Loading...
1// SPDX-License-Identifier: GPL-2.0
2#include <linux/mm.h>
3#include <linux/highmem.h>
4#include <linux/sched.h>
5#include <linux/hugetlb.h>
6
7static int walk_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
8 struct mm_walk *walk)
9{
10 pte_t *pte;
11 int err = 0;
12
13 pte = pte_offset_map(pmd, addr);
14 for (;;) {
15 err = walk->pte_entry(pte, addr, addr + PAGE_SIZE, walk);
16 if (err)
17 break;
18 addr += PAGE_SIZE;
19 if (addr == end)
20 break;
21 pte++;
22 }
23
24 pte_unmap(pte);
25 return err;
26}
27
28static int walk_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
29 struct mm_walk *walk)
30{
31 pmd_t *pmd;
32 unsigned long next;
33 int err = 0;
34
35 pmd = pmd_offset(pud, addr);
36 do {
37again:
38 next = pmd_addr_end(addr, end);
39 if (pmd_none(*pmd) || !walk->vma) {
40 if (walk->pte_hole)
41 err = walk->pte_hole(addr, next, walk);
42 if (err)
43 break;
44 continue;
45 }
46 /*
47 * This implies that each ->pmd_entry() handler
48 * needs to know about pmd_trans_huge() pmds
49 */
50 if (walk->pmd_entry)
51 err = walk->pmd_entry(pmd, addr, next, walk);
52 if (err)
53 break;
54
55 /*
56 * Check this here so we only break down trans_huge
57 * pages when we _need_ to
58 */
59 if (!walk->pte_entry)
60 continue;
61
62 split_huge_pmd(walk->vma, pmd, addr);
63 if (pmd_trans_unstable(pmd))
64 goto again;
65 err = walk_pte_range(pmd, addr, next, walk);
66 if (err)
67 break;
68 } while (pmd++, addr = next, addr != end);
69
70 return err;
71}
72
73static int walk_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
74 struct mm_walk *walk)
75{
76 pud_t *pud;
77 unsigned long next;
78 int err = 0;
79
80 pud = pud_offset(p4d, addr);
81 do {
82 again:
83 next = pud_addr_end(addr, end);
84 if (pud_none(*pud) || !walk->vma) {
85 if (walk->pte_hole)
86 err = walk->pte_hole(addr, next, walk);
87 if (err)
88 break;
89 continue;
90 }
91
92 if (walk->pud_entry) {
93 spinlock_t *ptl = pud_trans_huge_lock(pud, walk->vma);
94
95 if (ptl) {
96 err = walk->pud_entry(pud, addr, next, walk);
97 spin_unlock(ptl);
98 if (err)
99 break;
100 continue;
101 }
102 }
103
104 split_huge_pud(walk->vma, pud, addr);
105 if (pud_none(*pud))
106 goto again;
107
108 if (walk->pmd_entry || walk->pte_entry)
109 err = walk_pmd_range(pud, addr, next, walk);
110 if (err)
111 break;
112 } while (pud++, addr = next, addr != end);
113
114 return err;
115}
116
117static int walk_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
118 struct mm_walk *walk)
119{
120 p4d_t *p4d;
121 unsigned long next;
122 int err = 0;
123
124 p4d = p4d_offset(pgd, addr);
125 do {
126 next = p4d_addr_end(addr, end);
127 if (p4d_none_or_clear_bad(p4d)) {
128 if (walk->pte_hole)
129 err = walk->pte_hole(addr, next, walk);
130 if (err)
131 break;
132 continue;
133 }
134 if (walk->pmd_entry || walk->pte_entry)
135 err = walk_pud_range(p4d, addr, next, walk);
136 if (err)
137 break;
138 } while (p4d++, addr = next, addr != end);
139
140 return err;
141}
142
143static int walk_pgd_range(unsigned long addr, unsigned long end,
144 struct mm_walk *walk)
145{
146 pgd_t *pgd;
147 unsigned long next;
148 int err = 0;
149
150 pgd = pgd_offset(walk->mm, addr);
151 do {
152 next = pgd_addr_end(addr, end);
153 if (pgd_none_or_clear_bad(pgd)) {
154 if (walk->pte_hole)
155 err = walk->pte_hole(addr, next, walk);
156 if (err)
157 break;
158 continue;
159 }
160 if (walk->pmd_entry || walk->pte_entry)
