Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Apr 14-17, 2025
Register
Loading...
v4.17
   1/*
   2 * zsmalloc memory allocator
   3 *
   4 * Copyright (C) 2011  Nitin Gupta
   5 * Copyright (C) 2012, 2013 Minchan Kim
   6 *
   7 * This code is released using a dual license strategy: BSD/GPL
   8 * You can choose the license that better fits your requirements.
   9 *
  10 * Released under the terms of 3-clause BSD License
  11 * Released under the terms of GNU General Public License Version 2.0
  12 */
  13
  14/*
  15 * Following is how we use various fields and flags of underlying
  16 * struct page(s) to form a zspage.
  17 *
  18 * Usage of struct page fields:
  19 *	page->private: points to zspage
  20 *	page->freelist(index): links together all component pages of a zspage
  21 *		For the huge page, this is always 0, so we use this field
  22 *		to store handle.
  23 *	page->units: first object offset in a subpage of zspage
  24 *
  25 * Usage of struct page flags:
  26 *	PG_private: identifies the first component page
  27 *	PG_owner_priv_1: identifies the huge component page
  28 *
  29 */
  30
  31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  32
 
 
 
 
 
 
 
  33#include <linux/module.h>
  34#include <linux/kernel.h>
  35#include <linux/sched.h>
  36#include <linux/magic.h>
  37#include <linux/bitops.h>
  38#include <linux/errno.h>
  39#include <linux/highmem.h>
  40#include <linux/string.h>
  41#include <linux/slab.h>
 
  42#include <asm/tlbflush.h>
  43#include <asm/pgtable.h>
  44#include <linux/cpumask.h>
  45#include <linux/cpu.h>
  46#include <linux/vmalloc.h>
  47#include <linux/preempt.h>
  48#include <linux/spinlock.h>
  49#include <linux/shrinker.h>
  50#include <linux/types.h>
  51#include <linux/debugfs.h>
  52#include <linux/zsmalloc.h>
  53#include <linux/zpool.h>
  54#include <linux/mount.h>
  55#include <linux/migrate.h>
 
  56#include <linux/pagemap.h>
  57#include <linux/fs.h>
 
  58
  59#define ZSPAGE_MAGIC	0x58
  60
  61/*
  62 * This must be power of 2 and greater than of equal to sizeof(link_free).
  63 * These two conditions ensure that any 'struct link_free' itself doesn't
  64 * span more than 1 page which avoids complex case of mapping 2 pages simply
  65 * to restore link_free pointer values.
  66 */
  67#define ZS_ALIGN		8
  68
  69/*
  70 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
  71 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
  72 */
  73#define ZS_MAX_ZSPAGE_ORDER 2
  74#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
  75
  76#define ZS_HANDLE_SIZE (sizeof(unsigned long))
  77
  78/*
  79 * Object location (<PFN>, <obj_idx>) is encoded as
  80 * as single (unsigned long) handle value.
  81 *
  82 * Note that object index <obj_idx> starts from 0.
  83 *
  84 * This is made more complicated by various memory models and PAE.
  85 */
  86
  87#ifndef MAX_POSSIBLE_PHYSMEM_BITS
  88#ifdef MAX_PHYSMEM_BITS
  89#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
  90#else
  91/*
  92 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
  93 * be PAGE_SHIFT
  94 */
  95#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
  96#endif
  97#endif
  98
  99#define _PFN_BITS		(MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
 100
 101/*
 102 * Memory for allocating for handle keeps object position by
 103 * encoding <page, obj_idx> and the encoded value has a room
 104 * in least bit(ie, look at obj_to_location).
 105 * We use the bit to synchronize between object access by
 106 * user and migration.
 107 */
 108#define HANDLE_PIN_BIT	0
 109
 110/*
 111 * Head in allocated object should have OBJ_ALLOCATED_TAG
 112 * to identify the object was allocated or not.
 113 * It's okay to add the status bit in the least bit because
 114 * header keeps handle which is 4byte-aligned address so we
 115 * have room for two bit at least.
 116 */
 117#define OBJ_ALLOCATED_TAG 1
 118#define OBJ_TAG_BITS 1
 119#define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
 
 
 
 120#define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
 121
 122#define FULLNESS_BITS	2
 
 123#define CLASS_BITS	8
 124#define ISOLATED_BITS	3
 125#define MAGIC_VAL_BITS	8
 126
 127#define MAX(a, b) ((a) >= (b) ? (a) : (b))
 
 
 
 128/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
 129#define ZS_MIN_ALLOC_SIZE \
 130	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
 131/* each chunk includes extra space to keep handle */
 132#define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
 133
 134/*
 135 * On systems with 4K page size, this gives 255 size classes! There is a
 136 * trader-off here:
 137 *  - Large number of size classes is potentially wasteful as free page are
 138 *    spread across these classes
 139 *  - Small number of size classes causes large internal fragmentation
 140 *  - Probably its better to use specific size classes (empirically
 141 *    determined). NOTE: all those class sizes must be set as multiple of
 142 *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
 143 *
 144 *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
 145 *  (reason above)
 146 */
 147#define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS)
 148#define ZS_SIZE_CLASSES	(DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
 149				      ZS_SIZE_CLASS_DELTA) + 1)
 150
 
 
 
 
 
 
 
 
 
 
 151enum fullness_group {
 152	ZS_EMPTY,
 153	ZS_ALMOST_EMPTY,
 154	ZS_ALMOST_FULL,
 155	ZS_FULL,
 156	NR_ZS_FULLNESS,
 
 157};
 158
 159enum zs_stat_type {
 160	CLASS_EMPTY,
 161	CLASS_ALMOST_EMPTY,
 162	CLASS_ALMOST_FULL,
 163	CLASS_FULL,
 164	OBJ_ALLOCATED,
 165	OBJ_USED,
 166	NR_ZS_STAT_TYPE,
 167};
 168
 169struct zs_size_stat {
 170	unsigned long objs[NR_ZS_STAT_TYPE];
 171};
 172
 173#ifdef CONFIG_ZSMALLOC_STAT
 174static struct dentry *zs_stat_root;
 175#endif
 176
 177#ifdef CONFIG_COMPACTION
 178static struct vfsmount *zsmalloc_mnt;
 179#endif
 180
 181/*
 182 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
 183 *	n <= N / f, where
 184 * n = number of allocated objects
 185 * N = total number of objects zspage can store
 186 * f = fullness_threshold_frac
 187 *
 188 * Similarly, we assign zspage to:
 189 *	ZS_ALMOST_FULL	when n > N / f
 190 *	ZS_EMPTY	when n == 0
 191 *	ZS_FULL		when n == N
 192 *
 193 * (see: fix_fullness_group())
 194 */
 195static const int fullness_threshold_frac = 4;
 196static size_t huge_class_size;
 197
 198struct size_class {
 199	spinlock_t lock;
 200	struct list_head fullness_list[NR_ZS_FULLNESS];
 201	/*
 202	 * Size of objects stored in this class. Must be multiple
 203	 * of ZS_ALIGN.
 204	 */
 205	int size;
 206	int objs_per_zspage;
 207	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
 208	int pages_per_zspage;
 209
 210	unsigned int index;
 211	struct zs_size_stat stats;
 212};
 213
 214/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
 215static void SetPageHugeObject(struct page *page)
 216{
 217	SetPageOwnerPriv1(page);
 218}
 219
 220static void ClearPageHugeObject(struct page *page)
 221{
 222	ClearPageOwnerPriv1(page);
 223}
 224
 225static int PageHugeObject(struct page *page)
 226{
 227	return PageOwnerPriv1(page);
 228}
 229
 230/*
 231 * Placed within free objects to form a singly linked list.
 232 * For every zspage, zspage->freeobj gives head of this list.
 233 *
 234 * This must be power of 2 and less than or equal to ZS_ALIGN
 235 */
 236struct link_free {
 237	union {
 238		/*
 239		 * Free object index;
 240		 * It's valid for non-allocated object
 241		 */
 242		unsigned long next;
 243		/*
 244		 * Handle of allocated object.
 245		 */
 246		unsigned long handle;
 247	};
 248};
 249
 250struct zs_pool {
 251	const char *name;
 252
 253	struct size_class *size_class[ZS_SIZE_CLASSES];
 254	struct kmem_cache *handle_cachep;
 255	struct kmem_cache *zspage_cachep;
 256
 257	atomic_long_t pages_allocated;
 258
 259	struct zs_pool_stats stats;
 260
 261	/* Compact classes */
 262	struct shrinker shrinker;
 263
 264#ifdef CONFIG_ZSMALLOC_STAT
 265	struct dentry *stat_dentry;
 266#endif
 267#ifdef CONFIG_COMPACTION
 268	struct inode *inode;
 269	struct work_struct free_work;
 270#endif
 
 
 271};
 272
 273struct zspage {
 274	struct {
 
 275		unsigned int fullness:FULLNESS_BITS;
 276		unsigned int class:CLASS_BITS + 1;
 277		unsigned int isolated:ISOLATED_BITS;
 278		unsigned int magic:MAGIC_VAL_BITS;
 279	};
 280	unsigned int inuse;
 281	unsigned int freeobj;
 282	struct page *first_page;
 283	struct list_head list; /* fullness list */
 284#ifdef CONFIG_COMPACTION
 285	rwlock_t lock;
 286#endif
 287};
 288
 289struct mapping_area {
 290#ifdef CONFIG_PGTABLE_MAPPING
 291	struct vm_struct *vm; /* vm area for mapping object that span pages */
 292#else
 293	char *vm_buf; /* copy buffer for objects that span pages */
 294#endif
 295	char *vm_addr; /* address of kmap_atomic()'ed pages */
 296	enum zs_mapmode vm_mm; /* mapping mode */
 297};
 298
 299#ifdef CONFIG_COMPACTION
 300static int zs_register_migration(struct zs_pool *pool);
 301static void zs_unregister_migration(struct zs_pool *pool);
 
 
 
 
 
 
 
 
 302static void migrate_lock_init(struct zspage *zspage);
 303static void migrate_read_lock(struct zspage *zspage);
 304static void migrate_read_unlock(struct zspage *zspage);
 
 
 
 
 305static void kick_deferred_free(struct zs_pool *pool);
 306static void init_deferred_free(struct zs_pool *pool);
 307static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
 308#else
 309static int zsmalloc_mount(void) { return 0; }
 310static void zsmalloc_unmount(void) {}
 311static int zs_register_migration(struct zs_pool *pool) { return 0; }
 312static void zs_unregister_migration(struct zs_pool *pool) {}
 313static void migrate_lock_init(struct zspage *zspage) {}
 314static void migrate_read_lock(struct zspage *zspage) {}
 315static void migrate_read_unlock(struct zspage *zspage) {}
 316static void kick_deferred_free(struct zs_pool *pool) {}
 317static void init_deferred_free(struct zs_pool *pool) {}
 318static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
 319#endif
 320
 321static int create_cache(struct zs_pool *pool)
 322{
 323	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
 324					0, 0, NULL);
 325	if (!pool->handle_cachep)
 326		return 1;
 327
 328	pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
 329					0, 0, NULL);
 330	if (!pool->zspage_cachep) {
 331		kmem_cache_destroy(pool->handle_cachep);
 332		pool->handle_cachep = NULL;
 333		return 1;
 334	}
 335
 336	return 0;
 337}
 338
 339static void destroy_cache(struct zs_pool *pool)
 340{
 341	kmem_cache_destroy(pool->handle_cachep);
 342	kmem_cache_destroy(pool->zspage_cachep);
 343}
 344
 345static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
 346{
 347	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
 348			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
 349}
 350
 351static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
 352{
 353	kmem_cache_free(pool->handle_cachep, (void *)handle);
 354}
 355
 356static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
 357{
 358	return kmem_cache_alloc(pool->zspage_cachep,
 359			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
 360}
 361
 362static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
 363{
 364	kmem_cache_free(pool->zspage_cachep, zspage);
 365}
 366
 
 367static void record_obj(unsigned long handle, unsigned long obj)
 368{
 369	/*
 370	 * lsb of @obj represents handle lock while other bits
 371	 * represent object value the handle is pointing so
 372	 * updating shouldn't do store tearing.
 373	 */
 374	WRITE_ONCE(*(unsigned long *)handle, obj);
 375}
 376
 377/* zpool driver */
 378
 379#ifdef CONFIG_ZPOOL
 380
 381static void *zs_zpool_create(const char *name, gfp_t gfp,
 382			     const struct zpool_ops *zpool_ops,
 383			     struct zpool *zpool)
 384{
 385	/*
 386	 * Ignore global gfp flags: zs_malloc() may be invoked from
 387	 * different contexts and its caller must provide a valid
 388	 * gfp mask.
 389	 */
 390	return zs_create_pool(name);
 391}
 392
 393static void zs_zpool_destroy(void *pool)
 394{
 395	zs_destroy_pool(pool);
 396}
 397
 398static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
 399			unsigned long *handle)
 400{
 401	*handle = zs_malloc(pool, size, gfp);
 402	return *handle ? 0 : -1;
 
 
 
 403}
 404static void zs_zpool_free(void *pool, unsigned long handle)
 405{
 406	zs_free(pool, handle);
 407}
 408
 409static void *zs_zpool_map(void *pool, unsigned long handle,
 410			enum zpool_mapmode mm)
 411{
 412	enum zs_mapmode zs_mm;
 413
 414	switch (mm) {
 415	case ZPOOL_MM_RO:
 416		zs_mm = ZS_MM_RO;
 417		break;
 418	case ZPOOL_MM_WO:
 419		zs_mm = ZS_MM_WO;
 420		break;
 421	case ZPOOL_MM_RW: /* fallthru */
 422	default:
 423		zs_mm = ZS_MM_RW;
 424		break;
 425	}
 426
 427	return zs_map_object(pool, handle, zs_mm);
 428}
 429static void zs_zpool_unmap(void *pool, unsigned long handle)
 430{
 431	zs_unmap_object(pool, handle);
 432}
 433
 434static u64 zs_zpool_total_size(void *pool)
 435{
 436	return zs_get_total_pages(pool) << PAGE_SHIFT;
 437}
 438
 439static struct zpool_driver zs_zpool_driver = {
 440	.type =		"zsmalloc",
 441	.owner =	THIS_MODULE,
 442	.create =	zs_zpool_create,
 443	.destroy =	zs_zpool_destroy,
 444	.malloc =	zs_zpool_malloc,
 445	.free =		zs_zpool_free,
 446	.map =		zs_zpool_map,
 447	.unmap =	zs_zpool_unmap,
 448	.total_size =	zs_zpool_total_size,
 
 449};
 450
 451MODULE_ALIAS("zpool-zsmalloc");
 452#endif /* CONFIG_ZPOOL */
 453
 454/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
 455static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
 456
 457static bool is_zspage_isolated(struct zspage *zspage)
 458{
 459	return zspage->isolated;
 460}
 461
 462static __maybe_unused int is_first_page(struct page *page)
 463{
 464	return PagePrivate(page);
 465}
 466
 467/* Protected by class->lock */
 468static inline int get_zspage_inuse(struct zspage *zspage)
 469{
 470	return zspage->inuse;
 471}
 472
 473static inline void set_zspage_inuse(struct zspage *zspage, int val)
 474{
 475	zspage->inuse = val;
 476}
 477
 478static inline void mod_zspage_inuse(struct zspage *zspage, int val)
 479{
 480	zspage->inuse += val;
 481}
 482
 483static inline struct page *get_first_page(struct zspage *zspage)
 484{
 485	struct page *first_page = zspage->first_page;
 486
 487	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
 488	return first_page;
 489}
 490
 491static inline int get_first_obj_offset(struct page *page)
 492{
 493	return page->units;
 494}
 495
 496static inline void set_first_obj_offset(struct page *page, int offset)
 497{
 498	page->units = offset;
 499}
 500
 501static inline unsigned int get_freeobj(struct zspage *zspage)
 502{
 503	return zspage->freeobj;
 504}
 505
 506static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
 507{
 508	zspage->freeobj = obj;
 509}
 510
 511static void get_zspage_mapping(struct zspage *zspage,
 512				unsigned int *class_idx,
 513				enum fullness_group *fullness)
 514{
 515	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
 516
 517	*fullness = zspage->fullness;
 518	*class_idx = zspage->class;
 519}
 520
 521static void set_zspage_mapping(struct zspage *zspage,
 522				unsigned int class_idx,
 523				enum fullness_group fullness)
 524{
 525	zspage->class = class_idx;
 526	zspage->fullness = fullness;
 527}
 528
 529/*
 530 * zsmalloc divides the pool into various size classes where each
 531 * class maintains a list of zspages where each zspage is divided
 532 * into equal sized chunks. Each allocation falls into one of these
 533 * classes depending on its size. This function returns index of the
 534 * size class which has chunk size big enough to hold the give size.
 535 */
 536static int get_size_class_index(int size)
 537{
 538	int idx = 0;
 539
 540	if (likely(size > ZS_MIN_ALLOC_SIZE))
 541		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
 542				ZS_SIZE_CLASS_DELTA);
 543
 544	return min_t(int, ZS_SIZE_CLASSES - 1, idx);
 545}
 546
 547/* type can be of enum type zs_stat_type or fullness_group */
 548static inline void zs_stat_inc(struct size_class *class,
 549				int type, unsigned long cnt)
 550{
 551	class->stats.objs[type] += cnt;
 552}
 553
 554/* type can be of enum type zs_stat_type or fullness_group */
 555static inline void zs_stat_dec(struct size_class *class,
 556				int type, unsigned long cnt)
 557{
 558	class->stats.objs[type] -= cnt;
 559}
 560
 561/* type can be of enum type zs_stat_type or fullness_group */
 562static inline unsigned long zs_stat_get(struct size_class *class,
 563				int type)
 564{
 565	return class->stats.objs[type];
 566}
 567
 568#ifdef CONFIG_ZSMALLOC_STAT
 569
 570static void __init zs_stat_init(void)
 571{
 572	if (!debugfs_initialized()) {
 573		pr_warn("debugfs not available, stat dir not created\n");
 574		return;
 575	}
 576
 577	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
 578	if (!zs_stat_root)
 579		pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
 580}
 581
 582static void __exit zs_stat_exit(void)
 583{
 584	debugfs_remove_recursive(zs_stat_root);
 585}
 586
 587static unsigned long zs_can_compact(struct size_class *class);
 588
 589static int zs_stats_size_show(struct seq_file *s, void *v)
 590{
 591	int i;
 592	struct zs_pool *pool = s->private;
 593	struct size_class *class;
 594	int objs_per_zspage;
 595	unsigned long class_almost_full, class_almost_empty;
 596	unsigned long obj_allocated, obj_used, pages_used, freeable;
 597	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
 598	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
 599	unsigned long total_freeable = 0;
 
