Loading...
1/*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13#include <linux/kernel.h>
14#include <linux/slab.h>
15#include <linux/init.h>
16#include <linux/bitops.h>
17#include <linux/poison.h>
18#include <linux/pfn.h>
19#include <linux/debugfs.h>
20#include <linux/kmemleak.h>
21#include <linux/seq_file.h>
22#include <linux/memblock.h>
23
24#include <asm/sections.h>
25#include <linux/io.h>
26
27#include "internal.h"
28
29static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
30static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
31#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
32static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
33#endif
34
35struct memblock memblock __initdata_memblock = {
36 .memory.regions = memblock_memory_init_regions,
37 .memory.cnt = 1, /* empty dummy entry */
38 .memory.max = INIT_MEMBLOCK_REGIONS,
39 .memory.name = "memory",
40
41 .reserved.regions = memblock_reserved_init_regions,
42 .reserved.cnt = 1, /* empty dummy entry */
43 .reserved.max = INIT_MEMBLOCK_REGIONS,
44 .reserved.name = "reserved",
45
46#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
47 .physmem.regions = memblock_physmem_init_regions,
48 .physmem.cnt = 1, /* empty dummy entry */
49 .physmem.max = INIT_PHYSMEM_REGIONS,
50 .physmem.name = "physmem",
51#endif
52
53 .bottom_up = false,
54 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
55};
56
57int memblock_debug __initdata_memblock;
58static bool system_has_some_mirror __initdata_memblock = false;
59static int memblock_can_resize __initdata_memblock;
60static int memblock_memory_in_slab __initdata_memblock = 0;
61static int memblock_reserved_in_slab __initdata_memblock = 0;
62
63ulong __init_memblock choose_memblock_flags(void)
64{
65 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
66}
67
68/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
69static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
70{
71 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
72}
73
74/*
75 * Address comparison utilities
76 */
77static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
78 phys_addr_t base2, phys_addr_t size2)
79{
80 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
81}
82
83bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
84 phys_addr_t base, phys_addr_t size)
85{
86 unsigned long i;
87
88 for (i = 0; i < type->cnt; i++)
89 if (memblock_addrs_overlap(base, size, type->regions[i].base,
90 type->regions[i].size))
91 break;
92 return i < type->cnt;
93}
94
95/*
96 * __memblock_find_range_bottom_up - find free area utility in bottom-up
97 * @start: start of candidate range
98 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
99 * @size: size of free area to find
100 * @align: alignment of free area to find
101 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
102 * @flags: pick from blocks based on memory attributes
103 *
104 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
105 *
106 * RETURNS:
107 * Found address on success, 0 on failure.
108 */
109static phys_addr_t __init_memblock
110__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
111 phys_addr_t size, phys_addr_t align, int nid,
112 ulong flags)
113{
114 phys_addr_t this_start, this_end, cand;
115 u64 i;
116
117 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
118 this_start = clamp(this_start, start, end);
119 this_end = clamp(this_end, start, end);
120
121 cand = round_up(this_start, align);
122 if (cand < this_end && this_end - cand >= size)
123 return cand;
124 }
125
126 return 0;
127}
128
129/**
130 * __memblock_find_range_top_down - find free area utility, in top-down
131 * @start: start of candidate range
132 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
133 * @size: size of free area to find
134 * @align: alignment of free area to find
135 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
136 * @flags: pick from blocks based on memory attributes
137 *
138 * Utility called from memblock_find_in_range_node(), find free area top-down.
139 *
140 * RETURNS:
141 * Found address on success, 0 on failure.
142 */
143static phys_addr_t __init_memblock
144__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
145 phys_addr_t size, phys_addr_t align, int nid,
146 ulong flags)
147{
148 phys_addr_t this_start, this_end, cand;
149 u64 i;
150
151 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
152 NULL) {
153 this_start = clamp(this_start, start, end);
154 this_end = clamp(this_end, start, end);
155
156 if (this_end < size)
157 continue;
158
159 cand = round_down(this_end - size, align);
160 if (cand >= this_start)
161 return cand;
162 }
163
164 return 0;
165}
166
167/**
168 * memblock_find_in_range_node - find free area in given range and node
169 * @size: size of free area to find
170 * @align: alignment of free area to find
171 * @start: start of candidate range
172 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
173 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
174 * @flags: pick from blocks based on memory attributes
175 *
176 * Find @size free area aligned to @align in the specified range and node.
177 *
178 * When allocation direction is bottom-up, the @start should be greater
179 * than the end of the kernel image. Otherwise, it will be trimmed. The
180 * reason is that we want the bottom-up allocation just near the kernel
181 * image so it is highly likely that the allocated memory and the kernel
182 * will reside in the same node.
183 *
184 * If bottom-up allocation failed, will try to allocate memory top-down.
185 *
186 * RETURNS:
187 * Found address on success, 0 on failure.
188 */
189phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
190 phys_addr_t align, phys_addr_t start,
191 phys_addr_t end, int nid, ulong flags)
192{
193 phys_addr_t kernel_end, ret;
194
195 /* pump up @end */
196 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
197 end = memblock.current_limit;
198
199 /* avoid allocating the first page */
200 start = max_t(phys_addr_t, start, PAGE_SIZE);
201 end = max(start, end);
202 kernel_end = __pa_symbol(_end);
203
204 /*
205 * try bottom-up allocation only when bottom-up mode
206 * is set and @end is above the kernel image.
207 */
208 if (memblock_bottom_up() && end > kernel_end) {
209 phys_addr_t bottom_up_start;
210
211 /* make sure we will allocate above the kernel */
212 bottom_up_start = max(start, kernel_end);
213
214 /* ok, try bottom-up allocation first */
215 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
216 size, align, nid, flags);
217 if (ret)
218 return ret;
219
220 /*
221 * we always limit bottom-up allocation above the kernel,
222 * but top-down allocation doesn't have the limit, so
223 * retrying top-down allocation may succeed when bottom-up
224 * allocation failed.
225 *
226 * bottom-up allocation is expected to be fail very rarely,
227 * so we use WARN_ONCE() here to see the stack trace if
228 * fail happens.
229 */
230 WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n");
231 }
232
233 return __memblock_find_range_top_down(start, end, size, align, nid,
234 flags);
235}
236
237/**
238 * memblock_find_in_range - find free area in given range
239 * @start: start of candidate range
240 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
241 * @size: size of free area to find
242 * @align: alignment of free area to find
243 *
244 * Find @size free area aligned to @align in the specified range.
245 *
246 * RETURNS:
247 * Found address on success, 0 on failure.
248 */
249phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
250 phys_addr_t end, phys_addr_t size,
251 phys_addr_t align)
252{
253 phys_addr_t ret;
254 ulong flags = choose_memblock_flags();
255
256again:
257 ret = memblock_find_in_range_node(size, align, start, end,
258 NUMA_NO_NODE, flags);
259
260 if (!ret && (flags & MEMBLOCK_MIRROR)) {
261 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
262 &size);
263 flags &= ~MEMBLOCK_MIRROR;
264 goto again;
265 }
266
267 return ret;
268}
269
270static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
271{
272 type->total_size -= type->regions[r].size;
273 memmove(&type->regions[r], &type->regions[r + 1],
274 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
275 type->cnt--;
276
277 /* Special case for empty arrays */
278 if (type->cnt == 0) {
279 WARN_ON(type->total_size != 0);
280 type->cnt = 1;
281 type->regions[0].base = 0;
282 type->regions[0].size = 0;
283 type->regions[0].flags = 0;
284 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
285 }
286}
287
288#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
289/**
290 * Discard memory and reserved arrays if they were allocated
291 */
292void __init memblock_discard(void)
293{
294 phys_addr_t addr, size;
295
296 if (memblock.reserved.regions != memblock_reserved_init_regions) {
297 addr = __pa(memblock.reserved.regions);
298 size = PAGE_ALIGN(sizeof(struct memblock_region) *
299 memblock.reserved.max);
300 __memblock_free_late(addr, size);
301 }
302
303 if (memblock.memory.regions != memblock_memory_init_regions) {
304 addr = __pa(memblock.memory.regions);
305 size = PAGE_ALIGN(sizeof(struct memblock_region) *
306 memblock.memory.max);
307 __memblock_free_late(addr, size);
308 }
309}
310#endif
311
312/**
313 * memblock_double_array - double the size of the memblock regions array
314 * @type: memblock type of the regions array being doubled
315 * @new_area_start: starting address of memory range to avoid overlap with
316 * @new_area_size: size of memory range to avoid overlap with
317 *
318 * Double the size of the @type regions array. If memblock is being used to
319 * allocate memory for a new reserved regions array and there is a previously
320 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
321 * waiting to be reserved, ensure the memory used by the new array does
322 * not overlap.
323 *
324 * RETURNS:
325 * 0 on success, -1 on failure.
326 */
327static int __init_memblock memblock_double_array(struct memblock_type *type,
328 phys_addr_t new_area_start,
329 phys_addr_t new_area_size)
330{
331 struct memblock_region *new_array, *old_array;
332 phys_addr_t old_alloc_size, new_alloc_size;
333 phys_addr_t old_size, new_size, addr;
334 int use_slab = slab_is_available();
335 int *in_slab;
336
337 /* We don't allow resizing until we know about the reserved regions
338 * of memory that aren't suitable for allocation
339 */
340 if (!memblock_can_resize)
341 return -1;
342
343 /* Calculate new doubled size */
344 old_size = type->max * sizeof(struct memblock_region);
345 new_size = old_size << 1;
346 /*
347 * We need to allocated new one align to PAGE_SIZE,
348 * so we can free them completely later.
349 */
350 old_alloc_size = PAGE_ALIGN(old_size);
351 new_alloc_size = PAGE_ALIGN(new_size);
352
353 /* Retrieve the slab flag */
354 if (type == &memblock.memory)
355 in_slab = &memblock_memory_in_slab;
356 else
357 in_slab = &memblock_reserved_in_slab;
358
359 /* Try to find some space for it.
360 *
361 * WARNING: We assume that either slab_is_available() and we use it or
362 * we use MEMBLOCK for allocations. That means that this is unsafe to
363 * use when bootmem is currently active (unless bootmem itself is
364 * implemented on top of MEMBLOCK which isn't the case yet)
365 *
366 * This should however not be an issue for now, as we currently only
367 * call into MEMBLOCK while it's still active, or much later when slab
368 * is active for memory hotplug operations
369 */
370 if (use_slab) {
371 new_array = kmalloc(new_size, GFP_KERNEL);
372 addr = new_array ? __pa(new_array) : 0;
373 } else {
374 /* only exclude range when trying to double reserved.regions */
375 if (type != &memblock.reserved)
376 new_area_start = new_area_size = 0;
377
378 addr = memblock_find_in_range(new_area_start + new_area_size,
379 memblock.current_limit,
380 new_alloc_size, PAGE_SIZE);
381 if (!addr && new_area_size)
382 addr = memblock_find_in_range(0,
383 min(new_area_start, memblock.current_limit),
384 new_alloc_size, PAGE_SIZE);
385
386 new_array = addr ? __va(addr) : NULL;
387 }
388 if (!addr) {
389 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
390 type->name, type->max, type->max * 2);
391 return -1;
392 }
393
394 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
395 type->name, type->max * 2, (u64)addr,
396 (u64)addr + new_size - 1);
397
398 /*
399 * Found space, we now need to move the array over before we add the
400 * reserved region since it may be our reserved array itself that is
401 * full.