161 err = walk_p4d_range(pgd, addr, next, walk);
162 if (err)
163 break;
164 } while (pgd++, addr = next, addr != end);
165
166 return err;
167}
168
169#ifdef CONFIG_HUGETLB_PAGE
170static unsigned long hugetlb_entry_end(struct hstate *h, unsigned long addr,
171 unsigned long end)
172{
173 unsigned long boundary = (addr & huge_page_mask(h)) + huge_page_size(h);
174 return boundary < end ? boundary : end;
175}
176
177static int walk_hugetlb_range(unsigned long addr, unsigned long end,
178 struct mm_walk *walk)
179{
180 struct vm_area_struct *vma = walk->vma;
181 struct hstate *h = hstate_vma(vma);
182 unsigned long next;
183 unsigned long hmask = huge_page_mask(h);
184 unsigned long sz = huge_page_size(h);
185 pte_t *pte;
186 int err = 0;
187
188 do {
189 next = hugetlb_entry_end(h, addr, end);
190 pte = huge_pte_offset(walk->mm, addr & hmask, sz);
191
192 if (pte)
193 err = walk->hugetlb_entry(pte, hmask, addr, next, walk);
194 else if (walk->pte_hole)
195 err = walk->pte_hole(addr, next, walk);
196
197 if (err)
198 break;
199 } while (addr = next, addr != end);
200
201 return err;
202}
203
204#else /* CONFIG_HUGETLB_PAGE */
205static int walk_hugetlb_range(unsigned long addr, unsigned long end,
206 struct mm_walk *walk)
207{
208 return 0;
209}
210
211#endif /* CONFIG_HUGETLB_PAGE */
212
213/*
214 * Decide whether we really walk over the current vma on [@start, @end)
215 * or skip it via the returned value. Return 0 if we do walk over the
216 * current vma, and return 1 if we skip the vma. Negative values means
217 * error, where we abort the current walk.
218 */
219static int walk_page_test(unsigned long start, unsigned long end,
220 struct mm_walk *walk)
221{
222 struct vm_area_struct *vma = walk->vma;
223
224 if (walk->test_walk)
225 return walk->test_walk(start, end, walk);
226
227 /*
228 * vma(VM_PFNMAP) doesn't have any valid struct pages behind VM_PFNMAP
229 * range, so we don't walk over it as we do for normal vmas. However,
230 * Some callers are interested in handling hole range and they don't
231 * want to just ignore any single address range. Such users certainly
232 * define their ->pte_hole() callbacks, so let's delegate them to handle
233 * vma(VM_PFNMAP).
234 */
235 if (vma->vm_flags & VM_PFNMAP) {
236 int err = 1;
237 if (walk->pte_hole)
238 err = walk->pte_hole(start, end, walk);
239 return err ? err : 1;
240 }
241 return 0;
242}
243
244static int __walk_page_range(unsigned long start, unsigned long end,
245 struct mm_walk *walk)
246{
247 int err = 0;
248 struct vm_area_struct *vma = walk->vma;
249
250 if (vma && is_vm_hugetlb_page(vma)) {
251 if (walk->hugetlb_entry)
252 err = walk_hugetlb_range(start, end, walk);
253 } else
254 err = walk_pgd_range(start, end, walk);
255
256 return err;
257}
258
259/**
260 * walk_page_range - walk page table with caller specific callbacks
261 * @start: start address of the virtual address range
262 * @end: end address of the virtual address range
263 * @walk: mm_walk structure defining the callbacks and the target address space
264 *
265 * Recursively walk the page table tree of the process represented by @walk->mm
266 * within the virtual address range [@start, @end). During walking, we can do
267 * some caller-specific works for each entry, by setting up pmd_entry(),
268 * pte_entry(), and/or hugetlb_entry(). If you don't set up for some of these
269 * callbacks, the associated entries/pages are just ignored.
