Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 *  linux/mm/page_alloc.c
   3 *
   4 *  Manages the free list, the system allocates free pages here.
   5 *  Note that kmalloc() lives in slab.c
   6 *
   7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   8 *  Swap reorganised 29.12.95, Stephen Tweedie
   9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15 */
  16
  17#include <linux/stddef.h>
  18#include <linux/mm.h>
 
  19#include <linux/swap.h>
 
  20#include <linux/interrupt.h>
  21#include <linux/pagemap.h>
  22#include <linux/jiffies.h>
  23#include <linux/bootmem.h>
  24#include <linux/memblock.h>
  25#include <linux/compiler.h>
  26#include <linux/kernel.h>
  27#include <linux/kasan.h>
 
  28#include <linux/module.h>
  29#include <linux/suspend.h>
  30#include <linux/pagevec.h>
  31#include <linux/blkdev.h>
  32#include <linux/slab.h>
  33#include <linux/ratelimit.h>
  34#include <linux/oom.h>
  35#include <linux/notifier.h>
  36#include <linux/topology.h>
  37#include <linux/sysctl.h>
  38#include <linux/cpu.h>
  39#include <linux/cpuset.h>
  40#include <linux/memory_hotplug.h>
  41#include <linux/nodemask.h>
  42#include <linux/vmalloc.h>
  43#include <linux/vmstat.h>
  44#include <linux/mempolicy.h>
  45#include <linux/memremap.h>
  46#include <linux/stop_machine.h>
 
  47#include <linux/sort.h>
  48#include <linux/pfn.h>
  49#include <linux/backing-dev.h>
  50#include <linux/fault-inject.h>
  51#include <linux/page-isolation.h>
  52#include <linux/page_ext.h>
  53#include <linux/debugobjects.h>
  54#include <linux/kmemleak.h>
  55#include <linux/compaction.h>
  56#include <trace/events/kmem.h>
  57#include <trace/events/oom.h>
  58#include <linux/prefetch.h>
  59#include <linux/mm_inline.h>
 
  60#include <linux/migrate.h>
  61#include <linux/hugetlb.h>
  62#include <linux/sched/rt.h>
  63#include <linux/sched/mm.h>
  64#include <linux/page_owner.h>
 
  65#include <linux/kthread.h>
  66#include <linux/memcontrol.h>
  67#include <linux/ftrace.h>
  68#include <linux/lockdep.h>
  69#include <linux/nmi.h>
  70
 
 
 
 
  71#include <asm/sections.h>
  72#include <asm/tlbflush.h>
  73#include <asm/div64.h>
  74#include "internal.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  75
  76/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  77static DEFINE_MUTEX(pcp_batch_high_lock);
  78#define MIN_PERCPU_PAGELIST_FRACTION	(8)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  79
  80#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  81DEFINE_PER_CPU(int, numa_node);
  82EXPORT_PER_CPU_SYMBOL(numa_node);
  83#endif
  84
  85DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
  86
  87#ifdef CONFIG_HAVE_MEMORYLESS_NODES
  88/*
  89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  92 * defined in <linux/topology.h>.
  93 */
  94DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
  95EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  96int _node_numa_mem_[MAX_NUMNODES];
  97#endif
  98
  99/* work_structs for global per-cpu drains */
 100DEFINE_MUTEX(pcpu_drain_mutex);
 101DEFINE_PER_CPU(struct work_struct, pcpu_drain);
 102
 103#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
 104volatile unsigned long latent_entropy __latent_entropy;
 105EXPORT_SYMBOL(latent_entropy);
 106#endif
 107
 108/*
 109 * Array of node states.
 110 */
 111nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
 112	[N_POSSIBLE] = NODE_MASK_ALL,
 113	[N_ONLINE] = { { [0] = 1UL } },
 114#ifndef CONFIG_NUMA
 115	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
 116#ifdef CONFIG_HIGHMEM
 117	[N_HIGH_MEMORY] = { { [0] = 1UL } },
 118#endif
 119	[N_MEMORY] = { { [0] = 1UL } },
 120	[N_CPU] = { { [0] = 1UL } },
 121#endif	/* NUMA */
 122};
 123EXPORT_SYMBOL(node_states);
 124
 125/* Protect totalram_pages and zone->managed_pages */
 126static DEFINE_SPINLOCK(managed_page_count_lock);
 127
 128unsigned long totalram_pages __read_mostly;
 129unsigned long totalreserve_pages __read_mostly;
 130unsigned long totalcma_pages __read_mostly;
 131
 132int percpu_pagelist_fraction;
 133gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 134
 135/*
 136 * A cached value of the page's pageblock's migratetype, used when the page is
 137 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 138 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 139 * Also the migratetype set in the page does not necessarily match the pcplist
 140 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 141 * other index - this ensures that it will be put on the correct CMA freelist.
 142 */
 143static inline int get_pcppage_migratetype(struct page *page)
 144{
 145	return page->index;
 146}
 147
 148static inline void set_pcppage_migratetype(struct page *page, int migratetype)
 149{
 150	page->index = migratetype;
 151}
 152
 153#ifdef CONFIG_PM_SLEEP
 154/*
 155 * The following functions are used by the suspend/hibernate code to temporarily
 156 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 157 * while devices are suspended.  To avoid races with the suspend/hibernate code,
 158 * they should always be called with pm_mutex held (gfp_allowed_mask also should
 159 * only be modified with pm_mutex held, unless the suspend/hibernate code is
 160 * guaranteed not to run in parallel with that modification).
 
 161 */
 162
 163static gfp_t saved_gfp_mask;
 164
 165void pm_restore_gfp_mask(void)
 166{
 167	WARN_ON(!mutex_is_locked(&pm_mutex));
 168	if (saved_gfp_mask) {
 169		gfp_allowed_mask = saved_gfp_mask;
 170		saved_gfp_mask = 0;
 171	}
 172}
 173
 174void pm_restrict_gfp_mask(void)
 175{
 176	WARN_ON(!mutex_is_locked(&pm_mutex));
 177	WARN_ON(saved_gfp_mask);
 178	saved_gfp_mask = gfp_allowed_mask;
 179	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
 180}
 181
 182bool pm_suspended_storage(void)
 183{
 184	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
 185		return false;
 186	return true;
 187}
 188#endif /* CONFIG_PM_SLEEP */
 189
 190#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
 191unsigned int pageblock_order __read_mostly;
 192#endif
 193
 194static void __free_pages_ok(struct page *page, unsigned int order);
 
 195
 196/*
 197 * results with 256, 32 in the lowmem_reserve sysctl:
 198 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 199 *	1G machine -> (16M dma, 784M normal, 224M high)
 200 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 201 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
 202 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
 203 *
 204 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 205 * don't need any ZONE_NORMAL reservation
 206 */
 207int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
 208#ifdef CONFIG_ZONE_DMA
 209	[ZONE_DMA] = 256,
 210#endif
 211#ifdef CONFIG_ZONE_DMA32
 212	[ZONE_DMA32] = 256,
 213#endif
 214	[ZONE_NORMAL] = 32,
 215#ifdef CONFIG_HIGHMEM
 216	[ZONE_HIGHMEM] = 0,
 217#endif
 218	[ZONE_MOVABLE] = 0,
 219};
 220
 221EXPORT_SYMBOL(totalram_pages);
 222
 223static char * const zone_names[MAX_NR_ZONES] = {
 224#ifdef CONFIG_ZONE_DMA
 225	 "DMA",
 226#endif
 227#ifdef CONFIG_ZONE_DMA32
 228	 "DMA32",
 229#endif
 230	 "Normal",
 231#ifdef CONFIG_HIGHMEM
 232	 "HighMem",
 233#endif
 234	 "Movable",
 235#ifdef CONFIG_ZONE_DEVICE
 236	 "Device",
 237#endif
 238};
 239
 240char * const migratetype_names[MIGRATE_TYPES] = {
 241	"Unmovable",
 242	"Movable",
 243	"Reclaimable",
 244	"HighAtomic",
 245#ifdef CONFIG_CMA
 246	"CMA",
 247#endif
 248#ifdef CONFIG_MEMORY_ISOLATION
 249	"Isolate",
 250#endif
 251};
 252
 253compound_page_dtor * const compound_page_dtors[] = {
 254	NULL,
 255	free_compound_page,
 256#ifdef CONFIG_HUGETLB_PAGE
 257	free_huge_page,
 258#endif
 259#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 260	free_transhuge_page,
 261#endif
 262};
 263
 264int min_free_kbytes = 1024;
 265int user_min_free_kbytes = -1;
 
 266int watermark_scale_factor = 10;
 267
 268static unsigned long nr_kernel_pages __meminitdata;
 269static unsigned long nr_all_pages __meminitdata;
 270static unsigned long dma_reserve __meminitdata;
 271
 272#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 273static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
 274static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
 275static unsigned long required_kernelcore __initdata;
 276static unsigned long required_kernelcore_percent __initdata;
 277static unsigned long required_movablecore __initdata;
 278static unsigned long required_movablecore_percent __initdata;
 279static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
 280static bool mirrored_kernelcore __meminitdata;
 281
 282/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
 283int movable_zone;
 284EXPORT_SYMBOL(movable_zone);
 285#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
 286
 287#if MAX_NUMNODES > 1
 288int nr_node_ids __read_mostly = MAX_NUMNODES;
 289int nr_online_nodes __read_mostly = 1;
 290EXPORT_SYMBOL(nr_node_ids);
 291EXPORT_SYMBOL(nr_online_nodes);
 292#endif
 293
 294int page_group_by_mobility_disabled __read_mostly;
 295
 296#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 
 
 
 
 
 
 
 
 
 
 
 
 297/* Returns true if the struct page for the pfn is uninitialised */
 298static inline bool __meminit early_page_uninitialised(unsigned long pfn)
 299{
 300	int nid = early_pfn_to_nid(pfn);
 301
 302	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
 303		return true;
 304
 305	return false;
 306}
 307
 308/*
 309 * Returns false when the remaining initialisation should be deferred until
 310 * later in the boot cycle when it can be parallelised.
 311 */
 312static inline bool update_defer_init(pg_data_t *pgdat,
 313				unsigned long pfn, unsigned long zone_end,
 314				unsigned long *nr_initialised)
 315{
 
 
 
 
 
 
 
 
 
 
 
 
 
 316	/* Always populate low zones for address-constrained allocations */
 317	if (zone_end < pgdat_end_pfn(pgdat))
 
 
 
 318		return true;
 319	(*nr_initialised)++;
 320	if ((*nr_initialised > pgdat->static_init_pgcnt) &&
 
 
 
 
 321	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
 322		pgdat->first_deferred_pfn = pfn;
 323		return false;
 324	}
 325
 326	return true;
 327}
 328#else
 
 
 
 
 
 329static inline bool early_page_uninitialised(unsigned long pfn)
 330{
 331	return false;
 332}
 333
 334static inline bool update_defer_init(pg_data_t *pgdat,
 335				unsigned long pfn, unsigned long zone_end,
 336				unsigned long *nr_initialised)
 337{
 338	return true;
 339}
 340#endif
 341
 342/* Return a pointer to the bitmap storing bits affecting a block of pages */
 343static inline unsigned long *get_pageblock_bitmap(struct page *page,
 344							unsigned long pfn)
 345{
 346#ifdef CONFIG_SPARSEMEM
 347	return __pfn_to_section(pfn)->pageblock_flags;
 348#else
 349	return page_zone(page)->pageblock_flags;
 350#endif /* CONFIG_SPARSEMEM */
 351}
 352
 353static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
 354{
 355#ifdef CONFIG_SPARSEMEM
 356	pfn &= (PAGES_PER_SECTION-1);
 357	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
 358#else
 359	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
 360	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
 361#endif /* CONFIG_SPARSEMEM */
 
 362}
 363
 364/**
 365 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 366 * @page: The page within the block of interest
 367 * @pfn: The target page frame number
 368 * @end_bitidx: The last bit of interest to retrieve
 369 * @mask: mask of bits that the caller is interested in
 370 *
 371 * Return: pageblock_bits flags
 372 */
 373static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
 374					unsigned long pfn,
 375					unsigned long end_bitidx,
 376					unsigned long mask)
 377{
 378	unsigned long *bitmap;
 379	unsigned long bitidx, word_bitidx;
 380	unsigned long word;
 381
 382	bitmap = get_pageblock_bitmap(page, pfn);
 383	bitidx = pfn_to_bitidx(page, pfn);
 384	word_bitidx = bitidx / BITS_PER_LONG;
 385	bitidx &= (BITS_PER_LONG-1);
 386
 387	word = bitmap[word_bitidx];
 388	bitidx += end_bitidx;
 389	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
 
 
 
 390}
 391
 392unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
 393					unsigned long end_bitidx,
 394					unsigned long mask)
 
 
 
 
 
 
 
 395{
 396	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
 397}
 398
 399static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
 
 400{
 401	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
 402}
 403
 404/**
 405 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 406 * @page: The page within the block of interest
 407 * @flags: The flags to set
 408 * @pfn: The target page frame number
 409 * @end_bitidx: The last bit of interest
 410 * @mask: mask of bits that the caller is interested in
 411 */
 412void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
 413					unsigned long pfn,
 414					unsigned long end_bitidx,
 415					unsigned long mask)
 416{
 417	unsigned long *bitmap;
 418	unsigned long bitidx, word_bitidx;
 419	unsigned long old_word, word;
 420
 421	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
 
 422
 423	bitmap = get_pageblock_bitmap(page, pfn);
 424	bitidx = pfn_to_bitidx(page, pfn);
 425	word_bitidx = bitidx / BITS_PER_LONG;
 426	bitidx &= (BITS_PER_LONG-1);
 427
 428	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
 429
 430	bitidx += end_bitidx;
 431	mask <<= (BITS_PER_LONG - bitidx - 1);
 432	flags <<= (BITS_PER_LONG - bitidx - 1);
 433
 434	word = READ_ONCE(bitmap[word_bitidx]);
 435	for (;;) {
 436		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
 437		if (word == old_word)
 438			break;
 439		word = old_word;
 440	}
 441}
 442
 443void set_pageblock_migratetype(struct page *page, int migratetype)
 444{
 445	if (unlikely(page_group_by_mobility_disabled &&
 446		     migratetype < MIGRATE_PCPTYPES))
 447		migratetype = MIGRATE_UNMOVABLE;
 448
 449	set_pageblock_flags_group(page, (unsigned long)migratetype,
 450					PB_migrate, PB_migrate_end);
 451}
 452
 453#ifdef CONFIG_DEBUG_VM
 454static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
 455{
 456	int ret = 0;
 457	unsigned seq;
 458	unsigned long pfn = page_to_pfn(page);
 459	unsigned long sp, start_pfn;
 460
 461	do {
 462		seq = zone_span_seqbegin(zone);
 463		start_pfn = zone->zone_start_pfn;
 464		sp = zone->spanned_pages;
 465		if (!zone_spans_pfn(zone, pfn))
 466			ret = 1;
 467	} while (zone_span_seqretry(zone, seq));
 468
 469	if (ret)
 470		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
 471			pfn, zone_to_nid(zone), zone->name,
 472			start_pfn, start_pfn + sp);
 473
 474	return ret;
 475}
 476
 477static int page_is_consistent(struct zone *zone, struct page *page)
 478{
 479	if (!pfn_valid_within(page_to_pfn(page)))
 480		return 0;
 481	if (zone != page_zone(page))
 482		return 0;
 483
 484	return 1;
 485}
 486/*
 487 * Temporary debugging check for pages not lying within a given zone.
 488 */
 489static int __maybe_unused bad_range(struct zone *zone, struct page *page)
 490{
 491	if (page_outside_zone_boundaries(zone, page))
 492		return 1;
 493	if (!page_is_consistent(zone, page))
 494		return 1;
 495
 496	return 0;
 497}
 498#else
 499static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
 500{
 501	return 0;
 502}
 503#endif
 504
 505static void bad_page(struct page *page, const char *reason,
 506		unsigned long bad_flags)
 507{
 508	static unsigned long resume;
 509	static unsigned long nr_shown;
 510	static unsigned long nr_unshown;
 511
 512	/*
 513	 * Allow a burst of 60 reports, then keep quiet for that minute;
 514	 * or allow a steady drip of one report per second.
 515	 */
 516	if (nr_shown == 60) {
 517		if (time_before(jiffies, resume)) {
 518			nr_unshown++;
 519			goto out;
 520		}
 521		if (nr_unshown) {
 522			pr_alert(
 523			      "BUG: Bad page state: %lu messages suppressed\n",
 524				nr_unshown);
 525			nr_unshown = 0;
 526		}
 527		nr_shown = 0;
 528	}
 529	if (nr_shown++ == 0)
 530		resume = jiffies + 60 * HZ;
 531
 532	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
 533		current->comm, page_to_pfn(page));
 534	__dump_page(page, reason);
 535	bad_flags &= page->flags;
 536	if (bad_flags)
 537		pr_alert("bad because of flags: %#lx(%pGp)\n",
 538						bad_flags, &bad_flags);
 539	dump_page_owner(page);
 540
 541	print_modules();
 542	dump_stack();
 543out:
 544	/* Leave bad fields for debug, except PageBuddy could make trouble */
 545	page_mapcount_reset(page); /* remove PageBuddy */
 546	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 547}
 548
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 549/*
 550 * Higher-order pages are called "compound pages".  They are structured thusly:
 551 *
 552 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
 553 *
 554 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 555 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
 556 *
 557 * The first tail page's ->compound_dtor holds the offset in array of compound
 558 * page destructors. See compound_page_dtors.
 559 *
 560 * The first tail page's ->compound_order holds the order of allocation.
 561 * This usage means that zero-order pages may not be compound.
 562 */
 563
 564void free_compound_page(struct page *page)
 565{
 566	__free_pages_ok(page, compound_order(page));
 
 567}
 568
 569void prep_compound_page(struct page *page, unsigned int order)
 570{
 571	int i;
 572	int nr_pages = 1 << order;
 573
 574	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
 575	set_compound_order(page, order);
 576	__SetPageHead(page);
 577	for (i = 1; i < nr_pages; i++) {
 578		struct page *p = page + i;
 579		set_page_count(p, 0);
 580		p->mapping = TAIL_MAPPING;
 581		set_compound_head(p, page);
 582	}
 583	atomic_set(compound_mapcount_ptr(page), -1);
 
 
 584}
 585
 586#ifdef CONFIG_DEBUG_PAGEALLOC
 587unsigned int _debug_guardpage_minorder;
 588bool _debug_pagealloc_enabled __read_mostly
 589			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
 590EXPORT_SYMBOL(_debug_pagealloc_enabled);
 591bool _debug_guardpage_enabled __read_mostly;
 592
 593static int __init early_debug_pagealloc(char *buf)
 594{
 595	if (!buf)
 596		return -EINVAL;
 597	return kstrtobool(buf, &_debug_pagealloc_enabled);
 
 
 598}
 599early_param("debug_pagealloc", early_debug_pagealloc);
 600
 601static bool need_debug_guardpage(void)
 602{
 603	/* If we don't use debug_pagealloc, we don't need guard page */
 604	if (!debug_pagealloc_enabled())
 605		return false;
 606
 607	if (!debug_guardpage_minorder())
 608		return false;
 
 609
 610	return true;
 611}
 612
 613static void init_debug_guardpage(void)
 614{
 615	if (!debug_pagealloc_enabled())
 616		return;
 617
 618	if (!debug_guardpage_minorder())
 619		return;
 620
 621	_debug_guardpage_enabled = true;
 
 622}
 623
 624struct page_ext_operations debug_guardpage_ops = {
 625	.need = need_debug_guardpage,
 626	.init = init_debug_guardpage,
 627};
 
 
 
 
 
 
 
 
 
 
 
 
 628
 629static int __init debug_guardpage_minorder_setup(char *buf)
 630{
 631	unsigned long res;
 632
 633	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
 634		pr_err("Bad debug_guardpage_minorder value\n");
 635		return 0;
 636	}
 637	_debug_guardpage_minorder = res;
 638	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
 639	return 0;
 640}
 641early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
 642
 643static inline bool set_page_guard(struct zone *zone, struct page *page,
 644				unsigned int order, int migratetype)
 645{
 646	struct page_ext *page_ext;
 647
 648	if (!debug_guardpage_enabled())
 649		return false;
 650
 651	if (order >= debug_guardpage_minorder())
 652		return false;
 653
 654	page_ext = lookup_page_ext(page);
 655	if (unlikely(!page_ext))
 656		return false;
 657
 658	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
 659
 660	INIT_LIST_HEAD(&page->lru);
 661	set_page_private(page, order);
 662	/* Guard pages are not available for any usage */
 663	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
 
 664
 665	return true;
 666}
 667
 668static inline void clear_page_guard(struct zone *zone, struct page *page,
 669				unsigned int order, int migratetype)
 670{
 671	struct page_ext *page_ext;
 672
 673	if (!debug_guardpage_enabled())
 674		return;
 675
 676	page_ext = lookup_page_ext(page);
 677	if (unlikely(!page_ext))
 678		return;
 679
 680	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
 681
 682	set_page_private(page, 0);
 683	if (!is_migrate_isolate(migratetype))
 684		__mod_zone_freepage_state(zone, (1 << order), migratetype);
 685}
 686#else
 687struct page_ext_operations debug_guardpage_ops;
 688static inline bool set_page_guard(struct zone *zone, struct page *page,
 689			unsigned int order, int migratetype) { return false; }
 690static inline void clear_page_guard(struct zone *zone, struct page *page,
 691				unsigned int order, int migratetype) {}
 692#endif
 693
 694static inline void set_page_order(struct page *page, unsigned int order)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 695{
 696	set_page_private(page, order);
 697	__SetPageBuddy(page);
 698}
 699
 700static inline void rmv_page_order(struct page *page)
 
 701{
 702	__ClearPageBuddy(page);
 703	set_page_private(page, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 704}
 705
 706/*
 707 * This function checks whether a page is free && is the buddy
 708 * we can do coalesce a page and its buddy if
 709 * (a) the buddy is not in a hole (check before calling!) &&
 710 * (b) the buddy is in the buddy system &&
 711 * (c) a page and its buddy have the same order &&
 712 * (d) a page and its buddy are in the same zone.
 713 *
 714 * For recording whether a page is in the buddy system, we set ->_mapcount
 715 * PAGE_BUDDY_MAPCOUNT_VALUE.
 716 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
 717 * serialized by zone->lock.
 718 *
 719 * For recording page's order, we use page_private(page).
 720 */
 721static inline int page_is_buddy(struct page *page, struct page *buddy,
 722							unsigned int order)
 723{
 724	if (page_is_guard(buddy) && page_order(buddy) == order) {
 725		if (page_zone_id(page) != page_zone_id(buddy))
 726			return 0;
 727
 728		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 
 729
 730		return 1;
 731	}
 
 
 
 
 732
 733	if (PageBuddy(buddy) && page_order(buddy) == order) {
 734		/*
 735		 * zone check is done late to avoid uselessly
 736		 * calculating zone/node ids for pages that could
 737		 * never merge.
 738		 */
 739		if (page_zone_id(page) != page_zone_id(buddy))
 740			return 0;
 741
 742		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 
 
 
 
 
 
 
 
 
 
 
 
 
 743
 744		return 1;
 745	}
 746	return 0;
 
 
 
 
 
 747}
 748
 749/*
 750 * Freeing function for a buddy system allocator.
 751 *
 752 * The concept of a buddy system is to maintain direct-mapped table
 753 * (containing bit values) for memory blocks of various "orders".
 754 * The bottom level table contains the map for the smallest allocatable
 755 * units of memory (here, pages), and each level above it describes
 756 * pairs of units from the levels below, hence, "buddies".
 757 * At a high level, all that happens here is marking the table entry
 758 * at the bottom level available, and propagating the changes upward
 759 * as necessary, plus some accounting needed to play nicely with other
 760 * parts of the VM system.
 761 * At each level, we keep a list of pages, which are heads of continuous
 762 * free pages of length of (1 << order) and marked with _mapcount
 763 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
 764 * field.
 765 * So when we are allocating or freeing one, we can derive the state of the
 766 * other.  That is, if we allocate a small block, and both were
 767 * free, the remainder of the region must be split into blocks.
 768 * If a block is freed, and its buddy is also free, then this
 769 * triggers coalescing into a block of larger size.
 770 *
 771 * -- nyc
 772 */
 773
 774static inline void __free_one_page(struct page *page,
 775		unsigned long pfn,
 776		struct zone *zone, unsigned int order,
 777		int migratetype)
 778{
 
 
 779	unsigned long combined_pfn;
 780	unsigned long uninitialized_var(buddy_pfn);
 781	struct page *buddy;
 782	unsigned int max_order;
 783
 784	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
 785
 786	VM_BUG_ON(!zone_is_initialized(zone));
 787	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
 788
 789	VM_BUG_ON(migratetype == -1);
 790	if (likely(!is_migrate_isolate(migratetype)))
 791		__mod_zone_freepage_state(zone, 1 << order, migratetype);
 792
 793	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
 794	VM_BUG_ON_PAGE(bad_range(zone, page), page);
 795
 796continue_merging:
 797	while (order < max_order - 1) {
 798		buddy_pfn = __find_buddy_pfn(pfn, order);
 799		buddy = page + (buddy_pfn - pfn);
 
 
 800
 801		if (!pfn_valid_within(buddy_pfn))
 802			goto done_merging;
 803		if (!page_is_buddy(page, buddy, order))
 804			goto done_merging;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 805		/*
 806		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
 807		 * merge with it and move up one order.
 808		 */
 809		if (page_is_guard(buddy)) {
 810			clear_page_guard(zone, buddy, order, migratetype);
 811		} else {
 812			list_del(&buddy->lru);
 813			zone->free_area[order].nr_free--;
 814			rmv_page_order(buddy);
 815		}
 816		combined_pfn = buddy_pfn & pfn;
 817		page = page + (combined_pfn - pfn);
 818		pfn = combined_pfn;
 819		order++;
 820	}
 821	if (max_order < MAX_ORDER) {
 822		/* If we are here, it means order is >= pageblock_order.
 823		 * We want to prevent merge between freepages on isolate
 824		 * pageblock and normal pageblock. Without this, pageblock
 825		 * isolation could cause incorrect freepage or CMA accounting.
 826		 *
 827		 * We don't want to hit this code for the more frequent
 828		 * low-order merging.
 829		 */
 830		if (unlikely(has_isolate_pageblock(zone))) {
 831			int buddy_mt;
 832
 833			buddy_pfn = __find_buddy_pfn(pfn, order);
 834			buddy = page + (buddy_pfn - pfn);
 835			buddy_mt = get_pageblock_migratetype(buddy);
 836
 837			if (migratetype != buddy_mt
 838					&& (is_migrate_isolate(migratetype) ||
 839						is_migrate_isolate(buddy_mt)))
 840				goto done_merging;
 841		}
 842		max_order++;
 843		goto continue_merging;
 844	}
 845
 846done_merging:
 847	set_page_order(page, order);
 
 
 848
 849	/*
 850	 * If this is not the largest possible page, check if the buddy
 851	 * of the next-highest order is free. If it is, it's possible
 852	 * that pages are being freed that will coalesce soon. In case,
 853	 * that is happening, add the free page to the tail of the list
 854	 * so it's less likely to be used soon and more likely to be merged
 855	 * as a higher order page
 856	 */
 857	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
 858		struct page *higher_page, *higher_buddy;
 859		combined_pfn = buddy_pfn & pfn;
 860		higher_page = page + (combined_pfn - pfn);
 861		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
 862		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
 863		if (pfn_valid_within(buddy_pfn) &&
 864		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
 865			list_add_tail(&page->lru,
 866				&zone->free_area[order].free_list[migratetype]);
 867			goto out;
 868		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 869	}
 870
 871	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 872out:
 873	zone->free_area[order].nr_free++;
 
 874}
 875
 876/*
 877 * A bad page could be due to a number of fields. Instead of multiple branches,
 878 * try and check multiple fields with one check. The caller must do a detailed
 879 * check if necessary.
 880 */
 881static inline bool page_expected_state(struct page *page,
 882					unsigned long check_flags)
 883{
 884	if (unlikely(atomic_read(&page->_mapcount) != -1))
 885		return false;
 886
 887	if (unlikely((unsigned long)page->mapping |
 888			page_ref_count(page) |
 889#ifdef CONFIG_MEMCG
 890			(unsigned long)page->mem_cgroup |
 891#endif
 892			(page->flags & check_flags)))
 893		return false;
 894
 895	return true;
 896}
 897
 898static void free_pages_check_bad(struct page *page)
 899{
 900	const char *bad_reason;
 901	unsigned long bad_flags;
 902
 903	bad_reason = NULL;
 904	bad_flags = 0;
 905
 906	if (unlikely(atomic_read(&page->_mapcount) != -1))
 907		bad_reason = "nonzero mapcount";
 908	if (unlikely(page->mapping != NULL))
 909		bad_reason = "non-NULL mapping";
 910	if (unlikely(page_ref_count(page) != 0))
 911		bad_reason = "nonzero _refcount";
 912	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
 913		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
 914		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
 
 
 915	}
 916#ifdef CONFIG_MEMCG
 917	if (unlikely(page->mem_cgroup))
 918		bad_reason = "page still charged to cgroup";
 919#endif
 920	bad_page(page, bad_reason, bad_flags);
 
 
 
 
 
 
 921}
 922
 923static inline int free_pages_check(struct page *page)
 924{
 925	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
 926		return 0;
 927
 928	/* Something has gone sideways, find it */
 929	free_pages_check_bad(page);
 930	return 1;
 931}
 932
 933static int free_tail_pages_check(struct page *head_page, struct page *page)
 934{
 935	int ret = 1;
 936
 937	/*
 938	 * We rely page->lru.next never has bit 0 set, unless the page
 939	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
 940	 */
 941	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
 942
 943	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
 944		ret = 0;
 945		goto out;
 946	}
 947	switch (page - head_page) {
 948	case 1:
 949		/* the first tail page: ->mapping is compound_mapcount() */
 950		if (unlikely(compound_mapcount(page))) {
 951			bad_page(page, "nonzero compound_mapcount", 0);
 
 
 
 
 
 
 
 
 952			goto out;
 953		}
 954		break;
 955	case 2:
 956		/*
 957		 * the second tail page: ->mapping is
 958		 * page_deferred_list().next -- ignore value.
 959		 */
 960		break;
 961	default:
 962		if (page->mapping != TAIL_MAPPING) {
 963			bad_page(page, "corrupted mapping in tail page", 0);
 964			goto out;
 965		}
 966		break;
 967	}
 968	if (unlikely(!PageTail(page))) {
 969		bad_page(page, "PageTail not set", 0);
 970		goto out;
 971	}
 972	if (unlikely(compound_head(page) != head_page)) {
 973		bad_page(page, "compound_head not consistent", 0);
 974		goto out;
 975	}
 976	ret = 0;
 977out:
 978	page->mapping = NULL;
 979	clear_compound_head(page);
 980	return ret;
 981}
 982
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 983static __always_inline bool free_pages_prepare(struct page *page,
 984					unsigned int order, bool check_free)
 985{
 986	int bad = 0;
 
 987
 988	VM_BUG_ON_PAGE(PageTail(page), page);
 989
 990	trace_mm_page_free(page, order);
 
 
 
 
 
 
 
 
 
 
 
 
 
 991
 992	/*
 993	 * Check tail pages before head page information is cleared to
 994	 * avoid checking PageCompound for order-0 pages.
 995	 */
 996	if (unlikely(order)) {
 997		bool compound = PageCompound(page);
 998		int i;
 999
1000		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1001
1002		if (compound)
1003			ClearPageDoubleMap(page);
1004		for (i = 1; i < (1 << order); i++) {
1005			if (compound)
1006				bad += free_tail_pages_check(page, page + i);
1007			if (unlikely(free_pages_check(page + i))) {
1008				bad++;
1009				continue;
1010			}
1011			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1012		}
1013	}
1014	if (PageMappingFlags(page))
1015		page->mapping = NULL;
1016	if (memcg_kmem_enabled() && PageKmemcg(page))
1017		memcg_kmem_uncharge(page, order);
1018	if (check_free)
1019		bad += free_pages_check(page);
1020	if (bad)
1021		return false;
1022
1023	page_cpupid_reset_last(page);
1024	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1025	reset_page_owner(page, order);
 
1026
1027	if (!PageHighMem(page)) {
1028		debug_check_no_locks_freed(page_address(page),
1029					   PAGE_SIZE << order);
1030		debug_check_no_obj_freed(page_address(page),
1031					   PAGE_SIZE << order);
1032	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1033	arch_free_page(page, order);
1034	kernel_poison_pages(page, 1 << order, 0);
1035	kernel_map_pages(page, 1 << order, 0);
1036	kasan_free_pages(page, order);
1037
1038	return true;
1039}
1040
1041#ifdef CONFIG_DEBUG_VM
1042static inline bool free_pcp_prepare(struct page *page)
 
 
 
 
 
1043{
1044	return free_pages_prepare(page, 0, true);
1045}
1046
1047static inline bool bulkfree_pcp_prepare(struct page *page)
 
1048{
1049	return false;
 
 
 
1050}
1051#else
1052static bool free_pcp_prepare(struct page *page)
 
 
 
 
 
 
1053{
1054	return free_pages_prepare(page, 0, false);
 
 
 
1055}
1056
1057static bool bulkfree_pcp_prepare(struct page *page)
1058{
1059	return free_pages_check(page);
1060}
1061#endif /* CONFIG_DEBUG_VM */
1062
1063static inline void prefetch_buddy(struct page *page)
1064{
1065	unsigned long pfn = page_to_pfn(page);
1066	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1067	struct page *buddy = page + (buddy_pfn - pfn);
1068
1069	prefetch(buddy);
1070}
1071
1072/*
1073 * Frees a number of pages from the PCP lists
1074 * Assumes all pages on list are in same zone, and of same order.
1075 * count is the number of pages to free.
1076 *
1077 * If the zone was previously in an "all pages pinned" state then look to
1078 * see if this freeing clears that state.
1079 *
1080 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1081 * pinned" detection logic.
1082 */
1083static void free_pcppages_bulk(struct zone *zone, int count,
1084					struct per_cpu_pages *pcp)
 
1085{
1086	int migratetype = 0;
1087	int batch_free = 0;
1088	int prefetch_nr = 0;
 
1089	bool isolated_pageblocks;
1090	struct page *page, *tmp;
1091	LIST_HEAD(head);
 
 
 
 
 
 
 
 
1092
1093	while (count) {
 
 
 
1094		struct list_head *list;
 
1095
1096		/*
1097		 * Remove pages from lists in a round-robin fashion. A
1098		 * batch_free count is maintained that is incremented when an
1099		 * empty list is encountered.  This is so more pages are freed
1100		 * off fuller lists instead of spinning excessively around empty
1101		 * lists
1102		 */
1103		do {
1104			batch_free++;
1105			if (++migratetype == MIGRATE_PCPTYPES)
1106				migratetype = 0;
1107			list = &pcp->lists[migratetype];
1108		} while (list_empty(list));
1109
1110		/* This is the only non-empty list. Free them all. */
1111		if (batch_free == MIGRATE_PCPTYPES)
1112			batch_free = count;
1113
 
 
 
 
 
 
 
 
1114		do {
1115			page = list_last_entry(list, struct page, lru);
 
 
 
 
1116			/* must delete to avoid corrupting pcp list */
1117			list_del(&page->lru);
1118			pcp->count--;
 
1119
1120			if (bulkfree_pcp_prepare(page))
1121				continue;
1122
1123			list_add_tail(&page->lru, &head);
1124
1125			/*
1126			 * We are going to put the page back to the global
1127			 * pool, prefetch its buddy to speed up later access
1128			 * under zone->lock. It is believed the overhead of
1129			 * an additional test and calculating buddy_pfn here
1130			 * can be offset by reduced memory latency later. To
1131			 * avoid excessive prefetching due to large count, only
1132			 * prefetch buddy for the first pcp->batch nr of pages.
1133			 */
1134			if (prefetch_nr++ < pcp->batch)
1135				prefetch_buddy(page);
1136		} while (--count && --batch_free && !list_empty(list));
1137	}
1138
1139	spin_lock(&zone->lock);
1140	isolated_pageblocks = has_isolate_pageblock(zone);
1141
1142	/*
1143	 * Use safe version since after __free_one_page(),
1144	 * page->lru.next will not point to original list.
1145	 */
1146	list_for_each_entry_safe(page, tmp, &head, lru) {
1147		int mt = get_pcppage_migratetype(page);
1148		/* MIGRATE_ISOLATE page should not go to pcplists */
1149		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1150		/* Pageblock could have been isolated meanwhile */
1151		if (unlikely(isolated_pageblocks))
1152			mt = get_pageblock_migratetype(page);
1153
1154		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1155		trace_mm_page_pcpu_drain(page, 0, mt);
1156	}
1157	spin_unlock(&zone->lock);
1158}
1159
1160static void free_one_page(struct zone *zone,
1161				struct page *page, unsigned long pfn,
1162				unsigned int order,
1163				int migratetype)
1164{
1165	spin_lock(&zone->lock);
 
 
1166	if (unlikely(has_isolate_pageblock(zone) ||
1167		is_migrate_isolate(migratetype))) {
1168		migratetype = get_pfnblock_migratetype(page, pfn);
1169	}
1170	__free_one_page(page, pfn, zone, order, migratetype);
1171	spin_unlock(&zone->lock);
1172}
1173
1174static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1175				unsigned long zone, int nid)
1176{
1177	mm_zero_struct_page(page);
1178	set_page_links(page, zone, nid, pfn);
1179	init_page_count(page);
1180	page_mapcount_reset(page);
1181	page_cpupid_reset_last(page);
 
1182
1183	INIT_LIST_HEAD(&page->lru);
1184#ifdef WANT_PAGE_VIRTUAL
1185	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1186	if (!is_highmem_idx(zone))
1187		set_page_address(page, __va(pfn << PAGE_SHIFT));
1188#endif
1189}
1190
1191#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1192static void __meminit init_reserved_page(unsigned long pfn)
1193{
1194	pg_data_t *pgdat;
1195	int nid, zid;
1196
1197	if (!early_page_uninitialised(pfn))
1198		return;
1199
1200	nid = early_pfn_to_nid(pfn);
1201	pgdat = NODE_DATA(nid);
1202
1203	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1204		struct zone *zone = &pgdat->node_zones[zid];
1205
1206		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1207			break;
1208	}
1209	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1210}
1211#else
1212static inline void init_reserved_page(unsigned long pfn)
1213{
1214}
1215#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1216
1217/*
1218 * Initialised pages do not have PageReserved set. This function is
1219 * called for each range allocated by the bootmem allocator and
1220 * marks the pages PageReserved. The remaining valid pages are later
1221 * sent to the buddy page allocator.
1222 */
1223void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1224{
1225	unsigned long start_pfn = PFN_DOWN(start);
1226	unsigned long end_pfn = PFN_UP(end);
1227
1228	for (; start_pfn < end_pfn; start_pfn++) {
1229		if (pfn_valid(start_pfn)) {
1230			struct page *page = pfn_to_page(start_pfn);
1231
1232			init_reserved_page(start_pfn);
1233
1234			/* Avoid false-positive PageTail() */
1235			INIT_LIST_HEAD(&page->lru);
1236
1237			SetPageReserved(page);
 
 
 
 
 
1238		}
1239	}
1240}
1241
1242static void __free_pages_ok(struct page *page, unsigned int order)
 
1243{
1244	unsigned long flags;
1245	int migratetype;
1246	unsigned long pfn = page_to_pfn(page);
 
1247
1248	if (!free_pages_prepare(page, order, true))
1249		return;
1250
 
 
 
 
 
1251	migratetype = get_pfnblock_migratetype(page, pfn);
1252	local_irq_save(flags);
 
 
 
 
 
 
 
 
1253	__count_vm_events(PGFREE, 1 << order);
1254	free_one_page(page_zone(page), page, pfn, order, migratetype);
1255	local_irq_restore(flags);
1256}
1257
1258static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1259{
1260	unsigned int nr_pages = 1 << order;
1261	struct page *p = page;
1262	unsigned int loop;
1263
 
 
 
 
 
1264	prefetchw(p);
1265	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1266		prefetchw(p + 1);
1267		__ClearPageReserved(p);
1268		set_page_count(p, 0);
1269	}
1270	__ClearPageReserved(p);
1271	set_page_count(p, 0);
1272
1273	page_zone(page)->managed_pages += nr_pages;
1274	set_page_refcounted(page);
1275	__free_pages(page, order);
 
 
 
 
1276}
1277
1278#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1279	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
 
 
 
 
 
 
 
 
 
 
1280
1281static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1282
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1283int __meminit early_pfn_to_nid(unsigned long pfn)
1284{
1285	static DEFINE_SPINLOCK(early_pfn_lock);
1286	int nid;
1287
1288	spin_lock(&early_pfn_lock);
1289	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1290	if (nid < 0)
1291		nid = first_online_node;
1292	spin_unlock(&early_pfn_lock);
1293
1294	return nid;
1295}
1296#endif
1297
1298#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1299static inline bool __meminit __maybe_unused
1300meminit_pfn_in_nid(unsigned long pfn, int node,
1301		   struct mminit_pfnnid_cache *state)
1302{
1303	int nid;
1304
1305	nid = __early_pfn_to_nid(pfn, state);
1306	if (nid >= 0 && nid != node)
1307		return false;
1308	return true;
1309}
1310
1311/* Only safe to use early in boot when initialisation is single-threaded */
1312static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1313{
1314	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1315}
1316
1317#else
1318
1319static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1320{
1321	return true;
1322}
1323static inline bool __meminit  __maybe_unused
1324meminit_pfn_in_nid(unsigned long pfn, int node,
1325		   struct mminit_pfnnid_cache *state)
1326{
1327	return true;
1328}
1329#endif
1330
1331
1332void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1333							unsigned int order)
1334{
1335	if (early_page_uninitialised(pfn))
1336		return;
1337	return __free_pages_boot_core(page, order);
 
 
 
 
1338}
1339
1340/*
1341 * Check that the whole (or subset of) a pageblock given by the interval of
1342 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1343 * with the migration of free compaction scanner. The scanners then need to
1344 * use only pfn_valid_within() check for arches that allow holes within
1345 * pageblocks.
1346 *
1347 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1348 *
1349 * It's possible on some configurations to have a setup like node0 node1 node0
1350 * i.e. it's possible that all pages within a zones range of pages do not
1351 * belong to a single zone. We assume that a border between node0 and node1
1352 * can occur within a single pageblock, but not a node0 node1 node0
1353 * interleaving within a single pageblock. It is therefore sufficient to check
1354 * the first and last page of a pageblock and avoid checking each individual
1355 * page in a pageblock.
1356 */
1357struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1358				     unsigned long end_pfn, struct zone *zone)
1359{
1360	struct page *start_page;
1361	struct page *end_page;
1362
1363	/* end_pfn is one past the range we are checking */
1364	end_pfn--;
1365
1366	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1367		return NULL;
1368
1369	start_page = pfn_to_online_page(start_pfn);
1370	if (!start_page)
1371		return NULL;
1372
1373	if (page_zone(start_page) != zone)
1374		return NULL;
1375
1376	end_page = pfn_to_page(end_pfn);
1377
1378	/* This gives a shorter code than deriving page_zone(end_page) */
1379	if (page_zone_id(start_page) != page_zone_id(end_page))
1380		return NULL;
1381
1382	return start_page;
1383}
1384
1385void set_zone_contiguous(struct zone *zone)
1386{
1387	unsigned long block_start_pfn = zone->zone_start_pfn;
1388	unsigned long block_end_pfn;
1389
1390	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1391	for (; block_start_pfn < zone_end_pfn(zone);
1392			block_start_pfn = block_end_pfn,
1393			 block_end_pfn += pageblock_nr_pages) {
1394
1395		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1396
1397		if (!__pageblock_pfn_to_page(block_start_pfn,
1398					     block_end_pfn, zone))
1399			return;
 
1400	}
1401
1402	/* We confirm that there is no hole */
1403	zone->contiguous = true;
1404}
1405
1406void clear_zone_contiguous(struct zone *zone)
1407{
1408	zone->contiguous = false;
1409}
1410
1411#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1412static void __init deferred_free_range(unsigned long pfn,
1413				       unsigned long nr_pages)
1414{
1415	struct page *page;
1416	unsigned long i;
1417
1418	if (!nr_pages)
1419		return;
1420
1421	page = pfn_to_page(pfn);
1422
1423	/* Free a large naturally-aligned chunk if possible */
1424	if (nr_pages == pageblock_nr_pages &&
1425	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1426		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1427		__free_pages_boot_core(page, pageblock_order);
1428		return;
1429	}
1430
1431	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1432		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1433			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1434		__free_pages_boot_core(page, 0);
1435	}
1436}
1437
1438/* Completion tracking for deferred_init_memmap() threads */
1439static atomic_t pgdat_init_n_undone __initdata;
1440static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1441
1442static inline void __init pgdat_init_report_one_done(void)
1443{
1444	if (atomic_dec_and_test(&pgdat_init_n_undone))
1445		complete(&pgdat_init_all_done_comp);
1446}
1447
1448/*
1449 * Returns true if page needs to be initialized or freed to buddy allocator.
1450 *
1451 * First we check if pfn is valid on architectures where it is possible to have
1452 * holes within pageblock_nr_pages. On systems where it is not possible, this
1453 * function is optimized out.
1454 *
1455 * Then, we check if a current large page is valid by only checking the validity
1456 * of the head pfn.
1457 *
1458 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1459 * within a node: a pfn is between start and end of a node, but does not belong
1460 * to this memory node.
1461 */
1462static inline bool __init
1463deferred_pfn_valid(int nid, unsigned long pfn,
1464		   struct mminit_pfnnid_cache *nid_init_state)
1465{
1466	if (!pfn_valid_within(pfn))
1467		return false;
1468	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1469		return false;
1470	if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1471		return false;
1472	return true;
1473}
1474
1475/*
1476 * Free pages to buddy allocator. Try to free aligned pages in
1477 * pageblock_nr_pages sizes.
1478 */
1479static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1480				       unsigned long end_pfn)
1481{
1482	struct mminit_pfnnid_cache nid_init_state = { };
1483	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1484	unsigned long nr_free = 0;
1485
1486	for (; pfn < end_pfn; pfn++) {
1487		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1488			deferred_free_range(pfn - nr_free, nr_free);
1489			nr_free = 0;
1490		} else if (!(pfn & nr_pgmask)) {
1491			deferred_free_range(pfn - nr_free, nr_free);
1492			nr_free = 1;
1493			touch_nmi_watchdog();
1494		} else {
1495			nr_free++;
1496		}
1497	}
1498	/* Free the last block of pages to allocator */
1499	deferred_free_range(pfn - nr_free, nr_free);
1500}
1501
1502/*
1503 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1504 * by performing it only once every pageblock_nr_pages.
1505 * Return number of pages initialized.
1506 */
1507static unsigned long  __init deferred_init_pages(int nid, int zid,
1508						 unsigned long pfn,
1509						 unsigned long end_pfn)
1510{
1511	struct mminit_pfnnid_cache nid_init_state = { };
1512	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1513	unsigned long nr_pages = 0;
 
1514	struct page *page = NULL;
1515
1516	for (; pfn < end_pfn; pfn++) {
1517		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1518			page = NULL;
1519			continue;
1520		} else if (!page || !(pfn & nr_pgmask)) {
1521			page = pfn_to_page(pfn);
1522			touch_nmi_watchdog();
1523		} else {
1524			page++;
1525		}
1526		__init_single_page(page, pfn, zid, nid);
1527		nr_pages++;
1528	}
1529	return (nr_pages);
1530}
1531
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1532/* Initialise remaining memory on a node */
1533static int __init deferred_init_memmap(void *data)
1534{
1535	pg_data_t *pgdat = data;
1536	int nid = pgdat->node_id;
 
 
1537	unsigned long start = jiffies;
1538	unsigned long nr_pages = 0;
1539	unsigned long spfn, epfn, first_init_pfn, flags;
1540	phys_addr_t spa, epa;
1541	int zid;
1542	struct zone *zone;
1543	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1544	u64 i;
1545
1546	/* Bind memory initialisation thread to a local node if possible */
1547	if (!cpumask_empty(cpumask))
1548		set_cpus_allowed_ptr(current, cpumask);
1549
1550	pgdat_resize_lock(pgdat, &flags);
1551	first_init_pfn = pgdat->first_deferred_pfn;
1552	if (first_init_pfn == ULONG_MAX) {
1553		pgdat_resize_unlock(pgdat, &flags);
1554		pgdat_init_report_one_done();
1555		return 0;
1556	}
1557
1558	/* Sanity check boundaries */
1559	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1560	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1561	pgdat->first_deferred_pfn = ULONG_MAX;
1562
 
 
 
 
 
 
 
1563	/* Only the highest zone is deferred so find it */
1564	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1565		zone = pgdat->node_zones + zid;
1566		if (first_init_pfn < zone_end_pfn(zone))
1567			break;
1568	}
1569	first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1570
1571	/*
1572	 * Initialize and free pages. We do it in two loops: first we initialize
1573	 * struct page, than free to buddy allocator, because while we are
1574	 * freeing pages we can access pages that are ahead (computing buddy
1575	 * page in __free_one_page()).
1576	 */
1577	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1578		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1579		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1580		nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1581	}
1582	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1583		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1584		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1585		deferred_free_pages(nid, zid, spfn, epfn);
 
 
 
 
 
 
 
1586	}
1587	pgdat_resize_unlock(pgdat, &flags);
1588
1589	/* Sanity check that the next zone really is unpopulated */
1590	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1591
1592	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1593					jiffies_to_msecs(jiffies - start));
1594
1595	pgdat_init_report_one_done();
1596	return 0;
1597}
1598
1599/*
1600 * During boot we initialize deferred pages on-demand, as needed, but once
1601 * page_alloc_init_late() has finished, the deferred pages are all initialized,
1602 * and we can permanently disable that path.
1603 */
1604static DEFINE_STATIC_KEY_TRUE(deferred_pages);
1605
1606/*
1607 * If this zone has deferred pages, try to grow it by initializing enough
1608 * deferred pages to satisfy the allocation specified by order, rounded up to
1609 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
1610 * of SECTION_SIZE bytes by initializing struct pages in increments of
1611 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1612 *
1613 * Return true when zone was grown, otherwise return false. We return true even
1614 * when we grow less than requested, to let the caller decide if there are
1615 * enough pages to satisfy the allocation.
1616 *
1617 * Note: We use noinline because this function is needed only during boot, and
1618 * it is called from a __ref function _deferred_grow_zone. This way we are
1619 * making sure that it is not inlined into permanent text section.
1620 */
1621static noinline bool __init
1622deferred_grow_zone(struct zone *zone, unsigned int order)
1623{
1624	int zid = zone_idx(zone);
1625	int nid = zone_to_nid(zone);
1626	pg_data_t *pgdat = NODE_DATA(nid);
1627	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1628	unsigned long nr_pages = 0;
1629	unsigned long first_init_pfn, spfn, epfn, t, flags;
1630	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1631	phys_addr_t spa, epa;
 
1632	u64 i;
1633
1634	/* Only the last zone may have deferred pages */
1635	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1636		return false;
1637
1638	pgdat_resize_lock(pgdat, &flags);
1639
1640	/*
1641	 * If deferred pages have been initialized while we were waiting for
1642	 * the lock, return true, as the zone was grown.  The caller will retry
1643	 * this zone.  We won't return to this function since the caller also
1644	 * has this static branch.
1645	 */
1646	if (!static_branch_unlikely(&deferred_pages)) {
1647		pgdat_resize_unlock(pgdat, &flags);
1648		return true;
1649	}
1650
1651	/*
1652	 * If someone grew this zone while we were waiting for spinlock, return
1653	 * true, as there might be enough pages already.
1654	 */
1655	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1656		pgdat_resize_unlock(pgdat, &flags);
1657		return true;
1658	}
1659
1660	first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
1661
1662	if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
 
1663		pgdat_resize_unlock(pgdat, &flags);
1664		return false;
 
1665	}
1666
1667	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1668		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1669		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1670
1671		while (spfn < epfn && nr_pages < nr_pages_needed) {
1672			t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
1673			first_deferred_pfn = min(t, epfn);
1674			nr_pages += deferred_init_pages(nid, zid, spfn,
1675							first_deferred_pfn);
1676			spfn = first_deferred_pfn;
1677		}
1678
1679		if (nr_pages >= nr_pages_needed)
1680			break;
1681	}
1682
1683	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1684		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1685		epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
1686		deferred_free_pages(nid, zid, spfn, epfn);
1687
1688		if (first_deferred_pfn == epfn)
 
1689			break;
1690	}
1691	pgdat->first_deferred_pfn = first_deferred_pfn;
 
1692	pgdat_resize_unlock(pgdat, &flags);
1693
1694	return nr_pages > 0;
1695}
1696
1697/*
1698 * deferred_grow_zone() is __init, but it is called from
1699 * get_page_from_freelist() during early boot until deferred_pages permanently
1700 * disables this call. This is why we have refdata wrapper to avoid warning,
1701 * and to ensure that the function body gets unloaded.
1702 */
1703static bool __ref
1704_deferred_grow_zone(struct zone *zone, unsigned int order)
1705{
1706	return deferred_grow_zone(zone, order);
1707}
1708
1709#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1710
1711void __init page_alloc_init_late(void)
1712{
1713	struct zone *zone;
 
1714
1715#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1716	int nid;
1717
1718	/* There will be num_node_state(N_MEMORY) threads */
1719	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1720	for_each_node_state(nid, N_MEMORY) {
1721		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1722	}
1723
1724	/* Block until all are initialised */
1725	wait_for_completion(&pgdat_init_all_done_comp);
1726
1727	/*
1728	 * We initialized the rest of the deferred pages.  Permanently disable
1729	 * on-demand struct page initialization.
1730	 */
1731	static_branch_disable(&deferred_pages);
1732
1733	/* Reinit limits that are based on free pages after the kernel is up */
1734	files_maxfiles_init();
1735#endif
1736#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
 
 
1737	/* Discard memblock private memory */
1738	memblock_discard();
1739#endif
 
 
1740
1741	for_each_populated_zone(zone)
1742		set_zone_contiguous(zone);
1743}
1744
1745#ifdef CONFIG_CMA
1746/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1747void __init init_cma_reserved_pageblock(struct page *page)
1748{
1749	unsigned i = pageblock_nr_pages;
1750	struct page *p = page;
1751
1752	do {
1753		__ClearPageReserved(p);
1754		set_page_count(p, 0);
1755	} while (++p, --i);
1756
1757	set_pageblock_migratetype(page, MIGRATE_CMA);
1758
1759	if (pageblock_order >= MAX_ORDER) {
1760		i = pageblock_nr_pages;
1761		p = page;
1762		do {
1763			set_page_refcounted(p);
1764			__free_pages(p, MAX_ORDER - 1);
1765			p += MAX_ORDER_NR_PAGES;
1766		} while (i -= MAX_ORDER_NR_PAGES);
1767	} else {
1768		set_page_refcounted(page);
1769		__free_pages(page, pageblock_order);
1770	}
1771
1772	adjust_managed_page_count(page, pageblock_nr_pages);
 
1773}
1774#endif
1775
1776/*
1777 * The order of subdivision here is critical for the IO subsystem.
1778 * Please do not alter this order without good reasons and regression
1779 * testing. Specifically, as large blocks of memory are subdivided,
1780 * the order in which smaller blocks are delivered depends on the order
1781 * they're subdivided in this function. This is the primary factor
1782 * influencing the order in which pages are delivered to the IO
1783 * subsystem according to empirical testing, and this is also justified
1784 * by considering the behavior of a buddy system containing a single
1785 * large block of memory acted on by a series of small allocations.
1786 * This behavior is a critical factor in sglist merging's success.
1787 *
1788 * -- nyc
1789 */
1790static inline void expand(struct zone *zone, struct page *page,
1791	int low, int high, struct free_area *area,
1792	int migratetype)
1793{
1794	unsigned long size = 1 << high;
1795
1796	while (high > low) {
1797		area--;
1798		high--;
1799		size >>= 1;
1800		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1801
1802		/*
1803		 * Mark as guard pages (or page), that will allow to
1804		 * merge back to allocator when buddy will be freed.
1805		 * Corresponding page table entries will not be touched,
1806		 * pages will stay not present in virtual address space
1807		 */
1808		if (set_page_guard(zone, &page[size], high, migratetype))
1809			continue;
1810
1811		list_add(&page[size].lru, &area->free_list[migratetype]);
1812		area->nr_free++;
1813		set_page_order(&page[size], high);
1814	}
1815}
1816
1817static void check_new_page_bad(struct page *page)
1818{
1819	const char *bad_reason = NULL;
1820	unsigned long bad_flags = 0;
1821
1822	if (unlikely(atomic_read(&page->_mapcount) != -1))
1823		bad_reason = "nonzero mapcount";
1824	if (unlikely(page->mapping != NULL))
1825		bad_reason = "non-NULL mapping";
1826	if (unlikely(page_ref_count(page) != 0))
1827		bad_reason = "nonzero _count";
1828	if (unlikely(page->flags & __PG_HWPOISON)) {
1829		bad_reason = "HWPoisoned (hardware-corrupted)";
1830		bad_flags = __PG_HWPOISON;
1831		/* Don't complain about hwpoisoned pages */
1832		page_mapcount_reset(page); /* remove PageBuddy */
1833		return;
1834	}
1835	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1836		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1837		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1838	}
1839#ifdef CONFIG_MEMCG
1840	if (unlikely(page->mem_cgroup))
1841		bad_reason = "page still charged to cgroup";
1842#endif
1843	bad_page(page, bad_reason, bad_flags);
1844}
1845
1846/*
1847 * This page is about to be returned from the page allocator
1848 */
1849static inline int check_new_page(struct page *page)
1850{
1851	if (likely(page_expected_state(page,
1852				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1853		return 0;
1854
1855	check_new_page_bad(page);
1856	return 1;
1857}
1858
1859static inline bool free_pages_prezeroed(void)
1860{
1861	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1862		page_poisoning_enabled();
 
 
 
 
 
 
 
1863}
1864
1865#ifdef CONFIG_DEBUG_VM
1866static bool check_pcp_refill(struct page *page)
 
 
 
 
 
1867{
1868	return false;
 
 
 
1869}
1870
1871static bool check_new_pcp(struct page *page)
1872{
1873	return check_new_page(page);
1874}
1875#else
1876static bool check_pcp_refill(struct page *page)
 
 
 
 
 
1877{
1878	return check_new_page(page);
1879}
1880static bool check_new_pcp(struct page *page)
1881{
1882	return false;
 
 
 
1883}
1884#endif /* CONFIG_DEBUG_VM */
1885
1886static bool check_new_pages(struct page *page, unsigned int order)
1887{
1888	int i;
1889	for (i = 0; i < (1 << order); i++) {
1890		struct page *p = page + i;
 
1891
1892		if (unlikely(check_new_page(p)))
1893			return true;
1894	}
1895
1896	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1897}
1898
1899inline void post_alloc_hook(struct page *page, unsigned int order,
1900				gfp_t gfp_flags)
1901{
 
 
 
 
 
1902	set_page_private(page, 0);
1903	set_page_refcounted(page);
1904
1905	arch_alloc_page(page, order);
1906	kernel_map_pages(page, 1 << order, 1);
1907	kernel_poison_pages(page, 1 << order, 1);
1908	kasan_alloc_pages(page, order);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1909	set_page_owner(page, order, gfp_flags);
 
1910}
1911
1912static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1913							unsigned int alloc_flags)
1914{
1915	int i;
1916
1917	post_alloc_hook(page, order, gfp_flags);
1918
1919	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1920		for (i = 0; i < (1 << order); i++)
1921			clear_highpage(page + i);
1922
1923	if (order && (gfp_flags & __GFP_COMP))
1924		prep_compound_page(page, order);
1925
1926	/*
1927	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1928	 * allocate the page. The expectation is that the caller is taking
1929	 * steps that will free more memory. The caller should avoid the page
1930	 * being used for !PFMEMALLOC purposes.
1931	 */
1932	if (alloc_flags & ALLOC_NO_WATERMARKS)
1933		set_page_pfmemalloc(page);
1934	else
1935		clear_page_pfmemalloc(page);
1936}
1937
1938/*
1939 * Go through the free lists for the given migratetype and remove
1940 * the smallest available page from the freelists
1941 */
1942static __always_inline
1943struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1944						int migratetype)
1945{
1946	unsigned int current_order;
1947	struct free_area *area;
1948	struct page *page;
1949
1950	/* Find a page of the appropriate size in the preferred list */
1951	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1952		area = &(zone->free_area[current_order]);
1953		page = list_first_entry_or_null(&area->free_list[migratetype],
1954							struct page, lru);
1955		if (!page)
1956			continue;
1957		list_del(&page->lru);
1958		rmv_page_order(page);
1959		area->nr_free--;
1960		expand(zone, page, order, current_order, area, migratetype);
1961		set_pcppage_migratetype(page, migratetype);
 
 
 
1962		return page;
1963	}
1964
1965	return NULL;
1966}
1967
1968
1969/*
1970 * This array describes the order lists are fallen back to when
1971 * the free lists for the desirable migrate type are depleted
 
 
1972 */
1973static int fallbacks[MIGRATE_TYPES][4] = {
1974	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1975	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1976	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1977#ifdef CONFIG_CMA
1978	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1979#endif
1980#ifdef CONFIG_MEMORY_ISOLATION
1981	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1982#endif
1983};
1984
1985#ifdef CONFIG_CMA
1986static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1987					unsigned int order)
1988{
1989	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1990}
1991#else
1992static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1993					unsigned int order) { return NULL; }
1994#endif
1995
1996/*
1997 * Move the free pages in a range to the free lists of the requested type.
1998 * Note that start_page and end_pages are not aligned on a pageblock
1999 * boundary. If alignment is required, use move_freepages_block()
2000 */
2001static int move_freepages(struct zone *zone,
2002			  struct page *start_page, struct page *end_page,
2003			  int migratetype, int *num_movable)
2004{
2005	struct page *page;
 
2006	unsigned int order;
2007	int pages_moved = 0;
2008
2009#ifndef CONFIG_HOLES_IN_ZONE
2010	/*
2011	 * page_zone is not safe to call in this context when
2012	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2013	 * anyway as we check zone boundaries in move_freepages_block().
2014	 * Remove at a later date when no bug reports exist related to
2015	 * grouping pages by mobility
2016	 */
2017	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2018	          pfn_valid(page_to_pfn(end_page)) &&
2019	          page_zone(start_page) != page_zone(end_page));
2020#endif
2021
2022	if (num_movable)
2023		*num_movable = 0;
2024
2025	for (page = start_page; page <= end_page;) {
2026		if (!pfn_valid_within(page_to_pfn(page))) {
2027			page++;
2028			continue;
2029		}
2030
2031		/* Make sure we are not inadvertently changing nodes */
2032		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2033
2034		if (!PageBuddy(page)) {
2035			/*
2036			 * We assume that pages that could be isolated for
2037			 * migration are movable. But we don't actually try
2038			 * isolating, as that would be expensive.
2039			 */
2040			if (num_movable &&
2041					(PageLRU(page) || __PageMovable(page)))
2042				(*num_movable)++;
2043
2044			page++;
2045			continue;
2046		}
2047
2048		order = page_order(page);
2049		list_move(&page->lru,
2050			  &zone->free_area[order].free_list[migratetype]);
2051		page += 1 << order;
 
 
 
2052		pages_moved += 1 << order;
2053	}
2054
2055	return pages_moved;
2056}
2057
2058int move_freepages_block(struct zone *zone, struct page *page,
2059				int migratetype, int *num_movable)
2060{
2061	unsigned long start_pfn, end_pfn;
2062	struct page *start_page, *end_page;
2063
2064	start_pfn = page_to_pfn(page);
2065	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2066	start_page = pfn_to_page(start_pfn);
2067	end_page = start_page + pageblock_nr_pages - 1;
2068	end_pfn = start_pfn + pageblock_nr_pages - 1;
 
2069
2070	/* Do not cross zone boundaries */
2071	if (!zone_spans_pfn(zone, start_pfn))
2072		start_page = page;
2073	if (!zone_spans_pfn(zone, end_pfn))
2074		return 0;
2075
2076	return move_freepages(zone, start_page, end_page, migratetype,
2077								num_movable);
2078}
2079
2080static void change_pageblock_range(struct page *pageblock_page,
2081					int start_order, int migratetype)
2082{
2083	int nr_pageblocks = 1 << (start_order - pageblock_order);
2084
2085	while (nr_pageblocks--) {
2086		set_pageblock_migratetype(pageblock_page, migratetype);
2087		pageblock_page += pageblock_nr_pages;
2088	}
2089}
2090
2091/*
2092 * When we are falling back to another migratetype during allocation, try to
2093 * steal extra free pages from the same pageblocks to satisfy further
2094 * allocations, instead of polluting multiple pageblocks.
2095 *
2096 * If we are stealing a relatively large buddy page, it is likely there will
2097 * be more free pages in the pageblock, so try to steal them all. For
2098 * reclaimable and unmovable allocations, we steal regardless of page size,
2099 * as fragmentation caused by those allocations polluting movable pageblocks
2100 * is worse than movable allocations stealing from unmovable and reclaimable
2101 * pageblocks.
2102 */
2103static bool can_steal_fallback(unsigned int order, int start_mt)
2104{
2105	/*
2106	 * Leaving this order check is intended, although there is
2107	 * relaxed order check in next check. The reason is that
2108	 * we can actually steal whole pageblock if this condition met,
2109	 * but, below check doesn't guarantee it and that is just heuristic
2110	 * so could be changed anytime.
2111	 */
2112	if (order >= pageblock_order)
2113		return true;
2114
2115	if (order >= pageblock_order / 2 ||
2116		start_mt == MIGRATE_RECLAIMABLE ||
2117		start_mt == MIGRATE_UNMOVABLE ||
2118		page_group_by_mobility_disabled)
2119		return true;
2120
2121	return false;
2122}
2123
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2124/*
2125 * This function implements actual steal behaviour. If order is large enough,
2126 * we can steal whole pageblock. If not, we first move freepages in this
2127 * pageblock to our migratetype and determine how many already-allocated pages
2128 * are there in the pageblock with a compatible migratetype. If at least half
2129 * of pages are free or compatible, we can change migratetype of the pageblock
2130 * itself, so pages freed in the future will be put on the correct free list.
2131 */
2132static void steal_suitable_fallback(struct zone *zone, struct page *page,
2133					int start_type, bool whole_block)
2134{
2135	unsigned int current_order = page_order(page);
2136	struct free_area *area;
2137	int free_pages, movable_pages, alike_pages;
2138	int old_block_type;
2139
2140	old_block_type = get_pageblock_migratetype(page);
2141
2142	/*
2143	 * This can happen due to races and we want to prevent broken
2144	 * highatomic accounting.
2145	 */
2146	if (is_migrate_highatomic(old_block_type))
2147		goto single_page;
2148
2149	/* Take ownership for orders >= pageblock_order */
2150	if (current_order >= pageblock_order) {
2151		change_pageblock_range(page, current_order, start_type);
2152		goto single_page;
2153	}
2154
 
 
 
 
 
 
 