402 */
403 memcpy(new_array, type->regions, old_size);
404 memset(new_array + type->max, 0, old_size);
405 old_array = type->regions;
406 type->regions = new_array;
407 type->max <<= 1;
408
409 /* Free old array. We needn't free it if the array is the static one */
410 if (*in_slab)
411 kfree(old_array);
412 else if (old_array != memblock_memory_init_regions &&
413 old_array != memblock_reserved_init_regions)
414 memblock_free(__pa(old_array), old_alloc_size);
415
416 /*
417 * Reserve the new array if that comes from the memblock. Otherwise, we
418 * needn't do it
419 */
420 if (!use_slab)
421 BUG_ON(memblock_reserve(addr, new_alloc_size));
422
423 /* Update slab flag */
424 *in_slab = use_slab;
425
426 return 0;
427}
428
429/**
430 * memblock_merge_regions - merge neighboring compatible regions
431 * @type: memblock type to scan
432 *
433 * Scan @type and merge neighboring compatible regions.
434 */
435static void __init_memblock memblock_merge_regions(struct memblock_type *type)
436{
437 int i = 0;
438
439 /* cnt never goes below 1 */
440 while (i < type->cnt - 1) {
441 struct memblock_region *this = &type->regions[i];
442 struct memblock_region *next = &type->regions[i + 1];
443
444 if (this->base + this->size != next->base ||
445 memblock_get_region_node(this) !=
446 memblock_get_region_node(next) ||
447 this->flags != next->flags) {
448 BUG_ON(this->base + this->size > next->base);
449 i++;
450 continue;
451 }
452
453 this->size += next->size;
454 /* move forward from next + 1, index of which is i + 2 */
455 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
456 type->cnt--;
457 }
458}
459
460/**
461 * memblock_insert_region - insert new memblock region
462 * @type: memblock type to insert into
463 * @idx: index for the insertion point
464 * @base: base address of the new region
465 * @size: size of the new region
466 * @nid: node id of the new region
467 * @flags: flags of the new region
468 *
469 * Insert new memblock region [@base,@base+@size) into @type at @idx.
470 * @type must already have extra room to accommodate the new region.
471 */
472static void __init_memblock memblock_insert_region(struct memblock_type *type,
473 int idx, phys_addr_t base,
474 phys_addr_t size,
475 int nid, unsigned long flags)
476{
477 struct memblock_region *rgn = &type->regions[idx];
478
479 BUG_ON(type->cnt >= type->max);
480 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
481 rgn->base = base;
482 rgn->size = size;
483 rgn->flags = flags;
484 memblock_set_region_node(rgn, nid);
485 type->cnt++;
486 type->total_size += size;
487}
488
489/**
490 * memblock_add_range - add new memblock region
491 * @type: memblock type to add new region into
492 * @base: base address of the new region
493 * @size: size of the new region
494 * @nid: nid of the new region
495 * @flags: flags of the new region
496 *
497 * Add new memblock region [@base,@base+@size) into @type. The new region
498 * is allowed to overlap with existing ones - overlaps don't affect already
499 * existing regions. @type is guaranteed to be minimal (all neighbouring
500 * compatible regions are merged) after the addition.
501 *
502 * RETURNS:
503 * 0 on success, -errno on failure.
504 */
505int __init_memblock memblock_add_range(struct memblock_type *type,
506 phys_addr_t base, phys_addr_t size,
507 int nid, unsigned long flags)
508{
509 bool insert = false;
510 phys_addr_t obase = base;
511 phys_addr_t end = base + memblock_cap_size(base, &size);
512 int idx, nr_new;
513 struct memblock_region *rgn;
514
515 if (!size)
516 return 0;
517
518 /* special case for empty array */
519 if (type->regions[0].size == 0) {
520 WARN_ON(type->cnt != 1 || type->total_size);
521 type->regions[0].base = base;
522 type->regions[0].size = size;
523 type->regions[0].flags = flags;
524 memblock_set_region_node(&type->regions[0], nid);
525 type->total_size = size;
526 return 0;
527 }
528repeat:
529 /*
530 * The following is executed twice. Once with %false @insert and
531 * then with %true. The first counts the number of regions needed
532 * to accommodate the new area. The second actually inserts them.
533 */
534 base = obase;
535 nr_new = 0;
536
537 for_each_memblock_type(idx, type, rgn) {
538 phys_addr_t rbase = rgn->base;
539 phys_addr_t rend = rbase + rgn->size;
540
541 if (rbase >= end)
542 break;
543 if (rend <= base)
544 continue;
545 /*
546 * @rgn overlaps. If it separates the lower part of new
547 * area, insert that portion.
548 */
549 if (rbase > base) {
550#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
551 WARN_ON(nid != memblock_get_region_node(rgn));
552#endif
553 WARN_ON(flags != rgn->flags);
554 nr_new++;
555 if (insert)
556 memblock_insert_region(type, idx++, base,
557 rbase - base, nid,
558 flags);
559 }
560 /* area below @rend is dealt with, forget about it */
561 base = min(rend, end);
562 }
563
564 /* insert the remaining portion */
565 if (base < end) {
566 nr_new++;
567 if (insert)
568 memblock_insert_region(type, idx, base, end - base,
569 nid, flags);
570 }
571
572 if (!nr_new)
573 return 0;
574
575 /*
576 * If this was the first round, resize array and repeat for actual
577 * insertions; otherwise, merge and return.
578 */
579 if (!insert) {
580 while (type->cnt + nr_new > type->max)
581 if (memblock_double_array(type, obase, size) < 0)
582 return -ENOMEM;
583 insert = true;
584 goto repeat;
585 } else {
586 memblock_merge_regions(type);
587 return 0;
588 }
589}
590
591int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
592 int nid)
593{
594 return memblock_add_range(&memblock.memory, base, size, nid, 0);
595}
596
597int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
598{
599 phys_addr_t end = base + size - 1;
600
601 memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
602 &base, &end, (void *)_RET_IP_);
603
604 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
605}
606
607/**
608 * memblock_isolate_range - isolate given range into disjoint memblocks
609 * @type: memblock type to isolate range for
610 * @base: base of range to isolate
611 * @size: size of range to isolate
612 * @start_rgn: out parameter for the start of isolated region
613 * @end_rgn: out parameter for the end of isolated region
614 *
615 * Walk @type and ensure that regions don't cross the boundaries defined by
616 * [@base,@base+@size). Crossing regions are split at the boundaries,
617 * which may create at most two more regions. The index of the first
618 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
619 *
620 * RETURNS:
621 * 0 on success, -errno on failure.
622 */
623static int __init_memblock memblock_isolate_range(struct memblock_type *type,
624 phys_addr_t base, phys_addr_t size,
625 int *start_rgn, int *end_rgn)
626{
627 phys_addr_t end = base + memblock_cap_size(base, &size);
628 int idx;
629 struct memblock_region *rgn;
630
631 *start_rgn = *end_rgn = 0;
632
633 if (!size)
634 return 0;
635
636 /* we'll create at most two more regions */
637 while (type->cnt + 2 > type->max)
638 if (memblock_double_array(type, base, size) < 0)
639 return -ENOMEM;
640
641 for_each_memblock_type(idx, type, rgn) {
642 phys_addr_t rbase = rgn->base;
643 phys_addr_t rend = rbase + rgn->size;
644
645 if (rbase >= end)
646 break;
647 if (rend <= base)
648 continue;
649
650 if (rbase < base) {
651 /*
652 * @rgn intersects from below. Split and continue
653 * to process the next region - the new top half.
654 */
655 rgn->base = base;
656 rgn->size -= base - rbase;
657 type->total_size -= base - rbase;
658 memblock_insert_region(type, idx, rbase, base - rbase,
659 memblock_get_region_node(rgn),
660 rgn->flags);
661 } else if (rend > end) {
662 /*
663 * @rgn intersects from above. Split and redo the
664 * current region - the new bottom half.
665 */
666 rgn->base = end;
667 rgn->size -= end - rbase;
668 type->total_size -= end - rbase;
669 memblock_insert_region(type, idx--, rbase, end - rbase,
670 memblock_get_region_node(rgn),
671 rgn->flags);
672 } else {
673 /* @rgn is fully contained, record it */
674 if (!*end_rgn)
675 *start_rgn = idx;
676 *end_rgn = idx + 1;
677 }
678 }
679
680 return 0;
681}
682
683static int __init_memblock memblock_remove_range(struct memblock_type *type,
684 phys_addr_t base, phys_addr_t size)
685{
686 int start_rgn, end_rgn;
687 int i, ret;
688
689 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
690 if (ret)
691 return ret;
692
693 for (i = end_rgn - 1; i >= start_rgn; i--)
694 memblock_remove_region(type, i);
695 return 0;
696}
697
698int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
699{
700 return memblock_remove_range(&memblock.memory, base, size);
701}
702
703
704int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
705{
706 phys_addr_t end = base + size - 1;
707
708 memblock_dbg(" memblock_free: [%pa-%pa] %pF\n",
709 &base, &end, (void *)_RET_IP_);
710
711 kmemleak_free_part_phys(base, size);
712 return memblock_remove_range(&memblock.reserved, base, size);
713}
714
715int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
716{
717 phys_addr_t end = base + size - 1;
718
719 memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
720 &base, &end, (void *)_RET_IP_);
721
722 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
723}
724
725/**
726 *
727 * This function isolates region [@base, @base + @size), and sets/clears flag
728 *
729 * Return 0 on success, -errno on failure.
730 */
731static int __init_memblock memblock_setclr_flag(phys_addr_t base,
732 phys_addr_t size, int set, int flag)
733{
734 struct memblock_type *type = &memblock.memory;
735 int i, ret, start_rgn, end_rgn;
736
737 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
738 if (ret)
739 return ret;
740
741 for (i = start_rgn; i < end_rgn; i++)
742 if (set)
743 memblock_set_region_flags(&type->regions[i], flag);
744 else
745 memblock_clear_region_flags(&type->regions[i], flag);
746
747 memblock_merge_regions(type);
748 return 0;
749}
750
751/**
752 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
753 * @base: the base phys addr of the region
754 * @size: the size of the region
755 *
756 * Return 0 on success, -errno on failure.
757 */
758int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
759{
760 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
761}
762
763/**
764 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
765 * @base: the base phys addr of the region
766 * @size: the size of the region
767 *
768 * Return 0 on success, -errno on failure.
769 */
770int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
771{
772 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
773}
774
775/**
776 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
777 * @base: the base phys addr of the region
778 * @size: the size of the region
779 *
780 * Return 0 on success, -errno on failure.
781 */
782int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
783{
784 system_has_some_mirror = true;
785
786 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
787}
788
789/**
790 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
791 * @base: the base phys addr of the region
792 * @size: the size of the region
793 *
794 * Return 0 on success, -errno on failure.
795 */
796int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
797{
798 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
799}
800
801/**
802 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
803 * @base: the base phys addr of the region
804 * @size: the size of the region
805 *
806 * Return 0 on success, -errno on failure.
807 */
808int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
809{
810 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
811}
812
813/**
814 * __next_reserved_mem_region - next function for for_each_reserved_region()
815 * @idx: pointer to u64 loop variable
816 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
817 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
818 *
819 * Iterate over all reserved memory regions.
820 */
821void __init_memblock __next_reserved_mem_region(u64 *idx,
822 phys_addr_t *out_start,
823 phys_addr_t *out_end)
824{
825 struct memblock_type *type = &memblock.reserved;
826
827 if (*idx < type->cnt) {
828 struct memblock_region *r = &type->regions[*idx];
829 phys_addr_t base = r->base;
830 phys_addr_t size = r->size;
831
832 if (out_start)
833 *out_start = base;
834 if (out_end)
835 *out_end = base + size - 1;
836
837 *idx += 1;
838 return;
839 }
840
841 /* signal end of iteration */
842 *idx = ULLONG_MAX;
843}
844
845/**
846 * __next__mem_range - next function for for_each_free_mem_range() etc.