270 * The return values of these callbacks are commonly defined like below:
271 *
272 * - 0 : succeeded to handle the current entry, and if you don't reach the
273 * end address yet, continue to walk.
274 * - >0 : succeeded to handle the current entry, and return to the caller
275 * with caller specific value.
276 * - <0 : failed to handle the current entry, and return to the caller
277 * with error code.
278 *
279 * Before starting to walk page table, some callers want to check whether
280 * they really want to walk over the current vma, typically by checking
281 * its vm_flags. walk_page_test() and @walk->test_walk() are used for this
282 * purpose.
283 *
284 * struct mm_walk keeps current values of some common data like vma and pmd,
285 * which are useful for the access from callbacks. If you want to pass some
286 * caller-specific data to callbacks, @walk->private should be helpful.
287 *
288 * Locking:
289 * Callers of walk_page_range() and walk_page_vma() should hold
290 * @walk->mm->mmap_sem, because these function traverse vma list and/or
291 * access to vma's data.
292 */
293int walk_page_range(unsigned long start, unsigned long end,
294 struct mm_walk *walk)
295{
296 int err = 0;
297 unsigned long next;
298 struct vm_area_struct *vma;
299
300 if (start >= end)
301 return -EINVAL;
302
303 if (!walk->mm)
304 return -EINVAL;
305
306 VM_BUG_ON_MM(!rwsem_is_locked(&walk->mm->mmap_sem), walk->mm);
307
308 vma = find_vma(walk->mm, start);
309 do {
310 if (!vma) { /* after the last vma */
311 walk->vma = NULL;
312 next = end;
313 } else if (start < vma->vm_start) { /* outside vma */
314 walk->vma = NULL;
315 next = min(end, vma->vm_start);
316 } else { /* inside vma */
317 walk->vma = vma;
318 next = min(end, vma->vm_end);
319 vma = vma->vm_next;
320
321 err = walk_page_test(start, next, walk);
322 if (err > 0) {
323 /*
324 * positive return values are purely for
325 * controlling the pagewalk, so should never
326 * be passed to the callers.
327 */
328 err = 0;
329 continue;
330 }
331 if (err < 0)
332 break;
333 }
334 if (walk->vma || walk->pte_hole)
335 err = __walk_page_range(start, next, walk);
336 if (err)
337 break;
338 } while (start = next, start < end);
339 return err;
340}
341
342int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk)
343{
344 int err;
345
346 if (!walk->mm)
347 return -EINVAL;
348
349 VM_BUG_ON(!rwsem_is_locked(&walk->mm->mmap_sem));
350 VM_BUG_ON(!vma);
351 walk->vma = vma;
352 err = walk_page_test(vma->vm_start, vma->vm_end, walk);
353 if (err > 0)
354 return 0;
355 if (err < 0)
356 return err;
357 return __walk_page_range(vma->vm_start, vma->vm_end, walk);
358}
1// SPDX-License-Identifier: GPL-2.0
2#include <linux/pagewalk.h>
3#include <linux/highmem.h>
4#include <linux/sched.h>
5#include <linux/hugetlb.h>
6
7/*
8 * We want to know the real level where a entry is located ignoring any
9 * folding of levels which may be happening. For example if p4d is folded then
10 * a missing entry found at level 1 (p4d) is actually at level 0 (pgd).