 600
 601	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
 602			"class", "size", "almost_full", "almost_empty",
 
 603			"obj_allocated", "obj_used", "pages_used",
 604			"pages_per_zspage", "freeable");
 605
 606	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
 
 607		class = pool->size_class[i];
 608
 609		if (class->index != i)
 610			continue;
 611
 612		spin_lock(&class->lock);
 613		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
 614		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
 615		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
 616		obj_used = zs_stat_get(class, OBJ_USED);
 
 
 
 
 
 617		freeable = zs_can_compact(class);
 618		spin_unlock(&class->lock);
 619
 620		objs_per_zspage = class->objs_per_zspage;
 621		pages_used = obj_allocated / objs_per_zspage *
 622				class->pages_per_zspage;
 623
 624		seq_printf(s, " %5u %5u %11lu %12lu %13lu"
 625				" %10lu %10lu %16d %8lu\n",
 626			i, class->size, class_almost_full, class_almost_empty,
 627			obj_allocated, obj_used, pages_used,
 628			class->pages_per_zspage, freeable);
 629
 630		total_class_almost_full += class_almost_full;
 631		total_class_almost_empty += class_almost_empty;
 632		total_objs += obj_allocated;
 633		total_used_objs += obj_used;
 634		total_pages += pages_used;
 635		total_freeable += freeable;
 636	}
 637
 638	seq_puts(s, "\n");
 639	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
 640			"Total", "", total_class_almost_full,
 641			total_class_almost_empty, total_objs,
 642			total_used_objs, total_pages, "", total_freeable);
 
 
 
 
 643
 644	return 0;
 645}
 646DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
 647
 648static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
 649{
 650	struct dentry *entry;
 651
 652	if (!zs_stat_root) {
 653		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
 654		return;
 655	}
 656
 657	entry = debugfs_create_dir(name, zs_stat_root);
 658	if (!entry) {
 659		pr_warn("debugfs dir <%s> creation failed\n", name);
 660		return;
 661	}
 662	pool->stat_dentry = entry;
 663
 664	entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
 665			pool->stat_dentry, pool, &zs_stats_size_fops);
 666	if (!entry) {
 667		pr_warn("%s: debugfs file entry <%s> creation failed\n",
 668				name, "classes");
 669		debugfs_remove_recursive(pool->stat_dentry);
 670		pool->stat_dentry = NULL;
 671	}
 672}
 673
 674static void zs_pool_stat_destroy(struct zs_pool *pool)
 675{
 676	debugfs_remove_recursive(pool->stat_dentry);
 677}
 678
 679#else /* CONFIG_ZSMALLOC_STAT */
 680static void __init zs_stat_init(void)
 681{
 682}
 683
 684static void __exit zs_stat_exit(void)
 685{
 686}
 687
 688static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
 689{
 690}
 691
 692static inline void zs_pool_stat_destroy(struct zs_pool *pool)
 693{
 694}
 695#endif
 696
 697
 698/*
 699 * For each size class, zspages are divided into different groups
 700 * depending on how "full" they are. This was done so that we could
 701 * easily find empty or nearly empty zspages when we try to shrink
 702 * the pool (not yet implemented). This function returns fullness
 703 * status of the given page.
 704 */
 705static enum fullness_group get_fullness_group(struct size_class *class,
 706						struct zspage *zspage)
 707{
 708	int inuse, objs_per_zspage;
 709	enum fullness_group fg;
 710
 711	inuse = get_zspage_inuse(zspage);
 712	objs_per_zspage = class->objs_per_zspage;
 713
 714	if (inuse == 0)
 715		fg = ZS_EMPTY;
 716	else if (inuse == objs_per_zspage)
 717		fg = ZS_FULL;
 718	else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
 719		fg = ZS_ALMOST_EMPTY;
 720	else
 721		fg = ZS_ALMOST_FULL;
 722
 723	return fg;
 
 
 
 
 
 
 724}
 725
 726/*
 727 * Each size class maintains various freelists and zspages are assigned
 728 * to one of these freelists based on the number of live objects they
 729 * have. This functions inserts the given zspage into the freelist
 730 * identified by <class, fullness_group>.
 731 */
 732static void insert_zspage(struct size_class *class,
 733				struct zspage *zspage,
 734				enum fullness_group fullness)
 735{
 736	struct zspage *head;
 737
 738	zs_stat_inc(class, fullness, 1);
 739	head = list_first_entry_or_null(&class->fullness_list[fullness],
 740					struct zspage, list);
 741	/*
 742	 * We want to see more ZS_FULL pages and less almost empty/full.
 743	 * Put pages with higher ->inuse first.
 744	 */
 745	if (head) {
 746		if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
 747			list_add(&zspage->list, &head->list);
 748			return;
 749		}
 750	}
 751	list_add(&zspage->list, &class->fullness_list[fullness]);
 
 752}
 753
 754/*
 755 * This function removes the given zspage from the freelist identified
 756 * by <class, fullness_group>.
 757 */
 758static void remove_zspage(struct size_class *class,
 759				struct zspage *zspage,
 760				enum fullness_group fullness)
 761{
 
 
 762	VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
 763	VM_BUG_ON(is_zspage_isolated(zspage));
 764
 765	list_del_init(&zspage->list);
 766	zs_stat_dec(class, fullness, 1);
 767}
 768
 769/*
 770 * Each size class maintains zspages in different fullness groups depending
 771 * on the number of live objects they contain. When allocating or freeing
 772 * objects, the fullness status of the page can change, say, from ALMOST_FULL
 773 * to ALMOST_EMPTY when freeing an object. This function checks if such
 774 * a status change has occurred for the given page and accordingly moves the
 775 * page from the freelist of the old fullness group to that of the new
 776 * fullness group.
 777 */
 778static enum fullness_group fix_fullness_group(struct size_class *class,
 779						struct zspage *zspage)
 780{
 781	int class_idx;
 782	enum fullness_group currfg, newfg;
 783
 784	get_zspage_mapping(zspage, &class_idx, &currfg);
 785	newfg = get_fullness_group(class, zspage);
 786	if (newfg == currfg)
 787		goto out;
 788
 789	if (!is_zspage_isolated(zspage)) {
 790		remove_zspage(class, zspage, currfg);
 791		insert_zspage(class, zspage, newfg);
 792	}
 793
 794	set_zspage_mapping(zspage, class_idx, newfg);
 795
 796out:
 797	return newfg;
 798}
 799
 800/*
 801 * We have to decide on how many pages to link together
 802 * to form a zspage for each size class. This is important
 803 * to reduce wastage due to unusable space left at end of
 804 * each zspage which is given as:
 805 *     wastage = Zp % class_size
 806 *     usage = Zp - wastage
 807 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
 808 *
 809 * For example, for size class of 3/8 * PAGE_SIZE, we should
 810 * link together 3 PAGE_SIZE sized pages to form a zspage
 811 * since then we can perfectly fit in 8 such objects.
 812 */
 813static int get_pages_per_zspage(int class_size)
 814{
 815	int i, max_usedpc = 0;
 816	/* zspage order which gives maximum used size per KB */
 817	int max_usedpc_order = 1;
 818
 819	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
 820		int zspage_size;
 821		int waste, usedpc;
 822
 823		zspage_size = i * PAGE_SIZE;
 824		waste = zspage_size % class_size;
 825		usedpc = (zspage_size - waste) * 100 / zspage_size;
 826
 827		if (usedpc > max_usedpc) {
 828			max_usedpc = usedpc;
 829			max_usedpc_order = i;
 830		}
 831	}
 832
 833	return max_usedpc_order;
 834}
 835
 836static struct zspage *get_zspage(struct page *page)
 837{
 838	struct zspage *zspage = (struct zspage *)page->private;
 839
 840	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
 841	return zspage;
 842}
 843
 844static struct page *get_next_page(struct page *page)
 845{
 846	if (unlikely(PageHugeObject(page)))
 
 
 847		return NULL;
 848
 849	return page->freelist;
 850}
 851
 852/**
 853 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
 854 * @obj: the encoded object value
 855 * @page: page object resides in zspage
 856 * @obj_idx: object index
 857 */
 858static void obj_to_location(unsigned long obj, struct page **page,
 859				unsigned int *obj_idx)
 860{
 861	obj >>= OBJ_TAG_BITS;
 862	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
 863	*obj_idx = (obj & OBJ_INDEX_MASK);
 864}
 865
 
 
 
 
 
 866/**
 867 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
 868 * @page: page object resides in zspage
 869 * @obj_idx: object index
 870 */
 871static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
 872{
 873	unsigned long obj;
 874
 875	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
 876	obj |= obj_idx & OBJ_INDEX_MASK;
 877	obj <<= OBJ_TAG_BITS;
 878
 879	return obj;
 880}
 881
 882static unsigned long handle_to_obj(unsigned long handle)
 883{
 884	return *(unsigned long *)handle;
 885}
 886
 887static unsigned long obj_to_head(struct page *page, void *obj)
 
 888{
 889	if (unlikely(PageHugeObject(page))) {
 
 
 
 890		VM_BUG_ON_PAGE(!is_first_page(page), page);
 891		return page->index;
 892	} else
 893		return *(unsigned long *)obj;
 894}
 895
 896static inline int testpin_tag(unsigned long handle)
 897{
 898	return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
 899}
 900
 901static inline int trypin_tag(unsigned long handle)
 902{
 903	return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
 904}
 905
 906static void pin_tag(unsigned long handle)
 907{
 908	bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
 909}
 910
 911static void unpin_tag(unsigned long handle)
 912{
 913	bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
 914}
 915
 916static void reset_page(struct page *page)
 917{
 918	__ClearPageMovable(page);
 919	ClearPagePrivate(page);
 920	set_page_private(page, 0);
 921	page_mapcount_reset(page);
 922	ClearPageHugeObject(page);
 923	page->freelist = NULL;
 924}
 925
 926/*
 927 * To prevent zspage destroy during migration, zspage freeing should
 928 * hold locks of all pages in the zspage.
 929 */
 930void lock_zspage(struct zspage *zspage)
 931{
 932	struct page *page = get_first_page(zspage);
 933
 934	do {
 935		lock_page(page);
 936	} while ((page = get_next_page(page)) != NULL);
 937}
 938
 939int trylock_zspage(struct zspage *zspage)
 940{
 941	struct page *cursor, *fail;
 942
 943	for (cursor = get_first_page(zspage); cursor != NULL; cursor =
 944					get_next_page(cursor)) {
 945		if (!trylock_page(cursor)) {
 946			fail = cursor;
 947			goto unlock;
 948		}
 949	}
 950
 951	return 1;
 952unlock:
 953	for (cursor = get_first_page(zspage); cursor != fail; cursor =
 954					get_next_page(cursor))
 955		unlock_page(cursor);
 956
 957	return 0;
 958}
 959
 960static void __free_zspage(struct zs_pool *pool, struct size_class *class,
 961				struct zspage *zspage)
 962{
 963	struct page *page, *next;
 964	enum fullness_group fg;
 965	unsigned int class_idx;
 966
 967	get_zspage_mapping(zspage, &class_idx, &fg);
 968
 969	assert_spin_locked(&class->lock);
 970
 971	VM_BUG_ON(get_zspage_inuse(zspage));
 972	VM_BUG_ON(fg != ZS_EMPTY);
 973
 974	next = page = get_first_page(zspage);
 975	do {
 976		VM_BUG_ON_PAGE(!PageLocked(page), page);
 977		next = get_next_page(page);
 978		reset_page(page);
 979		unlock_page(page);
 980		dec_zone_page_state(page, NR_ZSPAGES);
 981		put_page(page);
 982		page = next;
 983	} while (page != NULL);
 984
 985	cache_free_zspage(pool, zspage);
 986
 987	zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
 988	atomic_long_sub(class->pages_per_zspage,
 989					&pool->pages_allocated);
 990}
 991
 992static void free_zspage(struct zs_pool *pool, struct size_class *class,
 993				struct zspage *zspage)
 994{
 995	VM_BUG_ON(get_zspage_inuse(zspage));
 996	VM_BUG_ON(list_empty(&zspage->list));
 997
 
 
 
 
 
 998	if (!trylock_zspage(zspage)) {
 999		kick_deferred_free(pool);
1000		return;
1001	}
1002
1003	remove_zspage(class, zspage, ZS_EMPTY);
1004	__free_zspage(pool, class, zspage);
1005}
1006
1007/* Initialize a newly allocated zspage */
1008static void init_zspage(struct size_class *class, struct zspage *zspage)
1009{
1010	unsigned int freeobj = 1;
1011	unsigned long off = 0;
1012	struct page *page = get_first_page(zspage);
1013
1014	while (page) {
1015		struct page *next_page;
1016		struct link_free *link;
1017		void *vaddr;
1018
1019		set_first_obj_offset(page, off);
1020
1021		vaddr = kmap_atomic(page);
1022		link = (struct link_free *)vaddr + off / sizeof(*link);
1023
1024		while ((off += class->size) < PAGE_SIZE) {
1025			link->next = freeobj++ << OBJ_TAG_BITS;
1026			link += class->size / sizeof(*link);
1027		}
1028
1029		/*
1030		 * We now come to the last (full or partial) object on this
1031		 * page, which must point to the first object on the next
1032		 * page (if present)
1033		 */
1034		next_page = get_next_page(page);
1035		if (next_page) {
1036			link->next = freeobj++ << OBJ_TAG_BITS;
1037		} else {
1038			/*
1039			 * Reset OBJ_TAG_BITS bit to last link to tell
1040			 * whether it's allocated object or not.
1041			 */
1042			link->next = -1UL << OBJ_TAG_BITS;
1043		}
1044		kunmap_atomic(vaddr);
1045		page = next_page;
1046		off %= PAGE_SIZE;
1047	}
1048
1049	set_freeobj(zspage, 0);
1050}
1051
1052static void create_page_chain(struct size_class *class, struct zspage *zspage,
1053				struct page *pages[])
1054{
1055	int i;
1056	struct page *page;
1057	struct page *prev_page = NULL;
1058	int nr_pages = class->pages_per_zspage;
1059
1060	/*
1061	 * Allocate individual pages and link them together as:
1062	 * 1. all pages are linked together using page->freelist
1063	 * 2. each sub-page point to zspage using page->private
1064	 *
1065	 * we set PG_private to identify the first page (i.e. no other sub-page
1066	 * has this flag set).
1067	 */
1068	for (i = 0; i < nr_pages; i++) {
1069		page = pages[i];
1070		set_page_private(page, (unsigned long)zspage);
1071		page->freelist = NULL;
1072		if (i == 0) {
1073			zspage->first_page = page;
1074			SetPagePrivate(page);
1075			if (unlikely(class->objs_per_zspage == 1 &&
1076					class->pages_per_zspage == 1))
1077				SetPageHugeObject(page);
1078		} else {
1079			prev_page->freelist = page;
1080		}
1081		prev_page = page;
1082	}
1083}
1084
1085/*
1086 * Allocate a zspage for the given size class
1087 */
1088static struct zspage *alloc_zspage(struct zs_pool *pool,
1089					struct size_class *class,
1090					gfp_t gfp)
1091{
1092	int i;
1093	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1094	struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1095
1096	if (!zspage)
1097		return NULL;
1098
1099	memset(zspage, 0, sizeof(struct zspage));
1100	zspage->magic = ZSPAGE_MAGIC;
1101	migrate_lock_init(zspage);
1102
1103	for (i = 0; i < class->pages_per_zspage; i++) {
1104		struct page *page;
1105
1106		page = alloc_page(gfp);
1107		if (!page) {
1108			while (--i >= 0) {
1109				dec_zone_page_state(pages[i], NR_ZSPAGES);
1110				__free_page(pages[i]);
1111			}
1112			cache_free_zspage(pool, zspage);
1113			return NULL;
1114		}
1115
1116		inc_zone_page_state(page, NR_ZSPAGES);
1117		pages[i] = page;
1118	}
1119
1120	create_page_chain(class, zspage, pages);
1121	init_zspage(class, zspage);
 
