy object to per-cpu buffer */
1219 addr = kmap_atomic(pages[0]);
1220 memcpy(buf, addr + off, sizes[0]);
1221 kunmap_atomic(addr);
1222 addr = kmap_atomic(pages[1]);
1223 memcpy(buf + sizes[0], addr, sizes[1]);
1224 kunmap_atomic(addr);
1225out:
1226 return area->vm_buf;
1227}
1228
1229static void __zs_unmap_object(struct mapping_area *area,
1230 struct page *pages[2], int off, int size)
1231{
1232 int sizes[2];
1233 void *addr;
1234 char *buf;
1235
1236 /* no write fastpath */
1237 if (area->vm_mm == ZS_MM_RO)
1238 goto out;
1239
1240 buf = area->vm_buf;
1241 buf = buf + ZS_HANDLE_SIZE;
1242 size -= ZS_HANDLE_SIZE;
1243 off += ZS_HANDLE_SIZE;
1244
1245 sizes[0] = PAGE_SIZE - off;
1246 sizes[1] = size - sizes[0];
1247
1248 /* copy per-cpu buffer to object */
1249 addr = kmap_atomic(pages[0]);
1250 memcpy(addr + off, buf, sizes[0]);
1251 kunmap_atomic(addr);
1252 addr = kmap_atomic(pages[1]);
1253 memcpy(addr, buf + sizes[0], sizes[1]);
1254 kunmap_atomic(addr);
1255
1256out:
1257 /* enable page faults to match kunmap_atomic() return conditions */
1258 pagefault_enable();
1259}
1260
1261#endif /* CONFIG_PGTABLE_MAPPING */
1262
1263static int zs_cpu_prepare(unsigned int cpu)
1264{
1265 struct mapping_area *area;
1266
1267 area = &per_cpu(zs_map_area, cpu);
1268 return __zs_cpu_up(area);
1269}
1270
1271static int zs_cpu_dead(unsigned int cpu)
1272{
1273 struct mapping_area *area;
1274
1275 area = &per_cpu(zs_map_area, cpu);
1276 __zs_cpu_down(area);
1277 return 0;
1278}
1279
1280static bool can_merge(struct size_class *prev, int pages_per_zspage,
1281 int objs_per_zspage)
1282{
1283 if (prev->pages_per_zspage == pages_per_zspage &&
1284 prev->objs_per_zspage == objs_per_zspage)
1285 return true;
1286
1287 return false;
1288}
1289
1290static bool zspage_full(struct size_class *class, struct zspage *zspage)
1291{
1292 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1293}
1294
1295unsigned long zs_get_total_pages(struct zs_pool *pool)
1296{
1297 return atomic_long_read(&pool->pages_allocated);
1298}
1299EXPORT_SYMBOL_GPL(zs_get_total_pages);
1300
1301/**
1302 * zs_map_object - get address of allocated object from handle.
1303 * @pool: pool from which the object was allocated
1304 * @handle: handle returned from zs_malloc
1305 * @mm: maping mode to use
1306 *
1307 * Before using an object allocated from zs_malloc, it must be mapped using
1308 * this function. When done with the object, it must be unmapped using
1309 * zs_unmap_object.
1310 *
1311 * Only one object can be mapped per cpu at a time. There is no protection
1312 * against nested mappings.
1313 *
1314 * This function returns with preemption and page faults disabled.
1315 */
1316void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1317 enum zs_mapmode mm)
1318{
1319 struct zspage *zspage;
1320 struct page *page;
1321 unsigned long obj, off;
1322 unsigned int obj_idx;
1323
1324 unsigned int class_idx;
1325 enum fullness_group fg;
1326 struct size_class *class;
1327 struct mapping_area *area;
1328 struct page *pages[2];
1329 void *ret;
1330
1331 /*
1332 * Because we use per-cpu mapping areas shared among the
1333 * pools/users, we can't allow mapping in interrupt context
1334 * because it can corrupt another users mappings.
1335 */
1336 BUG_ON(in_interrupt());
1337
1338 /* From now on, migration cannot move the object */
1339 pin_tag(handle);
1340
1341 obj = handle_to_obj(handle);
1342 obj_to_location(obj, &page, &obj_idx);
1343 zspage = get_zspage(page);
1344
1345 /* migration cannot move any subpage in this zspage */
1346 migrate_read_lock(zspage);
1347
1348 get_zspage_mapping(zspage, &class_idx, &fg);
1349 class = pool->size_class[class_idx];
1350 off = (class->size * obj_idx) & ~PAGE_MASK;
1351
1352 area = &get_cpu_var(zs_map_area);
1353 area->vm_mm = mm;
1354 if (off + class->size <= PAGE_SIZE) {
1355 /* this object is contained entirely within a page */
1356 area->vm_addr = kmap_atomic(page);
1357 ret = area->vm_addr + off;
1358 goto out;
1359 }
1360
1361 /* this object spans two pages */
1362 pages[0] = page;
1363 pages[1] = get_next_page(page);
1364 BUG_ON(!pages[1]);
1365
1366 ret = __zs_map_object(area, pages, off, class->size);
1367out:
1368 if (likely(!PageHugeObject(page)))
1369 ret += ZS_HANDLE_SIZE;
1370
1371 return ret;
1372}
1373EXPORT_SYMBOL_GPL(zs_map_object);
1374
1375void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1376{
1377 struct zspage *zspage;
1378 struct page *page;
1379 unsigned long obj, off;
1380 unsigned int obj_idx;
1381
1382 unsigned int class_idx;
1383 enum fullness_group fg;
1384 struct size_class *class;
1385 struct mapping_area *area;
1386
1387 obj = handle_to_obj(handle);
1388 obj_to_location(obj, &page, &obj_idx);
1389 zspage = get_zspage(page);
1390 get_zspage_mapping(zspage, &class_idx, &fg);
1391 class = pool->size_class[class_idx];
1392 off = (class->size * obj_idx) & ~PAGE_MASK;
1393
1394 area = this_cpu_ptr(&zs_map_area);
1395 if (off + class->size <= PAGE_SIZE)
1396 kunmap_atomic(area->vm_addr);
1397 else {
1398 struct page *pages[2];
1399
1400 pages[0] = page;
1401 pages[1] = get_next_page(page);
1402 BUG_ON(!pages[1]);
1403
1404 __zs_unmap_object(area, pages, off, class->size);
1405 }
1406 put_cpu_var(zs_map_area);
1407
1408 migrate_read_unlock(zspage);
1409 unpin_tag(handle);
1410}
1411EXPORT_SYMBOL_GPL(zs_unmap_object);
1412
1413/**
1414 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1415 * zsmalloc &size_class.
1416 * @pool: zsmalloc pool to use
1417 *
1418 * The function returns the size of the first huge class - any object of equal
1419 * or bigger size will be stored in zspage consisting of a single physical
1420 * page.
1421 *
1422 * Context: Any context.
1423 *
1424 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1425 */
1426size_t zs_huge_class_size(struct zs_pool *pool)
1427{
1428 return huge_class_size;
1429}
1430EXPORT_SYMBOL_GPL(zs_huge_class_size);
1431
1432static unsigned long obj_malloc(struct size_class *class,
1433 struct zspage *zspage, unsigned long handle)
1434{
1435 int i, nr_page, offset;
1436 unsigned long obj;
1437 struct link_free *link;
1438
1439 struct page *m_page;
1440 unsigned long m_offset;
1441 void *vaddr;
1442
1443 handle |= OBJ_ALLOCATED_TAG;
1444 obj = get_freeobj(zspage);
1445
1446 offset = obj * class->size;
1447 nr_page = offset >> PAGE_SHIFT;
1448 m_offset = offset & ~PAGE_MASK;
1449 m_page = get_first_page(zspage);
1450
1451 for (i = 0; i < nr_page; i++)
1452 m_page = get_next_page(m_page);
1453
1454 vaddr = kmap_atomic(m_page);
1455 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1456 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1457 if (likely(!PageHugeObject(m_page)))
1458 /* record handle in the header of allocated chunk */
1459 link->handle = handle;
1460 else
1461 /* record handle to page->index */
1462 zspage->first_page->index = handle;
1463
1464 kunmap_atomic(vaddr);
1465 mod_zspage_inuse(zspage, 1);
1466 zs_stat_inc(class, OBJ_USED, 1);
1467
1468 obj = location_to_obj(m_page, obj);
1469
1470 return obj;
1471}
1472
1473
1474/**
1475 * zs_malloc - Allocate block of given size from pool.
1476 * @pool: pool to allocate from
1477 * @size: size of block to allocate
1478 * @gfp: gfp flags when allocating object
1479 *
1480 * On success, handle to the allocated object is returned,
1481 * otherwise 0.
1482 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1483 */
1484unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1485{
1486 unsigned long handle, obj;
1487 struct size_class *class;
1488 enum fullness_group newfg;
1489 struct zspage *zspage;
1490
1491 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1492 return 0;
1493
1494 handle = cache_alloc_handle(pool, gfp);
1495 if (!handle)
1496 return 0;
1497
1498 /* extra space in chunk to keep the handle */
1499 size += ZS_HANDLE_SIZE;
1500 class = pool->size_class[get_size_class_index(size)];
1501
1502 spin_lock(&class->lock);
1503 zspage = find_get_zspage(class);
1504 if (likely(zspage)) {
1505 obj = obj_malloc(class, zspage, handle);
1506 /* Now move the zspage to another fullness group, if required */
1507 fix_fullness_group(class, zspage);
1508 record_obj(handle, obj);
1509 spin_unlock(&class->lock);
1510
1511 return handle;
1512 }
1513
1514 spin_unlock(&class->lock);
1515
1516 zspage = alloc_zspage(pool, class, gfp);
1517 if (!zspage) {
1518 cache_free_handle(pool, handle);
1519 return 0;
1520 }
1521
1522 spin_lock(&class->lock);
1523 obj = obj_malloc(class, zspage, handle);
1524 newfg = get_fullness_group(class, zspage);
1525 insert_zspage(class, zspage, newfg);
1526 set_zspage_mapping(zspage, class->index, newfg);
1527 record_obj(handle, obj);
1528 atomic_long_add(class->pages_per_zspage,
1529 &pool->pages_allocated);
1530 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1531
1532 /* We completely set up zspage so mark them as movable */
1533 SetZsPageMovable(pool, zspage);
1534 spin_unlock(&class->lock);
1535
1536 return handle;
1537}
1538EXPORT_SYMBOL_GPL(zs_malloc);
1539
1540static void obj_free(struct size_class *class, unsigned long obj)
1541{
1542 struct link_free *link;
1543 struct zspage *zspage;
1544 struct page *f_page;
1545 unsigned long f_offset;
1546 unsigned int f_objidx;
1547 void *vaddr;
1548
1549 obj &= ~OBJ_ALLOCATED_TAG;
1550 obj_to_location(obj, &f_page, &f_objidx);
1551 f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1552 zspage = get_zspage(f_page);
1553
1554 vaddr = kmap_atomic(f_page);
1555
1556 /* Insert this object in containing zspage's freelist */
1557 link = (struct link_free *)(vaddr + f_offset);
1558 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1559 kunmap_atomic(vaddr);
1560 set_freeobj(zspage, f_objidx);
1561 mod_zspage_inuse(zspage, -1);
1562 zs_stat_dec(class, OBJ_USED, 1);
1563}
1564
1565void zs_free(struct zs_pool *pool, unsigned long handle)
1566{
1567 struct zspage *zspage;
1568 struct page *f_page;
1569 unsigned long obj;
1570 unsigned int f_objidx;
1571 int class_idx;
1572 struct size_class *class;
1573 enum fullness_group fullness;
1574 bool isolated;
1575
1576 if (unlikely(!handle))
1577 return;
1578
1579 pin_tag(handle);
1580 obj = handle_to_obj(handle);
1581 obj_to_location(obj, &f_page, &f_objidx);
1582 zspage = get_zspage(f_page);
1583
1584 migrate_read_lock(zspage);
1585
1586 get_zspage_mapping(zspage, &class_idx, &fullness);
1587 class = pool->size_class[class_idx];
1588
1589 spin_lock(&class->lock);
1590 obj_free(class, obj);
1591 fullness = fix_fullness_group(class, zspage);
1592 if (fullness != ZS_EMPTY) {
1593 migrate_read_unlock(zspage);
1594 goto out;
1595 }
1596
1597 isolated = is_zspage_isolated(zspage);
1598 migrate_read_unlock(zspage);
1599 /* If zspage is isolated, zs_page_putback will free the zspage */
1600 if (likely(!isolated))
1601 free_zspage(pool, class, zspage);
1602out:
1603
1604 spin_unlock(&class->lock);
1605 unpin_tag(handle);
1606 cache_free_handle(pool, handle);
1607}
1608EXPORT_SYMBOL_GPL(zs_free);
1609
1610static void zs_object_copy(struct size_class *class, unsigned long dst,
1611 unsigned long src)
1612{
1613 struct page *s_page, *d_page;
1614 unsigned int s_objidx, d_objidx;
1615 unsigned long s_off, d_off;
1616 void *s_addr, *d_addr;
1617 int s_size, d_size, size;
1618 int written = 0;
1619
1620 s_size = d_size = class->size;
1621
1622 obj_to_location(src, &s_page, &s_objidx);
1623 obj_to_location(dst, &d_page, &d_objidx);
1624
1625 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1626 d_off = (class->size * d_objidx) & ~PAGE_MASK;
1627
1628 if (s_off + class->size > PAGE_SIZE)
1629 s_size = PAGE_SIZE - s_off;
1630
1631 if (d_off + class->size > PAGE_SIZE)
1632 d_size = PAGE_SIZE - d_off;
1633
1634 s_addr = kmap_atomic(s_page);
1635 d_addr = kmap_atomic(d_page);
1636
1637 while (1) {
1638 size = min(s_size, d_size);
1639 memcpy(d_addr + d_off, s_addr + s_off, size);
1640 written += size;
1641
1642 if (written == class->size)
1643 break;
1644
1645 s_off += size;
1646 s_size -= size;
1647 d_off += size;
1648 d_size -= size;
1649
1650 if (s_off >= PAGE_SIZE) {
1651 kunmap_atomic(d_addr);
1652 kunmap_atomic(s_addr);
1653 s_page = get_next_page(s_page);
1654 s_addr = kmap_atomic(s_page);
1655 d_addr = kmap_atomic(d_page);
1656 s_size = class->size - written;
1657 s_off = 0;
1658 }
1659
1660 if (d_off >= PAGE_SIZE) {
1661 kunmap_atomic(d_addr);
1662 d_page = get_next_page(d_page);
1663 d_addr = kmap_atomic(d_page);
1664 d_size = class->size - written;
1665 d_off = 0;
1666 }
1667 }
1668
1669 kunmap_atomic(d_addr);
1670 kunmap_atomic(s_addr);
1671}
1672
1673/*
1674 * Find alloced object in zspage from index object and
1675 * return handle.