11 */
12static int real_depth(int depth)
13{
14 if (depth == 3 && PTRS_PER_PMD == 1)
15 depth = 2;
16 if (depth == 2 && PTRS_PER_PUD == 1)
17 depth = 1;
18 if (depth == 1 && PTRS_PER_P4D == 1)
19 depth = 0;
20 return depth;
21}
22
23static int walk_pte_range_inner(pte_t *pte, unsigned long addr,
24 unsigned long end, struct mm_walk *walk)
25{
26 const struct mm_walk_ops *ops = walk->ops;
27 int err = 0;
28
29 for (;;) {
30 err = ops->pte_entry(pte, addr, addr + PAGE_SIZE, walk);
31 if (err)
32 break;
33 if (addr >= end - PAGE_SIZE)
34 break;
35 addr += PAGE_SIZE;
36 pte++;
37 }
38 return err;
39}
40
41static int walk_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
42 struct mm_walk *walk)
43{
44 pte_t *pte;
45 int err = 0;
46 spinlock_t *ptl;
47
48 if (walk->no_vma) {
49 pte = pte_offset_map(pmd, addr);
50 err = walk_pte_range_inner(pte, addr, end, walk);
51 pte_unmap(pte);
52 } else {
53 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
54 err = walk_pte_range_inner(pte, addr, end, walk);
55 pte_unmap_unlock(pte, ptl);
56 }
57
58 return err;
59}
60
61#ifdef CONFIG_ARCH_HAS_HUGEPD
62static int walk_hugepd_range(hugepd_t *phpd, unsigned long addr,
63 unsigned long end, struct mm_walk *walk, int pdshift)
64{
65 int err = 0;
66 const struct mm_walk_ops *ops = walk->ops;
67 int shift = hugepd_shift(*phpd);
68 int page_size = 1 << shift;
69
70 if (!ops->pte_entry)
71 return 0;
72
73 if (addr & (page_size - 1))
74 return 0;
75
76 for (;;) {
77 pte_t *pte;
78
79 spin_lock(&walk->mm->page_table_lock);
80 pte = hugepte_offset(*phpd, addr, pdshift);
81 err = ops->pte_entry(pte, addr, addr + page_size, walk);
82 spin_unlock(&walk->mm->page_table_lock);
83
84 if (err)
85 break;
86 if (addr >= end - page_size)
87 break;
88 addr += page_size;
89 }
90 return err;
91}
92#else
93static int walk_hugepd_range(hugepd_t *phpd, unsigned long addr,
94 unsigned long end, struct mm_walk *walk, int pdshift)
95{
96 return 0;
97}
98#endif
99
100static int walk_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
101 struct mm_walk *walk)
102{
103 pmd_t *pmd;
104 unsigned long next;
105 const struct mm_walk_ops *ops = walk->ops;
106 int err = 0;
107 int depth = real_depth(3);
108
109 pmd = pmd_offset(pud, addr);
110 do {
111again:
112 next = pmd_addr_end(addr, end);
113 if (pmd_none(*pmd)) {
114 if (ops->pte_hole)
115 err = ops->pte_hole(addr, next, depth, walk);
116 if (err)
117 break;
118 continue;
119 }
120
121 walk->action = ACTION_SUBTREE;
122
123 /*
124 * This implies that each ->pmd_entry() handler
125 * needs to know about pmd_trans_huge() pmds
126 */
127 if (ops->pmd_entry)
128 err = ops->pmd_entry(pmd, addr, next, walk);
129 if (err)
130 break;
131
132 if (walk->action == ACTION_AGAIN)
133 goto again;
134
135 /*
136 * Check this here so we only break down trans_huge
137 * pages when we _need_ to
138 */
139 if ((!walk->vma && (pmd_leaf(*pmd) || !pmd_present(*pmd))) ||
140 walk->action == ACTION_CONTINUE ||
141 !(ops->pte_entry))
142 continue;
143
144 if (walk->vma) {
145 split_huge_pmd(walk->vma, pmd, addr);
146 if (pmd_trans_unstable(pmd))
147 goto again;
148 }
149
150 if (is_hugepd(__hugepd(pmd_val(*pmd))))
151 err = walk_hugepd_range((hugepd_t *)pmd, addr, next, walk, PMD_SHIFT);
152 else
153 err = walk_pte_range(pmd, addr, next, walk);
154 if (err)
155 break;
156 } while (pmd++, addr = next, addr != end);
157
158 return err;