 
1122
1123	return zspage;
1124}
1125
1126static struct zspage *find_get_zspage(struct size_class *class)
1127{
1128	int i;
1129	struct zspage *zspage;
1130
1131	for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1132		zspage = list_first_entry_or_null(&class->fullness_list[i],
1133				struct zspage, list);
1134		if (zspage)
1135			break;
1136	}
1137
1138	return zspage;
1139}
1140
1141#ifdef CONFIG_PGTABLE_MAPPING
1142static inline int __zs_cpu_up(struct mapping_area *area)
1143{
1144	/*
1145	 * Make sure we don't leak memory if a cpu UP notification
1146	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1147	 */
1148	if (area->vm)
1149		return 0;
1150	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1151	if (!area->vm)
1152		return -ENOMEM;
1153	return 0;
1154}
1155
1156static inline void __zs_cpu_down(struct mapping_area *area)
1157{
1158	if (area->vm)
1159		free_vm_area(area->vm);
1160	area->vm = NULL;
1161}
1162
1163static inline void *__zs_map_object(struct mapping_area *area,
1164				struct page *pages[2], int off, int size)
1165{
1166	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1167	area->vm_addr = area->vm->addr;
1168	return area->vm_addr + off;
1169}
1170
1171static inline void __zs_unmap_object(struct mapping_area *area,
1172				struct page *pages[2], int off, int size)
1173{
1174	unsigned long addr = (unsigned long)area->vm_addr;
1175
1176	unmap_kernel_range(addr, PAGE_SIZE * 2);
1177}
1178
1179#else /* CONFIG_PGTABLE_MAPPING */
1180
1181static inline int __zs_cpu_up(struct mapping_area *area)
1182{
1183	/*
1184	 * Make sure we don't leak memory if a cpu UP notification
1185	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1186	 */
1187	if (area->vm_buf)
1188		return 0;
1189	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1190	if (!area->vm_buf)
1191		return -ENOMEM;
1192	return 0;
1193}
1194
1195static inline void __zs_cpu_down(struct mapping_area *area)
1196{
1197	kfree(area->vm_buf);
1198	area->vm_buf = NULL;
1199}
1200
1201static void *__zs_map_object(struct mapping_area *area,
1202			struct page *pages[2], int off, int size)
1203{
1204	int sizes[2];
1205	void *addr;
1206	char *buf = area->vm_buf;
1207
1208	/* disable page faults to match kmap_atomic() return conditions */
1209	pagefault_disable();
1210
1211	/* no read fastpath */
1212	if (area->vm_mm == ZS_MM_WO)
1213		goto out;
1214
1215	sizes[0] = PAGE_SIZE - off;
1216	sizes[1] = size - sizes[0];
1217
1218	/* copy object to per-cpu buffer */
1219	addr = kmap_atomic(pages[0]);
1220	memcpy(buf, addr + off, sizes[0]);
1221	kunmap_atomic(addr);
1222	addr = kmap_atomic(pages[1]);
1223	memcpy(buf + sizes[0], addr, sizes[1]);
1224	kunmap_atomic(addr);
1225out:
1226	return area->vm_buf;
1227}
1228
1229static void __zs_unmap_object(struct mapping_area *area,
1230			struct page *pages[2], int off, int size)
1231{
1232	int sizes[2];
1233	void *addr;
1234	char *buf;
1235
1236	/* no write fastpath */
1237	if (area->vm_mm == ZS_MM_RO)
1238		goto out;
1239
1240	buf = area->vm_buf;
1241	buf = buf + ZS_HANDLE_SIZE;
1242	size -= ZS_HANDLE_SIZE;
1243	off += ZS_HANDLE_SIZE;
1244
1245	sizes[0] = PAGE_SIZE - off;
1246	sizes[1] = size - sizes[0];
1247
1248	/* copy per-cpu buffer to object */
1249	addr = kmap_atomic(pages[0]);
1250	memcpy(addr + off, buf, sizes[0]);
1251	kunmap_atomic(addr);
1252	addr = kmap_atomic(pages[1]);
1253	memcpy(addr, buf + sizes[0], sizes[1]);
1254	kunmap_atomic(addr);
1255
1256out:
1257	/* enable page faults to match kunmap_atomic() return conditions */
1258	pagefault_enable();
1259}
1260
1261#endif /* CONFIG_PGTABLE_MAPPING */
1262
1263static int zs_cpu_prepare(unsigned int cpu)
1264{
1265	struct mapping_area *area;
1266
1267	area = &per_cpu(zs_map_area, cpu);
1268	return __zs_cpu_up(area);
1269}
1270
1271static int zs_cpu_dead(unsigned int cpu)
1272{
1273	struct mapping_area *area;
1274
1275	area = &per_cpu(zs_map_area, cpu);
1276	__zs_cpu_down(area);
1277	return 0;
1278}
1279
1280static bool can_merge(struct size_class *prev, int pages_per_zspage,
1281					int objs_per_zspage)
1282{
1283	if (prev->pages_per_zspage == pages_per_zspage &&
1284		prev->objs_per_zspage == objs_per_zspage)
1285		return true;
1286
1287	return false;
1288}
1289
1290static bool zspage_full(struct size_class *class, struct zspage *zspage)
1291{
1292	return get_zspage_inuse(zspage) == class->objs_per_zspage;
1293}
1294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1295unsigned long zs_get_total_pages(struct zs_pool *pool)
1296{
1297	return atomic_long_read(&pool->pages_allocated);
1298}
1299EXPORT_SYMBOL_GPL(zs_get_total_pages);
1300
1301/**
1302 * zs_map_object - get address of allocated object from handle.
1303 * @pool: pool from which the object was allocated
1304 * @handle: handle returned from zs_malloc
1305 * @mm: maping mode to use
1306 *
1307 * Before using an object allocated from zs_malloc, it must be mapped using
1308 * this function. When done with the object, it must be unmapped using
1309 * zs_unmap_object.
1310 *
1311 * Only one object can be mapped per cpu at a time. There is no protection
1312 * against nested mappings.
1313 *
1314 * This function returns with preemption and page faults disabled.
1315 */
1316void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1317			enum zs_mapmode mm)
1318{
1319	struct zspage *zspage;
1320	struct page *page;
1321	unsigned long obj, off;
1322	unsigned int obj_idx;
1323
1324	unsigned int class_idx;
1325	enum fullness_group fg;
1326	struct size_class *class;
1327	struct mapping_area *area;
1328	struct page *pages[2];
1329	void *ret;
1330
1331	/*
1332	 * Because we use per-cpu mapping areas shared among the
1333	 * pools/users, we can't allow mapping in interrupt context
1334	 * because it can corrupt another users mappings.
1335	 */
1336	BUG_ON(in_interrupt());
1337
1338	/* From now on, migration cannot move the object */
1339	pin_tag(handle);
1340
1341	obj = handle_to_obj(handle);
1342	obj_to_location(obj, &page, &obj_idx);
1343	zspage = get_zspage(page);
1344
1345	/* migration cannot move any subpage in this zspage */
 
 
 
 
 
1346	migrate_read_lock(zspage);
 
1347
1348	get_zspage_mapping(zspage, &class_idx, &fg);
1349	class = pool->size_class[class_idx];
1350	off = (class->size * obj_idx) & ~PAGE_MASK;
1351
1352	area = &get_cpu_var(zs_map_area);
 
1353	area->vm_mm = mm;
1354	if (off + class->size <= PAGE_SIZE) {
1355		/* this object is contained entirely within a page */
1356		area->vm_addr = kmap_atomic(page);
1357		ret = area->vm_addr + off;
1358		goto out;
1359	}
1360
1361	/* this object spans two pages */
1362	pages[0] = page;
1363	pages[1] = get_next_page(page);
1364	BUG_ON(!pages[1]);
1365
1366	ret = __zs_map_object(area, pages, off, class->size);
1367out:
1368	if (likely(!PageHugeObject(page)))
1369		ret += ZS_HANDLE_SIZE;
1370
1371	return ret;
1372}
1373EXPORT_SYMBOL_GPL(zs_map_object);
1374
1375void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1376{
1377	struct zspage *zspage;
1378	struct page *page;
1379	unsigned long obj, off;
1380	unsigned int obj_idx;
1381
1382	unsigned int class_idx;
1383	enum fullness_group fg;
1384	struct size_class *class;
1385	struct mapping_area *area;
1386
1387	obj = handle_to_obj(handle);
1388	obj_to_location(obj, &page, &obj_idx);
1389	zspage = get_zspage(page);
1390	get_zspage_mapping(zspage, &class_idx, &fg);
1391	class = pool->size_class[class_idx];
1392	off = (class->size * obj_idx) & ~PAGE_MASK;
1393
1394	area = this_cpu_ptr(&zs_map_area);
1395	if (off + class->size <= PAGE_SIZE)
1396		kunmap_atomic(area->vm_addr);
1397	else {
1398		struct page *pages[2];
1399
1400		pages[0] = page;
1401		pages[1] = get_next_page(page);
1402		BUG_ON(!pages[1]);
1403
1404		__zs_unmap_object(area, pages, off, class->size);
1405	}
1406	put_cpu_var(zs_map_area);
1407
1408	migrate_read_unlock(zspage);
1409	unpin_tag(handle);
1410}
1411EXPORT_SYMBOL_GPL(zs_unmap_object);
1412
1413/**
1414 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1415 *                        zsmalloc &size_class.
1416 * @pool: zsmalloc pool to use
1417 *
1418 * The function returns the size of the first huge class - any object of equal
1419 * or bigger size will be stored in zspage consisting of a single physical
1420 * page.
1421 *
1422 * Context: Any context.
1423 *
1424 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1425 */
1426size_t zs_huge_class_size(struct zs_pool *pool)
1427{
1428	return huge_class_size;
1429}
1430EXPORT_SYMBOL_GPL(zs_huge_class_size);
1431
1432static unsigned long obj_malloc(struct size_class *class,
1433				struct zspage *zspage, unsigned long handle)
1434{
1435	int i, nr_page, offset;
1436	unsigned long obj;
1437	struct link_free *link;
 
1438
1439	struct page *m_page;
1440	unsigned long m_offset;
1441	void *vaddr;
1442
 
1443	handle |= OBJ_ALLOCATED_TAG;
1444	obj = get_freeobj(zspage);
1445
1446	offset = obj * class->size;
1447	nr_page = offset >> PAGE_SHIFT;
1448	m_offset = offset & ~PAGE_MASK;
1449	m_page = get_first_page(zspage);
1450
1451	for (i = 0; i < nr_page; i++)
1452		m_page = get_next_page(m_page);
1453
1454	vaddr = kmap_atomic(m_page);
1455	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1456	set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1457	if (likely(!PageHugeObject(m_page)))
1458		/* record handle in the header of allocated chunk */
1459		link->handle = handle;
1460	else
1461		/* record handle to page->index */
1462		zspage->first_page->index = handle;
1463
1464	kunmap_atomic(vaddr);
1465	mod_zspage_inuse(zspage, 1);
1466	zs_stat_inc(class, OBJ_USED, 1);
1467
1468	obj = location_to_obj(m_page, obj);
1469
1470	return obj;
1471}
1472
1473
1474/**
1475 * zs_malloc - Allocate block of given size from pool.
1476 * @pool: pool to allocate from
1477 * @size: size of block to allocate
1478 * @gfp: gfp flags when allocating object
1479 *
1480 * On success, handle to the allocated object is returned,
1481 * otherwise 0.
1482 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1483 */
1484unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1485{
1486	unsigned long handle, obj;
1487	struct size_class *class;
1488	enum fullness_group newfg;
1489	struct zspage *zspage;
1490
1491	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1492		return 0;
 
 
 
1493
1494	handle = cache_alloc_handle(pool, gfp);
1495	if (!handle)
1496		return 0;
1497
1498	/* extra space in chunk to keep the handle */
1499	size += ZS_HANDLE_SIZE;
1500	class = pool->size_class[get_size_class_index(size)];
1501
1502	spin_lock(&class->lock);
 
1503	zspage = find_get_zspage(class);
1504	if (likely(zspage)) {
1505		obj = obj_malloc(class, zspage, handle);
1506		/* Now move the zspage to another fullness group, if required */
1507		fix_fullness_group(class, zspage);
1508		record_obj(handle, obj);
1509		spin_unlock(&class->lock);
1510
1511		return handle;
1512	}
1513
1514	spin_unlock(&class->lock);
1515
1516	zspage = alloc_zspage(pool, class, gfp);
1517	if (!zspage) {
1518		cache_free_handle(pool, handle);
1519		return 0;
1520	}
1521
1522	spin_lock(&class->lock);
1523	obj = obj_malloc(class, zspage, handle);
1524	newfg = get_fullness_group(class, zspage);
1525	insert_zspage(class, zspage, newfg);
1526	set_zspage_mapping(zspage, class->index, newfg);
1527	record_obj(handle, obj);
1528	atomic_long_add(class->pages_per_zspage,
1529				&pool->pages_allocated);
1530	zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1531
1532	/* We completely set up zspage so mark them as movable */
1533	SetZsPageMovable(pool, zspage);
1534	spin_unlock(&class->lock);
 
1535
1536	return handle;
1537}
1538EXPORT_SYMBOL_GPL(zs_malloc);
1539
1540static void obj_free(struct size_class *class, unsigned long obj)
1541{
1542	struct link_free *link;
1543	struct zspage *zspage;
1544	struct page *f_page;
1545	unsigned long f_offset;
1546	unsigned int f_objidx;
1547	void *vaddr;
1548
1549	obj &= ~OBJ_ALLOCATED_TAG;
1550	obj_to_location(obj, &f_page, &f_objidx);
1551	f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1552	zspage = get_zspage(f_page);
1553
1554	vaddr = kmap_atomic(f_page);
 
1555
1556	/* Insert this object in containing zspage's freelist */
1557	link = (struct link_free *)(vaddr + f_offset);
1558	link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1559	kunmap_atomic(vaddr);
 
1560	set_freeobj(zspage, f_objidx);
 
 
1561	mod_zspage_inuse(zspage, -1);
1562	zs_stat_dec(class, OBJ_USED, 1);
1563}
1564
1565void zs_free(struct zs_pool *pool, unsigned long handle)
1566{
1567	struct zspage *zspage;
1568	struct page *f_page;
1569	unsigned long obj;
1570	unsigned int f_objidx;
1571	int class_idx;
1572	struct size_class *class;
1573	enum fullness_group fullness;
1574	bool isolated;
1575
1576	if (unlikely(!handle))
1577		return;
1578
1579	pin_tag(handle);
 
 
 
 
1580	obj = handle_to_obj(handle);
1581	obj_to_location(obj, &f_page, &f_objidx);
1582	zspage = get_zspage(f_page);
 
1583
1584	migrate_read_lock(zspage);
1585
1586	get_zspage_mapping(zspage, &class_idx, &fullness);
1587	class = pool->size_class[class_idx];
1588
1589	spin_lock(&class->lock);
1590	obj_free(class, obj);
1591	fullness = fix_fullness_group(class, zspage);
1592	if (fullness != ZS_EMPTY) {
1593		migrate_read_unlock(zspage);
1594		goto out;
1595	}
1596
1597	isolated = is_zspage_isolated(zspage);
1598	migrate_read_unlock(zspage);
1599	/* If zspage is isolated, zs_page_putback will free the zspage */
1600	if (likely(!isolated))
1601		free_zspage(pool, class, zspage);
1602out:
1603
1604	spin_unlock(&class->lock);
1605	unpin_tag(handle);
1606	cache_free_handle(pool, handle);
1607}
1608EXPORT_SYMBOL_GPL(zs_free);
1609
1610static void zs_object_copy(struct size_class *class, unsigned long dst,
1611				unsigned long src)
1612{
1613	struct page *s_page, *d_page;
1614	unsigned int s_objidx, d_objidx;
1615	unsigned long s_off, d_off;
1616	void *s_addr, *d_addr;
1617	int s_size, d_size, size;
1618	int written = 0;
1619
1620	s_size = d_size = class->size;
1621
1622	obj_to_location(src, &s_page, &s_objidx);
1623	obj_to_location(dst, &d_page, &d_objidx);
1624
1625	s_off = (class->size * s_objidx) & ~PAGE_MASK;
1626	d_off = (class->size * d_objidx) & ~PAGE_MASK;
1627
1628	if (s_off + class->size > PAGE_SIZE)
1629		s_size = PAGE_SIZE - s_off;
1630
1631	if (d_off + class->size > PAGE_SIZE)
1632		d_size = PAGE_SIZE - d_off;
1633
1634	s_addr = kmap_atomic(s_page);
1635	d_addr = kmap_atomic(d_page);
1636
1637	while (1) {
1638		size = min(s_size, d_size);
1639		memcpy(d_addr + d_off, s_addr + s_off, size);
1640		written += size;
1641
1642		if (written == class->size)
1643			break;
1644
1645		s_off += size;
1646		s_size -= size;
1647		d_off += size;
1648		d_size -= size;
1649
 
 
 
 
 
 
 
1650		if (s_off >= PAGE_SIZE) {
1651			kunmap_atomic(d_addr);
1652			kunmap_atomic(s_addr);
1653			s_page = get_next_page(s_page);
1654			s_addr = kmap_atomic(s_page);
1655			d_addr = kmap_atomic(d_page);
1656			s_size = class->size - written;
1657			s_off = 0;
1658		}
1659
1660		if (d_off >= PAGE_SIZE) {
1661			kunmap_atomic(d_addr);
1662			d_page = get_next_page(d_page);
1663			d_addr = kmap_atomic(d_page);
1664			d_size = class->size - written;
1665			d_off = 0;
1666		}
1667	}
1668
1669	kunmap_atomic(d_addr);
1670	kunmap_atomic(s_addr);
1671}
1672
1673/*
1674 * Find alloced object in zspage from index object and
1675 * return handle.
1676 */
1677static unsigned long find_alloced_obj(struct size_class *class,
1678					struct page *page, int *obj_idx)
1679{
1680	unsigned long head;
1681	int offset = 0;
1682	int index = *obj_idx;
1683	unsigned long handle = 0;
1684	void *addr = kmap_atomic(page);
1685
1686	offset = get_first_obj_offset(page);
1687	offset += class->size * index;
1688
1689	while (offset < PAGE_SIZE) {
1690		head = obj_to_head(page, addr + offset);
1691		if (head & OBJ_ALLOCATED_TAG) {
1692			handle = head & ~OBJ_ALLOCATED_TAG;
1693			if (trypin_tag(handle))
1694				break;
1695			handle = 0;
1696		}
1697
1698		offset += class->size;
1699		index++;
1700	}
1701
1702	kunmap_atomic(addr);
1703
1704	*obj_idx = index;
1705
1706	return handle;
1707}
1708
1709struct zs_compact_control {
1710	/* Source spage for migration which could be a subpage of zspage */
1711	struct page *s_page;
1712	/* Destination page for migration which should be a first page
1713	 * of zspage. */
1714	struct page *d_page;
1715	 /* Starting object index within @s_page which used for live object
1716	  * in the subpage. */
1717	int obj_idx;
1718};
1719
1720static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1721				struct zs_compact_control *cc)
1722{
1723	unsigned long used_obj, free_obj;
1724	unsigned long handle;
1725	struct page *s_page = cc->s_page;
1726	struct page *d_page = cc->d_page;
1727	int obj_idx = cc->obj_idx;
1728	int ret = 0;
1729
1730	while (1) {
1731		handle = find_alloced_obj(class, s_page, &obj_idx);
1732		if (!handle) {
1733			s_page = get_next_page(s_page);
1734			if (!s_page)
1735				break;
1736			obj_idx = 0;
1737			continue;
1738		}
1739
1740		/* Stop if there is no more space */
1741		if (zspage_full(class, get_zspage(d_page))) {
1742			unpin_tag(handle);
1743			ret = -ENOMEM;
1744			break;
1745		}
1746
1747		used_obj = handle_to_obj(handle);
1748		free_obj = obj_malloc(class, get_zspage(d_page), handle);
1749		zs_object_copy(class, free_obj, used_obj);
1750		obj_idx++;
1751		/*
1752		 * record_obj updates handle's value to free_obj and it will
1753		 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1754		 * breaks synchronization using pin_tag(e,g, zs_free) so
1755		 * let's keep the lock bit.
1756		 */
1757		free_obj |= BIT(HANDLE_PIN_BIT);
1758		record_obj(handle, free_obj);
1759		unpin_tag(handle);
1760		obj_free(class, used_obj);
1761	}
1762
1763	/* Remember last position in this iteration */
1764	cc->s_page = s_page;
1765	cc->obj_idx = obj_idx;
1766
1767	return ret;
 
 
 
1768}
1769
1770static struct zspage *isolate_zspage(struct size_class *class, bool source)
1771{
1772	int i;
1773	struct zspage *zspage;
1774	enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1775
1776	if (!source) {
1777		fg[0] = ZS_ALMOST_FULL;
1778		fg[1] = ZS_ALMOST_EMPTY;
 
 
 
 
1779	}
1780
1781	for (i = 0; i < 2; i++) {
1782		zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1783							struct zspage, list);
 
 
 
 
 
 
 