 
2155	/* We are not allowed to try stealing from the whole block */
2156	if (!whole_block)
2157		goto single_page;
2158
2159	free_pages = move_freepages_block(zone, page, start_type,
2160						&movable_pages);
2161	/*
2162	 * Determine how many pages are compatible with our allocation.
2163	 * For movable allocation, it's the number of movable pages which
2164	 * we just obtained. For other types it's a bit more tricky.
2165	 */
2166	if (start_type == MIGRATE_MOVABLE) {
2167		alike_pages = movable_pages;
2168	} else {
2169		/*
2170		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2171		 * to MOVABLE pageblock, consider all non-movable pages as
2172		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2173		 * vice versa, be conservative since we can't distinguish the
2174		 * exact migratetype of non-movable pages.
2175		 */
2176		if (old_block_type == MIGRATE_MOVABLE)
2177			alike_pages = pageblock_nr_pages
2178						- (free_pages + movable_pages);
2179		else
2180			alike_pages = 0;
2181	}
2182
2183	/* moving whole block can fail due to zone boundary conditions */
2184	if (!free_pages)
2185		goto single_page;
2186
2187	/*
2188	 * If a sufficient number of pages in the block are either free or of
2189	 * comparable migratability as our allocation, claim the whole block.
2190	 */
2191	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2192			page_group_by_mobility_disabled)
2193		set_pageblock_migratetype(page, start_type);
2194
2195	return;
2196
2197single_page:
2198	area = &zone->free_area[current_order];
2199	list_move(&page->lru, &area->free_list[start_type]);
2200}
2201
2202/*
2203 * Check whether there is a suitable fallback freepage with requested order.
2204 * If only_stealable is true, this function returns fallback_mt only if
2205 * we can steal other freepages all together. This would help to reduce
2206 * fragmentation due to mixed migratetype pages in one pageblock.
2207 */
2208int find_suitable_fallback(struct free_area *area, unsigned int order,
2209			int migratetype, bool only_stealable, bool *can_steal)
2210{
2211	int i;
2212	int fallback_mt;
2213
2214	if (area->nr_free == 0)
2215		return -1;
2216
2217	*can_steal = false;
2218	for (i = 0;; i++) {
2219		fallback_mt = fallbacks[migratetype][i];
2220		if (fallback_mt == MIGRATE_TYPES)
2221			break;
2222
2223		if (list_empty(&area->free_list[fallback_mt]))
2224			continue;
2225
2226		if (can_steal_fallback(order, migratetype))
2227			*can_steal = true;
2228
2229		if (!only_stealable)
2230			return fallback_mt;
2231
2232		if (*can_steal)
2233			return fallback_mt;
2234	}
2235
2236	return -1;
2237}
2238
2239/*
2240 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2241 * there are no empty page blocks that contain a page with a suitable order
2242 */
2243static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2244				unsigned int alloc_order)
2245{
2246	int mt;
2247	unsigned long max_managed, flags;
2248
2249	/*
2250	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2251	 * Check is race-prone but harmless.
2252	 */
2253	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2254	if (zone->nr_reserved_highatomic >= max_managed)
2255		return;
2256
2257	spin_lock_irqsave(&zone->lock, flags);
2258
2259	/* Recheck the nr_reserved_highatomic limit under the lock */
2260	if (zone->nr_reserved_highatomic >= max_managed)
2261		goto out_unlock;
2262
2263	/* Yoink! */
2264	mt = get_pageblock_migratetype(page);
2265	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2266	    && !is_migrate_cma(mt)) {
2267		zone->nr_reserved_highatomic += pageblock_nr_pages;
2268		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2269		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2270	}
2271
2272out_unlock:
2273	spin_unlock_irqrestore(&zone->lock, flags);
2274}
2275
2276/*
2277 * Used when an allocation is about to fail under memory pressure. This
2278 * potentially hurts the reliability of high-order allocations when under
2279 * intense memory pressure but failed atomic allocations should be easier
2280 * to recover from than an OOM.
2281 *
2282 * If @force is true, try to unreserve a pageblock even though highatomic
2283 * pageblock is exhausted.
2284 */
2285static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2286						bool force)
2287{
2288	struct zonelist *zonelist = ac->zonelist;
2289	unsigned long flags;
2290	struct zoneref *z;
2291	struct zone *zone;
2292	struct page *page;
2293	int order;
2294	bool ret;
2295
2296	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2297								ac->nodemask) {
2298		/*
2299		 * Preserve at least one pageblock unless memory pressure
2300		 * is really high.
2301		 */
2302		if (!force && zone->nr_reserved_highatomic <=
2303					pageblock_nr_pages)
2304			continue;
2305
2306		spin_lock_irqsave(&zone->lock, flags);
2307		for (order = 0; order < MAX_ORDER; order++) {
2308			struct free_area *area = &(zone->free_area[order]);
2309
2310			page = list_first_entry_or_null(
2311					&area->free_list[MIGRATE_HIGHATOMIC],
2312					struct page, lru);
2313			if (!page)
2314				continue;
2315
2316			/*
2317			 * In page freeing path, migratetype change is racy so
2318			 * we can counter several free pages in a pageblock
2319			 * in this loop althoug we changed the pageblock type
2320			 * from highatomic to ac->migratetype. So we should
2321			 * adjust the count once.
2322			 */
2323			if (is_migrate_highatomic_page(page)) {
2324				/*
2325				 * It should never happen but changes to
2326				 * locking could inadvertently allow a per-cpu
2327				 * drain to add pages to MIGRATE_HIGHATOMIC
2328				 * while unreserving so be safe and watch for
2329				 * underflows.
2330				 */
2331				zone->nr_reserved_highatomic -= min(
2332						pageblock_nr_pages,
2333						zone->nr_reserved_highatomic);
2334			}
2335
2336			/*
2337			 * Convert to ac->migratetype and avoid the normal
2338			 * pageblock stealing heuristics. Minimally, the caller
2339			 * is doing the work and needs the pages. More
2340			 * importantly, if the block was always converted to
2341			 * MIGRATE_UNMOVABLE or another type then the number
2342			 * of pageblocks that cannot be completely freed
2343			 * may increase.
2344			 */
2345			set_pageblock_migratetype(page, ac->migratetype);
2346			ret = move_freepages_block(zone, page, ac->migratetype,
2347									NULL);
2348			if (ret) {
2349				spin_unlock_irqrestore(&zone->lock, flags);
2350				return ret;
2351			}
2352		}
2353		spin_unlock_irqrestore(&zone->lock, flags);
2354	}
2355
2356	return false;
2357}
2358
2359/*
2360 * Try finding a free buddy page on the fallback list and put it on the free
2361 * list of requested migratetype, possibly along with other pages from the same
2362 * block, depending on fragmentation avoidance heuristics. Returns true if
2363 * fallback was found so that __rmqueue_smallest() can grab it.
2364 *
2365 * The use of signed ints for order and current_order is a deliberate
2366 * deviation from the rest of this file, to make the for loop
2367 * condition simpler.
2368 */
2369static __always_inline bool
2370__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
 
2371{
2372	struct free_area *area;
2373	int current_order;
 
2374	struct page *page;
2375	int fallback_mt;
2376	bool can_steal;
2377
2378	/*
 
 
 
 
 
 
 
 
2379	 * Find the largest available free page in the other list. This roughly
2380	 * approximates finding the pageblock with the most free pages, which
2381	 * would be too costly to do exactly.
2382	 */
2383	for (current_order = MAX_ORDER - 1; current_order >= order;
2384				--current_order) {
2385		area = &(zone->free_area[current_order]);
2386		fallback_mt = find_suitable_fallback(area, current_order,
2387				start_migratetype, false, &can_steal);
2388		if (fallback_mt == -1)
2389			continue;
2390
2391		/*
2392		 * We cannot steal all free pages from the pageblock and the
2393		 * requested migratetype is movable. In that case it's better to
2394		 * steal and split the smallest available page instead of the
2395		 * largest available page, because even if the next movable
2396		 * allocation falls back into a different pageblock than this
2397		 * one, it won't cause permanent fragmentation.
2398		 */
2399		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2400					&& current_order > order)
2401			goto find_smallest;
2402
2403		goto do_steal;
2404	}
2405
2406	return false;
2407
2408find_smallest:
2409	for (current_order = order; current_order < MAX_ORDER;
2410							current_order++) {
2411		area = &(zone->free_area[current_order]);
2412		fallback_mt = find_suitable_fallback(area, current_order,
2413				start_migratetype, false, &can_steal);
2414		if (fallback_mt != -1)
2415			break;
2416	}
2417
2418	/*
2419	 * This should not happen - we already found a suitable fallback
2420	 * when looking for the largest page.
2421	 */
2422	VM_BUG_ON(current_order == MAX_ORDER);
2423
2424do_steal:
2425	page = list_first_entry(&area->free_list[fallback_mt],
2426							struct page, lru);
2427
2428	steal_suitable_fallback(zone, page, start_migratetype, can_steal);
 
2429
2430	trace_mm_page_alloc_extfrag(page, order, current_order,
2431		start_migratetype, fallback_mt);
2432
2433	return true;
2434
2435}
2436
2437/*
2438 * Do the hard work of removing an element from the buddy allocator.
2439 * Call me with the zone->lock already held.
2440 */
2441static __always_inline struct page *
2442__rmqueue(struct zone *zone, unsigned int order, int migratetype)
 
2443{
2444	struct page *page;
2445
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2446retry:
2447	page = __rmqueue_smallest(zone, order, migratetype);
2448	if (unlikely(!page)) {
2449		if (migratetype == MIGRATE_MOVABLE)
2450			page = __rmqueue_cma_fallback(zone, order);
2451
2452		if (!page && __rmqueue_fallback(zone, order, migratetype))
 
2453			goto retry;
2454	}
2455
2456	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2457	return page;
2458}
2459
2460/*
2461 * Obtain a specified number of elements from the buddy allocator, all under
2462 * a single hold of the lock, for efficiency.  Add them to the supplied list.
2463 * Returns the number of new pages which were placed at *list.
2464 */
2465static int rmqueue_bulk(struct zone *zone, unsigned int order,
2466			unsigned long count, struct list_head *list,
2467			int migratetype)
2468{
2469	int i, alloced = 0;
 
2470
2471	spin_lock(&zone->lock);
2472	for (i = 0; i < count; ++i) {
2473		struct page *page = __rmqueue(zone, order, migratetype);
 
2474		if (unlikely(page == NULL))
2475			break;
2476
2477		if (unlikely(check_pcp_refill(page)))
2478			continue;
2479
2480		/*
2481		 * Split buddy pages returned by expand() are received here in
2482		 * physical page order. The page is added to the tail of
2483		 * caller's list. From the callers perspective, the linked list
2484		 * is ordered by page number under some conditions. This is
2485		 * useful for IO devices that can forward direction from the
2486		 * head, thus also in the physical page order. This is useful
2487		 * for IO devices that can merge IO requests if the physical
2488		 * pages are ordered properly.
2489		 */
2490		list_add_tail(&page->lru, list);
2491		alloced++;
2492		if (is_migrate_cma(get_pcppage_migratetype(page)))
2493			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2494					      -(1 << order));
2495	}
2496
2497	/*
2498	 * i pages were removed from the buddy list even if some leak due
2499	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2500	 * on i. Do not confuse with 'alloced' which is the number of
2501	 * pages added to the pcp list.
2502	 */
2503	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2504	spin_unlock(&zone->lock);
2505	return alloced;
2506}
2507
2508#ifdef CONFIG_NUMA
2509/*
2510 * Called from the vmstat counter updater to drain pagesets of this
2511 * currently executing processor on remote nodes after they have
2512 * expired.
2513 *
2514 * Note that this function must be called with the thread pinned to
2515 * a single processor.
2516 */
2517void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2518{
2519	unsigned long flags;
2520	int to_drain, batch;
2521
2522	local_irq_save(flags);
2523	batch = READ_ONCE(pcp->batch);
2524	to_drain = min(pcp->count, batch);
2525	if (to_drain > 0)
2526		free_pcppages_bulk(zone, to_drain, pcp);
2527	local_irq_restore(flags);
 
 
2528}
2529#endif
2530
2531/*
2532 * Drain pcplists of the indicated processor and zone.
2533 *
2534 * The processor must either be the current processor and the
2535 * thread pinned to the current processor or a processor that
2536 * is not online.
2537 */
2538static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2539{
2540	unsigned long flags;
2541	struct per_cpu_pageset *pset;
2542	struct per_cpu_pages *pcp;
2543
2544	local_irq_save(flags);
2545	pset = per_cpu_ptr(zone->pageset, cpu);
2546
2547	pcp = &pset->pcp;
2548	if (pcp->count)
2549		free_pcppages_bulk(zone, pcp->count, pcp);
2550	local_irq_restore(flags);
2551}
2552
2553/*
2554 * Drain pcplists of all zones on the indicated processor.
2555 *
2556 * The processor must either be the current processor and the
2557 * thread pinned to the current processor or a processor that
2558 * is not online.
2559 */
2560static void drain_pages(unsigned int cpu)
2561{
2562	struct zone *zone;
2563
2564	for_each_populated_zone(zone) {
2565		drain_pages_zone(cpu, zone);
2566	}
2567}
2568
2569/*
2570 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2571 *
2572 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2573 * the single zone's pages.
2574 */
2575void drain_local_pages(struct zone *zone)
2576{
2577	int cpu = smp_processor_id();
2578
2579	if (zone)
2580		drain_pages_zone(cpu, zone);
2581	else
2582		drain_pages(cpu);
2583}
2584
2585static void drain_local_pages_wq(struct work_struct *work)
2586{
2587	/*
2588	 * drain_all_pages doesn't use proper cpu hotplug protection so
2589	 * we can race with cpu offline when the WQ can move this from
2590	 * a cpu pinned worker to an unbound one. We can operate on a different
2591	 * cpu which is allright but we also have to make sure to not move to
2592	 * a different one.
2593	 */
2594	preempt_disable();
2595	drain_local_pages(NULL);
2596	preempt_enable();
2597}
2598
2599/*
2600 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 
2601 *
2602 * When zone parameter is non-NULL, spill just the single zone's pages.
2603 *
2604 * Note that this can be extremely slow as the draining happens in a workqueue.
 
 
2605 */
2606void drain_all_pages(struct zone *zone)
2607{
2608	int cpu;
2609
2610	/*
2611	 * Allocate in the BSS so we wont require allocation in
2612	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2613	 */
2614	static cpumask_t cpus_with_pcps;
2615
2616	/*
2617	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2618	 * initialized.
2619	 */
2620	if (WARN_ON_ONCE(!mm_percpu_wq))
2621		return;
2622
2623	/*
2624	 * Do not drain if one is already in progress unless it's specific to
2625	 * a zone. Such callers are primarily CMA and memory hotplug and need
2626	 * the drain to be complete when the call returns.
2627	 */
2628	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2629		if (!zone)
2630			return;
2631		mutex_lock(&pcpu_drain_mutex);
2632	}
2633
2634	/*
2635	 * We don't care about racing with CPU hotplug event
2636	 * as offline notification will cause the notified
2637	 * cpu to drain that CPU pcps and on_each_cpu_mask
2638	 * disables preemption as part of its processing
2639	 */
2640	for_each_online_cpu(cpu) {
2641		struct per_cpu_pageset *pcp;
2642		struct zone *z;
2643		bool has_pcps = false;
2644
2645		if (zone) {
2646			pcp = per_cpu_ptr(zone->pageset, cpu);
2647			if (pcp->pcp.count)
 
 
 
 
 
 
2648				has_pcps = true;
2649		} else {
2650			for_each_populated_zone(z) {
2651				pcp = per_cpu_ptr(z->pageset, cpu);
2652				if (pcp->pcp.count) {
2653					has_pcps = true;
2654					break;
2655				}
2656			}
2657		}
2658
2659		if (has_pcps)
2660			cpumask_set_cpu(cpu, &cpus_with_pcps);
2661		else
2662			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2663	}
2664
2665	for_each_cpu(cpu, &cpus_with_pcps) {
2666		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2667		INIT_WORK(work, drain_local_pages_wq);
2668		queue_work_on(cpu, mm_percpu_wq, work);
 
2669	}
2670	for_each_cpu(cpu, &cpus_with_pcps)
2671		flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2672
2673	mutex_unlock(&pcpu_drain_mutex);
2674}
2675
 
 
 
 
 
 
 
 
 
 
2676#ifdef CONFIG_HIBERNATION
2677
2678/*
2679 * Touch the watchdog for every WD_PAGE_COUNT pages.
2680 */
2681#define WD_PAGE_COUNT	(128*1024)
2682
2683void mark_free_pages(struct zone *zone)
2684{
2685	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2686	unsigned long flags;
2687	unsigned int order, t;
2688	struct page *page;
2689
2690	if (zone_is_empty(zone))
2691		return;
2692
2693	spin_lock_irqsave(&zone->lock, flags);
2694
2695	max_zone_pfn = zone_end_pfn(zone);
2696	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2697		if (pfn_valid(pfn)) {
2698			page = pfn_to_page(pfn);
2699
2700			if (!--page_count) {
2701				touch_nmi_watchdog();
2702				page_count = WD_PAGE_COUNT;
2703			}
2704
2705			if (page_zone(page) != zone)
2706				continue;
2707
2708			if (!swsusp_page_is_forbidden(page))
2709				swsusp_unset_page_free(page);
2710		}
2711
2712	for_each_migratetype_order(order, t) {
2713		list_for_each_entry(page,
2714				&zone->free_area[order].free_list[t], lru) {
2715			unsigned long i;
2716
2717			pfn = page_to_pfn(page);
2718			for (i = 0; i < (1UL << order); i++) {
2719				if (!--page_count) {
2720					touch_nmi_watchdog();
2721					page_count = WD_PAGE_COUNT;
2722				}
2723				swsusp_set_page_free(pfn_to_page(pfn + i));
2724			}
2725		}
2726	}
2727	spin_unlock_irqrestore(&zone->lock, flags);
2728}
2729#endif /* CONFIG_PM */
2730
2731static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
 
2732{
2733	int migratetype;
2734
2735	if (!free_pcp_prepare(page))
2736		return false;
2737
2738	migratetype = get_pfnblock_migratetype(page, pfn);
2739	set_pcppage_migratetype(page, migratetype);
2740	return true;
2741}
2742
2743static void free_unref_page_commit(struct page *page, unsigned long pfn)
 
2744{
2745	struct zone *zone = page_zone(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2746	struct per_cpu_pages *pcp;
 
 
2747	int migratetype;
2748
2749	migratetype = get_pcppage_migratetype(page);
2750	__count_vm_event(PGFREE);
2751
2752	/*
2753	 * We only track unmovable, reclaimable and movable on pcp lists.
2754	 * Free ISOLATE pages back to the allocator because they are being
2755	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2756	 * areas back if necessary. Otherwise, we may have to free
2757	 * excessively into the page allocator
2758	 */
2759	if (migratetype >= MIGRATE_PCPTYPES) {
 
2760		if (unlikely(is_migrate_isolate(migratetype))) {
2761			free_one_page(zone, page, pfn, 0, migratetype);
2762			return;
2763		}
2764		migratetype = MIGRATE_MOVABLE;
2765	}
2766
2767	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2768	list_add(&page->lru, &pcp->lists[migratetype]);
2769	pcp->count++;
2770	if (pcp->count >= pcp->high) {
2771		unsigned long batch = READ_ONCE(pcp->batch);
2772		free_pcppages_bulk(zone, batch, pcp);
 
 
2773	}
2774}
2775
2776/*
2777 * Free a 0-order page
2778 */
2779void free_unref_page(struct page *page)
2780{
2781	unsigned long flags;
2782	unsigned long pfn = page_to_pfn(page);
2783
2784	if (!free_unref_page_prepare(page, pfn))
2785		return;
2786
2787	local_irq_save(flags);
2788	free_unref_page_commit(page, pfn);
2789	local_irq_restore(flags);
2790}
2791
2792/*
2793 * Free a list of 0-order pages
2794 */
2795void free_unref_page_list(struct list_head *list)
2796{
 
2797	struct page *page, *next;
2798	unsigned long flags, pfn;
 
2799	int batch_count = 0;
 
2800
2801	/* Prepare pages for freeing */
2802	list_for_each_entry_safe(page, next, list, lru) {
2803		pfn = page_to_pfn(page);
2804		if (!free_unref_page_prepare(page, pfn))
2805			list_del(&page->lru);
2806		set_page_private(page, pfn);
 
 
 
 
 
 
 
 
 
 
 
 
2807	}
2808
2809	local_irq_save(flags);
2810	list_for_each_entry_safe(page, next, list, lru) {
2811		unsigned long pfn = page_private(page);
2812
2813		set_page_private(page, 0);
2814		trace_mm_page_free_batched(page);
2815		free_unref_page_commit(page, pfn);
2816
2817		/*
2818		 * Guard against excessive IRQ disabled times when we get
2819		 * a large list of pages to free.
 
2820		 */
2821		if (++batch_count == SWAP_CLUSTER_MAX) {
2822			local_irq_restore(flags);
 
 
 
 
2823			batch_count = 0;
2824			local_irq_save(flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2825		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2826	}
2827	local_irq_restore(flags);
2828}
2829
2830/*
2831 * split_page takes a non-compound higher-order page, and splits it into
2832 * n (1<<order) sub-pages: page[0..n]
2833 * Each sub-page must be freed individually.
2834 *
2835 * Note: this is probably too low level an operation for use in drivers.
2836 * Please consult with lkml before using this in your driver.
2837 */
2838void split_page(struct page *page, unsigned int order)
2839{
2840	int i;
2841
2842	VM_BUG_ON_PAGE(PageCompound(page), page);
2843	VM_BUG_ON_PAGE(!page_count(page), page);
2844
2845	for (i = 1; i < (1 << order); i++)
2846		set_page_refcounted(page + i);
2847	split_page_owner(page, order);
 
2848}
2849EXPORT_SYMBOL_GPL(split_page);
2850
2851int __isolate_free_page(struct page *page, unsigned int order)
2852{
2853	unsigned long watermark;
2854	struct zone *zone;
2855	int mt;
2856
2857	BUG_ON(!PageBuddy(page));
2858
2859	zone = page_zone(page);
2860	mt = get_pageblock_migratetype(page);
2861
2862	if (!is_migrate_isolate(mt)) {
 
2863		/*
2864		 * Obey watermarks as if the page was being allocated. We can
2865		 * emulate a high-order watermark check with a raised order-0
2866		 * watermark, because we already know our high-order page
2867		 * exists.
2868		 */
2869		watermark = min_wmark_pages(zone) + (1UL << order);
2870		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2871			return 0;
2872
2873		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2874	}
2875
2876	/* Remove page from free list */
2877	list_del(&page->lru);
2878	zone->free_area[order].nr_free--;
2879	rmv_page_order(page);
2880
2881	/*
2882	 * Set the pageblock if the isolated page is at least half of a
2883	 * pageblock
2884	 */
2885	if (order >= pageblock_order - 1) {
2886		struct page *endpage = page + (1 << order) - 1;
2887		for (; page < endpage; page += pageblock_nr_pages) {
2888			int mt = get_pageblock_migratetype(page);
2889			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2890			    && !is_migrate_highatomic(mt))
 
 
 
2891				set_pageblock_migratetype(page,
2892							  MIGRATE_MOVABLE);
2893		}
2894	}
2895
2896
2897	return 1UL << order;
2898}
2899
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2900/*
2901 * Update NUMA hit/miss statistics
2902 *
2903 * Must be called with interrupts disabled.
2904 */
2905static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
 
2906{
2907#ifdef CONFIG_NUMA
2908	enum numa_stat_item local_stat = NUMA_LOCAL;
2909
2910	/* skip numa counters update if numa stats is disabled */
2911	if (!static_branch_likely(&vm_numa_stat_key))
2912		return;
2913
2914	if (z->node != numa_node_id())
2915		local_stat = NUMA_OTHER;
2916
2917	if (z->node == preferred_zone->node)
2918		__inc_numa_state(z, NUMA_HIT);
2919	else {
2920		__inc_numa_state(z, NUMA_MISS);
2921		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
2922	}
2923	__inc_numa_state(z, local_stat);
2924#endif
2925}
2926
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2927/* Remove page from the per-cpu list, caller must protect the list */
2928static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
 
 
 
2929			struct per_cpu_pages *pcp,
2930			struct list_head *list)
2931{
2932	struct page *page;
2933
2934	do {
2935		if (list_empty(list)) {
2936			pcp->count += rmqueue_bulk(zone, 0,
2937					pcp->batch, list,
2938					migratetype);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2939			if (unlikely(list_empty(list)))
2940				return NULL;
2941		}
2942
2943		page = list_first_entry(list, struct page, lru);
2944		list_del(&page->lru);
2945		pcp->count--;
2946	} while (check_new_pcp(page));
2947
2948	return page;
2949}
2950
2951/* Lock and remove page from the per-cpu list */
2952static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2953			struct zone *zone, unsigned int order,
2954			gfp_t gfp_flags, int migratetype)
2955{
2956	struct per_cpu_pages *pcp;
2957	struct list_head *list;
2958	struct page *page;
2959	unsigned long flags;
2960
2961	local_irq_save(flags);
2962	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2963	list = &pcp->lists[migratetype];
2964	page = __rmqueue_pcplist(zone,  migratetype, pcp, list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2965	if (page) {
2966		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2967		zone_statistics(preferred_zone, zone);
2968	}
2969	local_irq_restore(flags);
2970	return page;
2971}
2972
2973/*
2974 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
 
2975 */
 
 
 
 
 
 
 
 
2976static inline
2977struct page *rmqueue(struct zone *preferred_zone,
2978			struct zone *zone, unsigned int order,
2979			gfp_t gfp_flags, unsigned int alloc_flags,
2980			int migratetype)
2981{
2982	unsigned long flags;
2983	struct page *page;
2984
2985	if (likely(order == 0)) {
2986		page = rmqueue_pcplist(preferred_zone, zone, order,
2987				gfp_flags, migratetype);
2988		goto out;
2989	}
2990
2991	/*
2992	 * We most definitely don't want callers attempting to
2993	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2994	 */
2995	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2996	spin_lock_irqsave(&zone->lock, flags);
2997
2998	do {
2999		page = NULL;
3000		if (alloc_flags & ALLOC_HARDER) {
3001			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3002			if (page)
3003				trace_mm_page_alloc_zone_locked(page, order, migratetype);
 
 
 
 
 
3004		}
3005		if (!page)
3006			page = __rmqueue(zone, order, migratetype);
3007	} while (page && check_new_pages(page, order));
3008	spin_unlock(&zone->lock);
3009	if (!page)
3010		goto failed;
3011	__mod_zone_freepage_state(zone, -(1 << order),
3012				  get_pcppage_migratetype(page));
3013
3014	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3015	zone_statistics(preferred_zone, zone);
3016	local_irq_restore(flags);
3017
3018out:
 
 
 
 
 
 
3019	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3020	return page;
3021
3022failed:
3023	local_irq_restore(flags);
3024	return NULL;
3025}
3026
3027#ifdef CONFIG_FAIL_PAGE_ALLOC
3028
3029static struct {
3030	struct fault_attr attr;
3031
3032	bool ignore_gfp_highmem;
3033	bool ignore_gfp_reclaim;
3034	u32 min_order;
3035} fail_page_alloc = {
3036	.attr = FAULT_ATTR_INITIALIZER,
3037	.ignore_gfp_reclaim = true,
3038	.ignore_gfp_highmem = true,
3039	.min_order = 1,
3040};
3041
3042static int __init setup_fail_page_alloc(char *str)
3043{
3044	return setup_fault_attr(&fail_page_alloc.attr, str);
3045}
3046__setup("fail_page_alloc=", setup_fail_page_alloc);
3047
3048static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3049{
 
 
3050	if (order < fail_page_alloc.min_order)
3051		return false;
3052	if (gfp_mask & __GFP_NOFAIL)
3053		return false;
3054	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3055		return false;
3056	if (fail_page_alloc.ignore_gfp_reclaim &&
3057			(gfp_mask & __GFP_DIRECT_RECLAIM))
3058		return false;
3059
3060	return should_fail(&fail_page_alloc.attr, 1 << order);
 
 
 
 
3061}
3062
3063#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3064
3065static int __init fail_page_alloc_debugfs(void)
3066{
3067	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3068	struct dentry *dir;
3069
3070	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3071					&fail_page_alloc.attr);
3072	if (IS_ERR(dir))
3073		return PTR_ERR(dir);
3074
3075	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3076				&fail_page_alloc.ignore_gfp_reclaim))
3077		goto fail;
3078	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3079				&fail_page_alloc.ignore_gfp_highmem))
3080		goto fail;
3081	if (!debugfs_create_u32("min-order", mode, dir,
3082				&fail_page_alloc.min_order))
3083		goto fail;
3084
3085	return 0;
3086fail:
3087	debugfs_remove_recursive(dir);
3088
3089	return -ENOMEM;
3090}
3091
3092late_initcall(fail_page_alloc_debugfs);
3093
3094#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3095
3096#else /* CONFIG_FAIL_PAGE_ALLOC */
3097
3098static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3099{
3100	return false;
3101}
3102
3103#endif /* CONFIG_FAIL_PAGE_ALLOC */
3104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3105/*
3106 * Return true if free base pages are above 'mark'. For high-order checks it
3107 * will return true of the order-0 watermark is reached and there is at least
3108 * one free page of a suitable size. Checking now avoids taking the zone lock
3109 * to check in the allocation paths if no pages are free.
3110 */
3111bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3112			 int classzone_idx, unsigned int alloc_flags,
3113			 long free_pages)
3114{
3115	long min = mark;
3116	int o;
3117	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3118
3119	/* free_pages may go negative - that's OK */
3120	free_pages -= (1 << order) - 1;
3121
3122	if (alloc_flags & ALLOC_HIGH)
3123		min -= min / 2;
3124
3125	/*
3126	 * If the caller does not have rights to ALLOC_HARDER then subtract
3127	 * the high-atomic reserves. This will over-estimate the size of the
3128	 * atomic reserve but it avoids a search.
3129	 */
3130	if (likely(!alloc_harder)) {
3131		free_pages -= z->nr_reserved_highatomic;
3132	} else {
3133		/*
3134		 * OOM victims can try even harder than normal ALLOC_HARDER
3135		 * users on the grounds that it's definitely going to be in
3136		 * the exit path shortly and free memory. Any allocation it
3137		 * makes during the free path will be small and short-lived.
3138		 */
3139		if (alloc_flags & ALLOC_OOM)
3140			min -= min / 2;
3141		else
3142			min -= min / 4;
3143	}
3144
3145
3146#ifdef CONFIG_CMA
3147	/* If allocation can't use CMA areas don't use free CMA pages */
3148	if (!(alloc_flags & ALLOC_CMA))
3149		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3150#endif
3151
3152	/*
3153	 * Check watermarks for an order-0 allocation request. If these
3154	 * are not met, then a high-order request also cannot go ahead
3155	 * even if a suitable page happened to be free.
3156	 */
3157	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3158		return false;
3159
3160	/* If this is an order-0 request then the watermark is fine */
3161	if (!order)
3162		return true;
3163
3164	/* For a high-order request, check at least one suitable page is free */
3165	for (o = order; o < MAX_ORDER; o++) {
3166		struct free_area *area = &z->free_area[o];
3167		int mt;
3168
3169		if (!area->nr_free)
3170			continue;
3171
3172		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3173			if (!list_empty(&area->free_list[mt]))
3174				return true;
3175		}
3176
3177#ifdef CONFIG_CMA
3178		if ((alloc_flags & ALLOC_CMA) &&
3179		    !list_empty(&area->free_list[MIGRATE_CMA])) {
3180			return true;
3181		}
3182#endif
3183		if (alloc_harder &&
3184			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3185			return true;
3186	}
3187	return false;
3188}
3189
3190bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3191		      int classzone_idx, unsigned int alloc_flags)
3192{
3193	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3194					zone_page_state(z, NR_FREE_PAGES));
3195}
3196
3197static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3198		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
 
3199{
3200	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3201	long cma_pages = 0;
3202
3203#ifdef CONFIG_CMA
3204	/* If allocation can't use CMA areas don't use free CMA pages */
3205	if (!(alloc_flags & ALLOC_CMA))
3206		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3207#endif
3208
3209	/*
3210	 * Fast check for order-0 only. If this fails then the reserves
3211	 * need to be calculated. There is a corner case where the check
3212	 * passes but only the high-order atomic reserve are free. If
3213	 * the caller is !atomic then it'll uselessly search the free
3214	 * list. That corner case is then slower but it is harmless.
3215	 */
3216	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3217		return true;
 
 
 
 
 
 
 
 
 
 
 
 
3218
3219	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3220					free_pages);
3221}
3222
3223bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3224			unsigned long mark, int classzone_idx)
3225{
3226	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3227
3228	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3229		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3230
3231	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3232								free_pages);
3233}
3234
3235#ifdef CONFIG_NUMA
 
 
3236static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3237{
3238	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3239				RECLAIM_DISTANCE;
3240}
3241#else	/* CONFIG_NUMA */
3242static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3243{
3244	return true;
3245}
3246#endif	/* CONFIG_NUMA */
3247
3248/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3249 * get_page_from_freelist goes through the zonelist trying to allocate
3250 * a page.
3251 */
3252static struct page *
3253get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3254						const struct alloc_context *ac)
3255{
3256	struct zoneref *z = ac->preferred_zoneref;
3257	struct zone *zone;
3258	struct pglist_data *last_pgdat_dirty_limit = NULL;
 
 
3259
 
3260	/*
3261	 * Scan zonelist, looking for a zone with enough free.
3262	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3263	 */
3264	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3265								ac->nodemask) {
 
 
3266		struct page *page;
3267		unsigned long mark;
3268
3269		if (cpusets_enabled() &&
3270			(alloc_flags & ALLOC_CPUSET) &&
3271			!__cpuset_zone_allowed(zone, gfp_mask))
3272				continue;
3273		/*
3274		 * When allocating a page cache page for writing, we
3275		 * want to get it from a node that is within its dirty
3276		 * limit, such that no single node holds more than its
3277		 * proportional share of globally allowed dirty pages.
3278		 * The dirty limits take into account the node's
3279		 * lowmem reserves and high watermark so that kswapd
3280		 * should be able to balance it without having to
3281		 * write pages from its LRU list.
3282		 *
3283		 * XXX: For now, allow allocations to potentially
3284		 * exceed the per-node dirty limit in the slowpath
3285		 * (spread_dirty_pages unset) before going into reclaim,
3286		 * which is important when on a NUMA setup the allowed
3287		 * nodes are together not big enough to reach the
3288		 * global limit.  The proper fix for these situations
3289		 * will require awareness of nodes in the
3290		 * dirty-throttling and the flusher threads.
3291		 */
3292		if (ac->spread_dirty_pages) {
3293			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3294				continue;
 
 
3295
3296			if (!node_dirty_ok(zone->zone_pgdat)) {
3297				last_pgdat_dirty_limit = zone->zone_pgdat;
3298				continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3299			}
3300		}
3301
3302		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3303		if (!zone_watermark_fast(zone, order, mark,
3304				       ac_classzone_idx(ac), alloc_flags)) {
 
3305			int ret;
3306
3307#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3308			/*
3309			 * Watermark failed for this zone, but see if we can
3310			 * grow this zone if it contains deferred pages.
3311			 */
3312			if (static_branch_unlikely(&deferred_pages)) {
3313				if (_deferred_grow_zone(zone, order))
3314					goto try_this_zone;
3315			}
3316#endif
3317			/* Checked here to keep the fast path fast */
3318			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3319			if (alloc_flags & ALLOC_NO_WATERMARKS)
3320				goto try_this_zone;
3321
3322			if (node_reclaim_mode == 0 ||
3323			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3324				continue;
3325
3326			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3327			switch (ret) {
3328			case NODE_RECLAIM_NOSCAN:
3329				/* did not scan */
3330				continue;
3331			case NODE_RECLAIM_FULL:
3332				/* scanned but unreclaimable */
3333				continue;
3334			default:
3335				/* did we reclaim enough */
3336				if (zone_watermark_ok(zone, order, mark,
3337						ac_classzone_idx(ac), alloc_flags))
3338					goto try_this_zone;
3339
3340				continue;
3341			}
3342		}
3343
3344try_this_zone:
3345		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3346				gfp_mask, alloc_flags, ac->migratetype);
3347		if (page) {
3348			prep_new_page(page, order, gfp_mask, alloc_flags);
3349
3350			/*
3351			 * If this is a high-order atomic allocation then check
3352			 * if the pageblock should be reserved for the future
3353			 */
3354			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3355				reserve_highatomic_pageblock(page, zone, order);
3356
3357			return page;
3358		} else {
3359#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3360			/* Try again if zone has deferred pages */
3361			if (static_branch_unlikely(&deferred_pages)) {
3362				if (_deferred_grow_zone(zone, order))
3363					goto try_this_zone;
3364			}
3365#endif
3366		}
3367	}
3368
3369	return NULL;
3370}
3371
3372/*
3373 * Large machines with many possible nodes should not always dump per-node
3374 * meminfo in irq context.
3375 */
3376static inline bool should_suppress_show_mem(void)
3377{
3378	bool ret = false;
3379
3380#if NODES_SHIFT > 8
3381	ret = in_interrupt();
3382#endif
3383	return ret;
3384}
3385
3386static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3387{
3388	unsigned int filter = SHOW_MEM_FILTER_NODES;
3389	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3390
3391	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3392		return;
3393
3394	/*
3395	 * This documents exceptions given to allocations in certain
3396	 * contexts that are allowed to allocate outside current's set
3397	 * of allowed nodes.
3398	 */
3399	if (!(gfp_mask & __GFP_NOMEMALLOC))
3400		if (tsk_is_oom_victim(current) ||
3401		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3402			filter &= ~SHOW_MEM_FILTER_NODES;
3403	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3404		filter &= ~SHOW_MEM_FILTER_NODES;
3405
3406	show_mem(filter, nodemask);
3407}
3408
3409void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3410{
3411	struct va_format vaf;
3412	va_list args;
3413	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3414				      DEFAULT_RATELIMIT_BURST);
3415
3416	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
 
 
3417		return;
3418
3419	va_start(args, fmt);
3420	vaf.fmt = fmt;
3421	vaf.va = &args;
3422	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3423			current->comm, &vaf, gfp_mask, &gfp_mask,
3424			nodemask_pr_args(nodemask));
3425	va_end(args);
3426
3427	cpuset_print_current_mems_allowed();
3428
3429	dump_stack();
3430	warn_alloc_show_mem(gfp_mask, nodemask);
3431}
3432
3433static inline struct page *
3434__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3435			      unsigned int alloc_flags,
3436			      const struct alloc_context *ac)
3437{
3438	struct page *page;
3439
3440	page = get_page_from_freelist(gfp_mask, order,
3441			alloc_flags|ALLOC_CPUSET, ac);
3442	/*
3443	 * fallback to ignore cpuset restriction if our nodes
3444	 * are depleted
3445	 */
3446	if (!page)
3447		page = get_page_from_freelist(gfp_mask, order,
3448				alloc_flags, ac);
3449
3450	return page;
3451}
3452
3453static inline struct page *
3454__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3455	const struct alloc_context *ac, unsigned long *did_some_progress)
3456{
3457	struct oom_control oc = {
3458		.zonelist = ac->zonelist,
3459		.nodemask = ac->nodemask,
3460		.memcg = NULL,
3461		.gfp_mask = gfp_mask,
3462		.order = order,
3463	};
3464	struct page *page;
3465
3466	*did_some_progress = 0;
3467
3468	/*
3469	 * Acquire the oom lock.  If that fails, somebody else is
3470	 * making progress for us.
3471	 */
3472	if (!mutex_trylock(&oom_lock)) {
3473		*did_some_progress = 1;
3474		schedule_timeout_uninterruptible(1);
3475		return NULL;
3476	}
3477
3478	/*
3479	 * Go through the zonelist yet one more time, keep very high watermark
3480	 * here, this is only to catch a parallel oom killing, we must fail if
3481	 * we're still under heavy pressure. But make sure that this reclaim
3482	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3483	 * allocation which will never fail due to oom_lock already held.
3484	 */
3485	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3486				      ~__GFP_DIRECT_RECLAIM, order,
3487				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3488	if (page)
3489		goto out;
3490
3491	/* Coredumps can quickly deplete all memory reserves */
3492	if (current->flags & PF_DUMPCORE)
3493		goto out;
3494	/* The OOM killer will not help higher order allocs */
3495	if (order > PAGE_ALLOC_COSTLY_ORDER)
3496		goto out;
3497	/*
3498	 * We have already exhausted all our reclaim opportunities without any
3499	 * success so it is time to admit defeat. We will skip the OOM killer
3500	 * because it is very likely that the caller has a more reasonable
3501	 * fallback than shooting a random task.
 
 
3502	 */
3503	if (gfp_mask & __GFP_RETRY_MAYFAIL)
3504		goto out;
3505	/* The OOM killer does not needlessly kill tasks for lowmem */
3506	if (ac->high_zoneidx < ZONE_NORMAL)
3507		goto out;
3508	if (pm_suspended_storage())
3509		goto out;
3510	/*
3511	 * XXX: GFP_NOFS allocations should rather fail than rely on
3512	 * other request to make a forward progress.
3513	 * We are in an unfortunate situation where out_of_memory cannot
3514	 * do much for this context but let's try it to at least get
3515	 * access to memory reserved if the current task is killed (see
3516	 * out_of_memory). Once filesystems are ready to handle allocation
3517	 * failures more gracefully we should just bail out here.
3518	 */
3519
3520	/* The OOM killer may not free memory on a specific node */
3521	if (gfp_mask & __GFP_THISNODE)
3522		goto out;
3523
3524	/* Exhausted what can be done so it's blame time */
3525	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
 
3526		*did_some_progress = 1;
3527
3528		/*
3529		 * Help non-failing allocations by giving them access to memory
3530		 * reserves
3531		 */
3532		if (gfp_mask & __GFP_NOFAIL)
3533			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3534					ALLOC_NO_WATERMARKS, ac);
3535	}
3536out:
3537	mutex_unlock(&oom_lock);
3538	return page;
3539}
3540
3541/*
3542 * Maximum number of compaction retries wit a progress before OOM
3543 * killer is consider as the only way to move forward.
3544 */
3545#define MAX_COMPACT_RETRIES 16
3546
3547#ifdef CONFIG_COMPACTION
3548/* Try memory compaction for high-order allocations before reclaim */
3549static struct page *
3550__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3551		unsigned int alloc_flags, const struct alloc_context *ac,
3552		enum compact_priority prio, enum compact_result *compact_result)
3553{
3554	struct page *page;
 
3555	unsigned int noreclaim_flag;
3556
3557	if (!order)
3558		return NULL;
3559
 
 
3560	noreclaim_flag = memalloc_noreclaim_save();
 
3561	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3562									prio);
 
3563	memalloc_noreclaim_restore(noreclaim_flag);
 
 
3564
3565	if (*compact_result <= COMPACT_INACTIVE)
3566		return NULL;
3567
3568	/*
3569	 * At least in one zone compaction wasn't deferred or skipped, so let's
3570	 * count a compaction stall
3571	 */
3572	count_vm_event(COMPACTSTALL);
3573
3574	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
 
 
 
 
 
 
3575
3576	if (page) {
3577		struct zone *zone = page_zone(page);
3578
3579		zone->compact_blockskip_flush = false;
3580		compaction_defer_reset(zone, order, true);
3581		count_vm_event(COMPACTSUCCESS);
3582		return page;
3583	}
3584
3585	/*
3586	 * It's bad if compaction run occurs and fails. The most likely reason
3587	 * is that pages exist, but not enough to satisfy watermarks.
3588	 */
3589	count_vm_event(COMPACTFAIL);
3590
3591	cond_resched();
3592
3593	return NULL;
3594}
3595
3596static inline bool
3597should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3598		     enum compact_result compact_result,
3599		     enum compact_priority *compact_priority,
3600		     int *compaction_retries)
3601{
3602	int max_retries = MAX_COMPACT_RETRIES;
3603	int min_priority;
3604	bool ret = false;
3605	int retries = *compaction_retries;
3606	enum compact_priority priority = *compact_priority;
3607
3608	if (!order)
3609		return false;
3610
 
 
 
3611	if (compaction_made_progress(compact_result))
3612		(*compaction_retries)++;
3613
3614	/*
3615	 * compaction considers all the zone as desperately out of memory
3616	 * so it doesn't really make much sense to retry except when the
3617	 * failure could be caused by insufficient priority
3618	 */
3619	if (compaction_failed(compact_result))
3620		goto check_priority;
3621
3622	/*
 
 
 
 
 
 
 
 
 
3623	 * make sure the compaction wasn't deferred or didn't bail out early
3624	 * due to locks contention before we declare that we should give up.
3625	 * But do not retry if the given zonelist is not suitable for
3626	 * compaction.
3627	 */
3628	if (compaction_withdrawn(compact_result)) {
3629		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3630		goto out;
3631	}
3632
3633	/*
3634	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3635	 * costly ones because they are de facto nofail and invoke OOM
3636	 * killer to move on while costly can fail and users are ready
3637	 * to cope with that. 1/4 retries is rather arbitrary but we
3638	 * would need much more detailed feedback from compaction to
3639	 * make a better decision.
3640	 */
3641	if (order > PAGE_ALLOC_COSTLY_ORDER)
3642		max_retries /= 4;
3643	if (*compaction_retries <= max_retries) {
3644		ret = true;
3645		goto out;
3646	}
3647
3648	/*
3649	 * Make sure there are attempts at the highest priority if we exhausted
3650	 * all retries or failed at the lower priorities.
3651	 */
3652check_priority:
3653	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3654			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3655
3656	if (*compact_priority > min_priority) {
3657		(*compact_priority)--;
3658		*compaction_retries = 0;
3659		ret = true;
3660	}
3661out:
3662	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3663	return ret;
3664}
3665#else
3666static inline struct page *
3667__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3668		unsigned int alloc_flags, const struct alloc_context *ac,
3669		enum compact_priority prio, enum compact_result *compact_result)
3670{
3671	*compact_result = COMPACT_SKIPPED;
3672	return NULL;
3673}
3674
3675static inline bool
3676should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3677		     enum compact_result compact_result,
3678		     enum compact_priority *compact_priority,
3679		     int *compaction_retries)
3680{
3681	struct zone *zone;
3682	struct zoneref *z;
3683
3684	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3685		return false;
3686
3687	/*
3688	 * There are setups with compaction disabled which would prefer to loop
3689	 * inside the allocator rather than hit the oom killer prematurely.
3690	 * Let's give them a good hope and keep retrying while the order-0
3691	 * watermarks are OK.
3692	 */
3693	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3694					ac->nodemask) {
3695		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3696					ac_classzone_idx(ac), alloc_flags))
3697			return true;
3698	}
3699	return false;
3700}
3701#endif /* CONFIG_COMPACTION */
3702
3703#ifdef CONFIG_LOCKDEP
3704struct lockdep_map __fs_reclaim_map =
3705	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3706
3707static bool __need_fs_reclaim(gfp_t gfp_mask)
3708{
3709	gfp_mask = current_gfp_context(gfp_mask);
3710
3711	/* no reclaim without waiting on it */
3712	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3713		return false;
3714
3715	/* this guy won't enter reclaim */
3716	if (current->flags & PF_MEMALLOC)
3717		return false;
3718
3719	/* We're only interested __GFP_FS allocations for now */
3720	if (!(gfp_mask & __GFP_FS))
3721		return false;
3722
3723	if (gfp_mask & __GFP_NOLOCKDEP)
3724		return false;
3725
3726	return true;
3727}
3728
 
 
 
 
 
 
 
 
 
 
3729void fs_reclaim_acquire(gfp_t gfp_mask)
3730{
3731	if (__need_fs_reclaim(gfp_mask))
3732		lock_map_acquire(&__fs_reclaim_map);
 
 
 
 
 
 
 
 
 
 
3733}
3734EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3735
3736void fs_reclaim_release(gfp_t gfp_mask)
3737{
3738	if (__need_fs_reclaim(gfp_mask))
3739		lock_map_release(&__fs_reclaim_map);
 
 
 
 
3740}
3741EXPORT_SYMBOL_GPL(fs_reclaim_release);
3742#endif
3743
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3744/* Perform direct synchronous page reclaim */
3745static int
3746__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3747					const struct alloc_context *ac)
3748{
3749	struct reclaim_state reclaim_state;
3750	int progress;
3751	unsigned int noreclaim_flag;
 
3752
3753	cond_resched();
3754
3755	/* We now go into synchronous reclaim */
3756	cpuset_memory_pressure_bump();
3757	noreclaim_flag = memalloc_noreclaim_save();
3758	fs_reclaim_acquire(gfp_mask);
3759	reclaim_state.reclaimed_slab = 0;
3760	current->reclaim_state = &reclaim_state;
3761
3762	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3763								ac->nodemask);
3764
3765	current->reclaim_state = NULL;
3766	fs_reclaim_release(gfp_mask);
3767	memalloc_noreclaim_restore(noreclaim_flag);
 
3768
3769	cond_resched();
3770
3771	return progress;
3772}
3773
3774/* The really slow allocator path where we enter direct reclaim */
3775static inline struct page *
3776__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3777		unsigned int alloc_flags, const struct alloc_context *ac,
3778		unsigned long *did_some_progress)
3779{
3780	struct page *page = NULL;
 
3781	bool drained = false;
3782
 
3783	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3784	if (unlikely(!(*did_some_progress)))
3785		return NULL;
3786
3787retry:
3788	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3789
3790	/*
3791	 * If an allocation failed after direct reclaim, it could be because
3792	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3793	 * Shrink them them and try again
3794	 */
3795	if (!page && !drained) {
3796		unreserve_highatomic_pageblock(ac, false);
3797		drain_all_pages(NULL);
3798		drained = true;
3799		goto retry;
3800	}
 
 
3801
3802	return page;
3803}
3804
3805static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3806			     const struct alloc_context *ac)
3807{
3808	struct zoneref *z;
3809	struct zone *zone;
3810	pg_data_t *last_pgdat = NULL;
3811	enum zone_type high_zoneidx = ac->high_zoneidx;
3812
3813	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
3814					ac->nodemask) {
3815		if (last_pgdat != zone->zone_pgdat)
3816			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
3817		last_pgdat = zone->zone_pgdat;
 
 
 
3818	}
3819}
3820
3821static inline unsigned int
3822gfp_to_alloc_flags(gfp_t gfp_mask)
3823{
3824	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3825
3826	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
 
 
 
 
3827	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
 
3828
3829	/*
3830	 * The caller may dip into page reserves a bit more if the caller
3831	 * cannot run direct reclaim, or if the caller has realtime scheduling
3832	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3833	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3834	 */
3835	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
 
3836
3837	if (gfp_mask & __GFP_ATOMIC) {
3838		/*
3839		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3840		 * if it can't schedule.
3841		 */
3842		if (!(gfp_mask & __GFP_NOMEMALLOC))
3843			alloc_flags |= ALLOC_HARDER;
3844		/*
3845		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3846		 * comment for __cpuset_node_allowed().
3847		 */
3848		alloc_flags &= ~ALLOC_CPUSET;
3849	} else if (unlikely(rt_task(current)) && !in_interrupt())
3850		alloc_flags |= ALLOC_HARDER;
3851
3852#ifdef CONFIG_CMA
3853	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3854		alloc_flags |= ALLOC_CMA;
3855#endif
3856	return alloc_flags;
3857}
3858
3859static bool oom_reserves_allowed(struct task_struct *tsk)
3860{
3861	if (!tsk_is_oom_victim(tsk))
3862		return false;
3863
3864	/*
3865	 * !MMU doesn't have oom reaper so give access to memory reserves
3866	 * only to the thread with TIF_MEMDIE set
3867	 */
3868	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3869		return false;
3870
3871	return true;
3872}
3873
3874/*
3875 * Distinguish requests which really need access to full memory
3876 * reserves from oom victims which can live with a portion of it
3877 */
3878static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3879{
3880	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3881		return 0;
3882	if (gfp_mask & __GFP_MEMALLOC)
3883		return ALLOC_NO_WATERMARKS;
3884	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3885		return ALLOC_NO_WATERMARKS;
3886	if (!in_interrupt()) {
3887		if (current->flags & PF_MEMALLOC)
3888			return ALLOC_NO_WATERMARKS;
3889		else if (oom_reserves_allowed(current))
3890			return ALLOC_OOM;
3891	}
3892
3893	return 0;
3894}
3895
3896bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3897{
3898	return !!__gfp_pfmemalloc_flags(gfp_mask);
3899}
3900
3901/*
3902 * Checks whether it makes sense to retry the reclaim to make a forward progress
3903 * for the given allocation request.
3904 *
3905 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3906 * without success, or when we couldn't even meet the watermark if we
3907 * reclaimed all remaining pages on the LRU lists.
3908 *
3909 * Returns true if a retry is viable or false to enter the oom path.
3910 */
3911static inline bool
3912should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3913		     struct alloc_context *ac, int alloc_flags,
3914		     bool did_some_progress, int *no_progress_loops)
3915{
3916	struct zone *zone;
3917	struct zoneref *z;
 
3918
3919	/*
3920	 * Costly allocations might have made a progress but this doesn't mean
3921	 * their order will become available due to high fragmentation so
3922	 * always increment the no progress counter for them
3923	 */
3924	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3925		*no_progress_loops = 0;
3926	else
3927		(*no_progress_loops)++;
3928
3929	/*
3930	 * Make sure we converge to OOM if we cannot make any progress
3931	 * several times in the row.
3932	 */
3933	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3934		/* Before OOM, exhaust highatomic_reserve */
3935		return unreserve_highatomic_pageblock(ac, true);
3936	}
3937
3938	/*
3939	 * Keep reclaiming pages while there is a chance this will lead
3940	 * somewhere.  If none of the target zones can satisfy our allocation
3941	 * request even if all reclaimable pages are considered then we are
3942	 * screwed and have to go OOM.
3943	 */
3944	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3945					ac->nodemask) {
3946		unsigned long available;
3947		unsigned long reclaimable;
3948		unsigned long min_wmark = min_wmark_pages(zone);
3949		bool wmark;
3950
3951		available = reclaimable = zone_reclaimable_pages(zone);
3952		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3953
3954		/*
3955		 * Would the allocation succeed if we reclaimed all
3956		 * reclaimable pages?
3957		 */
3958		wmark = __zone_watermark_ok(zone, order, min_wmark,
3959				ac_classzone_idx(ac), alloc_flags, available);
3960		trace_reclaim_retry_zone(z, order, reclaimable,
3961				available, min_wmark, *no_progress_loops, wmark);
3962		if (wmark) {
3963			/*
3964			 * If we didn't make any progress and have a lot of
3965			 * dirty + writeback pages then we should wait for
3966			 * an IO to complete to slow down the reclaim and
3967			 * prevent from pre mature OOM
3968			 */
3969			if (!did_some_progress) {
3970				unsigned long write_pending;
3971
3972				write_pending = zone_page_state_snapshot(zone,
3973							NR_ZONE_WRITE_PENDING);
3974
3975				if (2 * write_pending > reclaimable) {
3976					congestion_wait(BLK_RW_ASYNC, HZ/10);
3977					return true;
3978				}
3979			}
3980
3981			/*
3982			 * Memory allocation/reclaim might be called from a WQ
3983			 * context and the current implementation of the WQ
3984			 * concurrency control doesn't recognize that
3985			 * a particular WQ is congested if the worker thread is
3986			 * looping without ever sleeping. Therefore we have to
3987			 * do a short sleep here rather than calling
3988			 * cond_resched().
3989			 */
3990			if (current->flags & PF_WQ_WORKER)
3991				schedule_timeout_uninterruptible(1);
3992			else
3993				cond_resched();
3994
3995			return true;
3996		}
3997	}
3998
3999	return false;
 
 
 
 
 
 
 
 
 
 
 
4000}
4001
4002static inline bool
4003check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4004{
4005	/*
4006	 * It's possible that cpuset's mems_allowed and the nodemask from
4007	 * mempolicy don't intersect. This should be normally dealt with by
4008	 * policy_nodemask(), but it's possible to race with cpuset update in
4009	 * such a way the check therein was true, and then it became false
4010	 * before we got our cpuset_mems_cookie here.
4011	 * This assumes that for all allocations, ac->nodemask can come only
4012	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4013	 * when it does not intersect with the cpuset restrictions) or the
4014	 * caller can deal with a violated nodemask.
4015	 */
4016	if (cpusets_enabled() && ac->nodemask &&
4017			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4018		ac->nodemask = NULL;
4019		return true;
4020	}
4021
4022	/*
4023	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4024	 * possible to race with parallel threads in such a way that our
4025	 * allocation can fail while the mask is being updated. If we are about
4026	 * to fail, check if the cpuset changed during allocation and if so,
4027	 * retry.
4028	 */
4029	if (read_mems_allowed_retry(cpuset_mems_cookie))
4030		return true;
4031
4032	return false;
4033}
4034
4035static inline struct page *
4036__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4037						struct alloc_context *ac)
4038{
4039	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4040	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4041	struct page *page = NULL;
4042	unsigned int alloc_flags;
4043	unsigned long did_some_progress;
4044	enum compact_priority compact_priority;
4045	enum compact_result compact_result;
4046	int compaction_retries;
4047	int no_progress_loops;
4048	unsigned int cpuset_mems_cookie;
 
4049	int reserve_flags;
4050
4051	/*
4052	 * In the slowpath, we sanity check order to avoid ever trying to
4053	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
4054	 * be using allocators in order of preference for an area that is
4055	 * too large.
4056	 */
4057	if (order >= MAX_ORDER) {
4058		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4059		return NULL;
4060	}
4061
4062	/*
4063	 * We also sanity check to catch abuse of atomic reserves being used by
4064	 * callers that are not in atomic context.
4065	 */
4066	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4067				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4068		gfp_mask &= ~__GFP_ATOMIC;
4069
4070retry_cpuset:
4071	compaction_retries = 0;
4072	no_progress_loops = 0;
4073	compact_priority = DEF_COMPACT_PRIORITY;
4074	cpuset_mems_cookie = read_mems_allowed_begin();
 
4075
4076	/*
4077	 * The fast path uses conservative alloc_flags to succeed only until
4078	 * kswapd needs to be woken up, and to avoid the cost of setting up
4079	 * alloc_flags precisely. So we do that now.
4080	 */
4081	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4082
4083	/*
4084	 * We need to recalculate the starting point for the zonelist iterator
4085	 * because we might have used different nodemask in the fast path, or
4086	 * there was a cpuset modification and we are retrying - otherwise we
4087	 * could end up iterating over non-eligible zones endlessly.
4088	 */
4089	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4090					ac->high_zoneidx, ac->nodemask);
4091	if (!ac->preferred_zoneref->zone)
4092		goto nopage;
4093
4094	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
 
 
 
 
 
 
 
 
 
 
 
 
 
4095		wake_all_kswapds(order, gfp_mask, ac);
4096
4097	/*
4098	 * The adjusted alloc_flags might result in immediate success, so try
4099	 * that first
4100	 */
4101	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4102	if (page)
4103		goto got_pg;
4104
4105	/*
4106	 * For costly allocations, try direct compaction first, as it's likely
4107	 * that we have enough base pages and don't need to reclaim. For non-
4108	 * movable high-order allocations, do that as well, as compaction will
4109	 * try prevent permanent fragmentation by migrating from blocks of the
4110	 * same migratetype.
4111	 * Don't try this for allocations that are allowed to ignore
4112	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4113	 */
4114	if (can_direct_reclaim &&
4115			(costly_order ||
4116			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4117			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4118		page = __alloc_pages_direct_compact(gfp_mask, order,
4119						alloc_flags, ac,
4120						INIT_COMPACT_PRIORITY,
4121						&compact_result);
4122		if (page)
4123			goto got_pg;
4124
4125		/*
4126		 * Checks for costly allocations with __GFP_NORETRY, which
4127		 * includes THP page fault allocations
4128		 */
4129		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4130			/*
4131			 * If compaction is deferred for high-order allocations,
4132			 * it is because sync compaction recently failed. If
4133			 * this is the case and the caller requested a THP
4134			 * allocation, we do not want to heavily disrupt the
4135			 * system, so we fail the allocation instead of entering
4136			 * direct reclaim.
 
 
 
 
 
 
 
 
 
4137			 */
4138			if (compact_result == COMPACT_DEFERRED)
 
4139				goto nopage;
4140
4141			/*
4142			 * Looks like reclaim/compaction is worth trying, but
4143			 * sync compaction could be very expensive, so keep
4144			 * using async compaction.
4145			 */
4146			compact_priority = INIT_COMPACT_PRIORITY;
4147		}
4148	}
4149
4150retry:
4151	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4152	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4153		wake_all_kswapds(order, gfp_mask, ac);
4154
4155	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4156	if (reserve_flags)
4157		alloc_flags = reserve_flags;
 
4158
4159	/*
4160	 * Reset the zonelist iterators if memory policies can be ignored.
4161	 * These allocations are high priority and system rather than user
4162	 * orientated.
4163	 */
4164	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4165		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
4166		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4167					ac->high_zoneidx, ac->nodemask);
4168	}
4169
4170	/* Attempt with potentially adjusted zonelist and alloc_flags */
4171	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4172	if (page)
4173		goto got_pg;
4174
4175	/* Caller is not willing to reclaim, we can't balance anything */
4176	if (!can_direct_reclaim)
4177		goto nopage;
4178
4179	/* Avoid recursion of direct reclaim */
4180	if (current->flags & PF_MEMALLOC)
4181		goto nopage;
4182
4183	/* Try direct reclaim and then allocating */
4184	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4185							&did_some_progress);
4186	if (page)
4187		goto got_pg;
4188
4189	/* Try direct compaction and then allocating */
4190	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4191					compact_priority, &compact_result);
4192	if (page)
4193		goto got_pg;
4194
4195	/* Do not loop if specifically requested */
4196	if (gfp_mask & __GFP_NORETRY)
4197		goto nopage;
4198
4199	/*
4200	 * Do not retry costly high order allocations unless they are
4201	 * __GFP_RETRY_MAYFAIL
4202	 */
4203	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4204		goto nopage;
4205
4206	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4207				 did_some_progress > 0, &no_progress_loops))
4208		goto retry;
4209
4210	/*
4211	 * It doesn't make any sense to retry for the compaction if the order-0
4212	 * reclaim is not able to make any progress because the current
4213	 * implementation of the compaction depends on the sufficient amount
4214	 * of free memory (see __compaction_suitable)
4215	 */
4216	if (did_some_progress > 0 &&
4217			should_compact_retry(ac, order, alloc_flags,
4218				compact_result, &compact_priority,
4219				&compaction_retries))
4220		goto retry;
4221
4222
4223	/* Deal with possible cpuset update races before we start OOM killing */
4224	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4225		goto retry_cpuset;
 
 
 
 
4226
4227	/* Reclaim has failed us, start killing things */
4228	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4229	if (page)
4230		goto got_pg;
4231
4232	/* Avoid allocations with no watermarks from looping endlessly */
4233	if (tsk_is_oom_victim(current) &&
4234	    (alloc_flags == ALLOC_OOM ||
4235	     (gfp_mask & __GFP_NOMEMALLOC)))
4236		goto nopage;
4237
4238	/* Retry as long as the OOM killer is making progress */
4239	if (did_some_progress) {
4240		no_progress_loops = 0;
4241		goto retry;
4242	}
4243
4244nopage:
4245	/* Deal with possible cpuset update races before we fail */
4246	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4247		goto retry_cpuset;
 
 
 
 
4248
4249	/*
4250	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4251	 * we always retry
4252	 */
4253	if (gfp_mask & __GFP_NOFAIL) {
4254		/*
4255		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4256		 * of any new users that actually require GFP_NOWAIT
4257		 */
4258		if (WARN_ON_ONCE(!can_direct_reclaim))
4259			goto fail;
4260
4261		/*
4262		 * PF_MEMALLOC request from this context is rather bizarre
4263		 * because we cannot reclaim anything and only can loop waiting
4264		 * for somebody to do a work for us
4265		 */
4266		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4267
4268		/*
4269		 * non failing costly orders are a hard requirement which we
4270		 * are not prepared for much so let's warn about these users
4271		 * so that we can identify them and convert them to something
4272		 * else.
4273		 */
4274		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4275
4276		/*
4277		 * Help non-failing allocations by giving them access to memory
4278		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4279		 * could deplete whole memory reserves which would just make
4280		 * the situation worse
4281		 */
4282		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4283		if (page)
4284			goto got_pg;
4285
4286		cond_resched();
4287		goto retry;
4288	}
4289fail:
4290	warn_alloc(gfp_mask, ac->nodemask,
4291			"page allocation failure: order:%u", order);
4292got_pg:
4293	return page;
4294}
4295
4296static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4297		int preferred_nid, nodemask_t *nodemask,
4298		struct alloc_context *ac, gfp_t *alloc_mask,
4299		unsigned int *alloc_flags)
4300{
4301	ac->high_zoneidx = gfp_zone(gfp_mask);
4302	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4303	ac->nodemask = nodemask;
4304	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4305
4306	if (cpusets_enabled()) {
4307		*alloc_mask |= __GFP_HARDWALL;
4308		if (!ac->nodemask)
 
 
 
 
4309			ac->nodemask = &cpuset_current_mems_allowed;
4310		else
4311			*alloc_flags |= ALLOC_CPUSET;
4312	}
4313
4314	fs_reclaim_acquire(gfp_mask);
4315	fs_reclaim_release(gfp_mask);
4316
4317	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4318
4319	if (should_fail_alloc_page(gfp_mask, order))
4320		return false;
4321
4322	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4323		*alloc_flags |= ALLOC_CMA;
4324
4325	return true;
4326}
4327
4328/* Determine whether to spread dirty pages and what the first usable zone */
4329static inline void finalise_ac(gfp_t gfp_mask,
4330		unsigned int order, struct alloc_context *ac)
4331{
4332	/* Dirty zone balancing only done in the fast path */
4333	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4334
4335	/*
4336	 * The preferred zone is used for statistics but crucially it is
4337	 * also used as the starting point for the zonelist iterator. It
4338	 * may get reset for allocations that ignore memory policies.
4339	 */
4340	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4341					ac->high_zoneidx, ac->nodemask);
 
 
4342}
4343
4344/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4345 * This is the 'heart' of the zoned buddy allocator.
4346 */
4347struct page *
4348__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4349							nodemask_t *nodemask)
4350{
4351	struct page *page;
4352	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4353	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4354	struct alloc_context ac = { };
4355
4356	gfp_mask &= gfp_allowed_mask;
4357	alloc_mask = gfp_mask;
4358	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
 
 
4359		return NULL;
4360
4361	finalise_ac(gfp_mask, order, &ac);
4362
4363	/* First allocation attempt */
4364	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4365	if (likely(page))
4366		goto out;
4367
4368	/*
4369	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4370	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4371	 * from a particular context which has been marked by
4372	 * memalloc_no{fs,io}_{save,restore}.
 
4373	 */
4374	alloc_mask = current_gfp_context(gfp_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4375	ac.spread_dirty_pages = false;
4376
4377	/*
4378	 * Restore the original nodemask if it was potentially replaced with
4379	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4380	 */
4381	if (unlikely(ac.nodemask != nodemask))
4382		ac.nodemask = nodemask;
4383
4384	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4385
4386out:
4387	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4388	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4389		__free_pages(page, order);
4390		page = NULL;
4391	}
4392
4393	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
 
4394
4395	return page;
4396}
4397EXPORT_SYMBOL(__alloc_pages_nodemask);
 
 
 
 
 
 
 
 
 
 
 
 
4398
4399/*
4400 * Common helper functions.
 
 
4401 */
4402unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4403{
4404	struct page *page;
4405
4406	/*
4407	 * __get_free_pages() returns a virtual address, which cannot represent
4408	 * a highmem page
4409	 */
4410	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4411
4412	page = alloc_pages(gfp_mask, order);
4413	if (!page)
4414		return 0;
4415	return (unsigned long) page_address(page);
4416}
4417EXPORT_SYMBOL(__get_free_pages);
4418
4419unsigned long get_zeroed_page(gfp_t gfp_mask)
4420{
4421	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4422}
4423EXPORT_SYMBOL(get_zeroed_page);
4424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4425void __free_pages(struct page *page, unsigned int order)
4426{
4427	if (put_page_testzero(page)) {
4428		if (order == 0)
4429			free_unref_page(page);
4430		else
4431			__free_pages_ok(page, order);
4432	}
4433}
4434
 
 
 
 
 
 
4435EXPORT_SYMBOL(__free_pages);
4436
4437void free_pages(unsigned long addr, unsigned int order)
4438{
4439	if (addr != 0) {
4440		VM_BUG_ON(!virt_addr_valid((void *)addr));
4441		__free_pages(virt_to_page((void *)addr), order);
4442	}
4443}
4444
4445EXPORT_SYMBOL(free_pages);
4446
4447/*
4448 * Page Fragment:
4449 *  An arbitrary-length arbitrary-offset area of memory which resides
4450 *  within a 0 or higher order page.  Multiple fragments within that page
4451 *  are individually refcounted, in the page's reference counter.
4452 *
4453 * The page_frag functions below provide a simple allocation framework for
4454 * page fragments.  This is used by the network stack and network device
4455 * drivers to provide a backing region of memory for use as either an
4456 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4457 */
4458static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4459					     gfp_t gfp_mask)
4460{
4461	struct page *page = NULL;
4462	gfp_t gfp = gfp_mask;
4463
4464#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4465	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4466		    __GFP_NOMEMALLOC;
4467	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4468				PAGE_FRAG_CACHE_MAX_ORDER);
4469	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4470#endif
4471	if (unlikely(!page))
4472		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4473
4474	nc->va = page ? page_address(page) : NULL;
4475
4476	return page;
4477}
4478
4479void __page_frag_cache_drain(struct page *page, unsigned int count)
4480{
4481	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4482
4483	if (page_ref_sub_and_test(page, count)) {
4484		unsigned int order = compound_order(page);
4485
4486		if (order == 0)
4487			free_unref_page(page);
4488		else
4489			__free_pages_ok(page, order);
4490	}
4491}
4492EXPORT_SYMBOL(__page_frag_cache_drain);
4493
4494void *page_frag_alloc(struct page_frag_cache *nc,
4495		      unsigned int fragsz, gfp_t gfp_mask)
 
4496{
4497	unsigned int size = PAGE_SIZE;
4498	struct page *page;
4499	int offset;
4500
4501	if (unlikely(!nc->va)) {
4502refill:
4503		page = __page_frag_cache_refill(nc, gfp_mask);
4504		if (!page)
4505			return NULL;
4506
4507#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4508		/* if size can vary use size else just use PAGE_SIZE */
4509		size = nc->size;
4510#endif
4511		/* Even if we own the page, we do not use atomic_set().
4512		 * This would break get_page_unless_zero() users.
4513		 */
4514		page_ref_add(page, size - 1);
4515
4516		/* reset page count bias and offset to start of new frag */
4517		nc->pfmemalloc = page_is_pfmemalloc(page);
4518		nc->pagecnt_bias = size;
4519		nc->offset = size;
4520	}
4521
4522	offset = nc->offset - fragsz;
4523	if (unlikely(offset < 0)) {
4524		page = virt_to_page(nc->va);
4525
4526		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4527			goto refill;
4528
 
 
 
 
 
4529#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4530		/* if size can vary use size else just use PAGE_SIZE */
4531		size = nc->size;
4532#endif
4533		/* OK, page count is 0, we can safely set it */
4534		set_page_count(page, size);
4535
4536		/* reset page count bias and offset to start of new frag */
4537		nc->pagecnt_bias = size;
4538		offset = size - fragsz;
 
 
 
 
 
 
 
 
 
 
 
 
4539	}
4540
4541	nc->pagecnt_bias--;
 
4542	nc->offset = offset;
4543
4544	return nc->va + offset;
4545}
4546EXPORT_SYMBOL(page_frag_alloc);
4547
4548/*
4549 * Frees a page fragment allocated out of either a compound or order 0 page.
4550 */
4551void page_frag_free(void *addr)
4552{
4553	struct page *page = virt_to_head_page(addr);
4554
4555	if (unlikely(put_page_testzero(page)))
4556		__free_pages_ok(page, compound_order(page));
4557}
4558EXPORT_SYMBOL(page_frag_free);
4559
4560static void *make_alloc_exact(unsigned long addr, unsigned int order,
4561		size_t size)
4562{
4563	if (addr) {
4564		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4565		unsigned long used = addr + PAGE_ALIGN(size);
4566
4567		split_page(virt_to_page((void *)addr), order);
4568		while (used < alloc_end) {
4569			free_page(used);
4570			used += PAGE_SIZE;
4571		}
 
 
 
 
4572	}
4573	return (void *)addr;
4574}
4575
4576/**
4577 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4578 * @size: the number of bytes to allocate
4579 * @gfp_mask: GFP flags for the allocation
4580 *
4581 * This function is similar to alloc_pages(), except that it allocates the
4582 * minimum number of pages to satisfy the request.  alloc_pages() can only
4583 * allocate memory in power-of-two pages.
4584 *
4585 * This function is also limited by MAX_ORDER.
4586 *
4587 * Memory allocated by this function must be released by free_pages_exact().
 