159}
160
161static int walk_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
162 struct mm_walk *walk)
163{
164 pud_t *pud;
165 unsigned long next;
166 const struct mm_walk_ops *ops = walk->ops;
167 int err = 0;
168 int depth = real_depth(2);
169
170 pud = pud_offset(p4d, addr);
171 do {
172 again:
173 next = pud_addr_end(addr, end);
174 if (pud_none(*pud)) {
175 if (ops->pte_hole)
176 err = ops->pte_hole(addr, next, depth, walk);
177 if (err)
178 break;
179 continue;
180 }
181
182 walk->action = ACTION_SUBTREE;
183
184 if (ops->pud_entry)
185 err = ops->pud_entry(pud, addr, next, walk);
186 if (err)
187 break;
188
189 if (walk->action == ACTION_AGAIN)
190 goto again;
191
192 if ((!walk->vma && (pud_leaf(*pud) || !pud_present(*pud))) ||
193 walk->action == ACTION_CONTINUE ||
194 !(ops->pmd_entry || ops->pte_entry))
195 continue;
196
197 if (walk->vma)
198 split_huge_pud(walk->vma, pud, addr);
199 if (pud_none(*pud))
200 goto again;
201
202 if (is_hugepd(__hugepd(pud_val(*pud))))
203 err = walk_hugepd_range((hugepd_t *)pud, addr, next, walk, PUD_SHIFT);
204 else
205 err = walk_pmd_range(pud, addr, next, walk);
206 if (err)
207 break;
208 } while (pud++, addr = next, addr != end);
209
210 return err;
211}
212
213static int walk_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
214 struct mm_walk *walk)
215{
216 p4d_t *p4d;
217 unsigned long next;
218 const struct mm_walk_ops *ops = walk->ops;
219 int err = 0;
220 int depth = real_depth(1);
221
222 p4d = p4d_offset(pgd, addr);
223 do {
224 next = p4d_addr_end(addr, end);
225 if (p4d_none_or_clear_bad(p4d)) {
226 if (ops->pte_hole)
227 err = ops->pte_hole(addr, next, depth, walk);
228 if (err)
229 break;
230 continue;
231 }
232 if (ops->p4d_entry) {
233 err = ops->p4d_entry(p4d, addr, next, walk);
234 if (err)
235 break;
236 }
237 if (is_hugepd(__hugepd(p4d_val(*p4d))))
238 err = walk_hugepd_range((hugepd_t *)p4d, addr, next, walk, P4D_SHIFT);
239 else if (ops->pud_entry || ops->pmd_entry || ops->pte_entry)
240 err = walk_pud_range(p4d, addr, next, walk);
241 if (err)
242 break;
243 } while (p4d++, addr = next, addr != end);
244
245 return err;
246}
247
248static int walk_pgd_range(unsigned long addr, unsigned long end,
249 struct mm_walk *walk)
250{
251 pgd_t *pgd;
252 unsigned long next;
253 const struct mm_walk_ops *ops = walk->ops;
254 int err = 0;
255
256 if (walk->pgd)
257 pgd = walk->pgd + pgd_index(addr);
258 else
259 pgd = pgd_offset(walk->mm, addr);
260 do {
261 next = pgd_addr_end(addr, end);
262 if (pgd_none_or_clear_bad(pgd)) {
263 if (ops->pte_hole)
264 err = ops->pte_hole(addr, next, 0, walk);
265 if (err)
266 break;
267 continue;
268 }
269 if (ops->pgd_entry) {
270 err = ops->pgd_entry(pgd, addr, next, walk);
271 if (err)
272 break;
273 }
274 if (is_hugepd(__hugepd(pgd_val(*pgd))))
275 err = walk_hugepd_range((hugepd_t *)pgd, addr, next, walk, PGDIR_SHIFT);
276 else if (ops->p4d_entry || ops->pud_entry || ops->pmd_entry || ops->pte_entry)
277 err = walk_p4d_range(pgd, addr, next, walk);
278 if (err)
279 break;
280 } while (pgd++, addr = next, addr != end);
281
282 return err;
283}
284
285#ifdef CONFIG_HUGETLB_PAGE
286static unsigned long hugetlb_entry_end(struct hstate *h, unsigned long addr,
287 unsigned long end)
288{
289 unsigned long boundary = (addr & huge_page_mask(h)) + huge_page_size(h);
290 return boundary < end ? boundary : end;
291}
292