 
1784		if (zspage) {
1785			VM_BUG_ON(is_zspage_isolated(zspage));
1786			remove_zspage(class, zspage, fg[i]);
1787			return zspage;
1788		}
1789	}
1790
1791	return zspage;
1792}
1793
1794/*
1795 * putback_zspage - add @zspage into right class's fullness list
1796 * @class: destination class
1797 * @zspage: target page
1798 *
1799 * Return @zspage's fullness_group
1800 */
1801static enum fullness_group putback_zspage(struct size_class *class,
1802			struct zspage *zspage)
1803{
1804	enum fullness_group fullness;
1805
1806	VM_BUG_ON(is_zspage_isolated(zspage));
1807
1808	fullness = get_fullness_group(class, zspage);
1809	insert_zspage(class, zspage, fullness);
1810	set_zspage_mapping(zspage, class->index, fullness);
1811
1812	return fullness;
1813}
1814
1815#ifdef CONFIG_COMPACTION
1816static struct dentry *zs_mount(struct file_system_type *fs_type,
1817				int flags, const char *dev_name, void *data)
1818{
1819	static const struct dentry_operations ops = {
1820		.d_dname = simple_dname,
1821	};
1822
1823	return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1824}
1825
1826static struct file_system_type zsmalloc_fs = {
1827	.name		= "zsmalloc",
1828	.mount		= zs_mount,
1829	.kill_sb	= kill_anon_super,
1830};
1831
1832static int zsmalloc_mount(void)
1833{
1834	int ret = 0;
1835
1836	zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1837	if (IS_ERR(zsmalloc_mnt))
1838		ret = PTR_ERR(zsmalloc_mnt);
1839
1840	return ret;
1841}
 
 
 
 
 
 
 
 
 
 
 
 
1842
1843static void zsmalloc_unmount(void)
1844{
1845	kern_unmount(zsmalloc_mnt);
 
 
 
 
 
 
 
 
 
 
1846}
 
1847
1848static void migrate_lock_init(struct zspage *zspage)
1849{
1850	rwlock_init(&zspage->lock);
1851}
1852
1853static void migrate_read_lock(struct zspage *zspage)
1854{
1855	read_lock(&zspage->lock);
1856}
1857
1858static void migrate_read_unlock(struct zspage *zspage)
1859{
1860	read_unlock(&zspage->lock);
1861}
1862
1863static void migrate_write_lock(struct zspage *zspage)
1864{
1865	write_lock(&zspage->lock);
1866}
1867
1868static void migrate_write_unlock(struct zspage *zspage)
1869{
1870	write_unlock(&zspage->lock);
1871}
1872
1873/* Number of isolated subpage for *page migration* in this zspage */
1874static void inc_zspage_isolation(struct zspage *zspage)
1875{
1876	zspage->isolated++;
1877}
1878
1879static void dec_zspage_isolation(struct zspage *zspage)
1880{
1881	zspage->isolated--;
1882}
1883
1884static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1885				struct page *newpage, struct page *oldpage)
1886{
1887	struct page *page;
1888	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1889	int idx = 0;
1890
1891	page = get_first_page(zspage);
1892	do {
1893		if (page == oldpage)
1894			pages[idx] = newpage;
1895		else
1896			pages[idx] = page;
1897		idx++;
1898	} while ((page = get_next_page(page)) != NULL);
1899
1900	create_page_chain(class, zspage, pages);
1901	set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1902	if (unlikely(PageHugeObject(oldpage)))
1903		newpage->index = oldpage->index;
1904	__SetPageMovable(newpage, page_mapping(oldpage));
1905}
1906
1907bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1908{
1909	struct zs_pool *pool;
1910	struct size_class *class;
1911	int class_idx;
1912	enum fullness_group fullness;
1913	struct zspage *zspage;
1914	struct address_space *mapping;
1915
1916	/*
1917	 * Page is locked so zspage couldn't be destroyed. For detail, look at
1918	 * lock_zspage in free_zspage.
1919	 */
1920	VM_BUG_ON_PAGE(!PageMovable(page), page);
1921	VM_BUG_ON_PAGE(PageIsolated(page), page);
1922
1923	zspage = get_zspage(page);
1924
1925	/*
1926	 * Without class lock, fullness could be stale while class_idx is okay
1927	 * because class_idx is constant unless page is freed so we should get
1928	 * fullness again under class lock.
1929	 */
1930	get_zspage_mapping(zspage, &class_idx, &fullness);
1931	mapping = page_mapping(page);
1932	pool = mapping->private_data;
1933	class = pool->size_class[class_idx];
1934
1935	spin_lock(&class->lock);
1936	if (get_zspage_inuse(zspage) == 0) {
1937		spin_unlock(&class->lock);
1938		return false;
1939	}
1940
1941	/* zspage is isolated for object migration */
1942	if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1943		spin_unlock(&class->lock);
1944		return false;
1945	}
1946
1947	/*
1948	 * If this is first time isolation for the zspage, isolate zspage from
1949	 * size_class to prevent further object allocation from the zspage.
1950	 */
1951	if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1952		get_zspage_mapping(zspage, &class_idx, &fullness);
1953		remove_zspage(class, zspage, fullness);
1954	}
1955
1956	inc_zspage_isolation(zspage);
1957	spin_unlock(&class->lock);
1958
1959	return true;
1960}
1961
1962int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1963		struct page *page, enum migrate_mode mode)
1964{
1965	struct zs_pool *pool;
1966	struct size_class *class;
1967	int class_idx;
1968	enum fullness_group fullness;
1969	struct zspage *zspage;
1970	struct page *dummy;
1971	void *s_addr, *d_addr, *addr;
1972	int offset, pos;
1973	unsigned long handle, head;
1974	unsigned long old_obj, new_obj;
1975	unsigned int obj_idx;
1976	int ret = -EAGAIN;
1977
1978	/*
1979	 * We cannot support the _NO_COPY case here, because copy needs to
1980	 * happen under the zs lock, which does not work with
1981	 * MIGRATE_SYNC_NO_COPY workflow.
1982	 */
1983	if (mode == MIGRATE_SYNC_NO_COPY)
1984		return -EINVAL;
1985
1986	VM_BUG_ON_PAGE(!PageMovable(page), page);
1987	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1988
 
1989	zspage = get_zspage(page);
 
1990
1991	/* Concurrent compactor cannot migrate any subpage in zspage */
1992	migrate_write_lock(zspage);
1993	get_zspage_mapping(zspage, &class_idx, &fullness);
1994	pool = mapping->private_data;
1995	class = pool->size_class[class_idx];
1996	offset = get_first_obj_offset(page);
1997
1998	spin_lock(&class->lock);
1999	if (!get_zspage_inuse(zspage)) {
2000		/*
2001		 * Set "offset" to end of the page so that every loops
2002		 * skips unnecessary object scanning.
2003		 */
2004		offset = PAGE_SIZE;
2005	}
2006
2007	pos = offset;
2008	s_addr = kmap_atomic(page);
2009	while (pos < PAGE_SIZE) {
2010		head = obj_to_head(page, s_addr + pos);
2011		if (head & OBJ_ALLOCATED_TAG) {
2012			handle = head & ~OBJ_ALLOCATED_TAG;
2013			if (!trypin_tag(handle))
2014				goto unpin_objects;
2015		}
2016		pos += class->size;
2017	}
2018
2019	/*
2020	 * Here, any user cannot access all objects in the zspage so let's move.
2021	 */
2022	d_addr = kmap_atomic(newpage);
2023	memcpy(d_addr, s_addr, PAGE_SIZE);
2024	kunmap_atomic(d_addr);
2025
2026	for (addr = s_addr + offset; addr < s_addr + pos;
2027					addr += class->size) {
2028		head = obj_to_head(page, addr);
2029		if (head & OBJ_ALLOCATED_TAG) {
2030			handle = head & ~OBJ_ALLOCATED_TAG;
2031			if (!testpin_tag(handle))
2032				BUG();
2033
2034			old_obj = handle_to_obj(handle);
2035			obj_to_location(old_obj, &dummy, &obj_idx);
2036			new_obj = (unsigned long)location_to_obj(newpage,
2037								obj_idx);
2038			new_obj |= BIT(HANDLE_PIN_BIT);
2039			record_obj(handle, new_obj);
2040		}
2041	}
 
2042
2043	replace_sub_page(class, zspage, newpage, page);
2044	get_page(newpage);
2045
2046	dec_zspage_isolation(zspage);
2047
2048	/*
2049	 * Page migration is done so let's putback isolated zspage to
2050	 * the list if @page is final isolated subpage in the zspage.
2051	 */
2052	if (!is_zspage_isolated(zspage))
2053		putback_zspage(class, zspage);
 
 
 
 
 
 
2054
2055	reset_page(page);
2056	put_page(page);
2057	page = newpage;
2058
2059	ret = MIGRATEPAGE_SUCCESS;
2060unpin_objects:
2061	for (addr = s_addr + offset; addr < s_addr + pos;
2062						addr += class->size) {
2063		head = obj_to_head(page, addr);
2064		if (head & OBJ_ALLOCATED_TAG) {
2065			handle = head & ~OBJ_ALLOCATED_TAG;
2066			if (!testpin_tag(handle))
2067				BUG();
2068			unpin_tag(handle);
2069		}
2070	}
2071	kunmap_atomic(s_addr);
2072	spin_unlock(&class->lock);
2073	migrate_write_unlock(zspage);
2074
2075	return ret;
2076}
2077
2078void zs_page_putback(struct page *page)
2079{
2080	struct zs_pool *pool;
2081	struct size_class *class;
2082	int class_idx;
2083	enum fullness_group fg;
2084	struct address_space *mapping;
2085	struct zspage *zspage;
2086
2087	VM_BUG_ON_PAGE(!PageMovable(page), page);
2088	VM_BUG_ON_PAGE(!PageIsolated(page), page);
2089
2090	zspage = get_zspage(page);
2091	get_zspage_mapping(zspage, &class_idx, &fg);
2092	mapping = page_mapping(page);
2093	pool = mapping->private_data;
2094	class = pool->size_class[class_idx];
2095
2096	spin_lock(&class->lock);
2097	dec_zspage_isolation(zspage);
2098	if (!is_zspage_isolated(zspage)) {
2099		fg = putback_zspage(class, zspage);
2100		/*
2101		 * Due to page_lock, we cannot free zspage immediately
2102		 * so let's defer.
2103		 */
2104		if (fg == ZS_EMPTY)
2105			schedule_work(&pool->free_work);
2106	}
2107	spin_unlock(&class->lock);
2108}
2109
2110const struct address_space_operations zsmalloc_aops = {
2111	.isolate_page = zs_page_isolate,
2112	.migratepage = zs_page_migrate,
2113	.putback_page = zs_page_putback,
2114};
2115
2116static int zs_register_migration(struct zs_pool *pool)
2117{
2118	pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2119	if (IS_ERR(pool->inode)) {
2120		pool->inode = NULL;
2121		return 1;
2122	}
2123
2124	pool->inode->i_mapping->private_data = pool;
2125	pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2126	return 0;
2127}
2128
2129static void zs_unregister_migration(struct zs_pool *pool)
2130{
2131	flush_work(&pool->free_work);
2132	iput(pool->inode);
2133}
2134
2135/*
2136 * Caller should hold page_lock of all pages in the zspage
2137 * In here, we cannot use zspage meta data.
2138 */
2139static void async_free_zspage(struct work_struct *work)
2140{
2141	int i;
2142	struct size_class *class;
2143	unsigned int class_idx;
2144	enum fullness_group fullness;
2145	struct zspage *zspage, *tmp;
2146	LIST_HEAD(free_pages);
2147	struct zs_pool *pool = container_of(work, struct zs_pool,
2148					free_work);
2149
2150	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2151		class = pool->size_class[i];
2152		if (class->index != i)
2153			continue;
2154
2155		spin_lock(&class->lock);
2156		list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2157		spin_unlock(&class->lock);
 
2158	}
2159
2160
2161	list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2162		list_del(&zspage->list);
2163		lock_zspage(zspage);
2164
2165		get_zspage_mapping(zspage, &class_idx, &fullness);
2166		VM_BUG_ON(fullness != ZS_EMPTY);
2167		class = pool->size_class[class_idx];
2168		spin_lock(&class->lock);
2169		__free_zspage(pool, pool->size_class[class_idx], zspage);
2170		spin_unlock(&class->lock);
2171	}
2172};
2173
2174static void kick_deferred_free(struct zs_pool *pool)
2175{
2176	schedule_work(&pool->free_work);
2177}
2178
 
 
 
 
 
2179static void init_deferred_free(struct zs_pool *pool)
2180{
2181	INIT_WORK(&pool->free_work, async_free_zspage);
2182}
2183
2184static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2185{
2186	struct page *page = get_first_page(zspage);
2187
2188	do {
2189		WARN_ON(!trylock_page(page));
2190		__SetPageMovable(page, pool->inode->i_mapping);
2191		unlock_page(page);
2192	} while ((page = get_next_page(page)) != NULL);
2193}
 
 
2194#endif
2195
2196/*
2197 *
2198 * Based on the number of unused allocated objects calculate
2199 * and return the number of pages that we can free.
2200 */
2201static unsigned long zs_can_compact(struct size_class *class)
2202{
2203	unsigned long obj_wasted;
2204	unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2205	unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2206
2207	if (obj_allocated <= obj_used)
2208		return 0;
2209
2210	obj_wasted = obj_allocated - obj_used;
2211	obj_wasted /= class->objs_per_zspage;
2212
2213	return obj_wasted * class->pages_per_zspage;
2214}
2215
2216static void __zs_compact(struct zs_pool *pool, struct size_class *class)
 
2217{
2218	struct zs_compact_control cc;
2219	struct zspage *src_zspage;
2220	struct zspage *dst_zspage = NULL;
 
2221
2222	spin_lock(&class->lock);
2223	while ((src_zspage = isolate_zspage(class, true))) {
2224
2225		if (!zs_can_compact(class))
2226			break;
2227
2228		cc.obj_idx = 0;
2229		cc.s_page = get_first_page(src_zspage);
2230
2231		while ((dst_zspage = isolate_zspage(class, false))) {
2232			cc.d_page = get_first_page(dst_zspage);
2233			/*
2234			 * If there is no more space in dst_page, resched
2235			 * and see if anyone had allocated another zspage.
2236			 */
2237			if (!migrate_zspage(pool, class, &cc))
2238				break;
2239
2240			putback_zspage(class, dst_zspage);
2241		}
2242
2243		/* Stop if we couldn't find slot */
2244		if (dst_zspage == NULL)
2245			break;
2246
2247		putback_zspage(class, dst_zspage);
2248		if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
 
 
 
 
2249			free_zspage(pool, class, src_zspage);
2250			pool->stats.pages_compacted += class->pages_per_zspage;
 
 
 
 
 
 
 
 
 
 
 
2251		}
2252		spin_unlock(&class->lock);
2253		cond_resched();
2254		spin_lock(&class->lock);
2255	}
2256
2257	if (src_zspage)
2258		putback_zspage(class, src_zspage);
2259
2260	spin_unlock(&class->lock);
 
 
 
 
 
2261}
2262
2263unsigned long zs_compact(struct zs_pool *pool)
2264{
2265	int i;
2266	struct size_class *class;
 
 
 
 
 
 
 
 
 
 
2267
2268	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2269		class = pool->size_class[i];
2270		if (!class)
2271			continue;
2272		if (class->index != i)
2273			continue;
2274		__zs_compact(pool, class);
2275	}
 
 
2276
2277	return pool->stats.pages_compacted;
2278}
2279EXPORT_SYMBOL_GPL(zs_compact);
2280
2281void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2282{
2283	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2284}
2285EXPORT_SYMBOL_GPL(zs_pool_stats);
2286
2287static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2288		struct shrink_control *sc)
2289{
2290	unsigned long pages_freed;
2291	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2292			shrinker);
2293
2294	pages_freed = pool->stats.pages_compacted;
2295	/*
2296	 * Compact classes and calculate compaction delta.
2297	 * Can run concurrently with a manually triggered
2298	 * (by user) compaction.
2299	 */
2300	pages_freed = zs_compact(pool) - pages_freed;
2301
2302	return pages_freed ? pages_freed : SHRINK_STOP;
2303}
2304
2305static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2306		struct shrink_control *sc)
2307{
2308	int i;
2309	struct size_class *class;
2310	unsigned long pages_to_free = 0;
2311	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2312			shrinker);
2313
2314	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2315		class = pool->size_class[i];
2316		if (!class)
2317			continue;
2318		if (class->index != i)
2319			continue;
2320
2321		pages_to_free += zs_can_compact(class);
2322	}
2323
2324	return pages_to_free;
2325}
2326
2327static void zs_unregister_shrinker(struct zs_pool *pool)
2328{
2329	unregister_shrinker(&pool->shrinker);
2330}
2331
2332static int zs_register_shrinker(struct zs_pool *pool)
2333{
2334	pool->shrinker.scan_objects = zs_shrinker_scan;
2335	pool->shrinker.count_objects = zs_shrinker_count;
2336	pool->shrinker.batch = 0;
2337	pool->shrinker.seeks = DEFAULT_SEEKS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2338
2339	return register_shrinker(&pool->shrinker);
2340}
2341
2342/**
2343 * zs_create_pool - Creates an allocation pool to work from.
2344 * @name: pool name to be created
2345 *
2346 * This function must be called before anything when using
2347 * the zsmalloc allocator.
2348 *
2349 * On success, a pointer to the newly created pool is returned,
2350 * otherwise NULL.
2351 */
2352struct zs_pool *zs_create_pool(const char *name)
2353{
2354	int i;
2355	struct zs_pool *pool;
2356	struct size_class *prev_class = NULL;
2357
2358	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2359	if (!pool)
2360		return NULL;
2361
2362	init_deferred_free(pool);
 
 
2363
2364	pool->name = kstrdup(name, GFP_KERNEL);
2365	if (!pool->name)
2366		goto err;
2367
2368	if (create_cache(pool))
2369		goto err;
2370
2371	/*
2372	 * Iterate reversely, because, size of size_class that we want to use
2373	 * for merging should be larger or equal to current size.
2374	 */
2375	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2376		int size;
2377		int pages_per_zspage;
2378		int objs_per_zspage;
2379		struct size_class *class;
2380		int fullness = 0;
2381
2382		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2383		if (size > ZS_MAX_ALLOC_SIZE)
2384			size = ZS_MAX_ALLOC_SIZE;
2385		pages_per_zspage = get_pages_per_zspage(size);
2386		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2387
2388		/*
2389		 * We iterate from biggest down to smallest classes,
2390		 * so huge_class_size holds the size of the first huge
2391		 * class. Any object bigger than or equal to that will
2392		 * endup in the huge class.
2393		 */
2394		if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2395				!huge_class_size) {
2396			huge_class_size = size;
2397			/*
2398			 * The object uses ZS_HANDLE_SIZE bytes to store the
2399			 * handle. We need to subtract it, because zs_malloc()
2400			 * unconditionally adds handle size before it performs
2401			 * size class search - so object may be smaller than
2402			 * huge class size, yet it still can end up in the huge
2403			 * class because it grows by ZS_HANDLE_SIZE extra bytes
2404			 * right before class lookup.
2405			 */
2406			huge_class_size -= (ZS_HANDLE_SIZE - 1);
2407		}
2408
2409		/*
2410		 * size_class is used for normal zsmalloc operation such
2411		 * as alloc/free for that size. Although it is natural that we
2412		 * have one size_class for each size, there is a chance that we
2413		 * can get more memory utilization if we use one size_class for
2414		 * many different sizes whose size_class have same
2415		 * characteristics. So, we makes size_class point to
2416		 * previous size_class if possible.
2417		 */
2418		if (prev_class) {
2419			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2420				pool->size_class[i] = prev_class;
2421				continue;
2422			}
2423		}
2424
2425		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2426		if (!class)
2427			goto err;
2428
2429		class->size = size;
2430		class->index = i;
2431		class->pages_per_zspage = pages_per_zspage;
2432		class->objs_per_zspage = objs_per_zspage;
2433		spin_lock_init(&class->lock);
2434		pool->size_class[i] = class;
2435		for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2436							fullness++)
 