 
4588 */
4589void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4590{
4591	unsigned int order = get_order(size);
4592	unsigned long addr;
4593
 
 
 
4594	addr = __get_free_pages(gfp_mask, order);
4595	return make_alloc_exact(addr, order, size);
4596}
4597EXPORT_SYMBOL(alloc_pages_exact);
4598
4599/**
4600 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4601 *			   pages on a node.
4602 * @nid: the preferred node ID where memory should be allocated
4603 * @size: the number of bytes to allocate
4604 * @gfp_mask: GFP flags for the allocation
4605 *
4606 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4607 * back.
 
 
4608 */
4609void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4610{
4611	unsigned int order = get_order(size);
4612	struct page *p = alloc_pages_node(nid, gfp_mask, order);
 
 
 
 
 
4613	if (!p)
4614		return NULL;
4615	return make_alloc_exact((unsigned long)page_address(p), order, size);
4616}
4617
4618/**
4619 * free_pages_exact - release memory allocated via alloc_pages_exact()
4620 * @virt: the value returned by alloc_pages_exact.
4621 * @size: size of allocation, same value as passed to alloc_pages_exact().
4622 *
4623 * Release the memory allocated by a previous call to alloc_pages_exact.
4624 */
4625void free_pages_exact(void *virt, size_t size)
4626{
4627	unsigned long addr = (unsigned long)virt;
4628	unsigned long end = addr + PAGE_ALIGN(size);
4629
4630	while (addr < end) {
4631		free_page(addr);
4632		addr += PAGE_SIZE;
4633	}
4634}
4635EXPORT_SYMBOL(free_pages_exact);
4636
4637/**
4638 * nr_free_zone_pages - count number of pages beyond high watermark
4639 * @offset: The zone index of the highest zone
4640 *
4641 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4642 * high watermark within all zones at or below a given zone index.  For each
4643 * zone, the number of pages is calculated as:
4644 *
4645 *     nr_free_zone_pages = managed_pages - high_pages
 
 
4646 */
4647static unsigned long nr_free_zone_pages(int offset)
4648{
4649	struct zoneref *z;
4650	struct zone *zone;
4651
4652	/* Just pick one node, since fallback list is circular */
4653	unsigned long sum = 0;
4654
4655	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4656
4657	for_each_zone_zonelist(zone, z, zonelist, offset) {
4658		unsigned long size = zone->managed_pages;
4659		unsigned long high = high_wmark_pages(zone);
4660		if (size > high)
4661			sum += size - high;
4662	}
4663
4664	return sum;
4665}
4666
4667/**
4668 * nr_free_buffer_pages - count number of pages beyond high watermark
4669 *
4670 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4671 * watermark within ZONE_DMA and ZONE_NORMAL.
 
 
 
4672 */
4673unsigned long nr_free_buffer_pages(void)
4674{
4675	return nr_free_zone_pages(gfp_zone(GFP_USER));
4676}
4677EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4678
4679/**
4680 * nr_free_pagecache_pages - count number of pages beyond high watermark
4681 *
4682 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4683 * high watermark within all zones.
4684 */
4685unsigned long nr_free_pagecache_pages(void)
4686{
4687	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4688}
4689
4690static inline void show_node(struct zone *zone)
4691{
4692	if (IS_ENABLED(CONFIG_NUMA))
4693		printk("Node %d ", zone_to_nid(zone));
4694}
4695
4696long si_mem_available(void)
4697{
4698	long available;
4699	unsigned long pagecache;
4700	unsigned long wmark_low = 0;
4701	unsigned long pages[NR_LRU_LISTS];
 
4702	struct zone *zone;
4703	int lru;
4704
4705	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4706		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4707
4708	for_each_zone(zone)
4709		wmark_low += zone->watermark[WMARK_LOW];
4710
4711	/*
4712	 * Estimate the amount of memory available for userspace allocations,
4713	 * without causing swapping.
4714	 */
4715	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4716
4717	/*
4718	 * Not all the page cache can be freed, otherwise the system will
4719	 * start swapping. Assume at least half of the page cache, or the
4720	 * low watermark worth of cache, needs to stay.
4721	 */
4722	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4723	pagecache -= min(pagecache / 2, wmark_low);
4724	available += pagecache;
4725
4726	/*
4727	 * Part of the reclaimable slab consists of items that are in use,
4728	 * and cannot be freed. Cap this estimate at the low watermark.
4729	 */
4730	available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4731		     min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4732			 wmark_low);
4733
4734	/*
4735	 * Part of the kernel memory, which can be released under memory
4736	 * pressure.
4737	 */
4738	available += global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES) >>
4739		PAGE_SHIFT;
4740
4741	if (available < 0)
4742		available = 0;
4743	return available;
4744}
4745EXPORT_SYMBOL_GPL(si_mem_available);
4746
4747void si_meminfo(struct sysinfo *val)
4748{
4749	val->totalram = totalram_pages;
4750	val->sharedram = global_node_page_state(NR_SHMEM);
4751	val->freeram = global_zone_page_state(NR_FREE_PAGES);
4752	val->bufferram = nr_blockdev_pages();
4753	val->totalhigh = totalhigh_pages;
4754	val->freehigh = nr_free_highpages();
4755	val->mem_unit = PAGE_SIZE;
4756}
4757
4758EXPORT_SYMBOL(si_meminfo);
4759
4760#ifdef CONFIG_NUMA
4761void si_meminfo_node(struct sysinfo *val, int nid)
4762{
4763	int zone_type;		/* needs to be signed */
4764	unsigned long managed_pages = 0;
4765	unsigned long managed_highpages = 0;
4766	unsigned long free_highpages = 0;
4767	pg_data_t *pgdat = NODE_DATA(nid);
4768
4769	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4770		managed_pages += pgdat->node_zones[zone_type].managed_pages;
4771	val->totalram = managed_pages;
4772	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4773	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4774#ifdef CONFIG_HIGHMEM
4775	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4776		struct zone *zone = &pgdat->node_zones[zone_type];
4777
4778		if (is_highmem(zone)) {
4779			managed_highpages += zone->managed_pages;
4780			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4781		}
4782	}
4783	val->totalhigh = managed_highpages;
4784	val->freehigh = free_highpages;
4785#else
4786	val->totalhigh = managed_highpages;
4787	val->freehigh = free_highpages;
4788#endif
4789	val->mem_unit = PAGE_SIZE;
4790}
4791#endif
4792
4793/*
4794 * Determine whether the node should be displayed or not, depending on whether
4795 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4796 */
4797static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4798{
4799	if (!(flags & SHOW_MEM_FILTER_NODES))
4800		return false;
4801
4802	/*
4803	 * no node mask - aka implicit memory numa policy. Do not bother with
4804	 * the synchronization - read_mems_allowed_begin - because we do not
4805	 * have to be precise here.
4806	 */
4807	if (!nodemask)
4808		nodemask = &cpuset_current_mems_allowed;
4809
4810	return !node_isset(nid, *nodemask);
4811}
4812
4813#define K(x) ((x) << (PAGE_SHIFT-10))
4814
4815static void show_migration_types(unsigned char type)
4816{
4817	static const char types[MIGRATE_TYPES] = {
4818		[MIGRATE_UNMOVABLE]	= 'U',
4819		[MIGRATE_MOVABLE]	= 'M',
4820		[MIGRATE_RECLAIMABLE]	= 'E',
4821		[MIGRATE_HIGHATOMIC]	= 'H',
4822#ifdef CONFIG_CMA
4823		[MIGRATE_CMA]		= 'C',
4824#endif
4825#ifdef CONFIG_MEMORY_ISOLATION
4826		[MIGRATE_ISOLATE]	= 'I',
4827#endif
4828	};
4829	char tmp[MIGRATE_TYPES + 1];
4830	char *p = tmp;
4831	int i;
4832
4833	for (i = 0; i < MIGRATE_TYPES; i++) {
4834		if (type & (1 << i))
4835			*p++ = types[i];
4836	}
4837
4838	*p = '\0';
4839	printk(KERN_CONT "(%s) ", tmp);
4840}
4841
 
 
 
 
 
 
 
 
 
4842/*
4843 * Show free area list (used inside shift_scroll-lock stuff)
4844 * We also calculate the percentage fragmentation. We do this by counting the
4845 * memory on each free list with the exception of the first item on the list.
4846 *
4847 * Bits in @filter:
4848 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4849 *   cpuset.
4850 */
4851void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4852{
4853	unsigned long free_pcp = 0;
4854	int cpu;
4855	struct zone *zone;
4856	pg_data_t *pgdat;
4857
4858	for_each_populated_zone(zone) {
 
 
4859		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4860			continue;
4861
4862		for_each_online_cpu(cpu)
4863			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4864	}
4865
4866	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4867		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4868		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4869		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4870		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
 
 
4871		" free:%lu free_pcp:%lu free_cma:%lu\n",
4872		global_node_page_state(NR_ACTIVE_ANON),
4873		global_node_page_state(NR_INACTIVE_ANON),
4874		global_node_page_state(NR_ISOLATED_ANON),
4875		global_node_page_state(NR_ACTIVE_FILE),
4876		global_node_page_state(NR_INACTIVE_FILE),
4877		global_node_page_state(NR_ISOLATED_FILE),
4878		global_node_page_state(NR_UNEVICTABLE),
4879		global_node_page_state(NR_FILE_DIRTY),
4880		global_node_page_state(NR_WRITEBACK),
4881		global_node_page_state(NR_UNSTABLE_NFS),
4882		global_node_page_state(NR_SLAB_RECLAIMABLE),
4883		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4884		global_node_page_state(NR_FILE_MAPPED),
4885		global_node_page_state(NR_SHMEM),
4886		global_zone_page_state(NR_PAGETABLE),
 
4887		global_zone_page_state(NR_BOUNCE),
 
4888		global_zone_page_state(NR_FREE_PAGES),
4889		free_pcp,
4890		global_zone_page_state(NR_FREE_CMA_PAGES));
4891
4892	for_each_online_pgdat(pgdat) {
4893		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4894			continue;
 
 
4895
4896		printk("Node %d"
4897			" active_anon:%lukB"
4898			" inactive_anon:%lukB"
4899			" active_file:%lukB"
4900			" inactive_file:%lukB"
4901			" unevictable:%lukB"
4902			" isolated(anon):%lukB"
4903			" isolated(file):%lukB"
4904			" mapped:%lukB"
4905			" dirty:%lukB"
4906			" writeback:%lukB"
4907			" shmem:%lukB"
4908#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4909			" shmem_thp: %lukB"
4910			" shmem_pmdmapped: %lukB"
4911			" anon_thp: %lukB"
4912#endif
4913			" writeback_tmp:%lukB"
4914			" unstable:%lukB"
 
 
 
 
 
4915			" all_unreclaimable? %s"
4916			"\n",
4917			pgdat->node_id,
4918			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4919			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4920			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4921			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4922			K(node_page_state(pgdat, NR_UNEVICTABLE)),
4923			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4924			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4925			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4926			K(node_page_state(pgdat, NR_FILE_DIRTY)),
4927			K(node_page_state(pgdat, NR_WRITEBACK)),
4928			K(node_page_state(pgdat, NR_SHMEM)),
4929#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4930			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4931			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4932					* HPAGE_PMD_NR),
4933			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4934#endif
4935			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4936			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
 
 
 
 
 
4937			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4938				"yes" : "no");
4939	}
4940
4941	for_each_populated_zone(zone) {
4942		int i;
4943
 
 
4944		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4945			continue;
4946
4947		free_pcp = 0;
4948		for_each_online_cpu(cpu)
4949			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4950
4951		show_node(zone);
4952		printk(KERN_CONT
4953			"%s"
4954			" free:%lukB"
 
4955			" min:%lukB"
4956			" low:%lukB"
4957			" high:%lukB"
 
4958			" active_anon:%lukB"
4959			" inactive_anon:%lukB"
4960			" active_file:%lukB"
4961			" inactive_file:%lukB"
4962			" unevictable:%lukB"
4963			" writepending:%lukB"
4964			" present:%lukB"
4965			" managed:%lukB"
4966			" mlocked:%lukB"
4967			" kernel_stack:%lukB"
4968			" pagetables:%lukB"
4969			" bounce:%lukB"
4970			" free_pcp:%lukB"
4971			" local_pcp:%ukB"
4972			" free_cma:%lukB"
4973			"\n",
4974			zone->name,
4975			K(zone_page_state(zone, NR_FREE_PAGES)),
 
4976			K(min_wmark_pages(zone)),
4977			K(low_wmark_pages(zone)),
4978			K(high_wmark_pages(zone)),
 
4979			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4980			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4981			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4982			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4983			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4984			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4985			K(zone->present_pages),
4986			K(zone->managed_pages),
4987			K(zone_page_state(zone, NR_MLOCK)),
4988			zone_page_state(zone, NR_KERNEL_STACK_KB),
4989			K(zone_page_state(zone, NR_PAGETABLE)),
4990			K(zone_page_state(zone, NR_BOUNCE)),
4991			K(free_pcp),
4992			K(this_cpu_read(zone->pageset->pcp.count)),
4993			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4994		printk("lowmem_reserve[]:");
4995		for (i = 0; i < MAX_NR_ZONES; i++)
4996			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4997		printk(KERN_CONT "\n");
4998	}
4999
5000	for_each_populated_zone(zone) {
5001		unsigned int order;
5002		unsigned long nr[MAX_ORDER], flags, total = 0;
5003		unsigned char types[MAX_ORDER];
5004
 
 
5005		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5006			continue;
5007		show_node(zone);
5008		printk(KERN_CONT "%s: ", zone->name);
5009
5010		spin_lock_irqsave(&zone->lock, flags);
5011		for (order = 0; order < MAX_ORDER; order++) {
5012			struct free_area *area = &zone->free_area[order];
5013			int type;
5014
5015			nr[order] = area->nr_free;
5016			total += nr[order] << order;
5017
5018			types[order] = 0;
5019			for (type = 0; type < MIGRATE_TYPES; type++) {
5020				if (!list_empty(&area->free_list[type]))
5021					types[order] |= 1 << type;
5022			}
5023		}
5024		spin_unlock_irqrestore(&zone->lock, flags);
5025		for (order = 0; order < MAX_ORDER; order++) {
5026			printk(KERN_CONT "%lu*%lukB ",
5027			       nr[order], K(1UL) << order);
5028			if (nr[order])
5029				show_migration_types(types[order]);
5030		}
5031		printk(KERN_CONT "= %lukB\n", K(total));
5032	}
5033
5034	hugetlb_show_meminfo();
 
 
 
 
5035
5036	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5037
5038	show_swap_cache_info();
5039}
5040
5041static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5042{
5043	zoneref->zone = zone;
5044	zoneref->zone_idx = zone_idx(zone);
5045}
5046
5047/*
5048 * Builds allocation fallback zone lists.
5049 *
5050 * Add all populated zones of a node to the zonelist.
5051 */
5052static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5053{
5054	struct zone *zone;
5055	enum zone_type zone_type = MAX_NR_ZONES;
5056	int nr_zones = 0;
5057
5058	do {
5059		zone_type--;
5060		zone = pgdat->node_zones + zone_type;
5061		if (managed_zone(zone)) {
5062			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5063			check_highest_zone(zone_type);
5064		}
5065	} while (zone_type);
5066
5067	return nr_zones;
5068}
5069
5070#ifdef CONFIG_NUMA
5071
5072static int __parse_numa_zonelist_order(char *s)
5073{
5074	/*
5075	 * We used to support different zonlists modes but they turned
5076	 * out to be just not useful. Let's keep the warning in place
5077	 * if somebody still use the cmd line parameter so that we do
5078	 * not fail it silently
5079	 */
5080	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5081		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5082		return -EINVAL;
5083	}
5084	return 0;
5085}
5086
5087static __init int setup_numa_zonelist_order(char *s)
5088{
5089	if (!s)
5090		return 0;
5091
5092	return __parse_numa_zonelist_order(s);
5093}
5094early_param("numa_zonelist_order", setup_numa_zonelist_order);
5095
5096char numa_zonelist_order[] = "Node";
5097
5098/*
5099 * sysctl handler for numa_zonelist_order
5100 */
5101int numa_zonelist_order_handler(struct ctl_table *table, int write,
5102		void __user *buffer, size_t *length,
5103		loff_t *ppos)
5104{
5105	char *str;
5106	int ret;
5107
5108	if (!write)
5109		return proc_dostring(table, write, buffer, length, ppos);
5110	str = memdup_user_nul(buffer, 16);
5111	if (IS_ERR(str))
5112		return PTR_ERR(str);
5113
5114	ret = __parse_numa_zonelist_order(str);
5115	kfree(str);
5116	return ret;
5117}
5118
5119
5120#define MAX_NODE_LOAD (nr_online_nodes)
5121static int node_load[MAX_NUMNODES];
5122
5123/**
5124 * find_next_best_node - find the next node that should appear in a given node's fallback list
5125 * @node: node whose fallback list we're appending
5126 * @used_node_mask: nodemask_t of already used nodes
5127 *
5128 * We use a number of factors to determine which is the next node that should
5129 * appear on a given node's fallback list.  The node should not have appeared
5130 * already in @node's fallback list, and it should be the next closest node
5131 * according to the distance array (which contains arbitrary distance values
5132 * from each node to each node in the system), and should also prefer nodes
5133 * with no CPUs, since presumably they'll have very little allocation pressure
5134 * on them otherwise.
5135 * It returns -1 if no node is found.
 
5136 */
5137static int find_next_best_node(int node, nodemask_t *used_node_mask)
5138{
5139	int n, val;
5140	int min_val = INT_MAX;
5141	int best_node = NUMA_NO_NODE;
5142	const struct cpumask *tmp = cpumask_of_node(0);
5143
5144	/* Use the local node if we haven't already */
5145	if (!node_isset(node, *used_node_mask)) {
5146		node_set(node, *used_node_mask);
5147		return node;
5148	}
5149
5150	for_each_node_state(n, N_MEMORY) {
5151
5152		/* Don't want a node to appear more than once */
5153		if (node_isset(n, *used_node_mask))
5154			continue;
5155
5156		/* Use the distance array to find the distance */
5157		val = node_distance(node, n);
5158
5159		/* Penalize nodes under us ("prefer the next node") */
5160		val += (n < node);
5161
5162		/* Give preference to headless and unused nodes */
5163		tmp = cpumask_of_node(n);
5164		if (!cpumask_empty(tmp))
5165			val += PENALTY_FOR_NODE_WITH_CPUS;
5166
5167		/* Slight preference for less loaded node */
5168		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5169		val += node_load[n];
5170
5171		if (val < min_val) {
5172			min_val = val;
5173			best_node = n;
5174		}
5175	}
5176
5177	if (best_node >= 0)
5178		node_set(best_node, *used_node_mask);
5179
5180	return best_node;
5181}
5182
5183
5184/*
5185 * Build zonelists ordered by node and zones within node.
5186 * This results in maximum locality--normal zone overflows into local
5187 * DMA zone, if any--but risks exhausting DMA zone.
5188 */
5189static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5190		unsigned nr_nodes)
5191{
5192	struct zoneref *zonerefs;
5193	int i;
5194
5195	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5196
5197	for (i = 0; i < nr_nodes; i++) {
5198		int nr_zones;
5199
5200		pg_data_t *node = NODE_DATA(node_order[i]);
5201
5202		nr_zones = build_zonerefs_node(node, zonerefs);
5203		zonerefs += nr_zones;
5204	}
5205	zonerefs->zone = NULL;
5206	zonerefs->zone_idx = 0;
5207}
5208
5209/*
5210 * Build gfp_thisnode zonelists
5211 */
5212static void build_thisnode_zonelists(pg_data_t *pgdat)
5213{
5214	struct zoneref *zonerefs;
5215	int nr_zones;
5216
5217	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5218	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5219	zonerefs += nr_zones;
5220	zonerefs->zone = NULL;
5221	zonerefs->zone_idx = 0;
5222}
5223
5224/*
5225 * Build zonelists ordered by zone and nodes within zones.
5226 * This results in conserving DMA zone[s] until all Normal memory is
5227 * exhausted, but results in overflowing to remote node while memory
5228 * may still exist in local DMA zone.
5229 */
5230
5231static void build_zonelists(pg_data_t *pgdat)
5232{
5233	static int node_order[MAX_NUMNODES];
5234	int node, load, nr_nodes = 0;
5235	nodemask_t used_mask;
5236	int local_node, prev_node;
5237
5238	/* NUMA-aware ordering of nodes */
5239	local_node = pgdat->node_id;
5240	load = nr_online_nodes;
5241	prev_node = local_node;
5242	nodes_clear(used_mask);
5243
5244	memset(node_order, 0, sizeof(node_order));
5245	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5246		/*
5247		 * We don't want to pressure a particular node.
5248		 * So adding penalty to the first node in same
5249		 * distance group to make it round-robin.
5250		 */
5251		if (node_distance(local_node, node) !=
5252		    node_distance(local_node, prev_node))
5253			node_load[node] = load;
5254
5255		node_order[nr_nodes++] = node;
5256		prev_node = node;
5257		load--;
5258	}
5259
5260	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5261	build_thisnode_zonelists(pgdat);
 
 
 
 
5262}
5263
5264#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5265/*
5266 * Return node id of node used for "local" allocations.
5267 * I.e., first node id of first zone in arg node's generic zonelist.
5268 * Used for initializing percpu 'numa_mem', which is used primarily
5269 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5270 */
5271int local_memory_node(int node)
5272{
5273	struct zoneref *z;
5274
5275	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5276				   gfp_zone(GFP_KERNEL),
5277				   NULL);
5278	return z->zone->node;
5279}
5280#endif
5281
5282static void setup_min_unmapped_ratio(void);
5283static void setup_min_slab_ratio(void);
5284#else	/* CONFIG_NUMA */
5285
5286static void build_zonelists(pg_data_t *pgdat)
5287{
5288	int node, local_node;
5289	struct zoneref *zonerefs;
5290	int nr_zones;
5291
5292	local_node = pgdat->node_id;
5293
5294	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5295	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5296	zonerefs += nr_zones;
5297
5298	/*
5299	 * Now we build the zonelist so that it contains the zones
5300	 * of all the other nodes.
5301	 * We don't want to pressure a particular node, so when
5302	 * building the zones for node N, we make sure that the
5303	 * zones coming right after the local ones are those from
5304	 * node N+1 (modulo N)
5305	 */
5306	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5307		if (!node_online(node))
5308			continue;
5309		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5310		zonerefs += nr_zones;
5311	}
5312	for (node = 0; node < local_node; node++) {
5313		if (!node_online(node))
5314			continue;
5315		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5316		zonerefs += nr_zones;
5317	}
5318
5319	zonerefs->zone = NULL;
5320	zonerefs->zone_idx = 0;
5321}
5322
5323#endif	/* CONFIG_NUMA */
5324
5325/*
5326 * Boot pageset table. One per cpu which is going to be used for all
5327 * zones and all nodes. The parameters will be set in such a way
5328 * that an item put on a list will immediately be handed over to
5329 * the buddy list. This is safe since pageset manipulation is done
5330 * with interrupts disabled.
5331 *
5332 * The boot_pagesets must be kept even after bootup is complete for
5333 * unused processors and/or zones. They do play a role for bootstrapping
5334 * hotplugged processors.
5335 *
5336 * zoneinfo_show() and maybe other functions do
5337 * not check if the processor is online before following the pageset pointer.
5338 * Other parts of the kernel may not check if the zone is available.
5339 */
5340static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5341static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
 
 
 
 
5342static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5343
5344static void __build_all_zonelists(void *data)
5345{
5346	int nid;
5347	int __maybe_unused cpu;
5348	pg_data_t *self = data;
5349	static DEFINE_SPINLOCK(lock);
5350
5351	spin_lock(&lock);
5352
5353#ifdef CONFIG_NUMA
5354	memset(node_load, 0, sizeof(node_load));
5355#endif
5356
5357	/*
5358	 * This node is hotadded and no memory is yet present.   So just
5359	 * building zonelists is fine - no need to touch other nodes.
5360	 */
5361	if (self && !node_online(self->node_id)) {
5362		build_zonelists(self);
5363	} else {
5364		for_each_online_node(nid) {
 
 
 
 
5365			pg_data_t *pgdat = NODE_DATA(nid);
5366
5367			build_zonelists(pgdat);
5368		}
5369
5370#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5371		/*
5372		 * We now know the "local memory node" for each node--
5373		 * i.e., the node of the first zone in the generic zonelist.
5374		 * Set up numa_mem percpu variable for on-line cpus.  During
5375		 * boot, only the boot cpu should be on-line;  we'll init the
5376		 * secondary cpus' numa_mem as they come on-line.  During
5377		 * node/memory hotplug, we'll fixup all on-line cpus.
5378		 */
5379		for_each_online_cpu(cpu)
5380			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5381#endif
5382	}
5383
5384	spin_unlock(&lock);
5385}
5386
5387static noinline void __init
5388build_all_zonelists_init(void)
5389{
5390	int cpu;
5391
5392	__build_all_zonelists(NULL);
5393
5394	/*
5395	 * Initialize the boot_pagesets that are going to be used
5396	 * for bootstrapping processors. The real pagesets for
5397	 * each zone will be allocated later when the per cpu
5398	 * allocator is available.
5399	 *
5400	 * boot_pagesets are used also for bootstrapping offline
5401	 * cpus if the system is already booted because the pagesets
5402	 * are needed to initialize allocators on a specific cpu too.
5403	 * F.e. the percpu allocator needs the page allocator which
5404	 * needs the percpu allocator in order to allocate its pagesets
5405	 * (a chicken-egg dilemma).
5406	 */
5407	for_each_possible_cpu(cpu)
5408		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5409
5410	mminit_verify_zonelist();
5411	cpuset_init_current_mems_allowed();
5412}
5413
5414/*
5415 * unless system_state == SYSTEM_BOOTING.
5416 *
5417 * __ref due to call of __init annotated helper build_all_zonelists_init
5418 * [protected by SYSTEM_BOOTING].
5419 */
5420void __ref build_all_zonelists(pg_data_t *pgdat)
5421{
 
 
5422	if (system_state == SYSTEM_BOOTING) {
5423		build_all_zonelists_init();
5424	} else {
5425		__build_all_zonelists(pgdat);
5426		/* cpuset refresh routine should be here */
5427	}
5428	vm_total_pages = nr_free_pagecache_pages();
 
5429	/*
5430	 * Disable grouping by mobility if the number of pages in the
5431	 * system is too low to allow the mechanism to work. It would be
5432	 * more accurate, but expensive to check per-zone. This check is
5433	 * made on memory-hotadd so a system can start with mobility
5434	 * disabled and enable it later
5435	 */
5436	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5437		page_group_by_mobility_disabled = 1;
5438	else
5439		page_group_by_mobility_disabled = 0;
5440
5441	pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
5442		nr_online_nodes,
5443		page_group_by_mobility_disabled ? "off" : "on",
5444		vm_total_pages);
5445#ifdef CONFIG_NUMA
5446	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5447#endif
5448}
5449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5450/*
5451 * Initially all pages are reserved - free ones are freed
5452 * up by free_all_bootmem() once the early boot process is
5453 * done. Non-atomic initialization, single-pass.
5454 */
5455void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5456		unsigned long start_pfn, enum memmap_context context,
5457		struct vmem_altmap *altmap)
 
 
 
 
 
5458{
5459	unsigned long end_pfn = start_pfn + size;
5460	pg_data_t *pgdat = NODE_DATA(nid);
5461	unsigned long pfn;
5462	unsigned long nr_initialised = 0;
5463	struct page *page;
5464#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5465	struct memblock_region *r = NULL, *tmp;
5466#endif
5467
5468	if (highest_memmap_pfn < end_pfn - 1)
5469		highest_memmap_pfn = end_pfn - 1;
5470
 
5471	/*
5472	 * Honor reservation requested by the driver for this ZONE_DEVICE
5473	 * memory
 
 
 
5474	 */
5475	if (altmap && start_pfn == altmap->base_pfn)
5476		start_pfn += altmap->reserve;
 
 
 
 
 
 
 
5477
5478	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5479		/*
5480		 * There can be holes in boot-time mem_map[]s handed to this
5481		 * function.  They do not exist on hotplugged memory.
5482		 */
5483		if (context != MEMMAP_EARLY)
5484			goto not_early;
5485
5486		if (!early_pfn_valid(pfn))
5487			continue;
5488		if (!early_pfn_in_nid(pfn, nid))
5489			continue;
5490		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5491			break;
5492
5493#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5494		/*
5495		 * Check given memblock attribute by firmware which can affect
5496		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
5497		 * mirrored, it's an overlapped memmap init. skip it.
5498		 */
5499		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5500			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5501				for_each_memblock(memory, tmp)
5502					if (pfn < memblock_region_memory_end_pfn(tmp))
5503						break;
5504				r = tmp;
5505			}
5506			if (pfn >= memblock_region_memory_base_pfn(r) &&
5507			    memblock_is_mirror(r)) {
5508				/* already initialized as NORMAL */
5509				pfn = memblock_region_memory_end_pfn(r);
5510				continue;
5511			}
 
5512		}
5513#endif
5514
5515not_early:
5516		page = pfn_to_page(pfn);
5517		__init_single_page(page, pfn, zone, nid);
5518		if (context == MEMMAP_HOTPLUG)
5519			SetPageReserved(page);
5520
5521		/*
5522		 * Mark the block movable so that blocks are reserved for
5523		 * movable at startup. This will force kernel allocations
5524		 * to reserve their blocks rather than leaking throughout
5525		 * the address space during boot when many long-lived
5526		 * kernel allocations are made.
5527		 *
5528		 * bitmap is created for zone's valid pfn range. but memmap
5529		 * can be created for invalid pages (for alignment)
5530		 * check here not to call set_pageblock_migratetype() against
5531		 * pfn out of zone.
5532		 *
5533		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5534		 * because this is done early in sparse_add_one_section
5535		 */
5536		if (!(pfn & (pageblock_nr_pages - 1))) {
5537			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5538			cond_resched();
5539		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5540	}
5541}
5542
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5543static void __meminit zone_init_free_lists(struct zone *zone)
5544{
5545	unsigned int order, t;
5546	for_each_migratetype_order(order, t) {
5547		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5548		zone->free_area[order].nr_free = 0;
5549	}
5550}
5551
5552#ifndef __HAVE_ARCH_MEMMAP_INIT
5553#define memmap_init(size, nid, zone, start_pfn) \
5554	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5555#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5556
5557static int zone_batchsize(struct zone *zone)
5558{
5559#ifdef CONFIG_MMU
5560	int batch;
5561
5562	/*
5563	 * The per-cpu-pages pools are set to around 1000th of the
5564	 * size of the zone.  But no more than 1/2 of a meg.
5565	 *
5566	 * OK, so we don't know how big the cache is.  So guess.
5567	 */
5568	batch = zone->managed_pages / 1024;
5569	if (batch * PAGE_SIZE > 512 * 1024)
5570		batch = (512 * 1024) / PAGE_SIZE;
5571	batch /= 4;		/* We effectively *= 4 below */
5572	if (batch < 1)
5573		batch = 1;
5574
5575	/*
5576	 * Clamp the batch to a 2^n - 1 value. Having a power
5577	 * of 2 value was found to be more likely to have
5578	 * suboptimal cache aliasing properties in some cases.
5579	 *
5580	 * For example if 2 tasks are alternately allocating
5581	 * batches of pages, one task can end up with a lot
5582	 * of pages of one half of the possible page colors
5583	 * and the other with pages of the other colors.
5584	 */
5585	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5586
5587	return batch;
5588
5589#else
5590	/* The deferral and batching of frees should be suppressed under NOMMU
5591	 * conditions.
5592	 *
5593	 * The problem is that NOMMU needs to be able to allocate large chunks
5594	 * of contiguous memory as there's no hardware page translation to
5595	 * assemble apparent contiguous memory from discontiguous pages.
5596	 *
5597	 * Queueing large contiguous runs of pages for batching, however,
5598	 * causes the pages to actually be freed in smaller chunks.  As there
5599	 * can be a significant delay between the individual batches being
5600	 * recycled, this leads to the once large chunks of space being
5601	 * fragmented and becoming unavailable for high-order allocations.
5602	 */
5603	return 0;
5604#endif
5605}
5606
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5607/*
5608 * pcp->high and pcp->batch values are related and dependent on one another:
5609 * ->batch must never be higher then ->high.
5610 * The following function updates them in a safe manner without read side
5611 * locking.
5612 *
5613 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5614 * those fields changing asynchronously (acording the the above rule).
 
 
 
5615 *
5616 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5617 * outside of boot time (or some other assurance that no concurrent updaters
5618 * exist).
5619 */
5620static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5621		unsigned long batch)
5622{
5623       /* start with a fail safe value for batch */
5624	pcp->batch = 1;
5625	smp_wmb();
5626
5627       /* Update high, then batch, in order */
5628	pcp->high = high;
5629	smp_wmb();
5630
5631	pcp->batch = batch;
5632}
5633
5634/* a companion to pageset_set_high() */
5635static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5636{
5637	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5638}
5639
5640static void pageset_init(struct per_cpu_pageset *p)
5641{
5642	struct per_cpu_pages *pcp;
5643	int migratetype;
5644
5645	memset(p, 0, sizeof(*p));
 
 
5646
5647	pcp = &p->pcp;
5648	pcp->count = 0;
5649	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5650		INIT_LIST_HEAD(&pcp->lists[migratetype]);
 
 
 
 
 
5651}
5652
5653static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
 
5654{
5655	pageset_init(p);
5656	pageset_set_batch(p, batch);
 
 
 
 
 
5657}
5658
5659/*
5660 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5661 * to the value high for the pageset p.
5662 */
5663static void pageset_set_high(struct per_cpu_pageset *p,
5664				unsigned long high)
5665{
5666	unsigned long batch = max(1UL, high / 4);
5667	if ((high / 4) > (PAGE_SHIFT * 8))
5668		batch = PAGE_SHIFT * 8;
5669
5670	pageset_update(&p->pcp, high, batch);
5671}
5672
5673static void pageset_set_high_and_batch(struct zone *zone,
5674				       struct per_cpu_pageset *pcp)
5675{
5676	if (percpu_pagelist_fraction)
5677		pageset_set_high(pcp,
5678			(zone->managed_pages /
5679				percpu_pagelist_fraction));
5680	else
5681		pageset_set_batch(pcp, zone_batchsize(zone));
5682}
5683
5684static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5685{
5686	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5687
5688	pageset_init(pcp);
5689	pageset_set_high_and_batch(zone, pcp);
5690}
5691
5692void __meminit setup_zone_pageset(struct zone *zone)
5693{
5694	int cpu;
5695	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5696	for_each_possible_cpu(cpu)
5697		zone_pageset_init(zone, cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5698}
5699
5700/*
5701 * Allocate per cpu pagesets and initialize them.
5702 * Before this call only boot pagesets were available.
5703 */
5704void __init setup_per_cpu_pageset(void)
5705{
5706	struct pglist_data *pgdat;
5707	struct zone *zone;
 
5708
5709	for_each_populated_zone(zone)
5710		setup_zone_pageset(zone);
5711
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5712	for_each_online_pgdat(pgdat)
5713		pgdat->per_cpu_nodestats =
5714			alloc_percpu(struct per_cpu_nodestat);
5715}
5716
5717static __meminit void zone_pcp_init(struct zone *zone)
5718{
5719	/*
5720	 * per cpu subsystem is not up at this point. The following code
5721	 * relies on the ability of the linker to provide the
5722	 * offset of a (static) per cpu variable into the per cpu area.
5723	 */
5724	zone->pageset = &boot_pageset;
 
 
 
5725
5726	if (populated_zone(zone))
5727		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
5728			zone->name, zone->present_pages,
5729					 zone_batchsize(zone));
5730}
5731
5732void __meminit init_currently_empty_zone(struct zone *zone,
5733					unsigned long zone_start_pfn,
5734					unsigned long size)
5735{
5736	struct pglist_data *pgdat = zone->zone_pgdat;
 
5737
5738	pgdat->nr_zones = zone_idx(zone) + 1;
 
5739
5740	zone->zone_start_pfn = zone_start_pfn;
5741
5742	mminit_dprintk(MMINIT_TRACE, "memmap_init",
5743			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
5744			pgdat->node_id,
5745			(unsigned long)zone_idx(zone),
5746			zone_start_pfn, (zone_start_pfn + size));
5747
5748	zone_init_free_lists(zone);
5749	zone->initialized = 1;
5750}
5751
5752#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5753#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5754
5755/*
5756 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5757 */
5758int __meminit __early_pfn_to_nid(unsigned long pfn,
5759					struct mminit_pfnnid_cache *state)
5760{
5761	unsigned long start_pfn, end_pfn;
5762	int nid;
5763
5764	if (state->last_start <= pfn && pfn < state->last_end)
5765		return state->last_nid;
5766
5767	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5768	if (nid != -1) {
5769		state->last_start = start_pfn;
5770		state->last_end = end_pfn;
5771		state->last_nid = nid;
5772	}
5773
5774	return nid;
5775}
5776#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5777
5778/**
5779 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5780 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5781 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5782 *
5783 * If an architecture guarantees that all ranges registered contain no holes
5784 * and may be freed, this this function may be used instead of calling
5785 * memblock_free_early_nid() manually.
5786 */
5787void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5788{
5789	unsigned long start_pfn, end_pfn;
5790	int i, this_nid;
5791
5792	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5793		start_pfn = min(start_pfn, max_low_pfn);
5794		end_pfn = min(end_pfn, max_low_pfn);
5795
5796		if (start_pfn < end_pfn)
5797			memblock_free_early_nid(PFN_PHYS(start_pfn),
5798					(end_pfn - start_pfn) << PAGE_SHIFT,
5799					this_nid);
5800	}
5801}
5802
5803/**
5804 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5805 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5806 *
5807 * If an architecture guarantees that all ranges registered contain no holes and may
5808 * be freed, this function may be used instead of calling memory_present() manually.
5809 */
5810void __init sparse_memory_present_with_active_regions(int nid)
5811{
5812	unsigned long start_pfn, end_pfn;
5813	int i, this_nid;
5814
5815	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5816		memory_present(this_nid, start_pfn, end_pfn);
5817}
5818
5819/**
5820 * get_pfn_range_for_nid - Return the start and end page frames for a node
5821 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5822 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5823 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5824 *
5825 * It returns the start and end page frame of a node based on information
5826 * provided by memblock_set_node(). If called for a node
5827 * with no available memory, a warning is printed and the start and end
5828 * PFNs will be 0.
5829 */
5830void __meminit get_pfn_range_for_nid(unsigned int nid,
5831			unsigned long *start_pfn, unsigned long *end_pfn)
5832{
5833	unsigned long this_start_pfn, this_end_pfn;
5834	int i;
5835
5836	*start_pfn = -1UL;
5837	*end_pfn = 0;
5838
5839	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5840		*start_pfn = min(*start_pfn, this_start_pfn);
5841		*end_pfn = max(*end_pfn, this_end_pfn);
5842	}
5843
5844	if (*start_pfn == -1UL)
5845		*start_pfn = 0;
5846}
5847
5848/*
5849 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5850 * assumption is made that zones within a node are ordered in monotonic
5851 * increasing memory addresses so that the "highest" populated zone is used
5852 */
5853static void __init find_usable_zone_for_movable(void)
5854{
5855	int zone_index;
5856	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5857		if (zone_index == ZONE_MOVABLE)
5858			continue;
5859
5860		if (arch_zone_highest_possible_pfn[zone_index] >
5861				arch_zone_lowest_possible_pfn[zone_index])
5862			break;
5863	}
5864
5865	VM_BUG_ON(zone_index == -1);
5866	movable_zone = zone_index;
5867}
5868
5869/*
5870 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5871 * because it is sized independent of architecture. Unlike the other zones,
5872 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5873 * in each node depending on the size of each node and how evenly kernelcore
5874 * is distributed. This helper function adjusts the zone ranges
5875 * provided by the architecture for a given node by using the end of the
5876 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5877 * zones within a node are in order of monotonic increases memory addresses
5878 */
5879static void __meminit adjust_zone_range_for_zone_movable(int nid,
5880					unsigned long zone_type,
5881					unsigned long node_start_pfn,
5882					unsigned long node_end_pfn,
5883					unsigned long *zone_start_pfn,
5884					unsigned long *zone_end_pfn)
5885{
5886	/* Only adjust if ZONE_MOVABLE is on this node */
5887	if (zone_movable_pfn[nid]) {
5888		/* Size ZONE_MOVABLE */
5889		if (zone_type == ZONE_MOVABLE) {
5890			*zone_start_pfn = zone_movable_pfn[nid];
5891			*zone_end_pfn = min(node_end_pfn,
5892				arch_zone_highest_possible_pfn[movable_zone]);
5893
5894		/* Adjust for ZONE_MOVABLE starting within this range */
5895		} else if (!mirrored_kernelcore &&
5896			*zone_start_pfn < zone_movable_pfn[nid] &&
5897			*zone_end_pfn > zone_movable_pfn[nid]) {
5898			*zone_end_pfn = zone_movable_pfn[nid];
5899
5900		/* Check if this whole range is within ZONE_MOVABLE */
5901		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5902			*zone_start_pfn = *zone_end_pfn;
5903	}
5904}
5905
5906/*
5907 * Return the number of pages a zone spans in a node, including holes
5908 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5909 */
5910static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5911					unsigned long zone_type,
5912					unsigned long node_start_pfn,
5913					unsigned long node_end_pfn,
5914					unsigned long *zone_start_pfn,
5915					unsigned long *zone_end_pfn,
5916					unsigned long *ignored)
5917{
 
 
5918	/* When hotadd a new node from cpu_up(), the node should be empty */
5919	if (!node_start_pfn && !node_end_pfn)
5920		return 0;
5921
5922	/* Get the start and end of the zone */
5923	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5924	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5925	adjust_zone_range_for_zone_movable(nid, zone_type,
5926				node_start_pfn, node_end_pfn,
5927				zone_start_pfn, zone_end_pfn);
5928
5929	/* Check that this node has pages within the zone's required range */
5930	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5931		return 0;
5932
5933	/* Move the zone boundaries inside the node if necessary */
5934	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5935	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5936
5937	/* Return the spanned pages */
5938	return *zone_end_pfn - *zone_start_pfn;
5939}
5940
5941/*
5942 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5943 * then all holes in the requested range will be accounted for.
5944 */
5945unsigned long __meminit __absent_pages_in_range(int nid,
5946				unsigned long range_start_pfn,
5947				unsigned long range_end_pfn)
5948{
5949	unsigned long nr_absent = range_end_pfn - range_start_pfn;
5950	unsigned long start_pfn, end_pfn;
5951	int i;
5952
5953	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5954		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5955		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5956		nr_absent -= end_pfn - start_pfn;
5957	}
5958	return nr_absent;
5959}
5960
5961/**
5962 * absent_pages_in_range - Return number of page frames in holes within a range
5963 * @start_pfn: The start PFN to start searching for holes
5964 * @end_pfn: The end PFN to stop searching for holes
5965 *
5966 * It returns the number of pages frames in memory holes within a range.
5967 */
5968unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5969							unsigned long end_pfn)
5970{
5971	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5972}
5973
5974/* Return the number of page frames in holes in a zone on a node */
5975static unsigned long __meminit zone_absent_pages_in_node(int nid,
5976					unsigned long zone_type,
5977					unsigned long node_start_pfn,
5978					unsigned long node_end_pfn,
5979					unsigned long *ignored)
5980{
5981	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5982	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5983	unsigned long zone_start_pfn, zone_end_pfn;
5984	unsigned long nr_absent;
5985
5986	/* When hotadd a new node from cpu_up(), the node should be empty */
5987	if (!node_start_pfn && !node_end_pfn)
5988		return 0;
5989
5990	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5991	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5992
5993	adjust_zone_range_for_zone_movable(nid, zone_type,
5994			node_start_pfn, node_end_pfn,
5995			&zone_start_pfn, &zone_end_pfn);
5996	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5997
5998	/*
5999	 * ZONE_MOVABLE handling.
6000	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6001	 * and vice versa.
6002	 */
6003	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6004		unsigned long start_pfn, end_pfn;
6005		struct memblock_region *r;
6006
6007		for_each_memblock(memory, r) {
6008			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6009					  zone_start_pfn, zone_end_pfn);
6010			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6011					zone_start_pfn, zone_end_pfn);
6012
6013			if (zone_type == ZONE_MOVABLE &&
6014			    memblock_is_mirror(r))
6015				nr_absent += end_pfn - start_pfn;
6016
6017			if (zone_type == ZONE_NORMAL &&
6018			    !memblock_is_mirror(r))
6019				nr_absent += end_pfn - start_pfn;
6020		}
6021	}
6022
6023	return nr_absent;
6024}
6025
6026#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6027static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
6028					unsigned long zone_type,
6029					unsigned long node_start_pfn,
6030					unsigned long node_end_pfn,
6031					unsigned long *zone_start_pfn,
6032					unsigned long *zone_end_pfn,
6033					unsigned long *zones_size)
6034{
6035	unsigned int zone;
6036
6037	*zone_start_pfn = node_start_pfn;
6038	for (zone = 0; zone < zone_type; zone++)
6039		*zone_start_pfn += zones_size[zone];
6040
6041	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6042
6043	return zones_size[zone_type];
6044}
6045
6046static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
6047						unsigned long zone_type,
6048						unsigned long node_start_pfn,
6049						unsigned long node_end_pfn,
6050						unsigned long *zholes_size)
6051{
6052	if (!zholes_size)
6053		return 0;
6054
6055	return zholes_size[zone_type];
6056}
6057
6058#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6059
6060static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
6061						unsigned long node_start_pfn,
6062						unsigned long node_end_pfn,
6063						unsigned long *zones_size,
6064						unsigned long *zholes_size)
6065{
6066	unsigned long realtotalpages = 0, totalpages = 0;
6067	enum zone_type i;
6068
6069	for (i = 0; i < MAX_NR_ZONES; i++) {
6070		struct zone *zone = pgdat->node_zones + i;
6071		unsigned long zone_start_pfn, zone_end_pfn;
 
6072		unsigned long size, real_size;
6073
6074		size = zone_spanned_pages_in_node(pgdat->node_id, i,
6075						  node_start_pfn,
6076						  node_end_pfn,
6077						  &zone_start_pfn,
6078						  &zone_end_pfn,
6079						  zones_size);
6080		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6081						  node_start_pfn, node_end_pfn,
6082						  zholes_size);
 
 
 
6083		if (size)
6084			zone->zone_start_pfn = zone_start_pfn;
6085		else
6086			zone->zone_start_pfn = 0;
6087		zone->spanned_pages = size;
6088		zone->present_pages = real_size;
 
 
 
6089
6090		totalpages += size;
6091		realtotalpages += real_size;
6092	}
6093
6094	pgdat->node_spanned_pages = totalpages;
6095	pgdat->node_present_pages = realtotalpages;
6096	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6097							realtotalpages);
6098}
6099
6100#ifndef CONFIG_SPARSEMEM
6101/*
6102 * Calculate the size of the zone->blockflags rounded to an unsigned long
6103 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6104 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6105 * round what is now in bits to nearest long in bits, then return it in
6106 * bytes.
6107 */
6108static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6109{
6110	unsigned long usemapsize;
6111
6112	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6113	usemapsize = roundup(zonesize, pageblock_nr_pages);
6114	usemapsize = usemapsize >> pageblock_order;
6115	usemapsize *= NR_PAGEBLOCK_BITS;
6116	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6117
6118	return usemapsize / 8;
6119}
6120
6121static void __init setup_usemap(struct pglist_data *pgdat,
6122				struct zone *zone,
6123				unsigned long zone_start_pfn,
6124				unsigned long zonesize)
6125{
6126	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
 
6127	zone->pageblock_flags = NULL;
6128	if (usemapsize)
6129		zone->pageblock_flags =
6130			memblock_virt_alloc_node_nopanic(usemapsize,
6131							 pgdat->node_id);
 
 
 
 
6132}
6133#else
6134static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6135				unsigned long zone_start_pfn, unsigned long zonesize) {}
6136#endif /* CONFIG_SPARSEMEM */
6137
6138#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6139
6140/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6141void __paginginit set_pageblock_order(void)
6142{
6143	unsigned int order;
6144
6145	/* Check that pageblock_nr_pages has not already been setup */
6146	if (pageblock_order)
6147		return;
6148
6149	if (HPAGE_SHIFT > PAGE_SHIFT)
 
6150		order = HUGETLB_PAGE_ORDER;
6151	else
6152		order = MAX_ORDER - 1;
6153
6154	/*
6155	 * Assume the largest contiguous order of interest is a huge page.
6156	 * This value may be variable depending on boot parameters on IA64 and
6157	 * powerpc.
6158	 */
6159	pageblock_order = order;
6160}
6161#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6162
6163/*
6164 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6165 * is unused as pageblock_order is set at compile-time. See
6166 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6167 * the kernel config
6168 */
6169void __paginginit set_pageblock_order(void)
6170{
6171}
6172
6173#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6174
6175static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6176						   unsigned long present_pages)
6177{
6178	unsigned long pages = spanned_pages;
6179
6180	/*
6181	 * Provide a more accurate estimation if there are holes within
6182	 * the zone and SPARSEMEM is in use. If there are holes within the
6183	 * zone, each populated memory region may cost us one or two extra
6184	 * memmap pages due to alignment because memmap pages for each
6185	 * populated regions may not be naturally aligned on page boundary.
6186	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6187	 */
6188	if (spanned_pages > present_pages + (present_pages >> 4) &&
6189	    IS_ENABLED(CONFIG_SPARSEMEM))
6190		pages = present_pages;
6191
6192	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6193}
6194
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6195/*
6196 * Set up the zone data structures:
6197 *   - mark all pages reserved
6198 *   - mark all memory queues empty
6199 *   - clear the memory bitmaps
6200 *
6201 * NOTE: pgdat should get zeroed by caller.
 
6202 */
6203static void __paginginit free_area_init_core(struct pglist_data *pgdat)
6204{
6205	enum zone_type j;
6206	int nid = pgdat->node_id;
6207
6208	pgdat_resize_init(pgdat);
6209#ifdef CONFIG_NUMA_BALANCING
6210	spin_lock_init(&pgdat->numabalancing_migrate_lock);
6211	pgdat->numabalancing_migrate_nr_pages = 0;
6212	pgdat->numabalancing_migrate_next_window = jiffies;
6213#endif
6214#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6215	spin_lock_init(&pgdat->split_queue_lock);
6216	INIT_LIST_HEAD(&pgdat->split_queue);
6217	pgdat->split_queue_len = 0;
6218#endif
6219	init_waitqueue_head(&pgdat->kswapd_wait);
6220	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6221#ifdef CONFIG_COMPACTION
6222	init_waitqueue_head(&pgdat->kcompactd_wait);
6223#endif
6224	pgdat_page_ext_init(pgdat);
6225	spin_lock_init(&pgdat->lru_lock);
6226	lruvec_init(node_lruvec(pgdat));
6227
6228	pgdat->per_cpu_nodestats = &boot_nodestats;
6229
6230	for (j = 0; j < MAX_NR_ZONES; j++) {
6231		struct zone *zone = pgdat->node_zones + j;
6232		unsigned long size, realsize, freesize, memmap_pages;
6233		unsigned long zone_start_pfn = zone->zone_start_pfn;
6234
6235		size = zone->spanned_pages;
6236		realsize = freesize = zone->present_pages;
6237
6238		/*
6239		 * Adjust freesize so that it accounts for how much memory
6240		 * is used by this zone for memmap. This affects the watermark
6241		 * and per-cpu initialisations
6242		 */
6243		memmap_pages = calc_memmap_size(size, realsize);
6244		if (!is_highmem_idx(j)) {
6245			if (freesize >= memmap_pages) {
6246				freesize -= memmap_pages;
6247				if (memmap_pages)
6248					printk(KERN_DEBUG
6249					       "  %s zone: %lu pages used for memmap\n",
6250					       zone_names[j], memmap_pages);
6251			} else
6252				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6253					zone_names[j], memmap_pages, freesize);
6254		}
6255
6256		/* Account for reserved pages */
6257		if (j == 0 && freesize > dma_reserve) {
6258			freesize -= dma_reserve;
6259			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6260					zone_names[0], dma_reserve);
6261		}
6262
6263		if (!is_highmem_idx(j))
6264			nr_kernel_pages += freesize;
6265		/* Charge for highmem memmap if there are enough kernel pages */
6266		else if (nr_kernel_pages > memmap_pages * 2)
6267			nr_kernel_pages -= memmap_pages;
6268		nr_all_pages += freesize;
6269
6270		/*
6271		 * Set an approximate value for lowmem here, it will be adjusted
6272		 * when the bootmem allocator frees pages into the buddy system.
6273		 * And all highmem pages will be managed by the buddy system.
6274		 */
6275		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6276#ifdef CONFIG_NUMA
6277		zone->node = nid;
6278#endif
6279		zone->name = zone_names[j];
6280		zone->zone_pgdat = pgdat;
6281		spin_lock_init(&zone->lock);
6282		zone_seqlock_init(zone);
6283		zone_pcp_init(zone);
6284
6285		if (!size)
6286			continue;
6287
6288		set_pageblock_order();
6289		setup_usemap(pgdat, zone, zone_start_pfn, size);
6290		init_currently_empty_zone(zone, zone_start_pfn, size);
6291		memmap_init(size, nid, j, zone_start_pfn);
6292	}
6293}
6294
6295#ifdef CONFIG_FLAT_NODE_MEM_MAP
6296static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6297{
6298	unsigned long __maybe_unused start = 0;
6299	unsigned long __maybe_unused offset = 0;
6300
6301	/* Skip empty nodes */
6302	if (!pgdat->node_spanned_pages)
6303		return;
6304
6305	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6306	offset = pgdat->node_start_pfn - start;
6307	/* ia64 gets its own node_mem_map, before this, without bootmem */
6308	if (!pgdat->node_mem_map) {
6309		unsigned long size, end;
6310		struct page *map;
6311
6312		/*
6313		 * The zone's endpoints aren't required to be MAX_ORDER
6314		 * aligned but the node_mem_map endpoints must be in order
6315		 * for the buddy allocator to function correctly.
6316		 */
6317		end = pgdat_end_pfn(pgdat);
6318		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6319		size =  (end - start) * sizeof(struct page);
6320		map = memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
 
 
 
 
6321		pgdat->node_mem_map = map + offset;
6322	}
6323	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6324				__func__, pgdat->node_id, (unsigned long)pgdat,
6325				(unsigned long)pgdat->node_mem_map);
6326#ifndef CONFIG_NEED_MULTIPLE_NODES
6327	/*
6328	 * With no DISCONTIG, the global mem_map is just set as node 0's
6329	 */
6330	if (pgdat == NODE_DATA(0)) {
6331		mem_map = NODE_DATA(0)->node_mem_map;
6332#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6333		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6334			mem_map -= offset;
6335#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6336	}
6337#endif
6338}
6339#else
6340static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6341#endif /* CONFIG_FLAT_NODE_MEM_MAP */
6342
6343void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6344		unsigned long node_start_pfn, unsigned long *zholes_size)
 
 
 
 
 
 
 
 
6345{
6346	pg_data_t *pgdat = NODE_DATA(nid);
6347	unsigned long start_pfn = 0;
6348	unsigned long end_pfn = 0;
6349
6350	/* pg_data_t should be reset to zero when it's allocated */
6351	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
 
 
6352
6353	pgdat->node_id = nid;
6354	pgdat->node_start_pfn = node_start_pfn;
6355	pgdat->per_cpu_nodestats = NULL;
6356#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6357	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6358	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6359		(u64)start_pfn << PAGE_SHIFT,
6360		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6361#else
6362	start_pfn = node_start_pfn;
6363#endif
6364	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6365				  zones_size, zholes_size);
6366
6367	alloc_node_mem_map(pgdat);
 
6368
6369#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6370	/*
6371	 * We start only with one section of pages, more pages are added as
6372	 * needed until the rest of deferred pages are initialized.
6373	 */
6374	pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
6375					 pgdat->node_spanned_pages);
6376	pgdat->first_deferred_pfn = ULONG_MAX;
6377#endif
6378	free_area_init_core(pgdat);
6379}
6380
6381#ifdef CONFIG_HAVE_MEMBLOCK
6382/*
6383 * Only struct pages that are backed by physical memory are zeroed and
6384 * initialized by going through __init_single_page(). But, there are some
6385 * struct pages which are reserved in memblock allocator and their fields
6386 * may be accessed (for example page_to_pfn() on some configuration accesses
6387 * flags). We must explicitly zero those struct pages.
6388 */
6389void __paginginit zero_resv_unavail(void)
6390{
6391	phys_addr_t start, end;
6392	unsigned long pfn;
6393	u64 i, pgcnt;
6394
6395	/*
6396	 * Loop through ranges that are reserved, but do not have reported
6397	 * physical memory backing.
6398	 */
6399	pgcnt = 0;
6400	for_each_resv_unavail_range(i, &start, &end) {
6401		for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
6402			if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages)))
6403				continue;
6404			mm_zero_struct_page(pfn_to_page(pfn));
6405			pgcnt++;
6406		}
6407	}
6408
6409	/*
6410	 * Struct pages that do not have backing memory. This could be because
6411	 * firmware is using some of this memory, or for some other reasons.
6412	 * Once memblock is changed so such behaviour is not allowed: i.e.
6413	 * list of "reserved" memory must be a subset of list of "memory", then
6414	 * this code can be removed.
6415	 */
6416	if (pgcnt)
6417		pr_info("Reserved but unavailable: %lld pages", pgcnt);
6418}
6419#endif /* CONFIG_HAVE_MEMBLOCK */
6420
6421#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6422
6423#if MAX_NUMNODES > 1
6424/*
6425 * Figure out the number of possible node ids.
6426 */
6427void __init setup_nr_node_ids(void)
6428{
6429	unsigned int highest;
6430
6431	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6432	nr_node_ids = highest + 1;
6433}
6434#endif
6435
6436/**
6437 * node_map_pfn_alignment - determine the maximum internode alignment
6438 *
6439 * This function should be called after node map is populated and sorted.
6440 * It calculates the maximum power of two alignment which can distinguish
6441 * all the nodes.
6442 *
6443 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6444 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6445 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6446 * shifted, 1GiB is enough and this function will indicate so.
6447 *
6448 * This is used to test whether pfn -> nid mapping of the chosen memory
6449 * model has fine enough granularity to avoid incorrect mapping for the
6450 * populated node map.
6451 *
6452 * Returns the determined alignment in pfn's.  0 if there is no alignment
6453 * requirement (single node).
6454 */
6455unsigned long __init node_map_pfn_alignment(void)
6456{
6457	unsigned long accl_mask = 0, last_end = 0;
6458	unsigned long start, end, mask;
6459	int last_nid = -1;
6460	int i, nid;
6461
6462	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6463		if (!start || last_nid < 0 || last_nid == nid) {
6464			last_nid = nid;
6465			last_end = end;
6466			continue;
6467		}
6468
6469		/*
6470		 * Start with a mask granular enough to pin-point to the
6471		 * start pfn and tick off bits one-by-one until it becomes
6472		 * too coarse to separate the current node from the last.
6473		 */
6474		mask = ~((1 << __ffs(start)) - 1);
6475		while (mask && last_end <= (start & (mask << 1)))
6476			mask <<= 1;
6477
6478		/* accumulate all internode masks */
6479		accl_mask |= mask;
6480	}
6481
6482	/* convert mask to number of pages */
6483	return ~accl_mask + 1;
6484}
6485
6486/* Find the lowest pfn for a node */
6487static unsigned long __init find_min_pfn_for_node(int nid)
6488{
6489	unsigned long min_pfn = ULONG_MAX;
6490	unsigned long start_pfn;
6491	int i;
6492
6493	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6494		min_pfn = min(min_pfn, start_pfn);
6495
6496	if (min_pfn == ULONG_MAX) {
6497		pr_warn("Could not find start_pfn for node %d\n", nid);
6498		return 0;
6499	}
6500
6501	return min_pfn;
6502}
6503
6504/**
6505 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6506 *
6507 * It returns the minimum PFN based on information provided via
6508 * memblock_set_node().
6509 */
6510unsigned long __init find_min_pfn_with_active_regions(void)
6511{
6512	return find_min_pfn_for_node(MAX_NUMNODES);
6513}
6514
6515/*
6516 * early_calculate_totalpages()
6517 * Sum pages in active regions for movable zone.
6518 * Populate N_MEMORY for calculating usable_nodes.
6519 */
6520static unsigned long __init early_calculate_totalpages(void)
6521{
6522	unsigned long totalpages = 0;
6523	unsigned long start_pfn, end_pfn;
6524	int i, nid;
6525
6526	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6527		unsigned long pages = end_pfn - start_pfn;
6528
6529		totalpages += pages;
6530		if (pages)
6531			node_set_state(nid, N_MEMORY);
6532	}
6533	return totalpages;
6534}
6535
6536/*
6537 * Find the PFN the Movable zone begins in each node. Kernel memory
6538 * is spread evenly between nodes as long as the nodes have enough
6539 * memory. When they don't, some nodes will have more kernelcore than
6540 * others
6541 */
6542static void __init find_zone_movable_pfns_for_nodes(void)
6543{
6544	int i, nid;
6545	unsigned long usable_startpfn;
6546	unsigned long kernelcore_node, kernelcore_remaining;
6547	/* save the state before borrow the nodemask */
6548	nodemask_t saved_node_state = node_states[N_MEMORY];
6549	unsigned long totalpages = early_calculate_totalpages();
6550	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6551	struct memblock_region *r;
6552
6553	/* Need to find movable_zone earlier when movable_node is specified. */
6554	find_usable_zone_for_movable();
6555
6556	/*
6557	 * If movable_node is specified, ignore kernelcore and movablecore
6558	 * options.
6559	 */
6560	if (movable_node_is_enabled()) {
6561		for_each_memblock(memory, r) {
6562			if (!memblock_is_hotpluggable(r))
6563				continue;
6564
6565			nid = r->nid;
6566
6567			usable_startpfn = PFN_DOWN(r->base);
6568			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6569				min(usable_startpfn, zone_movable_pfn[nid]) :
6570				usable_startpfn;
6571		}
6572
6573		goto out2;
6574	}
6575
6576	/*
6577	 * If kernelcore=mirror is specified, ignore movablecore option
6578	 */
6579	if (mirrored_kernelcore) {
6580		bool mem_below_4gb_not_mirrored = false;
6581
6582		for_each_memblock(memory, r) {
6583			if (memblock_is_mirror(r))
6584				continue;
6585
6586			nid = r->nid;
6587
6588			usable_startpfn = memblock_region_memory_base_pfn(r);
6589
6590			if (usable_startpfn < 0x100000) {
6591				mem_below_4gb_not_mirrored = true;
6592				continue;
6593			}
6594
6595			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6596				min(usable_startpfn, zone_movable_pfn[nid]) :
6597				usable_startpfn;
6598		}
6599
6600		if (mem_below_4gb_not_mirrored)
6601			pr_warn("This configuration results in unmirrored kernel memory.");
6602
6603		goto out2;
6604	}
6605
6606	/*
6607	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6608	 * amount of necessary memory.
6609	 */
6610	if (required_kernelcore_percent)
6611		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
6612				       10000UL;
6613	if (required_movablecore_percent)
6614		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
6615					10000UL;
6616
6617	/*
6618	 * If movablecore= was specified, calculate what size of
6619	 * kernelcore that corresponds so that memory usable for
6620	 * any allocation type is evenly spread. If both kernelcore
6621	 * and movablecore are specified, then the value of kernelcore
6622	 * will be used for required_kernelcore if it's greater than
6623	 * what movablecore would have allowed.
6624	 */
6625	if (required_movablecore) {
6626		unsigned long corepages;
6627
6628		/*
6629		 * Round-up so that ZONE_MOVABLE is at least as large as what
6630		 * was requested by the user
6631		 */
6632		required_movablecore =
6633			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6634		required_movablecore = min(totalpages, required_movablecore);
6635		corepages = totalpages - required_movablecore;
6636
6637		required_kernelcore = max(required_kernelcore, corepages);
6638	}
6639
6640	/*
6641	 * If kernelcore was not specified or kernelcore size is larger
6642	 * than totalpages, there is no ZONE_MOVABLE.
6643	 */
6644	if (!required_kernelcore || required_kernelcore >= totalpages)
6645		goto out;
6646
6647	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6648	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6649
6650restart:
6651	/* Spread kernelcore memory as evenly as possible throughout nodes */
6652	kernelcore_node = required_kernelcore / usable_nodes;
6653	for_each_node_state(nid, N_MEMORY) {
6654		unsigned long start_pfn, end_pfn;
6655
6656		/*
6657		 * Recalculate kernelcore_node if the division per node
6658		 * now exceeds what is necessary to satisfy the requested
6659		 * amount of memory for the kernel
6660		 */
6661		if (required_kernelcore < kernelcore_node)
6662			kernelcore_node = required_kernelcore / usable_nodes;
6663
6664		/*
6665		 * As the map is walked, we track how much memory is usable
6666		 * by the kernel using kernelcore_remaining. When it is
6667		 * 0, the rest of the node is usable by ZONE_MOVABLE
6668		 */
6669		kernelcore_remaining = kernelcore_node;
6670
6671		/* Go through each range of PFNs within this node */
6672		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6673			unsigned long size_pages;
6674
6675			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6676			if (start_pfn >= end_pfn)
6677				continue;
6678
6679			/* Account for what is only usable for kernelcore */
6680			if (start_pfn < usable_startpfn) {
6681				unsigned long kernel_pages;
6682				kernel_pages = min(end_pfn, usable_startpfn)
6683								- start_pfn;
6684
6685				kernelcore_remaining -= min(kernel_pages,
6686							kernelcore_remaining);
6687				required_kernelcore -= min(kernel_pages,
6688							required_kernelcore);
6689
6690				/* Continue if range is now fully accounted */
6691				if (end_pfn <= usable_startpfn) {
6692
6693					/*
6694					 * Push zone_movable_pfn to the end so
6695					 * that if we have to rebalance
6696					 * kernelcore across nodes, we will
6697					 * not double account here
6698					 */
6699					zone_movable_pfn[nid] = end_pfn;
6700					continue;
6701				}
6702				start_pfn = usable_startpfn;
6703			}
6704
6705			/*
6706			 * The usable PFN range for ZONE_MOVABLE is from
6707			 * start_pfn->end_pfn. Calculate size_pages as the
6708			 * number of pages used as kernelcore
6709			 */
6710			size_pages = end_pfn - start_pfn;
6711			if (size_pages > kernelcore_remaining)
6712				size_pages = kernelcore_remaining;
6713			zone_movable_pfn[nid] = start_pfn + size_pages;
6714
6715			/*
6716			 * Some kernelcore has been met, update counts and
6717			 * break if the kernelcore for this node has been
6718			 * satisfied
6719			 */
6720			required_kernelcore -= min(required_kernelcore,
6721								size_pages);
6722			kernelcore_remaining -= size_pages;
6723			if (!kernelcore_remaining)
6724				break;
6725		}
6726	}
6727
6728	/*
6729	 * If there is still required_kernelcore, we do another pass with one
6730	 * less node in the count. This will push zone_movable_pfn[nid] further
6731	 * along on the nodes that still have memory until kernelcore is
6732	 * satisfied
6733	 */
6734	usable_nodes--;
6735	if (usable_nodes && required_kernelcore > usable_nodes)
6736		goto restart;
6737
6738out2:
6739	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6740	for (nid = 0; nid < MAX_NUMNODES; nid++)
 