293static int walk_hugetlb_range(unsigned long addr, unsigned long end,
294 struct mm_walk *walk)
295{
296 struct vm_area_struct *vma = walk->vma;
297 struct hstate *h = hstate_vma(vma);
298 unsigned long next;
299 unsigned long hmask = huge_page_mask(h);
300 unsigned long sz = huge_page_size(h);
301 pte_t *pte;
302 const struct mm_walk_ops *ops = walk->ops;
303 int err = 0;
304
305 do {
306 next = hugetlb_entry_end(h, addr, end);
307 pte = huge_pte_offset(walk->mm, addr & hmask, sz);
308
309 if (pte)
310 err = ops->hugetlb_entry(pte, hmask, addr, next, walk);
311 else if (ops->pte_hole)
312 err = ops->pte_hole(addr, next, -1, walk);
313
314 if (err)
315 break;
316 } while (addr = next, addr != end);
317
318 return err;
319}
320
321#else /* CONFIG_HUGETLB_PAGE */
322static int walk_hugetlb_range(unsigned long addr, unsigned long end,
323 struct mm_walk *walk)
324{
325 return 0;
326}
327
328#endif /* CONFIG_HUGETLB_PAGE */
329
330/*
331 * Decide whether we really walk over the current vma on [@start, @end)
332 * or skip it via the returned value. Return 0 if we do walk over the
333 * current vma, and return 1 if we skip the vma. Negative values means
334 * error, where we abort the current walk.
335 */
336static int walk_page_test(unsigned long start, unsigned long end,
337 struct mm_walk *walk)
338{
339 struct vm_area_struct *vma = walk->vma;
340 const struct mm_walk_ops *ops = walk->ops;
341
342 if (ops->test_walk)
343 return ops->test_walk(start, end, walk);
344
345 /*
346 * vma(VM_PFNMAP) doesn't have any valid struct pages behind VM_PFNMAP
347 * range, so we don't walk over it as we do for normal vmas. However,
348 * Some callers are interested in handling hole range and they don't
349 * want to just ignore any single address range. Such users certainly
350 * define their ->pte_hole() callbacks, so let's delegate them to handle
351 * vma(VM_PFNMAP).
352 */
353 if (vma->vm_flags & VM_PFNMAP) {
354 int err = 1;
355 if (ops->pte_hole)
356 err = ops->pte_hole(start, end, -1, walk);
357 return err ? err : 1;
358 }
359 return 0;
360}
361
362static int __walk_page_range(unsigned long start, unsigned long end,
363 struct mm_walk *walk)
364{
365 int err = 0;
366 struct vm_area_struct *vma = walk->vma;
367 const struct mm_walk_ops *ops = walk->ops;
368
369 if (ops->pre_vma) {
370 err = ops->pre_vma(start, end, walk);
371 if (err)
372 return err;
373 }
374
375 if (is_vm_hugetlb_page(vma)) {
376 if (ops->hugetlb_entry)
377 err = walk_hugetlb_range(start, end, walk);
378 } else
379 err = walk_pgd_range(start, end, walk);
380
381 if (ops->post_vma)
382 ops->post_vma(walk);
383
384 return err;
385}
386
387/**
388 * walk_page_range - walk page table with caller specific callbacks
389 * @mm: mm_struct representing the target process of page table walk
390 * @start: start address of the virtual address range
391 * @end: end address of the virtual address range
392 * @ops: operation to call during the walk
393 * @private: private data for callbacks' usage
394 *
395 * Recursively walk the page table tree of the process represented by @mm
396 * within the virtual address range [@start, @end). During walking, we can do
397 * some caller-specific works for each entry, by setting up pmd_entry(),
398 * pte_entry(), and/or hugetlb_entry(). If you don't set up for some of these
399 * callbacks, the associated entries/pages are just ignored.