2437			INIT_LIST_HEAD(&class->fullness_list[fullness]);
 
 
2438
2439		prev_class = class;
2440	}
2441
2442	/* debug only, don't abort if it fails */
2443	zs_pool_stat_create(pool, name);
2444
2445	if (zs_register_migration(pool))
2446		goto err;
2447
2448	/*
2449	 * Not critical since shrinker is only used to trigger internal
2450	 * defragmentation of the pool which is pretty optional thing.  If
2451	 * registration fails we still can use the pool normally and user can
2452	 * trigger compaction manually. Thus, ignore return code.
2453	 */
2454	zs_register_shrinker(pool);
2455
2456	return pool;
2457
2458err:
2459	zs_destroy_pool(pool);
2460	return NULL;
2461}
2462EXPORT_SYMBOL_GPL(zs_create_pool);
2463
2464void zs_destroy_pool(struct zs_pool *pool)
2465{
2466	int i;
2467
2468	zs_unregister_shrinker(pool);
2469	zs_unregister_migration(pool);
2470	zs_pool_stat_destroy(pool);
2471
2472	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2473		int fg;
2474		struct size_class *class = pool->size_class[i];
2475
2476		if (!class)
2477			continue;
2478
2479		if (class->index != i)
2480			continue;
2481
2482		for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2483			if (!list_empty(&class->fullness_list[fg])) {
2484				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2485					class->size, fg);
2486			}
 
2487		}
2488		kfree(class);
2489	}
2490
2491	destroy_cache(pool);
2492	kfree(pool->name);
2493	kfree(pool);
2494}
2495EXPORT_SYMBOL_GPL(zs_destroy_pool);
2496
2497static int __init zs_init(void)
2498{
2499	int ret;
2500
2501	ret = zsmalloc_mount();
2502	if (ret)
2503		goto out;
2504
2505	ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2506				zs_cpu_prepare, zs_cpu_dead);
2507	if (ret)
2508		goto hp_setup_fail;
2509
2510#ifdef CONFIG_ZPOOL
2511	zpool_register_driver(&zs_zpool_driver);
2512#endif
2513
2514	zs_stat_init();
2515
2516	return 0;
2517
2518hp_setup_fail:
2519	zsmalloc_unmount();
2520out:
2521	return ret;
2522}
2523
2524static void __exit zs_exit(void)
2525{
2526#ifdef CONFIG_ZPOOL
2527	zpool_unregister_driver(&zs_zpool_driver);
2528#endif
2529	zsmalloc_unmount();
2530	cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2531
2532	zs_stat_exit();
2533}
2534
2535module_init(zs_init);
2536module_exit(zs_exit);
2537
2538MODULE_LICENSE("Dual BSD/GPL");
2539MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
v6.9.4
   1/*
   2 * zsmalloc memory allocator
   3 *
   4 * Copyright (C) 2011  Nitin Gupta
   5 * Copyright (C) 2012, 2013 Minchan Kim
   6 *
   7 * This code is released using a dual license strategy: BSD/GPL
   8 * You can choose the license that better fits your requirements.
   9 *
  10 * Released under the terms of 3-clause BSD License
  11 * Released under the terms of GNU General Public License Version 2.0
  12 */
  13
  14/*
  15 * Following is how we use various fields and flags of underlying
  16 * struct page(s) to form a zspage.
  17 *
  18 * Usage of struct page fields:
  19 *	page->private: points to zspage
  20 *	page->index: links together all component pages of a zspage
  21 *		For the huge page, this is always 0, so we use this field
  22 *		to store handle.
  23 *	page->page_type: first object offset in a subpage of zspage
  24 *
  25 * Usage of struct page flags:
  26 *	PG_private: identifies the first component page
  27 *	PG_owner_priv_1: identifies the huge component page
  28 *
  29 */
  30
  31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  32
  33/*
  34 * lock ordering:
  35 *	page_lock
  36 *	pool->lock
  37 *	zspage->lock
  38 */
  39
  40#include <linux/module.h>
  41#include <linux/kernel.h>
  42#include <linux/sched.h>
 
  43#include <linux/bitops.h>
  44#include <linux/errno.h>
  45#include <linux/highmem.h>
  46#include <linux/string.h>
  47#include <linux/slab.h>
  48#include <linux/pgtable.h>
  49#include <asm/tlbflush.h>
 
  50#include <linux/cpumask.h>
  51#include <linux/cpu.h>
  52#include <linux/vmalloc.h>
  53#include <linux/preempt.h>
  54#include <linux/spinlock.h>
  55#include <linux/shrinker.h>
  56#include <linux/types.h>
  57#include <linux/debugfs.h>
  58#include <linux/zsmalloc.h>
  59#include <linux/zpool.h>
 
  60#include <linux/migrate.h>
  61#include <linux/wait.h>
  62#include <linux/pagemap.h>
  63#include <linux/fs.h>
  64#include <linux/local_lock.h>
  65
  66#define ZSPAGE_MAGIC	0x58
  67
  68/*
  69 * This must be power of 2 and greater than or equal to sizeof(link_free).
  70 * These two conditions ensure that any 'struct link_free' itself doesn't
  71 * span more than 1 page which avoids complex case of mapping 2 pages simply
  72 * to restore link_free pointer values.
  73 */
  74#define ZS_ALIGN		8
  75
 
 
 
 
 
 
 
  76#define ZS_HANDLE_SIZE (sizeof(unsigned long))
  77
  78/*
  79 * Object location (<PFN>, <obj_idx>) is encoded as
  80 * a single (unsigned long) handle value.
  81 *
  82 * Note that object index <obj_idx> starts from 0.
  83 *
  84 * This is made more complicated by various memory models and PAE.
  85 */
  86
  87#ifndef MAX_POSSIBLE_PHYSMEM_BITS
  88#ifdef MAX_PHYSMEM_BITS
  89#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
  90#else
  91/*
  92 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
  93 * be PAGE_SHIFT
  94 */
  95#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
  96#endif
  97#endif
  98
  99#define _PFN_BITS		(MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
 100
 101/*
 
 
 
 
 
 
 
 
 
 102 * Head in allocated object should have OBJ_ALLOCATED_TAG
 103 * to identify the object was allocated or not.
 104 * It's okay to add the status bit in the least bit because
 105 * header keeps handle which is 4byte-aligned address so we
 106 * have room for two bit at least.
 107 */
 108#define OBJ_ALLOCATED_TAG 1
 109
 110#define OBJ_TAG_BITS	1
 111#define OBJ_TAG_MASK	OBJ_ALLOCATED_TAG
 112
 113#define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS)
 114#define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
 115
 116#define HUGE_BITS	1
 117#define FULLNESS_BITS	4
 118#define CLASS_BITS	8
 
 119#define MAGIC_VAL_BITS	8
 120
 121#define MAX(a, b) ((a) >= (b) ? (a) : (b))
 122
 123#define ZS_MAX_PAGES_PER_ZSPAGE	(_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL))
 124
 125/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
 126#define ZS_MIN_ALLOC_SIZE \
 127	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
 128/* each chunk includes extra space to keep handle */
 129#define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
 130
 131/*
 132 * On systems with 4K page size, this gives 255 size classes! There is a
 133 * trader-off here:
 134 *  - Large number of size classes is potentially wasteful as free page are
 135 *    spread across these classes
 136 *  - Small number of size classes causes large internal fragmentation
 137 *  - Probably its better to use specific size classes (empirically
 138 *    determined). NOTE: all those class sizes must be set as multiple of
 139 *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
 140 *
 141 *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
 142 *  (reason above)
 143 */
 144#define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS)
 145#define ZS_SIZE_CLASSES	(DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
 146				      ZS_SIZE_CLASS_DELTA) + 1)
 147
 148/*
 149 * Pages are distinguished by the ratio of used memory (that is the ratio
 150 * of ->inuse objects to all objects that page can store). For example,
 151 * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%.
 152 *
 153 * The number of fullness groups is not random. It allows us to keep
 154 * difference between the least busy page in the group (minimum permitted
 155 * number of ->inuse objects) and the most busy page (maximum permitted
 156 * number of ->inuse objects) at a reasonable value.
 157 */
 158enum fullness_group {
 159	ZS_INUSE_RATIO_0,
 160	ZS_INUSE_RATIO_10,
 161	/* NOTE: 8 more fullness groups here */
 162	ZS_INUSE_RATIO_99       = 10,
 163	ZS_INUSE_RATIO_100,
 164	NR_FULLNESS_GROUPS,
 165};
 166
 167enum class_stat_type {
 168	/* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */
 169	ZS_OBJS_ALLOCATED       = NR_FULLNESS_GROUPS,
 170	ZS_OBJS_INUSE,
 171	NR_CLASS_STAT_TYPES,
 
 
 
 172};
 173
 174struct zs_size_stat {
 175	unsigned long objs[NR_CLASS_STAT_TYPES];
 176};
 177
 178#ifdef CONFIG_ZSMALLOC_STAT
 179static struct dentry *zs_stat_root;
 180#endif
 181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 182static size_t huge_class_size;
 183
 184struct size_class {
 185	struct list_head fullness_list[NR_FULLNESS_GROUPS];
 
 186	/*
 187	 * Size of objects stored in this class. Must be multiple
 188	 * of ZS_ALIGN.
 189	 */
 190	int size;
 191	int objs_per_zspage;
 192	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
 193	int pages_per_zspage;
 194
 195	unsigned int index;
 196	struct zs_size_stat stats;
 197};
 198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 199/*
 200 * Placed within free objects to form a singly linked list.
 201 * For every zspage, zspage->freeobj gives head of this list.
 202 *
 203 * This must be power of 2 and less than or equal to ZS_ALIGN
 204 */
 205struct link_free {
 206	union {
 207		/*
 208		 * Free object index;
 209		 * It's valid for non-allocated object
 210		 */
 211		unsigned long next;
 212		/*
 213		 * Handle of allocated object.
 214		 */
 215		unsigned long handle;
 216	};
 217};
 218
 219struct zs_pool {
 220	const char *name;
 221
 222	struct size_class *size_class[ZS_SIZE_CLASSES];
 223	struct kmem_cache *handle_cachep;
 224	struct kmem_cache *zspage_cachep;
 225
 226	atomic_long_t pages_allocated;
 227
 228	struct zs_pool_stats stats;
 229
 230	/* Compact classes */
 231	struct shrinker *shrinker;
 232
 233#ifdef CONFIG_ZSMALLOC_STAT
 234	struct dentry *stat_dentry;
 235#endif
 236#ifdef CONFIG_COMPACTION
 
 237	struct work_struct free_work;
 238#endif
 239	spinlock_t lock;
 240	atomic_t compaction_in_progress;
 241};
 242
 243struct zspage {
 244	struct {
 245		unsigned int huge:HUGE_BITS;
 246		unsigned int fullness:FULLNESS_BITS;
 247		unsigned int class:CLASS_BITS + 1;
 
 248		unsigned int magic:MAGIC_VAL_BITS;
 249	};
 250	unsigned int inuse;
 251	unsigned int freeobj;
 252	struct page *first_page;
 253	struct list_head list; /* fullness list */
 254	struct zs_pool *pool;
 255	rwlock_t lock;
 
 256};
 257
 258struct mapping_area {
 259	local_lock_t lock;
 
 
 260	char *vm_buf; /* copy buffer for objects that span pages */
 
 261	char *vm_addr; /* address of kmap_atomic()'ed pages */
 262	enum zs_mapmode vm_mm; /* mapping mode */
 263};
 264
 265/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
 266static void SetZsHugePage(struct zspage *zspage)
 267{
 268	zspage->huge = 1;
 269}
 270
 271static bool ZsHugePage(struct zspage *zspage)
 272{
 273	return zspage->huge;
 274}
 275
 276static void migrate_lock_init(struct zspage *zspage);
 277static void migrate_read_lock(struct zspage *zspage);
 278static void migrate_read_unlock(struct zspage *zspage);
 279static void migrate_write_lock(struct zspage *zspage);
 280static void migrate_write_unlock(struct zspage *zspage);
 281
 282#ifdef CONFIG_COMPACTION
 283static void kick_deferred_free(struct zs_pool *pool);
 284static void init_deferred_free(struct zs_pool *pool);
 285static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
 286#else
 
 
 
 
 
 
 
 287static void kick_deferred_free(struct zs_pool *pool) {}
 288static void init_deferred_free(struct zs_pool *pool) {}
 289static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
 290#endif
 291
 292static int create_cache(struct zs_pool *pool)
 293{
 294	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
 295					0, 0, NULL);
 296	if (!pool->handle_cachep)
 297		return 1;
 298
 299	pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
 300					0, 0, NULL);
 301	if (!pool->zspage_cachep) {
 302		kmem_cache_destroy(pool->handle_cachep);
 303		pool->handle_cachep = NULL;
 304		return 1;
 305	}
 306
 307	return 0;
 308}
 309
 310static void destroy_cache(struct zs_pool *pool)
 311{
 312	kmem_cache_destroy(pool->handle_cachep);
 313	kmem_cache_destroy(pool->zspage_cachep);
 314}
 315
 316static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
 317{
 318	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
 319			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
 320}
 321
 322static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
 323{
 324	kmem_cache_free(pool->handle_cachep, (void *)handle);
 325}
 326
 327static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
 328{
 329	return kmem_cache_zalloc(pool->zspage_cachep,
 330			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
 331}
 332
 333static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
 334{
 335	kmem_cache_free(pool->zspage_cachep, zspage);
 336}
 337
 338/* pool->lock(which owns the handle) synchronizes races */
 339static void record_obj(unsigned long handle, unsigned long obj)
 340{
 341	*(unsigned long *)handle = obj;
 
 
 
 
 
 342}
 343
 344/* zpool driver */
 345
 346#ifdef CONFIG_ZPOOL
 347
 348static void *zs_zpool_create(const char *name, gfp_t gfp)
 
 
 349{
 350	/*
 351	 * Ignore global gfp flags: zs_malloc() may be invoked from
 352	 * different contexts and its caller must provide a valid
 353	 * gfp mask.
 354	 */
 355	return zs_create_pool(name);
 356}
 357
 358static void zs_zpool_destroy(void *pool)
 359{
 360	zs_destroy_pool(pool);
 361}
 362
 363static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
 364			unsigned long *handle)
 365{
 366	*handle = zs_malloc(pool, size, gfp);
 367
 368	if (IS_ERR_VALUE(*handle))
 369		return PTR_ERR((void *)*handle);
 370	return 0;
 371}
 372static void zs_zpool_free(void *pool, unsigned long handle)
 373{
 374	zs_free(pool, handle);
 375}
 376
 377static void *zs_zpool_map(void *pool, unsigned long handle,
 378			enum zpool_mapmode mm)
 379{
 380	enum zs_mapmode zs_mm;
 381
 382	switch (mm) {
 383	case ZPOOL_MM_RO:
 384		zs_mm = ZS_MM_RO;
 385		break;
 386	case ZPOOL_MM_WO:
 387		zs_mm = ZS_MM_WO;
 388		break;
 389	case ZPOOL_MM_RW:
 390	default:
 391		zs_mm = ZS_MM_RW;
 392		break;
 393	}
 394
 395	return zs_map_object(pool, handle, zs_mm);
 396}
 397static void zs_zpool_unmap(void *pool, unsigned long handle)
 398{
 399	zs_unmap_object(pool, handle);
 400}
 401
 402static u64 zs_zpool_total_size(void *pool)
 403{
 404	return zs_get_total_pages(pool) << PAGE_SHIFT;
 405}
 406
 407static struct zpool_driver zs_zpool_driver = {
 408	.type =			  "zsmalloc",
 409	.owner =		  THIS_MODULE,
 410	.create =		  zs_zpool_create,
 411	.destroy =		  zs_zpool_destroy,
 412	.malloc_support_movable = true,
 413	.malloc =		  zs_zpool_malloc,
 414	.free =			  zs_zpool_free,
 415	.map =			  zs_zpool_map,
 416	.unmap =		  zs_zpool_unmap,
 417	.total_size =		  zs_zpool_total_size,
 418};
 419
 420MODULE_ALIAS("zpool-zsmalloc");
 421#endif /* CONFIG_ZPOOL */
 422
 423/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
 424static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
 425	.lock	= INIT_LOCAL_LOCK(lock),
 426};
 
 
 
 427
 428static __maybe_unused int is_first_page(struct page *page)
 429{
 430	return PagePrivate(page);
 431}
 432
 433/* Protected by pool->lock */
 434static inline int get_zspage_inuse(struct zspage *zspage)
 435{
 436	return zspage->inuse;
 437}
 438
 
 
 
 
 439
 440static inline void mod_zspage_inuse(struct zspage *zspage, int val)
 441{
 442	zspage->inuse += val;
 443}
 444
 445static inline struct page *get_first_page(struct zspage *zspage)
 446{
 447	struct page *first_page = zspage->first_page;
 448
 449	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
 450	return first_page;
 451}
 452
 453static inline unsigned int get_first_obj_offset(struct page *page)
 454{
 455	return page->page_type;
 456}
 457
 458static inline void set_first_obj_offset(struct page *page, unsigned int offset)
 459{
 460	page->page_type = offset;
 461}
 462
 463static inline unsigned int get_freeobj(struct zspage *zspage)
 464{
 465	return zspage->freeobj;
 466}
 467
 468static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
 469{
 470	zspage->freeobj = obj;
 471}
 472
 473static struct size_class *zspage_class(struct zs_pool *pool,
 474				       struct zspage *zspage)
 
 475{
 476	return pool->size_class[zspage->class];
 
 
 
 
 
 
 
 
 
 
 