 
6741		zone_movable_pfn[nid] =
6742			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6743
 
 
 
 
 
6744out:
6745	/* restore the node_state */
6746	node_states[N_MEMORY] = saved_node_state;
6747}
6748
6749/* Any regular or high memory on that node ? */
6750static void check_for_memory(pg_data_t *pgdat, int nid)
6751{
6752	enum zone_type zone_type;
6753
6754	if (N_MEMORY == N_NORMAL_MEMORY)
6755		return;
6756
6757	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6758		struct zone *zone = &pgdat->node_zones[zone_type];
6759		if (populated_zone(zone)) {
6760			node_set_state(nid, N_HIGH_MEMORY);
6761			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6762			    zone_type <= ZONE_NORMAL)
6763				node_set_state(nid, N_NORMAL_MEMORY);
6764			break;
6765		}
6766	}
6767}
6768
 
 
 
 
 
 
 
 
 
6769/**
6770 * free_area_init_nodes - Initialise all pg_data_t and zone data
6771 * @max_zone_pfn: an array of max PFNs for each zone
6772 *
6773 * This will call free_area_init_node() for each active node in the system.
6774 * Using the page ranges provided by memblock_set_node(), the size of each
6775 * zone in each node and their holes is calculated. If the maximum PFN
6776 * between two adjacent zones match, it is assumed that the zone is empty.
6777 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6778 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6779 * starts where the previous one ended. For example, ZONE_DMA32 starts
6780 * at arch_max_dma_pfn.
6781 */
6782void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6783{
6784	unsigned long start_pfn, end_pfn;
6785	int i, nid;
 
6786
6787	/* Record where the zone boundaries are */
6788	memset(arch_zone_lowest_possible_pfn, 0,
6789				sizeof(arch_zone_lowest_possible_pfn));
6790	memset(arch_zone_highest_possible_pfn, 0,
6791				sizeof(arch_zone_highest_possible_pfn));
6792
6793	start_pfn = find_min_pfn_with_active_regions();
 
6794
6795	for (i = 0; i < MAX_NR_ZONES; i++) {
6796		if (i == ZONE_MOVABLE)
 
 
 
 
 
6797			continue;
6798
6799		end_pfn = max(max_zone_pfn[i], start_pfn);
6800		arch_zone_lowest_possible_pfn[i] = start_pfn;
6801		arch_zone_highest_possible_pfn[i] = end_pfn;
6802
6803		start_pfn = end_pfn;
6804	}
6805
6806	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
6807	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6808	find_zone_movable_pfns_for_nodes();
6809
6810	/* Print out the zone ranges */
6811	pr_info("Zone ranges:\n");
6812	for (i = 0; i < MAX_NR_ZONES; i++) {
6813		if (i == ZONE_MOVABLE)
6814			continue;
6815		pr_info("  %-8s ", zone_names[i]);
6816		if (arch_zone_lowest_possible_pfn[i] ==
6817				arch_zone_highest_possible_pfn[i])
6818			pr_cont("empty\n");
6819		else
6820			pr_cont("[mem %#018Lx-%#018Lx]\n",
6821				(u64)arch_zone_lowest_possible_pfn[i]
6822					<< PAGE_SHIFT,
6823				((u64)arch_zone_highest_possible_pfn[i]
6824					<< PAGE_SHIFT) - 1);
6825	}
6826
6827	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6828	pr_info("Movable zone start for each node\n");
6829	for (i = 0; i < MAX_NUMNODES; i++) {
6830		if (zone_movable_pfn[i])
6831			pr_info("  Node %d: %#018Lx\n", i,
6832			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6833	}
6834
6835	/* Print out the early node map */
 
 
 
 
6836	pr_info("Early memory node ranges\n");
6837	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6838		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6839			(u64)start_pfn << PAGE_SHIFT,
6840			((u64)end_pfn << PAGE_SHIFT) - 1);
 
 
6841
6842	/* Initialise every node */
6843	mminit_verify_pageflags_layout();
6844	setup_nr_node_ids();
6845	for_each_online_node(nid) {
6846		pg_data_t *pgdat = NODE_DATA(nid);
6847		free_area_init_node(nid, NULL,
6848				find_min_pfn_for_node(nid), NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6849
6850		/* Any memory on that node */
6851		if (pgdat->node_present_pages)
6852			node_set_state(nid, N_MEMORY);
6853		check_for_memory(pgdat, nid);
6854	}
6855	zero_resv_unavail();
 
6856}
6857
6858static int __init cmdline_parse_core(char *p, unsigned long *core,
6859				     unsigned long *percent)
6860{
6861	unsigned long long coremem;
6862	char *endptr;
6863
6864	if (!p)
6865		return -EINVAL;
6866
6867	/* Value may be a percentage of total memory, otherwise bytes */
6868	coremem = simple_strtoull(p, &endptr, 0);
6869	if (*endptr == '%') {
6870		/* Paranoid check for percent values greater than 100 */
6871		WARN_ON(coremem > 100);
6872
6873		*percent = coremem;
6874	} else {
6875		coremem = memparse(p, &p);
6876		/* Paranoid check that UL is enough for the coremem value */
6877		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6878
6879		*core = coremem >> PAGE_SHIFT;
6880		*percent = 0UL;
6881	}
6882	return 0;
6883}
6884
6885/*
6886 * kernelcore=size sets the amount of memory for use for allocations that
6887 * cannot be reclaimed or migrated.
6888 */
6889static int __init cmdline_parse_kernelcore(char *p)
6890{
6891	/* parse kernelcore=mirror */
6892	if (parse_option_str(p, "mirror")) {
6893		mirrored_kernelcore = true;
6894		return 0;
6895	}
6896
6897	return cmdline_parse_core(p, &required_kernelcore,
6898				  &required_kernelcore_percent);
6899}
6900
6901/*
6902 * movablecore=size sets the amount of memory for use for allocations that
6903 * can be reclaimed or migrated.
6904 */
6905static int __init cmdline_parse_movablecore(char *p)
6906{
6907	return cmdline_parse_core(p, &required_movablecore,
6908				  &required_movablecore_percent);
6909}
6910
6911early_param("kernelcore", cmdline_parse_kernelcore);
6912early_param("movablecore", cmdline_parse_movablecore);
6913
6914#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6915
6916void adjust_managed_page_count(struct page *page, long count)
6917{
6918	spin_lock(&managed_page_count_lock);
6919	page_zone(page)->managed_pages += count;
6920	totalram_pages += count;
6921#ifdef CONFIG_HIGHMEM
6922	if (PageHighMem(page))
6923		totalhigh_pages += count;
6924#endif
6925	spin_unlock(&managed_page_count_lock);
6926}
6927EXPORT_SYMBOL(adjust_managed_page_count);
6928
6929unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6930{
6931	void *pos;
6932	unsigned long pages = 0;
6933
6934	start = (void *)PAGE_ALIGN((unsigned long)start);
6935	end = (void *)((unsigned long)end & PAGE_MASK);
6936	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6937		if ((unsigned int)poison <= 0xFF)
6938			memset(pos, poison, PAGE_SIZE);
6939		free_reserved_page(virt_to_page(pos));
 
6940	}
6941
6942	if (pages && s)
6943		pr_info("Freeing %s memory: %ldK\n",
6944			s, pages << (PAGE_SHIFT - 10));
6945
6946	return pages;
6947}
6948EXPORT_SYMBOL(free_reserved_area);
6949
6950#ifdef	CONFIG_HIGHMEM
6951void free_highmem_page(struct page *page)
6952{
6953	__free_reserved_page(page);
6954	totalram_pages++;
6955	page_zone(page)->managed_pages++;
6956	totalhigh_pages++;
6957}
6958#endif
6959
6960
6961void __init mem_init_print_info(const char *str)
6962{
6963	unsigned long physpages, codesize, datasize, rosize, bss_size;
6964	unsigned long init_code_size, init_data_size;
6965
6966	physpages = get_num_physpages();
6967	codesize = _etext - _stext;
6968	datasize = _edata - _sdata;
6969	rosize = __end_rodata - __start_rodata;
6970	bss_size = __bss_stop - __bss_start;
6971	init_data_size = __init_end - __init_begin;
6972	init_code_size = _einittext - _sinittext;
6973
6974	/*
6975	 * Detect special cases and adjust section sizes accordingly:
6976	 * 1) .init.* may be embedded into .data sections
6977	 * 2) .init.text.* may be out of [__init_begin, __init_end],
6978	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
6979	 * 3) .rodata.* may be embedded into .text or .data sections.
6980	 */
6981#define adj_init_size(start, end, size, pos, adj) \
6982	do { \
6983		if (start <= pos && pos < end && size > adj) \
6984			size -= adj; \
6985	} while (0)
6986
6987	adj_init_size(__init_begin, __init_end, init_data_size,
6988		     _sinittext, init_code_size);
6989	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6990	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6991	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6992	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6993
6994#undef	adj_init_size
6995
6996	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6997#ifdef	CONFIG_HIGHMEM
6998		", %luK highmem"
6999#endif
7000		"%s%s)\n",
7001		nr_free_pages() << (PAGE_SHIFT - 10),
7002		physpages << (PAGE_SHIFT - 10),
7003		codesize >> 10, datasize >> 10, rosize >> 10,
7004		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7005		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
7006		totalcma_pages << (PAGE_SHIFT - 10),
7007#ifdef	CONFIG_HIGHMEM
7008		totalhigh_pages << (PAGE_SHIFT - 10),
7009#endif
7010		str ? ", " : "", str ? str : "");
7011}
7012
7013/**
7014 * set_dma_reserve - set the specified number of pages reserved in the first zone
7015 * @new_dma_reserve: The number of pages to mark reserved
7016 *
7017 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7018 * In the DMA zone, a significant percentage may be consumed by kernel image
7019 * and other unfreeable allocations which can skew the watermarks badly. This
7020 * function may optionally be used to account for unfreeable pages in the
7021 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7022 * smaller per-cpu batchsize.
7023 */
7024void __init set_dma_reserve(unsigned long new_dma_reserve)
7025{
7026	dma_reserve = new_dma_reserve;
7027}
7028
7029void __init free_area_init(unsigned long *zones_size)
7030{
7031	free_area_init_node(0, zones_size,
7032			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7033	zero_resv_unavail();
7034}
7035
7036static int page_alloc_cpu_dead(unsigned int cpu)
7037{
 
7038
7039	lru_add_drain_cpu(cpu);
 
7040	drain_pages(cpu);
7041
7042	/*
7043	 * Spill the event counters of the dead processor
7044	 * into the current processors event counters.
7045	 * This artificially elevates the count of the current
7046	 * processor.
7047	 */
7048	vm_events_fold_cpu(cpu);
7049
7050	/*
7051	 * Zero the differential counters of the dead processor
7052	 * so that the vm statistics are consistent.
7053	 *
7054	 * This is only okay since the processor is dead and cannot
7055	 * race with what we are doing.
7056	 */
7057	cpu_vm_stats_fold(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
7058	return 0;
7059}
7060
 
 
 
 
 
 
 
 
 
 
 
 
 
7061void __init page_alloc_init(void)
7062{
7063	int ret;
7064
7065	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7066					"mm/page_alloc:dead", NULL,
 
 
 
 
 
 
7067					page_alloc_cpu_dead);
7068	WARN_ON(ret < 0);
7069}
7070
7071/*
7072 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7073 *	or min_free_kbytes changes.
7074 */
7075static void calculate_totalreserve_pages(void)
7076{
7077	struct pglist_data *pgdat;
7078	unsigned long reserve_pages = 0;
7079	enum zone_type i, j;
7080
7081	for_each_online_pgdat(pgdat) {
7082
7083		pgdat->totalreserve_pages = 0;
7084
7085		for (i = 0; i < MAX_NR_ZONES; i++) {
7086			struct zone *zone = pgdat->node_zones + i;
7087			long max = 0;
 
7088
7089			/* Find valid and maximum lowmem_reserve in the zone */
7090			for (j = i; j < MAX_NR_ZONES; j++) {
7091				if (zone->lowmem_reserve[j] > max)
7092					max = zone->lowmem_reserve[j];
7093			}
7094
7095			/* we treat the high watermark as reserved pages. */
7096			max += high_wmark_pages(zone);
7097
7098			if (max > zone->managed_pages)
7099				max = zone->managed_pages;
7100
7101			pgdat->totalreserve_pages += max;
7102
7103			reserve_pages += max;
7104		}
7105	}
7106	totalreserve_pages = reserve_pages;
7107}
7108
7109/*
7110 * setup_per_zone_lowmem_reserve - called whenever
7111 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7112 *	has a correct pages reserved value, so an adequate number of
7113 *	pages are left in the zone after a successful __alloc_pages().
7114 */
7115static void setup_per_zone_lowmem_reserve(void)
7116{
7117	struct pglist_data *pgdat;
7118	enum zone_type j, idx;
7119
7120	for_each_online_pgdat(pgdat) {
7121		for (j = 0; j < MAX_NR_ZONES; j++) {
7122			struct zone *zone = pgdat->node_zones + j;
7123			unsigned long managed_pages = zone->managed_pages;
7124
7125			zone->lowmem_reserve[j] = 0;
7126
7127			idx = j;
7128			while (idx) {
7129				struct zone *lower_zone;
7130
7131				idx--;
7132				lower_zone = pgdat->node_zones + idx;
7133
7134				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7135					sysctl_lowmem_reserve_ratio[idx] = 0;
7136					lower_zone->lowmem_reserve[j] = 0;
7137				} else {
7138					lower_zone->lowmem_reserve[j] =
7139						managed_pages / sysctl_lowmem_reserve_ratio[idx];
7140				}
7141				managed_pages += lower_zone->managed_pages;
7142			}
7143		}
7144	}
7145
7146	/* update totalreserve_pages */
7147	calculate_totalreserve_pages();
7148}
7149
7150static void __setup_per_zone_wmarks(void)
7151{
7152	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7153	unsigned long lowmem_pages = 0;
7154	struct zone *zone;
7155	unsigned long flags;
7156
7157	/* Calculate total number of !ZONE_HIGHMEM pages */
7158	for_each_zone(zone) {
7159		if (!is_highmem(zone))
7160			lowmem_pages += zone->managed_pages;
7161	}
7162
7163	for_each_zone(zone) {
7164		u64 tmp;
7165
7166		spin_lock_irqsave(&zone->lock, flags);
7167		tmp = (u64)pages_min * zone->managed_pages;
7168		do_div(tmp, lowmem_pages);
7169		if (is_highmem(zone)) {
7170			/*
7171			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7172			 * need highmem pages, so cap pages_min to a small
7173			 * value here.
7174			 *
7175			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7176			 * deltas control asynch page reclaim, and so should
7177			 * not be capped for highmem.
7178			 */
7179			unsigned long min_pages;
7180
7181			min_pages = zone->managed_pages / 1024;
7182			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7183			zone->watermark[WMARK_MIN] = min_pages;
7184		} else {
7185			/*
7186			 * If it's a lowmem zone, reserve a number of pages
7187			 * proportionate to the zone's size.
7188			 */
7189			zone->watermark[WMARK_MIN] = tmp;
7190		}
7191
7192		/*
7193		 * Set the kswapd watermarks distance according to the
7194		 * scale factor in proportion to available memory, but
7195		 * ensure a minimum size on small systems.
7196		 */
7197		tmp = max_t(u64, tmp >> 2,
7198			    mult_frac(zone->managed_pages,
7199				      watermark_scale_factor, 10000));
7200
7201		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7202		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
 
 
7203
7204		spin_unlock_irqrestore(&zone->lock, flags);
7205	}
7206
7207	/* update totalreserve_pages */
7208	calculate_totalreserve_pages();
7209}
7210
7211/**
7212 * setup_per_zone_wmarks - called when min_free_kbytes changes
7213 * or when memory is hot-{added|removed}
7214 *
7215 * Ensures that the watermark[min,low,high] values for each zone are set
7216 * correctly with respect to min_free_kbytes.
7217 */
7218void setup_per_zone_wmarks(void)
7219{
 
7220	static DEFINE_SPINLOCK(lock);
7221
7222	spin_lock(&lock);
7223	__setup_per_zone_wmarks();
7224	spin_unlock(&lock);
 
 
 
 
 
 
 
7225}
7226
7227/*
7228 * Initialise min_free_kbytes.
7229 *
7230 * For small machines we want it small (128k min).  For large machines
7231 * we want it large (64MB max).  But it is not linear, because network
7232 * bandwidth does not increase linearly with machine size.  We use
7233 *
7234 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7235 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7236 *
7237 * which yields
7238 *
7239 * 16MB:	512k
7240 * 32MB:	724k
7241 * 64MB:	1024k
7242 * 128MB:	1448k
7243 * 256MB:	2048k
7244 * 512MB:	2896k
7245 * 1024MB:	4096k
7246 * 2048MB:	5792k
7247 * 4096MB:	8192k
7248 * 8192MB:	11584k
7249 * 16384MB:	16384k
7250 */
7251int __meminit init_per_zone_wmark_min(void)
7252{
7253	unsigned long lowmem_kbytes;
7254	int new_min_free_kbytes;
7255
7256	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7257	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7258
7259	if (new_min_free_kbytes > user_min_free_kbytes) {
7260		min_free_kbytes = new_min_free_kbytes;
7261		if (min_free_kbytes < 128)
7262			min_free_kbytes = 128;
7263		if (min_free_kbytes > 65536)
7264			min_free_kbytes = 65536;
7265	} else {
7266		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7267				new_min_free_kbytes, user_min_free_kbytes);
7268	}
 
 
 
 
 
7269	setup_per_zone_wmarks();
7270	refresh_zone_stat_thresholds();
7271	setup_per_zone_lowmem_reserve();
7272
7273#ifdef CONFIG_NUMA
7274	setup_min_unmapped_ratio();
7275	setup_min_slab_ratio();
7276#endif
7277
 
 
7278	return 0;
7279}
7280core_initcall(init_per_zone_wmark_min)
7281
7282/*
7283 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7284 *	that we can call two helper functions whenever min_free_kbytes
7285 *	changes.
7286 */
7287int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7288	void __user *buffer, size_t *length, loff_t *ppos)
7289{
7290	int rc;
7291
7292	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7293	if (rc)
7294		return rc;
7295
7296	if (write) {
7297		user_min_free_kbytes = min_free_kbytes;
7298		setup_per_zone_wmarks();
7299	}
7300	return 0;
7301}
7302
7303int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7304	void __user *buffer, size_t *length, loff_t *ppos)
7305{
7306	int rc;
7307
7308	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7309	if (rc)
7310		return rc;
7311
7312	if (write)
7313		setup_per_zone_wmarks();
7314
7315	return 0;
7316}
7317
7318#ifdef CONFIG_NUMA
7319static void setup_min_unmapped_ratio(void)
7320{
7321	pg_data_t *pgdat;
7322	struct zone *zone;
7323
7324	for_each_online_pgdat(pgdat)
7325		pgdat->min_unmapped_pages = 0;
7326
7327	for_each_zone(zone)
7328		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7329				sysctl_min_unmapped_ratio) / 100;
7330}
7331
7332
7333int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7334	void __user *buffer, size_t *length, loff_t *ppos)
7335{
7336	int rc;
7337
7338	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7339	if (rc)
7340		return rc;
7341
7342	setup_min_unmapped_ratio();
7343
7344	return 0;
7345}
7346
7347static void setup_min_slab_ratio(void)
7348{
7349	pg_data_t *pgdat;
7350	struct zone *zone;
7351
7352	for_each_online_pgdat(pgdat)
7353		pgdat->min_slab_pages = 0;
7354
7355	for_each_zone(zone)
7356		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7357				sysctl_min_slab_ratio) / 100;
7358}
7359
7360int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7361	void __user *buffer, size_t *length, loff_t *ppos)
7362{
7363	int rc;
7364
7365	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7366	if (rc)
7367		return rc;
7368
7369	setup_min_slab_ratio();
7370
7371	return 0;
7372}
7373#endif
7374
7375/*
7376 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7377 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7378 *	whenever sysctl_lowmem_reserve_ratio changes.
7379 *
7380 * The reserve ratio obviously has absolutely no relation with the
7381 * minimum watermarks. The lowmem reserve ratio can only make sense
7382 * if in function of the boot time zone sizes.
7383 */
7384int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7385	void __user *buffer, size_t *length, loff_t *ppos)
7386{
 
 
7387	proc_dointvec_minmax(table, write, buffer, length, ppos);
 
 
 
 
 
 
7388	setup_per_zone_lowmem_reserve();
7389	return 0;
7390}
7391
7392/*
7393 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7394 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
7395 * pagelist can have before it gets flushed back to buddy allocator.
7396 */
7397int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7398	void __user *buffer, size_t *length, loff_t *ppos)
7399{
7400	struct zone *zone;
7401	int old_percpu_pagelist_fraction;
7402	int ret;
7403
7404	mutex_lock(&pcp_batch_high_lock);
7405	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7406
7407	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7408	if (!write || ret < 0)
7409		goto out;
7410
7411	/* Sanity checking to avoid pcp imbalance */
7412	if (percpu_pagelist_fraction &&
7413	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7414		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7415		ret = -EINVAL;
7416		goto out;
7417	}
7418
7419	/* No change? */
7420	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7421		goto out;
7422
7423	for_each_populated_zone(zone) {
7424		unsigned int cpu;
7425
7426		for_each_possible_cpu(cpu)
7427			pageset_set_high_and_batch(zone,
7428					per_cpu_ptr(zone->pageset, cpu));
7429	}
7430out:
7431	mutex_unlock(&pcp_batch_high_lock);
7432	return ret;
7433}
7434
7435#ifdef CONFIG_NUMA
7436int hashdist = HASHDIST_DEFAULT;
7437
7438static int __init set_hashdist(char *str)
7439{
7440	if (!str)
7441		return 0;
7442	hashdist = simple_strtoul(str, &str, 0);
7443	return 1;
7444}
7445__setup("hashdist=", set_hashdist);
7446#endif
7447
7448#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7449/*
7450 * Returns the number of pages that arch has reserved but
7451 * is not known to alloc_large_system_hash().
7452 */
7453static unsigned long __init arch_reserved_kernel_pages(void)
7454{
7455	return 0;
7456}
7457#endif
7458
7459/*
7460 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7461 * machines. As memory size is increased the scale is also increased but at
7462 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
7463 * quadruples the scale is increased by one, which means the size of hash table
7464 * only doubles, instead of quadrupling as well.
7465 * Because 32-bit systems cannot have large physical memory, where this scaling
7466 * makes sense, it is disabled on such platforms.
7467 */
7468#if __BITS_PER_LONG > 32
7469#define ADAPT_SCALE_BASE	(64ul << 30)
7470#define ADAPT_SCALE_SHIFT	2
7471#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
7472#endif
7473
7474/*
7475 * allocate a large system hash table from bootmem
7476 * - it is assumed that the hash table must contain an exact power-of-2
7477 *   quantity of entries
7478 * - limit is the number of hash buckets, not the total allocation size
7479 */
7480void *__init alloc_large_system_hash(const char *tablename,
7481				     unsigned long bucketsize,
7482				     unsigned long numentries,
7483				     int scale,
7484				     int flags,
7485				     unsigned int *_hash_shift,
7486				     unsigned int *_hash_mask,
7487				     unsigned long low_limit,
7488				     unsigned long high_limit)
7489{
7490	unsigned long long max = high_limit;
7491	unsigned long log2qty, size;
7492	void *table = NULL;
7493	gfp_t gfp_flags;
 
 
7494
7495	/* allow the kernel cmdline to have a say */
7496	if (!numentries) {
7497		/* round applicable memory size up to nearest megabyte */
7498		numentries = nr_kernel_pages;
7499		numentries -= arch_reserved_kernel_pages();
7500
7501		/* It isn't necessary when PAGE_SIZE >= 1MB */
7502		if (PAGE_SHIFT < 20)
7503			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7504
7505#if __BITS_PER_LONG > 32
7506		if (!high_limit) {
7507			unsigned long adapt;
7508
7509			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7510			     adapt <<= ADAPT_SCALE_SHIFT)
7511				scale++;
7512		}
7513#endif
7514
7515		/* limit to 1 bucket per 2^scale bytes of low memory */
7516		if (scale > PAGE_SHIFT)
7517			numentries >>= (scale - PAGE_SHIFT);
7518		else
7519			numentries <<= (PAGE_SHIFT - scale);
7520
7521		/* Make sure we've got at least a 0-order allocation.. */
7522		if (unlikely(flags & HASH_SMALL)) {
7523			/* Makes no sense without HASH_EARLY */
7524			WARN_ON(!(flags & HASH_EARLY));
7525			if (!(numentries >> *_hash_shift)) {
7526				numentries = 1UL << *_hash_shift;
7527				BUG_ON(!numentries);
7528			}
7529		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7530			numentries = PAGE_SIZE / bucketsize;
7531	}
7532	numentries = roundup_pow_of_two(numentries);
7533
7534	/* limit allocation size to 1/16 total memory by default */
7535	if (max == 0) {
7536		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7537		do_div(max, bucketsize);
7538	}
7539	max = min(max, 0x80000000ULL);
7540
7541	if (numentries < low_limit)
7542		numentries = low_limit;
7543	if (numentries > max)
7544		numentries = max;
7545
7546	log2qty = ilog2(numentries);
7547
7548	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7549	do {
 
7550		size = bucketsize << log2qty;
7551		if (flags & HASH_EARLY) {
7552			if (flags & HASH_ZERO)
7553				table = memblock_virt_alloc_nopanic(size, 0);
7554			else
7555				table = memblock_virt_alloc_raw(size, 0);
7556		} else if (hashdist) {
7557			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
 
 
 
 
7558		} else {
7559			/*
7560			 * If bucketsize is not a power-of-two, we may free
7561			 * some pages at the end of hash table which
7562			 * alloc_pages_exact() automatically does
7563			 */
7564			if (get_order(size) < MAX_ORDER) {
7565				table = alloc_pages_exact(size, gfp_flags);
7566				kmemleak_alloc(table, size, 1, gfp_flags);
7567			}
7568		}
7569	} while (!table && size > PAGE_SIZE && --log2qty);
7570
7571	if (!table)
7572		panic("Failed to allocate %s hash table\n", tablename);
7573
7574	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7575		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
 
7576
7577	if (_hash_shift)
7578		*_hash_shift = log2qty;
7579	if (_hash_mask)
7580		*_hash_mask = (1 << log2qty) - 1;
7581
7582	return table;
7583}
7584
7585/*
7586 * This function checks whether pageblock includes unmovable pages or not.
7587 * If @count is not zero, it is okay to include less @count unmovable pages
7588 *
7589 * PageLRU check without isolation or lru_lock could race so that
7590 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7591 * check without lock_page also may miss some movable non-lru pages at
7592 * race condition. So you can't expect this function should be exact.
7593 */
7594bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7595			 int migratetype,
7596			 bool skip_hwpoisoned_pages)
7597{
7598	unsigned long pfn, iter, found;
7599
7600	/*
7601	 * TODO we could make this much more efficient by not checking every
7602	 * page in the range if we know all of them are in MOVABLE_ZONE and
7603	 * that the movable zone guarantees that pages are migratable but
7604	 * the later is not the case right now unfortunatelly. E.g. movablecore
7605	 * can still lead to having bootmem allocations in zone_movable.
7606	 */
7607
7608	/*
7609	 * CMA allocations (alloc_contig_range) really need to mark isolate
7610	 * CMA pageblocks even when they are not movable in fact so consider
7611	 * them movable here.
7612	 */
7613	if (is_migrate_cma(migratetype) &&
7614			is_migrate_cma(get_pageblock_migratetype(page)))
7615		return false;
7616
7617	pfn = page_to_pfn(page);
7618	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7619		unsigned long check = pfn + iter;
7620
7621		if (!pfn_valid_within(check))
7622			continue;
7623
7624		page = pfn_to_page(check);
7625
7626		if (PageReserved(page))
7627			goto unmovable;
7628
7629		/*
7630		 * Hugepages are not in LRU lists, but they're movable.
7631		 * We need not scan over tail pages bacause we don't
7632		 * handle each tail page individually in migration.
7633		 */
7634		if (PageHuge(page)) {
7635			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7636			continue;
7637		}
7638
7639		/*
7640		 * We can't use page_count without pin a page
7641		 * because another CPU can free compound page.
7642		 * This check already skips compound tails of THP
7643		 * because their page->_refcount is zero at all time.
7644		 */
7645		if (!page_ref_count(page)) {
7646			if (PageBuddy(page))
7647				iter += (1 << page_order(page)) - 1;
7648			continue;
7649		}
7650
7651		/*
7652		 * The HWPoisoned page may be not in buddy system, and
7653		 * page_count() is not 0.
7654		 */
7655		if (skip_hwpoisoned_pages && PageHWPoison(page))
7656			continue;
7657
7658		if (__PageMovable(page))
7659			continue;
7660
7661		if (!PageLRU(page))
7662			found++;
7663		/*
7664		 * If there are RECLAIMABLE pages, we need to check
7665		 * it.  But now, memory offline itself doesn't call
7666		 * shrink_node_slabs() and it still to be fixed.
7667		 */
7668		/*
7669		 * If the page is not RAM, page_count()should be 0.
7670		 * we don't need more check. This is an _used_ not-movable page.
7671		 *
7672		 * The problematic thing here is PG_reserved pages. PG_reserved
7673		 * is set to both of a memory hole page and a _used_ kernel
7674		 * page at boot.
7675		 */
7676		if (found > count)
7677			goto unmovable;
7678	}
7679	return false;
7680unmovable:
7681	WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
7682	return true;
7683}
7684
7685bool is_pageblock_removable_nolock(struct page *page)
7686{
7687	struct zone *zone;
7688	unsigned long pfn;
7689
7690	/*
7691	 * We have to be careful here because we are iterating over memory
7692	 * sections which are not zone aware so we might end up outside of
7693	 * the zone but still within the section.
7694	 * We have to take care about the node as well. If the node is offline
7695	 * its NODE_DATA will be NULL - see page_zone.
7696	 */
7697	if (!node_online(page_to_nid(page)))
7698		return false;
7699
7700	zone = page_zone(page);
7701	pfn = page_to_pfn(page);
7702	if (!zone_spans_pfn(zone, pfn))
7703		return false;
7704
7705	return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
7706}
7707
7708#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7709
7710static unsigned long pfn_max_align_down(unsigned long pfn)
7711{
7712	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7713			     pageblock_nr_pages) - 1);
7714}
7715
7716static unsigned long pfn_max_align_up(unsigned long pfn)
7717{
7718	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7719				pageblock_nr_pages));
7720}
 
7721
7722/* [start, end) must belong to a single zone. */
7723static int __alloc_contig_migrate_range(struct compact_control *cc,
7724					unsigned long start, unsigned long end)
7725{
7726	/* This function is based on compact_zone() from compaction.c. */
7727	unsigned long nr_reclaimed;
7728	unsigned long pfn = start;
7729	unsigned int tries = 0;
7730	int ret = 0;
 
 
 
 
7731
7732	migrate_prep();
7733
7734	while (pfn < end || !list_empty(&cc->migratepages)) {
7735		if (fatal_signal_pending(current)) {
7736			ret = -EINTR;
7737			break;
7738		}
7739
7740		if (list_empty(&cc->migratepages)) {
7741			cc->nr_migratepages = 0;
7742			pfn = isolate_migratepages_range(cc, pfn, end);
7743			if (!pfn) {
7744				ret = -EINTR;
7745				break;
7746			}
7747			tries = 0;
7748		} else if (++tries == 5) {
7749			ret = ret < 0 ? ret : -EBUSY;
7750			break;
7751		}
7752
7753		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7754							&cc->migratepages);
7755		cc->nr_migratepages -= nr_reclaimed;
7756
7757		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7758				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
 
 
 
 
 
 
 
7759	}
 
 
7760	if (ret < 0) {
 
 
7761		putback_movable_pages(&cc->migratepages);
7762		return ret;
7763	}
7764	return 0;
7765}
7766
7767/**
7768 * alloc_contig_range() -- tries to allocate given range of pages
7769 * @start:	start PFN to allocate
7770 * @end:	one-past-the-last PFN to allocate
7771 * @migratetype:	migratetype of the underlaying pageblocks (either
7772 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
7773 *			in range must have the same migratetype and it must
7774 *			be either of the two.
7775 * @gfp_mask:	GFP mask to use during compaction
7776 *
7777 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7778 * aligned.  The PFN range must belong to a single zone.
7779 *
7780 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
7781 * pageblocks in the range.  Once isolated, the pageblocks should not
7782 * be modified by others.
7783 *
7784 * Returns zero on success or negative error code.  On success all
7785 * pages which PFN is in [start, end) are allocated for the caller and
7786 * need to be freed with free_contig_range().
7787 */
7788int alloc_contig_range(unsigned long start, unsigned long end,
7789		       unsigned migratetype, gfp_t gfp_mask)
7790{
7791	unsigned long outer_start, outer_end;
7792	unsigned int order;
7793	int ret = 0;
7794
7795	struct compact_control cc = {
7796		.nr_migratepages = 0,
7797		.order = -1,
7798		.zone = page_zone(pfn_to_page(start)),
7799		.mode = MIGRATE_SYNC,
7800		.ignore_skip_hint = true,
7801		.no_set_skip_hint = true,
7802		.gfp_mask = current_gfp_context(gfp_mask),
 
7803	};
7804	INIT_LIST_HEAD(&cc.migratepages);
7805
7806	/*
7807	 * What we do here is we mark all pageblocks in range as
7808	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7809	 * have different sizes, and due to the way page allocator
7810	 * work, we align the range to biggest of the two pages so
7811	 * that page allocator won't try to merge buddies from
7812	 * different pageblocks and change MIGRATE_ISOLATE to some
7813	 * other migration type.
7814	 *
7815	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7816	 * migrate the pages from an unaligned range (ie. pages that
7817	 * we are interested in).  This will put all the pages in
7818	 * range back to page allocator as MIGRATE_ISOLATE.
7819	 *
7820	 * When this is done, we take the pages in range from page
7821	 * allocator removing them from the buddy system.  This way
7822	 * page allocator will never consider using them.
7823	 *
7824	 * This lets us mark the pageblocks back as
7825	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7826	 * aligned range but not in the unaligned, original range are
7827	 * put back to page allocator so that buddy can use them.
7828	 */
7829
7830	ret = start_isolate_page_range(pfn_max_align_down(start),
7831				       pfn_max_align_up(end), migratetype,
7832				       false);
7833	if (ret)
7834		return ret;
 
 
7835
7836	/*
7837	 * In case of -EBUSY, we'd like to know which page causes problem.
7838	 * So, just fall through. test_pages_isolated() has a tracepoint
7839	 * which will report the busy page.
7840	 *
7841	 * It is possible that busy pages could become available before
7842	 * the call to test_pages_isolated, and the range will actually be
7843	 * allocated.  So, if we fall through be sure to clear ret so that
7844	 * -EBUSY is not accidentally used or returned to caller.
7845	 */
7846	ret = __alloc_contig_migrate_range(&cc, start, end);
7847	if (ret && ret != -EBUSY)
7848		goto done;
7849	ret =0;
7850
7851	/*
7852	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7853	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7854	 * more, all pages in [start, end) are free in page allocator.
7855	 * What we are going to do is to allocate all pages from
7856	 * [start, end) (that is remove them from page allocator).
7857	 *
7858	 * The only problem is that pages at the beginning and at the
7859	 * end of interesting range may be not aligned with pages that
7860	 * page allocator holds, ie. they can be part of higher order
7861	 * pages.  Because of this, we reserve the bigger range and
7862	 * once this is done free the pages we are not interested in.
7863	 *
7864	 * We don't have to hold zone->lock here because the pages are
7865	 * isolated thus they won't get removed from buddy.
7866	 */
7867
7868	lru_add_drain_all();
7869	drain_all_pages(cc.zone);
7870
7871	order = 0;
7872	outer_start = start;
7873	while (!PageBuddy(pfn_to_page(outer_start))) {
7874		if (++order >= MAX_ORDER) {
7875			outer_start = start;
7876			break;
7877		}
7878		outer_start &= ~0UL << order;
7879	}
7880
7881	if (outer_start != start) {
7882		order = page_order(pfn_to_page(outer_start));
7883
7884		/*
7885		 * outer_start page could be small order buddy page and
7886		 * it doesn't include start page. Adjust outer_start
7887		 * in this case to report failed page properly
7888		 * on tracepoint in test_pages_isolated()
7889		 */
7890		if (outer_start + (1UL << order) <= start)
7891			outer_start = start;
7892	}
7893
7894	/* Make sure the range is really isolated. */
7895	if (test_pages_isolated(outer_start, end, false)) {
7896		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7897			__func__, outer_start, end);
7898		ret = -EBUSY;
7899		goto done;
7900	}
7901
7902	/* Grab isolated pages from freelists. */
7903	outer_end = isolate_freepages_range(&cc, outer_start, end);
7904	if (!outer_end) {
7905		ret = -EBUSY;
7906		goto done;
7907	}
7908
7909	/* Free head and tail (if any) */
7910	if (start != outer_start)
7911		free_contig_range(outer_start, start - outer_start);
7912	if (end != outer_end)
7913		free_contig_range(end, outer_end - end);
7914
7915done:
7916	undo_isolate_page_range(pfn_max_align_down(start),
7917				pfn_max_align_up(end), migratetype);
7918	return ret;
7919}
 
7920
7921void free_contig_range(unsigned long pfn, unsigned nr_pages)
 
7922{
7923	unsigned int count = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7924
7925	for (; nr_pages--; pfn++) {
7926		struct page *page = pfn_to_page(pfn);
7927
7928		count += page_count(page) != 1;
7929		__free_page(page);
7930	}
7931	WARN(count != 0, "%d pages are still in use!\n", count);
7932}
7933#endif
7934
7935#ifdef CONFIG_MEMORY_HOTPLUG
7936/*
7937 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7938 * page high values need to be recalulated.
 
 
 
 
7939 */
7940void __meminit zone_pcp_update(struct zone *zone)
7941{
7942	unsigned cpu;
7943	mutex_lock(&pcp_batch_high_lock);
7944	for_each_possible_cpu(cpu)
7945		pageset_set_high_and_batch(zone,
7946				per_cpu_ptr(zone->pageset, cpu));
 
 
 
 
7947	mutex_unlock(&pcp_batch_high_lock);
7948}
7949#endif
7950
7951void zone_pcp_reset(struct zone *zone)
7952{
7953	unsigned long flags;
7954	int cpu;
7955	struct per_cpu_pageset *pset;
7956
7957	/* avoid races with drain_pages()  */
7958	local_irq_save(flags);
7959	if (zone->pageset != &boot_pageset) {
7960		for_each_online_cpu(cpu) {
7961			pset = per_cpu_ptr(zone->pageset, cpu);
7962			drain_zonestat(zone, pset);
 
 
 
 
 
 
7963		}
7964		free_percpu(zone->pageset);
7965		zone->pageset = &boot_pageset;
7966	}
7967	local_irq_restore(flags);
7968}
7969
7970#ifdef CONFIG_MEMORY_HOTREMOVE
7971/*
7972 * All pages in the range must be in a single zone and isolated
7973 * before calling this.
7974 */
7975void
7976__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7977{
 
7978	struct page *page;
7979	struct zone *zone;
7980	unsigned int order, i;
7981	unsigned long pfn;
7982	unsigned long flags;
7983	/* find the first valid pfn */
7984	for (pfn = start_pfn; pfn < end_pfn; pfn++)
7985		if (pfn_valid(pfn))
7986			break;
7987	if (pfn == end_pfn)
7988		return;
7989	offline_mem_sections(pfn, end_pfn);
7990	zone = page_zone(pfn_to_page(pfn));
7991	spin_lock_irqsave(&zone->lock, flags);
7992	pfn = start_pfn;
7993	while (pfn < end_pfn) {
7994		if (!pfn_valid(pfn)) {
7995			pfn++;
7996			continue;
7997		}
7998		page = pfn_to_page(pfn);
7999		/*
8000		 * The HWPoisoned page may be not in buddy system, and
8001		 * page_count() is not 0.
8002		 */
8003		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8004			pfn++;
8005			SetPageReserved(page);
 
 
 
 
 
 
 
 
 
8006			continue;
8007		}
8008
8009		BUG_ON(page_count(page));
8010		BUG_ON(!PageBuddy(page));
8011		order = page_order(page);
8012#ifdef CONFIG_DEBUG_VM
8013		pr_info("remove from free list %lx %d %lx\n",
8014			pfn, 1 << order, end_pfn);
8015#endif
8016		list_del(&page->lru);
8017		rmv_page_order(page);
8018		zone->free_area[order].nr_free--;
8019		for (i = 0; i < (1 << order); i++)
8020			SetPageReserved((page+i));
8021		pfn += (1 << order);
8022	}
8023	spin_unlock_irqrestore(&zone->lock, flags);
8024}
8025#endif
8026
 
 
 
8027bool is_free_buddy_page(struct page *page)
8028{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8029	struct zone *zone = page_zone(page);
8030	unsigned long pfn = page_to_pfn(page);
8031	unsigned long flags;
8032	unsigned int order;
 
8033
8034	spin_lock_irqsave(&zone->lock, flags);
8035	for (order = 0; order < MAX_ORDER; order++) {
8036		struct page *page_head = page - (pfn & ((1 << order) - 1));
 
8037
8038		if (PageBuddy(page_head) && page_order(page_head) >= order)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8039			break;
8040	}
8041	spin_unlock_irqrestore(&zone->lock, flags);
 
 
8042
8043	return order < MAX_ORDER;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8044}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/page_alloc.c
   4 *
   5 *  Manages the free list, the system allocates free pages here.
   6 *  Note that kmalloc() lives in slab.c
   7 *
   8 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   9 *  Swap reorganised 29.12.95, Stephen Tweedie
  10 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  11 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  12 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  13 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  14 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  15 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  16 */
  17
  18#include <linux/stddef.h>
  19#include <linux/mm.h>
  20#include <linux/highmem.h>
  21#include <linux/swap.h>
  22#include <linux/swapops.h>
  23#include <linux/interrupt.h>
  24#include <linux/pagemap.h>
  25#include <linux/jiffies.h>
 
  26#include <linux/memblock.h>
  27#include <linux/compiler.h>
  28#include <linux/kernel.h>
  29#include <linux/kasan.h>
  30#include <linux/kmsan.h>
  31#include <linux/module.h>
  32#include <linux/suspend.h>
  33#include <linux/pagevec.h>
  34#include <linux/blkdev.h>
  35#include <linux/slab.h>
  36#include <linux/ratelimit.h>
  37#include <linux/oom.h>
 
  38#include <linux/topology.h>
  39#include <linux/sysctl.h>
  40#include <linux/cpu.h>
  41#include <linux/cpuset.h>
  42#include <linux/memory_hotplug.h>
  43#include <linux/nodemask.h>
  44#include <linux/vmalloc.h>
  45#include <linux/vmstat.h>
  46#include <linux/mempolicy.h>
  47#include <linux/memremap.h>
  48#include <linux/stop_machine.h>
  49#include <linux/random.h>
  50#include <linux/sort.h>
  51#include <linux/pfn.h>
  52#include <linux/backing-dev.h>
  53#include <linux/fault-inject.h>
  54#include <linux/page-isolation.h>
 
  55#include <linux/debugobjects.h>
  56#include <linux/kmemleak.h>
  57#include <linux/compaction.h>
  58#include <trace/events/kmem.h>
  59#include <trace/events/oom.h>
  60#include <linux/prefetch.h>
  61#include <linux/mm_inline.h>
  62#include <linux/mmu_notifier.h>
  63#include <linux/migrate.h>
  64#include <linux/hugetlb.h>
  65#include <linux/sched/rt.h>
  66#include <linux/sched/mm.h>
  67#include <linux/page_owner.h>
  68#include <linux/page_table_check.h>
  69#include <linux/kthread.h>
  70#include <linux/memcontrol.h>
  71#include <linux/ftrace.h>
  72#include <linux/lockdep.h>
  73#include <linux/nmi.h>
  74#include <linux/psi.h>
  75#include <linux/padata.h>
  76#include <linux/khugepaged.h>
  77#include <linux/buffer_head.h>
  78#include <linux/delayacct.h>
  79#include <asm/sections.h>
  80#include <asm/tlbflush.h>
  81#include <asm/div64.h>
  82#include "internal.h"
  83#include "shuffle.h"
  84#include "page_reporting.h"
  85#include "swap.h"
  86
  87/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
  88typedef int __bitwise fpi_t;
  89
  90/* No special request */
  91#define FPI_NONE		((__force fpi_t)0)
  92
  93/*
  94 * Skip free page reporting notification for the (possibly merged) page.
  95 * This does not hinder free page reporting from grabbing the page,
  96 * reporting it and marking it "reported" -  it only skips notifying
  97 * the free page reporting infrastructure about a newly freed page. For
  98 * example, used when temporarily pulling a page from a freelist and
  99 * putting it back unmodified.
 100 */
 101#define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
 102
 103/*
 104 * Place the (possibly merged) page to the tail of the freelist. Will ignore
 105 * page shuffling (relevant code - e.g., memory onlining - is expected to
 106 * shuffle the whole zone).
 107 *
 108 * Note: No code should rely on this flag for correctness - it's purely
 109 *       to allow for optimizations when handing back either fresh pages
 110 *       (memory onlining) or untouched pages (page isolation, free page
 111 *       reporting).
 112 */
 113#define FPI_TO_TAIL		((__force fpi_t)BIT(1))
 114
 115/*
 116 * Don't poison memory with KASAN (only for the tag-based modes).
 117 * During boot, all non-reserved memblock memory is exposed to page_alloc.
 118 * Poisoning all that memory lengthens boot time, especially on systems with
 119 * large amount of RAM. This flag is used to skip that poisoning.
 120 * This is only done for the tag-based KASAN modes, as those are able to
 121 * detect memory corruptions with the memory tags assigned by default.
 122 * All memory allocated normally after boot gets poisoned as usual.
 123 */
 124#define FPI_SKIP_KASAN_POISON	((__force fpi_t)BIT(2))
 125
 126/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
 127static DEFINE_MUTEX(pcp_batch_high_lock);
 128#define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
 129
 130#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
 131/*
 132 * On SMP, spin_trylock is sufficient protection.
 133 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
 134 */
 135#define pcp_trylock_prepare(flags)	do { } while (0)
 136#define pcp_trylock_finish(flag)	do { } while (0)
 137#else
 138
 139/* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
 140#define pcp_trylock_prepare(flags)	local_irq_save(flags)
 141#define pcp_trylock_finish(flags)	local_irq_restore(flags)
 142#endif
 143
 144/*
 145 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
 146 * a migration causing the wrong PCP to be locked and remote memory being
 147 * potentially allocated, pin the task to the CPU for the lookup+lock.
 148 * preempt_disable is used on !RT because it is faster than migrate_disable.
 149 * migrate_disable is used on RT because otherwise RT spinlock usage is
 150 * interfered with and a high priority task cannot preempt the allocator.
 151 */
 152#ifndef CONFIG_PREEMPT_RT
 153#define pcpu_task_pin()		preempt_disable()
 154#define pcpu_task_unpin()	preempt_enable()
 155#else
 156#define pcpu_task_pin()		migrate_disable()
 157#define pcpu_task_unpin()	migrate_enable()
 158#endif
 159
 160/*
 161 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
 162 * Return value should be used with equivalent unlock helper.
 163 */
 164#define pcpu_spin_lock(type, member, ptr)				\
 165({									\
 166	type *_ret;							\
 167	pcpu_task_pin();						\
 168	_ret = this_cpu_ptr(ptr);					\
 169	spin_lock(&_ret->member);					\
 170	_ret;								\
 171})
 172
 173#define pcpu_spin_trylock(type, member, ptr)				\
 174({									\
 175	type *_ret;							\
 176	pcpu_task_pin();						\
 177	_ret = this_cpu_ptr(ptr);					\
 178	if (!spin_trylock(&_ret->member)) {				\
 179		pcpu_task_unpin();					\
 180		_ret = NULL;						\
 181	}								\
 182	_ret;								\
 183})
 184
 185#define pcpu_spin_unlock(member, ptr)					\
 186({									\
 187	spin_unlock(&ptr->member);					\
 188	pcpu_task_unpin();						\
 189})
 190
 191/* struct per_cpu_pages specific helpers. */
 192#define pcp_spin_lock(ptr)						\
 193	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
 194
 195#define pcp_spin_trylock(ptr)						\
 196	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
 197
 198#define pcp_spin_unlock(ptr)						\
 199	pcpu_spin_unlock(lock, ptr)
 200
 201#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
 202DEFINE_PER_CPU(int, numa_node);
 203EXPORT_PER_CPU_SYMBOL(numa_node);
 204#endif
 205
 206DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
 207
 208#ifdef CONFIG_HAVE_MEMORYLESS_NODES
 209/*
 210 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 211 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 212 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 213 * defined in <linux/topology.h>.
 214 */
 215DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
 216EXPORT_PER_CPU_SYMBOL(_numa_mem_);
 
 217#endif
 218
 219static DEFINE_MUTEX(pcpu_drain_mutex);
 
 
 220
 221#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
 222volatile unsigned long latent_entropy __latent_entropy;
 223EXPORT_SYMBOL(latent_entropy);
 224#endif
 225
 226/*
 227 * Array of node states.
 228 */
 229nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
 230	[N_POSSIBLE] = NODE_MASK_ALL,
 231	[N_ONLINE] = { { [0] = 1UL } },
 232#ifndef CONFIG_NUMA
 233	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
 234#ifdef CONFIG_HIGHMEM
 235	[N_HIGH_MEMORY] = { { [0] = 1UL } },
 236#endif
 237	[N_MEMORY] = { { [0] = 1UL } },
 238	[N_CPU] = { { [0] = 1UL } },
 239#endif	/* NUMA */
 240};
 241EXPORT_SYMBOL(node_states);
 242
 243atomic_long_t _totalram_pages __read_mostly;
 244EXPORT_SYMBOL(_totalram_pages);
 
 
 245unsigned long totalreserve_pages __read_mostly;
 246unsigned long totalcma_pages __read_mostly;
 247
 248int percpu_pagelist_high_fraction;
 249gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
 250DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
 251EXPORT_SYMBOL(init_on_alloc);
 252
 253DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
 254EXPORT_SYMBOL(init_on_free);
 255
 256static bool _init_on_alloc_enabled_early __read_mostly
 257				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
 258static int __init early_init_on_alloc(char *buf)
 259{
 260
 261	return kstrtobool(buf, &_init_on_alloc_enabled_early);
 262}
 263early_param("init_on_alloc", early_init_on_alloc);
 264
 265static bool _init_on_free_enabled_early __read_mostly
 266				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
 267static int __init early_init_on_free(char *buf)
 268{
 269	return kstrtobool(buf, &_init_on_free_enabled_early);
 270}
 271early_param("init_on_free", early_init_on_free);
 272
 273/*
 274 * A cached value of the page's pageblock's migratetype, used when the page is
 275 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 276 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 277 * Also the migratetype set in the page does not necessarily match the pcplist
 278 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 279 * other index - this ensures that it will be put on the correct CMA freelist.
 280 */
 281static inline int get_pcppage_migratetype(struct page *page)
 282{
 283	return page->index;
 284}
 285
 286static inline void set_pcppage_migratetype(struct page *page, int migratetype)
 287{
 288	page->index = migratetype;
 289}
 290
 291#ifdef CONFIG_PM_SLEEP
 292/*
 293 * The following functions are used by the suspend/hibernate code to temporarily
 294 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 295 * while devices are suspended.  To avoid races with the suspend/hibernate code,
 296 * they should always be called with system_transition_mutex held
 297 * (gfp_allowed_mask also should only be modified with system_transition_mutex
 298 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
 299 * with that modification).
 300 */
 301
 302static gfp_t saved_gfp_mask;
 303
 304void pm_restore_gfp_mask(void)
 305{
 306	WARN_ON(!mutex_is_locked(&system_transition_mutex));
 307	if (saved_gfp_mask) {
 308		gfp_allowed_mask = saved_gfp_mask;
 309		saved_gfp_mask = 0;
 310	}
 311}
 312
 313void pm_restrict_gfp_mask(void)
 314{
 315	WARN_ON(!mutex_is_locked(&system_transition_mutex));
 316	WARN_ON(saved_gfp_mask);
 317	saved_gfp_mask = gfp_allowed_mask;
 318	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
 319}
 320
 321bool pm_suspended_storage(void)
 322{
 323	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
 324		return false;
 325	return true;
 326}
 327#endif /* CONFIG_PM_SLEEP */
 328
 329#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
 330unsigned int pageblock_order __read_mostly;
 331#endif
 332
 333static void __free_pages_ok(struct page *page, unsigned int order,
 334			    fpi_t fpi_flags);
 335
 336/*
 337 * results with 256, 32 in the lowmem_reserve sysctl:
 338 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 339 *	1G machine -> (16M dma, 784M normal, 224M high)
 340 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 341 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
 342 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
 343 *
 344 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 345 * don't need any ZONE_NORMAL reservation
 346 */
 347int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
 348#ifdef CONFIG_ZONE_DMA
 349	[ZONE_DMA] = 256,
 350#endif
 351#ifdef CONFIG_ZONE_DMA32
 352	[ZONE_DMA32] = 256,
 353#endif
 354	[ZONE_NORMAL] = 32,
 355#ifdef CONFIG_HIGHMEM
 356	[ZONE_HIGHMEM] = 0,
 357#endif
 358	[ZONE_MOVABLE] = 0,
 359};
 360
 
 
 361static char * const zone_names[MAX_NR_ZONES] = {
 362#ifdef CONFIG_ZONE_DMA
 363	 "DMA",
 364#endif
 365#ifdef CONFIG_ZONE_DMA32
 366	 "DMA32",
 367#endif
 368	 "Normal",
 369#ifdef CONFIG_HIGHMEM
 370	 "HighMem",
 371#endif
 372	 "Movable",
 373#ifdef CONFIG_ZONE_DEVICE
 374	 "Device",
 375#endif
 376};
 377
 378const char * const migratetype_names[MIGRATE_TYPES] = {
 379	"Unmovable",
 380	"Movable",
 381	"Reclaimable",
 382	"HighAtomic",
 383#ifdef CONFIG_CMA
 384	"CMA",
 385#endif
 386#ifdef CONFIG_MEMORY_ISOLATION
 387	"Isolate",
 388#endif
 389};
 390
 391compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
 392	[NULL_COMPOUND_DTOR] = NULL,
 393	[COMPOUND_PAGE_DTOR] = free_compound_page,
 394#ifdef CONFIG_HUGETLB_PAGE
 395	[HUGETLB_PAGE_DTOR] = free_huge_page,
 396#endif
 397#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 398	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
 399#endif
 400};
 401
 402int min_free_kbytes = 1024;
 403int user_min_free_kbytes = -1;
 404int watermark_boost_factor __read_mostly = 15000;
 405int watermark_scale_factor = 10;
 406
 407static unsigned long nr_kernel_pages __initdata;
 408static unsigned long nr_all_pages __initdata;
 409static unsigned long dma_reserve __initdata;
 410
 411static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
 412static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
 
 413static unsigned long required_kernelcore __initdata;
 414static unsigned long required_kernelcore_percent __initdata;
 415static unsigned long required_movablecore __initdata;
 416static unsigned long required_movablecore_percent __initdata;
 417static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
 418bool mirrored_kernelcore __initdata_memblock;
 419
 420/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
 421int movable_zone;
 422EXPORT_SYMBOL(movable_zone);
 
 423
 424#if MAX_NUMNODES > 1
 425unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
 426unsigned int nr_online_nodes __read_mostly = 1;
 427EXPORT_SYMBOL(nr_node_ids);
 428EXPORT_SYMBOL(nr_online_nodes);
 429#endif
 430
 431int page_group_by_mobility_disabled __read_mostly;
 432
 433#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 434/*
 435 * During boot we initialize deferred pages on-demand, as needed, but once
 436 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 437 * and we can permanently disable that path.
 438 */
 439static DEFINE_STATIC_KEY_TRUE(deferred_pages);
 440
 441static inline bool deferred_pages_enabled(void)
 442{
 443	return static_branch_unlikely(&deferred_pages);
 444}
 445
 446/* Returns true if the struct page for the pfn is uninitialised */
 447static inline bool __meminit early_page_uninitialised(unsigned long pfn)
 448{
 449	int nid = early_pfn_to_nid(pfn);
 450
 451	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
 452		return true;
 453
 454	return false;
 455}
 456
 457/*
 458 * Returns true when the remaining initialisation should be deferred until
 459 * later in the boot cycle when it can be parallelised.
 460 */
 461static bool __meminit
 462defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
 
 463{
 464	static unsigned long prev_end_pfn, nr_initialised;
 465
 466	if (early_page_ext_enabled())
 467		return false;
 468	/*
 469	 * prev_end_pfn static that contains the end of previous zone
 470	 * No need to protect because called very early in boot before smp_init.
 471	 */
 472	if (prev_end_pfn != end_pfn) {
 473		prev_end_pfn = end_pfn;
 474		nr_initialised = 0;
 475	}
 476
 477	/* Always populate low zones for address-constrained allocations */
 478	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
 479		return false;
 480
 481	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
 482		return true;
 483	/*
 484	 * We start only with one section of pages, more pages are added as
 485	 * needed until the rest of deferred pages are initialized.
 486	 */
 487	nr_initialised++;
 488	if ((nr_initialised > PAGES_PER_SECTION) &&
 489	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
 490		NODE_DATA(nid)->first_deferred_pfn = pfn;
 491		return true;
 492	}
 493	return false;
 
 494}
 495#else
 496static inline bool deferred_pages_enabled(void)
 497{
 498	return false;
 499}
 500
 501static inline bool early_page_uninitialised(unsigned long pfn)
 502{
 503	return false;
 504}
 505
 506static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
 
 
 507{
 508	return false;
 509}
 510#endif
 511
 512/* Return a pointer to the bitmap storing bits affecting a block of pages */
 513static inline unsigned long *get_pageblock_bitmap(const struct page *page,
 514							unsigned long pfn)
 515{
 516#ifdef CONFIG_SPARSEMEM
 517	return section_to_usemap(__pfn_to_section(pfn));
 518#else
 519	return page_zone(page)->pageblock_flags;
 520#endif /* CONFIG_SPARSEMEM */
 521}
 522
 523static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
 524{
 525#ifdef CONFIG_SPARSEMEM
 526	pfn &= (PAGES_PER_SECTION-1);
 
 527#else
 528	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
 
 529#endif /* CONFIG_SPARSEMEM */
 530	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
 531}
 532
 533static __always_inline
 534unsigned long __get_pfnblock_flags_mask(const struct page *page,
 
 
 
 
 
 
 
 
 535					unsigned long pfn,
 
 536					unsigned long mask)
 537{
 538	unsigned long *bitmap;
 539	unsigned long bitidx, word_bitidx;
 540	unsigned long word;
 541
 542	bitmap = get_pageblock_bitmap(page, pfn);
 543	bitidx = pfn_to_bitidx(page, pfn);
 544	word_bitidx = bitidx / BITS_PER_LONG;
 545	bitidx &= (BITS_PER_LONG-1);
 546	/*
 547	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
 548	 * a consistent read of the memory array, so that results, even though
 549	 * racy, are not corrupted.
 550	 */
 551	word = READ_ONCE(bitmap[word_bitidx]);
 552	return (word >> bitidx) & mask;
 553}
 554
 555/**
 556 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 557 * @page: The page within the block of interest
 558 * @pfn: The target page frame number
 559 * @mask: mask of bits that the caller is interested in
 560 *
 561 * Return: pageblock_bits flags
 562 */
 563unsigned long get_pfnblock_flags_mask(const struct page *page,
 564					unsigned long pfn, unsigned long mask)
 565{
 566	return __get_pfnblock_flags_mask(page, pfn, mask);
 567}
 568
 569static __always_inline int get_pfnblock_migratetype(const struct page *page,
 570					unsigned long pfn)
 571{
 572	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
 573}
 574
 575/**
 576 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 577 * @page: The page within the block of interest
 578 * @flags: The flags to set
 579 * @pfn: The target page frame number
 
 580 * @mask: mask of bits that the caller is interested in
 581 */
 582void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
 583					unsigned long pfn,
 
 584					unsigned long mask)
 585{
 586	unsigned long *bitmap;
 587	unsigned long bitidx, word_bitidx;
 588	unsigned long word;
 589
 590	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
 591	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
 592
 593	bitmap = get_pageblock_bitmap(page, pfn);
 594	bitidx = pfn_to_bitidx(page, pfn);
 595	word_bitidx = bitidx / BITS_PER_LONG;
 596	bitidx &= (BITS_PER_LONG-1);
 597
 598	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
 599
 600	mask <<= bitidx;
 601	flags <<= bitidx;
 
 602
 603	word = READ_ONCE(bitmap[word_bitidx]);
 604	do {
 605	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
 
 
 
 
 606}
 607
 608void set_pageblock_migratetype(struct page *page, int migratetype)
 609{
 610	if (unlikely(page_group_by_mobility_disabled &&
 611		     migratetype < MIGRATE_PCPTYPES))
 612		migratetype = MIGRATE_UNMOVABLE;
 613
 614	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
 615				page_to_pfn(page), MIGRATETYPE_MASK);
 616}
 617
 618#ifdef CONFIG_DEBUG_VM
 619static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
 620{
 621	int ret = 0;
 622	unsigned seq;
 623	unsigned long pfn = page_to_pfn(page);
 624	unsigned long sp, start_pfn;
 625
 626	do {
 627		seq = zone_span_seqbegin(zone);
 628		start_pfn = zone->zone_start_pfn;
 629		sp = zone->spanned_pages;
 630		if (!zone_spans_pfn(zone, pfn))
 631			ret = 1;
 632	} while (zone_span_seqretry(zone, seq));
 633
 634	if (ret)
 635		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
 636			pfn, zone_to_nid(zone), zone->name,
 637			start_pfn, start_pfn + sp);
 638
 639	return ret;
 640}
 641
 642static int page_is_consistent(struct zone *zone, struct page *page)
 643{
 
 
 644	if (zone != page_zone(page))
 645		return 0;
 646
 647	return 1;
 648}
 649/*
 650 * Temporary debugging check for pages not lying within a given zone.
 651 */
 652static int __maybe_unused bad_range(struct zone *zone, struct page *page)
 653{
 654	if (page_outside_zone_boundaries(zone, page))
 655		return 1;
 656	if (!page_is_consistent(zone, page))
 657		return 1;
 658
 659	return 0;
 660}
 661#else
 662static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
 663{
 664	return 0;
 665}
 666#endif
 667
 668static void bad_page(struct page *page, const char *reason)
 
 669{
 670	static unsigned long resume;
 671	static unsigned long nr_shown;
 672	static unsigned long nr_unshown;
 673
 674	/*
 675	 * Allow a burst of 60 reports, then keep quiet for that minute;
 676	 * or allow a steady drip of one report per second.
 677	 */
 678	if (nr_shown == 60) {
 679		if (time_before(jiffies, resume)) {
 680			nr_unshown++;
 681			goto out;
 682		}
 683		if (nr_unshown) {
 684			pr_alert(
 685			      "BUG: Bad page state: %lu messages suppressed\n",
 686				nr_unshown);
 687			nr_unshown = 0;
 688		}
 689		nr_shown = 0;
 690	}
 691	if (nr_shown++ == 0)
 692		resume = jiffies + 60 * HZ;
 693
 694	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
 695		current->comm, page_to_pfn(page));
 696	dump_page(page, reason);
 
 
 
 
 
 697
 698	print_modules();
 699	dump_stack();
 700out:
 701	/* Leave bad fields for debug, except PageBuddy could make trouble */
 702	page_mapcount_reset(page); /* remove PageBuddy */
 703	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 704}
 705
 706static inline unsigned int order_to_pindex(int migratetype, int order)
 707{
 708	int base = order;
 709
 710#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 711	if (order > PAGE_ALLOC_COSTLY_ORDER) {
 712		VM_BUG_ON(order != pageblock_order);
 713		return NR_LOWORDER_PCP_LISTS;
 714	}
 715#else
 716	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
 717#endif
 718
 719	return (MIGRATE_PCPTYPES * base) + migratetype;
 720}
 721
 722static inline int pindex_to_order(unsigned int pindex)
 723{
 724	int order = pindex / MIGRATE_PCPTYPES;
 725
 726#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 727	if (pindex == NR_LOWORDER_PCP_LISTS)
 728		order = pageblock_order;
 729#else
 730	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
 731#endif
 732
 733	return order;
 734}
 735
 736static inline bool pcp_allowed_order(unsigned int order)
 737{
 738	if (order <= PAGE_ALLOC_COSTLY_ORDER)
 739		return true;
 740#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 741	if (order == pageblock_order)
 742		return true;
 743#endif
 744	return false;
 745}
 746
 747static inline void free_the_page(struct page *page, unsigned int order)
 748{
 749	if (pcp_allowed_order(order))		/* Via pcp? */
 750		free_unref_page(page, order);
 751	else
 752		__free_pages_ok(page, order, FPI_NONE);
 753}
 754
 755/*
 756 * Higher-order pages are called "compound pages".  They are structured thusly:
 757 *
 758 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
 759 *
 760 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 761 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
 762 *
 763 * The first tail page's ->compound_dtor holds the offset in array of compound
 764 * page destructors. See compound_page_dtors.
 765 *
 766 * The first tail page's ->compound_order holds the order of allocation.
 767 * This usage means that zero-order pages may not be compound.
 768 */
 769
 770void free_compound_page(struct page *page)
 771{
 772	mem_cgroup_uncharge(page_folio(page));
 773	free_the_page(page, compound_order(page));
 774}
 775
 776static void prep_compound_head(struct page *page, unsigned int order)
 777{
 
 
 
 778	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
 779	set_compound_order(page, order);
 
 
 
 
 
 
 
 780	atomic_set(compound_mapcount_ptr(page), -1);
 781	atomic_set(subpages_mapcount_ptr(page), 0);
 782	atomic_set(compound_pincount_ptr(page), 0);
 783}
 784
 785static void prep_compound_tail(struct page *head, int tail_idx)
 
 
 
 
 
 
 
 786{
 787	struct page *p = head + tail_idx;
 788
 789	p->mapping = TAIL_MAPPING;
 790	set_compound_head(p, head);
 791	set_page_private(p, 0);
 792}
 
 793
 794void prep_compound_page(struct page *page, unsigned int order)
 795{
 796	int i;
 797	int nr_pages = 1 << order;
 
 798
 799	__SetPageHead(page);
 800	for (i = 1; i < nr_pages; i++)
 801		prep_compound_tail(page, i);
 802
 803	prep_compound_head(page, order);
 804}
 805
 806void destroy_large_folio(struct folio *folio)
 807{
 808	enum compound_dtor_id dtor = folio_page(folio, 1)->compound_dtor;
 
 
 
 
 809
 810	VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
 811	compound_page_dtors[dtor](&folio->page);
 812}
 813
 814#ifdef CONFIG_DEBUG_PAGEALLOC
 815unsigned int _debug_guardpage_minorder;
 816
 817bool _debug_pagealloc_enabled_early __read_mostly
 818			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
 819EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
 820DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
 821EXPORT_SYMBOL(_debug_pagealloc_enabled);
 822
 823DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
 824
 825static int __init early_debug_pagealloc(char *buf)
 826{
 827	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
 828}
 829early_param("debug_pagealloc", early_debug_pagealloc);
 830
 831static int __init debug_guardpage_minorder_setup(char *buf)
 832{
 833	unsigned long res;
 834
 835	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
 836		pr_err("Bad debug_guardpage_minorder value\n");
 837		return 0;
 838	}
 839	_debug_guardpage_minorder = res;
 840	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
 841	return 0;
 842}
 843early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
 844
 845static inline bool set_page_guard(struct zone *zone, struct page *page,
 846				unsigned int order, int migratetype)
 847{
 
 
 848	if (!debug_guardpage_enabled())
 849		return false;
 850
 851	if (order >= debug_guardpage_minorder())
 852		return false;
 853
 854	__SetPageGuard(page);
 855	INIT_LIST_HEAD(&page->buddy_list);
 
 
 
 
 
 856	set_page_private(page, order);
 857	/* Guard pages are not available for any usage */
 858	if (!is_migrate_isolate(migratetype))
 859		__mod_zone_freepage_state(zone, -(1 << order), migratetype);
 860
 861	return true;
 862}
 863
 864static inline void clear_page_guard(struct zone *zone, struct page *page,
 865				unsigned int order, int migratetype)
 866{
 
 
 867	if (!debug_guardpage_enabled())
 868		return;
 869
 870	__ClearPageGuard(page);
 
 
 
 
 871
 872	set_page_private(page, 0);
 873	if (!is_migrate_isolate(migratetype))
 874		__mod_zone_freepage_state(zone, (1 << order), migratetype);
 875}
 876#else
 
 877static inline bool set_page_guard(struct zone *zone, struct page *page,
 878			unsigned int order, int migratetype) { return false; }
 879static inline void clear_page_guard(struct zone *zone, struct page *page,
 880				unsigned int order, int migratetype) {}
 881#endif
 882
 883/*
 884 * Enable static keys related to various memory debugging and hardening options.
 885 * Some override others, and depend on early params that are evaluated in the
 886 * order of appearance. So we need to first gather the full picture of what was
 887 * enabled, and then make decisions.
 888 */
 889void __init init_mem_debugging_and_hardening(void)
 890{
 891	bool page_poisoning_requested = false;
 892
 893#ifdef CONFIG_PAGE_POISONING
 894	/*
 895	 * Page poisoning is debug page alloc for some arches. If
 896	 * either of those options are enabled, enable poisoning.
 897	 */
 898	if (page_poisoning_enabled() ||
 899	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
 900	      debug_pagealloc_enabled())) {
 901		static_branch_enable(&_page_poisoning_enabled);
 902		page_poisoning_requested = true;
 903	}
 904#endif
 905
 906	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
 907	    page_poisoning_requested) {
 908		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
 909			"will take precedence over init_on_alloc and init_on_free\n");
 910		_init_on_alloc_enabled_early = false;
 911		_init_on_free_enabled_early = false;
 912	}
 913
 914	if (_init_on_alloc_enabled_early)
 915		static_branch_enable(&init_on_alloc);
 916	else
 917		static_branch_disable(&init_on_alloc);
 918
 919	if (_init_on_free_enabled_early)
 920		static_branch_enable(&init_on_free);
 921	else
 922		static_branch_disable(&init_on_free);
 923
 924	if (IS_ENABLED(CONFIG_KMSAN) &&
 925	    (_init_on_alloc_enabled_early || _init_on_free_enabled_early))
 926		pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
 927
 928#ifdef CONFIG_DEBUG_PAGEALLOC
 929	if (!debug_pagealloc_enabled())
 930		return;
 931
 932	static_branch_enable(&_debug_pagealloc_enabled);
 933
 934	if (!debug_guardpage_minorder())
 935		return;
 936
 937	static_branch_enable(&_debug_guardpage_enabled);
 938#endif
 939}
 940
 941static inline void set_buddy_order(struct page *page, unsigned int order)
 942{
 943	set_page_private(page, order);
 944	__SetPageBuddy(page);
 945}
 946
 947#ifdef CONFIG_COMPACTION
 948static inline struct capture_control *task_capc(struct zone *zone)
 949{
 950	struct capture_control *capc = current->capture_control;
 951
 952	return unlikely(capc) &&
 953		!(current->flags & PF_KTHREAD) &&
 954		!capc->page &&
 955		capc->cc->zone == zone ? capc : NULL;
 956}
 957
 958static inline bool
 959compaction_capture(struct capture_control *capc, struct page *page,
 960		   int order, int migratetype)
 961{
 962	if (!capc || order != capc->cc->order)
 963		return false;
 964
 965	/* Do not accidentally pollute CMA or isolated regions*/
 966	if (is_migrate_cma(migratetype) ||
 967	    is_migrate_isolate(migratetype))
 968		return false;
 969
 970	/*
 971	 * Do not let lower order allocations pollute a movable pageblock.
 972	 * This might let an unmovable request use a reclaimable pageblock
 973	 * and vice-versa but no more than normal fallback logic which can
 974	 * have trouble finding a high-order free page.
 975	 */
 976	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
 977		return false;
 978
 979	capc->page = page;
 980	return true;
 981}
 982
 983#else
 984static inline struct capture_control *task_capc(struct zone *zone)
 985{
 986	return NULL;
 987}
 988
 989static inline bool
 990compaction_capture(struct capture_control *capc, struct page *page,
 991		   int order, int migratetype)
 992{
 993	return false;
 994}
 995#endif /* CONFIG_COMPACTION */
 996
 997/* Used for pages not on another list */
 998static inline void add_to_free_list(struct page *page, struct zone *zone,
 999				    unsigned int order, int migratetype)
1000{
1001	struct free_area *area = &zone->free_area[order];
1002
1003	list_add(&page->buddy_list, &area->free_list[migratetype]);
1004	area->nr_free++;
1005}
1006
1007/* Used for pages not on another list */
1008static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
1009					 unsigned int order, int migratetype)
1010{
1011	struct free_area *area = &zone->free_area[order];
1012
1013	list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
1014	area->nr_free++;
1015}
1016
1017/*
1018 * Used for pages which are on another list. Move the pages to the tail
1019 * of the list - so the moved pages won't immediately be considered for
1020 * allocation again (e.g., optimization for memory onlining).
 