400 * The return values of these callbacks are commonly defined like below:
401 *
402 * - 0 : succeeded to handle the current entry, and if you don't reach the
403 * end address yet, continue to walk.
404 * - >0 : succeeded to handle the current entry, and return to the caller
405 * with caller specific value.
406 * - <0 : failed to handle the current entry, and return to the caller
407 * with error code.
408 *
409 * Before starting to walk page table, some callers want to check whether
410 * they really want to walk over the current vma, typically by checking
411 * its vm_flags. walk_page_test() and @ops->test_walk() are used for this
412 * purpose.
413 *
414 * If operations need to be staged before and committed after a vma is walked,
415 * there are two callbacks, pre_vma() and post_vma(). Note that post_vma(),
416 * since it is intended to handle commit-type operations, can't return any
417 * errors.
418 *
419 * struct mm_walk keeps current values of some common data like vma and pmd,
420 * which are useful for the access from callbacks. If you want to pass some
421 * caller-specific data to callbacks, @private should be helpful.
422 *
423 * Locking:
424 * Callers of walk_page_range() and walk_page_vma() should hold @mm->mmap_lock,
425 * because these function traverse vma list and/or access to vma's data.
426 */
427int walk_page_range(struct mm_struct *mm, unsigned long start,
428 unsigned long end, const struct mm_walk_ops *ops,
429 void *private)
430{
431 int err = 0;
432 unsigned long next;
433 struct vm_area_struct *vma;
434 struct mm_walk walk = {
435 .ops = ops,
436 .mm = mm,
437 .private = private,
438 };
439
440 if (start >= end)
441 return -EINVAL;
442
443 if (!walk.mm)
444 return -EINVAL;
445
446 mmap_assert_locked(walk.mm);
447
448 vma = find_vma(walk.mm, start);
449 do {
450 if (!vma) { /* after the last vma */
451 walk.vma = NULL;
452 next = end;
453 if (ops->pte_hole)
454 err = ops->pte_hole(start, next, -1, &walk);
455 } else if (start < vma->vm_start) { /* outside vma */
456 walk.vma = NULL;
457 next = min(end, vma->vm_start);
458 if (ops->pte_hole)
459 err = ops->pte_hole(start, next, -1, &walk);
460 } else { /* inside vma */
461 walk.vma = vma;
462 next = min(end, vma->vm_end);
463 vma = find_vma(mm, vma->vm_end);
464
465 err = walk_page_test(start, next, &walk);
466 if (err > 0) {
467 /*
468 * positive return values are purely for
469 * controlling the pagewalk, so should never
470 * be passed to the callers.
471 */
472 err = 0;
473 continue;
474 }
475 if (err < 0)
476 break;
477 err = __walk_page_range(start, next, &walk);
478 }
479 if (err)
480 break;
481 } while (start = next, start < end);
482 return err;
483}
484
485/**
486 * walk_page_range_novma - walk a range of pagetables not backed by a vma
487 * @mm: mm_struct representing the target process of page table walk
488 * @start: start address of the virtual address range
489 * @end: end address of the virtual address range
490 * @ops: operation to call during the walk
491 * @pgd: pgd to walk if different from mm->pgd
492 * @private: private data for callbacks' usage
493 *
494 * Similar to walk_page_range() but can walk any page tables even if they are
495 * not backed by VMAs. Because 'unusual' entries may be walked this function
496 * will also not lock the PTEs for the pte_entry() callback. This is useful for
497 * walking the kernel pages tables or page tables for firmware.