 477}
 478
 479/*
 480 * zsmalloc divides the pool into various size classes where each
 481 * class maintains a list of zspages where each zspage is divided
 482 * into equal sized chunks. Each allocation falls into one of these
 483 * classes depending on its size. This function returns index of the
 484 * size class which has chunk size big enough to hold the given size.
 485 */
 486static int get_size_class_index(int size)
 487{
 488	int idx = 0;
 489
 490	if (likely(size > ZS_MIN_ALLOC_SIZE))
 491		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
 492				ZS_SIZE_CLASS_DELTA);
 493
 494	return min_t(int, ZS_SIZE_CLASSES - 1, idx);
 495}
 496
 497static inline void class_stat_inc(struct size_class *class,
 
 498				int type, unsigned long cnt)
 499{
 500	class->stats.objs[type] += cnt;
 501}
 502
 503static inline void class_stat_dec(struct size_class *class,
 
 504				int type, unsigned long cnt)
 505{
 506	class->stats.objs[type] -= cnt;
 507}
 508
 509static inline unsigned long zs_stat_get(struct size_class *class, int type)
 
 
 510{
 511	return class->stats.objs[type];
 512}
 513
 514#ifdef CONFIG_ZSMALLOC_STAT
 515
 516static void __init zs_stat_init(void)
 517{
 518	if (!debugfs_initialized()) {
 519		pr_warn("debugfs not available, stat dir not created\n");
 520		return;
 521	}
 522
 523	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
 
 
 524}
 525
 526static void __exit zs_stat_exit(void)
 527{
 528	debugfs_remove_recursive(zs_stat_root);
 529}
 530
 531static unsigned long zs_can_compact(struct size_class *class);
 532
 533static int zs_stats_size_show(struct seq_file *s, void *v)
 534{
 535	int i, fg;
 536	struct zs_pool *pool = s->private;
 537	struct size_class *class;
 538	int objs_per_zspage;
 
 539	unsigned long obj_allocated, obj_used, pages_used, freeable;
 
 540	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
 541	unsigned long total_freeable = 0;
 542	unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, };
 543
 544	seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n",
 545			"class", "size", "10%", "20%", "30%", "40%",
 546			"50%", "60%", "70%", "80%", "90%", "99%", "100%",
 547			"obj_allocated", "obj_used", "pages_used",
 548			"pages_per_zspage", "freeable");
 549
 550	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
 551
 552		class = pool->size_class[i];
 553
 554		if (class->index != i)
 555			continue;
 556
 557		spin_lock(&pool->lock);
 558
 559		seq_printf(s, " %5u %5u ", i, class->size);
 560		for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) {
 561			inuse_totals[fg] += zs_stat_get(class, fg);
 562			seq_printf(s, "%9lu ", zs_stat_get(class, fg));
 563		}
 564
 565		obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED);
 566		obj_used = zs_stat_get(class, ZS_OBJS_INUSE);
 567		freeable = zs_can_compact(class);
 568		spin_unlock(&pool->lock);
 569
 570		objs_per_zspage = class->objs_per_zspage;
 571		pages_used = obj_allocated / objs_per_zspage *
 572				class->pages_per_zspage;
 573
 574		seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n",
 575			   obj_allocated, obj_used, pages_used,
 576			   class->pages_per_zspage, freeable);
 
 
 577
 
 
 578		total_objs += obj_allocated;
 579		total_used_objs += obj_used;
 580		total_pages += pages_used;
 581		total_freeable += freeable;
 582	}
 583
 584	seq_puts(s, "\n");
 585	seq_printf(s, " %5s %5s ", "Total", "");
 586
 587	for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++)
 588		seq_printf(s, "%9lu ", inuse_totals[fg]);
 589
 590	seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n",
 591		   total_objs, total_used_objs, total_pages, "",
 592		   total_freeable);
 593
 594	return 0;
 595}
 596DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
 597
 598static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
 599{
 
 
 600	if (!zs_stat_root) {
 601		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
 602		return;
 603	}
 604
 605	pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
 
 
 
 
 
 606
 607	debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
 608			    &zs_stats_size_fops);
 
 
 
 
 
 
 609}
 610
 611static void zs_pool_stat_destroy(struct zs_pool *pool)
 612{
 613	debugfs_remove_recursive(pool->stat_dentry);
 614}
 615
 616#else /* CONFIG_ZSMALLOC_STAT */
 617static void __init zs_stat_init(void)
 618{
 619}
 620
 621static void __exit zs_stat_exit(void)
 622{
 623}
 624
 625static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
 626{
 627}
 628
 629static inline void zs_pool_stat_destroy(struct zs_pool *pool)
 630{
 631}
 632#endif
 633
 634
 635/*
 636 * For each size class, zspages are divided into different groups
 637 * depending on their usage ratio. This function returns fullness
 
 
 638 * status of the given page.
 639 */
 640static int get_fullness_group(struct size_class *class, struct zspage *zspage)
 
 641{
 642	int inuse, objs_per_zspage, ratio;
 
 643
 644	inuse = get_zspage_inuse(zspage);
 645	objs_per_zspage = class->objs_per_zspage;
 646
 647	if (inuse == 0)
 648		return ZS_INUSE_RATIO_0;
 649	if (inuse == objs_per_zspage)
 650		return ZS_INUSE_RATIO_100;
 
 
 
 
 651
 652	ratio = 100 * inuse / objs_per_zspage;
 653	/*
 654	 * Take integer division into consideration: a page with one inuse
 655	 * object out of 127 possible, will end up having 0 usage ratio,
 656	 * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group.
 657	 */
 658	return ratio / 10 + 1;
 659}
 660
 661/*
 662 * Each size class maintains various freelists and zspages are assigned
 663 * to one of these freelists based on the number of live objects they
 664 * have. This functions inserts the given zspage into the freelist
 665 * identified by <class, fullness_group>.
 666 */
 667static void insert_zspage(struct size_class *class,
 668				struct zspage *zspage,
 669				int fullness)
 670{
 671	class_stat_inc(class, fullness, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 672	list_add(&zspage->list, &class->fullness_list[fullness]);
 673	zspage->fullness = fullness;
 674}
 675
 676/*
 677 * This function removes the given zspage from the freelist identified
 678 * by <class, fullness_group>.
 679 */
 680static void remove_zspage(struct size_class *class, struct zspage *zspage)
 
 
 681{
 682	int fullness = zspage->fullness;
 683
 684	VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
 
 685
 686	list_del_init(&zspage->list);
 687	class_stat_dec(class, fullness, 1);
 688}
 689
 690/*
 691 * Each size class maintains zspages in different fullness groups depending
 692 * on the number of live objects they contain. When allocating or freeing
 693 * objects, the fullness status of the page can change, for instance, from
 694 * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function
 695 * checks if such a status change has occurred for the given page and
 696 * accordingly moves the page from the list of the old fullness group to that
 697 * of the new fullness group.
 698 */
 699static int fix_fullness_group(struct size_class *class, struct zspage *zspage)
 
 700{
 701	int newfg;
 
 702
 
 703	newfg = get_fullness_group(class, zspage);
 704	if (newfg == zspage->fullness)
 705		goto out;
 706
 707	remove_zspage(class, zspage);
 708	insert_zspage(class, zspage, newfg);
 
 
 
 
 
 709out:
 710	return newfg;
 711}
 712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 713static struct zspage *get_zspage(struct page *page)
 714{
 715	struct zspage *zspage = (struct zspage *)page_private(page);
 716
 717	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
 718	return zspage;
 719}
 720
 721static struct page *get_next_page(struct page *page)
 722{
 723	struct zspage *zspage = get_zspage(page);
 724
 725	if (unlikely(ZsHugePage(zspage)))
 726		return NULL;
 727
 728	return (struct page *)page->index;
 729}
 730
 731/**
 732 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
 733 * @obj: the encoded object value
 734 * @page: page object resides in zspage
 735 * @obj_idx: object index
 736 */
 737static void obj_to_location(unsigned long obj, struct page **page,
 738				unsigned int *obj_idx)
 739{
 
 740	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
 741	*obj_idx = (obj & OBJ_INDEX_MASK);
 742}
 743
 744static void obj_to_page(unsigned long obj, struct page **page)
 745{
 746	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
 747}
 748
 749/**
 750 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
 751 * @page: page object resides in zspage
 752 * @obj_idx: object index
 753 */
 754static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
 755{
 756	unsigned long obj;
 757
 758	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
 759	obj |= obj_idx & OBJ_INDEX_MASK;
 
 760
 761	return obj;
 762}
 763
 764static unsigned long handle_to_obj(unsigned long handle)
 765{
 766	return *(unsigned long *)handle;
 767}
 768
 769static inline bool obj_allocated(struct page *page, void *obj,
 770				 unsigned long *phandle)
 771{
 772	unsigned long handle;
 773	struct zspage *zspage = get_zspage(page);
 774
 775	if (unlikely(ZsHugePage(zspage))) {
 776		VM_BUG_ON_PAGE(!is_first_page(page), page);
 777		handle = page->index;
 778	} else
 779		handle = *(unsigned long *)obj;
 
 780
 781	if (!(handle & OBJ_ALLOCATED_TAG))
 782		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 783
 784	/* Clear all tags before returning the handle */
 785	*phandle = handle & ~OBJ_TAG_MASK;
 786	return true;
 787}
 788
 789static void reset_page(struct page *page)
 790{
 791	__ClearPageMovable(page);
 792	ClearPagePrivate(page);
 793	set_page_private(page, 0);
 794	page_mapcount_reset(page);
 795	page->index = 0;
 
 796}
 797
 798static int trylock_zspage(struct zspage *zspage)
 
 
 
 
 
 
 
 
 
 
 
 
 
 799{
 800	struct page *cursor, *fail;
 801
 802	for (cursor = get_first_page(zspage); cursor != NULL; cursor =
 803					get_next_page(cursor)) {
 804		if (!trylock_page(cursor)) {
 805			fail = cursor;
 806			goto unlock;
 807		}
 808	}
 809
 810	return 1;
 811unlock:
 812	for (cursor = get_first_page(zspage); cursor != fail; cursor =
 813					get_next_page(cursor))
 814		unlock_page(cursor);
 815
 816	return 0;
 817}
 818
 819static void __free_zspage(struct zs_pool *pool, struct size_class *class,
 820				struct zspage *zspage)
 821{
 822	struct page *page, *next;
 
 
 
 
 823
 824	assert_spin_locked(&pool->lock);
 825
 826	VM_BUG_ON(get_zspage_inuse(zspage));
 827	VM_BUG_ON(zspage->fullness != ZS_INUSE_RATIO_0);
 828
 829	next = page = get_first_page(zspage);
 830	do {
 831		VM_BUG_ON_PAGE(!PageLocked(page), page);
 832		next = get_next_page(page);
 833		reset_page(page);
 834		unlock_page(page);
 835		dec_zone_page_state(page, NR_ZSPAGES);
 836		put_page(page);
 837		page = next;
 838	} while (page != NULL);
 839
 840	cache_free_zspage(pool, zspage);
 841
 842	class_stat_dec(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
 843	atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated);
 
 844}
 845
 846static void free_zspage(struct zs_pool *pool, struct size_class *class,
 847				struct zspage *zspage)
 848{
 849	VM_BUG_ON(get_zspage_inuse(zspage));
 850	VM_BUG_ON(list_empty(&zspage->list));
 851
 852	/*
 853	 * Since zs_free couldn't be sleepable, this function cannot call
 854	 * lock_page. The page locks trylock_zspage got will be released
 855	 * by __free_zspage.
 856	 */
 857	if (!trylock_zspage(zspage)) {
 858		kick_deferred_free(pool);
 859		return;
 860	}
 861
 862	remove_zspage(class, zspage);
 863	__free_zspage(pool, class, zspage);
 864}
 865
 866/* Initialize a newly allocated zspage */
 867static void init_zspage(struct size_class *class, struct zspage *zspage)
 868{
 869	unsigned int freeobj = 1;
 870	unsigned long off = 0;
 871	struct page *page = get_first_page(zspage);
 872
 873	while (page) {
 874		struct page *next_page;
 875		struct link_free *link;
 876		void *vaddr;
 877
 878		set_first_obj_offset(page, off);
 879
 880		vaddr = kmap_atomic(page);
 881		link = (struct link_free *)vaddr + off / sizeof(*link);
 882
 883		while ((off += class->size) < PAGE_SIZE) {
 884			link->next = freeobj++ << OBJ_TAG_BITS;
 885			link += class->size / sizeof(*link);
 886		}
 887
 888		/*
 889		 * We now come to the last (full or partial) object on this
 890		 * page, which must point to the first object on the next
 891		 * page (if present)
 892		 */
 893		next_page = get_next_page(page);
 894		if (next_page) {
 895			link->next = freeobj++ << OBJ_TAG_BITS;
 896		} else {
 897			/*
 898			 * Reset OBJ_TAG_BITS bit to last link to tell
 899			 * whether it's allocated object or not.
 900			 */
 901			link->next = -1UL << OBJ_TAG_BITS;
 902		}
 903		kunmap_atomic(vaddr);
 904		page = next_page;
 905		off %= PAGE_SIZE;
 906	}
 907
 908	set_freeobj(zspage, 0);
 909}
 910
 911static void create_page_chain(struct size_class *class, struct zspage *zspage,
 912				struct page *pages[])
 913{
 914	int i;
 915	struct page *page;
 916	struct page *prev_page = NULL;
 917	int nr_pages = class->pages_per_zspage;
 918
 919	/*
 920	 * Allocate individual pages and link them together as:
 921	 * 1. all pages are linked together using page->index
 922	 * 2. each sub-page point to zspage using page->private
 923	 *
 924	 * we set PG_private to identify the first page (i.e. no other sub-page
 925	 * has this flag set).
 926	 */
 927	for (i = 0; i < nr_pages; i++) {
 928		page = pages[i];
 929		set_page_private(page, (unsigned long)zspage);
 930		page->index = 0;
 931		if (i == 0) {
 932			zspage->first_page = page;
 933			SetPagePrivate(page);
 934			if (unlikely(class->objs_per_zspage == 1 &&
 935					class->pages_per_zspage == 1))
 936				SetZsHugePage(zspage);
 937		} else {
 938			prev_page->index = (unsigned long)page;
 939		}
 940		prev_page = page;
 941	}
 942}
 943
 944/*
 945 * Allocate a zspage for the given size class
 946 */
 947static struct zspage *alloc_zspage(struct zs_pool *pool,
 948					struct size_class *class,
 949					gfp_t gfp)
 950{
 951	int i;
 952	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
 953	struct zspage *zspage = cache_alloc_zspage(pool, gfp);
 954
 955	if (!zspage)
 956		return NULL;
 957
 
 958	zspage->magic = ZSPAGE_MAGIC;
 959	migrate_lock_init(zspage);
 960
 961	for (i = 0; i < class->pages_per_zspage; i++) {
 962		struct page *page;
 963
 964		page = alloc_page(gfp);
 965		if (!page) {
 966			while (--i >= 0) {
 967				dec_zone_page_state(pages[i], NR_ZSPAGES);
 968				__free_page(pages[i]);
 969			}
 970			cache_free_zspage(pool, zspage);
 971			return NULL;
 972		}
 973
 974		inc_zone_page_state(page, NR_ZSPAGES);
 975		pages[i] = page;
 976	}
 977
 978	create_page_chain(class, zspage, pages);
 979	init_zspage(class, zspage);
 980	zspage->pool = pool;
 981	zspage->class = class->index;
 982
 983	return zspage;
 984}
 985
 986static struct zspage *find_get_zspage(struct size_class *class)
 987{
 988	int i;
 989	struct zspage *zspage;
 990
 991	for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) {
 992		zspage = list_first_entry_or_null(&class->fullness_list[i],
 993						  struct zspage, list);
 994		if (zspage)
 995			break;
 996	}
 997
 998	return zspage;
 999}
1000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1001static inline int __zs_cpu_up(struct mapping_area *area)
1002{
1003	/*
1004	 * Make sure we don't leak memory if a cpu UP notification
1005	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1006	 */
1007	if (area->vm_buf)
1008		return 0;
1009	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1010	if (!area->vm_buf)
1011		return -ENOMEM;
1012	return 0;
1013}
1014
1015static inline void __zs_cpu_down(struct mapping_area *area)
1016{
1017	kfree(area->vm_buf);
1018	area->vm_buf = NULL;
1019}
1020
1021static void *__zs_map_object(struct mapping_area *area,
1022			struct page *pages[2], int off, int size)
1023{
1024	int sizes[2];
1025	void *addr;
1026	char *buf = area->vm_buf;
1027
1028	/* disable page faults to match kmap_atomic() return conditions */
1029	pagefault_disable();
1030
1031	/* no read fastpath */
1032	if (area->vm_mm == ZS_MM_WO)
1033		goto out;
1034
1035	sizes[0] = PAGE_SIZE - off;
1036	sizes[1] = size - sizes[0];
1037
1038	/* copy object to per-cpu buffer */
1039	addr = kmap_atomic(pages[0]);
1040	memcpy(buf, addr + off, sizes[0]);
1041	kunmap_atomic(addr);
1042	addr = kmap_atomic(pages[1]);
1043	memcpy(buf + sizes[0], addr, sizes[1]);
1044	kunmap_atomic(addr);
1045out:
1046	return area->vm_buf;
1047}
1048
1049static void __zs_unmap_object(struct mapping_area *area,
1050			struct page *pages[2], int off, int size)
1051{
1052	int sizes[2];
1053	void *addr;
1054	char *buf;
1055
1056	/* no write fastpath */
1057	if (area->vm_mm == ZS_MM_RO)
1058		goto out;
1059
1060	buf = area->vm_buf;
1061	buf = buf + ZS_HANDLE_SIZE;
1062	size -= ZS_HANDLE_SIZE;
1063	off += ZS_HANDLE_SIZE;
1064
1065	sizes[0] = PAGE_SIZE - off;
1066	sizes[1] = size - sizes[0];
1067
1068	/* copy per-cpu buffer to object */
1069	addr = kmap_atomic(pages[0]);
1070	memcpy(addr + off, buf, sizes[0]);
1071	kunmap_atomic(addr);
1072	addr = kmap_atomic(pages[1]);
1073	memcpy(addr, buf + sizes[0], sizes[1]);
1074	kunmap_atomic(addr);
1075
1076out:
1077	/* enable page faults to match kunmap_atomic() return conditions */
1078	pagefault_enable();
1079}
1080
 