1676 */
1677static unsigned long find_alloced_obj(struct size_class *class,
1678 struct page *page, int *obj_idx)
1679{
1680 unsigned long head;
1681 int offset = 0;
1682 int index = *obj_idx;
1683 unsigned long handle = 0;
1684 void *addr = kmap_atomic(page);
1685
1686 offset = get_first_obj_offset(page);
1687 offset += class->size * index;
1688
1689 while (offset < PAGE_SIZE) {
1690 head = obj_to_head(page, addr + offset);
1691 if (head & OBJ_ALLOCATED_TAG) {
1692 handle = head & ~OBJ_ALLOCATED_TAG;
1693 if (trypin_tag(handle))
1694 break;
1695 handle = 0;
1696 }
1697
1698 offset += class->size;
1699 index++;
1700 }
1701
1702 kunmap_atomic(addr);
1703
1704 *obj_idx = index;
1705
1706 return handle;
1707}
1708
1709struct zs_compact_control {
1710 /* Source spage for migration which could be a subpage of zspage */
1711 struct page *s_page;
1712 /* Destination page for migration which should be a first page
1713 * of zspage. */
1714 struct page *d_page;
1715 /* Starting object index within @s_page which used for live object
1716 * in the subpage. */
1717 int obj_idx;
1718};
1719
1720static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1721 struct zs_compact_control *cc)
1722{
1723 unsigned long used_obj, free_obj;
1724 unsigned long handle;
1725 struct page *s_page = cc->s_page;
1726 struct page *d_page = cc->d_page;
1727 int obj_idx = cc->obj_idx;
1728 int ret = 0;
1729
1730 while (1) {
1731 handle = find_alloced_obj(class, s_page, &obj_idx);
1732 if (!handle) {
1733 s_page = get_next_page(s_page);
1734 if (!s_page)
1735 break;
1736 obj_idx = 0;
1737 continue;
1738 }
1739
1740 /* Stop if there is no more space */
1741 if (zspage_full(class, get_zspage(d_page))) {
1742 unpin_tag(handle);
1743 ret = -ENOMEM;
1744 break;
1745 }
1746
1747 used_obj = handle_to_obj(handle);
1748 free_obj = obj_malloc(class, get_zspage(d_page), handle);
1749 zs_object_copy(class, free_obj, used_obj);
1750 obj_idx++;
1751 /*
1752 * record_obj updates handle's value to free_obj and it will
1753 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1754 * breaks synchronization using pin_tag(e,g, zs_free) so
1755 * let's keep the lock bit.
1756 */
1757 free_obj |= BIT(HANDLE_PIN_BIT);
1758 record_obj(handle, free_obj);
1759 unpin_tag(handle);
1760 obj_free(class, used_obj);
1761 }
1762
1763 /* Remember last position in this iteration */
1764 cc->s_page = s_page;
1765 cc->obj_idx = obj_idx;
1766
1767 return ret;
1768}
1769
1770static struct zspage *isolate_zspage(struct size_class *class, bool source)
1771{
1772 int i;
1773 struct zspage *zspage;
1774 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1775
1776 if (!source) {
1777 fg[0] = ZS_ALMOST_FULL;
1778 fg[1] = ZS_ALMOST_EMPTY;
1779 }
1780
1781 for (i = 0; i < 2; i++) {
1782 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1783 struct zspage, list);
1784 if (zspage) {
1785 VM_BUG_ON(is_zspage_isolated(zspage));
1786 remove_zspage(class, zspage, fg[i]);
1787 return zspage;
1788 }
1789 }
1790
1791 return zspage;
1792}
1793
1794/*
1795 * putback_zspage - add @zspage into right class's fullness list
1796 * @class: destination class
1797 * @zspage: target page
1798 *
1799 * Return @zspage's fullness_group
1800 */
1801static enum fullness_group putback_zspage(struct size_class *class,
1802 struct zspage *zspage)
1803{
1804 enum fullness_group fullness;
1805
1806 VM_BUG_ON(is_zspage_isolated(zspage));
1807
1808 fullness = get_fullness_group(class, zspage);
1809 insert_zspage(class, zspage, fullness);
1810 set_zspage_mapping(zspage, class->index, fullness);
1811
1812 return fullness;
1813}
1814
1815#ifdef CONFIG_COMPACTION
1816static struct dentry *zs_mount(struct file_system_type *fs_type,
1817 int flags, const char *dev_name, void *data)
1818{
1819 static const struct dentry_operations ops = {
1820 .d_dname = simple_dname,
1821 };
1822
1823 return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1824}
1825
1826static struct file_system_type zsmalloc_fs = {
1827 .name = "zsmalloc",
1828 .mount = zs_mount,
1829 .kill_sb = kill_anon_super,
1830};
1831
1832static int zsmalloc_mount(void)
1833{
1834 int ret = 0;
1835
1836 zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1837 if (IS_ERR(zsmalloc_mnt))
1838 ret = PTR_ERR(zsmalloc_mnt);
1839
1840 return ret;
1841}
1842
1843static void zsmalloc_unmount(void)
1844{
1845 kern_unmount(zsmalloc_mnt);
1846}
1847
1848static void migrate_lock_init(struct zspage *zspage)
1849{
1850 rwlock_init(&zspage->lock);
1851}
1852
1853static void migrate_read_lock(struct zspage *zspage)
1854{
1855 read_lock(&zspage->lock);
1856}
1857
1858static void migrate_read_unlock(struct zspage *zspage)
1859{
1860 read_unlock(&zspage->lock);
1861}
1862
1863static void migrate_write_lock(struct zspage *zspage)
1864{
1865 write_lock(&zspage->lock);
1866}
1867
1868static void migrate_write_unlock(struct zspage *zspage)
1869{
1870 write_unlock(&zspage->lock);
1871}
1872
1873/* Number of isolated subpage for *page migration* in this zspage */
1874static void inc_zspage_isolation(struct zspage *zspage)
1875{
1876 zspage->isolated++;
1877}
1878
1879static void dec_zspage_isolation(struct zspage *zspage)
1880{
1881 zspage->isolated--;
1882}
1883
1884static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1885 struct page *newpage, struct page *oldpage)
1886{
1887 struct page *page;
1888 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1889 int idx = 0;
1890
1891 page = get_first_page(zspage);
1892 do {
1893 if (page == oldpage)
1894 pages[idx] = newpage;
1895 else
1896 pages[idx] = page;
1897 idx++;
1898 } while ((page = get_next_page(page)) != NULL);
1899
1900 create_page_chain(class, zspage, pages);
1901 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1902 if (unlikely(PageHugeObject(oldpage)))
1903 newpage->index = oldpage->index;
1904 __SetPageMovable(newpage, page_mapping(oldpage));
1905}
1906
1907bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1908{
1909 struct zs_pool *pool;
1910 struct size_class *class;
1911 int class_idx;
1912 enum fullness_group fullness;
1913 struct zspage *zspage;
1914 struct address_space *mapping;
1915
1916 /*
1917 * Page is locked so zspage couldn't be destroyed. For detail, look at
1918 * lock_zspage in free_zspage.
1919 */
1920 VM_BUG_ON_PAGE(!PageMovable(page), page);
1921 VM_BUG_ON_PAGE(PageIsolated(page), page);
1922
1923 zspage = get_zspage(page);
1924
1925 /*
1926 * Without class lock, fullness could be stale while class_idx is okay
1927 * because class_idx is constant unless page is freed so we should get
1928 * fullness again under class lock.
1929 */
1930 get_zspage_mapping(zspage, &class_idx, &fullness);
1931 mapping = page_mapping(page);
1932 pool = mapping->private_data;
1933 class = pool->size_class[class_idx];
1934
1935 spin_lock(&class->lock);
1936 if (get_zspage_inuse(zspage) == 0) {
1937 spin_unlock(&class->lock);
1938 return false;
1939 }
1940
1941 /* zspage is isolated for object migration */
1942 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1943 spin_unlock(&class->lock);
1944 return false;
1945 }
1946
1947 /*
1948 * If this is first time isolation for the zspage, isolate zspage from
1949 * size_class to prevent further object allocation from the zspage.
1950 */
1951 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1952 get_zspage_mapping(zspage, &class_idx, &fullness);
1953 remove_zspage(class, zspage, fullness);
1954 }
1955
1956 inc_zspage_isolation(zspage);
1957 spin_unlock(&class->lock);
1958
1959 return true;
1960}
1961
1962int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1963 struct page *page, enum migrate_mode mode)
1964{
1965 struct zs_pool *pool;
1966 struct size_class *class;
1967 int class_idx;
1968 enum fullness_group fullness;
1969 struct zspage *zspage;
1970 struct page *dummy;
1971 void *s_addr, *d_addr, *addr;
1972 int offset, pos;
1973 unsigned long handle, head;
1974 unsigned long old_obj, new_obj;
1975 unsigned int obj_idx;
1976 int ret = -EAGAIN;
1977
1978 /*
1979 * We cannot support the _NO_COPY case here, because copy needs to
1980 * happen under the zs lock, which does not work with
1981 * MIGRATE_SYNC_NO_COPY workflow.
1982 */
1983 if (mode == MIGRATE_SYNC_NO_COPY)
1984 return -EINVAL;
1985
1986 VM_BUG_ON_PAGE(!PageMovable(page), page);
1987 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1988
1989 zspage = get_zspage(page);
1990
1991 /* Concurrent compactor cannot migrate any subpage in zspage */
1992 migrate_write_lock(zspage);
1993 get_zspage_mapping(zspage, &class_idx, &fullness);
1994 pool = mapping->private_data;
1995 class = pool->size_class[class_idx];
1996 offset = get_first_obj_offset(page);
1997
1998 spin_lock(&class->lock);
1999 if (!get_zspage_inuse(zspage)) {
2000 /*
2001 * Set "offset" to end of the page so that every loops
2002 * skips unnecessary object scanning.
2003 */
2004 offset = PAGE_SIZE;
2005 }
2006
2007 pos = offset;
2008 s_addr = kmap_atomic(page);
2009 while (pos < PAGE_SIZE) {
2010 head = obj_to_head(page, s_addr + pos);
2011 if (head & OBJ_ALLOCATED_TAG) {
2012 handle = head & ~OBJ_ALLOCATED_TAG;
2013 if (!trypin_tag(handle))
2014 goto unpin_objects;
2015 }
2016 pos += class->size;
2017 }
2018
2019 /*
2020 * Here, any user cannot access all objects in the zspage so let's move.
2021 */
2022 d_addr = kmap_atomic(newpage);
2023 memcpy(d_addr, s_addr, PAGE_SIZE);
2024 kunmap_atomic(d_addr);
2025
2026 for (addr = s_addr + offset; addr < s_addr + pos;
2027 addr += class->size) {
2028 head = obj_to_head(page, addr);
2029 if (head & OBJ_ALLOCATED_TAG) {
2030 handle = head & ~OBJ_ALLOCATED_TAG;
2031 if (!testpin_tag(handle))
2032 BUG();
2033
2034 old_obj = handle_to_obj(handle);
2035 obj_to_location(old_obj, &dummy, &obj_idx);
2036 new_obj = (unsigned long)location_to_obj(newpage,
2037 obj_idx);
2038 new_obj |= BIT(HANDLE_PIN_BIT);
2039 record_obj(handle, new_obj);
2040 }
2041 }
2042
2043 replace_sub_page(class, zspage, newpage, page);
2044 get_page(newpage);
2045
2046 dec_zspage_isolation(zspage);
2047
2048 /*
2049 * Page migration is done so let's putback isolated zspage to
2050 * the list if @page is final isolated subpage in the zspage.
2051 */
2052 if (!is_zspage_isolated(zspage))
2053 putback_zspage(class, zspage);
2054
2055 reset_page(page);
2056 put_page(page);
2057 page = newpage;
2058
2059 ret = MIGRATEPAGE_SUCCESS;
2060unpin_objects:
2061 for (addr = s_addr + offset; addr < s_addr + pos;
2062 addr += class->size) {
2063 head = obj_to_head(page, addr);
2064 if (head & OBJ_ALLOCATED_TAG) {
2065 handle = head & ~OBJ_ALLOCATED_TAG;
2066 if (!testpin_tag(handle))
2067 BUG();
2068 unpin_tag(handle);
2069 }
2070 }
2071 kunmap_atomic(s_addr);
2072 spin_unlock(&class->lock);
2073 migrate_write_unlock(zspage);
2074
2075 return ret;
2076}
2077
2078void zs_page_putback(struct page *page)
2079{
2080 struct zs_pool *pool;
2081 struct size_class *class;
2082 int class_idx;
2083 enum fullness_group fg;
2084 struct address_space *mapping;
2085 struct zspage *zspage;
2086
2087 VM_BUG_ON_PAGE(!PageMovable(page), page);
2088 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2089
2090 zspage = get_zspage(page);
2091 get_zspage_mapping(zspage, &class_idx, &fg);
2092 mapping = page_mapping(page);
2093 pool = mapping->private_data;
2094 class = pool->size_class[class_idx];
2095
2096 spin_lock(&class->lock);
2097 dec_zspage_isolation(zspage);
2098 if (!is_zspage_isolated(zspage)) {
2099 fg = putback_zspage(class, zspage);
2100 /*
2101 * Due to page_lock, we cannot free zspage immediately
2102 * so let's defer.
2103 */
2104 if (fg == ZS_EMPTY)
2105 schedule_work(&pool->free_work);
2106 }
2107 spin_unlock(&class->lock);
2108}
2109
2110const struct address_space_operations zsmalloc_aops = {
2111 .isolate_page = zs_page_isolate,
2112 .migratepage = zs_page_migrate,
2113 .putback_page = zs_page_putback,
2114};
2115
2116static int zs_register_migration(struct zs_pool *pool)
2117{
2118 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2119 if (IS_ERR(pool->inode)) {
2120 pool->inode = NULL;
2121 return 1;
2122 }
2123
2124 pool->inode->i_mapping->private_data = pool;
2125 pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2126 return 0;
2127}
2128
2129static void zs_unregister_migration(struct zs_pool *pool)
2130{
2131 flush_work(&pool->free_work);
2132 iput(pool->inode);
2133}
2134
2135/*
2136 * Caller should hold page_lock of all pages in the zspage
2137 * In here, we cannot use zspage meta data.
2138 */
2139static void async_free_zspage(struct work_struct *work)
2140{
2141 int i;
2142 struct size_class *class;
2143 unsigned int class_idx;
2144 enum fullness_group fullness;
2145 struct zspage *zspage, *tmp;
2146 LIST_HEAD(free_pages);
2147 struct zs_pool *pool = container_of(work, struct zs_pool,
2148 free_work);
2149
2150 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2151 class = pool->size_class[i];
2152 if (class->index != i)
2153 continue;
2154
2155 spin_lock(&class->lock);
2156 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2157 spin_unlock(&class->lock);
2158 }
2159
2160
2161 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2162 list_del(&zspage->list);
2163 lock_zspage(zspage);
2164
2165 get_zspage_mapping(zspage, &class_idx, &fullness);
2166 VM_BUG_ON(fullness != ZS_EMPTY);
2167 class = pool->size_class[class_idx];
2168 spin_lock(&class->lock);
2169 __free_zspage(pool, pool->size_class[class_idx], zspage);
2170 spin_unlock(&class->lock);
2171 }
2172};
2173
2174static void kick_deferred_free(struct zs_pool *pool)
2175{
2176 schedule_work(&pool->free_work);
2177}
2178
2179static void init_deferred_free(struct zs_pool *pool)
2180{
2181 INIT_WORK(&pool->free_work, async_free_zspage);
2182}
2183
2184static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2185{
2186 struct page *page = get_first_page(zspage);
2187
2188 do {
2189 WARN_ON(!trylock_page(page));
2190 __SetPageMovable(page, pool->inode->i_mapping);
2191 unlock_page(page);
2192 } while ((page = get_next_page(page)) != NULL);
2193}
2194#endif
2195
2196/*
2197 *
2198 * Based on the number of unused allocated objects calculate
2199 * and return the number of pages that we can free.