 
 
 
 
 
 
 
 
 
1021 */
1022static inline void move_to_free_list(struct page *page, struct zone *zone,
1023				     unsigned int order, int migratetype)
1024{
1025	struct free_area *area = &zone->free_area[order];
 
 
1026
1027	list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
1028}
1029
1030static inline void del_page_from_free_list(struct page *page, struct zone *zone,
1031					   unsigned int order)
1032{
1033	/* clear reported state and update reported page count */
1034	if (page_reported(page))
1035		__ClearPageReported(page);
1036
1037	list_del(&page->buddy_list);
1038	__ClearPageBuddy(page);
1039	set_page_private(page, 0);
1040	zone->free_area[order].nr_free--;
1041}
 
 
 
1042
1043/*
1044 * If this is not the largest possible page, check if the buddy
1045 * of the next-highest order is free. If it is, it's possible
1046 * that pages are being freed that will coalesce soon. In case,
1047 * that is happening, add the free page to the tail of the list
1048 * so it's less likely to be used soon and more likely to be merged
1049 * as a higher order page
1050 */
1051static inline bool
1052buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1053		   struct page *page, unsigned int order)
1054{
1055	unsigned long higher_page_pfn;
1056	struct page *higher_page;
1057
1058	if (order >= MAX_ORDER - 2)
1059		return false;
1060
1061	higher_page_pfn = buddy_pfn & pfn;
1062	higher_page = page + (higher_page_pfn - pfn);
1063
1064	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
1065			NULL) != NULL;
1066}
1067
1068/*
1069 * Freeing function for a buddy system allocator.
1070 *
1071 * The concept of a buddy system is to maintain direct-mapped table
1072 * (containing bit values) for memory blocks of various "orders".
1073 * The bottom level table contains the map for the smallest allocatable
1074 * units of memory (here, pages), and each level above it describes
1075 * pairs of units from the levels below, hence, "buddies".
1076 * At a high level, all that happens here is marking the table entry
1077 * at the bottom level available, and propagating the changes upward
1078 * as necessary, plus some accounting needed to play nicely with other
1079 * parts of the VM system.
1080 * At each level, we keep a list of pages, which are heads of continuous
1081 * free pages of length of (1 << order) and marked with PageBuddy.
1082 * Page's order is recorded in page_private(page) field.
 
1083 * So when we are allocating or freeing one, we can derive the state of the
1084 * other.  That is, if we allocate a small block, and both were
1085 * free, the remainder of the region must be split into blocks.
1086 * If a block is freed, and its buddy is also free, then this
1087 * triggers coalescing into a block of larger size.
1088 *
1089 * -- nyc
1090 */
1091
1092static inline void __free_one_page(struct page *page,
1093		unsigned long pfn,
1094		struct zone *zone, unsigned int order,
1095		int migratetype, fpi_t fpi_flags)
1096{
1097	struct capture_control *capc = task_capc(zone);
1098	unsigned long buddy_pfn = 0;
1099	unsigned long combined_pfn;
 
1100	struct page *buddy;
1101	bool to_tail;
 
 
1102
1103	VM_BUG_ON(!zone_is_initialized(zone));
1104	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1105
1106	VM_BUG_ON(migratetype == -1);
1107	if (likely(!is_migrate_isolate(migratetype)))
1108		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1109
1110	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1111	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1112
1113	while (order < MAX_ORDER - 1) {
1114		if (compaction_capture(capc, page, order, migratetype)) {
1115			__mod_zone_freepage_state(zone, -(1 << order),
1116								migratetype);
1117			return;
1118		}
1119
1120		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
1121		if (!buddy)
 
1122			goto done_merging;
1123
1124		if (unlikely(order >= pageblock_order)) {
1125			/*
1126			 * We want to prevent merge between freepages on pageblock
1127			 * without fallbacks and normal pageblock. Without this,
1128			 * pageblock isolation could cause incorrect freepage or CMA
1129			 * accounting or HIGHATOMIC accounting.
1130			 */
1131			int buddy_mt = get_pageblock_migratetype(buddy);
1132
1133			if (migratetype != buddy_mt
1134					&& (!migratetype_is_mergeable(migratetype) ||
1135						!migratetype_is_mergeable(buddy_mt)))
1136				goto done_merging;
1137		}
1138
1139		/*
1140		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1141		 * merge with it and move up one order.
1142		 */
1143		if (page_is_guard(buddy))
1144			clear_page_guard(zone, buddy, order, migratetype);
1145		else
1146			del_page_from_free_list(buddy, zone, order);
 
 
 
1147		combined_pfn = buddy_pfn & pfn;
1148		page = page + (combined_pfn - pfn);
1149		pfn = combined_pfn;
1150		order++;
1151	}
 
 
 
 
 
 
 
 
 
 
 
1152
1153done_merging:
1154	set_buddy_order(page, order);
 
1155
1156	if (fpi_flags & FPI_TO_TAIL)
1157		to_tail = true;
1158	else if (is_shuffle_order(order))
1159		to_tail = shuffle_pick_tail();
1160	else
1161		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
 
 
1162
1163	if (to_tail)
1164		add_to_free_list_tail(page, zone, order, migratetype);
1165	else
1166		add_to_free_list(page, zone, order, migratetype);
1167
1168	/* Notify page reporting subsystem of freed page */
1169	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1170		page_reporting_notify_free(order);
1171}
1172
1173/**
1174 * split_free_page() -- split a free page at split_pfn_offset
1175 * @free_page:		the original free page
1176 * @order:		the order of the page
1177 * @split_pfn_offset:	split offset within the page
1178 *
1179 * Return -ENOENT if the free page is changed, otherwise 0
1180 *
1181 * It is used when the free page crosses two pageblocks with different migratetypes
1182 * at split_pfn_offset within the page. The split free page will be put into
1183 * separate migratetype lists afterwards. Otherwise, the function achieves
1184 * nothing.
1185 */
1186int split_free_page(struct page *free_page,
1187			unsigned int order, unsigned long split_pfn_offset)
1188{
1189	struct zone *zone = page_zone(free_page);
1190	unsigned long free_page_pfn = page_to_pfn(free_page);
1191	unsigned long pfn;
1192	unsigned long flags;
1193	int free_page_order;
1194	int mt;
1195	int ret = 0;
1196
1197	if (split_pfn_offset == 0)
1198		return ret;
1199
1200	spin_lock_irqsave(&zone->lock, flags);
1201
1202	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
1203		ret = -ENOENT;
1204		goto out;
1205	}
1206
1207	mt = get_pageblock_migratetype(free_page);
1208	if (likely(!is_migrate_isolate(mt)))
1209		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1210
1211	del_page_from_free_list(free_page, zone, order);
1212	for (pfn = free_page_pfn;
1213	     pfn < free_page_pfn + (1UL << order);) {
1214		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
1215
1216		free_page_order = min_t(unsigned int,
1217					pfn ? __ffs(pfn) : order,
1218					__fls(split_pfn_offset));
1219		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
1220				mt, FPI_NONE);
1221		pfn += 1UL << free_page_order;
1222		split_pfn_offset -= (1UL << free_page_order);
1223		/* we have done the first part, now switch to second part */
1224		if (split_pfn_offset == 0)
1225			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
1226	}
1227out:
1228	spin_unlock_irqrestore(&zone->lock, flags);
1229	return ret;
1230}
 
1231/*
1232 * A bad page could be due to a number of fields. Instead of multiple branches,
1233 * try and check multiple fields with one check. The caller must do a detailed
1234 * check if necessary.
1235 */
1236static inline bool page_expected_state(struct page *page,
1237					unsigned long check_flags)
1238{
1239	if (unlikely(atomic_read(&page->_mapcount) != -1))
1240		return false;
1241
1242	if (unlikely((unsigned long)page->mapping |
1243			page_ref_count(page) |
1244#ifdef CONFIG_MEMCG
1245			page->memcg_data |
1246#endif
1247			(page->flags & check_flags)))
1248		return false;
1249
1250	return true;
1251}
1252
1253static const char *page_bad_reason(struct page *page, unsigned long flags)
1254{
1255	const char *bad_reason = NULL;
 
 
 
 
1256
1257	if (unlikely(atomic_read(&page->_mapcount) != -1))
1258		bad_reason = "nonzero mapcount";
1259	if (unlikely(page->mapping != NULL))
1260		bad_reason = "non-NULL mapping";
1261	if (unlikely(page_ref_count(page) != 0))
1262		bad_reason = "nonzero _refcount";
1263	if (unlikely(page->flags & flags)) {
1264		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1265			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1266		else
1267			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1268	}
1269#ifdef CONFIG_MEMCG
1270	if (unlikely(page->memcg_data))
1271		bad_reason = "page still charged to cgroup";
1272#endif
1273	return bad_reason;
1274}
1275
1276static void free_page_is_bad_report(struct page *page)
1277{
1278	bad_page(page,
1279		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1280}
1281
1282static inline bool free_page_is_bad(struct page *page)
1283{
1284	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1285		return false;
1286
1287	/* Something has gone sideways, find it */
1288	free_page_is_bad_report(page);
1289	return true;
1290}
1291
1292static int free_tail_pages_check(struct page *head_page, struct page *page)
1293{
1294	int ret = 1;
1295
1296	/*
1297	 * We rely page->lru.next never has bit 0 set, unless the page
1298	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1299	 */
1300	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1301
1302	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1303		ret = 0;
1304		goto out;
1305	}
1306	switch (page - head_page) {
1307	case 1:
1308		/* the first tail page: these may be in place of ->mapping */
1309		if (unlikely(head_compound_mapcount(head_page))) {
1310			bad_page(page, "nonzero compound_mapcount");
1311			goto out;
1312		}
1313		if (unlikely(atomic_read(subpages_mapcount_ptr(head_page)))) {
1314			bad_page(page, "nonzero subpages_mapcount");
1315			goto out;
1316		}
1317		if (unlikely(head_compound_pincount(head_page))) {
1318			bad_page(page, "nonzero compound_pincount");
1319			goto out;
1320		}
1321		break;
1322	case 2:
1323		/*
1324		 * the second tail page: ->mapping is
1325		 * deferred_list.next -- ignore value.
1326		 */
1327		break;
1328	default:
1329		if (page->mapping != TAIL_MAPPING) {
1330			bad_page(page, "corrupted mapping in tail page");
1331			goto out;
1332		}
1333		break;
1334	}
1335	if (unlikely(!PageTail(page))) {
1336		bad_page(page, "PageTail not set");
1337		goto out;
1338	}
1339	if (unlikely(compound_head(page) != head_page)) {
1340		bad_page(page, "compound_head not consistent");
1341		goto out;
1342	}
1343	ret = 0;
1344out:
1345	page->mapping = NULL;
1346	clear_compound_head(page);
1347	return ret;
1348}
1349
1350/*
1351 * Skip KASAN memory poisoning when either:
1352 *
1353 * 1. Deferred memory initialization has not yet completed,
1354 *    see the explanation below.
1355 * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1356 *    see the comment next to it.
1357 * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1358 *    see the comment next to it.
1359 *
1360 * Poisoning pages during deferred memory init will greatly lengthen the
1361 * process and cause problem in large memory systems as the deferred pages
1362 * initialization is done with interrupt disabled.
1363 *
1364 * Assuming that there will be no reference to those newly initialized
1365 * pages before they are ever allocated, this should have no effect on
1366 * KASAN memory tracking as the poison will be properly inserted at page
1367 * allocation time. The only corner case is when pages are allocated by
1368 * on-demand allocation and then freed again before the deferred pages
1369 * initialization is done, but this is not likely to happen.
1370 */
1371static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1372{
1373	return deferred_pages_enabled() ||
1374	       (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1375		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1376	       PageSkipKASanPoison(page);
1377}
1378
1379static void kernel_init_pages(struct page *page, int numpages)
1380{
1381	int i;
1382
1383	/* s390's use of memset() could override KASAN redzones. */
1384	kasan_disable_current();
1385	for (i = 0; i < numpages; i++)
1386		clear_highpage_kasan_tagged(page + i);
1387	kasan_enable_current();
1388}
1389
1390static __always_inline bool free_pages_prepare(struct page *page,
1391			unsigned int order, bool check_free, fpi_t fpi_flags)
1392{
1393	int bad = 0;
1394	bool init = want_init_on_free();
1395
1396	VM_BUG_ON_PAGE(PageTail(page), page);
1397
1398	trace_mm_page_free(page, order);
1399	kmsan_free_page(page, order);
1400
1401	if (unlikely(PageHWPoison(page)) && !order) {
1402		/*
1403		 * Do not let hwpoison pages hit pcplists/buddy
1404		 * Untie memcg state and reset page's owner
1405		 */
1406		if (memcg_kmem_enabled() && PageMemcgKmem(page))
1407			__memcg_kmem_uncharge_page(page, order);
1408		reset_page_owner(page, order);
1409		page_table_check_free(page, order);
1410		return false;
1411	}
1412
1413	/*
1414	 * Check tail pages before head page information is cleared to
1415	 * avoid checking PageCompound for order-0 pages.
1416	 */
1417	if (unlikely(order)) {
1418		bool compound = PageCompound(page);
1419		int i;
1420
1421		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1422
1423		if (compound)
1424			ClearPageHasHWPoisoned(page);
1425		for (i = 1; i < (1 << order); i++) {
1426			if (compound)
1427				bad += free_tail_pages_check(page, page + i);
1428			if (unlikely(free_page_is_bad(page + i))) {
1429				bad++;
1430				continue;
1431			}
1432			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1433		}
1434	}
1435	if (PageMappingFlags(page))
1436		page->mapping = NULL;
1437	if (memcg_kmem_enabled() && PageMemcgKmem(page))
1438		__memcg_kmem_uncharge_page(page, order);
1439	if (check_free && free_page_is_bad(page))
1440		bad++;
1441	if (bad)
1442		return false;
1443
1444	page_cpupid_reset_last(page);
1445	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1446	reset_page_owner(page, order);
1447	page_table_check_free(page, order);
1448
1449	if (!PageHighMem(page)) {
1450		debug_check_no_locks_freed(page_address(page),
1451					   PAGE_SIZE << order);
1452		debug_check_no_obj_freed(page_address(page),
1453					   PAGE_SIZE << order);
1454	}
1455
1456	kernel_poison_pages(page, 1 << order);
1457
1458	/*
1459	 * As memory initialization might be integrated into KASAN,
1460	 * KASAN poisoning and memory initialization code must be
1461	 * kept together to avoid discrepancies in behavior.
1462	 *
1463	 * With hardware tag-based KASAN, memory tags must be set before the
1464	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1465	 */
1466	if (!should_skip_kasan_poison(page, fpi_flags)) {
1467		kasan_poison_pages(page, order, init);
1468
1469		/* Memory is already initialized if KASAN did it internally. */
1470		if (kasan_has_integrated_init())
1471			init = false;
1472	}
1473	if (init)
1474		kernel_init_pages(page, 1 << order);
1475
1476	/*
1477	 * arch_free_page() can make the page's contents inaccessible.  s390
1478	 * does this.  So nothing which can access the page's contents should
1479	 * happen after this.
1480	 */
1481	arch_free_page(page, order);
1482
1483	debug_pagealloc_unmap_pages(page, 1 << order);
 
1484
1485	return true;
1486}
1487
1488#ifdef CONFIG_DEBUG_VM
1489/*
1490 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1491 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1492 * moved from pcp lists to free lists.
1493 */
1494static bool free_pcp_prepare(struct page *page, unsigned int order)
1495{
1496	return free_pages_prepare(page, order, true, FPI_NONE);
1497}
1498
1499/* return true if this page has an inappropriate state */
1500static bool bulkfree_pcp_prepare(struct page *page)
1501{
1502	if (debug_pagealloc_enabled_static())
1503		return free_page_is_bad(page);
1504	else
1505		return false;
1506}
1507#else
1508/*
1509 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1510 * moving from pcp lists to free list in order to reduce overhead. With
1511 * debug_pagealloc enabled, they are checked also immediately when being freed
1512 * to the pcp lists.
1513 */
1514static bool free_pcp_prepare(struct page *page, unsigned int order)
1515{
1516	if (debug_pagealloc_enabled_static())
1517		return free_pages_prepare(page, order, true, FPI_NONE);
1518	else
1519		return free_pages_prepare(page, order, false, FPI_NONE);
1520}
1521
1522static bool bulkfree_pcp_prepare(struct page *page)
1523{
1524	return free_page_is_bad(page);
1525}
1526#endif /* CONFIG_DEBUG_VM */
1527
 
 
 
 
 
 
 
 
 
1528/*
1529 * Frees a number of pages from the PCP lists
1530 * Assumes all pages on list are in same zone.
1531 * count is the number of pages to free.
 
 
 
 
 
 
1532 */
1533static void free_pcppages_bulk(struct zone *zone, int count,
1534					struct per_cpu_pages *pcp,
1535					int pindex)
1536{
1537	unsigned long flags;
1538	int min_pindex = 0;
1539	int max_pindex = NR_PCP_LISTS - 1;
1540	unsigned int order;
1541	bool isolated_pageblocks;
1542	struct page *page;
1543
1544	/*
1545	 * Ensure proper count is passed which otherwise would stuck in the
1546	 * below while (list_empty(list)) loop.
1547	 */
1548	count = min(pcp->count, count);
1549
1550	/* Ensure requested pindex is drained first. */
1551	pindex = pindex - 1;
1552
1553	spin_lock_irqsave(&zone->lock, flags);
1554	isolated_pageblocks = has_isolate_pageblock(zone);
1555
1556	while (count > 0) {
1557		struct list_head *list;
1558		int nr_pages;
1559
1560		/* Remove pages from lists in a round-robin fashion. */
 
 
 
 
 
 
1561		do {
1562			if (++pindex > max_pindex)
1563				pindex = min_pindex;
1564			list = &pcp->lists[pindex];
1565			if (!list_empty(list))
1566				break;
 
 
 
 
1567
1568			if (pindex == max_pindex)
1569				max_pindex--;
1570			if (pindex == min_pindex)
1571				min_pindex++;
1572		} while (1);
1573
1574		order = pindex_to_order(pindex);
1575		nr_pages = 1 << order;
1576		do {
1577			int mt;
1578
1579			page = list_last_entry(list, struct page, pcp_list);
1580			mt = get_pcppage_migratetype(page);
1581
1582			/* must delete to avoid corrupting pcp list */
1583			list_del(&page->pcp_list);
1584			count -= nr_pages;
1585			pcp->count -= nr_pages;
1586
1587			if (bulkfree_pcp_prepare(page))
1588				continue;
1589
1590			/* MIGRATE_ISOLATE page should not go to pcplists */
1591			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1592			/* Pageblock could have been isolated meanwhile */
1593			if (unlikely(isolated_pageblocks))
1594				mt = get_pageblock_migratetype(page);
1595
1596			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1597			trace_mm_page_pcpu_drain(page, order, mt);
1598		} while (count > 0 && !list_empty(list));
 
 
 
 
 
1599	}
1600
1601	spin_unlock_irqrestore(&zone->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1602}
1603
1604static void free_one_page(struct zone *zone,
1605				struct page *page, unsigned long pfn,
1606				unsigned int order,
1607				int migratetype, fpi_t fpi_flags)
1608{
1609	unsigned long flags;
1610
1611	spin_lock_irqsave(&zone->lock, flags);
1612	if (unlikely(has_isolate_pageblock(zone) ||
1613		is_migrate_isolate(migratetype))) {
1614		migratetype = get_pfnblock_migratetype(page, pfn);
1615	}
1616	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1617	spin_unlock_irqrestore(&zone->lock, flags);
1618}
1619
1620static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1621				unsigned long zone, int nid)
1622{
1623	mm_zero_struct_page(page);
1624	set_page_links(page, zone, nid, pfn);
1625	init_page_count(page);
1626	page_mapcount_reset(page);
1627	page_cpupid_reset_last(page);
1628	page_kasan_tag_reset(page);
1629
1630	INIT_LIST_HEAD(&page->lru);
1631#ifdef WANT_PAGE_VIRTUAL
1632	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1633	if (!is_highmem_idx(zone))
1634		set_page_address(page, __va(pfn << PAGE_SHIFT));
1635#endif
1636}
1637
1638#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1639static void __meminit init_reserved_page(unsigned long pfn)
1640{
1641	pg_data_t *pgdat;
1642	int nid, zid;
1643
1644	if (!early_page_uninitialised(pfn))
1645		return;
1646
1647	nid = early_pfn_to_nid(pfn);
1648	pgdat = NODE_DATA(nid);
1649
1650	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1651		struct zone *zone = &pgdat->node_zones[zid];
1652
1653		if (zone_spans_pfn(zone, pfn))
1654			break;
1655	}
1656	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1657}
1658#else
1659static inline void init_reserved_page(unsigned long pfn)
1660{
1661}
1662#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1663
1664/*
1665 * Initialised pages do not have PageReserved set. This function is
1666 * called for each range allocated by the bootmem allocator and
1667 * marks the pages PageReserved. The remaining valid pages are later
1668 * sent to the buddy page allocator.
1669 */
1670void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1671{
1672	unsigned long start_pfn = PFN_DOWN(start);
1673	unsigned long end_pfn = PFN_UP(end);
1674
1675	for (; start_pfn < end_pfn; start_pfn++) {
1676		if (pfn_valid(start_pfn)) {
1677			struct page *page = pfn_to_page(start_pfn);
1678
1679			init_reserved_page(start_pfn);
1680
1681			/* Avoid false-positive PageTail() */
1682			INIT_LIST_HEAD(&page->lru);
1683
1684			/*
1685			 * no need for atomic set_bit because the struct
1686			 * page is not visible yet so nobody should
1687			 * access it yet.
1688			 */
1689			__SetPageReserved(page);
1690		}
1691	}
1692}
1693
1694static void __free_pages_ok(struct page *page, unsigned int order,
1695			    fpi_t fpi_flags)
1696{
1697	unsigned long flags;
1698	int migratetype;
1699	unsigned long pfn = page_to_pfn(page);
1700	struct zone *zone = page_zone(page);
1701
1702	if (!free_pages_prepare(page, order, true, fpi_flags))
1703		return;
1704
1705	/*
1706	 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1707	 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1708	 * This will reduce the lock holding time.
1709	 */
1710	migratetype = get_pfnblock_migratetype(page, pfn);
1711
1712	spin_lock_irqsave(&zone->lock, flags);
1713	if (unlikely(has_isolate_pageblock(zone) ||
1714		is_migrate_isolate(migratetype))) {
1715		migratetype = get_pfnblock_migratetype(page, pfn);
1716	}
1717	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1718	spin_unlock_irqrestore(&zone->lock, flags);
1719
1720	__count_vm_events(PGFREE, 1 << order);
 
 
1721}
1722
1723void __free_pages_core(struct page *page, unsigned int order)
1724{
1725	unsigned int nr_pages = 1 << order;
1726	struct page *p = page;
1727	unsigned int loop;
1728
1729	/*
1730	 * When initializing the memmap, __init_single_page() sets the refcount
1731	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1732	 * refcount of all involved pages to 0.
1733	 */
1734	prefetchw(p);
1735	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1736		prefetchw(p + 1);
1737		__ClearPageReserved(p);
1738		set_page_count(p, 0);
1739	}
1740	__ClearPageReserved(p);
1741	set_page_count(p, 0);
1742
1743	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1744
1745	/*
1746	 * Bypass PCP and place fresh pages right to the tail, primarily
1747	 * relevant for memory onlining.
1748	 */
1749	__free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1750}
1751
1752#ifdef CONFIG_NUMA
1753
1754/*
1755 * During memory init memblocks map pfns to nids. The search is expensive and
1756 * this caches recent lookups. The implementation of __early_pfn_to_nid
1757 * treats start/end as pfns.
1758 */
1759struct mminit_pfnnid_cache {
1760	unsigned long last_start;
1761	unsigned long last_end;
1762	int last_nid;
1763};
1764
1765static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1766
1767/*
1768 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1769 */
1770static int __meminit __early_pfn_to_nid(unsigned long pfn,
1771					struct mminit_pfnnid_cache *state)
1772{
1773	unsigned long start_pfn, end_pfn;
1774	int nid;
1775
1776	if (state->last_start <= pfn && pfn < state->last_end)
1777		return state->last_nid;
1778
1779	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1780	if (nid != NUMA_NO_NODE) {
1781		state->last_start = start_pfn;
1782		state->last_end = end_pfn;
1783		state->last_nid = nid;
1784	}
1785
1786	return nid;
1787}
1788
1789int __meminit early_pfn_to_nid(unsigned long pfn)
1790{
1791	static DEFINE_SPINLOCK(early_pfn_lock);
1792	int nid;
1793
1794	spin_lock(&early_pfn_lock);
1795	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1796	if (nid < 0)
1797		nid = first_online_node;
1798	spin_unlock(&early_pfn_lock);
1799
1800	return nid;
1801}
1802#endif /* CONFIG_NUMA */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1803
1804void __init memblock_free_pages(struct page *page, unsigned long pfn,
1805							unsigned int order)
1806{
1807	if (early_page_uninitialised(pfn))
1808		return;
1809	if (!kmsan_memblock_free_pages(page, order)) {
1810		/* KMSAN will take care of these pages. */
1811		return;
1812	}
1813	__free_pages_core(page, order);
1814}
1815
1816/*
1817 * Check that the whole (or subset of) a pageblock given by the interval of
1818 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1819 * with the migration of free compaction scanner.
 
 
1820 *
1821 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1822 *
1823 * It's possible on some configurations to have a setup like node0 node1 node0
1824 * i.e. it's possible that all pages within a zones range of pages do not
1825 * belong to a single zone. We assume that a border between node0 and node1
1826 * can occur within a single pageblock, but not a node0 node1 node0
1827 * interleaving within a single pageblock. It is therefore sufficient to check
1828 * the first and last page of a pageblock and avoid checking each individual
1829 * page in a pageblock.
1830 */
1831struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1832				     unsigned long end_pfn, struct zone *zone)
1833{
1834	struct page *start_page;
1835	struct page *end_page;
1836
1837	/* end_pfn is one past the range we are checking */
1838	end_pfn--;
1839
1840	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1841		return NULL;
1842
1843	start_page = pfn_to_online_page(start_pfn);
1844	if (!start_page)
1845		return NULL;
1846
1847	if (page_zone(start_page) != zone)
1848		return NULL;
1849
1850	end_page = pfn_to_page(end_pfn);
1851
1852	/* This gives a shorter code than deriving page_zone(end_page) */
1853	if (page_zone_id(start_page) != page_zone_id(end_page))
1854		return NULL;
1855
1856	return start_page;
1857}
1858
1859void set_zone_contiguous(struct zone *zone)
1860{
1861	unsigned long block_start_pfn = zone->zone_start_pfn;
1862	unsigned long block_end_pfn;
1863
1864	block_end_pfn = pageblock_end_pfn(block_start_pfn);
1865	for (; block_start_pfn < zone_end_pfn(zone);
1866			block_start_pfn = block_end_pfn,
1867			 block_end_pfn += pageblock_nr_pages) {
1868
1869		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1870
1871		if (!__pageblock_pfn_to_page(block_start_pfn,
1872					     block_end_pfn, zone))
1873			return;
1874		cond_resched();
1875	}
1876
1877	/* We confirm that there is no hole */
1878	zone->contiguous = true;
1879}
1880
1881void clear_zone_contiguous(struct zone *zone)
1882{
1883	zone->contiguous = false;
1884}
1885
1886#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1887static void __init deferred_free_range(unsigned long pfn,
1888				       unsigned long nr_pages)
1889{
1890	struct page *page;
1891	unsigned long i;
1892
1893	if (!nr_pages)
1894		return;
1895
1896	page = pfn_to_page(pfn);
1897
1898	/* Free a large naturally-aligned chunk if possible */
1899	if (nr_pages == pageblock_nr_pages && pageblock_aligned(pfn)) {
 
1900		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1901		__free_pages_core(page, pageblock_order);
1902		return;
1903	}
1904
1905	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1906		if (pageblock_aligned(pfn))
1907			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1908		__free_pages_core(page, 0);
1909	}
1910}
1911
1912/* Completion tracking for deferred_init_memmap() threads */
1913static atomic_t pgdat_init_n_undone __initdata;
1914static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1915
1916static inline void __init pgdat_init_report_one_done(void)
1917{
1918	if (atomic_dec_and_test(&pgdat_init_n_undone))
1919		complete(&pgdat_init_all_done_comp);
1920}
1921
1922/*
1923 * Returns true if page needs to be initialized or freed to buddy allocator.
1924 *
1925 * We check if a current large page is valid by only checking the validity
 
 
 
 
1926 * of the head pfn.
1927 */
1928static inline bool __init deferred_pfn_valid(unsigned long pfn)
 
 
 
 
 
 
1929{
1930	if (pageblock_aligned(pfn) && !pfn_valid(pfn))
 
 
 
 
1931		return false;
1932	return true;
1933}
1934
1935/*
1936 * Free pages to buddy allocator. Try to free aligned pages in
1937 * pageblock_nr_pages sizes.
1938 */
1939static void __init deferred_free_pages(unsigned long pfn,
1940				       unsigned long end_pfn)
1941{
 
 
1942	unsigned long nr_free = 0;
1943
1944	for (; pfn < end_pfn; pfn++) {
1945		if (!deferred_pfn_valid(pfn)) {
1946			deferred_free_range(pfn - nr_free, nr_free);
1947			nr_free = 0;
1948		} else if (pageblock_aligned(pfn)) {
1949			deferred_free_range(pfn - nr_free, nr_free);
1950			nr_free = 1;
 
1951		} else {
1952			nr_free++;
1953		}
1954	}
1955	/* Free the last block of pages to allocator */
1956	deferred_free_range(pfn - nr_free, nr_free);
1957}
1958
1959/*
1960 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1961 * by performing it only once every pageblock_nr_pages.
1962 * Return number of pages initialized.
1963 */
1964static unsigned long  __init deferred_init_pages(struct zone *zone,
1965						 unsigned long pfn,
1966						 unsigned long end_pfn)
1967{
1968	int nid = zone_to_nid(zone);
 
1969	unsigned long nr_pages = 0;
1970	int zid = zone_idx(zone);
1971	struct page *page = NULL;
1972
1973	for (; pfn < end_pfn; pfn++) {
1974		if (!deferred_pfn_valid(pfn)) {
1975			page = NULL;
1976			continue;
1977		} else if (!page || pageblock_aligned(pfn)) {
1978			page = pfn_to_page(pfn);
 
1979		} else {
1980			page++;
1981		}
1982		__init_single_page(page, pfn, zid, nid);
1983		nr_pages++;
1984	}
1985	return (nr_pages);
1986}
1987
1988/*
1989 * This function is meant to pre-load the iterator for the zone init.
1990 * Specifically it walks through the ranges until we are caught up to the
1991 * first_init_pfn value and exits there. If we never encounter the value we
1992 * return false indicating there are no valid ranges left.
1993 */
1994static bool __init
1995deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1996				    unsigned long *spfn, unsigned long *epfn,
1997				    unsigned long first_init_pfn)
1998{
1999	u64 j;
2000
2001	/*
2002	 * Start out by walking through the ranges in this zone that have
2003	 * already been initialized. We don't need to do anything with them
2004	 * so we just need to flush them out of the system.
2005	 */
2006	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
2007		if (*epfn <= first_init_pfn)
2008			continue;
2009		if (*spfn < first_init_pfn)
2010			*spfn = first_init_pfn;
2011		*i = j;
2012		return true;
2013	}
2014
2015	return false;
2016}
2017
2018/*
2019 * Initialize and free pages. We do it in two loops: first we initialize
2020 * struct page, then free to buddy allocator, because while we are
2021 * freeing pages we can access pages that are ahead (computing buddy
2022 * page in __free_one_page()).
2023 *
2024 * In order to try and keep some memory in the cache we have the loop
2025 * broken along max page order boundaries. This way we will not cause
2026 * any issues with the buddy page computation.
2027 */
2028static unsigned long __init
2029deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2030		       unsigned long *end_pfn)
2031{
2032	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2033	unsigned long spfn = *start_pfn, epfn = *end_pfn;
2034	unsigned long nr_pages = 0;
2035	u64 j = *i;
2036
2037	/* First we loop through and initialize the page values */
2038	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2039		unsigned long t;
2040
2041		if (mo_pfn <= *start_pfn)
2042			break;
2043
2044		t = min(mo_pfn, *end_pfn);
2045		nr_pages += deferred_init_pages(zone, *start_pfn, t);
2046
2047		if (mo_pfn < *end_pfn) {
2048			*start_pfn = mo_pfn;
2049			break;
2050		}
2051	}
2052
2053	/* Reset values and now loop through freeing pages as needed */
2054	swap(j, *i);
2055
2056	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2057		unsigned long t;
2058
2059		if (mo_pfn <= spfn)
2060			break;
2061
2062		t = min(mo_pfn, epfn);
2063		deferred_free_pages(spfn, t);
2064
2065		if (mo_pfn <= epfn)
2066			break;
2067	}
2068
2069	return nr_pages;
2070}
2071
2072static void __init
2073deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2074			   void *arg)
2075{
2076	unsigned long spfn, epfn;
2077	struct zone *zone = arg;
2078	u64 i;
2079
2080	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2081
2082	/*
2083	 * Initialize and free pages in MAX_ORDER sized increments so that we
2084	 * can avoid introducing any issues with the buddy allocator.
2085	 */
2086	while (spfn < end_pfn) {
2087		deferred_init_maxorder(&i, zone, &spfn, &epfn);
2088		cond_resched();
2089	}
2090}
2091
2092/* An arch may override for more concurrency. */
2093__weak int __init
2094deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2095{
2096	return 1;
2097}
2098
2099/* Initialise remaining memory on a node */
2100static int __init deferred_init_memmap(void *data)
2101{
2102	pg_data_t *pgdat = data;
2103	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2104	unsigned long spfn = 0, epfn = 0;
2105	unsigned long first_init_pfn, flags;
2106	unsigned long start = jiffies;
 
 
 
 
2107	struct zone *zone;
2108	int zid, max_threads;
2109	u64 i;
2110
2111	/* Bind memory initialisation thread to a local node if possible */
2112	if (!cpumask_empty(cpumask))
2113		set_cpus_allowed_ptr(current, cpumask);
2114
2115	pgdat_resize_lock(pgdat, &flags);
2116	first_init_pfn = pgdat->first_deferred_pfn;
2117	if (first_init_pfn == ULONG_MAX) {
2118		pgdat_resize_unlock(pgdat, &flags);
2119		pgdat_init_report_one_done();
2120		return 0;
2121	}
2122
2123	/* Sanity check boundaries */
2124	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2125	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2126	pgdat->first_deferred_pfn = ULONG_MAX;
2127
2128	/*
2129	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2130	 * interrupt thread must allocate this early in boot, zone must be
2131	 * pre-grown prior to start of deferred page initialization.
2132	 */
2133	pgdat_resize_unlock(pgdat, &flags);
2134
2135	/* Only the highest zone is deferred so find it */
2136	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2137		zone = pgdat->node_zones + zid;
2138		if (first_init_pfn < zone_end_pfn(zone))
2139			break;
2140	}
 
2141
2142	/* If the zone is empty somebody else may have cleared out the zone */
2143	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2144						 first_init_pfn))
2145		goto zone_empty;
2146
2147	max_threads = deferred_page_init_max_threads(cpumask);
2148
2149	while (spfn < epfn) {
2150		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2151		struct padata_mt_job job = {
2152			.thread_fn   = deferred_init_memmap_chunk,
2153			.fn_arg      = zone,
2154			.start       = spfn,
2155			.size        = epfn_align - spfn,
2156			.align       = PAGES_PER_SECTION,
2157			.min_chunk   = PAGES_PER_SECTION,
2158			.max_threads = max_threads,
2159		};
2160
2161		padata_do_multithreaded(&job);
2162		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2163						    epfn_align);
2164	}
2165zone_empty:
 
2166	/* Sanity check that the next zone really is unpopulated */
2167	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2168
2169	pr_info("node %d deferred pages initialised in %ums\n",
2170		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2171
2172	pgdat_init_report_one_done();
2173	return 0;
2174}
2175
2176/*
 
 
 
 
 
 
 
2177 * If this zone has deferred pages, try to grow it by initializing enough
2178 * deferred pages to satisfy the allocation specified by order, rounded up to
2179 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2180 * of SECTION_SIZE bytes by initializing struct pages in increments of
2181 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2182 *
2183 * Return true when zone was grown, otherwise return false. We return true even
2184 * when we grow less than requested, to let the caller decide if there are
2185 * enough pages to satisfy the allocation.
2186 *
2187 * Note: We use noinline because this function is needed only during boot, and
2188 * it is called from a __ref function _deferred_grow_zone. This way we are
2189 * making sure that it is not inlined into permanent text section.
2190 */
2191static noinline bool __init
2192deferred_grow_zone(struct zone *zone, unsigned int order)
2193{
 
 
 
2194	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2195	pg_data_t *pgdat = zone->zone_pgdat;
 
2196	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2197	unsigned long spfn, epfn, flags;
2198	unsigned long nr_pages = 0;
2199	u64 i;
2200
2201	/* Only the last zone may have deferred pages */
2202	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2203		return false;
2204
2205	pgdat_resize_lock(pgdat, &flags);
2206
2207	/*
 
 
 
 
 
 
 
 
 
 
 
2208	 * If someone grew this zone while we were waiting for spinlock, return
2209	 * true, as there might be enough pages already.
2210	 */
2211	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2212		pgdat_resize_unlock(pgdat, &flags);
2213		return true;
2214	}
2215
2216	/* If the zone is empty somebody else may have cleared out the zone */
2217	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2218						 first_deferred_pfn)) {
2219		pgdat->first_deferred_pfn = ULONG_MAX;
2220		pgdat_resize_unlock(pgdat, &flags);
2221		/* Retry only once. */
2222		return first_deferred_pfn != ULONG_MAX;
2223	}
2224
2225	/*
2226	 * Initialize and free pages in MAX_ORDER sized increments so
2227	 * that we can avoid introducing any issues with the buddy
2228	 * allocator.
2229	 */
2230	while (spfn < epfn) {
2231		/* update our first deferred PFN for this section */
2232		first_deferred_pfn = spfn;
 
 
 
2233
2234		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2235		touch_nmi_watchdog();
 
2236
2237		/* We should only stop along section boundaries */
2238		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2239			continue;
 
2240
2241		/* If our quota has been met we can stop here */
2242		if (nr_pages >= nr_pages_needed)
2243			break;
2244	}
2245
2246	pgdat->first_deferred_pfn = spfn;
2247	pgdat_resize_unlock(pgdat, &flags);
2248
2249	return nr_pages > 0;
2250}
2251
2252/*
2253 * deferred_grow_zone() is __init, but it is called from
2254 * get_page_from_freelist() during early boot until deferred_pages permanently
2255 * disables this call. This is why we have refdata wrapper to avoid warning,
2256 * and to ensure that the function body gets unloaded.
2257 */
2258static bool __ref
2259_deferred_grow_zone(struct zone *zone, unsigned int order)
2260{
2261	return deferred_grow_zone(zone, order);
2262}
2263
2264#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2265
2266void __init page_alloc_init_late(void)
2267{
2268	struct zone *zone;
2269	int nid;
2270
2271#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 
2272
2273	/* There will be num_node_state(N_MEMORY) threads */
2274	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2275	for_each_node_state(nid, N_MEMORY) {
2276		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2277	}
2278
2279	/* Block until all are initialised */
2280	wait_for_completion(&pgdat_init_all_done_comp);
2281
2282	/*
2283	 * We initialized the rest of the deferred pages.  Permanently disable
2284	 * on-demand struct page initialization.
2285	 */
2286	static_branch_disable(&deferred_pages);
2287
2288	/* Reinit limits that are based on free pages after the kernel is up */
2289	files_maxfiles_init();
2290#endif
2291
2292	buffer_init();
2293
2294	/* Discard memblock private memory */
2295	memblock_discard();
2296
2297	for_each_node_state(nid, N_MEMORY)
2298		shuffle_free_memory(NODE_DATA(nid));
2299
2300	for_each_populated_zone(zone)
2301		set_zone_contiguous(zone);
2302}
2303
2304#ifdef CONFIG_CMA
2305/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2306void __init init_cma_reserved_pageblock(struct page *page)
2307{
2308	unsigned i = pageblock_nr_pages;
2309	struct page *p = page;
2310
2311	do {
2312		__ClearPageReserved(p);
2313		set_page_count(p, 0);
2314	} while (++p, --i);
2315
2316	set_pageblock_migratetype(page, MIGRATE_CMA);
2317	set_page_refcounted(page);
2318	__free_pages(page, pageblock_order);
 
 
 
 
 
 
 
 
 
 
 
2319
2320	adjust_managed_page_count(page, pageblock_nr_pages);
2321	page_zone(page)->cma_pages += pageblock_nr_pages;
2322}
2323#endif
2324
2325/*
2326 * The order of subdivision here is critical for the IO subsystem.
2327 * Please do not alter this order without good reasons and regression
2328 * testing. Specifically, as large blocks of memory are subdivided,
2329 * the order in which smaller blocks are delivered depends on the order
2330 * they're subdivided in this function. This is the primary factor
2331 * influencing the order in which pages are delivered to the IO
2332 * subsystem according to empirical testing, and this is also justified
2333 * by considering the behavior of a buddy system containing a single
2334 * large block of memory acted on by a series of small allocations.
2335 * This behavior is a critical factor in sglist merging's success.
2336 *
2337 * -- nyc
2338 */
2339static inline void expand(struct zone *zone, struct page *page,
2340	int low, int high, int migratetype)
 
2341{
2342	unsigned long size = 1 << high;
2343
2344	while (high > low) {
 
2345		high--;
2346		size >>= 1;
2347		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2348
2349		/*
2350		 * Mark as guard pages (or page), that will allow to
2351		 * merge back to allocator when buddy will be freed.
2352		 * Corresponding page table entries will not be touched,
2353		 * pages will stay not present in virtual address space
2354		 */
2355		if (set_page_guard(zone, &page[size], high, migratetype))
2356			continue;
2357
2358		add_to_free_list(&page[size], zone, high, migratetype);
2359		set_buddy_order(&page[size], high);
 
2360	}
2361}
2362
2363static void check_new_page_bad(struct page *page)
2364{
 
 
 
 
 
 
 
 
 
2365	if (unlikely(page->flags & __PG_HWPOISON)) {
 
 
2366		/* Don't complain about hwpoisoned pages */
2367		page_mapcount_reset(page); /* remove PageBuddy */
2368		return;
2369	}
2370
2371	bad_page(page,
2372		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
 
 
 
 
 
 
2373}
2374
2375/*
2376 * This page is about to be returned from the page allocator
2377 */
2378static inline int check_new_page(struct page *page)
2379{
2380	if (likely(page_expected_state(page,
2381				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2382		return 0;
2383
2384	check_new_page_bad(page);
2385	return 1;
2386}
2387
2388static bool check_new_pages(struct page *page, unsigned int order)
2389{
2390	int i;
2391	for (i = 0; i < (1 << order); i++) {
2392		struct page *p = page + i;
2393
2394		if (unlikely(check_new_page(p)))
2395			return true;
2396	}
2397
2398	return false;
2399}
2400
2401#ifdef CONFIG_DEBUG_VM
2402/*
2403 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2404 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2405 * also checked when pcp lists are refilled from the free lists.
2406 */
2407static inline bool check_pcp_refill(struct page *page, unsigned int order)
2408{
2409	if (debug_pagealloc_enabled_static())
2410		return check_new_pages(page, order);
2411	else
2412		return false;
2413}
2414
2415static inline bool check_new_pcp(struct page *page, unsigned int order)
2416{
2417	return check_new_pages(page, order);
2418}
2419#else
2420/*
2421 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2422 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2423 * enabled, they are also checked when being allocated from the pcp lists.
2424 */
2425static inline bool check_pcp_refill(struct page *page, unsigned int order)
2426{
2427	return check_new_pages(page, order);
2428}
2429static inline bool check_new_pcp(struct page *page, unsigned int order)
2430{
2431	if (debug_pagealloc_enabled_static())
2432		return check_new_pages(page, order);
2433	else
2434		return false;
2435}
2436#endif /* CONFIG_DEBUG_VM */
2437
2438static inline bool should_skip_kasan_unpoison(gfp_t flags)
2439{
2440	/* Don't skip if a software KASAN mode is enabled. */
2441	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2442	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2443		return false;
2444
2445	/* Skip, if hardware tag-based KASAN is not enabled. */
2446	if (!kasan_hw_tags_enabled())
2447		return true;
2448
2449	/*
2450	 * With hardware tag-based KASAN enabled, skip if this has been
2451	 * requested via __GFP_SKIP_KASAN_UNPOISON.
2452	 */
2453	return flags & __GFP_SKIP_KASAN_UNPOISON;
2454}
2455
2456static inline bool should_skip_init(gfp_t flags)
2457{
2458	/* Don't skip, if hardware tag-based KASAN is not enabled. */
2459	if (!kasan_hw_tags_enabled())
2460		return false;
2461
2462	/* For hardware tag-based KASAN, skip if requested. */
2463	return (flags & __GFP_SKIP_ZERO);
2464}
2465
2466inline void post_alloc_hook(struct page *page, unsigned int order,
2467				gfp_t gfp_flags)
2468{
2469	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2470			!should_skip_init(gfp_flags);
2471	bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2472	int i;
2473
2474	set_page_private(page, 0);
2475	set_page_refcounted(page);
2476
2477	arch_alloc_page(page, order);
2478	debug_pagealloc_map_pages(page, 1 << order);
2479
2480	/*
2481	 * Page unpoisoning must happen before memory initialization.
2482	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2483	 * allocations and the page unpoisoning code will complain.
2484	 */
2485	kernel_unpoison_pages(page, 1 << order);
2486
2487	/*
2488	 * As memory initialization might be integrated into KASAN,
2489	 * KASAN unpoisoning and memory initializion code must be
2490	 * kept together to avoid discrepancies in behavior.
2491	 */
2492
2493	/*
2494	 * If memory tags should be zeroed (which happens only when memory
2495	 * should be initialized as well).
2496	 */
2497	if (init_tags) {
2498		/* Initialize both memory and tags. */
2499		for (i = 0; i != 1 << order; ++i)
2500			tag_clear_highpage(page + i);
2501
2502		/* Note that memory is already initialized by the loop above. */
2503		init = false;
2504	}
2505	if (!should_skip_kasan_unpoison(gfp_flags)) {
2506		/* Unpoison shadow memory or set memory tags. */
2507		kasan_unpoison_pages(page, order, init);
2508
2509		/* Note that memory is already initialized by KASAN. */
2510		if (kasan_has_integrated_init())
2511			init = false;
2512	} else {
2513		/* Ensure page_address() dereferencing does not fault. */
2514		for (i = 0; i != 1 << order; ++i)
2515			page_kasan_tag_reset(page + i);
2516	}
2517	/* If memory is still not initialized, do it now. */
2518	if (init)
2519		kernel_init_pages(page, 1 << order);
2520	/* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2521	if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2522		SetPageSkipKASanPoison(page);
2523
2524	set_page_owner(page, order, gfp_flags);
2525	page_table_check_alloc(page, order);
2526}
2527
2528static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2529							unsigned int alloc_flags)
2530{
 
 
2531	post_alloc_hook(page, order, gfp_flags);
2532
 
 
 
 
2533	if (order && (gfp_flags & __GFP_COMP))
2534		prep_compound_page(page, order);
2535
2536	/*
2537	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2538	 * allocate the page. The expectation is that the caller is taking
2539	 * steps that will free more memory. The caller should avoid the page
2540	 * being used for !PFMEMALLOC purposes.
2541	 */
2542	if (alloc_flags & ALLOC_NO_WATERMARKS)
2543		set_page_pfmemalloc(page);
2544	else
2545		clear_page_pfmemalloc(page);
2546}
2547
2548/*
2549 * Go through the free lists for the given migratetype and remove
2550 * the smallest available page from the freelists
2551 */
2552static __always_inline
2553struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2554						int migratetype)
2555{
2556	unsigned int current_order;
2557	struct free_area *area;
2558	struct page *page;
2559
2560	/* Find a page of the appropriate size in the preferred list */
2561	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2562		area = &(zone->free_area[current_order]);
2563		page = get_page_from_free_area(area, migratetype);
 
2564		if (!page)
2565			continue;
2566		del_page_from_free_list(page, zone, current_order);
2567		expand(zone, page, order, current_order, migratetype);
 
 
2568		set_pcppage_migratetype(page, migratetype);
2569		trace_mm_page_alloc_zone_locked(page, order, migratetype,
2570				pcp_allowed_order(order) &&
2571				migratetype < MIGRATE_PCPTYPES);
2572		return page;
2573	}
2574
2575	return NULL;
2576}
2577
2578
2579/*
2580 * This array describes the order lists are fallen back to when
2581 * the free lists for the desirable migrate type are depleted
2582 *
2583 * The other migratetypes do not have fallbacks.
2584 */
2585static int fallbacks[MIGRATE_TYPES][3] = {
2586	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
 
2587	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2588	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
 
 
 
 
 
2589};
2590
2591#ifdef CONFIG_CMA
2592static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2593					unsigned int order)
2594{
2595	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2596}
2597#else
2598static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2599					unsigned int order) { return NULL; }
2600#endif
2601
2602/*
2603 * Move the free pages in a range to the freelist tail of the requested type.
2604 * Note that start_page and end_pages are not aligned on a pageblock
2605 * boundary. If alignment is required, use move_freepages_block()
2606 */
2607static int move_freepages(struct zone *zone,
2608			  unsigned long start_pfn, unsigned long end_pfn,
2609			  int migratetype, int *num_movable)
2610{
2611	struct page *page;
2612	unsigned long pfn;
2613	unsigned int order;
2614	int pages_moved = 0;
2615
2616	for (pfn = start_pfn; pfn <= end_pfn;) {
2617		page = pfn_to_page(pfn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2618		if (!PageBuddy(page)) {
2619			/*
2620			 * We assume that pages that could be isolated for
2621			 * migration are movable. But we don't actually try
2622			 * isolating, as that would be expensive.
2623			 */
2624			if (num_movable &&
2625					(PageLRU(page) || __PageMovable(page)))
2626				(*num_movable)++;
2627			pfn++;
 
2628			continue;
2629		}
2630
2631		/* Make sure we are not inadvertently changing nodes */
2632		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2633		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2634
2635		order = buddy_order(page);
2636		move_to_free_list(page, zone, order, migratetype);
2637		pfn += 1 << order;
2638		pages_moved += 1 << order;
2639	}
2640
2641	return pages_moved;
2642}
2643
2644int move_freepages_block(struct zone *zone, struct page *page,
2645				int migratetype, int *num_movable)
2646{
2647	unsigned long start_pfn, end_pfn, pfn;
 
2648
2649	if (num_movable)
2650		*num_movable = 0;
2651
2652	pfn = page_to_pfn(page);
2653	start_pfn = pageblock_start_pfn(pfn);
2654	end_pfn = pageblock_end_pfn(pfn) - 1;
2655
2656	/* Do not cross zone boundaries */
2657	if (!zone_spans_pfn(zone, start_pfn))
2658		start_pfn = pfn;
2659	if (!zone_spans_pfn(zone, end_pfn))
2660		return 0;
2661
2662	return move_freepages(zone, start_pfn, end_pfn, migratetype,
2663								num_movable);
2664}
2665
2666static void change_pageblock_range(struct page *pageblock_page,
2667					int start_order, int migratetype)
2668{
2669	int nr_pageblocks = 1 << (start_order - pageblock_order);
2670
2671	while (nr_pageblocks--) {
2672		set_pageblock_migratetype(pageblock_page, migratetype);
2673		pageblock_page += pageblock_nr_pages;
2674	}
2675}
2676
2677/*
2678 * When we are falling back to another migratetype during allocation, try to
2679 * steal extra free pages from the same pageblocks to satisfy further
2680 * allocations, instead of polluting multiple pageblocks.
2681 *
2682 * If we are stealing a relatively large buddy page, it is likely there will
2683 * be more free pages in the pageblock, so try to steal them all. For
2684 * reclaimable and unmovable allocations, we steal regardless of page size,
2685 * as fragmentation caused by those allocations polluting movable pageblocks
2686 * is worse than movable allocations stealing from unmovable and reclaimable
2687 * pageblocks.
2688 */
2689static bool can_steal_fallback(unsigned int order, int start_mt)
2690{
2691	/*
2692	 * Leaving this order check is intended, although there is
2693	 * relaxed order check in next check. The reason is that
2694	 * we can actually steal whole pageblock if this condition met,
2695	 * but, below check doesn't guarantee it and that is just heuristic
2696	 * so could be changed anytime.
2697	 */
2698	if (order >= pageblock_order)
2699		return true;
2700
2701	if (order >= pageblock_order / 2 ||
2702		start_mt == MIGRATE_RECLAIMABLE ||
2703		start_mt == MIGRATE_UNMOVABLE ||
2704		page_group_by_mobility_disabled)
2705		return true;
2706
2707	return false;
2708}
2709
2710static inline bool boost_watermark(struct zone *zone)
2711{
2712	unsigned long max_boost;
2713
2714	if (!watermark_boost_factor)
2715		return false;
2716	/*
2717	 * Don't bother in zones that are unlikely to produce results.
2718	 * On small machines, including kdump capture kernels running
2719	 * in a small area, boosting the watermark can cause an out of
2720	 * memory situation immediately.
2721	 */
2722	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2723		return false;
2724
2725	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2726			watermark_boost_factor, 10000);
2727
2728	/*
2729	 * high watermark may be uninitialised if fragmentation occurs
2730	 * very early in boot so do not boost. We do not fall
2731	 * through and boost by pageblock_nr_pages as failing
2732	 * allocations that early means that reclaim is not going
2733	 * to help and it may even be impossible to reclaim the
2734	 * boosted watermark resulting in a hang.
2735	 */
2736	if (!max_boost)
2737		return false;
2738
2739	max_boost = max(pageblock_nr_pages, max_boost);
2740
2741	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2742		max_boost);
2743
2744	return true;
2745}
2746
2747/*
2748 * This function implements actual steal behaviour. If order is large enough,
2749 * we can steal whole pageblock. If not, we first move freepages in this
2750 * pageblock to our migratetype and determine how many already-allocated pages
2751 * are there in the pageblock with a compatible migratetype. If at least half
2752 * of pages are free or compatible, we can change migratetype of the pageblock
2753 * itself, so pages freed in the future will be put on the correct free list.
2754 */
2755static void steal_suitable_fallback(struct zone *zone, struct page *page,
2756		unsigned int alloc_flags, int start_type, bool whole_block)
2757{
2758	unsigned int current_order = buddy_order(page);
 
2759	int free_pages, movable_pages, alike_pages;
2760	int old_block_type;
2761
2762	old_block_type = get_pageblock_migratetype(page);
2763
2764	/*
2765	 * This can happen due to races and we want to prevent broken
2766	 * highatomic accounting.
2767	 */
2768	if (is_migrate_highatomic(old_block_type))
2769		goto single_page;
2770
2771	/* Take ownership for orders >= pageblock_order */
2772	if (current_order >= pageblock_order) {
2773		change_pageblock_range(page, current_order, start_type);
2774		goto single_page;
2775	}
2776
2777	/*
2778	 * Boost watermarks to increase reclaim pressure to reduce the
2779	 * likelihood of future fallbacks. Wake kswapd now as the node
2780	 * may be balanced overall and kswapd will not wake naturally.
2781	 */
2782	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2783		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2784
2785	/* We are not allowed to try stealing from the whole block */
2786	if (!whole_block)
2787		goto single_page;
2788
2789	free_pages = move_freepages_block(zone, page, start_type,
2790						&movable_pages);
2791	/*
2792	 * Determine how many pages are compatible with our allocation.
2793	 * For movable allocation, it's the number of movable pages which
2794	 * we just obtained. For other types it's a bit more tricky.
2795	 */
2796	if (start_type == MIGRATE_MOVABLE) {
2797		alike_pages = movable_pages;
2798	} else {
2799		/*
2800		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2801		 * to MOVABLE pageblock, consider all non-movable pages as
2802		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2803		 * vice versa, be conservative since we can't distinguish the
2804		 * exact migratetype of non-movable pages.
2805		 */
2806		if (old_block_type == MIGRATE_MOVABLE)
2807			alike_pages = pageblock_nr_pages
2808						- (free_pages + movable_pages);
2809		else
2810			alike_pages = 0;
2811	}
2812
2813	/* moving whole block can fail due to zone boundary conditions */
2814	if (!free_pages)
2815		goto single_page;
2816
2817	/*
2818	 * If a sufficient number of pages in the block are either free or of
2819	 * comparable migratability as our allocation, claim the whole block.
2820	 */
2821	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2822			page_group_by_mobility_disabled)
2823		set_pageblock_migratetype(page, start_type);
2824
2825	return;
2826
2827single_page:
2828	move_to_free_list(page, zone, current_order, start_type);
 
2829}
2830
2831/*
2832 * Check whether there is a suitable fallback freepage with requested order.
2833 * If only_stealable is true, this function returns fallback_mt only if
2834 * we can steal other freepages all together. This would help to reduce
2835 * fragmentation due to mixed migratetype pages in one pageblock.
2836 */
2837int find_suitable_fallback(struct free_area *area, unsigned int order,
2838			int migratetype, bool only_stealable, bool *can_steal)
2839{
2840	int i;
2841	int fallback_mt;
2842
2843	if (area->nr_free == 0)
2844		return -1;
2845
2846	*can_steal = false;
2847	for (i = 0;; i++) {
2848		fallback_mt = fallbacks[migratetype][i];
2849		if (fallback_mt == MIGRATE_TYPES)
2850			break;
2851
2852		if (free_area_empty(area, fallback_mt))
2853			continue;
2854
2855		if (can_steal_fallback(order, migratetype))
2856			*can_steal = true;
2857
2858		if (!only_stealable)
2859			return fallback_mt;
2860
2861		if (*can_steal)
2862			return fallback_mt;
2863	}
2864
2865	return -1;
2866}
2867
2868/*
2869 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2870 * there are no empty page blocks that contain a page with a suitable order
2871 */
2872static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2873				unsigned int alloc_order)
2874{
2875	int mt;
2876	unsigned long max_managed, flags;
2877
2878	/*
2879	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2880	 * Check is race-prone but harmless.
2881	 */
2882	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2883	if (zone->nr_reserved_highatomic >= max_managed)
2884		return;
2885
2886	spin_lock_irqsave(&zone->lock, flags);
2887
2888	/* Recheck the nr_reserved_highatomic limit under the lock */
2889	if (zone->nr_reserved_highatomic >= max_managed)
2890		goto out_unlock;
2891
2892	/* Yoink! */
2893	mt = get_pageblock_migratetype(page);
2894	/* Only reserve normal pageblocks (i.e., they can merge with others) */
2895	if (migratetype_is_mergeable(mt)) {
2896		zone->nr_reserved_highatomic += pageblock_nr_pages;
2897		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2898		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2899	}
2900
2901out_unlock:
2902	spin_unlock_irqrestore(&zone->lock, flags);
2903}
2904
2905/*
2906 * Used when an allocation is about to fail under memory pressure. This
2907 * potentially hurts the reliability of high-order allocations when under
2908 * intense memory pressure but failed atomic allocations should be easier
2909 * to recover from than an OOM.
2910 *
2911 * If @force is true, try to unreserve a pageblock even though highatomic
2912 * pageblock is exhausted.
2913 */
2914static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2915						bool force)
2916{
2917	struct zonelist *zonelist = ac->zonelist;
2918	unsigned long flags;
2919	struct zoneref *z;
2920	struct zone *zone;
2921	struct page *page;
2922	int order;
2923	bool ret;
2924
2925	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2926								ac->nodemask) {
2927		/*
2928		 * Preserve at least one pageblock unless memory pressure
2929		 * is really high.
2930		 */
2931		if (!force && zone->nr_reserved_highatomic <=
2932					pageblock_nr_pages)
2933			continue;
2934
2935		spin_lock_irqsave(&zone->lock, flags);
2936		for (order = 0; order < MAX_ORDER; order++) {
2937			struct free_area *area = &(zone->free_area[order]);
2938
2939			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
 
 
2940			if (!page)
2941				continue;
2942
2943			/*
2944			 * In page freeing path, migratetype change is racy so
2945			 * we can counter several free pages in a pageblock
2946			 * in this loop although we changed the pageblock type
2947			 * from highatomic to ac->migratetype. So we should
2948			 * adjust the count once.
2949			 */
2950			if (is_migrate_highatomic_page(page)) {
2951				/*
2952				 * It should never happen but changes to
2953				 * locking could inadvertently allow a per-cpu
2954				 * drain to add pages to MIGRATE_HIGHATOMIC
2955				 * while unreserving so be safe and watch for
2956				 * underflows.
2957				 */
2958				zone->nr_reserved_highatomic -= min(
2959						pageblock_nr_pages,
2960						zone->nr_reserved_highatomic);
2961			}
2962
2963			/*
2964			 * Convert to ac->migratetype and avoid the normal
2965			 * pageblock stealing heuristics. Minimally, the caller
2966			 * is doing the work and needs the pages. More
2967			 * importantly, if the block was always converted to
2968			 * MIGRATE_UNMOVABLE or another type then the number
2969			 * of pageblocks that cannot be completely freed
2970			 * may increase.
2971			 */
2972			set_pageblock_migratetype(page, ac->migratetype);
2973			ret = move_freepages_block(zone, page, ac->migratetype,
2974									NULL);
2975			if (ret) {
2976				spin_unlock_irqrestore(&zone->lock, flags);
2977				return ret;
2978			}
2979		}
2980		spin_unlock_irqrestore(&zone->lock, flags);
2981	}
2982
2983	return false;
2984}
2985
2986/*
2987 * Try finding a free buddy page on the fallback list and put it on the free
2988 * list of requested migratetype, possibly along with other pages from the same
2989 * block, depending on fragmentation avoidance heuristics. Returns true if
2990 * fallback was found so that __rmqueue_smallest() can grab it.
2991 *
2992 * The use of signed ints for order and current_order is a deliberate
2993 * deviation from the rest of this file, to make the for loop
2994 * condition simpler.
2995 */
2996static __always_inline bool
2997__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2998						unsigned int alloc_flags)
2999{
3000	struct free_area *area;
3001	int current_order;
3002	int min_order = order;
3003	struct page *page;
3004	int fallback_mt;
3005	bool can_steal;
3006
3007	/*
3008	 * Do not steal pages from freelists belonging to other pageblocks
3009	 * i.e. orders < pageblock_order. If there are no local zones free,
3010	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
3011	 */
3012	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
3013		min_order = pageblock_order;
3014
3015	/*
3016	 * Find the largest available free page in the other list. This roughly
3017	 * approximates finding the pageblock with the most free pages, which
3018	 * would be too costly to do exactly.
3019	 */
3020	for (current_order = MAX_ORDER - 1; current_order >= min_order;
3021				--current_order) {
3022		area = &(zone->free_area[current_order]);
3023		fallback_mt = find_suitable_fallback(area, current_order,
3024				start_migratetype, false, &can_steal);
3025		if (fallback_mt == -1)
3026			continue;
3027
3028		/*
3029		 * We cannot steal all free pages from the pageblock and the
3030		 * requested migratetype is movable. In that case it's better to
3031		 * steal and split the smallest available page instead of the
3032		 * largest available page, because even if the next movable
3033		 * allocation falls back into a different pageblock than this
3034		 * one, it won't cause permanent fragmentation.
3035		 */
3036		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
3037					&& current_order > order)
3038			goto find_smallest;
3039
3040		goto do_steal;
3041	}
3042
3043	return false;
3044
3045find_smallest:
3046	for (current_order = order; current_order < MAX_ORDER;
3047							current_order++) {
3048		area = &(zone->free_area[current_order]);
3049		fallback_mt = find_suitable_fallback(area, current_order,
3050				start_migratetype, false, &can_steal);
3051		if (fallback_mt != -1)
3052			break;
3053	}
3054
3055	/*
3056	 * This should not happen - we already found a suitable fallback
3057	 * when looking for the largest page.
3058	 */
3059	VM_BUG_ON(current_order == MAX_ORDER);
3060
3061do_steal:
3062	page = get_page_from_free_area(area, fallback_mt);
 
3063
3064	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
3065								can_steal);
3066
3067	trace_mm_page_alloc_extfrag(page, order, current_order,
3068		start_migratetype, fallback_mt);
3069
3070	return true;
3071
3072}
3073
3074/*
3075 * Do the hard work of removing an element from the buddy allocator.
3076 * Call me with the zone->lock already held.
3077 */
3078static __always_inline struct page *
3079__rmqueue(struct zone *zone, unsigned int order, int migratetype,
3080						unsigned int alloc_flags)
3081{
3082	struct page *page;
3083
3084	if (IS_ENABLED(CONFIG_CMA)) {
3085		/*
3086		 * Balance movable allocations between regular and CMA areas by
3087		 * allocating from CMA when over half of the zone's free memory
3088		 * is in the CMA area.
3089		 */
3090		if (alloc_flags & ALLOC_CMA &&
3091		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
3092		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
3093			page = __rmqueue_cma_fallback(zone, order);
3094			if (page)
3095				return page;
3096		}
3097	}
3098retry:
3099	page = __rmqueue_smallest(zone, order, migratetype);
3100	if (unlikely(!page)) {
3101		if (alloc_flags & ALLOC_CMA)
3102			page = __rmqueue_cma_fallback(zone, order);
3103
3104		if (!page && __rmqueue_fallback(zone, order, migratetype,
3105								alloc_flags))
3106			goto retry;
3107	}
 
 
3108	return page;
3109}
3110
3111/*
3112 * Obtain a specified number of elements from the buddy allocator, all under
3113 * a single hold of the lock, for efficiency.  Add them to the supplied list.
3114 * Returns the number of new pages which were placed at *list.
3115 */
3116static int rmqueue_bulk(struct zone *zone, unsigned int order,
3117			unsigned long count, struct list_head *list,
3118			int migratetype, unsigned int alloc_flags)
3119{
3120	unsigned long flags;
3121	int i, allocated = 0;
3122
3123	spin_lock_irqsave(&zone->lock, flags);
3124	for (i = 0; i < count; ++i) {
3125		struct page *page = __rmqueue(zone, order, migratetype,
3126								alloc_flags);
3127		if (unlikely(page == NULL))
3128			break;
3129
3130		if (unlikely(check_pcp_refill(page, order)))
3131			continue;
3132
3133		/*
3134		 * Split buddy pages returned by expand() are received here in
3135		 * physical page order. The page is added to the tail of
3136		 * caller's list. From the callers perspective, the linked list
3137		 * is ordered by page number under some conditions. This is
3138		 * useful for IO devices that can forward direction from the
3139		 * head, thus also in the physical page order. This is useful
3140		 * for IO devices that can merge IO requests if the physical
3141		 * pages are ordered properly.
3142		 */
3143		list_add_tail(&page->pcp_list, list);
3144		allocated++;
3145		if (is_migrate_cma(get_pcppage_migratetype(page)))
3146			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3147					      -(1 << order));
3148	}
3149
3150	/*
3151	 * i pages were removed from the buddy list even if some leak due
3152	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3153	 * on i. Do not confuse with 'allocated' which is the number of
3154	 * pages added to the pcp list.
3155	 */
3156	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3157	spin_unlock_irqrestore(&zone->lock, flags);
3158	return allocated;
3159}
3160
3161#ifdef CONFIG_NUMA
3162/*
3163 * Called from the vmstat counter updater to drain pagesets of this
3164 * currently executing processor on remote nodes after they have
3165 * expired.
 