 
1081static int zs_cpu_prepare(unsigned int cpu)
1082{
1083	struct mapping_area *area;
1084
1085	area = &per_cpu(zs_map_area, cpu);
1086	return __zs_cpu_up(area);
1087}
1088
1089static int zs_cpu_dead(unsigned int cpu)
1090{
1091	struct mapping_area *area;
1092
1093	area = &per_cpu(zs_map_area, cpu);
1094	__zs_cpu_down(area);
1095	return 0;
1096}
1097
1098static bool can_merge(struct size_class *prev, int pages_per_zspage,
1099					int objs_per_zspage)
1100{
1101	if (prev->pages_per_zspage == pages_per_zspage &&
1102		prev->objs_per_zspage == objs_per_zspage)
1103		return true;
1104
1105	return false;
1106}
1107
1108static bool zspage_full(struct size_class *class, struct zspage *zspage)
1109{
1110	return get_zspage_inuse(zspage) == class->objs_per_zspage;
1111}
1112
1113static bool zspage_empty(struct zspage *zspage)
1114{
1115	return get_zspage_inuse(zspage) == 0;
1116}
1117
1118/**
1119 * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1120 * that hold objects of the provided size.
1121 * @pool: zsmalloc pool to use
1122 * @size: object size
1123 *
1124 * Context: Any context.
1125 *
1126 * Return: the index of the zsmalloc &size_class that hold objects of the
1127 * provided size.
1128 */
1129unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1130{
1131	struct size_class *class;
1132
1133	class = pool->size_class[get_size_class_index(size)];
1134
1135	return class->index;
1136}
1137EXPORT_SYMBOL_GPL(zs_lookup_class_index);
1138
1139unsigned long zs_get_total_pages(struct zs_pool *pool)
1140{
1141	return atomic_long_read(&pool->pages_allocated);
1142}
1143EXPORT_SYMBOL_GPL(zs_get_total_pages);
1144
1145/**
1146 * zs_map_object - get address of allocated object from handle.
1147 * @pool: pool from which the object was allocated
1148 * @handle: handle returned from zs_malloc
1149 * @mm: mapping mode to use
1150 *
1151 * Before using an object allocated from zs_malloc, it must be mapped using
1152 * this function. When done with the object, it must be unmapped using
1153 * zs_unmap_object.
1154 *
1155 * Only one object can be mapped per cpu at a time. There is no protection
1156 * against nested mappings.
1157 *
1158 * This function returns with preemption and page faults disabled.
1159 */
1160void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1161			enum zs_mapmode mm)
1162{
1163	struct zspage *zspage;
1164	struct page *page;
1165	unsigned long obj, off;
1166	unsigned int obj_idx;
1167
 
 
1168	struct size_class *class;
1169	struct mapping_area *area;
1170	struct page *pages[2];
1171	void *ret;
1172
1173	/*
1174	 * Because we use per-cpu mapping areas shared among the
1175	 * pools/users, we can't allow mapping in interrupt context
1176	 * because it can corrupt another users mappings.
1177	 */
1178	BUG_ON(in_interrupt());
1179
1180	/* It guarantees it can get zspage from handle safely */
1181	spin_lock(&pool->lock);
 
1182	obj = handle_to_obj(handle);
1183	obj_to_location(obj, &page, &obj_idx);
1184	zspage = get_zspage(page);
1185
1186	/*
1187	 * migration cannot move any zpages in this zspage. Here, pool->lock
1188	 * is too heavy since callers would take some time until they calls
1189	 * zs_unmap_object API so delegate the locking from class to zspage
1190	 * which is smaller granularity.
1191	 */
1192	migrate_read_lock(zspage);
1193	spin_unlock(&pool->lock);
1194
1195	class = zspage_class(pool, zspage);
1196	off = offset_in_page(class->size * obj_idx);
 
1197
1198	local_lock(&zs_map_area.lock);
1199	area = this_cpu_ptr(&zs_map_area);
1200	area->vm_mm = mm;
1201	if (off + class->size <= PAGE_SIZE) {
1202		/* this object is contained entirely within a page */
1203		area->vm_addr = kmap_atomic(page);
1204		ret = area->vm_addr + off;
1205		goto out;
1206	}
1207
1208	/* this object spans two pages */
1209	pages[0] = page;
1210	pages[1] = get_next_page(page);
1211	BUG_ON(!pages[1]);
1212
1213	ret = __zs_map_object(area, pages, off, class->size);
1214out:
1215	if (likely(!ZsHugePage(zspage)))
1216		ret += ZS_HANDLE_SIZE;
1217
1218	return ret;
1219}
1220EXPORT_SYMBOL_GPL(zs_map_object);
1221
1222void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1223{
1224	struct zspage *zspage;
1225	struct page *page;
1226	unsigned long obj, off;
1227	unsigned int obj_idx;
1228
 
 
1229	struct size_class *class;
1230	struct mapping_area *area;
1231
1232	obj = handle_to_obj(handle);
1233	obj_to_location(obj, &page, &obj_idx);
1234	zspage = get_zspage(page);
1235	class = zspage_class(pool, zspage);
1236	off = offset_in_page(class->size * obj_idx);
 
1237
1238	area = this_cpu_ptr(&zs_map_area);
1239	if (off + class->size <= PAGE_SIZE)
1240		kunmap_atomic(area->vm_addr);
1241	else {
1242		struct page *pages[2];
1243
1244		pages[0] = page;
1245		pages[1] = get_next_page(page);
1246		BUG_ON(!pages[1]);
1247
1248		__zs_unmap_object(area, pages, off, class->size);
1249	}
1250	local_unlock(&zs_map_area.lock);
1251
1252	migrate_read_unlock(zspage);
 
1253}
1254EXPORT_SYMBOL_GPL(zs_unmap_object);
1255
1256/**
1257 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1258 *                        zsmalloc &size_class.
1259 * @pool: zsmalloc pool to use
1260 *
1261 * The function returns the size of the first huge class - any object of equal
1262 * or bigger size will be stored in zspage consisting of a single physical
1263 * page.
1264 *
1265 * Context: Any context.
1266 *
1267 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1268 */
1269size_t zs_huge_class_size(struct zs_pool *pool)
1270{
1271	return huge_class_size;
1272}
1273EXPORT_SYMBOL_GPL(zs_huge_class_size);
1274
1275static unsigned long obj_malloc(struct zs_pool *pool,
1276				struct zspage *zspage, unsigned long handle)
1277{
1278	int i, nr_page, offset;
1279	unsigned long obj;
1280	struct link_free *link;
1281	struct size_class *class;
1282
1283	struct page *m_page;
1284	unsigned long m_offset;
1285	void *vaddr;
1286
1287	class = pool->size_class[zspage->class];
1288	handle |= OBJ_ALLOCATED_TAG;
1289	obj = get_freeobj(zspage);
1290
1291	offset = obj * class->size;
1292	nr_page = offset >> PAGE_SHIFT;
1293	m_offset = offset_in_page(offset);
1294	m_page = get_first_page(zspage);
1295
1296	for (i = 0; i < nr_page; i++)
1297		m_page = get_next_page(m_page);
1298
1299	vaddr = kmap_atomic(m_page);
1300	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1301	set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1302	if (likely(!ZsHugePage(zspage)))
1303		/* record handle in the header of allocated chunk */
1304		link->handle = handle;
1305	else
1306		/* record handle to page->index */
1307		zspage->first_page->index = handle;
1308
1309	kunmap_atomic(vaddr);
1310	mod_zspage_inuse(zspage, 1);
 
1311
1312	obj = location_to_obj(m_page, obj);
1313
1314	return obj;
1315}
1316
1317
1318/**
1319 * zs_malloc - Allocate block of given size from pool.
1320 * @pool: pool to allocate from
1321 * @size: size of block to allocate
1322 * @gfp: gfp flags when allocating object
1323 *
1324 * On success, handle to the allocated object is returned,
1325 * otherwise an ERR_PTR().
1326 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1327 */
1328unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1329{
1330	unsigned long handle, obj;
1331	struct size_class *class;
1332	int newfg;
1333	struct zspage *zspage;
1334
1335	if (unlikely(!size))
1336		return (unsigned long)ERR_PTR(-EINVAL);
1337
1338	if (unlikely(size > ZS_MAX_ALLOC_SIZE))
1339		return (unsigned long)ERR_PTR(-ENOSPC);
1340
1341	handle = cache_alloc_handle(pool, gfp);
1342	if (!handle)
1343		return (unsigned long)ERR_PTR(-ENOMEM);
1344
1345	/* extra space in chunk to keep the handle */
1346	size += ZS_HANDLE_SIZE;
1347	class = pool->size_class[get_size_class_index(size)];
1348
1349	/* pool->lock effectively protects the zpage migration */
1350	spin_lock(&pool->lock);
1351	zspage = find_get_zspage(class);
1352	if (likely(zspage)) {
1353		obj = obj_malloc(pool, zspage, handle);
1354		/* Now move the zspage to another fullness group, if required */
1355		fix_fullness_group(class, zspage);
1356		record_obj(handle, obj);
1357		class_stat_inc(class, ZS_OBJS_INUSE, 1);
1358
1359		goto out;
1360	}
1361
1362	spin_unlock(&pool->lock);
1363
1364	zspage = alloc_zspage(pool, class, gfp);
1365	if (!zspage) {
1366		cache_free_handle(pool, handle);
1367		return (unsigned long)ERR_PTR(-ENOMEM);
1368	}
1369
1370	spin_lock(&pool->lock);
1371	obj = obj_malloc(pool, zspage, handle);
1372	newfg = get_fullness_group(class, zspage);
1373	insert_zspage(class, zspage, newfg);
 
1374	record_obj(handle, obj);
1375	atomic_long_add(class->pages_per_zspage, &pool->pages_allocated);
1376	class_stat_inc(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
1377	class_stat_inc(class, ZS_OBJS_INUSE, 1);
1378
1379	/* We completely set up zspage so mark them as movable */
1380	SetZsPageMovable(pool, zspage);
1381out:
1382	spin_unlock(&pool->lock);
1383
1384	return handle;
1385}
1386EXPORT_SYMBOL_GPL(zs_malloc);
1387
1388static void obj_free(int class_size, unsigned long obj)
1389{
1390	struct link_free *link;
1391	struct zspage *zspage;
1392	struct page *f_page;
1393	unsigned long f_offset;
1394	unsigned int f_objidx;
1395	void *vaddr;
1396
 
1397	obj_to_location(obj, &f_page, &f_objidx);
1398	f_offset = offset_in_page(class_size * f_objidx);
1399	zspage = get_zspage(f_page);
1400
1401	vaddr = kmap_atomic(f_page);
1402	link = (struct link_free *)(vaddr + f_offset);
1403
1404	/* Insert this object in containing zspage's freelist */
1405	if (likely(!ZsHugePage(zspage)))
1406		link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1407	else
1408		f_page->index = 0;
1409	set_freeobj(zspage, f_objidx);
1410
1411	kunmap_atomic(vaddr);
1412	mod_zspage_inuse(zspage, -1);
 
1413}
1414
1415void zs_free(struct zs_pool *pool, unsigned long handle)
1416{
1417	struct zspage *zspage;
1418	struct page *f_page;
1419	unsigned long obj;
 
 
1420	struct size_class *class;
1421	int fullness;
 
1422
1423	if (IS_ERR_OR_NULL((void *)handle))
1424		return;
1425
1426	/*
1427	 * The pool->lock protects the race with zpage's migration
1428	 * so it's safe to get the page from handle.
1429	 */
1430	spin_lock(&pool->lock);
1431	obj = handle_to_obj(handle);
1432	obj_to_page(obj, &f_page);
1433	zspage = get_zspage(f_page);
1434	class = zspage_class(pool, zspage);
1435
1436	class_stat_dec(class, ZS_OBJS_INUSE, 1);
1437	obj_free(class->size, obj);
 
 
1438
 
 
1439	fullness = fix_fullness_group(class, zspage);
1440	if (fullness == ZS_INUSE_RATIO_0)
 
 
 
 
 
 
 
 
1441		free_zspage(pool, class, zspage);
 
1442
1443	spin_unlock(&pool->lock);
 
1444	cache_free_handle(pool, handle);
1445}
1446EXPORT_SYMBOL_GPL(zs_free);
1447
1448static void zs_object_copy(struct size_class *class, unsigned long dst,
1449				unsigned long src)
1450{
1451	struct page *s_page, *d_page;
1452	unsigned int s_objidx, d_objidx;
1453	unsigned long s_off, d_off;
1454	void *s_addr, *d_addr;
1455	int s_size, d_size, size;
1456	int written = 0;
1457
1458	s_size = d_size = class->size;
1459
1460	obj_to_location(src, &s_page, &s_objidx);
1461	obj_to_location(dst, &d_page, &d_objidx);
1462
1463	s_off = offset_in_page(class->size * s_objidx);
1464	d_off = offset_in_page(class->size * d_objidx);
1465
1466	if (s_off + class->size > PAGE_SIZE)
1467		s_size = PAGE_SIZE - s_off;
1468
1469	if (d_off + class->size > PAGE_SIZE)
1470		d_size = PAGE_SIZE - d_off;
1471
1472	s_addr = kmap_atomic(s_page);
1473	d_addr = kmap_atomic(d_page);
1474
1475	while (1) {
1476		size = min(s_size, d_size);
1477		memcpy(d_addr + d_off, s_addr + s_off, size);
1478		written += size;
1479
1480		if (written == class->size)
1481			break;
1482
1483		s_off += size;
1484		s_size -= size;
1485		d_off += size;
1486		d_size -= size;
1487
1488		/*
1489		 * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic()
1490		 * calls must occurs in reverse order of calls to kmap_atomic().
1491		 * So, to call kunmap_atomic(s_addr) we should first call
1492		 * kunmap_atomic(d_addr). For more details see
1493		 * Documentation/mm/highmem.rst.
1494		 */
1495		if (s_off >= PAGE_SIZE) {
1496			kunmap_atomic(d_addr);
1497			kunmap_atomic(s_addr);
1498			s_page = get_next_page(s_page);
1499			s_addr = kmap_atomic(s_page);
1500			d_addr = kmap_atomic(d_page);
1501			s_size = class->size - written;
1502			s_off = 0;
1503		}
1504
1505		if (d_off >= PAGE_SIZE) {
1506			kunmap_atomic(d_addr);
1507			d_page = get_next_page(d_page);
1508			d_addr = kmap_atomic(d_page);
1509			d_size = class->size - written;
1510			d_off = 0;
1511		}
1512	}
1513
1514	kunmap_atomic(d_addr);
1515	kunmap_atomic(s_addr);
1516}
1517
1518/*
1519 * Find alloced object in zspage from index object and
1520 * return handle.
1521 */
1522static unsigned long find_alloced_obj(struct size_class *class,
1523				      struct page *page, int *obj_idx)
1524{
1525	unsigned int offset;
 
1526	int index = *obj_idx;
1527	unsigned long handle = 0;
1528	void *addr = kmap_atomic(page);
1529
1530	offset = get_first_obj_offset(page);
1531	offset += class->size * index;
1532
1533	while (offset < PAGE_SIZE) {
1534		if (obj_allocated(page, addr + offset, &handle))
1535			break;
 
 
 
 
 
1536
1537		offset += class->size;
1538		index++;
1539	}
1540
1541	kunmap_atomic(addr);
1542
1543	*obj_idx = index;
1544
1545	return handle;
1546}
1547
1548static void migrate_zspage(struct zs_pool *pool, struct zspage *src_zspage,
1549			   struct zspage *dst_zspage)
 
 
 
 
 
 
 
 
 
 
 
1550{
1551	unsigned long used_obj, free_obj;
1552	unsigned long handle;
1553	int obj_idx = 0;
1554	struct page *s_page = get_first_page(src_zspage);
1555	struct size_class *class = pool->size_class[src_zspage->class];
 
1556
1557	while (1) {
1558		handle = find_alloced_obj(class, s_page, &obj_idx);
1559		if (!handle) {
1560			s_page = get_next_page(s_page);
1561			if (!s_page)
1562				break;
1563			obj_idx = 0;
1564			continue;
1565		}
1566
 
 
 
 
 
 
 
1567		used_obj = handle_to_obj(handle);
1568		free_obj = obj_malloc(pool, dst_zspage, handle);
1569		zs_object_copy(class, free_obj, used_obj);
1570		obj_idx++;
 
 
 
 
 
 
 
1571		record_obj(handle, free_obj);
1572		obj_free(class->size, used_obj);
 
 
1573
1574		/* Stop if there is no more space */
1575		if (zspage_full(class, dst_zspage))
1576			break;
1577
1578		/* Stop if there are no more objects to migrate */
1579		if (zspage_empty(src_zspage))
1580			break;
1581	}
1582}
1583
1584static struct zspage *isolate_src_zspage(struct size_class *class)
1585{
 
1586	struct zspage *zspage;
1587	int fg;
1588
1589	for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) {
1590		zspage = list_first_entry_or_null(&class->fullness_list[fg],
1591						  struct zspage, list);
1592		if (zspage) {
1593			remove_zspage(class, zspage);
1594			return zspage;
1595		}
1596	}
1597
1598	return zspage;
1599}
1600
1601static struct zspage *isolate_dst_zspage(struct size_class *class)
1602{
1603	struct zspage *zspage;
1604	int fg;
1605
1606	for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) {
1607		zspage = list_first_entry_or_null(&class->fullness_list[fg],
1608						  struct zspage, list);
1609		if (zspage) {
1610			remove_zspage(class, zspage);
 
1611			return zspage;
1612		}
1613	}
1614
1615	return zspage;
1616}
1617
1618/*
1619 * putback_zspage - add @zspage into right class's fullness list
1620 * @class: destination class
1621 * @zspage: target page
1622 *
1623 * Return @zspage's fullness status
1624 */
1625static int putback_zspage(struct size_class *class, struct zspage *zspage)
 
1626{
1627	int fullness;
 
 
1628
1629	fullness = get_fullness_group(class, zspage);
1630	insert_zspage(class, zspage, fullness);
 
1631
1632	return fullness;
1633}
1634
1635#ifdef CONFIG_COMPACTION
1636/*
1637 * To prevent zspage destroy during migration, zspage freeing should
1638 * hold locks of all pages in the zspage.
1639 */
1640static void lock_zspage(struct zspage *zspage)
 
 
 
 
 
 
 
 
 
 
 