2200 */
2201static unsigned long zs_can_compact(struct size_class *class)
2202{
2203 unsigned long obj_wasted;
2204 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2205 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2206
2207 if (obj_allocated <= obj_used)
2208 return 0;
2209
2210 obj_wasted = obj_allocated - obj_used;
2211 obj_wasted /= class->objs_per_zspage;
2212
2213 return obj_wasted * class->pages_per_zspage;
2214}
2215
2216static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2217{
2218 struct zs_compact_control cc;
2219 struct zspage *src_zspage;
2220 struct zspage *dst_zspage = NULL;
2221
2222 spin_lock(&class->lock);
2223 while ((src_zspage = isolate_zspage(class, true))) {
2224
2225 if (!zs_can_compact(class))
2226 break;
2227
2228 cc.obj_idx = 0;
2229 cc.s_page = get_first_page(src_zspage);
2230
2231 while ((dst_zspage = isolate_zspage(class, false))) {
2232 cc.d_page = get_first_page(dst_zspage);
2233 /*
2234 * If there is no more space in dst_page, resched
2235 * and see if anyone had allocated another zspage.
2236 */
2237 if (!migrate_zspage(pool, class, &cc))
2238 break;
2239
2240 putback_zspage(class, dst_zspage);
2241 }
2242
2243 /* Stop if we couldn't find slot */
2244 if (dst_zspage == NULL)
2245 break;
2246
2247 putback_zspage(class, dst_zspage);
2248 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2249 free_zspage(pool, class, src_zspage);
2250 pool->stats.pages_compacted += class->pages_per_zspage;
2251 }
2252 spin_unlock(&class->lock);
2253 cond_resched();
2254 spin_lock(&class->lock);
2255 }
2256
2257 if (src_zspage)
2258 putback_zspage(class, src_zspage);
2259
2260 spin_unlock(&class->lock);
2261}
2262
2263unsigned long zs_compact(struct zs_pool *pool)
2264{
2265 int i;
2266 struct size_class *class;
2267
2268 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2269 class = pool->size_class[i];
2270 if (!class)
2271 continue;
2272 if (class->index != i)
2273 continue;
2274 __zs_compact(pool, class);
2275 }
2276
2277 return pool->stats.pages_compacted;
2278}
2279EXPORT_SYMBOL_GPL(zs_compact);
2280
2281void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2282{
2283 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2284}
2285EXPORT_SYMBOL_GPL(zs_pool_stats);
2286
2287static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2288 struct shrink_control *sc)
2289{
2290 unsigned long pages_freed;
2291 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2292 shrinker);
2293
2294 pages_freed = pool->stats.pages_compacted;
2295 /*
2296 * Compact classes and calculate compaction delta.
2297 * Can run concurrently with a manually triggered
2298 * (by user) compaction.
2299 */
2300 pages_freed = zs_compact(pool) - pages_freed;
2301
2302 return pages_freed ? pages_freed : SHRINK_STOP;
2303}
2304
2305static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2306 struct shrink_control *sc)
2307{
2308 int i;
2309 struct size_class *class;
2310 unsigned long pages_to_free = 0;
2311 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2312 shrinker);
2313
2314 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2315 class = pool->size_class[i];
2316 if (!class)
2317 continue;
2318 if (class->index != i)
2319 continue;
2320
2321 pages_to_free += zs_can_compact(class);
2322 }
2323
2324 return pages_to_free;
2325}
2326
2327static void zs_unregister_shrinker(struct zs_pool *pool)
2328{
2329 unregister_shrinker(&pool->shrinker);
2330}
2331
2332static int zs_register_shrinker(struct zs_pool *pool)
2333{
2334 pool->shrinker.scan_objects = zs_shrinker_scan;
2335 pool->shrinker.count_objects = zs_shrinker_count;
2336 pool->shrinker.batch = 0;
2337 pool->shrinker.seeks = DEFAULT_SEEKS;
2338
2339 return register_shrinker(&pool->shrinker);
2340}
2341
2342/**
2343 * zs_create_pool - Creates an allocation pool to work from.
2344 * @name: pool name to be created
2345 *
2346 * This function must be called before anything when using
2347 * the zsmalloc allocator.
2348 *
2349 * On success, a pointer to the newly created pool is returned,
2350 * otherwise NULL.
2351 */
2352struct zs_pool *zs_create_pool(const char *name)
2353{
2354 int i;
2355 struct zs_pool *pool;
2356 struct size_class *prev_class = NULL;
2357
2358 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2359 if (!pool)
2360 return NULL;
2361
2362 init_deferred_free(pool);
2363
2364 pool->name = kstrdup(name, GFP_KERNEL);
2365 if (!pool->name)
2366 goto err;
2367
2368 if (create_cache(pool))
2369 goto err;
2370
2371 /*
2372 * Iterate reversely, because, size of size_class that we want to use
2373 * for merging should be larger or equal to current size.
2374 */
2375 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2376 int size;
2377 int pages_per_zspage;
2378 int objs_per_zspage;
2379 struct size_class *class;
2380 int fullness = 0;
2381
2382 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2383 if (size > ZS_MAX_ALLOC_SIZE)
2384 size = ZS_MAX_ALLOC_SIZE;
2385 pages_per_zspage = get_pages_per_zspage(size);
2386 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2387
2388 /*
2389 * We iterate from biggest down to smallest classes,
2390 * so huge_class_size holds the size of the first huge
2391 * class. Any object bigger than or equal to that will
2392 * endup in the huge class.
2393 */
2394 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2395 !huge_class_size) {
2396 huge_class_size = size;
2397 /*
2398 * The object uses ZS_HANDLE_SIZE bytes to store the
2399 * handle. We need to subtract it, because zs_malloc()
2400 * unconditionally adds handle size before it performs
2401 * size class search - so object may be smaller than
2402 * huge class size, yet it still can end up in the huge
2403 * class because it grows by ZS_HANDLE_SIZE extra bytes
2404 * right before class lookup.
2405 */
2406 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2407 }
2408
2409 /*
2410 * size_class is used for normal zsmalloc operation such
2411 * as alloc/free for that size. Although it is natural that we
2412 * have one size_class for each size, there is a chance that we
2413 * can get more memory utilization if we use one size_class for
2414 * many different sizes whose size_class have same
2415 * characteristics. So, we makes size_class point to
2416 * previous size_class if possible.
2417 */
2418 if (prev_class) {
2419 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2420 pool->size_class[i] = prev_class;
2421 continue;
2422 }
2423 }
2424
2425 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2426 if (!class)
2427 goto err;
2428
2429 class->size = size;
2430 class->index = i;
2431 class->pages_per_zspage = pages_per_zspage;
2432 class->objs_per_zspage = objs_per_zspage;
2433 spin_lock_init(&class->lock);
2434 pool->size_class[i] = class;
2435 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2436 fullness++)
2437 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2438
2439 prev_class = class;
2440 }
2441
2442 /* debug only, don't abort if it fails */
2443 zs_pool_stat_create(pool, name);
2444
2445 if (zs_register_migration(pool))
2446 goto err;
2447
2448 /*
2449 * Not critical since shrinker is only used to trigger internal
2450 * defragmentation of the pool which is pretty optional thing. If
2451 * registration fails we still can use the pool normally and user can
2452 * trigger compaction manually. Thus, ignore return code.
2453 */
2454 zs_register_shrinker(pool);
2455
2456 return pool;
2457
2458err:
2459 zs_destroy_pool(pool);
2460 return NULL;
2461}
2462EXPORT_SYMBOL_GPL(zs_create_pool);
2463
2464void zs_destroy_pool(struct zs_pool *pool)
2465{
2466 int i;
2467
2468 zs_unregister_shrinker(pool);
2469 zs_unregister_migration(pool);
2470 zs_pool_stat_destroy(pool);
2471
2472 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2473 int fg;
2474 struct size_class *class = pool->size_class[i];
2475
2476 if (!class)
2477 continue;
2478
2479 if (class->index != i)
2480 continue;
2481
2482 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2483 if (!list_empty(&class->fullness_list[fg])) {
2484 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2485 class->size, fg);
2486 }
2487 }
2488 kfree(class);
2489 }
2490
2491 destroy_cache(pool);
2492 kfree(pool->name);
2493 kfree(pool);
2494}
2495EXPORT_SYMBOL_GPL(zs_destroy_pool);
2496
2497static int __init zs_init(void)
2498{
2499 int ret;
2500
2501 ret = zsmalloc_mount();
2502 if (ret)
2503 goto out;
2504
2505 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2506 zs_cpu_prepare, zs_cpu_dead);
2507 if (ret)
2508 goto hp_setup_fail;
2509
2510#ifdef CONFIG_ZPOOL
2511 zpool_register_driver(&zs_zpool_driver);
2512#endif
2513
2514 zs_stat_init();
2515
2516 return 0;
2517
2518hp_setup_fail:
2519 zsmalloc_unmount();
2520out:
2521 return ret;
2522}
2523
2524static void __exit zs_exit(void)
2525{
2526#ifdef CONFIG_ZPOOL
2527 zpool_unregister_driver(&zs_zpool_driver);
2528#endif
2529 zsmalloc_unmount();
2530 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2531
2532 zs_stat_exit();
2533}
2534
2535module_init(zs_init);
2536module_exit(zs_exit);
2537
2538MODULE_LICENSE("Dual BSD/GPL");
2539MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
14/*
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->index: links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
23 * page->page_type: first object offset in a subpage of zspage
24 *
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_owner_priv_1: identifies the huge component page
28 *
29 */
30
31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33/*
34 * lock ordering:
35 * page_lock
36 * pool->lock
37 * zspage->lock
38 */
39
40#include <linux/module.h>
41#include <linux/kernel.h>
42#include <linux/sched.h>
43#include <linux/bitops.h>
44#include <linux/errno.h>
45#include <linux/highmem.h>
46#include <linux/string.h>
47#include <linux/slab.h>
48#include <linux/pgtable.h>
49#include <asm/tlbflush.h>
50#include <linux/cpumask.h>
51#include <linux/cpu.h>
52#include <linux/vmalloc.h>
53#include <linux/preempt.h>
54#include <linux/spinlock.h>
55#include <linux/shrinker.h>
56#include <linux/types.h>
57#include <linux/debugfs.h>
58#include <linux/zsmalloc.h>
59#include <linux/zpool.h>
60#include <linux/migrate.h>
61#include <linux/wait.h>
62#include <linux/pagemap.h>
63#include <linux/fs.h>
64#include <linux/local_lock.h>
65
66#define ZSPAGE_MAGIC 0x58
67
68/*
69 * This must be power of 2 and greater than or equal to sizeof(link_free).
70 * These two conditions ensure that any 'struct link_free' itself doesn't
71 * span more than 1 page which avoids complex case of mapping 2 pages simply
72 * to restore link_free pointer values.
73 */
74#define ZS_ALIGN 8
75
76/*
77 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
78 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
79 */
80#define ZS_MAX_ZSPAGE_ORDER 2
81#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
82
83#define ZS_HANDLE_SIZE (sizeof(unsigned long))
84
85/*
86 * Object location (<PFN>, <obj_idx>) is encoded as
87 * a single (unsigned long) handle value.
88 *
89 * Note that object index <obj_idx> starts from 0.
90 *
91 * This is made more complicated by various memory models and PAE.
92 */
93
94#ifndef MAX_POSSIBLE_PHYSMEM_BITS
95#ifdef MAX_PHYSMEM_BITS
96#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
97#else
98/*
99 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
100 * be PAGE_SHIFT
101 */
102#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
103#endif
104#endif
105
106#define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
107
108/*
109 * Head in allocated object should have OBJ_ALLOCATED_TAG
110 * to identify the object was allocated or not.
111 * It's okay to add the status bit in the least bit because
112 * header keeps handle which is 4byte-aligned address so we
113 * have room for two bit at least.
114 */
115#define OBJ_ALLOCATED_TAG 1
116
117#ifdef CONFIG_ZPOOL
118/*
119 * The second least-significant bit in the object's header identifies if the
120 * value stored at the header is a deferred handle from the last reclaim
121 * attempt.
122 *
123 * As noted above, this is valid because we have room for two bits.
124 */
125#define OBJ_DEFERRED_HANDLE_TAG 2
126#define OBJ_TAG_BITS 2
127#define OBJ_TAG_MASK (OBJ_ALLOCATED_TAG | OBJ_DEFERRED_HANDLE_TAG)
128#else
129#define OBJ_TAG_BITS 1
130#define OBJ_TAG_MASK OBJ_ALLOCATED_TAG
131#endif /* CONFIG_ZPOOL */
132
133#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
134#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
135
136#define HUGE_BITS 1
137#define FULLNESS_BITS 2
138#define CLASS_BITS 8
139#define ISOLATED_BITS 3
140#define MAGIC_VAL_BITS 8
141
142#define MAX(a, b) ((a) >= (b) ? (a) : (b))
143/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
144#define ZS_MIN_ALLOC_SIZE \
145 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
146/* each chunk includes extra space to keep handle */
147#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
148
149/*
150 * On systems with 4K page size, this gives 255 size classes! There is a
151 * trader-off here:
152 * - Large number of size classes is potentially wasteful as free page are
153 * spread across these classes
154 * - Small number of size classes causes large internal fragmentation
155 * - Probably its better to use specific size classes (empirically
156 * determined). NOTE: all those class sizes must be set as multiple of
157 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
158 *
159 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
160 * (reason above)
161 */
162#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
163#define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
164 ZS_SIZE_CLASS_DELTA) + 1)
165
166enum fullness_group {
167 ZS_EMPTY,
168 ZS_ALMOST_EMPTY,
169 ZS_ALMOST_FULL,
170 ZS_FULL,
171 NR_ZS_FULLNESS,
172};
173
174enum class_stat_type {
175 CLASS_EMPTY,
176 CLASS_ALMOST_EMPTY,
177 CLASS_ALMOST_FULL,
178 CLASS_FULL,
179 OBJ_ALLOCATED,
180 OBJ_USED,
181 NR_ZS_STAT_TYPE,
182};
183
184struct zs_size_stat {
185 unsigned long objs[NR_ZS_STAT_TYPE];
186};
187
188#ifdef CONFIG_ZSMALLOC_STAT
189static struct dentry *zs_stat_root;
190#endif
191
192/*
193 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
194 * n <= N / f, where
195 * n = number of allocated objects
196 * N = total number of objects zspage can store
197 * f = fullness_threshold_frac
198 *
199 * Similarly, we assign zspage to:
200 * ZS_ALMOST_FULL when n > N / f
201 * ZS_EMPTY when n == 0
202 * ZS_FULL when n == N
203 *
204 * (see: fix_fullness_group())
205 */
206static const int fullness_threshold_frac = 4;
207static size_t huge_class_size;
208
209struct size_class {
210 struct list_head fullness_list[NR_ZS_FULLNESS];
211 /*
212 * Size of objects stored in this class. Must be multiple
213 * of ZS_ALIGN.