 
 
3166 */
3167void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3168{
 
3169	int to_drain, batch;
3170
 
3171	batch = READ_ONCE(pcp->batch);
3172	to_drain = min(pcp->count, batch);
3173	if (to_drain > 0) {
3174		spin_lock(&pcp->lock);
3175		free_pcppages_bulk(zone, to_drain, pcp, 0);
3176		spin_unlock(&pcp->lock);
3177	}
3178}
3179#endif
3180
3181/*
3182 * Drain pcplists of the indicated processor and zone.
 
 
 
 
3183 */
3184static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3185{
 
 
3186	struct per_cpu_pages *pcp;
3187
3188	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3189	if (pcp->count) {
3190		spin_lock(&pcp->lock);
3191		free_pcppages_bulk(zone, pcp->count, pcp, 0);
3192		spin_unlock(&pcp->lock);
3193	}
 
3194}
3195
3196/*
3197 * Drain pcplists of all zones on the indicated processor.
 
 
 
 
3198 */
3199static void drain_pages(unsigned int cpu)
3200{
3201	struct zone *zone;
3202
3203	for_each_populated_zone(zone) {
3204		drain_pages_zone(cpu, zone);
3205	}
3206}
3207
3208/*
3209 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
 
 
 
3210 */
3211void drain_local_pages(struct zone *zone)
3212{
3213	int cpu = smp_processor_id();
3214
3215	if (zone)
3216		drain_pages_zone(cpu, zone);
3217	else
3218		drain_pages(cpu);
3219}
3220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3221/*
3222 * The implementation of drain_all_pages(), exposing an extra parameter to
3223 * drain on all cpus.
3224 *
3225 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3226 * not empty. The check for non-emptiness can however race with a free to
3227 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3228 * that need the guarantee that every CPU has drained can disable the
3229 * optimizing racy check.
3230 */
3231static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3232{
3233	int cpu;
3234
3235	/*
3236	 * Allocate in the BSS so we won't require allocation in
3237	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3238	 */
3239	static cpumask_t cpus_with_pcps;
3240
3241	/*
 
 
 
 
 
 
 
3242	 * Do not drain if one is already in progress unless it's specific to
3243	 * a zone. Such callers are primarily CMA and memory hotplug and need
3244	 * the drain to be complete when the call returns.
3245	 */
3246	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3247		if (!zone)
3248			return;
3249		mutex_lock(&pcpu_drain_mutex);
3250	}
3251
3252	/*
3253	 * We don't care about racing with CPU hotplug event
3254	 * as offline notification will cause the notified
3255	 * cpu to drain that CPU pcps and on_each_cpu_mask
3256	 * disables preemption as part of its processing
3257	 */
3258	for_each_online_cpu(cpu) {
3259		struct per_cpu_pages *pcp;
3260		struct zone *z;
3261		bool has_pcps = false;
3262
3263		if (force_all_cpus) {
3264			/*
3265			 * The pcp.count check is racy, some callers need a
3266			 * guarantee that no cpu is missed.
3267			 */
3268			has_pcps = true;
3269		} else if (zone) {
3270			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3271			if (pcp->count)
3272				has_pcps = true;
3273		} else {
3274			for_each_populated_zone(z) {
3275				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3276				if (pcp->count) {
3277					has_pcps = true;
3278					break;
3279				}
3280			}
3281		}
3282
3283		if (has_pcps)
3284			cpumask_set_cpu(cpu, &cpus_with_pcps);
3285		else
3286			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3287	}
3288
3289	for_each_cpu(cpu, &cpus_with_pcps) {
3290		if (zone)
3291			drain_pages_zone(cpu, zone);
3292		else
3293			drain_pages(cpu);
3294	}
 
 
3295
3296	mutex_unlock(&pcpu_drain_mutex);
3297}
3298
3299/*
3300 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3301 *
3302 * When zone parameter is non-NULL, spill just the single zone's pages.
3303 */
3304void drain_all_pages(struct zone *zone)
3305{
3306	__drain_all_pages(zone, false);
3307}
3308
3309#ifdef CONFIG_HIBERNATION
3310
3311/*
3312 * Touch the watchdog for every WD_PAGE_COUNT pages.
3313 */
3314#define WD_PAGE_COUNT	(128*1024)
3315
3316void mark_free_pages(struct zone *zone)
3317{
3318	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3319	unsigned long flags;
3320	unsigned int order, t;
3321	struct page *page;
3322
3323	if (zone_is_empty(zone))
3324		return;
3325
3326	spin_lock_irqsave(&zone->lock, flags);
3327
3328	max_zone_pfn = zone_end_pfn(zone);
3329	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3330		if (pfn_valid(pfn)) {
3331			page = pfn_to_page(pfn);
3332
3333			if (!--page_count) {
3334				touch_nmi_watchdog();
3335				page_count = WD_PAGE_COUNT;
3336			}
3337
3338			if (page_zone(page) != zone)
3339				continue;
3340
3341			if (!swsusp_page_is_forbidden(page))
3342				swsusp_unset_page_free(page);
3343		}
3344
3345	for_each_migratetype_order(order, t) {
3346		list_for_each_entry(page,
3347				&zone->free_area[order].free_list[t], buddy_list) {
3348			unsigned long i;
3349
3350			pfn = page_to_pfn(page);
3351			for (i = 0; i < (1UL << order); i++) {
3352				if (!--page_count) {
3353					touch_nmi_watchdog();
3354					page_count = WD_PAGE_COUNT;
3355				}
3356				swsusp_set_page_free(pfn_to_page(pfn + i));
3357			}
3358		}
3359	}
3360	spin_unlock_irqrestore(&zone->lock, flags);
3361}
3362#endif /* CONFIG_PM */
3363
3364static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3365							unsigned int order)
3366{
3367	int migratetype;
3368
3369	if (!free_pcp_prepare(page, order))
3370		return false;
3371
3372	migratetype = get_pfnblock_migratetype(page, pfn);
3373	set_pcppage_migratetype(page, migratetype);
3374	return true;
3375}
3376
3377static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3378		       bool free_high)
3379{
3380	int min_nr_free, max_nr_free;
3381
3382	/* Free everything if batch freeing high-order pages. */
3383	if (unlikely(free_high))
3384		return pcp->count;
3385
3386	/* Check for PCP disabled or boot pageset */
3387	if (unlikely(high < batch))
3388		return 1;
3389
3390	/* Leave at least pcp->batch pages on the list */
3391	min_nr_free = batch;
3392	max_nr_free = high - batch;
3393
3394	/*
3395	 * Double the number of pages freed each time there is subsequent
3396	 * freeing of pages without any allocation.
3397	 */
3398	batch <<= pcp->free_factor;
3399	if (batch < max_nr_free)
3400		pcp->free_factor++;
3401	batch = clamp(batch, min_nr_free, max_nr_free);
3402
3403	return batch;
3404}
3405
3406static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3407		       bool free_high)
3408{
3409	int high = READ_ONCE(pcp->high);
3410
3411	if (unlikely(!high || free_high))
3412		return 0;
3413
3414	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3415		return high;
3416
3417	/*
3418	 * If reclaim is active, limit the number of pages that can be
3419	 * stored on pcp lists
3420	 */
3421	return min(READ_ONCE(pcp->batch) << 2, high);
3422}
3423
3424static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
3425				   struct page *page, int migratetype,
3426				   unsigned int order)
3427{
3428	int high;
3429	int pindex;
3430	bool free_high;
3431
3432	__count_vm_events(PGFREE, 1 << order);
3433	pindex = order_to_pindex(migratetype, order);
3434	list_add(&page->pcp_list, &pcp->lists[pindex]);
3435	pcp->count += 1 << order;
3436
3437	/*
3438	 * As high-order pages other than THP's stored on PCP can contribute
3439	 * to fragmentation, limit the number stored when PCP is heavily
3440	 * freeing without allocation. The remainder after bulk freeing
3441	 * stops will be drained from vmstat refresh context.
3442	 */
3443	free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3444
3445	high = nr_pcp_high(pcp, zone, free_high);
3446	if (pcp->count >= high) {
3447		int batch = READ_ONCE(pcp->batch);
3448
3449		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3450	}
3451}
3452
3453/*
3454 * Free a pcp page
3455 */
3456void free_unref_page(struct page *page, unsigned int order)
3457{
3458	unsigned long __maybe_unused UP_flags;
3459	struct per_cpu_pages *pcp;
3460	struct zone *zone;
3461	unsigned long pfn = page_to_pfn(page);
3462	int migratetype;
3463
3464	if (!free_unref_page_prepare(page, pfn, order))
3465		return;
3466
3467	/*
3468	 * We only track unmovable, reclaimable and movable on pcp lists.
3469	 * Place ISOLATE pages on the isolated list because they are being
3470	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3471	 * areas back if necessary. Otherwise, we may have to free
3472	 * excessively into the page allocator
3473	 */
3474	migratetype = get_pcppage_migratetype(page);
3475	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3476		if (unlikely(is_migrate_isolate(migratetype))) {
3477			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3478			return;
3479		}
3480		migratetype = MIGRATE_MOVABLE;
3481	}
3482
3483	zone = page_zone(page);
3484	pcp_trylock_prepare(UP_flags);
3485	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3486	if (pcp) {
3487		free_unref_page_commit(zone, pcp, page, migratetype, order);
3488		pcp_spin_unlock(pcp);
3489	} else {
3490		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
3491	}
3492	pcp_trylock_finish(UP_flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3493}
3494
3495/*
3496 * Free a list of 0-order pages
3497 */
3498void free_unref_page_list(struct list_head *list)
3499{
3500	unsigned long __maybe_unused UP_flags;
3501	struct page *page, *next;
3502	struct per_cpu_pages *pcp = NULL;
3503	struct zone *locked_zone = NULL;
3504	int batch_count = 0;
3505	int migratetype;
3506
3507	/* Prepare pages for freeing */
3508	list_for_each_entry_safe(page, next, list, lru) {
3509		unsigned long pfn = page_to_pfn(page);
3510		if (!free_unref_page_prepare(page, pfn, 0)) {
3511			list_del(&page->lru);
3512			continue;
3513		}
3514
3515		/*
3516		 * Free isolated pages directly to the allocator, see
3517		 * comment in free_unref_page.
3518		 */
3519		migratetype = get_pcppage_migratetype(page);
3520		if (unlikely(is_migrate_isolate(migratetype))) {
3521			list_del(&page->lru);
3522			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3523			continue;
3524		}
3525	}
3526
 
3527	list_for_each_entry_safe(page, next, list, lru) {
3528		struct zone *zone = page_zone(page);
3529
3530		list_del(&page->lru);
3531		migratetype = get_pcppage_migratetype(page);
 
3532
3533		/*
3534		 * Either different zone requiring a different pcp lock or
3535		 * excessive lock hold times when freeing a large list of
3536		 * pages.
3537		 */
3538		if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
3539			if (pcp) {
3540				pcp_spin_unlock(pcp);
3541				pcp_trylock_finish(UP_flags);
3542			}
3543
3544			batch_count = 0;
3545
3546			/*
3547			 * trylock is necessary as pages may be getting freed
3548			 * from IRQ or SoftIRQ context after an IO completion.
3549			 */
3550			pcp_trylock_prepare(UP_flags);
3551			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3552			if (unlikely(!pcp)) {
3553				pcp_trylock_finish(UP_flags);
3554				free_one_page(zone, page, page_to_pfn(page),
3555					      0, migratetype, FPI_NONE);
3556				locked_zone = NULL;
3557				continue;
3558			}
3559			locked_zone = zone;
3560		}
3561
3562		/*
3563		 * Non-isolated types over MIGRATE_PCPTYPES get added
3564		 * to the MIGRATE_MOVABLE pcp list.
3565		 */
3566		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3567			migratetype = MIGRATE_MOVABLE;
3568
3569		trace_mm_page_free_batched(page);
3570		free_unref_page_commit(zone, pcp, page, migratetype, 0);
3571		batch_count++;
3572	}
3573
3574	if (pcp) {
3575		pcp_spin_unlock(pcp);
3576		pcp_trylock_finish(UP_flags);
3577	}
 
3578}
3579
3580/*
3581 * split_page takes a non-compound higher-order page, and splits it into
3582 * n (1<<order) sub-pages: page[0..n]
3583 * Each sub-page must be freed individually.
3584 *
3585 * Note: this is probably too low level an operation for use in drivers.
3586 * Please consult with lkml before using this in your driver.
3587 */
3588void split_page(struct page *page, unsigned int order)
3589{
3590	int i;
3591
3592	VM_BUG_ON_PAGE(PageCompound(page), page);
3593	VM_BUG_ON_PAGE(!page_count(page), page);
3594
3595	for (i = 1; i < (1 << order); i++)
3596		set_page_refcounted(page + i);
3597	split_page_owner(page, 1 << order);
3598	split_page_memcg(page, 1 << order);
3599}
3600EXPORT_SYMBOL_GPL(split_page);
3601
3602int __isolate_free_page(struct page *page, unsigned int order)
3603{
3604	struct zone *zone = page_zone(page);
3605	int mt = get_pageblock_migratetype(page);
 
 
 
 
 
 
3606
3607	if (!is_migrate_isolate(mt)) {
3608		unsigned long watermark;
3609		/*
3610		 * Obey watermarks as if the page was being allocated. We can
3611		 * emulate a high-order watermark check with a raised order-0
3612		 * watermark, because we already know our high-order page
3613		 * exists.
3614		 */
3615		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3616		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3617			return 0;
3618
3619		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3620	}
3621
3622	del_page_from_free_list(page, zone, order);
 
 
 
3623
3624	/*
3625	 * Set the pageblock if the isolated page is at least half of a
3626	 * pageblock
3627	 */
3628	if (order >= pageblock_order - 1) {
3629		struct page *endpage = page + (1 << order) - 1;
3630		for (; page < endpage; page += pageblock_nr_pages) {
3631			int mt = get_pageblock_migratetype(page);
3632			/*
3633			 * Only change normal pageblocks (i.e., they can merge
3634			 * with others)
3635			 */
3636			if (migratetype_is_mergeable(mt))
3637				set_pageblock_migratetype(page,
3638							  MIGRATE_MOVABLE);
3639		}
3640	}
3641
 
3642	return 1UL << order;
3643}
3644
3645/**
3646 * __putback_isolated_page - Return a now-isolated page back where we got it
3647 * @page: Page that was isolated
3648 * @order: Order of the isolated page
3649 * @mt: The page's pageblock's migratetype
3650 *
3651 * This function is meant to return a page pulled from the free lists via
3652 * __isolate_free_page back to the free lists they were pulled from.
3653 */
3654void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3655{
3656	struct zone *zone = page_zone(page);
3657
3658	/* zone lock should be held when this function is called */
3659	lockdep_assert_held(&zone->lock);
3660
3661	/* Return isolated page to tail of freelist. */
3662	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3663			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3664}
3665
3666/*
3667 * Update NUMA hit/miss statistics
 
 
3668 */
3669static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3670				   long nr_account)
3671{
3672#ifdef CONFIG_NUMA
3673	enum numa_stat_item local_stat = NUMA_LOCAL;
3674
3675	/* skip numa counters update if numa stats is disabled */
3676	if (!static_branch_likely(&vm_numa_stat_key))
3677		return;
3678
3679	if (zone_to_nid(z) != numa_node_id())
3680		local_stat = NUMA_OTHER;
3681
3682	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3683		__count_numa_events(z, NUMA_HIT, nr_account);
3684	else {
3685		__count_numa_events(z, NUMA_MISS, nr_account);
3686		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3687	}
3688	__count_numa_events(z, local_stat, nr_account);
3689#endif
3690}
3691
3692static __always_inline
3693struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
3694			   unsigned int order, unsigned int alloc_flags,
3695			   int migratetype)
3696{
3697	struct page *page;
3698	unsigned long flags;
3699
3700	do {
3701		page = NULL;
3702		spin_lock_irqsave(&zone->lock, flags);
3703		/*
3704		 * order-0 request can reach here when the pcplist is skipped
3705		 * due to non-CMA allocation context. HIGHATOMIC area is
3706		 * reserved for high-order atomic allocation, so order-0
3707		 * request should skip it.
3708		 */
3709		if (order > 0 && alloc_flags & ALLOC_HARDER)
3710			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3711		if (!page) {
3712			page = __rmqueue(zone, order, migratetype, alloc_flags);
3713			if (!page) {
3714				spin_unlock_irqrestore(&zone->lock, flags);
3715				return NULL;
3716			}
3717		}
3718		__mod_zone_freepage_state(zone, -(1 << order),
3719					  get_pcppage_migratetype(page));
3720		spin_unlock_irqrestore(&zone->lock, flags);
3721	} while (check_new_pages(page, order));
3722
3723	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3724	zone_statistics(preferred_zone, zone, 1);
3725
3726	return page;
3727}
3728
3729/* Remove page from the per-cpu list, caller must protect the list */
3730static inline
3731struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3732			int migratetype,
3733			unsigned int alloc_flags,
3734			struct per_cpu_pages *pcp,
3735			struct list_head *list)
3736{
3737	struct page *page;
3738
3739	do {
3740		if (list_empty(list)) {
3741			int batch = READ_ONCE(pcp->batch);
3742			int alloced;
3743
3744			/*
3745			 * Scale batch relative to order if batch implies
3746			 * free pages can be stored on the PCP. Batch can
3747			 * be 1 for small zones or for boot pagesets which
3748			 * should never store free pages as the pages may
3749			 * belong to arbitrary zones.
3750			 */
3751			if (batch > 1)
3752				batch = max(batch >> order, 2);
3753			alloced = rmqueue_bulk(zone, order,
3754					batch, list,
3755					migratetype, alloc_flags);
3756
3757			pcp->count += alloced << order;
3758			if (unlikely(list_empty(list)))
3759				return NULL;
3760		}
3761
3762		page = list_first_entry(list, struct page, pcp_list);
3763		list_del(&page->pcp_list);
3764		pcp->count -= 1 << order;
3765	} while (check_new_pcp(page, order));
3766
3767	return page;
3768}
3769
3770/* Lock and remove page from the per-cpu list */
3771static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3772			struct zone *zone, unsigned int order,
3773			int migratetype, unsigned int alloc_flags)
3774{
3775	struct per_cpu_pages *pcp;
3776	struct list_head *list;
3777	struct page *page;
3778	unsigned long __maybe_unused UP_flags;
3779
3780	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
3781	pcp_trylock_prepare(UP_flags);
3782	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3783	if (!pcp) {
3784		pcp_trylock_finish(UP_flags);
3785		return NULL;
3786	}
3787
3788	/*
3789	 * On allocation, reduce the number of pages that are batch freed.
3790	 * See nr_pcp_free() where free_factor is increased for subsequent
3791	 * frees.
3792	 */
3793	pcp->free_factor >>= 1;
3794	list = &pcp->lists[order_to_pindex(migratetype, order)];
3795	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3796	pcp_spin_unlock(pcp);
3797	pcp_trylock_finish(UP_flags);
3798	if (page) {
3799		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3800		zone_statistics(preferred_zone, zone, 1);
3801	}
 
3802	return page;
3803}
3804
3805/*
3806 * Allocate a page from the given zone.
3807 * Use pcplists for THP or "cheap" high-order allocations.
3808 */
3809
3810/*
3811 * Do not instrument rmqueue() with KMSAN. This function may call
3812 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3813 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3814 * may call rmqueue() again, which will result in a deadlock.
3815 */
3816__no_sanitize_memory
3817static inline
3818struct page *rmqueue(struct zone *preferred_zone,
3819			struct zone *zone, unsigned int order,
3820			gfp_t gfp_flags, unsigned int alloc_flags,
3821			int migratetype)
3822{
 
3823	struct page *page;
3824
 
 
 
 
 
 
3825	/*
3826	 * We most definitely don't want callers attempting to
3827	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3828	 */
3829	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
 
3830
3831	if (likely(pcp_allowed_order(order))) {
3832		/*
3833		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3834		 * we need to skip it when CMA area isn't allowed.
3835		 */
3836		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3837				migratetype != MIGRATE_MOVABLE) {
3838			page = rmqueue_pcplist(preferred_zone, zone, order,
3839					migratetype, alloc_flags);
3840			if (likely(page))
3841				goto out;
3842		}
3843	}
 
 
 
 
 
 
 
3844
3845	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3846							migratetype);
 
3847
3848out:
3849	/* Separate test+clear to avoid unnecessary atomics */
3850	if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3851		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3852		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3853	}
3854
3855	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3856	return page;
 
 
 
 
3857}
3858
3859#ifdef CONFIG_FAIL_PAGE_ALLOC
3860
3861static struct {
3862	struct fault_attr attr;
3863
3864	bool ignore_gfp_highmem;
3865	bool ignore_gfp_reclaim;
3866	u32 min_order;
3867} fail_page_alloc = {
3868	.attr = FAULT_ATTR_INITIALIZER,
3869	.ignore_gfp_reclaim = true,
3870	.ignore_gfp_highmem = true,
3871	.min_order = 1,
3872};
3873
3874static int __init setup_fail_page_alloc(char *str)
3875{
3876	return setup_fault_attr(&fail_page_alloc.attr, str);
3877}
3878__setup("fail_page_alloc=", setup_fail_page_alloc);
3879
3880static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3881{
3882	int flags = 0;
3883
3884	if (order < fail_page_alloc.min_order)
3885		return false;
3886	if (gfp_mask & __GFP_NOFAIL)
3887		return false;
3888	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3889		return false;
3890	if (fail_page_alloc.ignore_gfp_reclaim &&
3891			(gfp_mask & __GFP_DIRECT_RECLAIM))
3892		return false;
3893
3894	/* See comment in __should_failslab() */
3895	if (gfp_mask & __GFP_NOWARN)
3896		flags |= FAULT_NOWARN;
3897
3898	return should_fail_ex(&fail_page_alloc.attr, 1 << order, flags);
3899}
3900
3901#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3902
3903static int __init fail_page_alloc_debugfs(void)
3904{
3905	umode_t mode = S_IFREG | 0600;
3906	struct dentry *dir;
3907
3908	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3909					&fail_page_alloc.attr);
 
 
3910
3911	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3912			    &fail_page_alloc.ignore_gfp_reclaim);
3913	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3914			    &fail_page_alloc.ignore_gfp_highmem);
3915	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
 
 
 
 
3916
3917	return 0;
 
 
 
 
3918}
3919
3920late_initcall(fail_page_alloc_debugfs);
3921
3922#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3923
3924#else /* CONFIG_FAIL_PAGE_ALLOC */
3925
3926static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3927{
3928	return false;
3929}
3930
3931#endif /* CONFIG_FAIL_PAGE_ALLOC */
3932
3933noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3934{
3935	return __should_fail_alloc_page(gfp_mask, order);
3936}
3937ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3938
3939static inline long __zone_watermark_unusable_free(struct zone *z,
3940				unsigned int order, unsigned int alloc_flags)
3941{
3942	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3943	long unusable_free = (1 << order) - 1;
3944
3945	/*
3946	 * If the caller does not have rights to ALLOC_HARDER then subtract
3947	 * the high-atomic reserves. This will over-estimate the size of the
3948	 * atomic reserve but it avoids a search.
3949	 */
3950	if (likely(!alloc_harder))
3951		unusable_free += z->nr_reserved_highatomic;
3952
3953#ifdef CONFIG_CMA
3954	/* If allocation can't use CMA areas don't use free CMA pages */
3955	if (!(alloc_flags & ALLOC_CMA))
3956		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3957#endif
3958
3959	return unusable_free;
3960}
3961
3962/*
3963 * Return true if free base pages are above 'mark'. For high-order checks it
3964 * will return true of the order-0 watermark is reached and there is at least
3965 * one free page of a suitable size. Checking now avoids taking the zone lock
3966 * to check in the allocation paths if no pages are free.
3967 */
3968bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3969			 int highest_zoneidx, unsigned int alloc_flags,
3970			 long free_pages)
3971{
3972	long min = mark;
3973	int o;
3974	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3975
3976	/* free_pages may go negative - that's OK */
3977	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3978
3979	if (alloc_flags & ALLOC_HIGH)
3980		min -= min / 2;
3981
3982	if (unlikely(alloc_harder)) {
 
 
 
 
 
 
 
3983		/*
3984		 * OOM victims can try even harder than normal ALLOC_HARDER
3985		 * users on the grounds that it's definitely going to be in
3986		 * the exit path shortly and free memory. Any allocation it
3987		 * makes during the free path will be small and short-lived.
3988		 */
3989		if (alloc_flags & ALLOC_OOM)
3990			min -= min / 2;
3991		else
3992			min -= min / 4;
3993	}
3994
 
 
 
 
 
 
 
3995	/*
3996	 * Check watermarks for an order-0 allocation request. If these
3997	 * are not met, then a high-order request also cannot go ahead
3998	 * even if a suitable page happened to be free.
3999	 */
4000	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
4001		return false;
4002
4003	/* If this is an order-0 request then the watermark is fine */
4004	if (!order)
4005		return true;
4006
4007	/* For a high-order request, check at least one suitable page is free */
4008	for (o = order; o < MAX_ORDER; o++) {
4009		struct free_area *area = &z->free_area[o];
4010		int mt;
4011
4012		if (!area->nr_free)
4013			continue;
4014
4015		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
4016			if (!free_area_empty(area, mt))
4017				return true;
4018		}
4019
4020#ifdef CONFIG_CMA
4021		if ((alloc_flags & ALLOC_CMA) &&
4022		    !free_area_empty(area, MIGRATE_CMA)) {
4023			return true;
4024		}
4025#endif
4026		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
 
4027			return true;
4028	}
4029	return false;
4030}
4031
4032bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
4033		      int highest_zoneidx, unsigned int alloc_flags)
4034{
4035	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4036					zone_page_state(z, NR_FREE_PAGES));
4037}
4038
4039static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
4040				unsigned long mark, int highest_zoneidx,
4041				unsigned int alloc_flags, gfp_t gfp_mask)
4042{
4043	long free_pages;
 
4044
4045	free_pages = zone_page_state(z, NR_FREE_PAGES);
 
 
 
 
4046
4047	/*
4048	 * Fast check for order-0 only. If this fails then the reserves
4049	 * need to be calculated.
 
 
 
4050	 */
4051	if (!order) {
4052		long usable_free;
4053		long reserved;
4054
4055		usable_free = free_pages;
4056		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
4057
4058		/* reserved may over estimate high-atomic reserves. */
4059		usable_free -= min(usable_free, reserved);
4060		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
4061			return true;
4062	}
4063
4064	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4065					free_pages))
4066		return true;
4067	/*
4068	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
4069	 * when checking the min watermark. The min watermark is the
4070	 * point where boosting is ignored so that kswapd is woken up
4071	 * when below the low watermark.
4072	 */
4073	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
4074		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
4075		mark = z->_watermark[WMARK_MIN];
4076		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
4077					alloc_flags, free_pages);
4078	}
4079
4080	return false;
 
4081}
4082
4083bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
4084			unsigned long mark, int highest_zoneidx)
4085{
4086	long free_pages = zone_page_state(z, NR_FREE_PAGES);
4087
4088	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
4089		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
4090
4091	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
4092								free_pages);
4093}
4094
4095#ifdef CONFIG_NUMA
4096int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
4097
4098static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4099{
4100	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
4101				node_reclaim_distance;
4102}
4103#else	/* CONFIG_NUMA */
4104static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4105{
4106	return true;
4107}
4108#endif	/* CONFIG_NUMA */
4109
4110/*
4111 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4112 * fragmentation is subtle. If the preferred zone was HIGHMEM then
4113 * premature use of a lower zone may cause lowmem pressure problems that
4114 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4115 * probably too small. It only makes sense to spread allocations to avoid
4116 * fragmentation between the Normal and DMA32 zones.
4117 */
4118static inline unsigned int
4119alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4120{
4121	unsigned int alloc_flags;
4122
4123	/*
4124	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4125	 * to save a branch.
4126	 */
4127	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4128
4129#ifdef CONFIG_ZONE_DMA32
4130	if (!zone)
4131		return alloc_flags;
4132
4133	if (zone_idx(zone) != ZONE_NORMAL)
4134		return alloc_flags;
4135
4136	/*
4137	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4138	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4139	 * on UMA that if Normal is populated then so is DMA32.
4140	 */
4141	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4142	if (nr_online_nodes > 1 && !populated_zone(--zone))
4143		return alloc_flags;
4144
4145	alloc_flags |= ALLOC_NOFRAGMENT;
4146#endif /* CONFIG_ZONE_DMA32 */
4147	return alloc_flags;
4148}
4149
4150/* Must be called after current_gfp_context() which can change gfp_mask */
4151static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4152						  unsigned int alloc_flags)
4153{
4154#ifdef CONFIG_CMA
4155	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4156		alloc_flags |= ALLOC_CMA;
4157#endif
4158	return alloc_flags;
4159}
4160
4161/*
4162 * get_page_from_freelist goes through the zonelist trying to allocate
4163 * a page.
4164 */
4165static struct page *
4166get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4167						const struct alloc_context *ac)
4168{
4169	struct zoneref *z;
4170	struct zone *zone;
4171	struct pglist_data *last_pgdat = NULL;
4172	bool last_pgdat_dirty_ok = false;
4173	bool no_fallback;
4174
4175retry:
4176	/*
4177	 * Scan zonelist, looking for a zone with enough free.
4178	 * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
4179	 */
4180	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4181	z = ac->preferred_zoneref;
4182	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4183					ac->nodemask) {
4184		struct page *page;
4185		unsigned long mark;
4186
4187		if (cpusets_enabled() &&
4188			(alloc_flags & ALLOC_CPUSET) &&
4189			!__cpuset_zone_allowed(zone, gfp_mask))
4190				continue;
4191		/*
4192		 * When allocating a page cache page for writing, we
4193		 * want to get it from a node that is within its dirty
4194		 * limit, such that no single node holds more than its
4195		 * proportional share of globally allowed dirty pages.
4196		 * The dirty limits take into account the node's
4197		 * lowmem reserves and high watermark so that kswapd
4198		 * should be able to balance it without having to
4199		 * write pages from its LRU list.
4200		 *
4201		 * XXX: For now, allow allocations to potentially
4202		 * exceed the per-node dirty limit in the slowpath
4203		 * (spread_dirty_pages unset) before going into reclaim,
4204		 * which is important when on a NUMA setup the allowed
4205		 * nodes are together not big enough to reach the
4206		 * global limit.  The proper fix for these situations
4207		 * will require awareness of nodes in the
4208		 * dirty-throttling and the flusher threads.
4209		 */
4210		if (ac->spread_dirty_pages) {
4211			if (last_pgdat != zone->zone_pgdat) {
4212				last_pgdat = zone->zone_pgdat;
4213				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
4214			}
4215
4216			if (!last_pgdat_dirty_ok)
 
4217				continue;
4218		}
4219
4220		if (no_fallback && nr_online_nodes > 1 &&
4221		    zone != ac->preferred_zoneref->zone) {
4222			int local_nid;
4223
4224			/*
4225			 * If moving to a remote node, retry but allow
4226			 * fragmenting fallbacks. Locality is more important
4227			 * than fragmentation avoidance.
4228			 */
4229			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4230			if (zone_to_nid(zone) != local_nid) {
4231				alloc_flags &= ~ALLOC_NOFRAGMENT;
4232				goto retry;
4233			}
4234		}
4235
4236		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4237		if (!zone_watermark_fast(zone, order, mark,
4238				       ac->highest_zoneidx, alloc_flags,
4239				       gfp_mask)) {
4240			int ret;
4241
4242#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4243			/*
4244			 * Watermark failed for this zone, but see if we can
4245			 * grow this zone if it contains deferred pages.
4246			 */
4247			if (static_branch_unlikely(&deferred_pages)) {
4248				if (_deferred_grow_zone(zone, order))
4249					goto try_this_zone;
4250			}
4251#endif
4252			/* Checked here to keep the fast path fast */
4253			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4254			if (alloc_flags & ALLOC_NO_WATERMARKS)
4255				goto try_this_zone;
4256
4257			if (!node_reclaim_enabled() ||
4258			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4259				continue;
4260
4261			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4262			switch (ret) {
4263			case NODE_RECLAIM_NOSCAN:
4264				/* did not scan */
4265				continue;
4266			case NODE_RECLAIM_FULL:
4267				/* scanned but unreclaimable */
4268				continue;
4269			default:
4270				/* did we reclaim enough */
4271				if (zone_watermark_ok(zone, order, mark,
4272					ac->highest_zoneidx, alloc_flags))
4273					goto try_this_zone;
4274
4275				continue;
4276			}
4277		}
4278
4279try_this_zone:
4280		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4281				gfp_mask, alloc_flags, ac->migratetype);
4282		if (page) {
4283			prep_new_page(page, order, gfp_mask, alloc_flags);
4284
4285			/*
4286			 * If this is a high-order atomic allocation then check
4287			 * if the pageblock should be reserved for the future
4288			 */
4289			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4290				reserve_highatomic_pageblock(page, zone, order);
4291
4292			return page;
4293		} else {
4294#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4295			/* Try again if zone has deferred pages */
4296			if (static_branch_unlikely(&deferred_pages)) {
4297				if (_deferred_grow_zone(zone, order))
4298					goto try_this_zone;
4299			}
4300#endif
4301		}
4302	}
4303
4304	/*
4305	 * It's possible on a UMA machine to get through all zones that are
4306	 * fragmented. If avoiding fragmentation, reset and try again.
4307	 */
4308	if (no_fallback) {
4309		alloc_flags &= ~ALLOC_NOFRAGMENT;
4310		goto retry;
4311	}
 
 
4312
4313	return NULL;
 
 
 
4314}
4315
4316static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4317{
4318	unsigned int filter = SHOW_MEM_FILTER_NODES;
 
 
 
 
4319
4320	/*
4321	 * This documents exceptions given to allocations in certain
4322	 * contexts that are allowed to allocate outside current's set
4323	 * of allowed nodes.
4324	 */
4325	if (!(gfp_mask & __GFP_NOMEMALLOC))
4326		if (tsk_is_oom_victim(current) ||
4327		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
4328			filter &= ~SHOW_MEM_FILTER_NODES;
4329	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4330		filter &= ~SHOW_MEM_FILTER_NODES;
4331
4332	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
4333}
4334
4335void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4336{
4337	struct va_format vaf;
4338	va_list args;
4339	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
 
4340
4341	if ((gfp_mask & __GFP_NOWARN) ||
4342	     !__ratelimit(&nopage_rs) ||
4343	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4344		return;
4345
4346	va_start(args, fmt);
4347	vaf.fmt = fmt;
4348	vaf.va = &args;
4349	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4350			current->comm, &vaf, gfp_mask, &gfp_mask,
4351			nodemask_pr_args(nodemask));
4352	va_end(args);
4353
4354	cpuset_print_current_mems_allowed();
4355	pr_cont("\n");
4356	dump_stack();
4357	warn_alloc_show_mem(gfp_mask, nodemask);
4358}
4359
4360static inline struct page *
4361__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4362			      unsigned int alloc_flags,
4363			      const struct alloc_context *ac)
4364{
4365	struct page *page;
4366
4367	page = get_page_from_freelist(gfp_mask, order,
4368			alloc_flags|ALLOC_CPUSET, ac);
4369	/*
4370	 * fallback to ignore cpuset restriction if our nodes
4371	 * are depleted
4372	 */
4373	if (!page)
4374		page = get_page_from_freelist(gfp_mask, order,
4375				alloc_flags, ac);
4376
4377	return page;
4378}
4379
4380static inline struct page *
4381__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4382	const struct alloc_context *ac, unsigned long *did_some_progress)
4383{
4384	struct oom_control oc = {
4385		.zonelist = ac->zonelist,
4386		.nodemask = ac->nodemask,
4387		.memcg = NULL,
4388		.gfp_mask = gfp_mask,
4389		.order = order,
4390	};
4391	struct page *page;
4392
4393	*did_some_progress = 0;
4394
4395	/*
4396	 * Acquire the oom lock.  If that fails, somebody else is
4397	 * making progress for us.
4398	 */
4399	if (!mutex_trylock(&oom_lock)) {
4400		*did_some_progress = 1;
4401		schedule_timeout_uninterruptible(1);
4402		return NULL;
4403	}
4404
4405	/*
4406	 * Go through the zonelist yet one more time, keep very high watermark
4407	 * here, this is only to catch a parallel oom killing, we must fail if
4408	 * we're still under heavy pressure. But make sure that this reclaim
4409	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4410	 * allocation which will never fail due to oom_lock already held.
4411	 */
4412	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4413				      ~__GFP_DIRECT_RECLAIM, order,
4414				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4415	if (page)
4416		goto out;
4417
4418	/* Coredumps can quickly deplete all memory reserves */
4419	if (current->flags & PF_DUMPCORE)
4420		goto out;
4421	/* The OOM killer will not help higher order allocs */
4422	if (order > PAGE_ALLOC_COSTLY_ORDER)
4423		goto out;
4424	/*
4425	 * We have already exhausted all our reclaim opportunities without any
4426	 * success so it is time to admit defeat. We will skip the OOM killer
4427	 * because it is very likely that the caller has a more reasonable
4428	 * fallback than shooting a random task.
4429	 *
4430	 * The OOM killer may not free memory on a specific node.
4431	 */
4432	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4433		goto out;
4434	/* The OOM killer does not needlessly kill tasks for lowmem */
4435	if (ac->highest_zoneidx < ZONE_NORMAL)
4436		goto out;
4437	if (pm_suspended_storage())
4438		goto out;
4439	/*
4440	 * XXX: GFP_NOFS allocations should rather fail than rely on
4441	 * other request to make a forward progress.
4442	 * We are in an unfortunate situation where out_of_memory cannot
4443	 * do much for this context but let's try it to at least get
4444	 * access to memory reserved if the current task is killed (see
4445	 * out_of_memory). Once filesystems are ready to handle allocation
4446	 * failures more gracefully we should just bail out here.
4447	 */
4448
 
 
 
 
4449	/* Exhausted what can be done so it's blame time */
4450	if (out_of_memory(&oc) ||
4451	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
4452		*did_some_progress = 1;
4453
4454		/*
4455		 * Help non-failing allocations by giving them access to memory
4456		 * reserves
4457		 */
4458		if (gfp_mask & __GFP_NOFAIL)
4459			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4460					ALLOC_NO_WATERMARKS, ac);
4461	}
4462out:
4463	mutex_unlock(&oom_lock);
4464	return page;
4465}
4466
4467/*
4468 * Maximum number of compaction retries with a progress before OOM
4469 * killer is consider as the only way to move forward.
4470 */
4471#define MAX_COMPACT_RETRIES 16
4472
4473#ifdef CONFIG_COMPACTION
4474/* Try memory compaction for high-order allocations before reclaim */
4475static struct page *
4476__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4477		unsigned int alloc_flags, const struct alloc_context *ac,
4478		enum compact_priority prio, enum compact_result *compact_result)
4479{
4480	struct page *page = NULL;
4481	unsigned long pflags;
4482	unsigned int noreclaim_flag;
4483
4484	if (!order)
4485		return NULL;
4486
4487	psi_memstall_enter(&pflags);
4488	delayacct_compact_start();
4489	noreclaim_flag = memalloc_noreclaim_save();
4490
4491	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4492								prio, &page);
4493
4494	memalloc_noreclaim_restore(noreclaim_flag);
4495	psi_memstall_leave(&pflags);
4496	delayacct_compact_end();
4497
4498	if (*compact_result == COMPACT_SKIPPED)
4499		return NULL;
 
4500	/*
4501	 * At least in one zone compaction wasn't deferred or skipped, so let's
4502	 * count a compaction stall
4503	 */
4504	count_vm_event(COMPACTSTALL);
4505
4506	/* Prep a captured page if available */
4507	if (page)
4508		prep_new_page(page, order, gfp_mask, alloc_flags);
4509
4510	/* Try get a page from the freelist if available */
4511	if (!page)
4512		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4513
4514	if (page) {
4515		struct zone *zone = page_zone(page);
4516
4517		zone->compact_blockskip_flush = false;
4518		compaction_defer_reset(zone, order, true);
4519		count_vm_event(COMPACTSUCCESS);
4520		return page;
4521	}
4522
4523	/*
4524	 * It's bad if compaction run occurs and fails. The most likely reason
4525	 * is that pages exist, but not enough to satisfy watermarks.
4526	 */
4527	count_vm_event(COMPACTFAIL);
4528
4529	cond_resched();
4530
4531	return NULL;
4532}
4533
4534static inline bool
4535should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4536		     enum compact_result compact_result,
4537		     enum compact_priority *compact_priority,
4538		     int *compaction_retries)
4539{
4540	int max_retries = MAX_COMPACT_RETRIES;
4541	int min_priority;
4542	bool ret = false;
4543	int retries = *compaction_retries;
4544	enum compact_priority priority = *compact_priority;
4545
4546	if (!order)
4547		return false;
4548
4549	if (fatal_signal_pending(current))
4550		return false;
4551
4552	if (compaction_made_progress(compact_result))
4553		(*compaction_retries)++;
4554
4555	/*
4556	 * compaction considers all the zone as desperately out of memory
4557	 * so it doesn't really make much sense to retry except when the
4558	 * failure could be caused by insufficient priority
4559	 */
4560	if (compaction_failed(compact_result))
4561		goto check_priority;
4562
4563	/*
4564	 * compaction was skipped because there are not enough order-0 pages
4565	 * to work with, so we retry only if it looks like reclaim can help.
4566	 */
4567	if (compaction_needs_reclaim(compact_result)) {
4568		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4569		goto out;
4570	}
4571
4572	/*
4573	 * make sure the compaction wasn't deferred or didn't bail out early
4574	 * due to locks contention before we declare that we should give up.
4575	 * But the next retry should use a higher priority if allowed, so
4576	 * we don't just keep bailing out endlessly.
4577	 */
4578	if (compaction_withdrawn(compact_result)) {
4579		goto check_priority;
 
4580	}
4581
4582	/*
4583	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4584	 * costly ones because they are de facto nofail and invoke OOM
4585	 * killer to move on while costly can fail and users are ready
4586	 * to cope with that. 1/4 retries is rather arbitrary but we
4587	 * would need much more detailed feedback from compaction to
4588	 * make a better decision.
4589	 */
4590	if (order > PAGE_ALLOC_COSTLY_ORDER)
4591		max_retries /= 4;
4592	if (*compaction_retries <= max_retries) {
4593		ret = true;
4594		goto out;
4595	}
4596
4597	/*
4598	 * Make sure there are attempts at the highest priority if we exhausted
4599	 * all retries or failed at the lower priorities.
4600	 */
4601check_priority:
4602	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4603			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4604
4605	if (*compact_priority > min_priority) {
4606		(*compact_priority)--;
4607		*compaction_retries = 0;
4608		ret = true;
4609	}
4610out:
4611	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4612	return ret;
4613}
4614#else
4615static inline struct page *
4616__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4617		unsigned int alloc_flags, const struct alloc_context *ac,
4618		enum compact_priority prio, enum compact_result *compact_result)
4619{
4620	*compact_result = COMPACT_SKIPPED;
4621	return NULL;
4622}
4623
4624static inline bool
4625should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4626		     enum compact_result compact_result,
4627		     enum compact_priority *compact_priority,
4628		     int *compaction_retries)
4629{
4630	struct zone *zone;
4631	struct zoneref *z;
4632
4633	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4634		return false;
4635
4636	/*
4637	 * There are setups with compaction disabled which would prefer to loop
4638	 * inside the allocator rather than hit the oom killer prematurely.
4639	 * Let's give them a good hope and keep retrying while the order-0
4640	 * watermarks are OK.
4641	 */
4642	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4643				ac->highest_zoneidx, ac->nodemask) {
4644		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4645					ac->highest_zoneidx, alloc_flags))
4646			return true;
4647	}
4648	return false;
4649}
4650#endif /* CONFIG_COMPACTION */
4651
4652#ifdef CONFIG_LOCKDEP
4653static struct lockdep_map __fs_reclaim_map =
4654	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4655
4656static bool __need_reclaim(gfp_t gfp_mask)
4657{
 
 
4658	/* no reclaim without waiting on it */
4659	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4660		return false;
4661
4662	/* this guy won't enter reclaim */
4663	if (current->flags & PF_MEMALLOC)
4664		return false;
4665
 
 
 
 
4666	if (gfp_mask & __GFP_NOLOCKDEP)
4667		return false;
4668
4669	return true;
4670}
4671
4672void __fs_reclaim_acquire(unsigned long ip)
4673{
4674	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4675}
4676
4677void __fs_reclaim_release(unsigned long ip)
4678{
4679	lock_release(&__fs_reclaim_map, ip);
4680}
4681
4682void fs_reclaim_acquire(gfp_t gfp_mask)
4683{
4684	gfp_mask = current_gfp_context(gfp_mask);
4685
4686	if (__need_reclaim(gfp_mask)) {
4687		if (gfp_mask & __GFP_FS)
4688			__fs_reclaim_acquire(_RET_IP_);
4689
4690#ifdef CONFIG_MMU_NOTIFIER
4691		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4692		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4693#endif
4694
4695	}
4696}
4697EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4698
4699void fs_reclaim_release(gfp_t gfp_mask)
4700{
4701	gfp_mask = current_gfp_context(gfp_mask);
4702
4703	if (__need_reclaim(gfp_mask)) {
4704		if (gfp_mask & __GFP_FS)
4705			__fs_reclaim_release(_RET_IP_);
4706	}
4707}
4708EXPORT_SYMBOL_GPL(fs_reclaim_release);
4709#endif
4710
4711/*
4712 * Zonelists may change due to hotplug during allocation. Detect when zonelists
4713 * have been rebuilt so allocation retries. Reader side does not lock and
4714 * retries the allocation if zonelist changes. Writer side is protected by the
4715 * embedded spin_lock.
4716 */
4717static DEFINE_SEQLOCK(zonelist_update_seq);
4718
4719static unsigned int zonelist_iter_begin(void)
4720{
4721	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4722		return read_seqbegin(&zonelist_update_seq);
4723
4724	return 0;
4725}
4726
4727static unsigned int check_retry_zonelist(unsigned int seq)
4728{
4729	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4730		return read_seqretry(&zonelist_update_seq, seq);
4731
4732	return seq;
4733}
4734
4735/* Perform direct synchronous page reclaim */
4736static unsigned long
4737__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4738					const struct alloc_context *ac)
4739{
 
 
4740	unsigned int noreclaim_flag;
4741	unsigned long progress;
4742
4743	cond_resched();
4744
4745	/* We now go into synchronous reclaim */
4746	cpuset_memory_pressure_bump();
 
4747	fs_reclaim_acquire(gfp_mask);
4748	noreclaim_flag = memalloc_noreclaim_save();
 
4749
4750	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4751								ac->nodemask);
4752
 
 
4753	memalloc_noreclaim_restore(noreclaim_flag);
4754	fs_reclaim_release(gfp_mask);
4755
4756	cond_resched();
4757
4758	return progress;
4759}
4760
4761/* The really slow allocator path where we enter direct reclaim */
4762static inline struct page *
4763__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4764		unsigned int alloc_flags, const struct alloc_context *ac,
4765		unsigned long *did_some_progress)
4766{
4767	struct page *page = NULL;
4768	unsigned long pflags;
4769	bool drained = false;
4770
4771	psi_memstall_enter(&pflags);
4772	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4773	if (unlikely(!(*did_some_progress)))
4774		goto out;
4775
4776retry:
4777	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4778
4779	/*
4780	 * If an allocation failed after direct reclaim, it could be because
4781	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4782	 * Shrink them and try again
4783	 */
4784	if (!page && !drained) {
4785		unreserve_highatomic_pageblock(ac, false);
4786		drain_all_pages(NULL);
4787		drained = true;
4788		goto retry;
4789	}
4790out:
4791	psi_memstall_leave(&pflags);
4792
4793	return page;
4794}
4795
4796static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4797			     const struct alloc_context *ac)
4798{
4799	struct zoneref *z;
4800	struct zone *zone;
4801	pg_data_t *last_pgdat = NULL;
4802	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4803
4804	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4805					ac->nodemask) {
4806		if (!managed_zone(zone))
4807			continue;
4808		if (last_pgdat != zone->zone_pgdat) {
4809			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4810			last_pgdat = zone->zone_pgdat;
4811		}
4812	}
4813}
4814
4815static inline unsigned int
4816gfp_to_alloc_flags(gfp_t gfp_mask)
4817{
4818	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4819
4820	/*
4821	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4822	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4823	 * to save two branches.
4824	 */
4825	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4826	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4827
4828	/*
4829	 * The caller may dip into page reserves a bit more if the caller
4830	 * cannot run direct reclaim, or if the caller has realtime scheduling
4831	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4832	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4833	 */
4834	alloc_flags |= (__force int)
4835		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4836
4837	if (gfp_mask & __GFP_ATOMIC) {
4838		/*
4839		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4840		 * if it can't schedule.
4841		 */
4842		if (!(gfp_mask & __GFP_NOMEMALLOC))
4843			alloc_flags |= ALLOC_HARDER;
4844		/*
4845		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4846		 * comment for __cpuset_node_allowed().
4847		 */
4848		alloc_flags &= ~ALLOC_CPUSET;
4849	} else if (unlikely(rt_task(current)) && in_task())
4850		alloc_flags |= ALLOC_HARDER;
4851
4852	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4853
 
 
4854	return alloc_flags;
4855}
4856
4857static bool oom_reserves_allowed(struct task_struct *tsk)
4858{
4859	if (!tsk_is_oom_victim(tsk))
4860		return false;
4861
4862	/*
4863	 * !MMU doesn't have oom reaper so give access to memory reserves
4864	 * only to the thread with TIF_MEMDIE set
4865	 */
4866	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4867		return false;
4868
4869	return true;
4870}
4871
4872/*
4873 * Distinguish requests which really need access to full memory
4874 * reserves from oom victims which can live with a portion of it
4875 */
4876static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4877{
4878	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4879		return 0;
4880	if (gfp_mask & __GFP_MEMALLOC)
4881		return ALLOC_NO_WATERMARKS;
4882	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4883		return ALLOC_NO_WATERMARKS;
4884	if (!in_interrupt()) {
4885		if (current->flags & PF_MEMALLOC)
4886			return ALLOC_NO_WATERMARKS;
4887		else if (oom_reserves_allowed(current))
4888			return ALLOC_OOM;
4889	}
4890
4891	return 0;
4892}
4893
4894bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4895{
4896	return !!__gfp_pfmemalloc_flags(gfp_mask);
4897}
4898
4899/*
4900 * Checks whether it makes sense to retry the reclaim to make a forward progress
4901 * for the given allocation request.
4902 *
4903 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4904 * without success, or when we couldn't even meet the watermark if we
4905 * reclaimed all remaining pages on the LRU lists.
4906 *
4907 * Returns true if a retry is viable or false to enter the oom path.
4908 */
4909static inline bool
4910should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4911		     struct alloc_context *ac, int alloc_flags,
4912		     bool did_some_progress, int *no_progress_loops)
4913{
4914	struct zone *zone;
4915	struct zoneref *z;
4916	bool ret = false;
4917
4918	/*
4919	 * Costly allocations might have made a progress but this doesn't mean
4920	 * their order will become available due to high fragmentation so
4921	 * always increment the no progress counter for them
4922	 */
4923	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4924		*no_progress_loops = 0;
4925	else
4926		(*no_progress_loops)++;
4927
4928	/*
4929	 * Make sure we converge to OOM if we cannot make any progress
4930	 * several times in the row.
4931	 */
4932	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4933		/* Before OOM, exhaust highatomic_reserve */
4934		return unreserve_highatomic_pageblock(ac, true);
4935	}
4936
4937	/*
4938	 * Keep reclaiming pages while there is a chance this will lead
4939	 * somewhere.  If none of the target zones can satisfy our allocation
4940	 * request even if all reclaimable pages are considered then we are
4941	 * screwed and have to go OOM.
4942	 */
4943	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4944				ac->highest_zoneidx, ac->nodemask) {
4945		unsigned long available;
4946		unsigned long reclaimable;
4947		unsigned long min_wmark = min_wmark_pages(zone);
4948		bool wmark;
4949
4950		available = reclaimable = zone_reclaimable_pages(zone);
4951		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4952
4953		/*
4954		 * Would the allocation succeed if we reclaimed all
4955		 * reclaimable pages?
4956		 */
4957		wmark = __zone_watermark_ok(zone, order, min_wmark,
4958				ac->highest_zoneidx, alloc_flags, available);
4959		trace_reclaim_retry_zone(z, order, reclaimable,
4960				available, min_wmark, *no_progress_loops, wmark);
4961		if (wmark) {
4962			ret = true;
4963			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4964		}
4965	}
4966
4967	/*
4968	 * Memory allocation/reclaim might be called from a WQ context and the
4969	 * current implementation of the WQ concurrency control doesn't
4970	 * recognize that a particular WQ is congested if the worker thread is
4971	 * looping without ever sleeping. Therefore we have to do a short sleep
4972	 * here rather than calling cond_resched().
4973	 */
4974	if (current->flags & PF_WQ_WORKER)
4975		schedule_timeout_uninterruptible(1);
4976	else
4977		cond_resched();
4978	return ret;
4979}
4980
4981static inline bool
4982check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4983{
4984	/*
4985	 * It's possible that cpuset's mems_allowed and the nodemask from
4986	 * mempolicy don't intersect. This should be normally dealt with by
4987	 * policy_nodemask(), but it's possible to race with cpuset update in
4988	 * such a way the check therein was true, and then it became false
4989	 * before we got our cpuset_mems_cookie here.
4990	 * This assumes that for all allocations, ac->nodemask can come only
4991	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4992	 * when it does not intersect with the cpuset restrictions) or the
4993	 * caller can deal with a violated nodemask.
4994	 */
4995	if (cpusets_enabled() && ac->nodemask &&
4996			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4997		ac->nodemask = NULL;
4998		return true;
4999	}
5000
5001	/*
5002	 * When updating a task's mems_allowed or mempolicy nodemask, it is
5003	 * possible to race with parallel threads in such a way that our
5004	 * allocation can fail while the mask is being updated. If we are about
5005	 * to fail, check if the cpuset changed during allocation and if so,
5006	 * retry.
5007	 */
5008	if (read_mems_allowed_retry(cpuset_mems_cookie))
5009		return true;
5010
5011	return false;
5012}
5013
5014static inline struct page *
5015__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
5016						struct alloc_context *ac)
5017{
5018	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
5019	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
5020	struct page *page = NULL;
5021	unsigned int alloc_flags;
5022	unsigned long did_some_progress;
5023	enum compact_priority compact_priority;
5024	enum compact_result compact_result;
5025	int compaction_retries;
5026	int no_progress_loops;
5027	unsigned int cpuset_mems_cookie;
5028	unsigned int zonelist_iter_cookie;
5029	int reserve_flags;
5030
5031	/*
 
 
 
 
 
 
 
 
 
 
 
5032	 * We also sanity check to catch abuse of atomic reserves being used by
5033	 * callers that are not in atomic context.
5034	 */
5035	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
5036				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
5037		gfp_mask &= ~__GFP_ATOMIC;
5038
5039restart:
5040	compaction_retries = 0;
5041	no_progress_loops = 0;
5042	compact_priority = DEF_COMPACT_PRIORITY;
5043	cpuset_mems_cookie = read_mems_allowed_begin();
5044	zonelist_iter_cookie = zonelist_iter_begin();
5045
5046	/*
5047	 * The fast path uses conservative alloc_flags to succeed only until
5048	 * kswapd needs to be woken up, and to avoid the cost of setting up
5049	 * alloc_flags precisely. So we do that now.
5050	 */
5051	alloc_flags = gfp_to_alloc_flags(gfp_mask);
5052
5053	/*
5054	 * We need to recalculate the starting point for the zonelist iterator
5055	 * because we might have used different nodemask in the fast path, or
5056	 * there was a cpuset modification and we are retrying - otherwise we
5057	 * could end up iterating over non-eligible zones endlessly.
5058	 */
5059	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5060					ac->highest_zoneidx, ac->nodemask);
5061	if (!ac->preferred_zoneref->zone)
5062		goto nopage;
5063
5064	/*
5065	 * Check for insane configurations where the cpuset doesn't contain
5066	 * any suitable zone to satisfy the request - e.g. non-movable
5067	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
5068	 */
5069	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
5070		struct zoneref *z = first_zones_zonelist(ac->zonelist,
5071					ac->highest_zoneidx,
5072					&cpuset_current_mems_allowed);
5073		if (!z->zone)
5074			goto nopage;
5075	}
5076
5077	if (alloc_flags & ALLOC_KSWAPD)
5078		wake_all_kswapds(order, gfp_mask, ac);
5079
5080	/*
5081	 * The adjusted alloc_flags might result in immediate success, so try
5082	 * that first
5083	 */
5084	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5085	if (page)
5086		goto got_pg;
5087
5088	/*
5089	 * For costly allocations, try direct compaction first, as it's likely
5090	 * that we have enough base pages and don't need to reclaim. For non-
5091	 * movable high-order allocations, do that as well, as compaction will
5092	 * try prevent permanent fragmentation by migrating from blocks of the
5093	 * same migratetype.
5094	 * Don't try this for allocations that are allowed to ignore
5095	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
5096	 */
5097	if (can_direct_reclaim &&
5098			(costly_order ||
5099			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
5100			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
5101		page = __alloc_pages_direct_compact(gfp_mask, order,
5102						alloc_flags, ac,
5103						INIT_COMPACT_PRIORITY,
5104						&compact_result);
5105		if (page)
5106			goto got_pg;
5107
5108		/*
5109		 * Checks for costly allocations with __GFP_NORETRY, which
5110		 * includes some THP page fault allocations
5111		 */
5112		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
5113			/*
5114			 * If allocating entire pageblock(s) and compaction
5115			 * failed because all zones are below low watermarks
5116			 * or is prohibited because it recently failed at this
5117			 * order, fail immediately unless the allocator has
5118			 * requested compaction and reclaim retry.
5119			 *
5120			 * Reclaim is
5121			 *  - potentially very expensive because zones are far
5122			 *    below their low watermarks or this is part of very
5123			 *    bursty high order allocations,
5124			 *  - not guaranteed to help because isolate_freepages()
5125			 *    may not iterate over freed pages as part of its
5126			 *    linear scan, and
5127			 *  - unlikely to make entire pageblocks free on its
5128			 *    own.
5129			 */
5130			if (compact_result == COMPACT_SKIPPED ||
5131			    compact_result == COMPACT_DEFERRED)
5132				goto nopage;
5133
5134			/*
5135			 * Looks like reclaim/compaction is worth trying, but
5136			 * sync compaction could be very expensive, so keep
5137			 * using async compaction.
5138			 */
5139			compact_priority = INIT_COMPACT_PRIORITY;
5140		}
5141	}
5142
5143retry:
5144	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5145	if (alloc_flags & ALLOC_KSWAPD)
5146		wake_all_kswapds(order, gfp_mask, ac);
5147
5148	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5149	if (reserve_flags)
5150		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
5151					  (alloc_flags & ALLOC_KSWAPD);
5152
5153	/*
5154	 * Reset the nodemask and zonelist iterators if memory policies can be
5155	 * ignored. These allocations are high priority and system rather than
5156	 * user oriented.
5157	 */
5158	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5159		ac->nodemask = NULL;
5160		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5161					ac->highest_zoneidx, ac->nodemask);
5162	}
5163
5164	/* Attempt with potentially adjusted zonelist and alloc_flags */
5165	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5166	if (page)
5167		goto got_pg;
5168
5169	/* Caller is not willing to reclaim, we can't balance anything */
5170	if (!can_direct_reclaim)
5171		goto nopage;
5172
5173	/* Avoid recursion of direct reclaim */
5174	if (current->flags & PF_MEMALLOC)
5175		goto nopage;
5176
5177	/* Try direct reclaim and then allocating */
5178	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5179							&did_some_progress);
5180	if (page)
5181		goto got_pg;
5182
5183	/* Try direct compaction and then allocating */
5184	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5185					compact_priority, &compact_result);
5186	if (page)
5187		goto got_pg;
5188
5189	/* Do not loop if specifically requested */
5190	if (gfp_mask & __GFP_NORETRY)
5191		goto nopage;
5192
5193	/*
5194	 * Do not retry costly high order allocations unless they are
5195	 * __GFP_RETRY_MAYFAIL
5196	 */
5197	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5198		goto nopage;
5199
5200	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5201				 did_some_progress > 0, &no_progress_loops))
5202		goto retry;
5203
5204	/*
5205	 * It doesn't make any sense to retry for the compaction if the order-0
5206	 * reclaim is not able to make any progress because the current
5207	 * implementation of the compaction depends on the sufficient amount
5208	 * of free memory (see __compaction_suitable)
5209	 */
5210	if (did_some_progress > 0 &&
5211			should_compact_retry(ac, order, alloc_flags,
5212				compact_result, &compact_priority,
5213				&compaction_retries))
5214		goto retry;
5215
5216
5217	/*
5218	 * Deal with possible cpuset update races or zonelist updates to avoid
5219	 * a unnecessary OOM kill.
5220	 */
5221	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5222	    check_retry_zonelist(zonelist_iter_cookie))
5223		goto restart;
5224
5225	/* Reclaim has failed us, start killing things */
5226	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5227	if (page)
5228		goto got_pg;
5229
5230	/* Avoid allocations with no watermarks from looping endlessly */
5231	if (tsk_is_oom_victim(current) &&
5232	    (alloc_flags & ALLOC_OOM ||
5233	     (gfp_mask & __GFP_NOMEMALLOC)))
5234		goto nopage;
5235
5236	/* Retry as long as the OOM killer is making progress */
5237	if (did_some_progress) {
5238		no_progress_loops = 0;
5239		goto retry;
5240	}
5241
5242nopage:
5243	/*
5244	 * Deal with possible cpuset update races or zonelist updates to avoid
5245	 * a unnecessary OOM kill.
5246	 */
5247	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5248	    check_retry_zonelist(zonelist_iter_cookie))
5249		goto restart;
5250
5251	/*
5252	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5253	 * we always retry
5254	 */
5255	if (gfp_mask & __GFP_NOFAIL) {
5256		/*
5257		 * All existing users of the __GFP_NOFAIL are blockable, so warn
5258		 * of any new users that actually require GFP_NOWAIT
5259		 */
5260		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
5261			goto fail;
5262
5263		/*
5264		 * PF_MEMALLOC request from this context is rather bizarre
5265		 * because we cannot reclaim anything and only can loop waiting
5266		 * for somebody to do a work for us
5267		 */
5268		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
5269
5270		/*
5271		 * non failing costly orders are a hard requirement which we
5272		 * are not prepared for much so let's warn about these users
5273		 * so that we can identify them and convert them to something
5274		 * else.
5275		 */
5276		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
5277
5278		/*
5279		 * Help non-failing allocations by giving them access to memory
5280		 * reserves but do not use ALLOC_NO_WATERMARKS because this
5281		 * could deplete whole memory reserves which would just make
5282		 * the situation worse
5283		 */
5284		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5285		if (page)
5286			goto got_pg;
5287
5288		cond_resched();
5289		goto retry;
5290	}
5291fail:
5292	warn_alloc(gfp_mask, ac->nodemask,
5293			"page allocation failure: order:%u", order);
5294got_pg:
5295	return page;
5296}
5297
5298static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5299		int preferred_nid, nodemask_t *nodemask,
5300		struct alloc_context *ac, gfp_t *alloc_gfp,
5301		unsigned int *alloc_flags)
5302{
5303	ac->highest_zoneidx = gfp_zone(gfp_mask);
5304	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5305	ac->nodemask = nodemask;
5306	ac->migratetype = gfp_migratetype(gfp_mask);
5307
5308	if (cpusets_enabled()) {
5309		*alloc_gfp |= __GFP_HARDWALL;
5310		/*
5311		 * When we are in the interrupt context, it is irrelevant
5312		 * to the current task context. It means that any node ok.
5313		 */
5314		if (in_task() && !ac->nodemask)
5315			ac->nodemask = &cpuset_current_mems_allowed;
5316		else
5317			*alloc_flags |= ALLOC_CPUSET;
5318	}
5319
5320	might_alloc(gfp_mask);
 
 
 
5321
5322	if (should_fail_alloc_page(gfp_mask, order))
5323		return false;
5324
5325	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
 
5326
 
 
 
 
 
 
 