847 * @idx: pointer to u64 loop variable
848 * @nid: node selector, %NUMA_NO_NODE for all nodes
849 * @flags: pick from blocks based on memory attributes
850 * @type_a: pointer to memblock_type from where the range is taken
851 * @type_b: pointer to memblock_type which excludes memory from being taken
852 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
853 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
854 * @out_nid: ptr to int for nid of the range, can be %NULL
855 *
856 * Find the first area from *@idx which matches @nid, fill the out
857 * parameters, and update *@idx for the next iteration. The lower 32bit of
858 * *@idx contains index into type_a and the upper 32bit indexes the
859 * areas before each region in type_b. For example, if type_b regions
860 * look like the following,
861 *
862 * 0:[0-16), 1:[32-48), 2:[128-130)
863 *
864 * The upper 32bit indexes the following regions.
865 *
866 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
867 *
868 * As both region arrays are sorted, the function advances the two indices
869 * in lockstep and returns each intersection.
870 */
871void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
872 struct memblock_type *type_a,
873 struct memblock_type *type_b,
874 phys_addr_t *out_start,
875 phys_addr_t *out_end, int *out_nid)
876{
877 int idx_a = *idx & 0xffffffff;
878 int idx_b = *idx >> 32;
879
880 if (WARN_ONCE(nid == MAX_NUMNODES,
881 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
882 nid = NUMA_NO_NODE;
883
884 for (; idx_a < type_a->cnt; idx_a++) {
885 struct memblock_region *m = &type_a->regions[idx_a];
886
887 phys_addr_t m_start = m->base;
888 phys_addr_t m_end = m->base + m->size;
889 int m_nid = memblock_get_region_node(m);
890
891 /* only memory regions are associated with nodes, check it */
892 if (nid != NUMA_NO_NODE && nid != m_nid)
893 continue;
894
895 /* skip hotpluggable memory regions if needed */
896 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
897 continue;
898
899 /* if we want mirror memory skip non-mirror memory regions */
900 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
901 continue;
902
903 /* skip nomap memory unless we were asked for it explicitly */
904 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
905 continue;
906
907 if (!type_b) {
908 if (out_start)
909 *out_start = m_start;
910 if (out_end)
911 *out_end = m_end;
912 if (out_nid)
913 *out_nid = m_nid;
914 idx_a++;
915 *idx = (u32)idx_a | (u64)idx_b << 32;
916 return;
917 }
918
919 /* scan areas before each reservation */
920 for (; idx_b < type_b->cnt + 1; idx_b++) {
921 struct memblock_region *r;
922 phys_addr_t r_start;
923 phys_addr_t r_end;
924
925 r = &type_b->regions[idx_b];
926 r_start = idx_b ? r[-1].base + r[-1].size : 0;
927 r_end = idx_b < type_b->cnt ?
928 r->base : (phys_addr_t)ULLONG_MAX;
929
930 /*
931 * if idx_b advanced past idx_a,
932 * break out to advance idx_a
933 */
934 if (r_start >= m_end)
935 break;
936 /* if the two regions intersect, we're done */
937 if (m_start < r_end) {
938 if (out_start)
939 *out_start =
940 max(m_start, r_start);
941 if (out_end)
942 *out_end = min(m_end, r_end);
943 if (out_nid)
944 *out_nid = m_nid;
945 /*
946 * The region which ends first is
947 * advanced for the next iteration.
948 */
949 if (m_end <= r_end)
950 idx_a++;
951 else
952 idx_b++;
953 *idx = (u32)idx_a | (u64)idx_b << 32;
954 return;
955 }
956 }
957 }
958
959 /* signal end of iteration */
960 *idx = ULLONG_MAX;
961}
962
963/**
964 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
965 *
966 * Finds the next range from type_a which is not marked as unsuitable
967 * in type_b.
968 *
969 * @idx: pointer to u64 loop variable
970 * @nid: node selector, %NUMA_NO_NODE for all nodes
971 * @flags: pick from blocks based on memory attributes
972 * @type_a: pointer to memblock_type from where the range is taken
973 * @type_b: pointer to memblock_type which excludes memory from being taken
974 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
975 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
976 * @out_nid: ptr to int for nid of the range, can be %NULL
977 *
978 * Reverse of __next_mem_range().
979 */
980void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
981 struct memblock_type *type_a,
982 struct memblock_type *type_b,
983 phys_addr_t *out_start,
984 phys_addr_t *out_end, int *out_nid)
985{
986 int idx_a = *idx & 0xffffffff;
987 int idx_b = *idx >> 32;
988
989 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
990 nid = NUMA_NO_NODE;
991
992 if (*idx == (u64)ULLONG_MAX) {
993 idx_a = type_a->cnt - 1;
994 if (type_b != NULL)
995 idx_b = type_b->cnt;
996 else
997 idx_b = 0;
998 }
999
1000 for (; idx_a >= 0; idx_a--) {
1001 struct memblock_region *m = &type_a->regions[idx_a];
1002
1003 phys_addr_t m_start = m->base;
1004 phys_addr_t m_end = m->base + m->size;
1005 int m_nid = memblock_get_region_node(m);
1006
1007 /* only memory regions are associated with nodes, check it */
1008 if (nid != NUMA_NO_NODE && nid != m_nid)
1009 continue;
1010
1011 /* skip hotpluggable memory regions if needed */
1012 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1013 continue;
1014
1015 /* if we want mirror memory skip non-mirror memory regions */
1016 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1017 continue;
1018
1019 /* skip nomap memory unless we were asked for it explicitly */
1020 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1021 continue;
1022
1023 if (!type_b) {
1024 if (out_start)
1025 *out_start = m_start;
1026 if (out_end)
1027 *out_end = m_end;
1028 if (out_nid)
1029 *out_nid = m_nid;
1030 idx_a--;
1031 *idx = (u32)idx_a | (u64)idx_b << 32;
1032 return;
1033 }
1034
1035 /* scan areas before each reservation */
1036 for (; idx_b >= 0; idx_b--) {
1037 struct memblock_region *r;
1038 phys_addr_t r_start;
1039 phys_addr_t r_end;
1040
1041 r = &type_b->regions[idx_b];
1042 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1043 r_end = idx_b < type_b->cnt ?
1044 r->base : (phys_addr_t)ULLONG_MAX;
1045 /*
1046 * if idx_b advanced past idx_a,
1047 * break out to advance idx_a
1048 */
1049
1050 if (r_end <= m_start)
1051 break;
1052 /* if the two regions intersect, we're done */
1053 if (m_end > r_start) {
1054 if (out_start)
1055 *out_start = max(m_start, r_start);
1056 if (out_end)
1057 *out_end = min(m_end, r_end);
1058 if (out_nid)
1059 *out_nid = m_nid;
1060 if (m_start >= r_start)
1061 idx_a--;
1062 else
1063 idx_b--;
1064 *idx = (u32)idx_a | (u64)idx_b << 32;
1065 return;
1066 }
1067 }
1068 }
1069 /* signal end of iteration */
1070 *idx = ULLONG_MAX;
1071}
1072
1073#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1074/*
1075 * Common iterator interface used to define for_each_mem_range().
1076 */
1077void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1078 unsigned long *out_start_pfn,
1079 unsigned long *out_end_pfn, int *out_nid)
1080{
1081 struct memblock_type *type = &memblock.memory;
1082 struct memblock_region *r;
1083
1084 while (++*idx < type->cnt) {
1085 r = &type->regions[*idx];
1086
1087 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1088 continue;
1089 if (nid == MAX_NUMNODES || nid == r->nid)
1090 break;
1091 }
1092 if (*idx >= type->cnt) {
1093 *idx = -1;
1094 return;
1095 }
1096
1097 if (out_start_pfn)
1098 *out_start_pfn = PFN_UP(r->base);
1099 if (out_end_pfn)
1100 *out_end_pfn = PFN_DOWN(r->base + r->size);
1101 if (out_nid)
1102 *out_nid = r->nid;
1103}
1104
1105/**
1106 * memblock_set_node - set node ID on memblock regions
1107 * @base: base of area to set node ID for
1108 * @size: size of area to set node ID for
1109 * @type: memblock type to set node ID for
1110 * @nid: node ID to set
1111 *
1112 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1113 * Regions which cross the area boundaries are split as necessary.
1114 *
1115 * RETURNS:
1116 * 0 on success, -errno on failure.
1117 */
1118int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1119 struct memblock_type *type, int nid)
1120{
1121 int start_rgn, end_rgn;
1122 int i, ret;
1123
1124 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1125 if (ret)
1126 return ret;
1127
1128 for (i = start_rgn; i < end_rgn; i++)
1129 memblock_set_region_node(&type->regions[i], nid);
1130
1131 memblock_merge_regions(type);
1132 return 0;
1133}
1134#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1135
1136static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1137 phys_addr_t align, phys_addr_t start,
1138 phys_addr_t end, int nid, ulong flags)
1139{
1140 phys_addr_t found;
1141
1142 if (!align)
1143 align = SMP_CACHE_BYTES;
1144
1145 found = memblock_find_in_range_node(size, align, start, end, nid,
1146 flags);
1147 if (found && !memblock_reserve(found, size)) {
1148 /*
1149 * The min_count is set to 0 so that memblock allocations are
1150 * never reported as leaks.
1151 */
1152 kmemleak_alloc_phys(found, size, 0, 0);
1153 return found;
1154 }
1155 return 0;
1156}
1157
1158phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1159 phys_addr_t start, phys_addr_t end,
1160 ulong flags)
1161{
1162 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1163 flags);
1164}
1165
1166phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1167 phys_addr_t align, phys_addr_t max_addr,
1168 int nid, ulong flags)
1169{
1170 return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1171}
1172
1173phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1174{
1175 ulong flags = choose_memblock_flags();
1176 phys_addr_t ret;
1177
1178again:
1179 ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1180 nid, flags);
1181
1182 if (!ret && (flags & MEMBLOCK_MIRROR)) {
1183 flags &= ~MEMBLOCK_MIRROR;
1184 goto again;
1185 }
1186 return ret;
1187}
1188
1189phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1190{
1191 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1192 MEMBLOCK_NONE);
1193}
1194
1195phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1196{
1197 phys_addr_t alloc;
1198
1199 alloc = __memblock_alloc_base(size, align, max_addr);
1200
1201 if (alloc == 0)
1202 panic("ERROR: Failed to allocate %pa bytes below %pa.\n",
1203 &size, &max_addr);
1204
1205 return alloc;
1206}
1207
1208phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1209{
1210 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1211}
1212
1213phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1214{
1215 phys_addr_t res = memblock_alloc_nid(size, align, nid);
1216
1217 if (res)
1218 return res;
1219 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1220}
1221
1222/**
1223 * memblock_virt_alloc_internal - allocate boot memory block
1224 * @size: size of memory block to be allocated in bytes
1225 * @align: alignment of the region and block's size
1226 * @min_addr: the lower bound of the memory region to allocate (phys address)
1227 * @max_addr: the upper bound of the memory region to allocate (phys address)
1228 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1229 *
1230 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1231 * will fall back to memory below @min_addr. Also, allocation may fall back
1232 * to any node in the system if the specified node can not
1233 * hold the requested memory.
1234 *
1235 * The allocation is performed from memory region limited by
1236 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1237 *
1238 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1239 *
1240 * The phys address of allocated boot memory block is converted to virtual and
1241 * allocated memory is reset to 0.
1242 *
1243 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1244 * allocated boot memory block, so that it is never reported as leaks.
1245 *
1246 * RETURNS:
1247 * Virtual address of allocated memory block on success, NULL on failure.