214 */
215 int size;
216 int objs_per_zspage;
217 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
218 int pages_per_zspage;
219
220 unsigned int index;
221 struct zs_size_stat stats;
222};
223
224/*
225 * Placed within free objects to form a singly linked list.
226 * For every zspage, zspage->freeobj gives head of this list.
227 *
228 * This must be power of 2 and less than or equal to ZS_ALIGN
229 */
230struct link_free {
231 union {
232 /*
233 * Free object index;
234 * It's valid for non-allocated object
235 */
236 unsigned long next;
237 /*
238 * Handle of allocated object.
239 */
240 unsigned long handle;
241#ifdef CONFIG_ZPOOL
242 /*
243 * Deferred handle of a reclaimed object.
244 */
245 unsigned long deferred_handle;
246#endif
247 };
248};
249
250struct zs_pool {
251 const char *name;
252
253 struct size_class *size_class[ZS_SIZE_CLASSES];
254 struct kmem_cache *handle_cachep;
255 struct kmem_cache *zspage_cachep;
256
257 atomic_long_t pages_allocated;
258
259 struct zs_pool_stats stats;
260
261 /* Compact classes */
262 struct shrinker shrinker;
263
264#ifdef CONFIG_ZPOOL
265 /* List tracking the zspages in LRU order by most recently added object */
266 struct list_head lru;
267 struct zpool *zpool;
268 const struct zpool_ops *zpool_ops;
269#endif
270
271#ifdef CONFIG_ZSMALLOC_STAT
272 struct dentry *stat_dentry;
273#endif
274#ifdef CONFIG_COMPACTION
275 struct work_struct free_work;
276#endif
277 spinlock_t lock;
278};
279
280struct zspage {
281 struct {
282 unsigned int huge:HUGE_BITS;
283 unsigned int fullness:FULLNESS_BITS;
284 unsigned int class:CLASS_BITS + 1;
285 unsigned int isolated:ISOLATED_BITS;
286 unsigned int magic:MAGIC_VAL_BITS;
287 };
288 unsigned int inuse;
289 unsigned int freeobj;
290 struct page *first_page;
291 struct list_head list; /* fullness list */
292
293#ifdef CONFIG_ZPOOL
294 /* links the zspage to the lru list in the pool */
295 struct list_head lru;
296 bool under_reclaim;
297#endif
298
299 struct zs_pool *pool;
300 rwlock_t lock;
301};
302
303struct mapping_area {
304 local_lock_t lock;
305 char *vm_buf; /* copy buffer for objects that span pages */
306 char *vm_addr; /* address of kmap_atomic()'ed pages */
307 enum zs_mapmode vm_mm; /* mapping mode */
308};
309
310/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
311static void SetZsHugePage(struct zspage *zspage)
312{
313 zspage->huge = 1;
314}
315
316static bool ZsHugePage(struct zspage *zspage)
317{
318 return zspage->huge;
319}
320
321static void migrate_lock_init(struct zspage *zspage);
322static void migrate_read_lock(struct zspage *zspage);
323static void migrate_read_unlock(struct zspage *zspage);
324
325#ifdef CONFIG_COMPACTION
326static void migrate_write_lock(struct zspage *zspage);
327static void migrate_write_lock_nested(struct zspage *zspage);
328static void migrate_write_unlock(struct zspage *zspage);
329static void kick_deferred_free(struct zs_pool *pool);
330static void init_deferred_free(struct zs_pool *pool);
331static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
332#else
333static void migrate_write_lock(struct zspage *zspage) {}
334static void migrate_write_lock_nested(struct zspage *zspage) {}
335static void migrate_write_unlock(struct zspage *zspage) {}
336static void kick_deferred_free(struct zs_pool *pool) {}
337static void init_deferred_free(struct zs_pool *pool) {}
338static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
339#endif
340
341static int create_cache(struct zs_pool *pool)
342{
343 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
344 0, 0, NULL);
345 if (!pool->handle_cachep)
346 return 1;
347
348 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
349 0, 0, NULL);
350 if (!pool->zspage_cachep) {
351 kmem_cache_destroy(pool->handle_cachep);
352 pool->handle_cachep = NULL;
353 return 1;
354 }
355
356 return 0;
357}
358
359static void destroy_cache(struct zs_pool *pool)
360{
361 kmem_cache_destroy(pool->handle_cachep);
362 kmem_cache_destroy(pool->zspage_cachep);
363}
364
365static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
366{
367 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
368 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
369}
370
371static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
372{
373 kmem_cache_free(pool->handle_cachep, (void *)handle);
374}
375
376static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
377{
378 return kmem_cache_zalloc(pool->zspage_cachep,
379 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
380}
381
382static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
383{
384 kmem_cache_free(pool->zspage_cachep, zspage);
385}
386
387/* pool->lock(which owns the handle) synchronizes races */
388static void record_obj(unsigned long handle, unsigned long obj)
389{
390 *(unsigned long *)handle = obj;
391}
392
393/* zpool driver */
394
395#ifdef CONFIG_ZPOOL
396
397static void *zs_zpool_create(const char *name, gfp_t gfp,
398 const struct zpool_ops *zpool_ops,
399 struct zpool *zpool)
400{
401 /*
402 * Ignore global gfp flags: zs_malloc() may be invoked from
403 * different contexts and its caller must provide a valid
404 * gfp mask.
405 */
406 struct zs_pool *pool = zs_create_pool(name);
407
408 if (pool) {
409 pool->zpool = zpool;
410 pool->zpool_ops = zpool_ops;
411 }
412
413 return pool;
414}
415
416static void zs_zpool_destroy(void *pool)
417{
418 zs_destroy_pool(pool);
419}
420
421static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
422 unsigned long *handle)
423{
424 *handle = zs_malloc(pool, size, gfp);
425
426 if (IS_ERR_VALUE(*handle))
427 return PTR_ERR((void *)*handle);
428 return 0;
429}
430static void zs_zpool_free(void *pool, unsigned long handle)
431{
432 zs_free(pool, handle);
433}
434
435static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries);
436
437static int zs_zpool_shrink(void *pool, unsigned int pages,
438 unsigned int *reclaimed)
439{
440 unsigned int total = 0;
441 int ret = -EINVAL;
442
443 while (total < pages) {
444 ret = zs_reclaim_page(pool, 8);
445 if (ret < 0)
446 break;
447 total++;
448 }
449
450 if (reclaimed)
451 *reclaimed = total;
452
453 return ret;
454}
455
456static void *zs_zpool_map(void *pool, unsigned long handle,
457 enum zpool_mapmode mm)
458{
459 enum zs_mapmode zs_mm;
460
461 switch (mm) {
462 case ZPOOL_MM_RO:
463 zs_mm = ZS_MM_RO;
464 break;
465 case ZPOOL_MM_WO:
466 zs_mm = ZS_MM_WO;
467 break;
468 case ZPOOL_MM_RW:
469 default:
470 zs_mm = ZS_MM_RW;
471 break;
472 }
473
474 return zs_map_object(pool, handle, zs_mm);
475}
476static void zs_zpool_unmap(void *pool, unsigned long handle)
477{
478 zs_unmap_object(pool, handle);
479}
480
481static u64 zs_zpool_total_size(void *pool)
482{
483 return zs_get_total_pages(pool) << PAGE_SHIFT;
484}
485
486static struct zpool_driver zs_zpool_driver = {
487 .type = "zsmalloc",
488 .owner = THIS_MODULE,
489 .create = zs_zpool_create,
490 .destroy = zs_zpool_destroy,
491 .malloc_support_movable = true,
492 .malloc = zs_zpool_malloc,
493 .free = zs_zpool_free,
494 .shrink = zs_zpool_shrink,
495 .map = zs_zpool_map,
496 .unmap = zs_zpool_unmap,
497 .total_size = zs_zpool_total_size,
498};
499
500MODULE_ALIAS("zpool-zsmalloc");
501#endif /* CONFIG_ZPOOL */
502
503/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
504static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
505 .lock = INIT_LOCAL_LOCK(lock),
506};
507
508static __maybe_unused int is_first_page(struct page *page)
509{
510 return PagePrivate(page);
511}
512
513/* Protected by pool->lock */
514static inline int get_zspage_inuse(struct zspage *zspage)
515{
516 return zspage->inuse;
517}
518
519
520static inline void mod_zspage_inuse(struct zspage *zspage, int val)
521{
522 zspage->inuse += val;
523}
524
525static inline struct page *get_first_page(struct zspage *zspage)
526{
527 struct page *first_page = zspage->first_page;
528
529 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
530 return first_page;
531}
532
533static inline unsigned int get_first_obj_offset(struct page *page)
534{
535 return page->page_type;
536}
537
538static inline void set_first_obj_offset(struct page *page, unsigned int offset)
539{
540 page->page_type = offset;
541}
542
543static inline unsigned int get_freeobj(struct zspage *zspage)
544{
545 return zspage->freeobj;
546}
547
548static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
549{
550 zspage->freeobj = obj;
551}
552
553static void get_zspage_mapping(struct zspage *zspage,
554 unsigned int *class_idx,
555 enum fullness_group *fullness)
556{
557 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
558
559 *fullness = zspage->fullness;
560 *class_idx = zspage->class;
561}
562
563static struct size_class *zspage_class(struct zs_pool *pool,
564 struct zspage *zspage)
565{
566 return pool->size_class[zspage->class];
567}
568
569static void set_zspage_mapping(struct zspage *zspage,
570 unsigned int class_idx,
571 enum fullness_group fullness)
572{
573 zspage->class = class_idx;
574 zspage->fullness = fullness;
575}
576
577/*
578 * zsmalloc divides the pool into various size classes where each
579 * class maintains a list of zspages where each zspage is divided
580 * into equal sized chunks. Each allocation falls into one of these
581 * classes depending on its size. This function returns index of the
582 * size class which has chunk size big enough to hold the given size.
583 */
584static int get_size_class_index(int size)
585{
586 int idx = 0;
587
588 if (likely(size > ZS_MIN_ALLOC_SIZE))
589 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
590 ZS_SIZE_CLASS_DELTA);
591
592 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
593}
594
595/* type can be of enum type class_stat_type or fullness_group */
596static inline void class_stat_inc(struct size_class *class,
597 int type, unsigned long cnt)
598{
599 class->stats.objs[type] += cnt;
600}
601
602/* type can be of enum type class_stat_type or fullness_group */
603static inline void class_stat_dec(struct size_class *class,
604 int type, unsigned long cnt)
605{
606 class->stats.objs[type] -= cnt;
607}
608
609/* type can be of enum type class_stat_type or fullness_group */
610static inline unsigned long zs_stat_get(struct size_class *class,
611 int type)
612{
613 return class->stats.objs[type];
614}
615
616#ifdef CONFIG_ZSMALLOC_STAT
617
618static void __init zs_stat_init(void)
619{
620 if (!debugfs_initialized()) {
621 pr_warn("debugfs not available, stat dir not created\n");
622 return;
623 }
624
625 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
626}
627
628static void __exit zs_stat_exit(void)
629{
630 debugfs_remove_recursive(zs_stat_root);
631}
632
633static unsigned long zs_can_compact(struct size_class *class);
634
635static int zs_stats_size_show(struct seq_file *s, void *v)
636{
637 int i;
638 struct zs_pool *pool = s->private;
639 struct size_class *class;
640 int objs_per_zspage;
641 unsigned long class_almost_full, class_almost_empty;
642 unsigned long obj_allocated, obj_used, pages_used, freeable;
643 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
644 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
645 unsigned long total_freeable = 0;
646
647 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
648 "class", "size", "almost_full", "almost_empty",
649 "obj_allocated", "obj_used", "pages_used",
650 "pages_per_zspage", "freeable");
651
652 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
653 class = pool->size_class[i];
654
655 if (class->index != i)
656 continue;
657
658 spin_lock(&pool->lock);
659 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
660 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
661 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
662 obj_used = zs_stat_get(class, OBJ_USED);
663 freeable = zs_can_compact(class);
664 spin_unlock(&pool->lock);
665
666 objs_per_zspage = class->objs_per_zspage;
667 pages_used = obj_allocated / objs_per_zspage *
668 class->pages_per_zspage;
669
670 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
671 " %10lu %10lu %16d %8lu\n",
672 i, class->size, class_almost_full, class_almost_empty,
673 obj_allocated, obj_used, pages_used,
674 class->pages_per_zspage, freeable);
675
676 total_class_almost_full += class_almost_full;
677 total_class_almost_empty += class_almost_empty;
678 total_objs += obj_allocated;
679 total_used_objs += obj_used;
680 total_pages += pages_used;
681 total_freeable += freeable;
682 }
683
684 seq_puts(s, "\n");
685 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
686 "Total", "", total_class_almost_full,
687 total_class_almost_empty, total_objs,
688 total_used_objs, total_pages, "", total_freeable);
689
690 return 0;
691}
692DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
693
694static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
695{
696 if (!zs_stat_root) {
697 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
698 return;
699 }
700
701 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
702
703 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
704 &zs_stats_size_fops);
705}
706
707static void zs_pool_stat_destroy(struct zs_pool *pool)
708{
709 debugfs_remove_recursive(pool->stat_dentry);
710}
711
712#else /* CONFIG_ZSMALLOC_STAT */
713static void __init zs_stat_init(void)
714{
715}
716
717static void __exit zs_stat_exit(void)
718{
719}
720
721static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
722{
723}
724
725static inline void zs_pool_stat_destroy(struct zs_pool *pool)
726{
727}
728#endif
729
730
731/*
732 * For each size class, zspages are divided into different groups
733 * depending on how "full" they are. This was done so that we could
734 * easily find empty or nearly empty zspages when we try to shrink
735 * the pool (not yet implemented). This function returns fullness
736 * status of the given page.
737 */
738static enum fullness_group get_fullness_group(struct size_class *class,
739 struct zspage *zspage)
740{
741 int inuse, objs_per_zspage;
742 enum fullness_group fg;
743
744 inuse = get_zspage_inuse(zspage);
745 objs_per_zspage = class->objs_per_zspage;
746
747 if (inuse == 0)
748 fg = ZS_EMPTY;
749 else if (inuse == objs_per_zspage)
750 fg = ZS_FULL;
751 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
752 fg = ZS_ALMOST_EMPTY;
753 else
754 fg = ZS_ALMOST_FULL;
755
756 return fg;
757}
758
759/*
760 * Each size class maintains various freelists and zspages are assigned
761 * to one of these freelists based on the number of live objects they
762 * have. This functions inserts the given zspage into the freelist
763 * identified by <class, fullness_group>.
764 */
765static void insert_zspage(struct size_class *class,
766 struct zspage *zspage,
767 enum fullness_group fullness)
768{
769 struct zspage *head;
770
771 class_stat_inc(class, fullness, 1);
772 head = list_first_entry_or_null(&class->fullness_list[fullness],
773 struct zspage, list);
774 /*
775 * We want to see more ZS_FULL pages and less almost empty/full.
776 * Put pages with higher ->inuse first.
777 */
778 if (head && get_zspage_inuse(zspage) < get_zspage_inuse(head))
779 list_add(&zspage->list, &head->list);
780 else
781 list_add(&zspage->list, &class->fullness_list[fullness]);
782}
783
784/*
785 * This function removes the given zspage from the freelist identified
786 * by <class, fullness_group>.