5327	/* Dirty zone balancing only done in the fast path */
5328	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5329
5330	/*
5331	 * The preferred zone is used for statistics but crucially it is
5332	 * also used as the starting point for the zonelist iterator. It
5333	 * may get reset for allocations that ignore memory policies.
5334	 */
5335	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5336					ac->highest_zoneidx, ac->nodemask);
5337
5338	return true;
5339}
5340
5341/*
5342 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5343 * @gfp: GFP flags for the allocation
5344 * @preferred_nid: The preferred NUMA node ID to allocate from
5345 * @nodemask: Set of nodes to allocate from, may be NULL
5346 * @nr_pages: The number of pages desired on the list or array
5347 * @page_list: Optional list to store the allocated pages
5348 * @page_array: Optional array to store the pages
5349 *
5350 * This is a batched version of the page allocator that attempts to
5351 * allocate nr_pages quickly. Pages are added to page_list if page_list
5352 * is not NULL, otherwise it is assumed that the page_array is valid.
5353 *
5354 * For lists, nr_pages is the number of pages that should be allocated.
5355 *
5356 * For arrays, only NULL elements are populated with pages and nr_pages
5357 * is the maximum number of pages that will be stored in the array.
5358 *
5359 * Returns the number of pages on the list or array.
5360 */
5361unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5362			nodemask_t *nodemask, int nr_pages,
5363			struct list_head *page_list,
5364			struct page **page_array)
5365{
5366	struct page *page;
5367	unsigned long __maybe_unused UP_flags;
5368	struct zone *zone;
5369	struct zoneref *z;
5370	struct per_cpu_pages *pcp;
5371	struct list_head *pcp_list;
5372	struct alloc_context ac;
5373	gfp_t alloc_gfp;
5374	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5375	int nr_populated = 0, nr_account = 0;
5376
5377	/*
5378	 * Skip populated array elements to determine if any pages need
5379	 * to be allocated before disabling IRQs.
5380	 */
5381	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5382		nr_populated++;
5383
5384	/* No pages requested? */
5385	if (unlikely(nr_pages <= 0))
5386		goto out;
5387
5388	/* Already populated array? */
5389	if (unlikely(page_array && nr_pages - nr_populated == 0))
5390		goto out;
5391
5392	/* Bulk allocator does not support memcg accounting. */
5393	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5394		goto failed;
5395
5396	/* Use the single page allocator for one page. */
5397	if (nr_pages - nr_populated == 1)
5398		goto failed;
5399
5400#ifdef CONFIG_PAGE_OWNER
5401	/*
5402	 * PAGE_OWNER may recurse into the allocator to allocate space to
5403	 * save the stack with pagesets.lock held. Releasing/reacquiring
5404	 * removes much of the performance benefit of bulk allocation so
5405	 * force the caller to allocate one page at a time as it'll have
5406	 * similar performance to added complexity to the bulk allocator.
5407	 */
5408	if (static_branch_unlikely(&page_owner_inited))
5409		goto failed;
5410#endif
5411
5412	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5413	gfp &= gfp_allowed_mask;
5414	alloc_gfp = gfp;
5415	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5416		goto out;
5417	gfp = alloc_gfp;
5418
5419	/* Find an allowed local zone that meets the low watermark. */
5420	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5421		unsigned long mark;
5422
5423		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5424		    !__cpuset_zone_allowed(zone, gfp)) {
5425			continue;
5426		}
5427
5428		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5429		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5430			goto failed;
5431		}
5432
5433		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5434		if (zone_watermark_fast(zone, 0,  mark,
5435				zonelist_zone_idx(ac.preferred_zoneref),
5436				alloc_flags, gfp)) {
5437			break;
5438		}
5439	}
5440
5441	/*
5442	 * If there are no allowed local zones that meets the watermarks then
5443	 * try to allocate a single page and reclaim if necessary.
5444	 */
5445	if (unlikely(!zone))
5446		goto failed;
5447
5448	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
5449	pcp_trylock_prepare(UP_flags);
5450	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
5451	if (!pcp)
5452		goto failed_irq;
5453
5454	/* Attempt the batch allocation */
5455	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5456	while (nr_populated < nr_pages) {
5457
5458		/* Skip existing pages */
5459		if (page_array && page_array[nr_populated]) {
5460			nr_populated++;
5461			continue;
5462		}
5463
5464		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5465								pcp, pcp_list);
5466		if (unlikely(!page)) {
5467			/* Try and allocate at least one page */
5468			if (!nr_account) {
5469				pcp_spin_unlock(pcp);
5470				goto failed_irq;
5471			}
5472			break;
5473		}
5474		nr_account++;
5475
5476		prep_new_page(page, 0, gfp, 0);
5477		if (page_list)
5478			list_add(&page->lru, page_list);
5479		else
5480			page_array[nr_populated] = page;
5481		nr_populated++;
5482	}
5483
5484	pcp_spin_unlock(pcp);
5485	pcp_trylock_finish(UP_flags);
5486
5487	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5488	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5489
5490out:
5491	return nr_populated;
5492
5493failed_irq:
5494	pcp_trylock_finish(UP_flags);
5495
5496failed:
5497	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5498	if (page) {
5499		if (page_list)
5500			list_add(&page->lru, page_list);
5501		else
5502			page_array[nr_populated] = page;
5503		nr_populated++;
5504	}
5505
5506	goto out;
5507}
5508EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5509
5510/*
5511 * This is the 'heart' of the zoned buddy allocator.
5512 */
5513struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
 
5514							nodemask_t *nodemask)
5515{
5516	struct page *page;
5517	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5518	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5519	struct alloc_context ac = { };
5520
5521	/*
5522	 * There are several places where we assume that the order value is sane
5523	 * so bail out early if the request is out of bound.
5524	 */
5525	if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp))
5526		return NULL;
5527
5528	gfp &= gfp_allowed_mask;
 
 
 
 
 
 
5529	/*
5530	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5531	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5532	 * from a particular context which has been marked by
5533	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5534	 * movable zones are not used during allocation.
5535	 */
5536	gfp = current_gfp_context(gfp);
5537	alloc_gfp = gfp;
5538	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5539			&alloc_gfp, &alloc_flags))
5540		return NULL;
5541
5542	/*
5543	 * Forbid the first pass from falling back to types that fragment
5544	 * memory until all local zones are considered.
5545	 */
5546	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5547
5548	/* First allocation attempt */
5549	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5550	if (likely(page))
5551		goto out;
5552
5553	alloc_gfp = gfp;
5554	ac.spread_dirty_pages = false;
5555
5556	/*
5557	 * Restore the original nodemask if it was potentially replaced with
5558	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5559	 */
5560	ac.nodemask = nodemask;
 
5561
5562	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5563
5564out:
5565	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5566	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5567		__free_pages(page, order);
5568		page = NULL;
5569	}
5570
5571	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5572	kmsan_alloc_page(page, order, alloc_gfp);
5573
5574	return page;
5575}
5576EXPORT_SYMBOL(__alloc_pages);
5577
5578struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5579		nodemask_t *nodemask)
5580{
5581	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5582			preferred_nid, nodemask);
5583
5584	if (page && order > 1)
5585		prep_transhuge_page(page);
5586	return (struct folio *)page;
5587}
5588EXPORT_SYMBOL(__folio_alloc);
5589
5590/*
5591 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5592 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5593 * you need to access high mem.
5594 */
5595unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5596{
5597	struct page *page;
5598
5599	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
 
 
 
 
 
 
5600	if (!page)
5601		return 0;
5602	return (unsigned long) page_address(page);
5603}
5604EXPORT_SYMBOL(__get_free_pages);
5605
5606unsigned long get_zeroed_page(gfp_t gfp_mask)
5607{
5608	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5609}
5610EXPORT_SYMBOL(get_zeroed_page);
5611
5612/**
5613 * __free_pages - Free pages allocated with alloc_pages().
5614 * @page: The page pointer returned from alloc_pages().
5615 * @order: The order of the allocation.
5616 *
5617 * This function can free multi-page allocations that are not compound
5618 * pages.  It does not check that the @order passed in matches that of
5619 * the allocation, so it is easy to leak memory.  Freeing more memory
5620 * than was allocated will probably emit a warning.
5621 *
5622 * If the last reference to this page is speculative, it will be released
5623 * by put_page() which only frees the first page of a non-compound
5624 * allocation.  To prevent the remaining pages from being leaked, we free
5625 * the subsequent pages here.  If you want to use the page's reference
5626 * count to decide when to free the allocation, you should allocate a
5627 * compound page, and use put_page() instead of __free_pages().
5628 *
5629 * Context: May be called in interrupt context or while holding a normal
5630 * spinlock, but not in NMI context or while holding a raw spinlock.
5631 */
5632void __free_pages(struct page *page, unsigned int order)
5633{
5634	/* get PageHead before we drop reference */
5635	int head = PageHead(page);
 
 
 
 
 
5636
5637	if (put_page_testzero(page))
5638		free_the_page(page, order);
5639	else if (!head)
5640		while (order-- > 0)
5641			free_the_page(page + (1 << order), order);
5642}
5643EXPORT_SYMBOL(__free_pages);
5644
5645void free_pages(unsigned long addr, unsigned int order)
5646{
5647	if (addr != 0) {
5648		VM_BUG_ON(!virt_addr_valid((void *)addr));
5649		__free_pages(virt_to_page((void *)addr), order);
5650	}
5651}
5652
5653EXPORT_SYMBOL(free_pages);
5654
5655/*
5656 * Page Fragment:
5657 *  An arbitrary-length arbitrary-offset area of memory which resides
5658 *  within a 0 or higher order page.  Multiple fragments within that page
5659 *  are individually refcounted, in the page's reference counter.
5660 *
5661 * The page_frag functions below provide a simple allocation framework for
5662 * page fragments.  This is used by the network stack and network device
5663 * drivers to provide a backing region of memory for use as either an
5664 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5665 */
5666static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5667					     gfp_t gfp_mask)
5668{
5669	struct page *page = NULL;
5670	gfp_t gfp = gfp_mask;
5671
5672#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5673	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5674		    __GFP_NOMEMALLOC;
5675	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5676				PAGE_FRAG_CACHE_MAX_ORDER);
5677	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5678#endif
5679	if (unlikely(!page))
5680		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5681
5682	nc->va = page ? page_address(page) : NULL;
5683
5684	return page;
5685}
5686
5687void __page_frag_cache_drain(struct page *page, unsigned int count)
5688{
5689	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5690
5691	if (page_ref_sub_and_test(page, count))
5692		free_the_page(page, compound_order(page));
 
 
 
 
 
 
5693}
5694EXPORT_SYMBOL(__page_frag_cache_drain);
5695
5696void *page_frag_alloc_align(struct page_frag_cache *nc,
5697		      unsigned int fragsz, gfp_t gfp_mask,
5698		      unsigned int align_mask)
5699{
5700	unsigned int size = PAGE_SIZE;
5701	struct page *page;
5702	int offset;
5703
5704	if (unlikely(!nc->va)) {
5705refill:
5706		page = __page_frag_cache_refill(nc, gfp_mask);
5707		if (!page)
5708			return NULL;
5709
5710#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5711		/* if size can vary use size else just use PAGE_SIZE */
5712		size = nc->size;
5713#endif
5714		/* Even if we own the page, we do not use atomic_set().
5715		 * This would break get_page_unless_zero() users.
5716		 */
5717		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5718
5719		/* reset page count bias and offset to start of new frag */
5720		nc->pfmemalloc = page_is_pfmemalloc(page);
5721		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5722		nc->offset = size;
5723	}
5724
5725	offset = nc->offset - fragsz;
5726	if (unlikely(offset < 0)) {
5727		page = virt_to_page(nc->va);
5728
5729		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5730			goto refill;
5731
5732		if (unlikely(nc->pfmemalloc)) {
5733			free_the_page(page, compound_order(page));
5734			goto refill;
5735		}
5736
5737#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5738		/* if size can vary use size else just use PAGE_SIZE */
5739		size = nc->size;
5740#endif
5741		/* OK, page count is 0, we can safely set it */
5742		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5743
5744		/* reset page count bias and offset to start of new frag */
5745		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5746		offset = size - fragsz;
5747		if (unlikely(offset < 0)) {
5748			/*
5749			 * The caller is trying to allocate a fragment
5750			 * with fragsz > PAGE_SIZE but the cache isn't big
5751			 * enough to satisfy the request, this may
5752			 * happen in low memory conditions.
5753			 * We don't release the cache page because
5754			 * it could make memory pressure worse
5755			 * so we simply return NULL here.
5756			 */
5757			return NULL;
5758		}
5759	}
5760
5761	nc->pagecnt_bias--;
5762	offset &= align_mask;
5763	nc->offset = offset;
5764
5765	return nc->va + offset;
5766}
5767EXPORT_SYMBOL(page_frag_alloc_align);
5768
5769/*
5770 * Frees a page fragment allocated out of either a compound or order 0 page.
5771 */
5772void page_frag_free(void *addr)
5773{
5774	struct page *page = virt_to_head_page(addr);
5775
5776	if (unlikely(put_page_testzero(page)))
5777		free_the_page(page, compound_order(page));
5778}
5779EXPORT_SYMBOL(page_frag_free);
5780
5781static void *make_alloc_exact(unsigned long addr, unsigned int order,
5782		size_t size)
5783{
5784	if (addr) {
5785		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
5786		struct page *page = virt_to_page((void *)addr);
5787		struct page *last = page + nr;
5788
5789		split_page_owner(page, 1 << order);
5790		split_page_memcg(page, 1 << order);
5791		while (page < --last)
5792			set_page_refcounted(last);
5793
5794		last = page + (1UL << order);
5795		for (page += nr; page < last; page++)
5796			__free_pages_ok(page, 0, FPI_TO_TAIL);
5797	}
5798	return (void *)addr;
5799}
5800
5801/**
5802 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5803 * @size: the number of bytes to allocate
5804 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5805 *
5806 * This function is similar to alloc_pages(), except that it allocates the
5807 * minimum number of pages to satisfy the request.  alloc_pages() can only
5808 * allocate memory in power-of-two pages.
5809 *
5810 * This function is also limited by MAX_ORDER.
5811 *
5812 * Memory allocated by this function must be released by free_pages_exact().
5813 *
5814 * Return: pointer to the allocated area or %NULL in case of error.
5815 */
5816void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5817{
5818	unsigned int order = get_order(size);
5819	unsigned long addr;
5820
5821	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5822		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5823
5824	addr = __get_free_pages(gfp_mask, order);
5825	return make_alloc_exact(addr, order, size);
5826}
5827EXPORT_SYMBOL(alloc_pages_exact);
5828
5829/**
5830 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5831 *			   pages on a node.
5832 * @nid: the preferred node ID where memory should be allocated
5833 * @size: the number of bytes to allocate
5834 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5835 *
5836 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5837 * back.
5838 *
5839 * Return: pointer to the allocated area or %NULL in case of error.
5840 */
5841void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5842{
5843	unsigned int order = get_order(size);
5844	struct page *p;
5845
5846	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5847		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5848
5849	p = alloc_pages_node(nid, gfp_mask, order);
5850	if (!p)
5851		return NULL;
5852	return make_alloc_exact((unsigned long)page_address(p), order, size);
5853}
5854
5855/**
5856 * free_pages_exact - release memory allocated via alloc_pages_exact()
5857 * @virt: the value returned by alloc_pages_exact.
5858 * @size: size of allocation, same value as passed to alloc_pages_exact().
5859 *
5860 * Release the memory allocated by a previous call to alloc_pages_exact.
5861 */
5862void free_pages_exact(void *virt, size_t size)
5863{
5864	unsigned long addr = (unsigned long)virt;
5865	unsigned long end = addr + PAGE_ALIGN(size);
5866
5867	while (addr < end) {
5868		free_page(addr);
5869		addr += PAGE_SIZE;
5870	}
5871}
5872EXPORT_SYMBOL(free_pages_exact);
5873
5874/**
5875 * nr_free_zone_pages - count number of pages beyond high watermark
5876 * @offset: The zone index of the highest zone
5877 *
5878 * nr_free_zone_pages() counts the number of pages which are beyond the
5879 * high watermark within all zones at or below a given zone index.  For each
5880 * zone, the number of pages is calculated as:
5881 *
5882 *     nr_free_zone_pages = managed_pages - high_pages
5883 *
5884 * Return: number of pages beyond high watermark.
5885 */
5886static unsigned long nr_free_zone_pages(int offset)
5887{
5888	struct zoneref *z;
5889	struct zone *zone;
5890
5891	/* Just pick one node, since fallback list is circular */
5892	unsigned long sum = 0;
5893
5894	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5895
5896	for_each_zone_zonelist(zone, z, zonelist, offset) {
5897		unsigned long size = zone_managed_pages(zone);
5898		unsigned long high = high_wmark_pages(zone);
5899		if (size > high)
5900			sum += size - high;
5901	}
5902
5903	return sum;
5904}
5905
5906/**
5907 * nr_free_buffer_pages - count number of pages beyond high watermark
5908 *
5909 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5910 * watermark within ZONE_DMA and ZONE_NORMAL.
5911 *
5912 * Return: number of pages beyond high watermark within ZONE_DMA and
5913 * ZONE_NORMAL.
5914 */
5915unsigned long nr_free_buffer_pages(void)
5916{
5917	return nr_free_zone_pages(gfp_zone(GFP_USER));
5918}
5919EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5920
 
 
 
 
 
 
 
 
 
 
 
5921static inline void show_node(struct zone *zone)
5922{
5923	if (IS_ENABLED(CONFIG_NUMA))
5924		printk("Node %d ", zone_to_nid(zone));
5925}
5926
5927long si_mem_available(void)
5928{
5929	long available;
5930	unsigned long pagecache;
5931	unsigned long wmark_low = 0;
5932	unsigned long pages[NR_LRU_LISTS];
5933	unsigned long reclaimable;
5934	struct zone *zone;
5935	int lru;
5936
5937	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5938		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5939
5940	for_each_zone(zone)
5941		wmark_low += low_wmark_pages(zone);
5942
5943	/*
5944	 * Estimate the amount of memory available for userspace allocations,
5945	 * without causing swapping or OOM.
5946	 */
5947	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5948
5949	/*
5950	 * Not all the page cache can be freed, otherwise the system will
5951	 * start swapping or thrashing. Assume at least half of the page
5952	 * cache, or the low watermark worth of cache, needs to stay.
5953	 */
5954	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5955	pagecache -= min(pagecache / 2, wmark_low);
5956	available += pagecache;
5957
5958	/*
5959	 * Part of the reclaimable slab and other kernel memory consists of
5960	 * items that are in use, and cannot be freed. Cap this estimate at the
5961	 * low watermark.
5962	 */
5963	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5964		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5965	available += reclaimable - min(reclaimable / 2, wmark_low);
 
 
 
 
 
 
5966
5967	if (available < 0)
5968		available = 0;
5969	return available;
5970}
5971EXPORT_SYMBOL_GPL(si_mem_available);
5972
5973void si_meminfo(struct sysinfo *val)
5974{
5975	val->totalram = totalram_pages();
5976	val->sharedram = global_node_page_state(NR_SHMEM);
5977	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5978	val->bufferram = nr_blockdev_pages();
5979	val->totalhigh = totalhigh_pages();
5980	val->freehigh = nr_free_highpages();
5981	val->mem_unit = PAGE_SIZE;
5982}
5983
5984EXPORT_SYMBOL(si_meminfo);
5985
5986#ifdef CONFIG_NUMA
5987void si_meminfo_node(struct sysinfo *val, int nid)
5988{
5989	int zone_type;		/* needs to be signed */
5990	unsigned long managed_pages = 0;
5991	unsigned long managed_highpages = 0;
5992	unsigned long free_highpages = 0;
5993	pg_data_t *pgdat = NODE_DATA(nid);
5994
5995	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5996		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5997	val->totalram = managed_pages;
5998	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5999	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
6000#ifdef CONFIG_HIGHMEM
6001	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
6002		struct zone *zone = &pgdat->node_zones[zone_type];
6003
6004		if (is_highmem(zone)) {
6005			managed_highpages += zone_managed_pages(zone);
6006			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
6007		}
6008	}
6009	val->totalhigh = managed_highpages;
6010	val->freehigh = free_highpages;
6011#else
6012	val->totalhigh = managed_highpages;
6013	val->freehigh = free_highpages;
6014#endif
6015	val->mem_unit = PAGE_SIZE;
6016}
6017#endif
6018
6019/*
6020 * Determine whether the node should be displayed or not, depending on whether
6021 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
6022 */
6023static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
6024{
6025	if (!(flags & SHOW_MEM_FILTER_NODES))
6026		return false;
6027
6028	/*
6029	 * no node mask - aka implicit memory numa policy. Do not bother with
6030	 * the synchronization - read_mems_allowed_begin - because we do not
6031	 * have to be precise here.
6032	 */
6033	if (!nodemask)
6034		nodemask = &cpuset_current_mems_allowed;
6035
6036	return !node_isset(nid, *nodemask);
6037}
6038
6039#define K(x) ((x) << (PAGE_SHIFT-10))
6040
6041static void show_migration_types(unsigned char type)
6042{
6043	static const char types[MIGRATE_TYPES] = {
6044		[MIGRATE_UNMOVABLE]	= 'U',
6045		[MIGRATE_MOVABLE]	= 'M',
6046		[MIGRATE_RECLAIMABLE]	= 'E',
6047		[MIGRATE_HIGHATOMIC]	= 'H',
6048#ifdef CONFIG_CMA
6049		[MIGRATE_CMA]		= 'C',
6050#endif
6051#ifdef CONFIG_MEMORY_ISOLATION
6052		[MIGRATE_ISOLATE]	= 'I',
6053#endif
6054	};
6055	char tmp[MIGRATE_TYPES + 1];
6056	char *p = tmp;
6057	int i;
6058
6059	for (i = 0; i < MIGRATE_TYPES; i++) {
6060		if (type & (1 << i))
6061			*p++ = types[i];
6062	}
6063
6064	*p = '\0';
6065	printk(KERN_CONT "(%s) ", tmp);
6066}
6067
6068static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx)
6069{
6070	int zone_idx;
6071	for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++)
6072		if (zone_managed_pages(pgdat->node_zones + zone_idx))
6073			return true;
6074	return false;
6075}
6076
6077/*
6078 * Show free area list (used inside shift_scroll-lock stuff)
6079 * We also calculate the percentage fragmentation. We do this by counting the
6080 * memory on each free list with the exception of the first item on the list.
6081 *
6082 * Bits in @filter:
6083 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
6084 *   cpuset.
6085 */
6086void __show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx)
6087{
6088	unsigned long free_pcp = 0;
6089	int cpu, nid;
6090	struct zone *zone;
6091	pg_data_t *pgdat;
6092
6093	for_each_populated_zone(zone) {
6094		if (zone_idx(zone) > max_zone_idx)
6095			continue;
6096		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6097			continue;
6098
6099		for_each_online_cpu(cpu)
6100			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6101	}
6102
6103	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
6104		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
6105		" unevictable:%lu dirty:%lu writeback:%lu\n"
6106		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
6107		" mapped:%lu shmem:%lu pagetables:%lu\n"
6108		" sec_pagetables:%lu bounce:%lu\n"
6109		" kernel_misc_reclaimable:%lu\n"
6110		" free:%lu free_pcp:%lu free_cma:%lu\n",
6111		global_node_page_state(NR_ACTIVE_ANON),
6112		global_node_page_state(NR_INACTIVE_ANON),
6113		global_node_page_state(NR_ISOLATED_ANON),
6114		global_node_page_state(NR_ACTIVE_FILE),
6115		global_node_page_state(NR_INACTIVE_FILE),
6116		global_node_page_state(NR_ISOLATED_FILE),
6117		global_node_page_state(NR_UNEVICTABLE),
6118		global_node_page_state(NR_FILE_DIRTY),
6119		global_node_page_state(NR_WRITEBACK),
6120		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
6121		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
 
6122		global_node_page_state(NR_FILE_MAPPED),
6123		global_node_page_state(NR_SHMEM),
6124		global_node_page_state(NR_PAGETABLE),
6125		global_node_page_state(NR_SECONDARY_PAGETABLE),
6126		global_zone_page_state(NR_BOUNCE),
6127		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
6128		global_zone_page_state(NR_FREE_PAGES),
6129		free_pcp,
6130		global_zone_page_state(NR_FREE_CMA_PAGES));
6131
6132	for_each_online_pgdat(pgdat) {
6133		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
6134			continue;
6135		if (!node_has_managed_zones(pgdat, max_zone_idx))
6136			continue;
6137
6138		printk("Node %d"
6139			" active_anon:%lukB"
6140			" inactive_anon:%lukB"
6141			" active_file:%lukB"
6142			" inactive_file:%lukB"
6143			" unevictable:%lukB"
6144			" isolated(anon):%lukB"
6145			" isolated(file):%lukB"
6146			" mapped:%lukB"
6147			" dirty:%lukB"
6148			" writeback:%lukB"
6149			" shmem:%lukB"
6150#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6151			" shmem_thp: %lukB"
6152			" shmem_pmdmapped: %lukB"
6153			" anon_thp: %lukB"
6154#endif
6155			" writeback_tmp:%lukB"
6156			" kernel_stack:%lukB"
6157#ifdef CONFIG_SHADOW_CALL_STACK
6158			" shadow_call_stack:%lukB"
6159#endif
6160			" pagetables:%lukB"
6161			" sec_pagetables:%lukB"
6162			" all_unreclaimable? %s"
6163			"\n",
6164			pgdat->node_id,
6165			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
6166			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
6167			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
6168			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
6169			K(node_page_state(pgdat, NR_UNEVICTABLE)),
6170			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
6171			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
6172			K(node_page_state(pgdat, NR_FILE_MAPPED)),
6173			K(node_page_state(pgdat, NR_FILE_DIRTY)),
6174			K(node_page_state(pgdat, NR_WRITEBACK)),
6175			K(node_page_state(pgdat, NR_SHMEM)),
6176#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6177			K(node_page_state(pgdat, NR_SHMEM_THPS)),
6178			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
6179			K(node_page_state(pgdat, NR_ANON_THPS)),
 
6180#endif
6181			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
6182			node_page_state(pgdat, NR_KERNEL_STACK_KB),
6183#ifdef CONFIG_SHADOW_CALL_STACK
6184			node_page_state(pgdat, NR_KERNEL_SCS_KB),
6185#endif
6186			K(node_page_state(pgdat, NR_PAGETABLE)),
6187			K(node_page_state(pgdat, NR_SECONDARY_PAGETABLE)),
6188			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6189				"yes" : "no");
6190	}
6191
6192	for_each_populated_zone(zone) {
6193		int i;
6194
6195		if (zone_idx(zone) > max_zone_idx)
6196			continue;
6197		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6198			continue;
6199
6200		free_pcp = 0;
6201		for_each_online_cpu(cpu)
6202			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6203
6204		show_node(zone);
6205		printk(KERN_CONT
6206			"%s"
6207			" free:%lukB"
6208			" boost:%lukB"
6209			" min:%lukB"
6210			" low:%lukB"
6211			" high:%lukB"
6212			" reserved_highatomic:%luKB"
6213			" active_anon:%lukB"
6214			" inactive_anon:%lukB"
6215			" active_file:%lukB"
6216			" inactive_file:%lukB"
6217			" unevictable:%lukB"
6218			" writepending:%lukB"
6219			" present:%lukB"
6220			" managed:%lukB"
6221			" mlocked:%lukB"
 
 
6222			" bounce:%lukB"
6223			" free_pcp:%lukB"
6224			" local_pcp:%ukB"
6225			" free_cma:%lukB"
6226			"\n",
6227			zone->name,
6228			K(zone_page_state(zone, NR_FREE_PAGES)),
6229			K(zone->watermark_boost),
6230			K(min_wmark_pages(zone)),
6231			K(low_wmark_pages(zone)),
6232			K(high_wmark_pages(zone)),
6233			K(zone->nr_reserved_highatomic),
6234			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6235			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6236			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6237			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6238			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6239			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6240			K(zone->present_pages),
6241			K(zone_managed_pages(zone)),
6242			K(zone_page_state(zone, NR_MLOCK)),
 
 
6243			K(zone_page_state(zone, NR_BOUNCE)),
6244			K(free_pcp),
6245			K(this_cpu_read(zone->per_cpu_pageset->count)),
6246			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6247		printk("lowmem_reserve[]:");
6248		for (i = 0; i < MAX_NR_ZONES; i++)
6249			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6250		printk(KERN_CONT "\n");
6251	}
6252
6253	for_each_populated_zone(zone) {
6254		unsigned int order;
6255		unsigned long nr[MAX_ORDER], flags, total = 0;
6256		unsigned char types[MAX_ORDER];
6257
6258		if (zone_idx(zone) > max_zone_idx)
6259			continue;
6260		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6261			continue;
6262		show_node(zone);
6263		printk(KERN_CONT "%s: ", zone->name);
6264
6265		spin_lock_irqsave(&zone->lock, flags);
6266		for (order = 0; order < MAX_ORDER; order++) {
6267			struct free_area *area = &zone->free_area[order];
6268			int type;
6269
6270			nr[order] = area->nr_free;
6271			total += nr[order] << order;
6272
6273			types[order] = 0;
6274			for (type = 0; type < MIGRATE_TYPES; type++) {
6275				if (!free_area_empty(area, type))
6276					types[order] |= 1 << type;
6277			}
6278		}
6279		spin_unlock_irqrestore(&zone->lock, flags);
6280		for (order = 0; order < MAX_ORDER; order++) {
6281			printk(KERN_CONT "%lu*%lukB ",
6282			       nr[order], K(1UL) << order);
6283			if (nr[order])
6284				show_migration_types(types[order]);
6285		}
6286		printk(KERN_CONT "= %lukB\n", K(total));
6287	}
6288
6289	for_each_online_node(nid) {
6290		if (show_mem_node_skip(filter, nid, nodemask))
6291			continue;
6292		hugetlb_show_meminfo_node(nid);
6293	}
6294
6295	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6296
6297	show_swap_cache_info();
6298}
6299
6300static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6301{
6302	zoneref->zone = zone;
6303	zoneref->zone_idx = zone_idx(zone);
6304}
6305
6306/*
6307 * Builds allocation fallback zone lists.
6308 *
6309 * Add all populated zones of a node to the zonelist.
6310 */
6311static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6312{
6313	struct zone *zone;
6314	enum zone_type zone_type = MAX_NR_ZONES;
6315	int nr_zones = 0;
6316
6317	do {
6318		zone_type--;
6319		zone = pgdat->node_zones + zone_type;
6320		if (populated_zone(zone)) {
6321			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6322			check_highest_zone(zone_type);
6323		}
6324	} while (zone_type);
6325
6326	return nr_zones;
6327}
6328
6329#ifdef CONFIG_NUMA
6330
6331static int __parse_numa_zonelist_order(char *s)
6332{
6333	/*
6334	 * We used to support different zonelists modes but they turned
6335	 * out to be just not useful. Let's keep the warning in place
6336	 * if somebody still use the cmd line parameter so that we do
6337	 * not fail it silently
6338	 */
6339	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6340		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
6341		return -EINVAL;
6342	}
6343	return 0;
6344}
6345
 
 
 
 
 
 
 
 
 
6346char numa_zonelist_order[] = "Node";
6347
6348/*
6349 * sysctl handler for numa_zonelist_order
6350 */
6351int numa_zonelist_order_handler(struct ctl_table *table, int write,
6352		void *buffer, size_t *length, loff_t *ppos)
 
6353{
6354	if (write)
6355		return __parse_numa_zonelist_order(buffer);
6356	return proc_dostring(table, write, buffer, length, ppos);
 
 
 
 
 
 
 
 
 
6357}
6358
6359
 
6360static int node_load[MAX_NUMNODES];
6361
6362/**
6363 * find_next_best_node - find the next node that should appear in a given node's fallback list
6364 * @node: node whose fallback list we're appending
6365 * @used_node_mask: nodemask_t of already used nodes
6366 *
6367 * We use a number of factors to determine which is the next node that should
6368 * appear on a given node's fallback list.  The node should not have appeared
6369 * already in @node's fallback list, and it should be the next closest node
6370 * according to the distance array (which contains arbitrary distance values
6371 * from each node to each node in the system), and should also prefer nodes
6372 * with no CPUs, since presumably they'll have very little allocation pressure
6373 * on them otherwise.
6374 *
6375 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6376 */
6377int find_next_best_node(int node, nodemask_t *used_node_mask)
6378{
6379	int n, val;
6380	int min_val = INT_MAX;
6381	int best_node = NUMA_NO_NODE;
 
6382
6383	/* Use the local node if we haven't already */
6384	if (!node_isset(node, *used_node_mask)) {
6385		node_set(node, *used_node_mask);
6386		return node;
6387	}
6388
6389	for_each_node_state(n, N_MEMORY) {
6390
6391		/* Don't want a node to appear more than once */
6392		if (node_isset(n, *used_node_mask))
6393			continue;
6394
6395		/* Use the distance array to find the distance */
6396		val = node_distance(node, n);
6397
6398		/* Penalize nodes under us ("prefer the next node") */
6399		val += (n < node);
6400
6401		/* Give preference to headless and unused nodes */
6402		if (!cpumask_empty(cpumask_of_node(n)))
 
6403			val += PENALTY_FOR_NODE_WITH_CPUS;
6404
6405		/* Slight preference for less loaded node */
6406		val *= MAX_NUMNODES;
6407		val += node_load[n];
6408
6409		if (val < min_val) {
6410			min_val = val;
6411			best_node = n;
6412		}
6413	}
6414
6415	if (best_node >= 0)
6416		node_set(best_node, *used_node_mask);
6417
6418	return best_node;
6419}
6420
6421
6422/*
6423 * Build zonelists ordered by node and zones within node.
6424 * This results in maximum locality--normal zone overflows into local
6425 * DMA zone, if any--but risks exhausting DMA zone.
6426 */
6427static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6428		unsigned nr_nodes)
6429{
6430	struct zoneref *zonerefs;
6431	int i;
6432
6433	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6434
6435	for (i = 0; i < nr_nodes; i++) {
6436		int nr_zones;
6437
6438		pg_data_t *node = NODE_DATA(node_order[i]);
6439
6440		nr_zones = build_zonerefs_node(node, zonerefs);
6441		zonerefs += nr_zones;
6442	}
6443	zonerefs->zone = NULL;
6444	zonerefs->zone_idx = 0;
6445}
6446
6447/*
6448 * Build gfp_thisnode zonelists
6449 */
6450static void build_thisnode_zonelists(pg_data_t *pgdat)
6451{
6452	struct zoneref *zonerefs;
6453	int nr_zones;
6454
6455	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6456	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6457	zonerefs += nr_zones;
6458	zonerefs->zone = NULL;
6459	zonerefs->zone_idx = 0;
6460}
6461
6462/*
6463 * Build zonelists ordered by zone and nodes within zones.
6464 * This results in conserving DMA zone[s] until all Normal memory is
6465 * exhausted, but results in overflowing to remote node while memory
6466 * may still exist in local DMA zone.
6467 */
6468
6469static void build_zonelists(pg_data_t *pgdat)
6470{
6471	static int node_order[MAX_NUMNODES];
6472	int node, nr_nodes = 0;
6473	nodemask_t used_mask = NODE_MASK_NONE;
6474	int local_node, prev_node;
6475
6476	/* NUMA-aware ordering of nodes */
6477	local_node = pgdat->node_id;
 
6478	prev_node = local_node;
 
6479
6480	memset(node_order, 0, sizeof(node_order));
6481	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6482		/*
6483		 * We don't want to pressure a particular node.
6484		 * So adding penalty to the first node in same
6485		 * distance group to make it round-robin.
6486		 */
6487		if (node_distance(local_node, node) !=
6488		    node_distance(local_node, prev_node))
6489			node_load[node] += 1;
6490
6491		node_order[nr_nodes++] = node;
6492		prev_node = node;
 
6493	}
6494
6495	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6496	build_thisnode_zonelists(pgdat);
6497	pr_info("Fallback order for Node %d: ", local_node);
6498	for (node = 0; node < nr_nodes; node++)
6499		pr_cont("%d ", node_order[node]);
6500	pr_cont("\n");
6501}
6502
6503#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6504/*
6505 * Return node id of node used for "local" allocations.
6506 * I.e., first node id of first zone in arg node's generic zonelist.
6507 * Used for initializing percpu 'numa_mem', which is used primarily
6508 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6509 */
6510int local_memory_node(int node)
6511{
6512	struct zoneref *z;
6513
6514	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6515				   gfp_zone(GFP_KERNEL),
6516				   NULL);
6517	return zone_to_nid(z->zone);
6518}
6519#endif
6520
6521static void setup_min_unmapped_ratio(void);
6522static void setup_min_slab_ratio(void);
6523#else	/* CONFIG_NUMA */
6524
6525static void build_zonelists(pg_data_t *pgdat)
6526{
6527	int node, local_node;
6528	struct zoneref *zonerefs;
6529	int nr_zones;
6530
6531	local_node = pgdat->node_id;
6532
6533	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6534	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6535	zonerefs += nr_zones;
6536
6537	/*
6538	 * Now we build the zonelist so that it contains the zones
6539	 * of all the other nodes.
6540	 * We don't want to pressure a particular node, so when
6541	 * building the zones for node N, we make sure that the
6542	 * zones coming right after the local ones are those from
6543	 * node N+1 (modulo N)
6544	 */
6545	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6546		if (!node_online(node))
6547			continue;
6548		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6549		zonerefs += nr_zones;
6550	}
6551	for (node = 0; node < local_node; node++) {
6552		if (!node_online(node))
6553			continue;
6554		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6555		zonerefs += nr_zones;
6556	}
6557
6558	zonerefs->zone = NULL;
6559	zonerefs->zone_idx = 0;
6560}
6561
6562#endif	/* CONFIG_NUMA */
6563
6564/*
6565 * Boot pageset table. One per cpu which is going to be used for all
6566 * zones and all nodes. The parameters will be set in such a way
6567 * that an item put on a list will immediately be handed over to
6568 * the buddy list. This is safe since pageset manipulation is done
6569 * with interrupts disabled.
6570 *
6571 * The boot_pagesets must be kept even after bootup is complete for
6572 * unused processors and/or zones. They do play a role for bootstrapping
6573 * hotplugged processors.
6574 *
6575 * zoneinfo_show() and maybe other functions do
6576 * not check if the processor is online before following the pageset pointer.
6577 * Other parts of the kernel may not check if the zone is available.
6578 */
6579static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6580/* These effectively disable the pcplists in the boot pageset completely */
6581#define BOOT_PAGESET_HIGH	0
6582#define BOOT_PAGESET_BATCH	1
6583static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6584static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6585static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6586
6587static void __build_all_zonelists(void *data)
6588{
6589	int nid;
6590	int __maybe_unused cpu;
6591	pg_data_t *self = data;
 
6592
6593	write_seqlock(&zonelist_update_seq);
6594
6595#ifdef CONFIG_NUMA
6596	memset(node_load, 0, sizeof(node_load));
6597#endif
6598
6599	/*
6600	 * This node is hotadded and no memory is yet present.   So just
6601	 * building zonelists is fine - no need to touch other nodes.
6602	 */
6603	if (self && !node_online(self->node_id)) {
6604		build_zonelists(self);
6605	} else {
6606		/*
6607		 * All possible nodes have pgdat preallocated
6608		 * in free_area_init
6609		 */
6610		for_each_node(nid) {
6611			pg_data_t *pgdat = NODE_DATA(nid);
6612
6613			build_zonelists(pgdat);
6614		}
6615
6616#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6617		/*
6618		 * We now know the "local memory node" for each node--
6619		 * i.e., the node of the first zone in the generic zonelist.
6620		 * Set up numa_mem percpu variable for on-line cpus.  During
6621		 * boot, only the boot cpu should be on-line;  we'll init the
6622		 * secondary cpus' numa_mem as they come on-line.  During
6623		 * node/memory hotplug, we'll fixup all on-line cpus.
6624		 */
6625		for_each_online_cpu(cpu)
6626			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6627#endif
6628	}
6629
6630	write_sequnlock(&zonelist_update_seq);
6631}
6632
6633static noinline void __init
6634build_all_zonelists_init(void)
6635{
6636	int cpu;
6637
6638	__build_all_zonelists(NULL);
6639
6640	/*
6641	 * Initialize the boot_pagesets that are going to be used
6642	 * for bootstrapping processors. The real pagesets for
6643	 * each zone will be allocated later when the per cpu
6644	 * allocator is available.
6645	 *
6646	 * boot_pagesets are used also for bootstrapping offline
6647	 * cpus if the system is already booted because the pagesets
6648	 * are needed to initialize allocators on a specific cpu too.
6649	 * F.e. the percpu allocator needs the page allocator which
6650	 * needs the percpu allocator in order to allocate its pagesets
6651	 * (a chicken-egg dilemma).
6652	 */
6653	for_each_possible_cpu(cpu)
6654		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6655
6656	mminit_verify_zonelist();
6657	cpuset_init_current_mems_allowed();
6658}
6659
6660/*
6661 * unless system_state == SYSTEM_BOOTING.
6662 *
6663 * __ref due to call of __init annotated helper build_all_zonelists_init
6664 * [protected by SYSTEM_BOOTING].
6665 */
6666void __ref build_all_zonelists(pg_data_t *pgdat)
6667{
6668	unsigned long vm_total_pages;
6669
6670	if (system_state == SYSTEM_BOOTING) {
6671		build_all_zonelists_init();
6672	} else {
6673		__build_all_zonelists(pgdat);
6674		/* cpuset refresh routine should be here */
6675	}
6676	/* Get the number of free pages beyond high watermark in all zones. */
6677	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6678	/*
6679	 * Disable grouping by mobility if the number of pages in the
6680	 * system is too low to allow the mechanism to work. It would be
6681	 * more accurate, but expensive to check per-zone. This check is
6682	 * made on memory-hotadd so a system can start with mobility
6683	 * disabled and enable it later
6684	 */
6685	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6686		page_group_by_mobility_disabled = 1;
6687	else
6688		page_group_by_mobility_disabled = 0;
6689
6690	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6691		nr_online_nodes,
6692		page_group_by_mobility_disabled ? "off" : "on",
6693		vm_total_pages);
6694#ifdef CONFIG_NUMA
6695	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6696#endif
6697}
6698
6699/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6700static bool __meminit
6701overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6702{
6703	static struct memblock_region *r;
6704
6705	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6706		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6707			for_each_mem_region(r) {
6708				if (*pfn < memblock_region_memory_end_pfn(r))
6709					break;
6710			}
6711		}
6712		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6713		    memblock_is_mirror(r)) {
6714			*pfn = memblock_region_memory_end_pfn(r);
6715			return true;
6716		}
6717	}
6718	return false;
6719}
6720
6721/*
6722 * Initially all pages are reserved - free ones are freed
6723 * up by memblock_free_all() once the early boot process is
6724 * done. Non-atomic initialization, single-pass.
6725 *
6726 * All aligned pageblocks are initialized to the specified migratetype
6727 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6728 * zone stats (e.g., nr_isolate_pageblock) are touched.
6729 */
6730void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6731		unsigned long start_pfn, unsigned long zone_end_pfn,
6732		enum meminit_context context,
6733		struct vmem_altmap *altmap, int migratetype)
6734{
6735	unsigned long pfn, end_pfn = start_pfn + size;
 
 
 
6736	struct page *page;
 
 
 
6737
6738	if (highest_memmap_pfn < end_pfn - 1)
6739		highest_memmap_pfn = end_pfn - 1;
6740
6741#ifdef CONFIG_ZONE_DEVICE
6742	/*
6743	 * Honor reservation requested by the driver for this ZONE_DEVICE
6744	 * memory. We limit the total number of pages to initialize to just
6745	 * those that might contain the memory mapping. We will defer the
6746	 * ZONE_DEVICE page initialization until after we have released
6747	 * the hotplug lock.
6748	 */
6749	if (zone == ZONE_DEVICE) {
6750		if (!altmap)
6751			return;
6752
6753		if (start_pfn == altmap->base_pfn)
6754			start_pfn += altmap->reserve;
6755		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6756	}
6757#endif
6758
6759	for (pfn = start_pfn; pfn < end_pfn; ) {
6760		/*
6761		 * There can be holes in boot-time mem_map[]s handed to this
6762		 * function.  They do not exist on hotplugged memory.
6763		 */
6764		if (context == MEMINIT_EARLY) {
6765			if (overlap_memmap_init(zone, &pfn))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6766				continue;
6767			if (defer_init(nid, pfn, zone_end_pfn))
6768				break;
6769		}
 
6770
 
6771		page = pfn_to_page(pfn);
6772		__init_single_page(page, pfn, zone, nid);
6773		if (context == MEMINIT_HOTPLUG)
6774			__SetPageReserved(page);
6775
6776		/*
6777		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6778		 * such that unmovable allocations won't be scattered all
6779		 * over the place during system boot.
 
 
 
 
 
 
 
 
 
 
6780		 */
6781		if (pageblock_aligned(pfn)) {
6782			set_pageblock_migratetype(page, migratetype);
6783			cond_resched();
6784		}
6785		pfn++;
6786	}
6787}
6788
6789#ifdef CONFIG_ZONE_DEVICE
6790static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6791					  unsigned long zone_idx, int nid,
6792					  struct dev_pagemap *pgmap)
6793{
6794
6795	__init_single_page(page, pfn, zone_idx, nid);
6796
6797	/*
6798	 * Mark page reserved as it will need to wait for onlining
6799	 * phase for it to be fully associated with a zone.
6800	 *
6801	 * We can use the non-atomic __set_bit operation for setting
6802	 * the flag as we are still initializing the pages.
6803	 */
6804	__SetPageReserved(page);
6805
6806	/*
6807	 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6808	 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6809	 * ever freed or placed on a driver-private list.
6810	 */
6811	page->pgmap = pgmap;
6812	page->zone_device_data = NULL;
6813
6814	/*
6815	 * Mark the block movable so that blocks are reserved for
6816	 * movable at startup. This will force kernel allocations
6817	 * to reserve their blocks rather than leaking throughout
6818	 * the address space during boot when many long-lived
6819	 * kernel allocations are made.
6820	 *
6821	 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6822	 * because this is done early in section_activate()
6823	 */
6824	if (pageblock_aligned(pfn)) {
6825		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6826		cond_resched();
6827	}
6828
6829	/*
6830	 * ZONE_DEVICE pages are released directly to the driver page allocator
6831	 * which will set the page count to 1 when allocating the page.
6832	 */
6833	if (pgmap->type == MEMORY_DEVICE_PRIVATE ||
6834	    pgmap->type == MEMORY_DEVICE_COHERENT)
6835		set_page_count(page, 0);
6836}
6837
6838/*
6839 * With compound page geometry and when struct pages are stored in ram most
6840 * tail pages are reused. Consequently, the amount of unique struct pages to
6841 * initialize is a lot smaller that the total amount of struct pages being
6842 * mapped. This is a paired / mild layering violation with explicit knowledge
6843 * of how the sparse_vmemmap internals handle compound pages in the lack
6844 * of an altmap. See vmemmap_populate_compound_pages().
6845 */
6846static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
6847					      unsigned long nr_pages)
6848{
6849	return is_power_of_2(sizeof(struct page)) &&
6850		!altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages;
6851}
6852
6853static void __ref memmap_init_compound(struct page *head,
6854				       unsigned long head_pfn,
6855				       unsigned long zone_idx, int nid,
6856				       struct dev_pagemap *pgmap,
6857				       unsigned long nr_pages)
6858{
6859	unsigned long pfn, end_pfn = head_pfn + nr_pages;
6860	unsigned int order = pgmap->vmemmap_shift;
6861
6862	__SetPageHead(head);
6863	for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6864		struct page *page = pfn_to_page(pfn);
6865
6866		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6867		prep_compound_tail(head, pfn - head_pfn);
6868		set_page_count(page, 0);
6869
6870		/*
6871		 * The first tail page stores important compound page info.
6872		 * Call prep_compound_head() after the first tail page has
6873		 * been initialized, to not have the data overwritten.
6874		 */
6875		if (pfn == head_pfn + 1)
6876			prep_compound_head(head, order);
6877	}
6878}
6879
6880void __ref memmap_init_zone_device(struct zone *zone,
6881				   unsigned long start_pfn,
6882				   unsigned long nr_pages,
6883				   struct dev_pagemap *pgmap)
6884{
6885	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6886	struct pglist_data *pgdat = zone->zone_pgdat;
6887	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6888	unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
6889	unsigned long zone_idx = zone_idx(zone);
6890	unsigned long start = jiffies;
6891	int nid = pgdat->node_id;
6892
6893	if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
6894		return;
6895
6896	/*
6897	 * The call to memmap_init should have already taken care
6898	 * of the pages reserved for the memmap, so we can just jump to
6899	 * the end of that region and start processing the device pages.
6900	 */
6901	if (altmap) {
6902		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6903		nr_pages = end_pfn - start_pfn;
6904	}
6905
6906	for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
6907		struct page *page = pfn_to_page(pfn);
6908
6909		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6910
6911		if (pfns_per_compound == 1)
6912			continue;
6913
6914		memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6915				     compound_nr_pages(altmap, pfns_per_compound));
6916	}
6917
6918	pr_info("%s initialised %lu pages in %ums\n", __func__,
6919		nr_pages, jiffies_to_msecs(jiffies - start));
6920}
6921
6922#endif
6923static void __meminit zone_init_free_lists(struct zone *zone)
6924{
6925	unsigned int order, t;
6926	for_each_migratetype_order(order, t) {
6927		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6928		zone->free_area[order].nr_free = 0;
6929	}
6930}
6931
6932/*
6933 * Only struct pages that correspond to ranges defined by memblock.memory
6934 * are zeroed and initialized by going through __init_single_page() during
6935 * memmap_init_zone_range().
6936 *
6937 * But, there could be struct pages that correspond to holes in
6938 * memblock.memory. This can happen because of the following reasons:
6939 * - physical memory bank size is not necessarily the exact multiple of the
6940 *   arbitrary section size
6941 * - early reserved memory may not be listed in memblock.memory
6942 * - memory layouts defined with memmap= kernel parameter may not align
6943 *   nicely with memmap sections
6944 *
6945 * Explicitly initialize those struct pages so that:
6946 * - PG_Reserved is set
6947 * - zone and node links point to zone and node that span the page if the
6948 *   hole is in the middle of a zone
6949 * - zone and node links point to adjacent zone/node if the hole falls on
6950 *   the zone boundary; the pages in such holes will be prepended to the
6951 *   zone/node above the hole except for the trailing pages in the last
6952 *   section that will be appended to the zone/node below.
6953 */
6954static void __init init_unavailable_range(unsigned long spfn,
6955					  unsigned long epfn,
6956					  int zone, int node)
6957{
6958	unsigned long pfn;
6959	u64 pgcnt = 0;
6960
6961	for (pfn = spfn; pfn < epfn; pfn++) {
6962		if (!pfn_valid(pageblock_start_pfn(pfn))) {
6963			pfn = pageblock_end_pfn(pfn) - 1;
6964			continue;
6965		}
6966		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
6967		__SetPageReserved(pfn_to_page(pfn));
6968		pgcnt++;
6969	}
6970
6971	if (pgcnt)
6972		pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6973			node, zone_names[zone], pgcnt);
6974}
6975
6976static void __init memmap_init_zone_range(struct zone *zone,
6977					  unsigned long start_pfn,
6978					  unsigned long end_pfn,
6979					  unsigned long *hole_pfn)
6980{
6981	unsigned long zone_start_pfn = zone->zone_start_pfn;
6982	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6983	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6984
6985	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6986	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6987
6988	if (start_pfn >= end_pfn)
6989		return;
6990
6991	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6992			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6993
6994	if (*hole_pfn < start_pfn)
6995		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6996
6997	*hole_pfn = end_pfn;
6998}
6999
7000static void __init memmap_init(void)
7001{
7002	unsigned long start_pfn, end_pfn;
7003	unsigned long hole_pfn = 0;
7004	int i, j, zone_id = 0, nid;
7005
7006	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7007		struct pglist_data *node = NODE_DATA(nid);
7008
7009		for (j = 0; j < MAX_NR_ZONES; j++) {
7010			struct zone *zone = node->node_zones + j;
7011
7012			if (!populated_zone(zone))
7013				continue;
7014
7015			memmap_init_zone_range(zone, start_pfn, end_pfn,
7016					       &hole_pfn);
7017			zone_id = j;
7018		}
7019	}
7020
7021#ifdef CONFIG_SPARSEMEM
7022	/*
7023	 * Initialize the memory map for hole in the range [memory_end,
7024	 * section_end].
7025	 * Append the pages in this hole to the highest zone in the last
7026	 * node.
7027	 * The call to init_unavailable_range() is outside the ifdef to
7028	 * silence the compiler warining about zone_id set but not used;
7029	 * for FLATMEM it is a nop anyway
7030	 */
7031	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
7032	if (hole_pfn < end_pfn)
7033#endif
7034		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
7035}
7036
7037void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
7038			  phys_addr_t min_addr, int nid, bool exact_nid)
7039{
7040	void *ptr;
7041
7042	if (exact_nid)
7043		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
7044						   MEMBLOCK_ALLOC_ACCESSIBLE,
7045						   nid);
7046	else
7047		ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
7048						 MEMBLOCK_ALLOC_ACCESSIBLE,
7049						 nid);
7050
7051	if (ptr && size > 0)
7052		page_init_poison(ptr, size);
7053
7054	return ptr;
7055}
7056
7057static int zone_batchsize(struct zone *zone)
7058{
7059#ifdef CONFIG_MMU
7060	int batch;
7061
7062	/*
7063	 * The number of pages to batch allocate is either ~0.1%
7064	 * of the zone or 1MB, whichever is smaller. The batch
7065	 * size is striking a balance between allocation latency
7066	 * and zone lock contention.
7067	 */
7068	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
 
 
7069	batch /= 4;		/* We effectively *= 4 below */
7070	if (batch < 1)
7071		batch = 1;
7072
7073	/*
7074	 * Clamp the batch to a 2^n - 1 value. Having a power
7075	 * of 2 value was found to be more likely to have
7076	 * suboptimal cache aliasing properties in some cases.
7077	 *
7078	 * For example if 2 tasks are alternately allocating
7079	 * batches of pages, one task can end up with a lot
7080	 * of pages of one half of the possible page colors
7081	 * and the other with pages of the other colors.
7082	 */
7083	batch = rounddown_pow_of_two(batch + batch/2) - 1;
7084
7085	return batch;
7086
7087#else
7088	/* The deferral and batching of frees should be suppressed under NOMMU
7089	 * conditions.
7090	 *
7091	 * The problem is that NOMMU needs to be able to allocate large chunks
7092	 * of contiguous memory as there's no hardware page translation to
7093	 * assemble apparent contiguous memory from discontiguous pages.
7094	 *
7095	 * Queueing large contiguous runs of pages for batching, however,
7096	 * causes the pages to actually be freed in smaller chunks.  As there
7097	 * can be a significant delay between the individual batches being
7098	 * recycled, this leads to the once large chunks of space being
7099	 * fragmented and becoming unavailable for high-order allocations.
7100	 */
7101	return 0;
7102#endif
7103}
7104
7105static int zone_highsize(struct zone *zone, int batch, int cpu_online)
7106{
7107#ifdef CONFIG_MMU
7108	int high;
7109	int nr_split_cpus;
7110	unsigned long total_pages;
7111
7112	if (!percpu_pagelist_high_fraction) {
7113		/*
7114		 * By default, the high value of the pcp is based on the zone
7115		 * low watermark so that if they are full then background
7116		 * reclaim will not be started prematurely.
7117		 */
7118		total_pages = low_wmark_pages(zone);
7119	} else {
7120		/*
7121		 * If percpu_pagelist_high_fraction is configured, the high
7122		 * value is based on a fraction of the managed pages in the
7123		 * zone.
7124		 */
7125		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
7126	}
7127
7128	/*
7129	 * Split the high value across all online CPUs local to the zone. Note
7130	 * that early in boot that CPUs may not be online yet and that during
7131	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
7132	 * onlined. For memory nodes that have no CPUs, split pcp->high across
7133	 * all online CPUs to mitigate the risk that reclaim is triggered
7134	 * prematurely due to pages stored on pcp lists.
7135	 */
7136	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
7137	if (!nr_split_cpus)
7138		nr_split_cpus = num_online_cpus();
7139	high = total_pages / nr_split_cpus;
7140
7141	/*
7142	 * Ensure high is at least batch*4. The multiple is based on the
7143	 * historical relationship between high and batch.
7144	 */
7145	high = max(high, batch << 2);
7146
7147	return high;
7148#else
7149	return 0;
7150#endif
7151}
7152
7153/*
7154 * pcp->high and pcp->batch values are related and generally batch is lower
7155 * than high. They are also related to pcp->count such that count is lower
7156 * than high, and as soon as it reaches high, the pcplist is flushed.
7157 *
7158 * However, guaranteeing these relations at all times would require e.g. write
7159 * barriers here but also careful usage of read barriers at the read side, and
7160 * thus be prone to error and bad for performance. Thus the update only prevents
7161 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
7162 * can cope with those fields changing asynchronously, and fully trust only the
7163 * pcp->count field on the local CPU with interrupts disabled.
7164 *
7165 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
7166 * outside of boot time (or some other assurance that no concurrent updaters
7167 * exist).
7168 */
7169static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
7170		unsigned long batch)
7171{
7172	WRITE_ONCE(pcp->batch, batch);
7173	WRITE_ONCE(pcp->high, high);
 
 
 
 
 
 
 
7174}
7175
7176static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
 
7177{
7178	int pindex;
 
7179
7180	memset(pcp, 0, sizeof(*pcp));
7181	memset(pzstats, 0, sizeof(*pzstats));
 
 
7182
7183	spin_lock_init(&pcp->lock);
7184	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
7185		INIT_LIST_HEAD(&pcp->lists[pindex]);
7186
7187	/*
7188	 * Set batch and high values safe for a boot pageset. A true percpu
7189	 * pageset's initialization will update them subsequently. Here we don't
7190	 * need to be as careful as pageset_update() as nobody can access the
7191	 * pageset yet.
7192	 */
7193	pcp->high = BOOT_PAGESET_HIGH;
7194	pcp->batch = BOOT_PAGESET_BATCH;
7195	pcp->free_factor = 0;
7196}
7197
7198static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
7199		unsigned long batch)
7200{
7201	struct per_cpu_pages *pcp;
7202	int cpu;
7203
7204	for_each_possible_cpu(cpu) {
7205		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7206		pageset_update(pcp, high, batch);
7207	}
7208}
7209
7210/*
7211 * Calculate and set new high and batch values for all per-cpu pagesets of a
7212 * zone based on the zone's size.
7213 */
7214static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
 
7215{
7216	int new_high, new_batch;
 
 
7217
7218	new_batch = max(1, zone_batchsize(zone));
7219	new_high = zone_highsize(zone, new_batch, cpu_online);
7220
7221	if (zone->pageset_high == new_high &&
7222	    zone->pageset_batch == new_batch)
7223		return;
 
 
 
 
 
 
 
7224
7225	zone->pageset_high = new_high;
7226	zone->pageset_batch = new_batch;
 
7227
7228	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
 
7229}
7230
7231void __meminit setup_zone_pageset(struct zone *zone)
7232{
7233	int cpu;
7234
7235	/* Size may be 0 on !SMP && !NUMA */
7236	if (sizeof(struct per_cpu_zonestat) > 0)
7237		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7238
7239	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
7240	for_each_possible_cpu(cpu) {
7241		struct per_cpu_pages *pcp;
7242		struct per_cpu_zonestat *pzstats;
7243
7244		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7245		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7246		per_cpu_pages_init(pcp, pzstats);
7247	}
7248
7249	zone_set_pageset_high_and_batch(zone, 0);
7250}
7251
7252/*
7253 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7254 * page high values need to be recalculated.
7255 */
7256static void zone_pcp_update(struct zone *zone, int cpu_online)
7257{
7258	mutex_lock(&pcp_batch_high_lock);
7259	zone_set_pageset_high_and_batch(zone, cpu_online);
7260	mutex_unlock(&pcp_batch_high_lock);
7261}
7262
7263/*
7264 * Allocate per cpu pagesets and initialize them.
7265 * Before this call only boot pagesets were available.
7266 */
7267void __init setup_per_cpu_pageset(void)
7268{
7269	struct pglist_data *pgdat;
7270	struct zone *zone;
7271	int __maybe_unused cpu;
7272
7273	for_each_populated_zone(zone)
7274		setup_zone_pageset(zone);
7275
7276#ifdef CONFIG_NUMA
7277	/*
7278	 * Unpopulated zones continue using the boot pagesets.
7279	 * The numa stats for these pagesets need to be reset.
7280	 * Otherwise, they will end up skewing the stats of
7281	 * the nodes these zones are associated with.
7282	 */
7283	for_each_possible_cpu(cpu) {
7284		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7285		memset(pzstats->vm_numa_event, 0,
7286		       sizeof(pzstats->vm_numa_event));
7287	}
7288#endif
7289
7290	for_each_online_pgdat(pgdat)
7291		pgdat->per_cpu_nodestats =
7292			alloc_percpu(struct per_cpu_nodestat);
7293}
7294
7295static __meminit void zone_pcp_init(struct zone *zone)
7296{
7297	/*
7298	 * per cpu subsystem is not up at this point. The following code
7299	 * relies on the ability of the linker to provide the
7300	 * offset of a (static) per cpu variable into the per cpu area.
7301	 */
7302	zone->per_cpu_pageset = &boot_pageset;
7303	zone->per_cpu_zonestats = &boot_zonestats;
7304	zone->pageset_high = BOOT_PAGESET_HIGH;
7305	zone->pageset_batch = BOOT_PAGESET_BATCH;
7306
7307	if (populated_zone(zone))
7308		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7309			 zone->present_pages, zone_batchsize(zone));
 
7310}
7311
7312void __meminit init_currently_empty_zone(struct zone *zone,
7313					unsigned long zone_start_pfn,
7314					unsigned long size)
7315{
7316	struct pglist_data *pgdat = zone->zone_pgdat;
7317	int zone_idx = zone_idx(zone) + 1;
7318
7319	if (zone_idx > pgdat->nr_zones)
7320		pgdat->nr_zones = zone_idx;
7321
7322	zone->zone_start_pfn = zone_start_pfn;
7323
7324	mminit_dprintk(MMINIT_TRACE, "memmap_init",
7325			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
7326			pgdat->node_id,
7327			(unsigned long)zone_idx(zone),
7328			zone_start_pfn, (zone_start_pfn + size));
7329
7330	zone_init_free_lists(zone);
7331	zone->initialized = 1;
7332}
7333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7334/**
7335 * get_pfn_range_for_nid - Return the start and end page frames for a node
7336 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7337 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7338 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7339 *
7340 * It returns the start and end page frame of a node based on information
7341 * provided by memblock_set_node(). If called for a node
7342 * with no available memory, a warning is printed and the start and end
7343 * PFNs will be 0.
7344 */
7345void __init get_pfn_range_for_nid(unsigned int nid,
7346			unsigned long *start_pfn, unsigned long *end_pfn)
7347{
7348	unsigned long this_start_pfn, this_end_pfn;
7349	int i;
7350
7351	*start_pfn = -1UL;
7352	*end_pfn = 0;
7353
7354	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7355		*start_pfn = min(*start_pfn, this_start_pfn);
7356		*end_pfn = max(*end_pfn, this_end_pfn);
7357	}
7358
7359	if (*start_pfn == -1UL)
7360		*start_pfn = 0;
7361}
7362
7363/*
7364 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7365 * assumption is made that zones within a node are ordered in monotonic
7366 * increasing memory addresses so that the "highest" populated zone is used
7367 */
7368static void __init find_usable_zone_for_movable(void)
7369{
7370	int zone_index;
7371	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7372		if (zone_index == ZONE_MOVABLE)
7373			continue;
7374
7375		if (arch_zone_highest_possible_pfn[zone_index] >
7376				arch_zone_lowest_possible_pfn[zone_index])
7377			break;
7378	}
7379
7380	VM_BUG_ON(zone_index == -1);
7381	movable_zone = zone_index;
7382}
7383
7384/*
7385 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7386 * because it is sized independent of architecture. Unlike the other zones,
7387 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7388 * in each node depending on the size of each node and how evenly kernelcore
7389 * is distributed. This helper function adjusts the zone ranges
7390 * provided by the architecture for a given node by using the end of the
7391 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7392 * zones within a node are in order of monotonic increases memory addresses
7393 */
7394static void __init adjust_zone_range_for_zone_movable(int nid,
7395					unsigned long zone_type,
7396					unsigned long node_start_pfn,
7397					unsigned long node_end_pfn,
7398					unsigned long *zone_start_pfn,
7399					unsigned long *zone_end_pfn)
7400{
7401	/* Only adjust if ZONE_MOVABLE is on this node */
7402	if (zone_movable_pfn[nid]) {
7403		/* Size ZONE_MOVABLE */
7404		if (zone_type == ZONE_MOVABLE) {
7405			*zone_start_pfn = zone_movable_pfn[nid];
7406			*zone_end_pfn = min(node_end_pfn,
7407				arch_zone_highest_possible_pfn[movable_zone]);
7408
7409		/* Adjust for ZONE_MOVABLE starting within this range */
7410		} else if (!mirrored_kernelcore &&
7411			*zone_start_pfn < zone_movable_pfn[nid] &&
7412			*zone_end_pfn > zone_movable_pfn[nid]) {
7413			*zone_end_pfn = zone_movable_pfn[nid];
7414
7415		/* Check if this whole range is within ZONE_MOVABLE */
7416		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
7417			*zone_start_pfn = *zone_end_pfn;
7418	}
7419}
7420
7421/*
7422 * Return the number of pages a zone spans in a node, including holes
7423 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7424 */
7425static unsigned long __init zone_spanned_pages_in_node(int nid,
7426					unsigned long zone_type,
7427					unsigned long node_start_pfn,
7428					unsigned long node_end_pfn,
7429					unsigned long *zone_start_pfn,
7430					unsigned long *zone_end_pfn)
 
7431{
7432	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7433	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7434	/* When hotadd a new node from cpu_up(), the node should be empty */
7435	if (!node_start_pfn && !node_end_pfn)
7436		return 0;
7437
7438	/* Get the start and end of the zone */
7439	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7440	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7441	adjust_zone_range_for_zone_movable(nid, zone_type,
7442				node_start_pfn, node_end_pfn,
7443				zone_start_pfn, zone_end_pfn);
7444
7445	/* Check that this node has pages within the zone's required range */
7446	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7447		return 0;
7448
7449	/* Move the zone boundaries inside the node if necessary */
7450	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7451	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7452
7453	/* Return the spanned pages */
7454	return *zone_end_pfn - *zone_start_pfn;
7455}
7456
7457/*
7458 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7459 * then all holes in the requested range will be accounted for.
7460 */
7461unsigned long __init __absent_pages_in_range(int nid,
7462				unsigned long range_start_pfn,
7463				unsigned long range_end_pfn)
7464{
7465	unsigned long nr_absent = range_end_pfn - range_start_pfn;
7466	unsigned long start_pfn, end_pfn;
7467	int i;
7468
7469	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7470		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7471		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7472		nr_absent -= end_pfn - start_pfn;
7473	}
7474	return nr_absent;
7475}
7476
7477/**
7478 * absent_pages_in_range - Return number of page frames in holes within a range
7479 * @start_pfn: The start PFN to start searching for holes
7480 * @end_pfn: The end PFN to stop searching for holes
7481 *
7482 * Return: the number of pages frames in memory holes within a range.
7483 */
7484unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7485							unsigned long end_pfn)
7486{
7487	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7488}
7489
7490/* Return the number of page frames in holes in a zone on a node */
7491static unsigned long __init zone_absent_pages_in_node(int nid,
7492					unsigned long zone_type,
7493					unsigned long node_start_pfn,
7494					unsigned long node_end_pfn)
 
7495{
7496	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7497	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7498	unsigned long zone_start_pfn, zone_end_pfn;
7499	unsigned long nr_absent;
7500
7501	/* When hotadd a new node from cpu_up(), the node should be empty */
7502	if (!node_start_pfn && !node_end_pfn)
7503		return 0;
7504
7505	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7506	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7507
7508	adjust_zone_range_for_zone_movable(nid, zone_type,
7509			node_start_pfn, node_end_pfn,
7510			&zone_start_pfn, &zone_end_pfn);
7511	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7512
7513	/*
7514	 * ZONE_MOVABLE handling.
7515	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7516	 * and vice versa.
7517	 */
7518	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7519		unsigned long start_pfn, end_pfn;
7520		struct memblock_region *r;
7521
7522		for_each_mem_region(r) {
7523			start_pfn = clamp(memblock_region_memory_base_pfn(r),
7524					  zone_start_pfn, zone_end_pfn);
7525			end_pfn = clamp(memblock_region_memory_end_pfn(r),
7526					zone_start_pfn, zone_end_pfn);
7527
7528			if (zone_type == ZONE_MOVABLE &&
7529			    memblock_is_mirror(r))
7530				nr_absent += end_pfn - start_pfn;
7531
7532			if (zone_type == ZONE_NORMAL &&
7533			    !memblock_is_mirror(r))
7534				nr_absent += end_pfn - start_pfn;
7535		}
7536	}
7537
7538	return nr_absent;
7539}
7540
7541static void __init calculate_node_totalpages(struct pglist_data *pgdat,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7542						unsigned long node_start_pfn,
7543						unsigned long node_end_pfn)
 