1248 */
1249static void * __init memblock_virt_alloc_internal(
1250 phys_addr_t size, phys_addr_t align,
1251 phys_addr_t min_addr, phys_addr_t max_addr,
1252 int nid)
1253{
1254 phys_addr_t alloc;
1255 void *ptr;
1256 ulong flags = choose_memblock_flags();
1257
1258 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1259 nid = NUMA_NO_NODE;
1260
1261 /*
1262 * Detect any accidental use of these APIs after slab is ready, as at
1263 * this moment memblock may be deinitialized already and its
1264 * internal data may be destroyed (after execution of free_all_bootmem)
1265 */
1266 if (WARN_ON_ONCE(slab_is_available()))
1267 return kzalloc_node(size, GFP_NOWAIT, nid);
1268
1269 if (!align)
1270 align = SMP_CACHE_BYTES;
1271
1272 if (max_addr > memblock.current_limit)
1273 max_addr = memblock.current_limit;
1274again:
1275 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1276 nid, flags);
1277 if (alloc && !memblock_reserve(alloc, size))
1278 goto done;
1279
1280 if (nid != NUMA_NO_NODE) {
1281 alloc = memblock_find_in_range_node(size, align, min_addr,
1282 max_addr, NUMA_NO_NODE,
1283 flags);
1284 if (alloc && !memblock_reserve(alloc, size))
1285 goto done;
1286 }
1287
1288 if (min_addr) {
1289 min_addr = 0;
1290 goto again;
1291 }
1292
1293 if (flags & MEMBLOCK_MIRROR) {
1294 flags &= ~MEMBLOCK_MIRROR;
1295 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1296 &size);
1297 goto again;
1298 }
1299
1300 return NULL;
1301done:
1302 ptr = phys_to_virt(alloc);
1303
1304 /*
1305 * The min_count is set to 0 so that bootmem allocated blocks
1306 * are never reported as leaks. This is because many of these blocks
1307 * are only referred via the physical address which is not
1308 * looked up by kmemleak.
1309 */
1310 kmemleak_alloc(ptr, size, 0, 0);
1311
1312 return ptr;
1313}
1314
1315/**
1316 * memblock_virt_alloc_try_nid_raw - allocate boot memory block without zeroing
1317 * memory and without panicking
1318 * @size: size of memory block to be allocated in bytes
1319 * @align: alignment of the region and block's size
1320 * @min_addr: the lower bound of the memory region from where the allocation
1321 * is preferred (phys address)
1322 * @max_addr: the upper bound of the memory region from where the allocation
1323 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1324 * allocate only from memory limited by memblock.current_limit value
1325 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1326 *
1327 * Public function, provides additional debug information (including caller
1328 * info), if enabled. Does not zero allocated memory, does not panic if request
1329 * cannot be satisfied.
1330 *
1331 * RETURNS:
1332 * Virtual address of allocated memory block on success, NULL on failure.
1333 */
1334void * __init memblock_virt_alloc_try_nid_raw(
1335 phys_addr_t size, phys_addr_t align,
1336 phys_addr_t min_addr, phys_addr_t max_addr,
1337 int nid)
1338{
1339 void *ptr;
1340
1341 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1342 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1343 (u64)max_addr, (void *)_RET_IP_);
1344
1345 ptr = memblock_virt_alloc_internal(size, align,
1346 min_addr, max_addr, nid);
1347#ifdef CONFIG_DEBUG_VM
1348 if (ptr && size > 0)
1349 memset(ptr, PAGE_POISON_PATTERN, size);
1350#endif
1351 return ptr;
1352}
1353
1354/**
1355 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1356 * @size: size of memory block to be allocated in bytes
1357 * @align: alignment of the region and block's size
1358 * @min_addr: the lower bound of the memory region from where the allocation
1359 * is preferred (phys address)
1360 * @max_addr: the upper bound of the memory region from where the allocation
1361 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1362 * allocate only from memory limited by memblock.current_limit value
1363 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1364 *
1365 * Public function, provides additional debug information (including caller
1366 * info), if enabled. This function zeroes the allocated memory.
1367 *
1368 * RETURNS:
1369 * Virtual address of allocated memory block on success, NULL on failure.
1370 */
1371void * __init memblock_virt_alloc_try_nid_nopanic(
1372 phys_addr_t size, phys_addr_t align,
1373 phys_addr_t min_addr, phys_addr_t max_addr,
1374 int nid)
1375{
1376 void *ptr;
1377
1378 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1379 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1380 (u64)max_addr, (void *)_RET_IP_);
1381
1382 ptr = memblock_virt_alloc_internal(size, align,
1383 min_addr, max_addr, nid);
1384 if (ptr)
1385 memset(ptr, 0, size);
1386 return ptr;
1387}
1388
1389/**
1390 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1391 * @size: size of memory block to be allocated in bytes
1392 * @align: alignment of the region and block's size
1393 * @min_addr: the lower bound of the memory region from where the allocation
1394 * is preferred (phys address)
1395 * @max_addr: the upper bound of the memory region from where the allocation
1396 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1397 * allocate only from memory limited by memblock.current_limit value
1398 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1399 *
1400 * Public panicking version of memblock_virt_alloc_try_nid_nopanic()
1401 * which provides debug information (including caller info), if enabled,
1402 * and panics if the request can not be satisfied.
1403 *
1404 * RETURNS:
1405 * Virtual address of allocated memory block on success, NULL on failure.
1406 */
1407void * __init memblock_virt_alloc_try_nid(
1408 phys_addr_t size, phys_addr_t align,
1409 phys_addr_t min_addr, phys_addr_t max_addr,
1410 int nid)
1411{
1412 void *ptr;
1413
1414 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1415 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1416 (u64)max_addr, (void *)_RET_IP_);
1417 ptr = memblock_virt_alloc_internal(size, align,
1418 min_addr, max_addr, nid);
1419 if (ptr) {
1420 memset(ptr, 0, size);
1421 return ptr;
1422 }
1423
1424 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1425 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1426 (u64)max_addr);
1427 return NULL;
1428}
1429
1430/**
1431 * __memblock_free_early - free boot memory block
1432 * @base: phys starting address of the boot memory block
1433 * @size: size of the boot memory block in bytes
1434 *
1435 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1436 * The freeing memory will not be released to the buddy allocator.
1437 */
1438void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1439{
1440 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1441 __func__, (u64)base, (u64)base + size - 1,
1442 (void *)_RET_IP_);
1443 kmemleak_free_part_phys(base, size);
1444 memblock_remove_range(&memblock.reserved, base, size);
1445}
1446
1447/*
1448 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1449 * @addr: phys starting address of the boot memory block
1450 * @size: size of the boot memory block in bytes
1451 *
1452 * This is only useful when the bootmem allocator has already been torn
1453 * down, but we are still initializing the system. Pages are released directly
1454 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1455 */
1456void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1457{
1458 u64 cursor, end;
1459
1460 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1461 __func__, (u64)base, (u64)base + size - 1,
1462 (void *)_RET_IP_);
1463 kmemleak_free_part_phys(base, size);
1464 cursor = PFN_UP(base);
1465 end = PFN_DOWN(base + size);
1466
1467 for (; cursor < end; cursor++) {
1468 __free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
1469 totalram_pages++;
1470 }
1471}
1472
1473/*
1474 * Remaining API functions
1475 */
1476
1477phys_addr_t __init_memblock memblock_phys_mem_size(void)
1478{
1479 return memblock.memory.total_size;
1480}
1481
1482phys_addr_t __init_memblock memblock_reserved_size(void)
1483{
1484 return memblock.reserved.total_size;
1485}
1486
1487phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1488{
1489 unsigned long pages = 0;
1490 struct memblock_region *r;
1491 unsigned long start_pfn, end_pfn;
1492
1493 for_each_memblock(memory, r) {
1494 start_pfn = memblock_region_memory_base_pfn(r);
1495 end_pfn = memblock_region_memory_end_pfn(r);
1496 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1497 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1498 pages += end_pfn - start_pfn;
1499 }
1500
1501 return PFN_PHYS(pages);
1502}
1503
1504/* lowest address */
1505phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1506{
1507 return memblock.memory.regions[0].base;
1508}
1509
1510phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1511{
1512 int idx = memblock.memory.cnt - 1;
1513
1514 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1515}
1516
1517static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1518{
1519 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1520 struct memblock_region *r;
1521
1522 /*
1523 * translate the memory @limit size into the max address within one of
1524 * the memory memblock regions, if the @limit exceeds the total size
1525 * of those regions, max_addr will keep original value ULLONG_MAX
1526 */
1527 for_each_memblock(memory, r) {
1528 if (limit <= r->size) {
1529 max_addr = r->base + limit;
1530 break;
1531 }
1532 limit -= r->size;
1533 }
1534
1535 return max_addr;
1536}
1537
1538void __init memblock_enforce_memory_limit(phys_addr_t limit)
1539{
1540 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1541
1542 if (!limit)
1543 return;
1544
1545 max_addr = __find_max_addr(limit);
1546
1547 /* @limit exceeds the total size of the memory, do nothing */
1548 if (max_addr == (phys_addr_t)ULLONG_MAX)
1549 return;
1550
1551 /* truncate both memory and reserved regions */
1552 memblock_remove_range(&memblock.memory, max_addr,
1553 (phys_addr_t)ULLONG_MAX);
1554 memblock_remove_range(&memblock.reserved, max_addr,
1555 (phys_addr_t)ULLONG_MAX);
1556}
1557
1558void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1559{
1560 int start_rgn, end_rgn;
1561 int i, ret;
1562
1563 if (!size)
1564 return;
1565
1566 ret = memblock_isolate_range(&memblock.memory, base, size,
1567 &start_rgn, &end_rgn);
1568 if (ret)
1569 return;
1570
1571 /* remove all the MAP regions */
1572 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1573 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1574 memblock_remove_region(&memblock.memory, i);
1575
1576 for (i = start_rgn - 1; i >= 0; i--)
1577 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1578 memblock_remove_region(&memblock.memory, i);
1579
1580 /* truncate the reserved regions */
1581 memblock_remove_range(&memblock.reserved, 0, base);
1582 memblock_remove_range(&memblock.reserved,
1583 base + size, (phys_addr_t)ULLONG_MAX);
1584}
1585
1586void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1587{
1588 phys_addr_t max_addr;
1589
1590 if (!limit)
1591 return;
1592
1593 max_addr = __find_max_addr(limit);
1594
1595 /* @limit exceeds the total size of the memory, do nothing */
1596 if (max_addr == (phys_addr_t)ULLONG_MAX)
1597 return;
1598
1599 memblock_cap_memory_range(0, max_addr);
1600}
1601
1602static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1603{
1604 unsigned int left = 0, right = type->cnt;
1605
1606 do {
1607 unsigned int mid = (right + left) / 2;
1608
1609 if (addr < type->regions[mid].base)
1610 right = mid;
1611 else if (addr >= (type->regions[mid].base +
1612 type->regions[mid].size))
1613 left = mid + 1;
1614 else
1615 return mid;
1616 } while (left < right);
1617 return -1;
1618}
1619
1620bool __init memblock_is_reserved(phys_addr_t addr)
1621{
1622 return memblock_search(&memblock.reserved, addr) != -1;
1623}
1624
1625bool __init_memblock memblock_is_memory(phys_addr_t addr)
1626{
1627 return memblock_search(&memblock.memory, addr) != -1;
1628}
1629
1630bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1631{
1632 int i = memblock_search(&memblock.memory, addr);
1633
1634 if (i == -1)
1635 return false;
1636 return !memblock_is_nomap(&memblock.memory.regions[i]);
1637}
1638
1639#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1640int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1641 unsigned long *start_pfn, unsigned long *end_pfn)
1642{
1643 struct memblock_type *type = &memblock.memory;
1644 int mid = memblock_search(type, PFN_PHYS(pfn));
1645
1646 if (mid == -1)
1647 return -1;
1648
1649 *start_pfn = PFN_DOWN(type->regions[mid].base);
1650 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1651
1652 return type->regions[mid].nid;
1653}
1654#endif
1655
1656/**
1657 * memblock_is_region_memory - check if a region is a subset of memory
1658 * @base: base of region to check
1659 * @size: size of region to check
1660 *
1661 * Check if the region [@base, @base+@size) is a subset of a memory block.