787 */
788static void remove_zspage(struct size_class *class,
789 struct zspage *zspage,
790 enum fullness_group fullness)
791{
792 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
793
794 list_del_init(&zspage->list);
795 class_stat_dec(class, fullness, 1);
796}
797
798/*
799 * Each size class maintains zspages in different fullness groups depending
800 * on the number of live objects they contain. When allocating or freeing
801 * objects, the fullness status of the page can change, say, from ALMOST_FULL
802 * to ALMOST_EMPTY when freeing an object. This function checks if such
803 * a status change has occurred for the given page and accordingly moves the
804 * page from the freelist of the old fullness group to that of the new
805 * fullness group.
806 */
807static enum fullness_group fix_fullness_group(struct size_class *class,
808 struct zspage *zspage)
809{
810 int class_idx;
811 enum fullness_group currfg, newfg;
812
813 get_zspage_mapping(zspage, &class_idx, &currfg);
814 newfg = get_fullness_group(class, zspage);
815 if (newfg == currfg)
816 goto out;
817
818 remove_zspage(class, zspage, currfg);
819 insert_zspage(class, zspage, newfg);
820 set_zspage_mapping(zspage, class_idx, newfg);
821out:
822 return newfg;
823}
824
825/*
826 * We have to decide on how many pages to link together
827 * to form a zspage for each size class. This is important
828 * to reduce wastage due to unusable space left at end of
829 * each zspage which is given as:
830 * wastage = Zp % class_size
831 * usage = Zp - wastage
832 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
833 *
834 * For example, for size class of 3/8 * PAGE_SIZE, we should
835 * link together 3 PAGE_SIZE sized pages to form a zspage
836 * since then we can perfectly fit in 8 such objects.
837 */
838static int get_pages_per_zspage(int class_size)
839{
840 int i, max_usedpc = 0;
841 /* zspage order which gives maximum used size per KB */
842 int max_usedpc_order = 1;
843
844 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
845 int zspage_size;
846 int waste, usedpc;
847
848 zspage_size = i * PAGE_SIZE;
849 waste = zspage_size % class_size;
850 usedpc = (zspage_size - waste) * 100 / zspage_size;
851
852 if (usedpc > max_usedpc) {
853 max_usedpc = usedpc;
854 max_usedpc_order = i;
855 }
856 }
857
858 return max_usedpc_order;
859}
860
861static struct zspage *get_zspage(struct page *page)
862{
863 struct zspage *zspage = (struct zspage *)page_private(page);
864
865 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
866 return zspage;
867}
868
869static struct page *get_next_page(struct page *page)
870{
871 struct zspage *zspage = get_zspage(page);
872
873 if (unlikely(ZsHugePage(zspage)))
874 return NULL;
875
876 return (struct page *)page->index;
877}
878
879/**
880 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
881 * @obj: the encoded object value
882 * @page: page object resides in zspage
883 * @obj_idx: object index
884 */
885static void obj_to_location(unsigned long obj, struct page **page,
886 unsigned int *obj_idx)
887{
888 obj >>= OBJ_TAG_BITS;
889 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
890 *obj_idx = (obj & OBJ_INDEX_MASK);
891}
892
893static void obj_to_page(unsigned long obj, struct page **page)
894{
895 obj >>= OBJ_TAG_BITS;
896 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
897}
898
899/**
900 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
901 * @page: page object resides in zspage
902 * @obj_idx: object index
903 */
904static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
905{
906 unsigned long obj;
907
908 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
909 obj |= obj_idx & OBJ_INDEX_MASK;
910 obj <<= OBJ_TAG_BITS;
911
912 return obj;
913}
914
915static unsigned long handle_to_obj(unsigned long handle)
916{
917 return *(unsigned long *)handle;
918}
919
920static bool obj_tagged(struct page *page, void *obj, unsigned long *phandle,
921 int tag)
922{
923 unsigned long handle;
924 struct zspage *zspage = get_zspage(page);
925
926 if (unlikely(ZsHugePage(zspage))) {
927 VM_BUG_ON_PAGE(!is_first_page(page), page);
928 handle = page->index;
929 } else
930 handle = *(unsigned long *)obj;
931
932 if (!(handle & tag))
933 return false;
934
935 /* Clear all tags before returning the handle */
936 *phandle = handle & ~OBJ_TAG_MASK;
937 return true;
938}
939
940static inline bool obj_allocated(struct page *page, void *obj, unsigned long *phandle)
941{
942 return obj_tagged(page, obj, phandle, OBJ_ALLOCATED_TAG);
943}
944
945#ifdef CONFIG_ZPOOL
946static bool obj_stores_deferred_handle(struct page *page, void *obj,
947 unsigned long *phandle)
948{
949 return obj_tagged(page, obj, phandle, OBJ_DEFERRED_HANDLE_TAG);
950}
951#endif
952
953static void reset_page(struct page *page)
954{
955 __ClearPageMovable(page);
956 ClearPagePrivate(page);
957 set_page_private(page, 0);
958 page_mapcount_reset(page);
959 page->index = 0;
960}
961
962static int trylock_zspage(struct zspage *zspage)
963{
964 struct page *cursor, *fail;
965
966 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
967 get_next_page(cursor)) {
968 if (!trylock_page(cursor)) {
969 fail = cursor;
970 goto unlock;
971 }
972 }
973
974 return 1;
975unlock:
976 for (cursor = get_first_page(zspage); cursor != fail; cursor =
977 get_next_page(cursor))
978 unlock_page(cursor);
979
980 return 0;
981}
982
983#ifdef CONFIG_ZPOOL
984static unsigned long find_deferred_handle_obj(struct size_class *class,
985 struct page *page, int *obj_idx);
986
987/*
988 * Free all the deferred handles whose objects are freed in zs_free.
989 */
990static void free_handles(struct zs_pool *pool, struct size_class *class,
991 struct zspage *zspage)
992{
993 int obj_idx = 0;
994 struct page *page = get_first_page(zspage);
995 unsigned long handle;
996
997 while (1) {
998 handle = find_deferred_handle_obj(class, page, &obj_idx);
999 if (!handle) {
1000 page = get_next_page(page);
1001 if (!page)
1002 break;
1003 obj_idx = 0;
1004 continue;
1005 }
1006
1007 cache_free_handle(pool, handle);
1008 obj_idx++;
1009 }
1010}
1011#else
1012static inline void free_handles(struct zs_pool *pool, struct size_class *class,
1013 struct zspage *zspage) {}
1014#endif
1015
1016static void __free_zspage(struct zs_pool *pool, struct size_class *class,
1017 struct zspage *zspage)
1018{
1019 struct page *page, *next;
1020 enum fullness_group fg;
1021 unsigned int class_idx;
1022
1023 get_zspage_mapping(zspage, &class_idx, &fg);
1024
1025 assert_spin_locked(&pool->lock);
1026
1027 VM_BUG_ON(get_zspage_inuse(zspage));
1028 VM_BUG_ON(fg != ZS_EMPTY);
1029
1030 /* Free all deferred handles from zs_free */
1031 free_handles(pool, class, zspage);
1032
1033 next = page = get_first_page(zspage);
1034 do {
1035 VM_BUG_ON_PAGE(!PageLocked(page), page);
1036 next = get_next_page(page);
1037 reset_page(page);
1038 unlock_page(page);
1039 dec_zone_page_state(page, NR_ZSPAGES);
1040 put_page(page);
1041 page = next;
1042 } while (page != NULL);
1043
1044 cache_free_zspage(pool, zspage);
1045
1046 class_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
1047 atomic_long_sub(class->pages_per_zspage,
1048 &pool->pages_allocated);
1049}
1050
1051static void free_zspage(struct zs_pool *pool, struct size_class *class,
1052 struct zspage *zspage)
1053{
1054 VM_BUG_ON(get_zspage_inuse(zspage));
1055 VM_BUG_ON(list_empty(&zspage->list));
1056
1057 /*
1058 * Since zs_free couldn't be sleepable, this function cannot call
1059 * lock_page. The page locks trylock_zspage got will be released
1060 * by __free_zspage.
1061 */
1062 if (!trylock_zspage(zspage)) {
1063 kick_deferred_free(pool);
1064 return;
1065 }
1066
1067 remove_zspage(class, zspage, ZS_EMPTY);
1068#ifdef CONFIG_ZPOOL
1069 list_del(&zspage->lru);
1070#endif
1071 __free_zspage(pool, class, zspage);
1072}
1073
1074/* Initialize a newly allocated zspage */
1075static void init_zspage(struct size_class *class, struct zspage *zspage)
1076{
1077 unsigned int freeobj = 1;
1078 unsigned long off = 0;
1079 struct page *page = get_first_page(zspage);
1080
1081 while (page) {
1082 struct page *next_page;
1083 struct link_free *link;
1084 void *vaddr;
1085
1086 set_first_obj_offset(page, off);
1087
1088 vaddr = kmap_atomic(page);
1089 link = (struct link_free *)vaddr + off / sizeof(*link);
1090
1091 while ((off += class->size) < PAGE_SIZE) {
1092 link->next = freeobj++ << OBJ_TAG_BITS;
1093 link += class->size / sizeof(*link);
1094 }
1095
1096 /*
1097 * We now come to the last (full or partial) object on this
1098 * page, which must point to the first object on the next
1099 * page (if present)
1100 */
1101 next_page = get_next_page(page);
1102 if (next_page) {
1103 link->next = freeobj++ << OBJ_TAG_BITS;
1104 } else {
1105 /*
1106 * Reset OBJ_TAG_BITS bit to last link to tell
1107 * whether it's allocated object or not.
1108 */
1109 link->next = -1UL << OBJ_TAG_BITS;
1110 }
1111 kunmap_atomic(vaddr);
1112 page = next_page;
1113 off %= PAGE_SIZE;
1114 }
1115
1116#ifdef CONFIG_ZPOOL
1117 INIT_LIST_HEAD(&zspage->lru);
1118 zspage->under_reclaim = false;
1119#endif
1120
1121 set_freeobj(zspage, 0);
1122}
1123
1124static void create_page_chain(struct size_class *class, struct zspage *zspage,
1125 struct page *pages[])
1126{
1127 int i;
1128 struct page *page;
1129 struct page *prev_page = NULL;
1130 int nr_pages = class->pages_per_zspage;
1131
1132 /*
1133 * Allocate individual pages and link them together as:
1134 * 1. all pages are linked together using page->index
1135 * 2. each sub-page point to zspage using page->private
1136 *
1137 * we set PG_private to identify the first page (i.e. no other sub-page
1138 * has this flag set).
1139 */
1140 for (i = 0; i < nr_pages; i++) {
1141 page = pages[i];
1142 set_page_private(page, (unsigned long)zspage);
1143 page->index = 0;
1144 if (i == 0) {
1145 zspage->first_page = page;
1146 SetPagePrivate(page);
1147 if (unlikely(class->objs_per_zspage == 1 &&
1148 class->pages_per_zspage == 1))
1149 SetZsHugePage(zspage);
1150 } else {
1151 prev_page->index = (unsigned long)page;
1152 }
1153 prev_page = page;
1154 }
1155}
1156
1157/*
1158 * Allocate a zspage for the given size class
1159 */
1160static struct zspage *alloc_zspage(struct zs_pool *pool,
1161 struct size_class *class,
1162 gfp_t gfp)
1163{
1164 int i;
1165 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1166 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1167
1168 if (!zspage)
1169 return NULL;
1170
1171 zspage->magic = ZSPAGE_MAGIC;
1172 migrate_lock_init(zspage);
1173
1174 for (i = 0; i < class->pages_per_zspage; i++) {
1175 struct page *page;
1176
1177 page = alloc_page(gfp);
1178 if (!page) {
1179 while (--i >= 0) {
1180 dec_zone_page_state(pages[i], NR_ZSPAGES);
1181 __free_page(pages[i]);
1182 }
1183 cache_free_zspage(pool, zspage);
1184 return NULL;
1185 }
1186
1187 inc_zone_page_state(page, NR_ZSPAGES);
1188 pages[i] = page;
1189 }
1190
1191 create_page_chain(class, zspage, pages);
1192 init_zspage(class, zspage);
1193 zspage->pool = pool;
1194
1195 return zspage;
1196}
1197
1198static struct zspage *find_get_zspage(struct size_class *class)
1199{
1200 int i;
1201 struct zspage *zspage;
1202
1203 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1204 zspage = list_first_entry_or_null(&class->fullness_list[i],
1205 struct zspage, list);
1206 if (zspage)
1207 break;
1208 }
1209
1210 return zspage;
1211}
1212
1213static inline int __zs_cpu_up(struct mapping_area *area)
1214{
1215 /*
1216 * Make sure we don't leak memory if a cpu UP notification
1217 * and zs_init() race and both call zs_cpu_up() on the same cpu
1218 */
1219 if (area->vm_buf)
1220 return 0;
1221 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1222 if (!area->vm_buf)
1223 return -ENOMEM;
1224 return 0;
1225}
1226
1227static inline void __zs_cpu_down(struct mapping_area *area)
1228{
1229 kfree(area->vm_buf);
1230 area->vm_buf = NULL;
1231}
1232
1233static void *__zs_map_object(struct mapping_area *area,
1234 struct page *pages[2], int off, int size)
1235{
1236 int sizes[2];
1237 void *addr;
1238 char *buf = area->vm_buf;
1239
1240 /* disable page faults to match kmap_atomic() return conditions */
1241 pagefault_disable();
1242
1243 /* no read fastpath */
1244 if (area->vm_mm == ZS_MM_WO)
1245 goto out;
1246
1247 sizes[0] = PAGE_SIZE - off;
1248 sizes[1] = size - sizes[0];
1249
1250 /* copy object to per-cpu buffer */
1251 addr = kmap_atomic(pages[0]);
1252 memcpy(buf, addr + off, sizes[0]);
1253 kunmap_atomic(addr);
1254 addr = kmap_atomic(pages[1]);
1255 memcpy(buf + sizes[0], addr, sizes[1]);
1256 kunmap_atomic(addr);
1257out:
1258 return area->vm_buf;
1259}
1260
1261static void __zs_unmap_object(struct mapping_area *area,
1262 struct page *pages[2], int off, int size)
1263{
1264 int sizes[2];
1265 void *addr;
1266 char *buf;
1267
1268 /* no write fastpath */
1269 if (area->vm_mm == ZS_MM_RO)
1270 goto out;
1271
1272 buf = area->vm_buf;
1273 buf = buf + ZS_HANDLE_SIZE;
1274 size -= ZS_HANDLE_SIZE;
1275 off += ZS_HANDLE_SIZE;
1276
1277 sizes[0] = PAGE_SIZE - off;
1278 sizes[1] = size - sizes[0];
1279
1280 /* copy per-cpu buffer to object */
1281 addr = kmap_atomic(pages[0]);
1282 memcpy(addr + off, buf, sizes[0]);
1283 kunmap_atomic(addr);
1284 addr = kmap_atomic(pages[1]);
1285 memcpy(addr, buf + sizes[0], sizes[1]);
1286 kunmap_atomic(addr);
1287
1288out:
1289 /* enable page faults to match kunmap_atomic() return conditions */
1290 pagefault_enable();
1291}
1292
1293static int zs_cpu_prepare(unsigned int cpu)
1294{
1295 struct mapping_area *area;
1296
1297 area = &per_cpu(zs_map_area, cpu);
1298 return __zs_cpu_up(area);
1299}
1300
1301static int zs_cpu_dead(unsigned int cpu)
1302{
1303 struct mapping_area *area;
1304
1305 area = &per_cpu(zs_map_area, cpu);
1306 __zs_cpu_down(area);
1307 return 0;
1308}
1309
1310static bool can_merge(struct size_class *prev, int pages_per_zspage,
1311 int objs_per_zspage)
1312{
1313 if (prev->pages_per_zspage == pages_per_zspage &&
1314 prev->objs_per_zspage == objs_per_zspage)
1315 return true;
1316
1317 return false;
1318}
1319
1320static bool zspage_full(struct size_class *class, struct zspage *zspage)
1321{
1322 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1323}
1324
1325/**
1326 * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1327 * that hold objects of the provided size.