 
7544{
7545	unsigned long realtotalpages = 0, totalpages = 0;
7546	enum zone_type i;
7547
7548	for (i = 0; i < MAX_NR_ZONES; i++) {
7549		struct zone *zone = pgdat->node_zones + i;
7550		unsigned long zone_start_pfn, zone_end_pfn;
7551		unsigned long spanned, absent;
7552		unsigned long size, real_size;
7553
7554		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7555						     node_start_pfn,
7556						     node_end_pfn,
7557						     &zone_start_pfn,
7558						     &zone_end_pfn);
7559		absent = zone_absent_pages_in_node(pgdat->node_id, i,
7560						   node_start_pfn,
7561						   node_end_pfn);
7562
7563		size = spanned;
7564		real_size = size - absent;
7565
7566		if (size)
7567			zone->zone_start_pfn = zone_start_pfn;
7568		else
7569			zone->zone_start_pfn = 0;
7570		zone->spanned_pages = size;
7571		zone->present_pages = real_size;
7572#if defined(CONFIG_MEMORY_HOTPLUG)
7573		zone->present_early_pages = real_size;
7574#endif
7575
7576		totalpages += size;
7577		realtotalpages += real_size;
7578	}
7579
7580	pgdat->node_spanned_pages = totalpages;
7581	pgdat->node_present_pages = realtotalpages;
7582	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
 
7583}
7584
7585#ifndef CONFIG_SPARSEMEM
7586/*
7587 * Calculate the size of the zone->blockflags rounded to an unsigned long
7588 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7589 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7590 * round what is now in bits to nearest long in bits, then return it in
7591 * bytes.
7592 */
7593static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7594{
7595	unsigned long usemapsize;
7596
7597	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7598	usemapsize = roundup(zonesize, pageblock_nr_pages);
7599	usemapsize = usemapsize >> pageblock_order;
7600	usemapsize *= NR_PAGEBLOCK_BITS;
7601	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7602
7603	return usemapsize / 8;
7604}
7605
7606static void __ref setup_usemap(struct zone *zone)
 
 
 
7607{
7608	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7609					       zone->spanned_pages);
7610	zone->pageblock_flags = NULL;
7611	if (usemapsize) {
7612		zone->pageblock_flags =
7613			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7614					    zone_to_nid(zone));
7615		if (!zone->pageblock_flags)
7616			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7617			      usemapsize, zone->name, zone_to_nid(zone));
7618	}
7619}
7620#else
7621static inline void setup_usemap(struct zone *zone) {}
 
7622#endif /* CONFIG_SPARSEMEM */
7623
7624#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7625
7626/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7627void __init set_pageblock_order(void)
7628{
7629	unsigned int order = MAX_ORDER - 1;
7630
7631	/* Check that pageblock_nr_pages has not already been setup */
7632	if (pageblock_order)
7633		return;
7634
7635	/* Don't let pageblocks exceed the maximum allocation granularity. */
7636	if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
7637		order = HUGETLB_PAGE_ORDER;
 
 
7638
7639	/*
7640	 * Assume the largest contiguous order of interest is a huge page.
7641	 * This value may be variable depending on boot parameters on IA64 and
7642	 * powerpc.
7643	 */
7644	pageblock_order = order;
7645}
7646#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7647
7648/*
7649 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7650 * is unused as pageblock_order is set at compile-time. See
7651 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7652 * the kernel config
7653 */
7654void __init set_pageblock_order(void)
7655{
7656}
7657
7658#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7659
7660static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7661						unsigned long present_pages)
7662{
7663	unsigned long pages = spanned_pages;
7664
7665	/*
7666	 * Provide a more accurate estimation if there are holes within
7667	 * the zone and SPARSEMEM is in use. If there are holes within the
7668	 * zone, each populated memory region may cost us one or two extra
7669	 * memmap pages due to alignment because memmap pages for each
7670	 * populated regions may not be naturally aligned on page boundary.
7671	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7672	 */
7673	if (spanned_pages > present_pages + (present_pages >> 4) &&
7674	    IS_ENABLED(CONFIG_SPARSEMEM))
7675		pages = present_pages;
7676
7677	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7678}
7679
7680#ifdef CONFIG_TRANSPARENT_HUGEPAGE
7681static void pgdat_init_split_queue(struct pglist_data *pgdat)
7682{
7683	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7684
7685	spin_lock_init(&ds_queue->split_queue_lock);
7686	INIT_LIST_HEAD(&ds_queue->split_queue);
7687	ds_queue->split_queue_len = 0;
7688}
7689#else
7690static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7691#endif
7692
7693#ifdef CONFIG_COMPACTION
7694static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7695{
7696	init_waitqueue_head(&pgdat->kcompactd_wait);
7697}
7698#else
7699static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7700#endif
7701
7702static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7703{
7704	int i;
7705
7706	pgdat_resize_init(pgdat);
7707	pgdat_kswapd_lock_init(pgdat);
7708
7709	pgdat_init_split_queue(pgdat);
7710	pgdat_init_kcompactd(pgdat);
7711
7712	init_waitqueue_head(&pgdat->kswapd_wait);
7713	init_waitqueue_head(&pgdat->pfmemalloc_wait);
7714
7715	for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7716		init_waitqueue_head(&pgdat->reclaim_wait[i]);
7717
7718	pgdat_page_ext_init(pgdat);
7719	lruvec_init(&pgdat->__lruvec);
7720}
7721
7722static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7723							unsigned long remaining_pages)
7724{
7725	atomic_long_set(&zone->managed_pages, remaining_pages);
7726	zone_set_nid(zone, nid);
7727	zone->name = zone_names[idx];
7728	zone->zone_pgdat = NODE_DATA(nid);
7729	spin_lock_init(&zone->lock);
7730	zone_seqlock_init(zone);
7731	zone_pcp_init(zone);
7732}
7733
7734/*
7735 * Set up the zone data structures
7736 * - init pgdat internals
7737 * - init all zones belonging to this node
7738 *
7739 * NOTE: this function is only called during memory hotplug
7740 */
7741#ifdef CONFIG_MEMORY_HOTPLUG
7742void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
7743{
7744	int nid = pgdat->node_id;
7745	enum zone_type z;
7746	int cpu;
7747
7748	pgdat_init_internals(pgdat);
7749
7750	if (pgdat->per_cpu_nodestats == &boot_nodestats)
7751		pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7752
7753	/*
7754	 * Reset the nr_zones, order and highest_zoneidx before reuse.
7755	 * Note that kswapd will init kswapd_highest_zoneidx properly
7756	 * when it starts in the near future.
7757	 */
7758	pgdat->nr_zones = 0;
7759	pgdat->kswapd_order = 0;
7760	pgdat->kswapd_highest_zoneidx = 0;
7761	pgdat->node_start_pfn = 0;
7762	for_each_online_cpu(cpu) {
7763		struct per_cpu_nodestat *p;
7764
7765		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7766		memset(p, 0, sizeof(*p));
7767	}
7768
7769	for (z = 0; z < MAX_NR_ZONES; z++)
7770		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7771}
7772#endif
7773
7774/*
7775 * Set up the zone data structures:
7776 *   - mark all pages reserved
7777 *   - mark all memory queues empty
7778 *   - clear the memory bitmaps
7779 *
7780 * NOTE: pgdat should get zeroed by caller.
7781 * NOTE: this function is only called during early init.
7782 */
7783static void __init free_area_init_core(struct pglist_data *pgdat)
7784{
7785	enum zone_type j;
7786	int nid = pgdat->node_id;
7787
7788	pgdat_init_internals(pgdat);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7789	pgdat->per_cpu_nodestats = &boot_nodestats;
7790
7791	for (j = 0; j < MAX_NR_ZONES; j++) {
7792		struct zone *zone = pgdat->node_zones + j;
7793		unsigned long size, freesize, memmap_pages;
 
7794
7795		size = zone->spanned_pages;
7796		freesize = zone->present_pages;
7797
7798		/*
7799		 * Adjust freesize so that it accounts for how much memory
7800		 * is used by this zone for memmap. This affects the watermark
7801		 * and per-cpu initialisations
7802		 */
7803		memmap_pages = calc_memmap_size(size, freesize);
7804		if (!is_highmem_idx(j)) {
7805			if (freesize >= memmap_pages) {
7806				freesize -= memmap_pages;
7807				if (memmap_pages)
7808					pr_debug("  %s zone: %lu pages used for memmap\n",
7809						 zone_names[j], memmap_pages);
 
7810			} else
7811				pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n",
7812					zone_names[j], memmap_pages, freesize);
7813		}
7814
7815		/* Account for reserved pages */
7816		if (j == 0 && freesize > dma_reserve) {
7817			freesize -= dma_reserve;
7818			pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
 
7819		}
7820
7821		if (!is_highmem_idx(j))
7822			nr_kernel_pages += freesize;
7823		/* Charge for highmem memmap if there are enough kernel pages */
7824		else if (nr_kernel_pages > memmap_pages * 2)
7825			nr_kernel_pages -= memmap_pages;
7826		nr_all_pages += freesize;
7827
7828		/*
7829		 * Set an approximate value for lowmem here, it will be adjusted
7830		 * when the bootmem allocator frees pages into the buddy system.
7831		 * And all highmem pages will be managed by the buddy system.
7832		 */
7833		zone_init_internals(zone, j, nid, freesize);
 
 
 
 
 
 
 
 
7834
7835		if (!size)
7836			continue;
7837
7838		set_pageblock_order();
7839		setup_usemap(zone);
7840		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
 
7841	}
7842}
7843
7844#ifdef CONFIG_FLATMEM
7845static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7846{
7847	unsigned long __maybe_unused start = 0;
7848	unsigned long __maybe_unused offset = 0;
7849
7850	/* Skip empty nodes */
7851	if (!pgdat->node_spanned_pages)
7852		return;
7853
7854	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7855	offset = pgdat->node_start_pfn - start;
7856	/* ia64 gets its own node_mem_map, before this, without bootmem */
7857	if (!pgdat->node_mem_map) {
7858		unsigned long size, end;
7859		struct page *map;
7860
7861		/*
7862		 * The zone's endpoints aren't required to be MAX_ORDER
7863		 * aligned but the node_mem_map endpoints must be in order
7864		 * for the buddy allocator to function correctly.
7865		 */
7866		end = pgdat_end_pfn(pgdat);
7867		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7868		size =  (end - start) * sizeof(struct page);
7869		map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7870				   pgdat->node_id, false);
7871		if (!map)
7872			panic("Failed to allocate %ld bytes for node %d memory map\n",
7873			      size, pgdat->node_id);
7874		pgdat->node_mem_map = map + offset;
7875	}
7876	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7877				__func__, pgdat->node_id, (unsigned long)pgdat,
7878				(unsigned long)pgdat->node_mem_map);
7879#ifndef CONFIG_NUMA
7880	/*
7881	 * With no DISCONTIG, the global mem_map is just set as node 0's
7882	 */
7883	if (pgdat == NODE_DATA(0)) {
7884		mem_map = NODE_DATA(0)->node_mem_map;
 
7885		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7886			mem_map -= offset;
 
7887	}
7888#endif
7889}
7890#else
7891static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7892#endif /* CONFIG_FLATMEM */
7893
7894#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7895static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7896{
7897	pgdat->first_deferred_pfn = ULONG_MAX;
7898}
7899#else
7900static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7901#endif
7902
7903static void __init free_area_init_node(int nid)
7904{
7905	pg_data_t *pgdat = NODE_DATA(nid);
7906	unsigned long start_pfn = 0;
7907	unsigned long end_pfn = 0;
7908
7909	/* pg_data_t should be reset to zero when it's allocated */
7910	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7911
7912	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7913
7914	pgdat->node_id = nid;
7915	pgdat->node_start_pfn = start_pfn;
7916	pgdat->per_cpu_nodestats = NULL;
7917
7918	if (start_pfn != end_pfn) {
7919		pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7920			(u64)start_pfn << PAGE_SHIFT,
7921			end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7922	} else {
7923		pr_info("Initmem setup node %d as memoryless\n", nid);
7924	}
7925
7926	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7927
7928	alloc_node_mem_map(pgdat);
7929	pgdat_set_deferred_range(pgdat);
7930
 
 
 
 
 
 
 
 
 
7931	free_area_init_core(pgdat);
7932}
7933
7934static void __init free_area_init_memoryless_node(int nid)
 
 
 
 
 
 
 
 
7935{
7936	free_area_init_node(nid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7937}
 
 
 
7938
7939#if MAX_NUMNODES > 1
7940/*
7941 * Figure out the number of possible node ids.
7942 */
7943void __init setup_nr_node_ids(void)
7944{
7945	unsigned int highest;
7946
7947	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7948	nr_node_ids = highest + 1;
7949}
7950#endif
7951
7952/**
7953 * node_map_pfn_alignment - determine the maximum internode alignment
7954 *
7955 * This function should be called after node map is populated and sorted.
7956 * It calculates the maximum power of two alignment which can distinguish
7957 * all the nodes.
7958 *
7959 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7960 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7961 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7962 * shifted, 1GiB is enough and this function will indicate so.
7963 *
7964 * This is used to test whether pfn -> nid mapping of the chosen memory
7965 * model has fine enough granularity to avoid incorrect mapping for the
7966 * populated node map.
7967 *
7968 * Return: the determined alignment in pfn's.  0 if there is no alignment
7969 * requirement (single node).
7970 */
7971unsigned long __init node_map_pfn_alignment(void)
7972{
7973	unsigned long accl_mask = 0, last_end = 0;
7974	unsigned long start, end, mask;
7975	int last_nid = NUMA_NO_NODE;
7976	int i, nid;
7977
7978	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7979		if (!start || last_nid < 0 || last_nid == nid) {
7980			last_nid = nid;
7981			last_end = end;
7982			continue;
7983		}
7984
7985		/*
7986		 * Start with a mask granular enough to pin-point to the
7987		 * start pfn and tick off bits one-by-one until it becomes
7988		 * too coarse to separate the current node from the last.
7989		 */
7990		mask = ~((1 << __ffs(start)) - 1);
7991		while (mask && last_end <= (start & (mask << 1)))
7992			mask <<= 1;
7993
7994		/* accumulate all internode masks */
7995		accl_mask |= mask;
7996	}
7997
7998	/* convert mask to number of pages */
7999	return ~accl_mask + 1;
8000}
8001
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8002/*
8003 * early_calculate_totalpages()
8004 * Sum pages in active regions for movable zone.
8005 * Populate N_MEMORY for calculating usable_nodes.
8006 */
8007static unsigned long __init early_calculate_totalpages(void)
8008{
8009	unsigned long totalpages = 0;
8010	unsigned long start_pfn, end_pfn;
8011	int i, nid;
8012
8013	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8014		unsigned long pages = end_pfn - start_pfn;
8015
8016		totalpages += pages;
8017		if (pages)
8018			node_set_state(nid, N_MEMORY);
8019	}
8020	return totalpages;
8021}
8022
8023/*
8024 * Find the PFN the Movable zone begins in each node. Kernel memory
8025 * is spread evenly between nodes as long as the nodes have enough
8026 * memory. When they don't, some nodes will have more kernelcore than
8027 * others
8028 */
8029static void __init find_zone_movable_pfns_for_nodes(void)
8030{
8031	int i, nid;
8032	unsigned long usable_startpfn;
8033	unsigned long kernelcore_node, kernelcore_remaining;
8034	/* save the state before borrow the nodemask */
8035	nodemask_t saved_node_state = node_states[N_MEMORY];
8036	unsigned long totalpages = early_calculate_totalpages();
8037	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
8038	struct memblock_region *r;
8039
8040	/* Need to find movable_zone earlier when movable_node is specified. */
8041	find_usable_zone_for_movable();
8042
8043	/*
8044	 * If movable_node is specified, ignore kernelcore and movablecore
8045	 * options.
8046	 */
8047	if (movable_node_is_enabled()) {
8048		for_each_mem_region(r) {
8049			if (!memblock_is_hotpluggable(r))
8050				continue;
8051
8052			nid = memblock_get_region_node(r);
8053
8054			usable_startpfn = PFN_DOWN(r->base);
8055			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8056				min(usable_startpfn, zone_movable_pfn[nid]) :
8057				usable_startpfn;
8058		}
8059
8060		goto out2;
8061	}
8062
8063	/*
8064	 * If kernelcore=mirror is specified, ignore movablecore option
8065	 */
8066	if (mirrored_kernelcore) {
8067		bool mem_below_4gb_not_mirrored = false;
8068
8069		for_each_mem_region(r) {
8070			if (memblock_is_mirror(r))
8071				continue;
8072
8073			nid = memblock_get_region_node(r);
8074
8075			usable_startpfn = memblock_region_memory_base_pfn(r);
8076
8077			if (usable_startpfn < PHYS_PFN(SZ_4G)) {
8078				mem_below_4gb_not_mirrored = true;
8079				continue;
8080			}
8081
8082			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8083				min(usable_startpfn, zone_movable_pfn[nid]) :
8084				usable_startpfn;
8085		}
8086
8087		if (mem_below_4gb_not_mirrored)
8088			pr_warn("This configuration results in unmirrored kernel memory.\n");
8089
8090		goto out2;
8091	}
8092
8093	/*
8094	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
8095	 * amount of necessary memory.
8096	 */
8097	if (required_kernelcore_percent)
8098		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
8099				       10000UL;
8100	if (required_movablecore_percent)
8101		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
8102					10000UL;
8103
8104	/*
8105	 * If movablecore= was specified, calculate what size of
8106	 * kernelcore that corresponds so that memory usable for
8107	 * any allocation type is evenly spread. If both kernelcore
8108	 * and movablecore are specified, then the value of kernelcore
8109	 * will be used for required_kernelcore if it's greater than
8110	 * what movablecore would have allowed.
8111	 */
8112	if (required_movablecore) {
8113		unsigned long corepages;
8114
8115		/*
8116		 * Round-up so that ZONE_MOVABLE is at least as large as what
8117		 * was requested by the user
8118		 */
8119		required_movablecore =
8120			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
8121		required_movablecore = min(totalpages, required_movablecore);
8122		corepages = totalpages - required_movablecore;
8123
8124		required_kernelcore = max(required_kernelcore, corepages);
8125	}
8126
8127	/*
8128	 * If kernelcore was not specified or kernelcore size is larger
8129	 * than totalpages, there is no ZONE_MOVABLE.
8130	 */
8131	if (!required_kernelcore || required_kernelcore >= totalpages)
8132		goto out;
8133
8134	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
8135	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
8136
8137restart:
8138	/* Spread kernelcore memory as evenly as possible throughout nodes */
8139	kernelcore_node = required_kernelcore / usable_nodes;
8140	for_each_node_state(nid, N_MEMORY) {
8141		unsigned long start_pfn, end_pfn;
8142
8143		/*
8144		 * Recalculate kernelcore_node if the division per node
8145		 * now exceeds what is necessary to satisfy the requested
8146		 * amount of memory for the kernel
8147		 */
8148		if (required_kernelcore < kernelcore_node)
8149			kernelcore_node = required_kernelcore / usable_nodes;
8150
8151		/*
8152		 * As the map is walked, we track how much memory is usable
8153		 * by the kernel using kernelcore_remaining. When it is
8154		 * 0, the rest of the node is usable by ZONE_MOVABLE
8155		 */
8156		kernelcore_remaining = kernelcore_node;
8157
8158		/* Go through each range of PFNs within this node */
8159		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
8160			unsigned long size_pages;
8161
8162			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
8163			if (start_pfn >= end_pfn)
8164				continue;
8165
8166			/* Account for what is only usable for kernelcore */
8167			if (start_pfn < usable_startpfn) {
8168				unsigned long kernel_pages;
8169				kernel_pages = min(end_pfn, usable_startpfn)
8170								- start_pfn;
8171
8172				kernelcore_remaining -= min(kernel_pages,
8173							kernelcore_remaining);
8174				required_kernelcore -= min(kernel_pages,
8175							required_kernelcore);
8176
8177				/* Continue if range is now fully accounted */
8178				if (end_pfn <= usable_startpfn) {
8179
8180					/*
8181					 * Push zone_movable_pfn to the end so
8182					 * that if we have to rebalance
8183					 * kernelcore across nodes, we will
8184					 * not double account here
8185					 */
8186					zone_movable_pfn[nid] = end_pfn;
8187					continue;
8188				}
8189				start_pfn = usable_startpfn;
8190			}
8191
8192			/*
8193			 * The usable PFN range for ZONE_MOVABLE is from
8194			 * start_pfn->end_pfn. Calculate size_pages as the
8195			 * number of pages used as kernelcore
8196			 */
8197			size_pages = end_pfn - start_pfn;
8198			if (size_pages > kernelcore_remaining)
8199				size_pages = kernelcore_remaining;
8200			zone_movable_pfn[nid] = start_pfn + size_pages;
8201
8202			/*
8203			 * Some kernelcore has been met, update counts and
8204			 * break if the kernelcore for this node has been
8205			 * satisfied
8206			 */
8207			required_kernelcore -= min(required_kernelcore,
8208								size_pages);
8209			kernelcore_remaining -= size_pages;
8210			if (!kernelcore_remaining)
8211				break;
8212		}
8213	}
8214
8215	/*
8216	 * If there is still required_kernelcore, we do another pass with one
8217	 * less node in the count. This will push zone_movable_pfn[nid] further
8218	 * along on the nodes that still have memory until kernelcore is
8219	 * satisfied
8220	 */
8221	usable_nodes--;
8222	if (usable_nodes && required_kernelcore > usable_nodes)
8223		goto restart;
8224
8225out2:
8226	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
8227	for (nid = 0; nid < MAX_NUMNODES; nid++) {
8228		unsigned long start_pfn, end_pfn;
8229
8230		zone_movable_pfn[nid] =
8231			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
8232
8233		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8234		if (zone_movable_pfn[nid] >= end_pfn)
8235			zone_movable_pfn[nid] = 0;
8236	}
8237
8238out:
8239	/* restore the node_state */
8240	node_states[N_MEMORY] = saved_node_state;
8241}
8242
8243/* Any regular or high memory on that node ? */
8244static void check_for_memory(pg_data_t *pgdat, int nid)
8245{
8246	enum zone_type zone_type;
8247
 
 
 
8248	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
8249		struct zone *zone = &pgdat->node_zones[zone_type];
8250		if (populated_zone(zone)) {
8251			if (IS_ENABLED(CONFIG_HIGHMEM))
8252				node_set_state(nid, N_HIGH_MEMORY);
8253			if (zone_type <= ZONE_NORMAL)
8254				node_set_state(nid, N_NORMAL_MEMORY);
8255			break;
8256		}
8257	}
8258}
8259
8260/*
8261 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
8262 * such cases we allow max_zone_pfn sorted in the descending order
8263 */
8264bool __weak arch_has_descending_max_zone_pfns(void)
8265{
8266	return false;
8267}
8268
8269/**
8270 * free_area_init - Initialise all pg_data_t and zone data
8271 * @max_zone_pfn: an array of max PFNs for each zone
8272 *
8273 * This will call free_area_init_node() for each active node in the system.
8274 * Using the page ranges provided by memblock_set_node(), the size of each
8275 * zone in each node and their holes is calculated. If the maximum PFN
8276 * between two adjacent zones match, it is assumed that the zone is empty.
8277 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8278 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8279 * starts where the previous one ended. For example, ZONE_DMA32 starts
8280 * at arch_max_dma_pfn.
8281 */
8282void __init free_area_init(unsigned long *max_zone_pfn)
8283{
8284	unsigned long start_pfn, end_pfn;
8285	int i, nid, zone;
8286	bool descending;
8287
8288	/* Record where the zone boundaries are */
8289	memset(arch_zone_lowest_possible_pfn, 0,
8290				sizeof(arch_zone_lowest_possible_pfn));
8291	memset(arch_zone_highest_possible_pfn, 0,
8292				sizeof(arch_zone_highest_possible_pfn));
8293
8294	start_pfn = PHYS_PFN(memblock_start_of_DRAM());
8295	descending = arch_has_descending_max_zone_pfns();
8296
8297	for (i = 0; i < MAX_NR_ZONES; i++) {
8298		if (descending)
8299			zone = MAX_NR_ZONES - i - 1;
8300		else
8301			zone = i;
8302
8303		if (zone == ZONE_MOVABLE)
8304			continue;
8305
8306		end_pfn = max(max_zone_pfn[zone], start_pfn);
8307		arch_zone_lowest_possible_pfn[zone] = start_pfn;
8308		arch_zone_highest_possible_pfn[zone] = end_pfn;
8309
8310		start_pfn = end_pfn;
8311	}
8312
8313	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
8314	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8315	find_zone_movable_pfns_for_nodes();
8316
8317	/* Print out the zone ranges */
8318	pr_info("Zone ranges:\n");
8319	for (i = 0; i < MAX_NR_ZONES; i++) {
8320		if (i == ZONE_MOVABLE)
8321			continue;
8322		pr_info("  %-8s ", zone_names[i]);
8323		if (arch_zone_lowest_possible_pfn[i] ==
8324				arch_zone_highest_possible_pfn[i])
8325			pr_cont("empty\n");
8326		else
8327			pr_cont("[mem %#018Lx-%#018Lx]\n",
8328				(u64)arch_zone_lowest_possible_pfn[i]
8329					<< PAGE_SHIFT,
8330				((u64)arch_zone_highest_possible_pfn[i]
8331					<< PAGE_SHIFT) - 1);
8332	}
8333
8334	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
8335	pr_info("Movable zone start for each node\n");
8336	for (i = 0; i < MAX_NUMNODES; i++) {
8337		if (zone_movable_pfn[i])
8338			pr_info("  Node %d: %#018Lx\n", i,
8339			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8340	}
8341
8342	/*
8343	 * Print out the early node map, and initialize the
8344	 * subsection-map relative to active online memory ranges to
8345	 * enable future "sub-section" extensions of the memory map.
8346	 */
8347	pr_info("Early memory node ranges\n");
8348	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8349		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8350			(u64)start_pfn << PAGE_SHIFT,
8351			((u64)end_pfn << PAGE_SHIFT) - 1);
8352		subsection_map_init(start_pfn, end_pfn - start_pfn);
8353	}
8354
8355	/* Initialise every node */
8356	mminit_verify_pageflags_layout();
8357	setup_nr_node_ids();
8358	for_each_node(nid) {
8359		pg_data_t *pgdat;
8360
8361		if (!node_online(nid)) {
8362			pr_info("Initializing node %d as memoryless\n", nid);
8363
8364			/* Allocator not initialized yet */
8365			pgdat = arch_alloc_nodedata(nid);
8366			if (!pgdat) {
8367				pr_err("Cannot allocate %zuB for node %d.\n",
8368						sizeof(*pgdat), nid);
8369				continue;
8370			}
8371			arch_refresh_nodedata(nid, pgdat);
8372			free_area_init_memoryless_node(nid);
8373
8374			/*
8375			 * We do not want to confuse userspace by sysfs
8376			 * files/directories for node without any memory
8377			 * attached to it, so this node is not marked as
8378			 * N_MEMORY and not marked online so that no sysfs
8379			 * hierarchy will be created via register_one_node for
8380			 * it. The pgdat will get fully initialized by
8381			 * hotadd_init_pgdat() when memory is hotplugged into
8382			 * this node.
8383			 */
8384			continue;
8385		}
8386
8387		pgdat = NODE_DATA(nid);
8388		free_area_init_node(nid);
8389
8390		/* Any memory on that node */
8391		if (pgdat->node_present_pages)
8392			node_set_state(nid, N_MEMORY);
8393		check_for_memory(pgdat, nid);
8394	}
8395
8396	memmap_init();
8397}
8398
8399static int __init cmdline_parse_core(char *p, unsigned long *core,
8400				     unsigned long *percent)
8401{
8402	unsigned long long coremem;
8403	char *endptr;
8404
8405	if (!p)
8406		return -EINVAL;
8407
8408	/* Value may be a percentage of total memory, otherwise bytes */
8409	coremem = simple_strtoull(p, &endptr, 0);
8410	if (*endptr == '%') {
8411		/* Paranoid check for percent values greater than 100 */
8412		WARN_ON(coremem > 100);
8413
8414		*percent = coremem;
8415	} else {
8416		coremem = memparse(p, &p);
8417		/* Paranoid check that UL is enough for the coremem value */
8418		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8419
8420		*core = coremem >> PAGE_SHIFT;
8421		*percent = 0UL;
8422	}
8423	return 0;
8424}
8425
8426/*
8427 * kernelcore=size sets the amount of memory for use for allocations that
8428 * cannot be reclaimed or migrated.
8429 */
8430static int __init cmdline_parse_kernelcore(char *p)
8431{
8432	/* parse kernelcore=mirror */
8433	if (parse_option_str(p, "mirror")) {
8434		mirrored_kernelcore = true;
8435		return 0;
8436	}
8437
8438	return cmdline_parse_core(p, &required_kernelcore,
8439				  &required_kernelcore_percent);
8440}
8441
8442/*
8443 * movablecore=size sets the amount of memory for use for allocations that
8444 * can be reclaimed or migrated.
8445 */
8446static int __init cmdline_parse_movablecore(char *p)
8447{
8448	return cmdline_parse_core(p, &required_movablecore,
8449				  &required_movablecore_percent);
8450}
8451
8452early_param("kernelcore", cmdline_parse_kernelcore);
8453early_param("movablecore", cmdline_parse_movablecore);
8454
 
 
8455void adjust_managed_page_count(struct page *page, long count)
8456{
8457	atomic_long_add(count, &page_zone(page)->managed_pages);
8458	totalram_pages_add(count);
 
8459#ifdef CONFIG_HIGHMEM
8460	if (PageHighMem(page))
8461		totalhigh_pages_add(count);
8462#endif
 
8463}
8464EXPORT_SYMBOL(adjust_managed_page_count);
8465
8466unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8467{
8468	void *pos;
8469	unsigned long pages = 0;
8470
8471	start = (void *)PAGE_ALIGN((unsigned long)start);
8472	end = (void *)((unsigned long)end & PAGE_MASK);
8473	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8474		struct page *page = virt_to_page(pos);
8475		void *direct_map_addr;
8476
8477		/*
8478		 * 'direct_map_addr' might be different from 'pos'
8479		 * because some architectures' virt_to_page()
8480		 * work with aliases.  Getting the direct map
8481		 * address ensures that we get a _writeable_
8482		 * alias for the memset().
8483		 */
8484		direct_map_addr = page_address(page);
8485		/*
8486		 * Perform a kasan-unchecked memset() since this memory
8487		 * has not been initialized.
8488		 */
8489		direct_map_addr = kasan_reset_tag(direct_map_addr);
8490		if ((unsigned int)poison <= 0xFF)
8491			memset(direct_map_addr, poison, PAGE_SIZE);
8492
8493		free_reserved_page(page);
8494	}
8495
8496	if (pages && s)
8497		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
 
8498
8499	return pages;
8500}
 
8501
8502void __init mem_init_print_info(void)
 
 
 
 
 
 
 
 
 
 
 
8503{
8504	unsigned long physpages, codesize, datasize, rosize, bss_size;
8505	unsigned long init_code_size, init_data_size;
8506
8507	physpages = get_num_physpages();
8508	codesize = _etext - _stext;
8509	datasize = _edata - _sdata;
8510	rosize = __end_rodata - __start_rodata;
8511	bss_size = __bss_stop - __bss_start;
8512	init_data_size = __init_end - __init_begin;
8513	init_code_size = _einittext - _sinittext;
8514
8515	/*
8516	 * Detect special cases and adjust section sizes accordingly:
8517	 * 1) .init.* may be embedded into .data sections
8518	 * 2) .init.text.* may be out of [__init_begin, __init_end],
8519	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
8520	 * 3) .rodata.* may be embedded into .text or .data sections.
8521	 */
8522#define adj_init_size(start, end, size, pos, adj) \
8523	do { \
8524		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8525			size -= adj; \
8526	} while (0)
8527
8528	adj_init_size(__init_begin, __init_end, init_data_size,
8529		     _sinittext, init_code_size);
8530	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8531	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8532	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8533	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8534
8535#undef	adj_init_size
8536
8537	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8538#ifdef	CONFIG_HIGHMEM
8539		", %luK highmem"
8540#endif
8541		")\n",
8542		K(nr_free_pages()), K(physpages),
8543		codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
8544		(init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
8545		K(physpages - totalram_pages() - totalcma_pages),
8546		K(totalcma_pages)
 
8547#ifdef	CONFIG_HIGHMEM
8548		, K(totalhigh_pages())
8549#endif
8550		);
8551}
8552
8553/**
8554 * set_dma_reserve - set the specified number of pages reserved in the first zone
8555 * @new_dma_reserve: The number of pages to mark reserved
8556 *
8557 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8558 * In the DMA zone, a significant percentage may be consumed by kernel image
8559 * and other unfreeable allocations which can skew the watermarks badly. This
8560 * function may optionally be used to account for unfreeable pages in the
8561 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8562 * smaller per-cpu batchsize.
8563 */
8564void __init set_dma_reserve(unsigned long new_dma_reserve)
8565{
8566	dma_reserve = new_dma_reserve;
8567}
8568
 
 
 
 
 
 
 
8569static int page_alloc_cpu_dead(unsigned int cpu)
8570{
8571	struct zone *zone;
8572
8573	lru_add_drain_cpu(cpu);
8574	mlock_page_drain_remote(cpu);
8575	drain_pages(cpu);
8576
8577	/*
8578	 * Spill the event counters of the dead processor
8579	 * into the current processors event counters.
8580	 * This artificially elevates the count of the current
8581	 * processor.
8582	 */
8583	vm_events_fold_cpu(cpu);
8584
8585	/*
8586	 * Zero the differential counters of the dead processor
8587	 * so that the vm statistics are consistent.
8588	 *
8589	 * This is only okay since the processor is dead and cannot
8590	 * race with what we are doing.
8591	 */
8592	cpu_vm_stats_fold(cpu);
8593
8594	for_each_populated_zone(zone)
8595		zone_pcp_update(zone, 0);
8596
8597	return 0;
8598}
8599
8600static int page_alloc_cpu_online(unsigned int cpu)
8601{
8602	struct zone *zone;
8603
8604	for_each_populated_zone(zone)
8605		zone_pcp_update(zone, 1);
8606	return 0;
8607}
8608
8609#ifdef CONFIG_NUMA
8610int hashdist = HASHDIST_DEFAULT;
8611
8612static int __init set_hashdist(char *str)
8613{
8614	if (!str)
8615		return 0;
8616	hashdist = simple_strtoul(str, &str, 0);
8617	return 1;
8618}
8619__setup("hashdist=", set_hashdist);
8620#endif
8621
8622void __init page_alloc_init(void)
8623{
8624	int ret;
8625
8626#ifdef CONFIG_NUMA
8627	if (num_node_state(N_MEMORY) == 1)
8628		hashdist = 0;
8629#endif
8630
8631	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8632					"mm/page_alloc:pcp",
8633					page_alloc_cpu_online,
8634					page_alloc_cpu_dead);
8635	WARN_ON(ret < 0);
8636}
8637
8638/*
8639 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8640 *	or min_free_kbytes changes.
8641 */
8642static void calculate_totalreserve_pages(void)
8643{
8644	struct pglist_data *pgdat;
8645	unsigned long reserve_pages = 0;
8646	enum zone_type i, j;
8647
8648	for_each_online_pgdat(pgdat) {
8649
8650		pgdat->totalreserve_pages = 0;
8651
8652		for (i = 0; i < MAX_NR_ZONES; i++) {
8653			struct zone *zone = pgdat->node_zones + i;
8654			long max = 0;
8655			unsigned long managed_pages = zone_managed_pages(zone);
8656
8657			/* Find valid and maximum lowmem_reserve in the zone */
8658			for (j = i; j < MAX_NR_ZONES; j++) {
8659				if (zone->lowmem_reserve[j] > max)
8660					max = zone->lowmem_reserve[j];
8661			}
8662
8663			/* we treat the high watermark as reserved pages. */
8664			max += high_wmark_pages(zone);
8665
8666			if (max > managed_pages)
8667				max = managed_pages;
8668
8669			pgdat->totalreserve_pages += max;
8670
8671			reserve_pages += max;
8672		}
8673	}
8674	totalreserve_pages = reserve_pages;
8675}
8676
8677/*
8678 * setup_per_zone_lowmem_reserve - called whenever
8679 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
8680 *	has a correct pages reserved value, so an adequate number of
8681 *	pages are left in the zone after a successful __alloc_pages().
8682 */
8683static void setup_per_zone_lowmem_reserve(void)
8684{
8685	struct pglist_data *pgdat;
8686	enum zone_type i, j;
8687
8688	for_each_online_pgdat(pgdat) {
8689		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8690			struct zone *zone = &pgdat->node_zones[i];
8691			int ratio = sysctl_lowmem_reserve_ratio[i];
8692			bool clear = !ratio || !zone_managed_pages(zone);
8693			unsigned long managed_pages = 0;
8694
8695			for (j = i + 1; j < MAX_NR_ZONES; j++) {
8696				struct zone *upper_zone = &pgdat->node_zones[j];
8697
8698				managed_pages += zone_managed_pages(upper_zone);
8699
8700				if (clear)
8701					zone->lowmem_reserve[j] = 0;
8702				else
8703					zone->lowmem_reserve[j] = managed_pages / ratio;
 
 
 
 
 
 
8704			}
8705		}
8706	}
8707
8708	/* update totalreserve_pages */
8709	calculate_totalreserve_pages();
8710}
8711
8712static void __setup_per_zone_wmarks(void)
8713{
8714	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8715	unsigned long lowmem_pages = 0;
8716	struct zone *zone;
8717	unsigned long flags;
8718
8719	/* Calculate total number of !ZONE_HIGHMEM pages */
8720	for_each_zone(zone) {
8721		if (!is_highmem(zone))
8722			lowmem_pages += zone_managed_pages(zone);
8723	}
8724
8725	for_each_zone(zone) {
8726		u64 tmp;
8727
8728		spin_lock_irqsave(&zone->lock, flags);
8729		tmp = (u64)pages_min * zone_managed_pages(zone);
8730		do_div(tmp, lowmem_pages);
8731		if (is_highmem(zone)) {
8732			/*
8733			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8734			 * need highmem pages, so cap pages_min to a small
8735			 * value here.
8736			 *
8737			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8738			 * deltas control async page reclaim, and so should
8739			 * not be capped for highmem.
8740			 */
8741			unsigned long min_pages;
8742
8743			min_pages = zone_managed_pages(zone) / 1024;
8744			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8745			zone->_watermark[WMARK_MIN] = min_pages;
8746		} else {
8747			/*
8748			 * If it's a lowmem zone, reserve a number of pages
8749			 * proportionate to the zone's size.
8750			 */
8751			zone->_watermark[WMARK_MIN] = tmp;
8752		}
8753
8754		/*
8755		 * Set the kswapd watermarks distance according to the
8756		 * scale factor in proportion to available memory, but
8757		 * ensure a minimum size on small systems.
8758		 */
8759		tmp = max_t(u64, tmp >> 2,
8760			    mult_frac(zone_managed_pages(zone),
8761				      watermark_scale_factor, 10000));
8762
8763		zone->watermark_boost = 0;
8764		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
8765		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8766		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
8767
8768		spin_unlock_irqrestore(&zone->lock, flags);
8769	}
8770
8771	/* update totalreserve_pages */
8772	calculate_totalreserve_pages();
8773}
8774
8775/**
8776 * setup_per_zone_wmarks - called when min_free_kbytes changes
8777 * or when memory is hot-{added|removed}
8778 *
8779 * Ensures that the watermark[min,low,high] values for each zone are set
8780 * correctly with respect to min_free_kbytes.
8781 */
8782void setup_per_zone_wmarks(void)
8783{
8784	struct zone *zone;
8785	static DEFINE_SPINLOCK(lock);
8786
8787	spin_lock(&lock);
8788	__setup_per_zone_wmarks();
8789	spin_unlock(&lock);
8790
8791	/*
8792	 * The watermark size have changed so update the pcpu batch
8793	 * and high limits or the limits may be inappropriate.
8794	 */
8795	for_each_zone(zone)
8796		zone_pcp_update(zone, 0);
8797}
8798
8799/*
8800 * Initialise min_free_kbytes.
8801 *
8802 * For small machines we want it small (128k min).  For large machines
8803 * we want it large (256MB max).  But it is not linear, because network
8804 * bandwidth does not increase linearly with machine size.  We use
8805 *
8806 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8807 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
8808 *
8809 * which yields
8810 *
8811 * 16MB:	512k
8812 * 32MB:	724k
8813 * 64MB:	1024k
8814 * 128MB:	1448k
8815 * 256MB:	2048k
8816 * 512MB:	2896k
8817 * 1024MB:	4096k
8818 * 2048MB:	5792k
8819 * 4096MB:	8192k
8820 * 8192MB:	11584k
8821 * 16384MB:	16384k
8822 */
8823void calculate_min_free_kbytes(void)
8824{
8825	unsigned long lowmem_kbytes;
8826	int new_min_free_kbytes;
8827
8828	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8829	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8830
8831	if (new_min_free_kbytes > user_min_free_kbytes)
8832		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8833	else
 
 
 
 
8834		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8835				new_min_free_kbytes, user_min_free_kbytes);
8836
8837}
8838
8839int __meminit init_per_zone_wmark_min(void)
8840{
8841	calculate_min_free_kbytes();
8842	setup_per_zone_wmarks();
8843	refresh_zone_stat_thresholds();
8844	setup_per_zone_lowmem_reserve();
8845
8846#ifdef CONFIG_NUMA
8847	setup_min_unmapped_ratio();
8848	setup_min_slab_ratio();
8849#endif
8850
8851	khugepaged_min_free_kbytes_update();
8852
8853	return 0;
8854}
8855postcore_initcall(init_per_zone_wmark_min)
8856
8857/*
8858 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8859 *	that we can call two helper functions whenever min_free_kbytes
8860 *	changes.
8861 */
8862int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8863		void *buffer, size_t *length, loff_t *ppos)
8864{
8865	int rc;
8866
8867	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8868	if (rc)
8869		return rc;
8870
8871	if (write) {
8872		user_min_free_kbytes = min_free_kbytes;
8873		setup_per_zone_wmarks();
8874	}
8875	return 0;
8876}
8877
8878int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8879		void *buffer, size_t *length, loff_t *ppos)
8880{
8881	int rc;
8882
8883	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8884	if (rc)
8885		return rc;
8886
8887	if (write)
8888		setup_per_zone_wmarks();
8889
8890	return 0;
8891}
8892
8893#ifdef CONFIG_NUMA
8894static void setup_min_unmapped_ratio(void)
8895{
8896	pg_data_t *pgdat;
8897	struct zone *zone;
8898
8899	for_each_online_pgdat(pgdat)
8900		pgdat->min_unmapped_pages = 0;
8901
8902	for_each_zone(zone)
8903		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8904						         sysctl_min_unmapped_ratio) / 100;
8905}
8906
8907
8908int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8909		void *buffer, size_t *length, loff_t *ppos)
8910{
8911	int rc;
8912
8913	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8914	if (rc)
8915		return rc;
8916
8917	setup_min_unmapped_ratio();
8918
8919	return 0;
8920}
8921
8922static void setup_min_slab_ratio(void)
8923{
8924	pg_data_t *pgdat;
8925	struct zone *zone;
8926
8927	for_each_online_pgdat(pgdat)
8928		pgdat->min_slab_pages = 0;
8929
8930	for_each_zone(zone)
8931		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8932						     sysctl_min_slab_ratio) / 100;
8933}
8934
8935int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8936		void *buffer, size_t *length, loff_t *ppos)
8937{
8938	int rc;
8939
8940	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8941	if (rc)
8942		return rc;
8943
8944	setup_min_slab_ratio();
8945
8946	return 0;
8947}
8948#endif
8949
8950/*
8951 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8952 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8953 *	whenever sysctl_lowmem_reserve_ratio changes.
8954 *
8955 * The reserve ratio obviously has absolutely no relation with the
8956 * minimum watermarks. The lowmem reserve ratio can only make sense
8957 * if in function of the boot time zone sizes.
8958 */
8959int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8960		void *buffer, size_t *length, loff_t *ppos)
8961{
8962	int i;
8963
8964	proc_dointvec_minmax(table, write, buffer, length, ppos);
8965
8966	for (i = 0; i < MAX_NR_ZONES; i++) {
8967		if (sysctl_lowmem_reserve_ratio[i] < 1)
8968			sysctl_lowmem_reserve_ratio[i] = 0;
8969	}
8970
8971	setup_per_zone_lowmem_reserve();
8972	return 0;
8973}
8974
8975/*
8976 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8977 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8978 * pagelist can have before it gets flushed back to buddy allocator.
8979 */
8980int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8981		int write, void *buffer, size_t *length, loff_t *ppos)
8982{
8983	struct zone *zone;
8984	int old_percpu_pagelist_high_fraction;
8985	int ret;
8986
8987	mutex_lock(&pcp_batch_high_lock);
8988	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8989
8990	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8991	if (!write || ret < 0)
8992		goto out;
8993
8994	/* Sanity checking to avoid pcp imbalance */
8995	if (percpu_pagelist_high_fraction &&
8996	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8997		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8998		ret = -EINVAL;
8999		goto out;
9000	}
9001
9002	/* No change? */
9003	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
9004		goto out;
9005
9006	for_each_populated_zone(zone)
9007		zone_set_pageset_high_and_batch(zone, 0);
 
 
 
 
 
9008out:
9009	mutex_unlock(&pcp_batch_high_lock);
9010	return ret;
9011}
9012
 
 
 
 
 
 
 
 
 
 
 
 
 
9013#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
9014/*
9015 * Returns the number of pages that arch has reserved but
9016 * is not known to alloc_large_system_hash().
9017 */
9018static unsigned long __init arch_reserved_kernel_pages(void)
9019{
9020	return 0;
9021}
9022#endif
9023
9024/*
9025 * Adaptive scale is meant to reduce sizes of hash tables on large memory
9026 * machines. As memory size is increased the scale is also increased but at
9027 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
9028 * quadruples the scale is increased by one, which means the size of hash table
9029 * only doubles, instead of quadrupling as well.
9030 * Because 32-bit systems cannot have large physical memory, where this scaling
9031 * makes sense, it is disabled on such platforms.
9032 */
9033#if __BITS_PER_LONG > 32
9034#define ADAPT_SCALE_BASE	(64ul << 30)
9035#define ADAPT_SCALE_SHIFT	2
9036#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
9037#endif
9038
9039/*
9040 * allocate a large system hash table from bootmem
9041 * - it is assumed that the hash table must contain an exact power-of-2
9042 *   quantity of entries
9043 * - limit is the number of hash buckets, not the total allocation size
9044 */
9045void *__init alloc_large_system_hash(const char *tablename,
9046				     unsigned long bucketsize,
9047				     unsigned long numentries,
9048				     int scale,
9049				     int flags,
9050				     unsigned int *_hash_shift,
9051				     unsigned int *_hash_mask,
9052				     unsigned long low_limit,
9053				     unsigned long high_limit)
9054{
9055	unsigned long long max = high_limit;
9056	unsigned long log2qty, size;
9057	void *table;
9058	gfp_t gfp_flags;
9059	bool virt;
9060	bool huge;
9061
9062	/* allow the kernel cmdline to have a say */
9063	if (!numentries) {
9064		/* round applicable memory size up to nearest megabyte */
9065		numentries = nr_kernel_pages;
9066		numentries -= arch_reserved_kernel_pages();
9067
9068		/* It isn't necessary when PAGE_SIZE >= 1MB */
9069		if (PAGE_SIZE < SZ_1M)
9070			numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
9071
9072#if __BITS_PER_LONG > 32
9073		if (!high_limit) {
9074			unsigned long adapt;
9075
9076			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
9077			     adapt <<= ADAPT_SCALE_SHIFT)
9078				scale++;
9079		}
9080#endif
9081
9082		/* limit to 1 bucket per 2^scale bytes of low memory */
9083		if (scale > PAGE_SHIFT)
9084			numentries >>= (scale - PAGE_SHIFT);
9085		else
9086			numentries <<= (PAGE_SHIFT - scale);
9087
9088		/* Make sure we've got at least a 0-order allocation.. */
9089		if (unlikely(flags & HASH_SMALL)) {
9090			/* Makes no sense without HASH_EARLY */
9091			WARN_ON(!(flags & HASH_EARLY));
9092			if (!(numentries >> *_hash_shift)) {
9093				numentries = 1UL << *_hash_shift;
9094				BUG_ON(!numentries);
9095			}
9096		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9097			numentries = PAGE_SIZE / bucketsize;
9098	}
9099	numentries = roundup_pow_of_two(numentries);
9100
9101	/* limit allocation size to 1/16 total memory by default */
9102	if (max == 0) {
9103		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
9104		do_div(max, bucketsize);
9105	}
9106	max = min(max, 0x80000000ULL);
9107
9108	if (numentries < low_limit)
9109		numentries = low_limit;
9110	if (numentries > max)
9111		numentries = max;
9112
9113	log2qty = ilog2(numentries);
9114
9115	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
9116	do {
9117		virt = false;
9118		size = bucketsize << log2qty;
9119		if (flags & HASH_EARLY) {
9120			if (flags & HASH_ZERO)
9121				table = memblock_alloc(size, SMP_CACHE_BYTES);
9122			else
9123				table = memblock_alloc_raw(size,
9124							   SMP_CACHE_BYTES);
9125		} else if (get_order(size) >= MAX_ORDER || hashdist) {
9126			table = vmalloc_huge(size, gfp_flags);
9127			virt = true;
9128			if (table)
9129				huge = is_vm_area_hugepages(table);
9130		} else {
9131			/*
9132			 * If bucketsize is not a power-of-two, we may free
9133			 * some pages at the end of hash table which
9134			 * alloc_pages_exact() automatically does
9135			 */
9136			table = alloc_pages_exact(size, gfp_flags);
9137			kmemleak_alloc(table, size, 1, gfp_flags);
 
 
9138		}
9139	} while (!table && size > PAGE_SIZE && --log2qty);
9140
9141	if (!table)
9142		panic("Failed to allocate %s hash table\n", tablename);
9143
9144	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
9145		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
9146		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
9147
9148	if (_hash_shift)
9149		*_hash_shift = log2qty;
9150	if (_hash_mask)
9151		*_hash_mask = (1 << log2qty) - 1;
9152
9153	return table;
9154}
9155
9156#ifdef CONFIG_CONTIG_ALLOC
9157#if defined(CONFIG_DYNAMIC_DEBUG) || \
9158	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
9159/* Usage: See admin-guide/dynamic-debug-howto.rst */
9160static void alloc_contig_dump_pages(struct list_head *page_list)
 
 
 
 
 
 
 
9161{
9162	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9163
9164	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
9165		struct page *page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9166
9167		dump_stack();
9168		list_for_each_entry(page, page_list, lru)
9169			dump_page(page, "migration failure");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9170	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9171}
9172#else
9173static inline void alloc_contig_dump_pages(struct list_head *page_list)
9174{
 
 
9175}
9176#endif
9177
9178/* [start, end) must belong to a single zone. */
9179int __alloc_contig_migrate_range(struct compact_control *cc,
9180					unsigned long start, unsigned long end)
9181{
9182	/* This function is based on compact_zone() from compaction.c. */
9183	unsigned int nr_reclaimed;
9184	unsigned long pfn = start;
9185	unsigned int tries = 0;
9186	int ret = 0;
9187	struct migration_target_control mtc = {
9188		.nid = zone_to_nid(cc->zone),
9189		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9190	};
9191
9192	lru_cache_disable();
9193
9194	while (pfn < end || !list_empty(&cc->migratepages)) {
9195		if (fatal_signal_pending(current)) {
9196			ret = -EINTR;
9197			break;
9198		}
9199
9200		if (list_empty(&cc->migratepages)) {
9201			cc->nr_migratepages = 0;
9202			ret = isolate_migratepages_range(cc, pfn, end);
9203			if (ret && ret != -EAGAIN)
 
9204				break;
9205			pfn = cc->migrate_pfn;
9206			tries = 0;
9207		} else if (++tries == 5) {
9208			ret = -EBUSY;
9209			break;
9210		}
9211
9212		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9213							&cc->migratepages);
9214		cc->nr_migratepages -= nr_reclaimed;
9215
9216		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9217			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9218
9219		/*
9220		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9221		 * to retry again over this error, so do the same here.
9222		 */
9223		if (ret == -ENOMEM)
9224			break;
9225	}
9226
9227	lru_cache_enable();
9228	if (ret < 0) {
9229		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
9230			alloc_contig_dump_pages(&cc->migratepages);
9231		putback_movable_pages(&cc->migratepages);
9232		return ret;
9233	}
9234	return 0;
9235}
9236
9237/**
9238 * alloc_contig_range() -- tries to allocate given range of pages
9239 * @start:	start PFN to allocate
9240 * @end:	one-past-the-last PFN to allocate
9241 * @migratetype:	migratetype of the underlying pageblocks (either
9242 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
9243 *			in range must have the same migratetype and it must
9244 *			be either of the two.
9245 * @gfp_mask:	GFP mask to use during compaction
9246 *
9247 * The PFN range does not have to be pageblock aligned. The PFN range must
9248 * belong to a single zone.
9249 *
9250 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9251 * pageblocks in the range.  Once isolated, the pageblocks should not
9252 * be modified by others.
9253 *
9254 * Return: zero on success or negative error code.  On success all
9255 * pages which PFN is in [start, end) are allocated for the caller and
9256 * need to be freed with free_contig_range().
9257 */
9258int alloc_contig_range(unsigned long start, unsigned long end,
9259		       unsigned migratetype, gfp_t gfp_mask)
9260{
9261	unsigned long outer_start, outer_end;
9262	int order;
9263	int ret = 0;
9264
9265	struct compact_control cc = {
9266		.nr_migratepages = 0,
9267		.order = -1,
9268		.zone = page_zone(pfn_to_page(start)),
9269		.mode = MIGRATE_SYNC,
9270		.ignore_skip_hint = true,
9271		.no_set_skip_hint = true,
9272		.gfp_mask = current_gfp_context(gfp_mask),
9273		.alloc_contig = true,
9274	};
9275	INIT_LIST_HEAD(&cc.migratepages);
9276
9277	/*
9278	 * What we do here is we mark all pageblocks in range as
9279	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
9280	 * have different sizes, and due to the way page allocator
9281	 * work, start_isolate_page_range() has special handlings for this.
 
 
 
9282	 *
9283	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9284	 * migrate the pages from an unaligned range (ie. pages that
9285	 * we are interested in). This will put all the pages in
9286	 * range back to page allocator as MIGRATE_ISOLATE.
9287	 *
9288	 * When this is done, we take the pages in range from page
9289	 * allocator removing them from the buddy system.  This way
9290	 * page allocator will never consider using them.
9291	 *
9292	 * This lets us mark the pageblocks back as
9293	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9294	 * aligned range but not in the unaligned, original range are
9295	 * put back to page allocator so that buddy can use them.
9296	 */
9297
9298	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
 
 
9299	if (ret)
9300		goto done;
9301
9302	drain_all_pages(cc.zone);
9303
9304	/*
9305	 * In case of -EBUSY, we'd like to know which page causes problem.
9306	 * So, just fall through. test_pages_isolated() has a tracepoint
9307	 * which will report the busy page.
9308	 *
9309	 * It is possible that busy pages could become available before
9310	 * the call to test_pages_isolated, and the range will actually be
9311	 * allocated.  So, if we fall through be sure to clear ret so that
9312	 * -EBUSY is not accidentally used or returned to caller.
9313	 */
9314	ret = __alloc_contig_migrate_range(&cc, start, end);
9315	if (ret && ret != -EBUSY)
9316		goto done;
9317	ret = 0;
9318
9319	/*
9320	 * Pages from [start, end) are within a pageblock_nr_pages
9321	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
9322	 * more, all pages in [start, end) are free in page allocator.
9323	 * What we are going to do is to allocate all pages from
9324	 * [start, end) (that is remove them from page allocator).
9325	 *
9326	 * The only problem is that pages at the beginning and at the
9327	 * end of interesting range may be not aligned with pages that
9328	 * page allocator holds, ie. they can be part of higher order
9329	 * pages.  Because of this, we reserve the bigger range and
9330	 * once this is done free the pages we are not interested in.
9331	 *
9332	 * We don't have to hold zone->lock here because the pages are
9333	 * isolated thus they won't get removed from buddy.
9334	 */
9335
 
 
 
9336	order = 0;
9337	outer_start = start;
9338	while (!PageBuddy(pfn_to_page(outer_start))) {
9339		if (++order >= MAX_ORDER) {
9340			outer_start = start;
9341			break;
9342		}
9343		outer_start &= ~0UL << order;
9344	}
9345
9346	if (outer_start != start) {
9347		order = buddy_order(pfn_to_page(outer_start));
9348
9349		/*
9350		 * outer_start page could be small order buddy page and
9351		 * it doesn't include start page. Adjust outer_start
9352		 * in this case to report failed page properly
9353		 * on tracepoint in test_pages_isolated()
9354		 */
9355		if (outer_start + (1UL << order) <= start)
9356			outer_start = start;
9357	}
9358
9359	/* Make sure the range is really isolated. */
9360	if (test_pages_isolated(outer_start, end, 0)) {
 
 
9361		ret = -EBUSY;
9362		goto done;
9363	}
9364
9365	/* Grab isolated pages from freelists. */
9366	outer_end = isolate_freepages_range(&cc, outer_start, end);
9367	if (!outer_end) {
9368		ret = -EBUSY;
9369		goto done;
9370	}
9371
9372	/* Free head and tail (if any) */
9373	if (start != outer_start)
9374		free_contig_range(outer_start, start - outer_start);
9375	if (end != outer_end)
9376		free_contig_range(end, outer_end - end);
9377
9378done:
9379	undo_isolate_page_range(start, end, migratetype);
 
9380	return ret;
9381}
9382EXPORT_SYMBOL(alloc_contig_range);
9383
9384static int __alloc_contig_pages(unsigned long start_pfn,
9385				unsigned long nr_pages, gfp_t gfp_mask)
9386{
9387	unsigned long end_pfn = start_pfn + nr_pages;
9388
9389	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9390				  gfp_mask);
9391}
9392
9393static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9394				   unsigned long nr_pages)
9395{
9396	unsigned long i, end_pfn = start_pfn + nr_pages;
9397	struct page *page;
9398
9399	for (i = start_pfn; i < end_pfn; i++) {
9400		page = pfn_to_online_page(i);
9401		if (!page)
9402			return false;
9403
9404		if (page_zone(page) != z)
9405			return false;
9406
9407		if (PageReserved(page))
9408			return false;
9409	}
9410	return true;
9411}
9412
9413static bool zone_spans_last_pfn(const struct zone *zone,
9414				unsigned long start_pfn, unsigned long nr_pages)
9415{
9416	unsigned long last_pfn = start_pfn + nr_pages - 1;
9417
9418	return zone_spans_pfn(zone, last_pfn);
9419}
9420
9421/**
9422 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9423 * @nr_pages:	Number of contiguous pages to allocate
9424 * @gfp_mask:	GFP mask to limit search and used during compaction
9425 * @nid:	Target node
9426 * @nodemask:	Mask for other possible nodes
9427 *
9428 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9429 * on an applicable zonelist to find a contiguous pfn range which can then be
9430 * tried for allocation with alloc_contig_range(). This routine is intended
9431 * for allocation requests which can not be fulfilled with the buddy allocator.
9432 *
9433 * The allocated memory is always aligned to a page boundary. If nr_pages is a
9434 * power of two, then allocated range is also guaranteed to be aligned to same
9435 * nr_pages (e.g. 1GB request would be aligned to 1GB).
9436 *
9437 * Allocated pages can be freed with free_contig_range() or by manually calling
9438 * __free_page() on each allocated page.
9439 *
9440 * Return: pointer to contiguous pages on success, or NULL if not successful.
9441 */
9442struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9443				int nid, nodemask_t *nodemask)
9444{
9445	unsigned long ret, pfn, flags;
9446	struct zonelist *zonelist;
9447	struct zone *zone;
9448	struct zoneref *z;
9449
9450	zonelist = node_zonelist(nid, gfp_mask);
9451	for_each_zone_zonelist_nodemask(zone, z, zonelist,
9452					gfp_zone(gfp_mask), nodemask) {
9453		spin_lock_irqsave(&zone->lock, flags);
9454
9455		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9456		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9457			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9458				/*
9459				 * We release the zone lock here because
9460				 * alloc_contig_range() will also lock the zone
9461				 * at some point. If there's an allocation
9462				 * spinning on this lock, it may win the race
9463				 * and cause alloc_contig_range() to fail...
9464				 */
9465				spin_unlock_irqrestore(&zone->lock, flags);
9466				ret = __alloc_contig_pages(pfn, nr_pages,
9467							gfp_mask);
9468				if (!ret)
9469					return pfn_to_page(pfn);
9470				spin_lock_irqsave(&zone->lock, flags);
9471			}
9472			pfn += nr_pages;
9473		}
9474		spin_unlock_irqrestore(&zone->lock, flags);
9475	}
9476	return NULL;
9477}
9478#endif /* CONFIG_CONTIG_ALLOC */
9479
9480void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9481{
9482	unsigned long count = 0;
9483
9484	for (; nr_pages--; pfn++) {
9485		struct page *page = pfn_to_page(pfn);
9486
9487		count += page_count(page) != 1;
9488		__free_page(page);
9489	}
9490	WARN(count != 0, "%lu pages are still in use!\n", count);
9491}
9492EXPORT_SYMBOL(free_contig_range);
9493
 
9494/*
9495 * Effectively disable pcplists for the zone by setting the high limit to 0
9496 * and draining all cpus. A concurrent page freeing on another CPU that's about
9497 * to put the page on pcplist will either finish before the drain and the page
9498 * will be drained, or observe the new high limit and skip the pcplist.
9499 *
9500 * Must be paired with a call to zone_pcp_enable().
9501 */
9502void zone_pcp_disable(struct zone *zone)
9503{
 
9504	mutex_lock(&pcp_batch_high_lock);
9505	__zone_set_pageset_high_and_batch(zone, 0, 1);
9506	__drain_all_pages(zone, true);
9507}
9508
9509void zone_pcp_enable(struct zone *zone)
9510{
9511	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9512	mutex_unlock(&pcp_batch_high_lock);
9513}
 
9514
9515void zone_pcp_reset(struct zone *zone)
9516{
 
9517	int cpu;
9518	struct per_cpu_zonestat *pzstats;
9519
9520	if (zone->per_cpu_pageset != &boot_pageset) {
 
 
9521		for_each_online_cpu(cpu) {
9522			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9523			drain_zonestat(zone, pzstats);
9524		}
9525		free_percpu(zone->per_cpu_pageset);
9526		zone->per_cpu_pageset = &boot_pageset;
9527		if (zone->per_cpu_zonestats != &boot_zonestats) {
9528			free_percpu(zone->per_cpu_zonestats);
9529			zone->per_cpu_zonestats = &boot_zonestats;
9530		}
 
 
9531	}
 
9532}
9533
9534#ifdef CONFIG_MEMORY_HOTREMOVE
9535/*
9536 * All pages in the range must be in a single zone, must not contain holes,
9537 * must span full sections, and must be isolated before calling this function.
9538 */
9539void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
 
9540{
9541	unsigned long pfn = start_pfn;
9542	struct page *page;
9543	struct zone *zone;
9544	unsigned int order;
 
9545	unsigned long flags;
9546
 
 
 
 
 
9547	offline_mem_sections(pfn, end_pfn);
9548	zone = page_zone(pfn_to_page(pfn));
9549	spin_lock_irqsave(&zone->lock, flags);
 
9550	while (pfn < end_pfn) {
 
 
 
 
9551		page = pfn_to_page(pfn);
9552		/*
9553		 * The HWPoisoned page may be not in buddy system, and
9554		 * page_count() is not 0.
9555		 */
9556		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9557			pfn++;
9558			continue;
9559		}
9560		/*
9561		 * At this point all remaining PageOffline() pages have a
9562		 * reference count of 0 and can simply be skipped.
9563		 */
9564		if (PageOffline(page)) {
9565			BUG_ON(page_count(page));
9566			BUG_ON(PageBuddy(page));
9567			pfn++;
9568			continue;
9569		}
9570
9571		BUG_ON(page_count(page));
9572		BUG_ON(!PageBuddy(page));
9573		order = buddy_order(page);
9574		del_page_from_free_list(page, zone, order);
 
 
 
 
 
 
 
 
9575		pfn += (1 << order);
9576	}
9577	spin_unlock_irqrestore(&zone->lock, flags);
9578}
9579#endif
9580
9581/*
9582 * This function returns a stable result only if called under zone lock.
9583 */
9584bool is_free_buddy_page(struct page *page)
9585{
9586	unsigned long pfn = page_to_pfn(page);
9587	unsigned int order;
9588
9589	for (order = 0; order < MAX_ORDER; order++) {
9590		struct page *page_head = page - (pfn & ((1 << order) - 1));
9591
9592		if (PageBuddy(page_head) &&
9593		    buddy_order_unsafe(page_head) >= order)
9594			break;
9595	}
9596
9597	return order < MAX_ORDER;
9598}
9599EXPORT_SYMBOL(is_free_buddy_page);
9600
9601#ifdef CONFIG_MEMORY_FAILURE
9602/*
9603 * Break down a higher-order page in sub-pages, and keep our target out of
9604 * buddy allocator.
9605 */
9606static void break_down_buddy_pages(struct zone *zone, struct page *page,
9607				   struct page *target, int low, int high,
9608				   int migratetype)
9609{
9610	unsigned long size = 1 << high;
9611	struct page *current_buddy, *next_page;
9612
9613	while (high > low) {
9614		high--;
9615		size >>= 1;
9616
9617		if (target >= &page[size]) {
9618			next_page = page + size;
9619			current_buddy = page;
9620		} else {
9621			next_page = page;
9622			current_buddy = page + size;
9623		}
9624
9625		if (set_page_guard(zone, current_buddy, high, migratetype))
9626			continue;
9627
9628		if (current_buddy != target) {
9629			add_to_free_list(current_buddy, zone, high, migratetype);
9630			set_buddy_order(current_buddy, high);
9631			page = next_page;
9632		}
9633	}
9634}
9635
9636/*
9637 * Take a page that will be marked as poisoned off the buddy allocator.
9638 */
9639bool take_page_off_buddy(struct page *page)
9640{
9641	struct zone *zone = page_zone(page);
9642	unsigned long pfn = page_to_pfn(page);
9643	unsigned long flags;
9644	unsigned int order;
9645	bool ret = false;
9646
9647	spin_lock_irqsave(&zone->lock, flags);
9648	for (order = 0; order < MAX_ORDER; order++) {
9649		struct page *page_head = page - (pfn & ((1 << order) - 1));
9650		int page_order = buddy_order(page_head);
9651
9652		if (PageBuddy(page_head) && page_order >= order) {
9653			unsigned long pfn_head = page_to_pfn(page_head);
9654			int migratetype = get_pfnblock_migratetype(page_head,
9655								   pfn_head);
9656
9657			del_page_from_free_list(page_head, zone, page_order);
9658			break_down_buddy_pages(zone, page_head, page, 0,
9659						page_order, migratetype);
9660			SetPageHWPoisonTakenOff(page);
9661			if (!is_migrate_isolate(migratetype))
9662				__mod_zone_freepage_state(zone, -1, migratetype);
9663			ret = true;
9664			break;
9665		}
9666		if (page_count(page_head) > 0)
9667			break;
9668	}
9669	spin_unlock_irqrestore(&zone->lock, flags);
9670	return ret;
9671}
9672
9673/*
9674 * Cancel takeoff done by take_page_off_buddy().
9675 */
9676bool put_page_back_buddy(struct page *page)
9677{
9678	struct zone *zone = page_zone(page);
9679	unsigned long pfn = page_to_pfn(page);
9680	unsigned long flags;
9681	int migratetype = get_pfnblock_migratetype(page, pfn);
9682	bool ret = false;
9683
9684	spin_lock_irqsave(&zone->lock, flags);
9685	if (put_page_testzero(page)) {
9686		ClearPageHWPoisonTakenOff(page);
9687		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9688		if (TestClearPageHWPoison(page)) {
9689			ret = true;
9690		}
9691	}
9692	spin_unlock_irqrestore(&zone->lock, flags);
9693
9694	return ret;
9695}
9696#endif
9697
9698#ifdef CONFIG_ZONE_DMA
9699bool has_managed_dma(void)
9700{
9701	struct pglist_data *pgdat;
9702
9703	for_each_online_pgdat(pgdat) {
9704		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9705
9706		if (managed_zone(zone))
9707			return true;
9708	}
9709	return false;
9710}
9711#endif /* CONFIG_ZONE_DMA */