1662 *
1663 * RETURNS:
1664 * 0 if false, non-zero if true
1665 */
1666bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1667{
1668 int idx = memblock_search(&memblock.memory, base);
1669 phys_addr_t end = base + memblock_cap_size(base, &size);
1670
1671 if (idx == -1)
1672 return false;
1673 return (memblock.memory.regions[idx].base +
1674 memblock.memory.regions[idx].size) >= end;
1675}
1676
1677/**
1678 * memblock_is_region_reserved - check if a region intersects reserved memory
1679 * @base: base of region to check
1680 * @size: size of region to check
1681 *
1682 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1683 *
1684 * RETURNS:
1685 * True if they intersect, false if not.
1686 */
1687bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1688{
1689 memblock_cap_size(base, &size);
1690 return memblock_overlaps_region(&memblock.reserved, base, size);
1691}
1692
1693void __init_memblock memblock_trim_memory(phys_addr_t align)
1694{
1695 phys_addr_t start, end, orig_start, orig_end;
1696 struct memblock_region *r;
1697
1698 for_each_memblock(memory, r) {
1699 orig_start = r->base;
1700 orig_end = r->base + r->size;
1701 start = round_up(orig_start, align);
1702 end = round_down(orig_end, align);
1703
1704 if (start == orig_start && end == orig_end)
1705 continue;
1706
1707 if (start < end) {
1708 r->base = start;
1709 r->size = end - start;
1710 } else {
1711 memblock_remove_region(&memblock.memory,
1712 r - memblock.memory.regions);
1713 r--;
1714 }
1715 }
1716}
1717
1718void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1719{
1720 memblock.current_limit = limit;
1721}
1722
1723phys_addr_t __init_memblock memblock_get_current_limit(void)
1724{
1725 return memblock.current_limit;
1726}
1727
1728static void __init_memblock memblock_dump(struct memblock_type *type)
1729{
1730 phys_addr_t base, end, size;
1731 unsigned long flags;
1732 int idx;
1733 struct memblock_region *rgn;
1734
1735 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
1736
1737 for_each_memblock_type(idx, type, rgn) {
1738 char nid_buf[32] = "";
1739
1740 base = rgn->base;
1741 size = rgn->size;
1742 end = base + size - 1;
1743 flags = rgn->flags;
1744#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1745 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1746 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1747 memblock_get_region_node(rgn));
1748#endif
1749 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#lx\n",
1750 type->name, idx, &base, &end, &size, nid_buf, flags);
1751 }
1752}
1753
1754void __init_memblock __memblock_dump_all(void)
1755{
1756 pr_info("MEMBLOCK configuration:\n");
1757 pr_info(" memory size = %pa reserved size = %pa\n",
1758 &memblock.memory.total_size,
1759 &memblock.reserved.total_size);
1760
1761 memblock_dump(&memblock.memory);
1762 memblock_dump(&memblock.reserved);
1763#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1764 memblock_dump(&memblock.physmem);
1765#endif
1766}
1767
1768void __init memblock_allow_resize(void)
1769{
1770 memblock_can_resize = 1;
1771}
1772
1773static int __init early_memblock(char *p)
1774{
1775 if (p && strstr(p, "debug"))
1776 memblock_debug = 1;
1777 return 0;
1778}
1779early_param("memblock", early_memblock);
1780
1781#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1782
1783static int memblock_debug_show(struct seq_file *m, void *private)
1784{
1785 struct memblock_type *type = m->private;
1786 struct memblock_region *reg;
1787 int i;
1788 phys_addr_t end;
1789
1790 for (i = 0; i < type->cnt; i++) {
1791 reg = &type->regions[i];
1792 end = reg->base + reg->size - 1;
1793
1794 seq_printf(m, "%4d: ", i);
1795 seq_printf(m, "%pa..%pa\n", ®->base, &end);
1796 }
1797 return 0;
1798}
1799DEFINE_SHOW_ATTRIBUTE(memblock_debug);
1800
1801static int __init memblock_init_debugfs(void)
1802{
1803 struct dentry *root = debugfs_create_dir("memblock", NULL);
1804 if (!root)
1805 return -ENXIO;
1806 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1807 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1808#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1809 debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
1810#endif
1811
1812 return 0;
1813}
1814__initcall(memblock_init_debugfs);
1815
1816#endif /* CONFIG_DEBUG_FS */
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Procedures for maintaining information about logical memory blocks.
4 *
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
7 */
8
9#include <linux/kernel.h>
10#include <linux/slab.h>
11#include <linux/init.h>
12#include <linux/bitops.h>
13#include <linux/poison.h>
14#include <linux/pfn.h>
15#include <linux/debugfs.h>
16#include <linux/kmemleak.h>
17#include <linux/seq_file.h>
18#include <linux/memblock.h>
19
20#include <asm/sections.h>
21#include <linux/io.h>
22
23#include "internal.h"
24
25#define INIT_MEMBLOCK_REGIONS 128
26#define INIT_PHYSMEM_REGIONS 4
27
28#ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29# define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
30#endif
31
32#ifndef INIT_MEMBLOCK_MEMORY_REGIONS
33#define INIT_MEMBLOCK_MEMORY_REGIONS INIT_MEMBLOCK_REGIONS
34#endif
35
36/**
37 * DOC: memblock overview
38 *
39 * Memblock is a method of managing memory regions during the early
40 * boot period when the usual kernel memory allocators are not up and
41 * running.
42 *
43 * Memblock views the system memory as collections of contiguous
44 * regions. There are several types of these collections:
45 *
46 * * ``memory`` - describes the physical memory available to the
47 * kernel; this may differ from the actual physical memory installed
48 * in the system, for instance when the memory is restricted with
49 * ``mem=`` command line parameter
50 * * ``reserved`` - describes the regions that were allocated
51 * * ``physmem`` - describes the actual physical memory available during
52 * boot regardless of the possible restrictions and memory hot(un)plug;
53 * the ``physmem`` type is only available on some architectures.
54 *
55 * Each region is represented by struct memblock_region that
56 * defines the region extents, its attributes and NUMA node id on NUMA
57 * systems. Every memory type is described by the struct memblock_type
58 * which contains an array of memory regions along with
59 * the allocator metadata. The "memory" and "reserved" types are nicely
60 * wrapped with struct memblock. This structure is statically
61 * initialized at build time. The region arrays are initially sized to
62 * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
63 * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
64 * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
65 * The memblock_allow_resize() enables automatic resizing of the region
66 * arrays during addition of new regions. This feature should be used
67 * with care so that memory allocated for the region array will not
68 * overlap with areas that should be reserved, for example initrd.
69 *
70 * The early architecture setup should tell memblock what the physical
71 * memory layout is by using memblock_add() or memblock_add_node()
72 * functions. The first function does not assign the region to a NUMA
73 * node and it is appropriate for UMA systems. Yet, it is possible to
74 * use it on NUMA systems as well and assign the region to a NUMA node
75 * later in the setup process using memblock_set_node(). The
76 * memblock_add_node() performs such an assignment directly.
77 *
78 * Once memblock is setup the memory can be allocated using one of the
79 * API variants:
80 *
81 * * memblock_phys_alloc*() - these functions return the **physical**
82 * address of the allocated memory
83 * * memblock_alloc*() - these functions return the **virtual** address
84 * of the allocated memory.
85 *
86 * Note, that both API variants use implicit assumptions about allowed
87 * memory ranges and the fallback methods. Consult the documentation
88 * of memblock_alloc_internal() and memblock_alloc_range_nid()
89 * functions for more elaborate description.
90 *
91 * As the system boot progresses, the architecture specific mem_init()
92 * function frees all the memory to the buddy page allocator.
93 *
94 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
95 * memblock data structures (except "physmem") will be discarded after the
96 * system initialization completes.
97 */
98
99#ifndef CONFIG_NUMA
100struct pglist_data __refdata contig_page_data;
101EXPORT_SYMBOL(contig_page_data);
102#endif
103
104unsigned long max_low_pfn;
105unsigned long min_low_pfn;
106unsigned long max_pfn;
107unsigned long long max_possible_pfn;
108
109static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
110static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
111#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
112static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
113#endif
114
115struct memblock memblock __initdata_memblock = {
116 .memory.regions = memblock_memory_init_regions,
117 .memory.cnt = 1, /* empty dummy entry */
118 .memory.max = INIT_MEMBLOCK_MEMORY_REGIONS,
119 .memory.name = "memory",
120
121 .reserved.regions = memblock_reserved_init_regions,
122 .reserved.cnt = 1, /* empty dummy entry */
123 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
124 .reserved.name = "reserved",
125
126 .bottom_up = false,
127 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
128};
129
130#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
131struct memblock_type physmem = {
132 .regions = memblock_physmem_init_regions,
133 .cnt = 1, /* empty dummy entry */
134 .max = INIT_PHYSMEM_REGIONS,
135 .name = "physmem",
136};
137#endif
138
139/*
140 * keep a pointer to &memblock.memory in the text section to use it in
141 * __next_mem_range() and its helpers.
142 * For architectures that do not keep memblock data after init, this
143 * pointer will be reset to NULL at memblock_discard()
144 */
145static __refdata struct memblock_type *memblock_memory = &memblock.memory;
146
147#define for_each_memblock_type(i, memblock_type, rgn) \
148 for (i = 0, rgn = &memblock_type->regions[0]; \
149 i < memblock_type->cnt; \
150 i++, rgn = &memblock_type->regions[i])
151
152#define memblock_dbg(fmt, ...) \
153 do { \
154 if (memblock_debug) \
155 pr_info(fmt, ##__VA_ARGS__); \
156 } while (0)
157
158static int memblock_debug __initdata_memblock;
159static bool system_has_some_mirror __initdata_memblock = false;
160static int memblock_can_resize __initdata_memblock;
161static int memblock_memory_in_slab __initdata_memblock = 0;
162static int memblock_reserved_in_slab __initdata_memblock = 0;
163
164static enum memblock_flags __init_memblock choose_memblock_flags(void)
165{
166 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
167}
168
169/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
170static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
171{
172 return *size = min(*size, PHYS_ADDR_MAX - base);
173}
174
175/*
176 * Address comparison utilities
177 */
178static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
179 phys_addr_t base2, phys_addr_t size2)
180{
181 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
182}
183
184bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
185 phys_addr_t base, phys_addr_t size)
186{
187 unsigned long i;
188
189 memblock_cap_size(base, &size);
190
191 for (i = 0; i < type->cnt; i++)
192 if (memblock_addrs_overlap(base, size, type->regions[i].base,
193 type->regions[i].size))
194 break;
195 return i < type->cnt;
196}
197
198/**
199 * __memblock_find_range_bottom_up - find free area utility in bottom-up
200 * @start: start of candidate range
201 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
202 * %MEMBLOCK_ALLOC_ACCESSIBLE
203 * @size: size of free area to find
204 * @align: alignment of free area to find
205 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
206 * @flags: pick from blocks based on memory attributes
207 *
208 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
209 *
210 * Return:
211 * Found address on success, 0 on failure.
212 */
213static phys_addr_t __init_memblock
214__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
215 phys_addr_t size, phys_addr_t align, int nid,
216 enum memblock_flags flags)
217{
218 phys_addr_t this_start, this_end, cand;
219 u64 i;
220
221 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
222 this_start = clamp(this_start, start, end);
223 this_end = clamp(this_end, start, end);
224
225 cand = round_up(this_start, align);
226 if (cand < this_end && this_end - cand >= size)
227 return cand;
228 }
229
230 return 0;
231}
232
233/**
234 * __memblock_find_range_top_down - find free area utility, in top-down
235 * @start: start of candidate range
236 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
237 * %MEMBLOCK_ALLOC_ACCESSIBLE
238 * @size: size of free area to find
239 * @align: alignment of free area to find
240 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
241 * @flags: pick from blocks based on memory attributes
242 *
243 * Utility called from memblock_find_in_range_node(), find free area top-down.