1328 * @pool: zsmalloc pool to use
1329 * @size: object size
1330 *
1331 * Context: Any context.
1332 *
1333 * Return: the index of the zsmalloc &size_class that hold objects of the
1334 * provided size.
1335 */
1336unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1337{
1338 struct size_class *class;
1339
1340 class = pool->size_class[get_size_class_index(size)];
1341
1342 return class->index;
1343}
1344EXPORT_SYMBOL_GPL(zs_lookup_class_index);
1345
1346unsigned long zs_get_total_pages(struct zs_pool *pool)
1347{
1348 return atomic_long_read(&pool->pages_allocated);
1349}
1350EXPORT_SYMBOL_GPL(zs_get_total_pages);
1351
1352/**
1353 * zs_map_object - get address of allocated object from handle.
1354 * @pool: pool from which the object was allocated
1355 * @handle: handle returned from zs_malloc
1356 * @mm: mapping mode to use
1357 *
1358 * Before using an object allocated from zs_malloc, it must be mapped using
1359 * this function. When done with the object, it must be unmapped using
1360 * zs_unmap_object.
1361 *
1362 * Only one object can be mapped per cpu at a time. There is no protection
1363 * against nested mappings.
1364 *
1365 * This function returns with preemption and page faults disabled.
1366 */
1367void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1368 enum zs_mapmode mm)
1369{
1370 struct zspage *zspage;
1371 struct page *page;
1372 unsigned long obj, off;
1373 unsigned int obj_idx;
1374
1375 struct size_class *class;
1376 struct mapping_area *area;
1377 struct page *pages[2];
1378 void *ret;
1379
1380 /*
1381 * Because we use per-cpu mapping areas shared among the
1382 * pools/users, we can't allow mapping in interrupt context
1383 * because it can corrupt another users mappings.
1384 */
1385 BUG_ON(in_interrupt());
1386
1387 /* It guarantees it can get zspage from handle safely */
1388 spin_lock(&pool->lock);
1389 obj = handle_to_obj(handle);
1390 obj_to_location(obj, &page, &obj_idx);
1391 zspage = get_zspage(page);
1392
1393#ifdef CONFIG_ZPOOL
1394 /*
1395 * Move the zspage to front of pool's LRU.
1396 *
1397 * Note that this is swap-specific, so by definition there are no ongoing
1398 * accesses to the memory while the page is swapped out that would make
1399 * it "hot". A new entry is hot, then ages to the tail until it gets either
1400 * written back or swaps back in.
1401 *
1402 * Furthermore, map is also called during writeback. We must not put an
1403 * isolated page on the LRU mid-reclaim.
1404 *
1405 * As a result, only update the LRU when the page is mapped for write
1406 * when it's first instantiated.
1407 *
1408 * This is a deviation from the other backends, which perform this update
1409 * in the allocation function (zbud_alloc, z3fold_alloc).
1410 */
1411 if (mm == ZS_MM_WO) {
1412 if (!list_empty(&zspage->lru))
1413 list_del(&zspage->lru);
1414 list_add(&zspage->lru, &pool->lru);
1415 }
1416#endif
1417
1418 /*
1419 * migration cannot move any zpages in this zspage. Here, pool->lock
1420 * is too heavy since callers would take some time until they calls
1421 * zs_unmap_object API so delegate the locking from class to zspage
1422 * which is smaller granularity.
1423 */
1424 migrate_read_lock(zspage);
1425 spin_unlock(&pool->lock);
1426
1427 class = zspage_class(pool, zspage);
1428 off = (class->size * obj_idx) & ~PAGE_MASK;
1429
1430 local_lock(&zs_map_area.lock);
1431 area = this_cpu_ptr(&zs_map_area);
1432 area->vm_mm = mm;
1433 if (off + class->size <= PAGE_SIZE) {
1434 /* this object is contained entirely within a page */
1435 area->vm_addr = kmap_atomic(page);
1436 ret = area->vm_addr + off;
1437 goto out;
1438 }
1439
1440 /* this object spans two pages */
1441 pages[0] = page;
1442 pages[1] = get_next_page(page);
1443 BUG_ON(!pages[1]);
1444
1445 ret = __zs_map_object(area, pages, off, class->size);
1446out:
1447 if (likely(!ZsHugePage(zspage)))
1448 ret += ZS_HANDLE_SIZE;
1449
1450 return ret;
1451}
1452EXPORT_SYMBOL_GPL(zs_map_object);
1453
1454void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1455{
1456 struct zspage *zspage;
1457 struct page *page;
1458 unsigned long obj, off;
1459 unsigned int obj_idx;
1460
1461 struct size_class *class;
1462 struct mapping_area *area;
1463
1464 obj = handle_to_obj(handle);
1465 obj_to_location(obj, &page, &obj_idx);
1466 zspage = get_zspage(page);
1467 class = zspage_class(pool, zspage);
1468 off = (class->size * obj_idx) & ~PAGE_MASK;
1469
1470 area = this_cpu_ptr(&zs_map_area);
1471 if (off + class->size <= PAGE_SIZE)
1472 kunmap_atomic(area->vm_addr);
1473 else {
1474 struct page *pages[2];
1475
1476 pages[0] = page;
1477 pages[1] = get_next_page(page);
1478 BUG_ON(!pages[1]);
1479
1480 __zs_unmap_object(area, pages, off, class->size);
1481 }
1482 local_unlock(&zs_map_area.lock);
1483
1484 migrate_read_unlock(zspage);
1485}
1486EXPORT_SYMBOL_GPL(zs_unmap_object);
1487
1488/**
1489 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1490 * zsmalloc &size_class.
1491 * @pool: zsmalloc pool to use
1492 *
1493 * The function returns the size of the first huge class - any object of equal
1494 * or bigger size will be stored in zspage consisting of a single physical
1495 * page.
1496 *
1497 * Context: Any context.
1498 *
1499 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1500 */
1501size_t zs_huge_class_size(struct zs_pool *pool)
1502{
1503 return huge_class_size;
1504}
1505EXPORT_SYMBOL_GPL(zs_huge_class_size);
1506
1507static unsigned long obj_malloc(struct zs_pool *pool,
1508 struct zspage *zspage, unsigned long handle)
1509{
1510 int i, nr_page, offset;
1511 unsigned long obj;
1512 struct link_free *link;
1513 struct size_class *class;
1514
1515 struct page *m_page;
1516 unsigned long m_offset;
1517 void *vaddr;
1518
1519 class = pool->size_class[zspage->class];
1520 handle |= OBJ_ALLOCATED_TAG;
1521 obj = get_freeobj(zspage);
1522
1523 offset = obj * class->size;
1524 nr_page = offset >> PAGE_SHIFT;
1525 m_offset = offset & ~PAGE_MASK;
1526 m_page = get_first_page(zspage);
1527
1528 for (i = 0; i < nr_page; i++)
1529 m_page = get_next_page(m_page);
1530
1531 vaddr = kmap_atomic(m_page);
1532 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1533 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1534 if (likely(!ZsHugePage(zspage)))
1535 /* record handle in the header of allocated chunk */
1536 link->handle = handle;
1537 else
1538 /* record handle to page->index */
1539 zspage->first_page->index = handle;
1540
1541 kunmap_atomic(vaddr);
1542 mod_zspage_inuse(zspage, 1);
1543
1544 obj = location_to_obj(m_page, obj);
1545
1546 return obj;
1547}
1548
1549
1550/**
1551 * zs_malloc - Allocate block of given size from pool.
1552 * @pool: pool to allocate from
1553 * @size: size of block to allocate
1554 * @gfp: gfp flags when allocating object
1555 *
1556 * On success, handle to the allocated object is returned,
1557 * otherwise an ERR_PTR().
1558 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1559 */
1560unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1561{
1562 unsigned long handle, obj;
1563 struct size_class *class;
1564 enum fullness_group newfg;
1565 struct zspage *zspage;
1566
1567 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1568 return (unsigned long)ERR_PTR(-EINVAL);
1569
1570 handle = cache_alloc_handle(pool, gfp);
1571 if (!handle)
1572 return (unsigned long)ERR_PTR(-ENOMEM);
1573
1574 /* extra space in chunk to keep the handle */
1575 size += ZS_HANDLE_SIZE;
1576 class = pool->size_class[get_size_class_index(size)];
1577
1578 /* pool->lock effectively protects the zpage migration */
1579 spin_lock(&pool->lock);
1580 zspage = find_get_zspage(class);
1581 if (likely(zspage)) {
1582 obj = obj_malloc(pool, zspage, handle);
1583 /* Now move the zspage to another fullness group, if required */
1584 fix_fullness_group(class, zspage);
1585 record_obj(handle, obj);
1586 class_stat_inc(class, OBJ_USED, 1);
1587 spin_unlock(&pool->lock);
1588
1589 return handle;
1590 }
1591
1592 spin_unlock(&pool->lock);
1593
1594 zspage = alloc_zspage(pool, class, gfp);
1595 if (!zspage) {
1596 cache_free_handle(pool, handle);
1597 return (unsigned long)ERR_PTR(-ENOMEM);
1598 }
1599
1600 spin_lock(&pool->lock);
1601 obj = obj_malloc(pool, zspage, handle);
1602 newfg = get_fullness_group(class, zspage);
1603 insert_zspage(class, zspage, newfg);
1604 set_zspage_mapping(zspage, class->index, newfg);
1605 record_obj(handle, obj);
1606 atomic_long_add(class->pages_per_zspage,
1607 &pool->pages_allocated);
1608 class_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1609 class_stat_inc(class, OBJ_USED, 1);
1610
1611 /* We completely set up zspage so mark them as movable */
1612 SetZsPageMovable(pool, zspage);
1613 spin_unlock(&pool->lock);
1614
1615 return handle;
1616}
1617EXPORT_SYMBOL_GPL(zs_malloc);
1618
1619static void obj_free(int class_size, unsigned long obj, unsigned long *handle)
1620{
1621 struct link_free *link;
1622 struct zspage *zspage;
1623 struct page *f_page;
1624 unsigned long f_offset;
1625 unsigned int f_objidx;
1626 void *vaddr;
1627
1628 obj_to_location(obj, &f_page, &f_objidx);
1629 f_offset = (class_size * f_objidx) & ~PAGE_MASK;
1630 zspage = get_zspage(f_page);
1631
1632 vaddr = kmap_atomic(f_page);
1633 link = (struct link_free *)(vaddr + f_offset);
1634
1635 if (handle) {
1636#ifdef CONFIG_ZPOOL
1637 /* Stores the (deferred) handle in the object's header */
1638 *handle |= OBJ_DEFERRED_HANDLE_TAG;
1639 *handle &= ~OBJ_ALLOCATED_TAG;
1640
1641 if (likely(!ZsHugePage(zspage)))
1642 link->deferred_handle = *handle;
1643 else
1644 f_page->index = *handle;
1645#endif
1646 } else {
1647 /* Insert this object in containing zspage's freelist */
1648 if (likely(!ZsHugePage(zspage)))
1649 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1650 else
1651 f_page->index = 0;
1652 set_freeobj(zspage, f_objidx);
1653 }
1654
1655 kunmap_atomic(vaddr);
1656 mod_zspage_inuse(zspage, -1);
1657}
1658
1659void zs_free(struct zs_pool *pool, unsigned long handle)
1660{
1661 struct zspage *zspage;
1662 struct page *f_page;
1663 unsigned long obj;
1664 struct size_class *class;
1665 enum fullness_group fullness;
1666
1667 if (IS_ERR_OR_NULL((void *)handle))
1668 return;
1669
1670 /*
1671 * The pool->lock protects the race with zpage's migration
1672 * so it's safe to get the page from handle.
1673 */
1674 spin_lock(&pool->lock);
1675 obj = handle_to_obj(handle);
1676 obj_to_page(obj, &f_page);
1677 zspage = get_zspage(f_page);
1678 class = zspage_class(pool, zspage);
1679
1680 class_stat_dec(class, OBJ_USED, 1);
1681
1682#ifdef CONFIG_ZPOOL
1683 if (zspage->under_reclaim) {
1684 /*
1685 * Reclaim needs the handles during writeback. It'll free
1686 * them along with the zspage when it's done with them.
1687 *
1688 * Record current deferred handle in the object's header.
1689 */
1690 obj_free(class->size, obj, &handle);
1691 spin_unlock(&pool->lock);
1692 return;
1693 }
1694#endif
1695 obj_free(class->size, obj, NULL);
1696
1697 fullness = fix_fullness_group(class, zspage);
1698 if (fullness == ZS_EMPTY)
1699 free_zspage(pool, class, zspage);
1700
1701 spin_unlock(&pool->lock);
1702 cache_free_handle(pool, handle);
1703}
1704EXPORT_SYMBOL_GPL(zs_free);
1705
1706static void zs_object_copy(struct size_class *class, unsigned long dst,
1707 unsigned long src)
1708{
1709 struct page *s_page, *d_page;
1710 unsigned int s_objidx, d_objidx;
1711 unsigned long s_off, d_off;
1712 void *s_addr, *d_addr;
1713 int s_size, d_size, size;
1714 int written = 0;
1715
1716 s_size = d_size = class->size;
1717
1718 obj_to_location(src, &s_page, &s_objidx);
1719 obj_to_location(dst, &d_page, &d_objidx);
1720
1721 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1722 d_off = (class->size * d_objidx) & ~PAGE_MASK;
1723
1724 if (s_off + class->size > PAGE_SIZE)
1725 s_size = PAGE_SIZE - s_off;
1726
1727 if (d_off + class->size > PAGE_SIZE)
1728 d_size = PAGE_SIZE - d_off;
1729
1730 s_addr = kmap_atomic(s_page);
1731 d_addr = kmap_atomic(d_page);
1732
1733 while (1) {
1734 size = min(s_size, d_size);
1735 memcpy(d_addr + d_off, s_addr + s_off, size);
1736 written += size;
1737
1738 if (written == class->size)
1739 break;
1740
1741 s_off += size;
1742 s_size -= size;
1743 d_off += size;
1744 d_size -= size;
1745
1746 /*
1747 * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic()
1748 * calls must occurs in reverse order of calls to kmap_atomic().
1749 * So, to call kunmap_atomic(s_addr) we should first call
1750 * kunmap_atomic(d_addr). For more details see
1751 * Documentation/mm/highmem.rst.