498 */
499int walk_page_range_novma(struct mm_struct *mm, unsigned long start,
500 unsigned long end, const struct mm_walk_ops *ops,
501 pgd_t *pgd,
502 void *private)
503{
504 struct mm_walk walk = {
505 .ops = ops,
506 .mm = mm,
507 .pgd = pgd,
508 .private = private,
509 .no_vma = true
510 };
511
512 if (start >= end || !walk.mm)
513 return -EINVAL;
514
515 mmap_assert_write_locked(walk.mm);
516
517 return walk_pgd_range(start, end, &walk);
518}
519
520int walk_page_range_vma(struct vm_area_struct *vma, unsigned long start,
521 unsigned long end, const struct mm_walk_ops *ops,
522 void *private)
523{
524 struct mm_walk walk = {
525 .ops = ops,
526 .mm = vma->vm_mm,
527 .vma = vma,
528 .private = private,
529 };
530
531 if (start >= end || !walk.mm)
532 return -EINVAL;
533 if (start < vma->vm_start || end > vma->vm_end)
534 return -EINVAL;
535
536 mmap_assert_locked(walk.mm);
537 return __walk_page_range(start, end, &walk);
538}
539
540int walk_page_vma(struct vm_area_struct *vma, const struct mm_walk_ops *ops,
541 void *private)
542{
543 struct mm_walk walk = {
544 .ops = ops,
545 .mm = vma->vm_mm,
546 .vma = vma,
547 .private = private,
548 };
549
550 if (!walk.mm)
551 return -EINVAL;
552
553 mmap_assert_locked(walk.mm);
554 return __walk_page_range(vma->vm_start, vma->vm_end, &walk);
555}
556
557/**
558 * walk_page_mapping - walk all memory areas mapped into a struct address_space.
559 * @mapping: Pointer to the struct address_space
560 * @first_index: First page offset in the address_space
561 * @nr: Number of incremental page offsets to cover
562 * @ops: operation to call during the walk
563 * @private: private data for callbacks' usage
564 *
565 * This function walks all memory areas mapped into a struct address_space.
566 * The walk is limited to only the given page-size index range, but if
567 * the index boundaries cross a huge page-table entry, that entry will be
568 * included.
569 *
570 * Also see walk_page_range() for additional information.
571 *
572 * Locking:
573 * This function can't require that the struct mm_struct::mmap_lock is held,
574 * since @mapping may be mapped by multiple processes. Instead
575 * @mapping->i_mmap_rwsem must be held. This might have implications in the
576 * callbacks, and it's up tho the caller to ensure that the
577 * struct mm_struct::mmap_lock is not needed.
578 *
579 * Also this means that a caller can't rely on the struct
580 * vm_area_struct::vm_flags to be constant across a call,
581 * except for immutable flags. Callers requiring this shouldn't use
582 * this function.
583 *
584 * Return: 0 on success, negative error code on failure, positive number on
585 * caller defined premature termination.
586 */
587int walk_page_mapping(struct address_space *mapping, pgoff_t first_index,
588 pgoff_t nr, const struct mm_walk_ops *ops,
589 void *private)
590{
591 struct mm_walk walk = {
592 .ops = ops,
593 .private = private,
594 };
595 struct vm_area_struct *vma;
596 pgoff_t vba, vea, cba, cea;
597 unsigned long start_addr, end_addr;
598 int err = 0;
599
600 lockdep_assert_held(&mapping->i_mmap_rwsem);
601 vma_interval_tree_foreach(vma, &mapping->i_mmap, first_index,
602 first_index + nr - 1) {
603 /* Clip to the vma */
604 vba = vma->vm_pgoff;
605 vea = vba + vma_pages(vma);
606 cba = first_index;
607 cba = max(cba, vba);
608 cea = first_index + nr;
609 cea = min(cea, vea);
610
611 start_addr = ((cba - vba) << PAGE_SHIFT) + vma->vm_start;
612 end_addr = ((cea - vba) << PAGE_SHIFT) + vma->vm_start;
613 if (start_addr >= end_addr)
614 continue;
615
616 walk.vma = vma;
617 walk.mm = vma->vm_mm;
618
619 err = walk_page_test(vma->vm_start, vma->vm_end, &walk);
620 if (err > 0) {
621 err = 0;
622 break;
623 } else if (err < 0)
624 break;
625
626 err = __walk_page_range(start_addr, end_addr, &walk);
627 if (err)
628 break;
629 }
630
631 return err;
632}