244 *
245 * Return:
246 * Found address on success, 0 on failure.
247 */
248static phys_addr_t __init_memblock
249__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
250 phys_addr_t size, phys_addr_t align, int nid,
251 enum memblock_flags flags)
252{
253 phys_addr_t this_start, this_end, cand;
254 u64 i;
255
256 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
257 NULL) {
258 this_start = clamp(this_start, start, end);
259 this_end = clamp(this_end, start, end);
260
261 if (this_end < size)
262 continue;
263
264 cand = round_down(this_end - size, align);
265 if (cand >= this_start)
266 return cand;
267 }
268
269 return 0;
270}
271
272/**
273 * memblock_find_in_range_node - find free area in given range and node
274 * @size: size of free area to find
275 * @align: alignment of free area to find
276 * @start: start of candidate range
277 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
278 * %MEMBLOCK_ALLOC_ACCESSIBLE
279 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
280 * @flags: pick from blocks based on memory attributes
281 *
282 * Find @size free area aligned to @align in the specified range and node.
283 *
284 * Return:
285 * Found address on success, 0 on failure.
286 */
287static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
288 phys_addr_t align, phys_addr_t start,
289 phys_addr_t end, int nid,
290 enum memblock_flags flags)
291{
292 /* pump up @end */
293 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
294 end == MEMBLOCK_ALLOC_NOLEAKTRACE)
295 end = memblock.current_limit;
296
297 /* avoid allocating the first page */
298 start = max_t(phys_addr_t, start, PAGE_SIZE);
299 end = max(start, end);
300
301 if (memblock_bottom_up())
302 return __memblock_find_range_bottom_up(start, end, size, align,
303 nid, flags);
304 else
305 return __memblock_find_range_top_down(start, end, size, align,
306 nid, flags);
307}
308
309/**
310 * memblock_find_in_range - find free area in given range
311 * @start: start of candidate range
312 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
313 * %MEMBLOCK_ALLOC_ACCESSIBLE
314 * @size: size of free area to find
315 * @align: alignment of free area to find
316 *
317 * Find @size free area aligned to @align in the specified range.
318 *
319 * Return:
320 * Found address on success, 0 on failure.
321 */
322static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
323 phys_addr_t end, phys_addr_t size,
324 phys_addr_t align)
325{
326 phys_addr_t ret;
327 enum memblock_flags flags = choose_memblock_flags();
328
329again:
330 ret = memblock_find_in_range_node(size, align, start, end,
331 NUMA_NO_NODE, flags);
332
333 if (!ret && (flags & MEMBLOCK_MIRROR)) {
334 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
335 &size);
336 flags &= ~MEMBLOCK_MIRROR;
337 goto again;
338 }
339
340 return ret;
341}
342
343static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
344{
345 type->total_size -= type->regions[r].size;
346 memmove(&type->regions[r], &type->regions[r + 1],
347 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
348 type->cnt--;
349
350 /* Special case for empty arrays */
351 if (type->cnt == 0) {
352 WARN_ON(type->total_size != 0);
353 type->cnt = 1;
354 type->regions[0].base = 0;
355 type->regions[0].size = 0;
356 type->regions[0].flags = 0;
357 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
358 }
359}
360
361#ifndef CONFIG_ARCH_KEEP_MEMBLOCK
362/**
363 * memblock_discard - discard memory and reserved arrays if they were allocated
364 */
365void __init memblock_discard(void)
366{
367 phys_addr_t addr, size;
368
369 if (memblock.reserved.regions != memblock_reserved_init_regions) {
370 addr = __pa(memblock.reserved.regions);
371 size = PAGE_ALIGN(sizeof(struct memblock_region) *
372 memblock.reserved.max);
373 if (memblock_reserved_in_slab)
374 kfree(memblock.reserved.regions);
375 else
376 memblock_free_late(addr, size);
377 }
378
379 if (memblock.memory.regions != memblock_memory_init_regions) {
380 addr = __pa(memblock.memory.regions);
381 size = PAGE_ALIGN(sizeof(struct memblock_region) *
382 memblock.memory.max);
383 if (memblock_memory_in_slab)
384 kfree(memblock.memory.regions);
385 else
386 memblock_free_late(addr, size);
387 }
388
389 memblock_memory = NULL;
390}
391#endif
392
393/**
394 * memblock_double_array - double the size of the memblock regions array
395 * @type: memblock type of the regions array being doubled
396 * @new_area_start: starting address of memory range to avoid overlap with
397 * @new_area_size: size of memory range to avoid overlap with
398 *
399 * Double the size of the @type regions array. If memblock is being used to
400 * allocate memory for a new reserved regions array and there is a previously
401 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
402 * waiting to be reserved, ensure the memory used by the new array does
403 * not overlap.
404 *
405 * Return:
406 * 0 on success, -1 on failure.
407 */
408static int __init_memblock memblock_double_array(struct memblock_type *type,
409 phys_addr_t new_area_start,
410 phys_addr_t new_area_size)
411{
412 struct memblock_region *new_array, *old_array;
413 phys_addr_t old_alloc_size, new_alloc_size;
414 phys_addr_t old_size, new_size, addr, new_end;
415 int use_slab = slab_is_available();
416 int *in_slab;
417
418 /* We don't allow resizing until we know about the reserved regions
419 * of memory that aren't suitable for allocation
420 */
421 if (!memblock_can_resize)
422 return -1;
423
424 /* Calculate new doubled size */
425 old_size = type->max * sizeof(struct memblock_region);
426 new_size = old_size << 1;
427 /*
428 * We need to allocated new one align to PAGE_SIZE,
429 * so we can free them completely later.
430 */
431 old_alloc_size = PAGE_ALIGN(old_size);
432 new_alloc_size = PAGE_ALIGN(new_size);
433
434 /* Retrieve the slab flag */
435 if (type == &memblock.memory)
436 in_slab = &memblock_memory_in_slab;
437 else
438 in_slab = &memblock_reserved_in_slab;
439
440 /* Try to find some space for it */
441 if (use_slab) {
442 new_array = kmalloc(new_size, GFP_KERNEL);
443 addr = new_array ? __pa(new_array) : 0;
444 } else {
445 /* only exclude range when trying to double reserved.regions */
446 if (type != &memblock.reserved)
447 new_area_start = new_area_size = 0;
448
449 addr = memblock_find_in_range(new_area_start + new_area_size,
450 memblock.current_limit,
451 new_alloc_size, PAGE_SIZE);
452 if (!addr && new_area_size)
453 addr = memblock_find_in_range(0,
454 min(new_area_start, memblock.current_limit),
455 new_alloc_size, PAGE_SIZE);
456
457 new_array = addr ? __va(addr) : NULL;
458 }
459 if (!addr) {
460 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
461 type->name, type->max, type->max * 2);
462 return -1;
463 }
464
465 new_end = addr + new_size - 1;
466 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
467 type->name, type->max * 2, &addr, &new_end);
468
469 /*
470 * Found space, we now need to move the array over before we add the
471 * reserved region since it may be our reserved array itself that is
472 * full.
473 */
474 memcpy(new_array, type->regions, old_size);
475 memset(new_array + type->max, 0, old_size);
476 old_array = type->regions;
477 type->regions = new_array;
478 type->max <<= 1;
479
480 /* Free old array. We needn't free it if the array is the static one */
481 if (*in_slab)
482 kfree(old_array);
483 else if (old_array != memblock_memory_init_regions &&
484 old_array != memblock_reserved_init_regions)
485 memblock_free(old_array, old_alloc_size);
486
487 /*
488 * Reserve the new array if that comes from the memblock. Otherwise, we
489 * needn't do it
490 */
491 if (!use_slab)
492 BUG_ON(memblock_reserve(addr, new_alloc_size));
493
494 /* Update slab flag */
495 *in_slab = use_slab;
496
497 return 0;
498}
499
500/**
501 * memblock_merge_regions - merge neighboring compatible regions
502 * @type: memblock type to scan
503 *
504 * Scan @type and merge neighboring compatible regions.
505 */
506static void __init_memblock memblock_merge_regions(struct memblock_type *type)
507{
508 int i = 0;
509
510 /* cnt never goes below 1 */
511 while (i < type->cnt - 1) {
512 struct memblock_region *this = &type->regions[i];
513 struct memblock_region *next = &type->regions[i + 1];
514
515 if (this->base + this->size != next->base ||
516 memblock_get_region_node(this) !=
517 memblock_get_region_node(next) ||
518 this->flags != next->flags) {
519 BUG_ON(this->base + this->size > next->base);
520 i++;
521 continue;
522 }
523
524 this->size += next->size;
525 /* move forward from next + 1, index of which is i + 2 */
526 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
527 type->cnt--;
528 }
529}
530
531/**
532 * memblock_insert_region - insert new memblock region
533 * @type: memblock type to insert into
534 * @idx: index for the insertion point
535 * @base: base address of the new region
536 * @size: size of the new region
537 * @nid: node id of the new region
538 * @flags: flags of the new region
539 *
540 * Insert new memblock region [@base, @base + @size) into @type at @idx.
541 * @type must already have extra room to accommodate the new region.
542 */
543static void __init_memblock memblock_insert_region(struct memblock_type *type,
544 int idx, phys_addr_t base,
545 phys_addr_t size,
546 int nid,
547 enum memblock_flags flags)
548{
549 struct memblock_region *rgn = &type->regions[idx];
550
551 BUG_ON(type->cnt >= type->max);
552 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
553 rgn->base = base;
554 rgn->size = size;
555 rgn->flags = flags;
556 memblock_set_region_node(rgn, nid);
557 type->cnt++;
558 type->total_size += size;
559}
560
561/**
562 * memblock_add_range - add new memblock region
563 * @type: memblock type to add new region into
564 * @base: base address of the new region
565 * @size: size of the new region
566 * @nid: nid of the new region
567 * @flags: flags of the new region
568 *
569 * Add new memblock region [@base, @base + @size) into @type. The new region
570 * is allowed to overlap with existing ones - overlaps don't affect already
571 * existing regions. @type is guaranteed to be minimal (all neighbouring
572 * compatible regions are merged) after the addition.
573 *
574 * Return:
575 * 0 on success, -errno on failure.
576 */
577static int __init_memblock memblock_add_range(struct memblock_type *type,
578 phys_addr_t base, phys_addr_t size,
579 int nid, enum memblock_flags flags)
580{
581 bool insert = false;
582 phys_addr_t obase = base;
583 phys_addr_t end = base + memblock_cap_size(base, &size);
584 int idx, nr_new;
585 struct memblock_region *rgn;
586
587 if (!size)
588 return 0;
589
590 /* special case for empty array */
591 if (type->regions[0].size == 0) {
592 WARN_ON(type->cnt != 1 || type->total_size);
593 type->regions[0].base = base;
594 type->regions[0].size = size;
595 type->regions[0].flags = flags;
596 memblock_set_region_node(&type->regions[0], nid);
597 type->total_size = size;
598 return 0;
599 }
600
601 /*
602 * The worst case is when new range overlaps all existing regions,
603 * then we'll need type->cnt + 1 empty regions in @type. So if
604 * type->cnt * 2 + 1 is less than type->max, we know
605 * that there is enough empty regions in @type, and we can insert
606 * regions directly.
607 */
608 if (type->cnt * 2 + 1 < type->max)
609 insert = true;
610
611repeat:
612 /*
613 * The following is executed twice. Once with %false @insert and
614 * then with %true. The first counts the number of regions needed
615 * to accommodate the new area. The second actually inserts them.