1752 */
1753 if (s_off >= PAGE_SIZE) {
1754 kunmap_atomic(d_addr);
1755 kunmap_atomic(s_addr);
1756 s_page = get_next_page(s_page);
1757 s_addr = kmap_atomic(s_page);
1758 d_addr = kmap_atomic(d_page);
1759 s_size = class->size - written;
1760 s_off = 0;
1761 }
1762
1763 if (d_off >= PAGE_SIZE) {
1764 kunmap_atomic(d_addr);
1765 d_page = get_next_page(d_page);
1766 d_addr = kmap_atomic(d_page);
1767 d_size = class->size - written;
1768 d_off = 0;
1769 }
1770 }
1771
1772 kunmap_atomic(d_addr);
1773 kunmap_atomic(s_addr);
1774}
1775
1776/*
1777 * Find object with a certain tag in zspage from index object and
1778 * return handle.
1779 */
1780static unsigned long find_tagged_obj(struct size_class *class,
1781 struct page *page, int *obj_idx, int tag)
1782{
1783 unsigned int offset;
1784 int index = *obj_idx;
1785 unsigned long handle = 0;
1786 void *addr = kmap_atomic(page);
1787
1788 offset = get_first_obj_offset(page);
1789 offset += class->size * index;
1790
1791 while (offset < PAGE_SIZE) {
1792 if (obj_tagged(page, addr + offset, &handle, tag))
1793 break;
1794
1795 offset += class->size;
1796 index++;
1797 }
1798
1799 kunmap_atomic(addr);
1800
1801 *obj_idx = index;
1802
1803 return handle;
1804}
1805
1806/*
1807 * Find alloced object in zspage from index object and
1808 * return handle.
1809 */
1810static unsigned long find_alloced_obj(struct size_class *class,
1811 struct page *page, int *obj_idx)
1812{
1813 return find_tagged_obj(class, page, obj_idx, OBJ_ALLOCATED_TAG);
1814}
1815
1816#ifdef CONFIG_ZPOOL
1817/*
1818 * Find object storing a deferred handle in header in zspage from index object
1819 * and return handle.
1820 */
1821static unsigned long find_deferred_handle_obj(struct size_class *class,
1822 struct page *page, int *obj_idx)
1823{
1824 return find_tagged_obj(class, page, obj_idx, OBJ_DEFERRED_HANDLE_TAG);
1825}
1826#endif
1827
1828struct zs_compact_control {
1829 /* Source spage for migration which could be a subpage of zspage */
1830 struct page *s_page;
1831 /* Destination page for migration which should be a first page
1832 * of zspage. */
1833 struct page *d_page;
1834 /* Starting object index within @s_page which used for live object
1835 * in the subpage. */
1836 int obj_idx;
1837};
1838
1839static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1840 struct zs_compact_control *cc)
1841{
1842 unsigned long used_obj, free_obj;
1843 unsigned long handle;
1844 struct page *s_page = cc->s_page;
1845 struct page *d_page = cc->d_page;
1846 int obj_idx = cc->obj_idx;
1847 int ret = 0;
1848
1849 while (1) {
1850 handle = find_alloced_obj(class, s_page, &obj_idx);
1851 if (!handle) {
1852 s_page = get_next_page(s_page);
1853 if (!s_page)
1854 break;
1855 obj_idx = 0;
1856 continue;
1857 }
1858
1859 /* Stop if there is no more space */
1860 if (zspage_full(class, get_zspage(d_page))) {
1861 ret = -ENOMEM;
1862 break;
1863 }
1864
1865 used_obj = handle_to_obj(handle);
1866 free_obj = obj_malloc(pool, get_zspage(d_page), handle);
1867 zs_object_copy(class, free_obj, used_obj);
1868 obj_idx++;
1869 record_obj(handle, free_obj);
1870 obj_free(class->size, used_obj, NULL);
1871 }
1872
1873 /* Remember last position in this iteration */
1874 cc->s_page = s_page;
1875 cc->obj_idx = obj_idx;
1876
1877 return ret;
1878}
1879
1880static struct zspage *isolate_zspage(struct size_class *class, bool source)
1881{
1882 int i;
1883 struct zspage *zspage;
1884 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1885
1886 if (!source) {
1887 fg[0] = ZS_ALMOST_FULL;
1888 fg[1] = ZS_ALMOST_EMPTY;
1889 }
1890
1891 for (i = 0; i < 2; i++) {
1892 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1893 struct zspage, list);
1894 if (zspage) {
1895 remove_zspage(class, zspage, fg[i]);
1896 return zspage;
1897 }
1898 }
1899
1900 return zspage;
1901}
1902
1903/*
1904 * putback_zspage - add @zspage into right class's fullness list
1905 * @class: destination class
1906 * @zspage: target page
1907 *
1908 * Return @zspage's fullness_group
1909 */
1910static enum fullness_group putback_zspage(struct size_class *class,
1911 struct zspage *zspage)
1912{
1913 enum fullness_group fullness;
1914
1915 fullness = get_fullness_group(class, zspage);
1916 insert_zspage(class, zspage, fullness);
1917 set_zspage_mapping(zspage, class->index, fullness);
1918
1919 return fullness;
1920}
1921
1922#if defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION)
1923/*
1924 * To prevent zspage destroy during migration, zspage freeing should
1925 * hold locks of all pages in the zspage.
1926 */
1927static void lock_zspage(struct zspage *zspage)
1928{
1929 struct page *curr_page, *page;
1930
1931 /*
1932 * Pages we haven't locked yet can be migrated off the list while we're
1933 * trying to lock them, so we need to be careful and only attempt to
1934 * lock each page under migrate_read_lock(). Otherwise, the page we lock
1935 * may no longer belong to the zspage. This means that we may wait for
1936 * the wrong page to unlock, so we must take a reference to the page
1937 * prior to waiting for it to unlock outside migrate_read_lock().
1938 */
1939 while (1) {
1940 migrate_read_lock(zspage);
1941 page = get_first_page(zspage);
1942 if (trylock_page(page))
1943 break;
1944 get_page(page);
1945 migrate_read_unlock(zspage);
1946 wait_on_page_locked(page);
1947 put_page(page);
1948 }
1949
1950 curr_page = page;
1951 while ((page = get_next_page(curr_page))) {
1952 if (trylock_page(page)) {
1953 curr_page = page;
1954 } else {
1955 get_page(page);
1956 migrate_read_unlock(zspage);
1957 wait_on_page_locked(page);
1958 put_page(page);
1959 migrate_read_lock(zspage);
1960 }
1961 }
1962 migrate_read_unlock(zspage);
1963}
1964#endif /* defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION) */
1965
1966#ifdef CONFIG_ZPOOL
1967/*
1968 * Unlocks all the pages of the zspage.
1969 *
1970 * pool->lock must be held before this function is called
1971 * to prevent the underlying pages from migrating.
1972 */
1973static void unlock_zspage(struct zspage *zspage)
1974{
1975 struct page *page = get_first_page(zspage);
1976
1977 do {
1978 unlock_page(page);
1979 } while ((page = get_next_page(page)) != NULL);
1980}
1981#endif /* CONFIG_ZPOOL */
1982
1983static void migrate_lock_init(struct zspage *zspage)
1984{
1985 rwlock_init(&zspage->lock);
1986}
1987
1988static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1989{
1990 read_lock(&zspage->lock);
1991}
1992
1993static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1994{
1995 read_unlock(&zspage->lock);
1996}
1997
1998#ifdef CONFIG_COMPACTION
1999static void migrate_write_lock(struct zspage *zspage)
2000{
2001 write_lock(&zspage->lock);
2002}
2003
2004static void migrate_write_lock_nested(struct zspage *zspage)
2005{
2006 write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING);
2007}
2008
2009static void migrate_write_unlock(struct zspage *zspage)
2010{
2011 write_unlock(&zspage->lock);
2012}
2013
2014/* Number of isolated subpage for *page migration* in this zspage */
2015static void inc_zspage_isolation(struct zspage *zspage)
2016{
2017 zspage->isolated++;
2018}
2019
2020static void dec_zspage_isolation(struct zspage *zspage)
2021{
2022 VM_BUG_ON(zspage->isolated == 0);
2023 zspage->isolated--;
2024}
2025
2026static const struct movable_operations zsmalloc_mops;
2027
2028static void replace_sub_page(struct size_class *class, struct zspage *zspage,
2029 struct page *newpage, struct page *oldpage)
2030{
2031 struct page *page;
2032 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
2033 int idx = 0;
2034
2035 page = get_first_page(zspage);
2036 do {
2037 if (page == oldpage)
2038 pages[idx] = newpage;
2039 else
2040 pages[idx] = page;
2041 idx++;
2042 } while ((page = get_next_page(page)) != NULL);
2043
2044 create_page_chain(class, zspage, pages);
2045 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
2046 if (unlikely(ZsHugePage(zspage)))
2047 newpage->index = oldpage->index;
2048 __SetPageMovable(newpage, &zsmalloc_mops);
2049}
2050
2051static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
2052{
2053 struct zspage *zspage;
2054
2055 /*
2056 * Page is locked so zspage couldn't be destroyed. For detail, look at
2057 * lock_zspage in free_zspage.
2058 */
2059 VM_BUG_ON_PAGE(!PageMovable(page), page);
2060 VM_BUG_ON_PAGE(PageIsolated(page), page);
2061
2062 zspage = get_zspage(page);
2063 migrate_write_lock(zspage);
2064 inc_zspage_isolation(zspage);
2065 migrate_write_unlock(zspage);
2066
2067 return true;
2068}
2069
2070static int zs_page_migrate(struct page *newpage, struct page *page,
2071 enum migrate_mode mode)
2072{
2073 struct zs_pool *pool;
2074 struct size_class *class;
2075 struct zspage *zspage;
2076 struct page *dummy;
2077 void *s_addr, *d_addr, *addr;
2078 unsigned int offset;
2079 unsigned long handle;
2080 unsigned long old_obj, new_obj;
2081 unsigned int obj_idx;
2082
2083 /*
2084 * We cannot support the _NO_COPY case here, because copy needs to
2085 * happen under the zs lock, which does not work with
2086 * MIGRATE_SYNC_NO_COPY workflow.
2087 */
2088 if (mode == MIGRATE_SYNC_NO_COPY)
2089 return -EINVAL;
2090
2091 VM_BUG_ON_PAGE(!PageMovable(page), page);
2092 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2093
2094 /* The page is locked, so this pointer must remain valid */
2095 zspage = get_zspage(page);
2096 pool = zspage->pool;
2097
2098 /*
2099 * The pool's lock protects the race between zpage migration
2100 * and zs_free.
2101 */
2102 spin_lock(&pool->lock);
2103 class = zspage_class(pool, zspage);
2104
2105 /* the migrate_write_lock protects zpage access via zs_map_object */
2106 migrate_write_lock(zspage);
2107
2108 offset = get_first_obj_offset(page);
2109 s_addr = kmap_atomic(page);
2110
2111 /*
2112 * Here, any user cannot access all objects in the zspage so let's move.
2113 */
2114 d_addr = kmap_atomic(newpage);
2115 memcpy(d_addr, s_addr, PAGE_SIZE);
2116 kunmap_atomic(d_addr);
2117
2118 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
2119 addr += class->size) {
2120 if (obj_allocated(page, addr, &handle)) {
2121
2122 old_obj = handle_to_obj(handle);
2123 obj_to_location(old_obj, &dummy, &obj_idx);
2124 new_obj = (unsigned long)location_to_obj(newpage,
2125 obj_idx);
2126 record_obj(handle, new_obj);
2127 }
2128 }
2129 kunmap_atomic(s_addr);
2130
2131 replace_sub_page(class, zspage, newpage, page);
2132 /*
2133 * Since we complete the data copy and set up new zspage structure,
2134 * it's okay to release the pool's lock.
2135 */
2136 spin_unlock(&pool->lock);
2137 dec_zspage_isolation(zspage);
2138 migrate_write_unlock(zspage);
2139
2140 get_page(newpage);
2141 if (page_zone(newpage) != page_zone(page)) {
2142 dec_zone_page_state(page, NR_ZSPAGES);
2143 inc_zone_page_state(newpage, NR_ZSPAGES);
2144 }
2145
2146 reset_page(page);
2147 put_page(page);
2148
2149 return MIGRATEPAGE_SUCCESS;
2150}
2151
2152static void zs_page_putback(struct page *page)
2153{
2154 struct zspage *zspage;
2155
2156 VM_BUG_ON_PAGE(!PageMovable(page), page);
2157 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2158
2159 zspage = get_zspage(page);
2160 migrate_write_lock(zspage);
2161 dec_zspage_isolation(zspage);
2162 migrate_write_unlock(zspage);
2163}
2164
2165static const struct movable_operations zsmalloc_mops = {
2166 .isolate_page = zs_page_isolate,
2167 .migrate_page = zs_page_migrate,
2168 .putback_page = zs_page_putback,
2169};
2170
2171/*
2172 * Caller should hold page_lock of all pages in the zspage
2173 * In here, we cannot use zspage meta data.
2174 */
2175static void async_free_zspage(struct work_struct *work)
2176{
2177 int i;
2178 struct size_class *class;
2179 unsigned int class_idx;
2180 enum fullness_group fullness;
2181 struct zspage *zspage, *tmp;
2182 LIST_HEAD(free_pages);
2183 struct zs_pool *pool = container_of(work, struct zs_pool,
2184 free_work);
2185
2186 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2187 class = pool->size_class[i];
2188 if (class->index != i)
2189 continue;
2190
2191 spin_lock(&pool->lock);
2192 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2193 spin_unlock(&pool->lock);
2194 }
2195
2196 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2197 list_del(&zspage->list);
2198 lock_zspage(zspage);
2199
2200 get_zspage_mapping(zspage, &class_idx, &fullness);
2201 VM_BUG_ON(fullness != ZS_EMPTY);
2202 class = pool->size_class[class_idx];
2203 spin_lock(&pool->lock);
2204#ifdef CONFIG_ZPOOL
2205 list_del(&zspage->lru);
2206#endif
2207 __free_zspage(pool, class, zspage);
2208 spin_unlock(&pool->lock);
2209 }
2210};
2211
2212static void kick_deferred_free(struct zs_pool *pool)
2213{
2214 schedule_work(&pool->free_work);
2215}
2216
2217static void zs_flush_migration(struct zs_pool *pool)
2218{
2219 flush_work(&pool->free_work);
2220}
2221
2222static void init_deferred_free(struct zs_pool *pool)
2223{
2224 INIT_WORK(&pool->free_work, async_free_zspage);
2225}
2226
2227static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2228{
2229 struct page *page = get_first_page(zspage);
2230
2231 do {
2232 WARN_ON(!trylock_page(page));
2233 __SetPageMovable(page, &zsmalloc_mops);
2234 unlock_page(page);
2235 } while ((page = get_next_page(page)) != NULL);
2236}
2237#else
2238static inline void zs_flush_migration(struct zs_pool *pool) { }
2239#endif
2240
2241/*
2242 *
2243 * Based on the number of unused allocated objects calculate
2244 * and return the number of pages that we can free.