 
1641{
1642	struct page *curr_page, *page;
1643
1644	/*
1645	 * Pages we haven't locked yet can be migrated off the list while we're
1646	 * trying to lock them, so we need to be careful and only attempt to
1647	 * lock each page under migrate_read_lock(). Otherwise, the page we lock
1648	 * may no longer belong to the zspage. This means that we may wait for
1649	 * the wrong page to unlock, so we must take a reference to the page
1650	 * prior to waiting for it to unlock outside migrate_read_lock().
1651	 */
1652	while (1) {
1653		migrate_read_lock(zspage);
1654		page = get_first_page(zspage);
1655		if (trylock_page(page))
1656			break;
1657		get_page(page);
1658		migrate_read_unlock(zspage);
1659		wait_on_page_locked(page);
1660		put_page(page);
1661	}
1662
1663	curr_page = page;
1664	while ((page = get_next_page(curr_page))) {
1665		if (trylock_page(page)) {
1666			curr_page = page;
1667		} else {
1668			get_page(page);
1669			migrate_read_unlock(zspage);
1670			wait_on_page_locked(page);
1671			put_page(page);
1672			migrate_read_lock(zspage);
1673		}
1674	}
1675	migrate_read_unlock(zspage);
1676}
1677#endif /* CONFIG_COMPACTION */
1678
1679static void migrate_lock_init(struct zspage *zspage)
1680{
1681	rwlock_init(&zspage->lock);
1682}
1683
1684static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1685{
1686	read_lock(&zspage->lock);
1687}
1688
1689static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1690{
1691	read_unlock(&zspage->lock);
1692}
1693
1694static void migrate_write_lock(struct zspage *zspage)
1695{
1696	write_lock(&zspage->lock);
1697}
1698
1699static void migrate_write_unlock(struct zspage *zspage)
1700{
1701	write_unlock(&zspage->lock);
1702}
1703
1704#ifdef CONFIG_COMPACTION
 
 
 
 
1705
1706static const struct movable_operations zsmalloc_mops;
 
 
 
1707
1708static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1709				struct page *newpage, struct page *oldpage)
1710{
1711	struct page *page;
1712	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1713	int idx = 0;
1714
1715	page = get_first_page(zspage);
1716	do {
1717		if (page == oldpage)
1718			pages[idx] = newpage;
1719		else
1720			pages[idx] = page;
1721		idx++;
1722	} while ((page = get_next_page(page)) != NULL);
1723
1724	create_page_chain(class, zspage, pages);
1725	set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1726	if (unlikely(ZsHugePage(zspage)))
1727		newpage->index = oldpage->index;
1728	__SetPageMovable(newpage, &zsmalloc_mops);
1729}
1730
1731static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1732{
 
 
 
 
 
 
 
1733	/*
1734	 * Page is locked so zspage couldn't be destroyed. For detail, look at
1735	 * lock_zspage in free_zspage.
1736	 */
 
1737	VM_BUG_ON_PAGE(PageIsolated(page), page);
1738
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1739	return true;
1740}
1741
1742static int zs_page_migrate(struct page *newpage, struct page *page,
1743		enum migrate_mode mode)
1744{
1745	struct zs_pool *pool;
1746	struct size_class *class;
 
 
1747	struct zspage *zspage;
1748	struct page *dummy;
1749	void *s_addr, *d_addr, *addr;
1750	unsigned int offset;
1751	unsigned long handle;
1752	unsigned long old_obj, new_obj;
1753	unsigned int obj_idx;
 
1754
1755	/*
1756	 * We cannot support the _NO_COPY case here, because copy needs to
1757	 * happen under the zs lock, which does not work with
1758	 * MIGRATE_SYNC_NO_COPY workflow.
1759	 */
1760	if (mode == MIGRATE_SYNC_NO_COPY)
1761		return -EINVAL;
1762
 
1763	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1764
1765	/* The page is locked, so this pointer must remain valid */
1766	zspage = get_zspage(page);
1767	pool = zspage->pool;
1768
1769	/*
1770	 * The pool's lock protects the race between zpage migration
1771	 * and zs_free.
1772	 */
1773	spin_lock(&pool->lock);
1774	class = zspage_class(pool, zspage);
1775
1776	/* the migrate_write_lock protects zpage access via zs_map_object */
1777	migrate_write_lock(zspage);
 
 
 
 
 
 
1778
1779	offset = get_first_obj_offset(page);
1780	s_addr = kmap_atomic(page);
 
 
 
 
 
 
 
 
 
1781
1782	/*
1783	 * Here, any user cannot access all objects in the zspage so let's move.
1784	 */
1785	d_addr = kmap_atomic(newpage);
1786	copy_page(d_addr, s_addr);
1787	kunmap_atomic(d_addr);
1788
1789	for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
1790					addr += class->size) {
1791		if (obj_allocated(page, addr, &handle)) {
 
 
 
 
1792
1793			old_obj = handle_to_obj(handle);
1794			obj_to_location(old_obj, &dummy, &obj_idx);
1795			new_obj = (unsigned long)location_to_obj(newpage,
1796								obj_idx);
 
1797			record_obj(handle, new_obj);
1798		}
1799	}
1800	kunmap_atomic(s_addr);
1801
1802	replace_sub_page(class, zspage, newpage, page);
 
 
 
 
1803	/*
1804	 * Since we complete the data copy and set up new zspage structure,
1805	 * it's okay to release the pool's lock.
1806	 */
1807	spin_unlock(&pool->lock);
1808	migrate_write_unlock(zspage);
1809
1810	get_page(newpage);
1811	if (page_zone(newpage) != page_zone(page)) {
1812		dec_zone_page_state(page, NR_ZSPAGES);
1813		inc_zone_page_state(newpage, NR_ZSPAGES);
1814	}
1815
1816	reset_page(page);
1817	put_page(page);
 
1818
1819	return MIGRATEPAGE_SUCCESS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1820}
1821
1822static void zs_page_putback(struct page *page)
1823{
 
 
 
 
 
 
 
 
1824	VM_BUG_ON_PAGE(!PageIsolated(page), page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1825}
1826
1827static const struct movable_operations zsmalloc_mops = {
1828	.isolate_page = zs_page_isolate,
1829	.migrate_page = zs_page_migrate,
1830	.putback_page = zs_page_putback,
1831};
1832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1833/*
1834 * Caller should hold page_lock of all pages in the zspage
1835 * In here, we cannot use zspage meta data.
1836 */
1837static void async_free_zspage(struct work_struct *work)
1838{
1839	int i;
1840	struct size_class *class;
 
 
1841	struct zspage *zspage, *tmp;
1842	LIST_HEAD(free_pages);
1843	struct zs_pool *pool = container_of(work, struct zs_pool,
1844					free_work);
1845
1846	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
1847		class = pool->size_class[i];
1848		if (class->index != i)
1849			continue;
1850
1851		spin_lock(&pool->lock);
1852		list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0],
1853				 &free_pages);
1854		spin_unlock(&pool->lock);
1855	}
1856
 
1857	list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
1858		list_del(&zspage->list);
1859		lock_zspage(zspage);
1860
1861		spin_lock(&pool->lock);
1862		class = zspage_class(pool, zspage);
1863		__free_zspage(pool, class, zspage);
1864		spin_unlock(&pool->lock);
 
 
1865	}
1866};
1867
1868static void kick_deferred_free(struct zs_pool *pool)
1869{
1870	schedule_work(&pool->free_work);
1871}
1872
1873static void zs_flush_migration(struct zs_pool *pool)
1874{
1875	flush_work(&pool->free_work);
1876}
1877
1878static void init_deferred_free(struct zs_pool *pool)
1879{
1880	INIT_WORK(&pool->free_work, async_free_zspage);
1881}
1882
1883static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
1884{
1885	struct page *page = get_first_page(zspage);
1886
1887	do {
1888		WARN_ON(!trylock_page(page));
1889		__SetPageMovable(page, &zsmalloc_mops);
1890		unlock_page(page);
1891	} while ((page = get_next_page(page)) != NULL);
1892}
1893#else
1894static inline void zs_flush_migration(struct zs_pool *pool) { }
1895#endif
1896
1897/*
1898 *
1899 * Based on the number of unused allocated objects calculate
1900 * and return the number of pages that we can free.
1901 */
1902static unsigned long zs_can_compact(struct size_class *class)
1903{
1904	unsigned long obj_wasted;
1905	unsigned long obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED);
1906	unsigned long obj_used = zs_stat_get(class, ZS_OBJS_INUSE);
1907
1908	if (obj_allocated <= obj_used)
1909		return 0;
1910
1911	obj_wasted = obj_allocated - obj_used;
1912	obj_wasted /= class->objs_per_zspage;
1913
1914	return obj_wasted * class->pages_per_zspage;
1915}
1916
1917static unsigned long __zs_compact(struct zs_pool *pool,
1918				  struct size_class *class)
1919{
1920	struct zspage *src_zspage = NULL;
 
1921	struct zspage *dst_zspage = NULL;
1922	unsigned long pages_freed = 0;
1923
1924	/*
1925	 * protect the race between zpage migration and zs_free
1926	 * as well as zpage allocation/free
1927	 */
1928	spin_lock(&pool->lock);
1929	while (zs_can_compact(class)) {
1930		int fg;
 
1931
1932		if (!dst_zspage) {
1933			dst_zspage = isolate_dst_zspage(class);
1934			if (!dst_zspage)
 
 
 
 
1935				break;
 
 
1936		}
1937
1938		src_zspage = isolate_src_zspage(class);
1939		if (!src_zspage)
1940			break;
1941
1942		migrate_write_lock(src_zspage);
1943		migrate_zspage(pool, src_zspage, dst_zspage);
1944		migrate_write_unlock(src_zspage);
1945
1946		fg = putback_zspage(class, src_zspage);
1947		if (fg == ZS_INUSE_RATIO_0) {
1948			free_zspage(pool, class, src_zspage);
1949			pages_freed += class->pages_per_zspage;
1950		}
1951		src_zspage = NULL;
1952
1953		if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100
1954		    || spin_is_contended(&pool->lock)) {
1955			putback_zspage(class, dst_zspage);
1956			dst_zspage = NULL;
1957
1958			spin_unlock(&pool->lock);
1959			cond_resched();
1960			spin_lock(&pool->lock);
1961		}
 
 
 
1962	}
1963
1964	if (src_zspage)
1965		putback_zspage(class, src_zspage);
1966
1967	if (dst_zspage)
1968		putback_zspage(class, dst_zspage);
1969
1970	spin_unlock(&pool->lock);
1971
1972	return pages_freed;
1973}
1974
1975unsigned long zs_compact(struct zs_pool *pool)
1976{
1977	int i;
1978	struct size_class *class;
1979	unsigned long pages_freed = 0;
1980
1981	/*
1982	 * Pool compaction is performed under pool->lock so it is basically
1983	 * single-threaded. Having more than one thread in __zs_compact()
1984	 * will increase pool->lock contention, which will impact other
1985	 * zsmalloc operations that need pool->lock.
1986	 */
1987	if (atomic_xchg(&pool->compaction_in_progress, 1))
1988		return 0;
1989
1990	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
1991		class = pool->size_class[i];
 
 
1992		if (class->index != i)
1993			continue;
1994		pages_freed += __zs_compact(pool, class);
1995	}
1996	atomic_long_add(pages_freed, &pool->stats.pages_compacted);
1997	atomic_set(&pool->compaction_in_progress, 0);
1998
1999	return pages_freed;
2000}
2001EXPORT_SYMBOL_GPL(zs_compact);
2002
2003void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2004{
2005	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2006}
2007EXPORT_SYMBOL_GPL(zs_pool_stats);
2008
2009static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2010		struct shrink_control *sc)
2011{
2012	unsigned long pages_freed;
2013	struct zs_pool *pool = shrinker->private_data;
 
2014
 
2015	/*
2016	 * Compact classes and calculate compaction delta.
2017	 * Can run concurrently with a manually triggered
2018	 * (by user) compaction.
2019	 */
2020	pages_freed = zs_compact(pool);
2021
2022	return pages_freed ? pages_freed : SHRINK_STOP;
2023}
2024
2025static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2026		struct shrink_control *sc)
2027{
2028	int i;
2029	struct size_class *class;
2030	unsigned long pages_to_free = 0;
2031	struct zs_pool *pool = shrinker->private_data;
 
2032
2033	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2034		class = pool->size_class[i];
 
 
2035		if (class->index != i)
2036			continue;
2037
2038		pages_to_free += zs_can_compact(class);
2039	}
2040
2041	return pages_to_free;
2042}
2043
2044static void zs_unregister_shrinker(struct zs_pool *pool)
2045{
2046	shrinker_free(pool->shrinker);
2047}
2048
2049static int zs_register_shrinker(struct zs_pool *pool)
2050{
2051	pool->shrinker = shrinker_alloc(0, "mm-zspool:%s", pool->name);
2052	if (!pool->shrinker)
2053		return -ENOMEM;
2054
2055	pool->shrinker->scan_objects = zs_shrinker_scan;
2056	pool->shrinker->count_objects = zs_shrinker_count;
2057	pool->shrinker->batch = 0;
2058	pool->shrinker->private_data = pool;
2059
2060	shrinker_register(pool->shrinker);
2061
2062	return 0;
2063}
2064
2065static int calculate_zspage_chain_size(int class_size)
2066{
2067	int i, min_waste = INT_MAX;
2068	int chain_size = 1;
2069
2070	if (is_power_of_2(class_size))
2071		return chain_size;
2072
2073	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
2074		int waste;
2075
2076		waste = (i * PAGE_SIZE) % class_size;
2077		if (waste < min_waste) {
2078			min_waste = waste;
2079			chain_size = i;
2080		}
2081	}
2082
2083	return chain_size;
2084}
2085
2086/**
2087 * zs_create_pool - Creates an allocation pool to work from.
2088 * @name: pool name to be created
2089 *
2090 * This function must be called before anything when using
2091 * the zsmalloc allocator.
2092 *
2093 * On success, a pointer to the newly created pool is returned,
2094 * otherwise NULL.
2095 */
2096struct zs_pool *zs_create_pool(const char *name)
2097{
2098	int i;
2099	struct zs_pool *pool;
2100	struct size_class *prev_class = NULL;
2101
2102	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2103	if (!pool)
2104		return NULL;
2105
2106	init_deferred_free(pool);
2107	spin_lock_init(&pool->lock);
2108	atomic_set(&pool->compaction_in_progress, 0);
2109
2110	pool->name = kstrdup(name, GFP_KERNEL);
2111	if (!pool->name)
2112		goto err;
2113
2114	if (create_cache(pool))
2115		goto err;
2116
2117	/*
2118	 * Iterate reversely, because, size of size_class that we want to use
2119	 * for merging should be larger or equal to current size.
2120	 */
2121	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2122		int size;
2123		int pages_per_zspage;
2124		int objs_per_zspage;
2125		struct size_class *class;
2126		int fullness;
2127
2128		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2129		if (size > ZS_MAX_ALLOC_SIZE)
2130			size = ZS_MAX_ALLOC_SIZE;
2131		pages_per_zspage = calculate_zspage_chain_size(size);
2132		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2133
2134		/*
2135		 * We iterate from biggest down to smallest classes,
2136		 * so huge_class_size holds the size of the first huge
2137		 * class. Any object bigger than or equal to that will
2138		 * endup in the huge class.
2139		 */
2140		if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2141				!huge_class_size) {
2142			huge_class_size = size;
2143			/*
2144			 * The object uses ZS_HANDLE_SIZE bytes to store the
2145			 * handle. We need to subtract it, because zs_malloc()
2146			 * unconditionally adds handle size before it performs
2147			 * size class search - so object may be smaller than
2148			 * huge class size, yet it still can end up in the huge
2149			 * class because it grows by ZS_HANDLE_SIZE extra bytes
2150			 * right before class lookup.
2151			 */
2152			huge_class_size -= (ZS_HANDLE_SIZE - 1);
2153		}
2154
2155		/*
2156		 * size_class is used for normal zsmalloc operation such
2157		 * as alloc/free for that size. Although it is natural that we
2158		 * have one size_class for each size, there is a chance that we
2159		 * can get more memory utilization if we use one size_class for
2160		 * many different sizes whose size_class have same
2161		 * characteristics. So, we makes size_class point to
2162		 * previous size_class if possible.
2163		 */
2164		if (prev_class) {
2165			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2166				pool->size_class[i] = prev_class;
2167				continue;
2168			}
2169		}
2170
2171		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2172		if (!class)
2173			goto err;
2174
2175		class->size = size;
2176		class->index = i;
2177		class->pages_per_zspage = pages_per_zspage;
2178		class->objs_per_zspage = objs_per_zspage;
 
2179		pool->size_class[i] = class;
2180
2181		fullness = ZS_INUSE_RATIO_0;
2182		while (fullness < NR_FULLNESS_GROUPS) {
2183			INIT_LIST_HEAD(&class->fullness_list[fullness]);
2184			fullness++;
2185		}
2186
2187		prev_class = class;
2188	}
2189
2190	/* debug only, don't abort if it fails */
2191	zs_pool_stat_create(pool, name);
2192
 
 
 
2193	/*
2194	 * Not critical since shrinker is only used to trigger internal
2195	 * defragmentation of the pool which is pretty optional thing.  If
2196	 * registration fails we still can use the pool normally and user can
2197	 * trigger compaction manually. Thus, ignore return code.
2198	 */
2199	zs_register_shrinker(pool);
2200
2201	return pool;
2202
2203err:
2204	zs_destroy_pool(pool);
2205	return NULL;
2206}
2207EXPORT_SYMBOL_GPL(zs_create_pool);
2208
2209void zs_destroy_pool(struct zs_pool *pool)
2210{
2211	int i;
2212
2213	zs_unregister_shrinker(pool);
2214	zs_flush_migration(pool);
2215	zs_pool_stat_destroy(pool);
2216
2217	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2218		int fg;
2219		struct size_class *class = pool->size_class[i];
2220
2221		if (!class)
2222			continue;
2223
2224		if (class->index != i)
2225			continue;
2226
2227		for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) {
2228			if (list_empty(&class->fullness_list[fg]))
2229				continue;
2230
2231			pr_err("Class-%d fullness group %d is not empty\n",
2232			       class->size, fg);
2233		}
2234		kfree(class);
2235	}
2236
2237	destroy_cache(pool);
2238	kfree(pool->name);
2239	kfree(pool);
2240}
2241EXPORT_SYMBOL_GPL(zs_destroy_pool);
2242
2243static int __init zs_init(void)
2244{
2245	int ret;
2246
 
 
 
 
2247	ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2248				zs_cpu_prepare, zs_cpu_dead);
2249	if (ret)
2250		goto out;
2251
2252#ifdef CONFIG_ZPOOL
2253	zpool_register_driver(&zs_zpool_driver);
2254#endif
2255
2256	zs_stat_init();
2257
2258	return 0;
2259
 
 
2260out:
2261	return ret;
2262}
2263
2264static void __exit zs_exit(void)
2265{
2266#ifdef CONFIG_ZPOOL
2267	zpool_unregister_driver(&zs_zpool_driver);
2268#endif
 
2269	cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2270
2271	zs_stat_exit();
2272}
2273
2274module_init(zs_init);
2275module_exit(zs_exit);
2276
2277MODULE_LICENSE("Dual BSD/GPL");
2278MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");