616 */
617 base = obase;
618 nr_new = 0;
619
620 for_each_memblock_type(idx, type, rgn) {
621 phys_addr_t rbase = rgn->base;
622 phys_addr_t rend = rbase + rgn->size;
623
624 if (rbase >= end)
625 break;
626 if (rend <= base)
627 continue;
628 /*
629 * @rgn overlaps. If it separates the lower part of new
630 * area, insert that portion.
631 */
632 if (rbase > base) {
633#ifdef CONFIG_NUMA
634 WARN_ON(nid != memblock_get_region_node(rgn));
635#endif
636 WARN_ON(flags != rgn->flags);
637 nr_new++;
638 if (insert)
639 memblock_insert_region(type, idx++, base,
640 rbase - base, nid,
641 flags);
642 }
643 /* area below @rend is dealt with, forget about it */
644 base = min(rend, end);
645 }
646
647 /* insert the remaining portion */
648 if (base < end) {
649 nr_new++;
650 if (insert)
651 memblock_insert_region(type, idx, base, end - base,
652 nid, flags);
653 }
654
655 if (!nr_new)
656 return 0;
657
658 /*
659 * If this was the first round, resize array and repeat for actual
660 * insertions; otherwise, merge and return.
661 */
662 if (!insert) {
663 while (type->cnt + nr_new > type->max)
664 if (memblock_double_array(type, obase, size) < 0)
665 return -ENOMEM;
666 insert = true;
667 goto repeat;
668 } else {
669 memblock_merge_regions(type);
670 return 0;
671 }
672}
673
674/**
675 * memblock_add_node - add new memblock region within a NUMA node
676 * @base: base address of the new region
677 * @size: size of the new region
678 * @nid: nid of the new region
679 * @flags: flags of the new region
680 *
681 * Add new memblock region [@base, @base + @size) to the "memory"
682 * type. See memblock_add_range() description for mode details
683 *
684 * Return:
685 * 0 on success, -errno on failure.
686 */
687int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
688 int nid, enum memblock_flags flags)
689{
690 phys_addr_t end = base + size - 1;
691
692 memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
693 &base, &end, nid, flags, (void *)_RET_IP_);
694
695 return memblock_add_range(&memblock.memory, base, size, nid, flags);
696}
697
698/**
699 * memblock_add - add new memblock region
700 * @base: base address of the new region
701 * @size: size of the new region
702 *
703 * Add new memblock region [@base, @base + @size) to the "memory"
704 * type. See memblock_add_range() description for mode details
705 *
706 * Return:
707 * 0 on success, -errno on failure.
708 */
709int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
710{
711 phys_addr_t end = base + size - 1;
712
713 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
714 &base, &end, (void *)_RET_IP_);
715
716 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
717}
718
719/**
720 * memblock_isolate_range - isolate given range into disjoint memblocks
721 * @type: memblock type to isolate range for
722 * @base: base of range to isolate
723 * @size: size of range to isolate
724 * @start_rgn: out parameter for the start of isolated region
725 * @end_rgn: out parameter for the end of isolated region
726 *
727 * Walk @type and ensure that regions don't cross the boundaries defined by
728 * [@base, @base + @size). Crossing regions are split at the boundaries,
729 * which may create at most two more regions. The index of the first
730 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
731 *
732 * Return:
733 * 0 on success, -errno on failure.
734 */
735static int __init_memblock memblock_isolate_range(struct memblock_type *type,
736 phys_addr_t base, phys_addr_t size,
737 int *start_rgn, int *end_rgn)
738{
739 phys_addr_t end = base + memblock_cap_size(base, &size);
740 int idx;
741 struct memblock_region *rgn;
742
743 *start_rgn = *end_rgn = 0;
744
745 if (!size)
746 return 0;
747
748 /* we'll create at most two more regions */
749 while (type->cnt + 2 > type->max)
750 if (memblock_double_array(type, base, size) < 0)
751 return -ENOMEM;
752
753 for_each_memblock_type(idx, type, rgn) {
754 phys_addr_t rbase = rgn->base;
755 phys_addr_t rend = rbase + rgn->size;
756
757 if (rbase >= end)
758 break;
759 if (rend <= base)
760 continue;
761
762 if (rbase < base) {
763 /*
764 * @rgn intersects from below. Split and continue
765 * to process the next region - the new top half.
766 */
767 rgn->base = base;
768 rgn->size -= base - rbase;
769 type->total_size -= base - rbase;
770 memblock_insert_region(type, idx, rbase, base - rbase,
771 memblock_get_region_node(rgn),
772 rgn->flags);
773 } else if (rend > end) {
774 /*
775 * @rgn intersects from above. Split and redo the
776 * current region - the new bottom half.
777 */
778 rgn->base = end;
779 rgn->size -= end - rbase;
780 type->total_size -= end - rbase;
781 memblock_insert_region(type, idx--, rbase, end - rbase,
782 memblock_get_region_node(rgn),
783 rgn->flags);
784 } else {
785 /* @rgn is fully contained, record it */
786 if (!*end_rgn)
787 *start_rgn = idx;
788 *end_rgn = idx + 1;
789 }
790 }
791
792 return 0;
793}
794
795static int __init_memblock memblock_remove_range(struct memblock_type *type,
796 phys_addr_t base, phys_addr_t size)
797{
798 int start_rgn, end_rgn;
799 int i, ret;
800
801 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
802 if (ret)
803 return ret;
804
805 for (i = end_rgn - 1; i >= start_rgn; i--)
806 memblock_remove_region(type, i);
807 return 0;
808}
809
810int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
811{
812 phys_addr_t end = base + size - 1;
813
814 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
815 &base, &end, (void *)_RET_IP_);
816
817 return memblock_remove_range(&memblock.memory, base, size);
818}
819
820/**
821 * memblock_free - free boot memory allocation
822 * @ptr: starting address of the boot memory allocation
823 * @size: size of the boot memory block in bytes
824 *
825 * Free boot memory block previously allocated by memblock_alloc_xx() API.
826 * The freeing memory will not be released to the buddy allocator.
827 */
828void __init_memblock memblock_free(void *ptr, size_t size)
829{
830 if (ptr)
831 memblock_phys_free(__pa(ptr), size);
832}
833
834/**
835 * memblock_phys_free - free boot memory block
836 * @base: phys starting address of the boot memory block
837 * @size: size of the boot memory block in bytes
838 *
839 * Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
840 * The freeing memory will not be released to the buddy allocator.
841 */
842int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
843{
844 phys_addr_t end = base + size - 1;
845
846 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
847 &base, &end, (void *)_RET_IP_);
848
849 kmemleak_free_part_phys(base, size);
850 return memblock_remove_range(&memblock.reserved, base, size);
851}
852
853int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
854{
855 phys_addr_t end = base + size - 1;
856
857 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
858 &base, &end, (void *)_RET_IP_);
859
860 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
861}
862
863#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
864int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
865{
866 phys_addr_t end = base + size - 1;
867
868 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
869 &base, &end, (void *)_RET_IP_);
870
871 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
872}
873#endif
874
875/**
876 * memblock_setclr_flag - set or clear flag for a memory region
877 * @base: base address of the region
878 * @size: size of the region
879 * @set: set or clear the flag
880 * @flag: the flag to update
881 *
882 * This function isolates region [@base, @base + @size), and sets/clears flag
883 *
884 * Return: 0 on success, -errno on failure.
885 */
886static int __init_memblock memblock_setclr_flag(phys_addr_t base,
887 phys_addr_t size, int set, int flag)
888{
889 struct memblock_type *type = &memblock.memory;
890 int i, ret, start_rgn, end_rgn;
891
892 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
893 if (ret)
894 return ret;
895
896 for (i = start_rgn; i < end_rgn; i++) {
897 struct memblock_region *r = &type->regions[i];
898
899 if (set)
900 r->flags |= flag;
901 else
902 r->flags &= ~flag;
903 }
904
905 memblock_merge_regions(type);
906 return 0;
907}
908
909/**
910 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
911 * @base: the base phys addr of the region
912 * @size: the size of the region
913 *
914 * Return: 0 on success, -errno on failure.
915 */
916int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
917{
918 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
919}
920
921/**
922 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
923 * @base: the base phys addr of the region
924 * @size: the size of the region
925 *
926 * Return: 0 on success, -errno on failure.
927 */
928int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
929{
930 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
931}
932
933/**
934 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
935 * @base: the base phys addr of the region
936 * @size: the size of the region
937 *
938 * Return: 0 on success, -errno on failure.
939 */
940int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
941{
942 if (!mirrored_kernelcore)
943 return 0;
944
945 system_has_some_mirror = true;
946
947 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
948}
949
950/**
951 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
952 * @base: the base phys addr of the region
953 * @size: the size of the region
954 *
955 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
956 * direct mapping of the physical memory. These regions will still be
957 * covered by the memory map. The struct page representing NOMAP memory
958 * frames in the memory map will be PageReserved()
959 *
960 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
961 * memblock, the caller must inform kmemleak to ignore that memory
962 *
963 * Return: 0 on success, -errno on failure.
964 */
965int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
966{
967 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
968}
969
970/**
971 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
972 * @base: the base phys addr of the region
973 * @size: the size of the region
974 *
975 * Return: 0 on success, -errno on failure.
976 */
977int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
978{
979 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
980}
981
982static bool should_skip_region(struct memblock_type *type,
983 struct memblock_region *m,
984 int nid, int flags)
985{
986 int m_nid = memblock_get_region_node(m);
987
988 /* we never skip regions when iterating memblock.reserved or physmem */
989 if (type != memblock_memory)
990 return false;
991
992 /* only memory regions are associated with nodes, check it */
993 if (nid != NUMA_NO_NODE && nid != m_nid)
994 return true;
995
996 /* skip hotpluggable memory regions if needed */
997 if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
998 !(flags & MEMBLOCK_HOTPLUG))
999 return true;
1000
1001 /* if we want mirror memory skip non-mirror memory regions */
1002 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1003 return true;
1004
1005 /* skip nomap memory unless we were asked for it explicitly */
1006 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1007 return true;
1008
1009 /* skip driver-managed memory unless we were asked for it explicitly */
1010 if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
1011 return true;
1012
1013 return false;
1014}
1015
1016/**
1017 * __next_mem_range - next function for for_each_free_mem_range() etc.
1018 * @idx: pointer to u64 loop variable
1019 * @nid: node selector, %NUMA_NO_NODE for all nodes
1020 * @flags: pick from blocks based on memory attributes
1021 * @type_a: pointer to memblock_type from where the range is taken
1022 * @type_b: pointer to memblock_type which excludes memory from being taken
1023 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1024 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1025 * @out_nid: ptr to int for nid of the range, can be %NULL
1026 *
1027 * Find the first area from *@idx which matches @nid, fill the out
1028 * parameters, and update *@idx for the next iteration. The lower 32bit of
1029 * *@idx contains index into type_a and the upper 32bit indexes the
1030 * areas before each region in type_b. For example, if type_b regions
1031 * look like the following,
1032 *
1033 * 0:[0-16), 1:[32-48), 2:[128-130)
1034 *
1035 * The upper 32bit indexes the following regions.
1036 *
1037 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1038 *
1039 * As both region arrays are sorted, the function advances the two indices
1040 * in lockstep and returns each intersection.