2245 */
2246static unsigned long zs_can_compact(struct size_class *class)
2247{
2248 unsigned long obj_wasted;
2249 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2250 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2251
2252 if (obj_allocated <= obj_used)
2253 return 0;
2254
2255 obj_wasted = obj_allocated - obj_used;
2256 obj_wasted /= class->objs_per_zspage;
2257
2258 return obj_wasted * class->pages_per_zspage;
2259}
2260
2261static unsigned long __zs_compact(struct zs_pool *pool,
2262 struct size_class *class)
2263{
2264 struct zs_compact_control cc;
2265 struct zspage *src_zspage;
2266 struct zspage *dst_zspage = NULL;
2267 unsigned long pages_freed = 0;
2268
2269 /*
2270 * protect the race between zpage migration and zs_free
2271 * as well as zpage allocation/free
2272 */
2273 spin_lock(&pool->lock);
2274 while ((src_zspage = isolate_zspage(class, true))) {
2275 /* protect someone accessing the zspage(i.e., zs_map_object) */
2276 migrate_write_lock(src_zspage);
2277
2278 if (!zs_can_compact(class))
2279 break;
2280
2281 cc.obj_idx = 0;
2282 cc.s_page = get_first_page(src_zspage);
2283
2284 while ((dst_zspage = isolate_zspage(class, false))) {
2285 migrate_write_lock_nested(dst_zspage);
2286
2287 cc.d_page = get_first_page(dst_zspage);
2288 /*
2289 * If there is no more space in dst_page, resched
2290 * and see if anyone had allocated another zspage.
2291 */
2292 if (!migrate_zspage(pool, class, &cc))
2293 break;
2294
2295 putback_zspage(class, dst_zspage);
2296 migrate_write_unlock(dst_zspage);
2297 dst_zspage = NULL;
2298 if (spin_is_contended(&pool->lock))
2299 break;
2300 }
2301
2302 /* Stop if we couldn't find slot */
2303 if (dst_zspage == NULL)
2304 break;
2305
2306 putback_zspage(class, dst_zspage);
2307 migrate_write_unlock(dst_zspage);
2308
2309 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2310 migrate_write_unlock(src_zspage);
2311 free_zspage(pool, class, src_zspage);
2312 pages_freed += class->pages_per_zspage;
2313 } else
2314 migrate_write_unlock(src_zspage);
2315 spin_unlock(&pool->lock);
2316 cond_resched();
2317 spin_lock(&pool->lock);
2318 }
2319
2320 if (src_zspage) {
2321 putback_zspage(class, src_zspage);
2322 migrate_write_unlock(src_zspage);
2323 }
2324
2325 spin_unlock(&pool->lock);
2326
2327 return pages_freed;
2328}
2329
2330unsigned long zs_compact(struct zs_pool *pool)
2331{
2332 int i;
2333 struct size_class *class;
2334 unsigned long pages_freed = 0;
2335
2336 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2337 class = pool->size_class[i];
2338 if (class->index != i)
2339 continue;
2340 pages_freed += __zs_compact(pool, class);
2341 }
2342 atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2343
2344 return pages_freed;
2345}
2346EXPORT_SYMBOL_GPL(zs_compact);
2347
2348void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2349{
2350 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2351}
2352EXPORT_SYMBOL_GPL(zs_pool_stats);
2353
2354static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2355 struct shrink_control *sc)
2356{
2357 unsigned long pages_freed;
2358 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2359 shrinker);
2360
2361 /*
2362 * Compact classes and calculate compaction delta.
2363 * Can run concurrently with a manually triggered
2364 * (by user) compaction.
2365 */
2366 pages_freed = zs_compact(pool);
2367
2368 return pages_freed ? pages_freed : SHRINK_STOP;
2369}
2370
2371static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2372 struct shrink_control *sc)
2373{
2374 int i;
2375 struct size_class *class;
2376 unsigned long pages_to_free = 0;
2377 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2378 shrinker);
2379
2380 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2381 class = pool->size_class[i];
2382 if (class->index != i)
2383 continue;
2384
2385 pages_to_free += zs_can_compact(class);
2386 }
2387
2388 return pages_to_free;
2389}
2390
2391static void zs_unregister_shrinker(struct zs_pool *pool)
2392{
2393 unregister_shrinker(&pool->shrinker);
2394}
2395
2396static int zs_register_shrinker(struct zs_pool *pool)
2397{
2398 pool->shrinker.scan_objects = zs_shrinker_scan;
2399 pool->shrinker.count_objects = zs_shrinker_count;
2400 pool->shrinker.batch = 0;
2401 pool->shrinker.seeks = DEFAULT_SEEKS;
2402
2403 return register_shrinker(&pool->shrinker, "mm-zspool:%s",
2404 pool->name);
2405}
2406
2407/**
2408 * zs_create_pool - Creates an allocation pool to work from.
2409 * @name: pool name to be created
2410 *
2411 * This function must be called before anything when using
2412 * the zsmalloc allocator.
2413 *
2414 * On success, a pointer to the newly created pool is returned,
2415 * otherwise NULL.
2416 */
2417struct zs_pool *zs_create_pool(const char *name)
2418{
2419 int i;
2420 struct zs_pool *pool;
2421 struct size_class *prev_class = NULL;
2422
2423 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2424 if (!pool)
2425 return NULL;
2426
2427 init_deferred_free(pool);
2428 spin_lock_init(&pool->lock);
2429
2430 pool->name = kstrdup(name, GFP_KERNEL);
2431 if (!pool->name)
2432 goto err;
2433
2434 if (create_cache(pool))
2435 goto err;
2436
2437 /*
2438 * Iterate reversely, because, size of size_class that we want to use
2439 * for merging should be larger or equal to current size.
2440 */
2441 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2442 int size;
2443 int pages_per_zspage;
2444 int objs_per_zspage;
2445 struct size_class *class;
2446 int fullness = 0;
2447
2448 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2449 if (size > ZS_MAX_ALLOC_SIZE)
2450 size = ZS_MAX_ALLOC_SIZE;
2451 pages_per_zspage = get_pages_per_zspage(size);
2452 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2453
2454 /*
2455 * We iterate from biggest down to smallest classes,
2456 * so huge_class_size holds the size of the first huge
2457 * class. Any object bigger than or equal to that will
2458 * endup in the huge class.
2459 */
2460 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2461 !huge_class_size) {
2462 huge_class_size = size;
2463 /*
2464 * The object uses ZS_HANDLE_SIZE bytes to store the
2465 * handle. We need to subtract it, because zs_malloc()
2466 * unconditionally adds handle size before it performs
2467 * size class search - so object may be smaller than
2468 * huge class size, yet it still can end up in the huge
2469 * class because it grows by ZS_HANDLE_SIZE extra bytes
2470 * right before class lookup.
2471 */
2472 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2473 }
2474
2475 /*
2476 * size_class is used for normal zsmalloc operation such
2477 * as alloc/free for that size. Although it is natural that we
2478 * have one size_class for each size, there is a chance that we
2479 * can get more memory utilization if we use one size_class for
2480 * many different sizes whose size_class have same
2481 * characteristics. So, we makes size_class point to
2482 * previous size_class if possible.
2483 */
2484 if (prev_class) {
2485 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2486 pool->size_class[i] = prev_class;
2487 continue;
2488 }
2489 }
2490
2491 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2492 if (!class)
2493 goto err;
2494
2495 class->size = size;
2496 class->index = i;
2497 class->pages_per_zspage = pages_per_zspage;
2498 class->objs_per_zspage = objs_per_zspage;
2499 pool->size_class[i] = class;
2500 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2501 fullness++)
2502 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2503
2504 prev_class = class;
2505 }
2506
2507 /* debug only, don't abort if it fails */
2508 zs_pool_stat_create(pool, name);
2509
2510 /*
2511 * Not critical since shrinker is only used to trigger internal
2512 * defragmentation of the pool which is pretty optional thing. If
2513 * registration fails we still can use the pool normally and user can
2514 * trigger compaction manually. Thus, ignore return code.
2515 */
2516 zs_register_shrinker(pool);
2517
2518#ifdef CONFIG_ZPOOL
2519 INIT_LIST_HEAD(&pool->lru);
2520#endif
2521
2522 return pool;
2523
2524err:
2525 zs_destroy_pool(pool);
2526 return NULL;
2527}
2528EXPORT_SYMBOL_GPL(zs_create_pool);
2529
2530void zs_destroy_pool(struct zs_pool *pool)
2531{
2532 int i;
2533
2534 zs_unregister_shrinker(pool);
2535 zs_flush_migration(pool);
2536 zs_pool_stat_destroy(pool);
2537
2538 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2539 int fg;
2540 struct size_class *class = pool->size_class[i];
2541
2542 if (!class)
2543 continue;
2544
2545 if (class->index != i)
2546 continue;
2547
2548 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2549 if (!list_empty(&class->fullness_list[fg])) {
2550 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2551 class->size, fg);
2552 }
2553 }
2554 kfree(class);
2555 }
2556
2557 destroy_cache(pool);
2558 kfree(pool->name);
2559 kfree(pool);
2560}
2561EXPORT_SYMBOL_GPL(zs_destroy_pool);
2562
2563#ifdef CONFIG_ZPOOL
2564static void restore_freelist(struct zs_pool *pool, struct size_class *class,
2565 struct zspage *zspage)
2566{
2567 unsigned int obj_idx = 0;
2568 unsigned long handle, off = 0; /* off is within-page offset */
2569 struct page *page = get_first_page(zspage);
2570 struct link_free *prev_free = NULL;
2571 void *prev_page_vaddr = NULL;
2572
2573 /* in case no free object found */
2574 set_freeobj(zspage, (unsigned int)(-1UL));
2575
2576 while (page) {
2577 void *vaddr = kmap_atomic(page);
2578 struct page *next_page;
2579
2580 while (off < PAGE_SIZE) {
2581 void *obj_addr = vaddr + off;
2582
2583 /* skip allocated object */
2584 if (obj_allocated(page, obj_addr, &handle)) {
2585 obj_idx++;
2586 off += class->size;
2587 continue;
2588 }
2589
2590 /* free deferred handle from reclaim attempt */
2591 if (obj_stores_deferred_handle(page, obj_addr, &handle))
2592 cache_free_handle(pool, handle);
2593
2594 if (prev_free)
2595 prev_free->next = obj_idx << OBJ_TAG_BITS;
2596 else /* first free object found */
2597 set_freeobj(zspage, obj_idx);
2598
2599 prev_free = (struct link_free *)vaddr + off / sizeof(*prev_free);
2600 /* if last free object in a previous page, need to unmap */
2601 if (prev_page_vaddr) {
2602 kunmap_atomic(prev_page_vaddr);
2603 prev_page_vaddr = NULL;
2604 }
2605
2606 obj_idx++;
2607 off += class->size;
2608 }
2609
2610 /*
2611 * Handle the last (full or partial) object on this page.
2612 */
2613 next_page = get_next_page(page);
2614 if (next_page) {
2615 if (!prev_free || prev_page_vaddr) {
2616 /*
2617 * There is no free object in this page, so we can safely
2618 * unmap it.
2619 */
2620 kunmap_atomic(vaddr);
2621 } else {
2622 /* update prev_page_vaddr since prev_free is on this page */
2623 prev_page_vaddr = vaddr;
2624 }
2625 } else { /* this is the last page */
2626 if (prev_free) {
2627 /*
2628 * Reset OBJ_TAG_BITS bit to last link to tell
2629 * whether it's allocated object or not.
2630 */
2631 prev_free->next = -1UL << OBJ_TAG_BITS;
2632 }
2633
2634 /* unmap previous page (if not done yet) */
2635 if (prev_page_vaddr) {
2636 kunmap_atomic(prev_page_vaddr);
2637 prev_page_vaddr = NULL;
2638 }
2639
2640 kunmap_atomic(vaddr);
2641 }
2642
2643 page = next_page;
2644 off %= PAGE_SIZE;
2645 }
2646}
2647
2648static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries)
2649{
2650 int i, obj_idx, ret = 0;
2651 unsigned long handle;
2652 struct zspage *zspage;
2653 struct page *page;
2654 enum fullness_group fullness;
2655
2656 /* Lock LRU and fullness list */
2657 spin_lock(&pool->lock);
2658 if (list_empty(&pool->lru)) {
2659 spin_unlock(&pool->lock);
2660 return -EINVAL;
2661 }
2662
2663 for (i = 0; i < retries; i++) {
2664 struct size_class *class;
2665
2666 zspage = list_last_entry(&pool->lru, struct zspage, lru);
2667 list_del(&zspage->lru);
2668
2669 /* zs_free may free objects, but not the zspage and handles */
2670 zspage->under_reclaim = true;
2671
2672 class = zspage_class(pool, zspage);
2673 fullness = get_fullness_group(class, zspage);
2674
2675 /* Lock out object allocations and object compaction */
2676 remove_zspage(class, zspage, fullness);
2677
2678 spin_unlock(&pool->lock);
2679 cond_resched();
2680
2681 /* Lock backing pages into place */
2682 lock_zspage(zspage);
2683
2684 obj_idx = 0;
2685 page = get_first_page(zspage);
2686 while (1) {
2687 handle = find_alloced_obj(class, page, &obj_idx);
2688 if (!handle) {
2689 page = get_next_page(page);
2690 if (!page)
2691 break;
2692 obj_idx = 0;
2693 continue;
2694 }
2695
2696 /*
2697 * This will write the object and call zs_free.
2698 *
2699 * zs_free will free the object, but the
2700 * under_reclaim flag prevents it from freeing
2701 * the zspage altogether. This is necessary so
2702 * that we can continue working with the
2703 * zspage potentially after the last object
2704 * has been freed.
2705 */
2706 ret = pool->zpool_ops->evict(pool->zpool, handle);
2707 if (ret)
2708 goto next;
2709
2710 obj_idx++;
2711 }
2712
2713next:
2714 /* For freeing the zspage, or putting it back in the pool and LRU list. */
2715 spin_lock(&pool->lock);
2716 zspage->under_reclaim = false;
2717
2718 if (!get_zspage_inuse(zspage)) {
2719 /*
2720 * Fullness went stale as zs_free() won't touch it
2721 * while the page is removed from the pool. Fix it
2722 * up for the check in __free_zspage().
2723 */
2724 zspage->fullness = ZS_EMPTY;
2725
2726 __free_zspage(pool, class, zspage);
2727 spin_unlock(&pool->lock);
2728 return 0;
2729 }
2730
2731 /*
2732 * Eviction fails on one of the handles, so we need to restore zspage.
2733 * We need to rebuild its freelist (and free stored deferred handles),
2734 * put it back to the correct size class, and add it to the LRU list.
2735 */
2736 restore_freelist(pool, class, zspage);
2737 putback_zspage(class, zspage);
2738 list_add(&zspage->lru, &pool->lru);
2739 unlock_zspage(zspage);
2740 }
2741
2742 spin_unlock(&pool->lock);
2743 return -EAGAIN;
2744}
2745#endif /* CONFIG_ZPOOL */
2746
2747static int __init zs_init(void)
2748{
2749 int ret;
2750
2751 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2752 zs_cpu_prepare, zs_cpu_dead);
2753 if (ret)
2754 goto out;
2755
2756#ifdef CONFIG_ZPOOL
2757 zpool_register_driver(&zs_zpool_driver);
2758#endif
2759
2760 zs_stat_init();
2761
2762 return 0;
2763
2764out:
2765 return ret;
2766}
2767
2768static void __exit zs_exit(void)
2769{
2770#ifdef CONFIG_ZPOOL
2771 zpool_unregister_driver(&zs_zpool_driver);
2772#endif
2773 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2774
2775 zs_stat_exit();
2776}
2777
2778module_init(zs_init);
2779module_exit(zs_exit);
2780
2781MODULE_LICENSE("Dual BSD/GPL");
2782MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");