1041 */
1042void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1043 struct memblock_type *type_a,
1044 struct memblock_type *type_b, phys_addr_t *out_start,
1045 phys_addr_t *out_end, int *out_nid)
1046{
1047 int idx_a = *idx & 0xffffffff;
1048 int idx_b = *idx >> 32;
1049
1050 if (WARN_ONCE(nid == MAX_NUMNODES,
1051 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1052 nid = NUMA_NO_NODE;
1053
1054 for (; idx_a < type_a->cnt; idx_a++) {
1055 struct memblock_region *m = &type_a->regions[idx_a];
1056
1057 phys_addr_t m_start = m->base;
1058 phys_addr_t m_end = m->base + m->size;
1059 int m_nid = memblock_get_region_node(m);
1060
1061 if (should_skip_region(type_a, m, nid, flags))
1062 continue;
1063
1064 if (!type_b) {
1065 if (out_start)
1066 *out_start = m_start;
1067 if (out_end)
1068 *out_end = m_end;
1069 if (out_nid)
1070 *out_nid = m_nid;
1071 idx_a++;
1072 *idx = (u32)idx_a | (u64)idx_b << 32;
1073 return;
1074 }
1075
1076 /* scan areas before each reservation */
1077 for (; idx_b < type_b->cnt + 1; idx_b++) {
1078 struct memblock_region *r;
1079 phys_addr_t r_start;
1080 phys_addr_t r_end;
1081
1082 r = &type_b->regions[idx_b];
1083 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1084 r_end = idx_b < type_b->cnt ?
1085 r->base : PHYS_ADDR_MAX;
1086
1087 /*
1088 * if idx_b advanced past idx_a,
1089 * break out to advance idx_a
1090 */
1091 if (r_start >= m_end)
1092 break;
1093 /* if the two regions intersect, we're done */
1094 if (m_start < r_end) {
1095 if (out_start)
1096 *out_start =
1097 max(m_start, r_start);
1098 if (out_end)
1099 *out_end = min(m_end, r_end);
1100 if (out_nid)
1101 *out_nid = m_nid;
1102 /*
1103 * The region which ends first is
1104 * advanced for the next iteration.
1105 */
1106 if (m_end <= r_end)
1107 idx_a++;
1108 else
1109 idx_b++;
1110 *idx = (u32)idx_a | (u64)idx_b << 32;
1111 return;
1112 }
1113 }
1114 }
1115
1116 /* signal end of iteration */
1117 *idx = ULLONG_MAX;
1118}
1119
1120/**
1121 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1122 *
1123 * @idx: pointer to u64 loop variable
1124 * @nid: node selector, %NUMA_NO_NODE for all nodes
1125 * @flags: pick from blocks based on memory attributes
1126 * @type_a: pointer to memblock_type from where the range is taken
1127 * @type_b: pointer to memblock_type which excludes memory from being taken
1128 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1129 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1130 * @out_nid: ptr to int for nid of the range, can be %NULL
1131 *
1132 * Finds the next range from type_a which is not marked as unsuitable
1133 * in type_b.
1134 *
1135 * Reverse of __next_mem_range().
1136 */
1137void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1138 enum memblock_flags flags,
1139 struct memblock_type *type_a,
1140 struct memblock_type *type_b,
1141 phys_addr_t *out_start,
1142 phys_addr_t *out_end, int *out_nid)
1143{
1144 int idx_a = *idx & 0xffffffff;
1145 int idx_b = *idx >> 32;
1146
1147 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1148 nid = NUMA_NO_NODE;
1149
1150 if (*idx == (u64)ULLONG_MAX) {
1151 idx_a = type_a->cnt - 1;
1152 if (type_b != NULL)
1153 idx_b = type_b->cnt;
1154 else
1155 idx_b = 0;
1156 }
1157
1158 for (; idx_a >= 0; idx_a--) {
1159 struct memblock_region *m = &type_a->regions[idx_a];
1160
1161 phys_addr_t m_start = m->base;
1162 phys_addr_t m_end = m->base + m->size;
1163 int m_nid = memblock_get_region_node(m);
1164
1165 if (should_skip_region(type_a, m, nid, flags))
1166 continue;
1167
1168 if (!type_b) {
1169 if (out_start)
1170 *out_start = m_start;
1171 if (out_end)
1172 *out_end = m_end;
1173 if (out_nid)
1174 *out_nid = m_nid;
1175 idx_a--;
1176 *idx = (u32)idx_a | (u64)idx_b << 32;
1177 return;
1178 }
1179
1180 /* scan areas before each reservation */
1181 for (; idx_b >= 0; idx_b--) {
1182 struct memblock_region *r;
1183 phys_addr_t r_start;
1184 phys_addr_t r_end;
1185
1186 r = &type_b->regions[idx_b];
1187 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1188 r_end = idx_b < type_b->cnt ?
1189 r->base : PHYS_ADDR_MAX;
1190 /*
1191 * if idx_b advanced past idx_a,
1192 * break out to advance idx_a
1193 */
1194
1195 if (r_end <= m_start)
1196 break;
1197 /* if the two regions intersect, we're done */
1198 if (m_end > r_start) {
1199 if (out_start)
1200 *out_start = max(m_start, r_start);
1201 if (out_end)
1202 *out_end = min(m_end, r_end);
1203 if (out_nid)
1204 *out_nid = m_nid;
1205 if (m_start >= r_start)
1206 idx_a--;
1207 else
1208 idx_b--;
1209 *idx = (u32)idx_a | (u64)idx_b << 32;
1210 return;
1211 }
1212 }
1213 }
1214 /* signal end of iteration */
1215 *idx = ULLONG_MAX;
1216}
1217
1218/*
1219 * Common iterator interface used to define for_each_mem_pfn_range().
1220 */
1221void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1222 unsigned long *out_start_pfn,
1223 unsigned long *out_end_pfn, int *out_nid)
1224{
1225 struct memblock_type *type = &memblock.memory;
1226 struct memblock_region *r;
1227 int r_nid;
1228
1229 while (++*idx < type->cnt) {
1230 r = &type->regions[*idx];
1231 r_nid = memblock_get_region_node(r);
1232
1233 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1234 continue;
1235 if (nid == MAX_NUMNODES || nid == r_nid)
1236 break;
1237 }
1238 if (*idx >= type->cnt) {
1239 *idx = -1;
1240 return;
1241 }
1242
1243 if (out_start_pfn)
1244 *out_start_pfn = PFN_UP(r->base);
1245 if (out_end_pfn)
1246 *out_end_pfn = PFN_DOWN(r->base + r->size);
1247 if (out_nid)
1248 *out_nid = r_nid;
1249}
1250
1251/**
1252 * memblock_set_node - set node ID on memblock regions
1253 * @base: base of area to set node ID for
1254 * @size: size of area to set node ID for
1255 * @type: memblock type to set node ID for
1256 * @nid: node ID to set
1257 *
1258 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1259 * Regions which cross the area boundaries are split as necessary.
1260 *
1261 * Return:
1262 * 0 on success, -errno on failure.
1263 */
1264int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1265 struct memblock_type *type, int nid)
1266{
1267#ifdef CONFIG_NUMA
1268 int start_rgn, end_rgn;
1269 int i, ret;
1270
1271 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1272 if (ret)
1273 return ret;
1274
1275 for (i = start_rgn; i < end_rgn; i++)
1276 memblock_set_region_node(&type->regions[i], nid);
1277
1278 memblock_merge_regions(type);
1279#endif
1280 return 0;
1281}
1282
1283#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1284/**
1285 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1286 *
1287 * @idx: pointer to u64 loop variable
1288 * @zone: zone in which all of the memory blocks reside
1289 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1290 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1291 *
1292 * This function is meant to be a zone/pfn specific wrapper for the
1293 * for_each_mem_range type iterators. Specifically they are used in the
1294 * deferred memory init routines and as such we were duplicating much of
1295 * this logic throughout the code. So instead of having it in multiple
1296 * locations it seemed like it would make more sense to centralize this to
1297 * one new iterator that does everything they need.
1298 */
1299void __init_memblock
1300__next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1301 unsigned long *out_spfn, unsigned long *out_epfn)
1302{
1303 int zone_nid = zone_to_nid(zone);
1304 phys_addr_t spa, epa;
1305
1306 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1307 &memblock.memory, &memblock.reserved,
1308 &spa, &epa, NULL);
1309
1310 while (*idx != U64_MAX) {
1311 unsigned long epfn = PFN_DOWN(epa);
1312 unsigned long spfn = PFN_UP(spa);
1313
1314 /*
1315 * Verify the end is at least past the start of the zone and
1316 * that we have at least one PFN to initialize.
1317 */
1318 if (zone->zone_start_pfn < epfn && spfn < epfn) {
1319 /* if we went too far just stop searching */
1320 if (zone_end_pfn(zone) <= spfn) {
1321 *idx = U64_MAX;
1322 break;
1323 }
1324
1325 if (out_spfn)
1326 *out_spfn = max(zone->zone_start_pfn, spfn);
1327 if (out_epfn)
1328 *out_epfn = min(zone_end_pfn(zone), epfn);
1329
1330 return;
1331 }
1332
1333 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1334 &memblock.memory, &memblock.reserved,
1335 &spa, &epa, NULL);
1336 }
1337
1338 /* signal end of iteration */
1339 if (out_spfn)
1340 *out_spfn = ULONG_MAX;
1341 if (out_epfn)
1342 *out_epfn = 0;
1343}
1344
1345#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1346
1347/**
1348 * memblock_alloc_range_nid - allocate boot memory block
1349 * @size: size of memory block to be allocated in bytes
1350 * @align: alignment of the region and block's size
1351 * @start: the lower bound of the memory region to allocate (phys address)
1352 * @end: the upper bound of the memory region to allocate (phys address)
1353 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1354 * @exact_nid: control the allocation fall back to other nodes
1355 *
1356 * The allocation is performed from memory region limited by
1357 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1358 *
1359 * If the specified node can not hold the requested memory and @exact_nid
1360 * is false, the allocation falls back to any node in the system.
1361 *
1362 * For systems with memory mirroring, the allocation is attempted first
1363 * from the regions with mirroring enabled and then retried from any
1364 * memory region.
1365 *
1366 * In addition, function using kmemleak_alloc_phys for allocated boot
1367 * memory block, it is never reported as leaks.
1368 *
1369 * Return:
1370 * Physical address of allocated memory block on success, %0 on failure.
1371 */
1372phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1373 phys_addr_t align, phys_addr_t start,
1374 phys_addr_t end, int nid,
1375 bool exact_nid)
1376{
1377 enum memblock_flags flags = choose_memblock_flags();
1378 phys_addr_t found;
1379
1380 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1381 nid = NUMA_NO_NODE;
1382
1383 if (!align) {
1384 /* Can't use WARNs this early in boot on powerpc */
1385 dump_stack();
1386 align = SMP_CACHE_BYTES;
1387 }
1388
1389again:
1390 found = memblock_find_in_range_node(size, align, start, end, nid,
1391 flags);
1392 if (found && !memblock_reserve(found, size))
1393 goto done;
1394
1395 if (nid != NUMA_NO_NODE && !exact_nid) {
1396 found = memblock_find_in_range_node(size, align, start,
1397 end, NUMA_NO_NODE,
1398 flags);
1399 if (found && !memblock_reserve(found, size))
1400 goto done;
1401 }
1402
1403 if (flags & MEMBLOCK_MIRROR) {
1404 flags &= ~MEMBLOCK_MIRROR;
1405 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
1406 &size);
1407 goto again;
1408 }
1409
1410 return 0;
1411
1412done:
1413 /*
1414 * Skip kmemleak for those places like kasan_init() and
1415 * early_pgtable_alloc() due to high volume.
1416 */
1417 if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
1418 /*
1419 * Memblock allocated blocks are never reported as
1420 * leaks. This is because many of these blocks are
1421 * only referred via the physical address which is
1422 * not looked up by kmemleak.
1423 */
1424 kmemleak_alloc_phys(found, size, 0);
1425
1426 return found;
1427}
1428
1429/**
1430 * memblock_phys_alloc_range - allocate a memory block inside specified range
1431 * @size: size of memory block to be allocated in bytes
1432 * @align: alignment of the region and block's size
1433 * @start: the lower bound of the memory region to allocate (physical address)
1434 * @end: the upper bound of the memory region to allocate (physical address)
1435 *
1436 * Allocate @size bytes in the between @start and @end.
1437 *
1438 * Return: physical address of the allocated memory block on success,
1439 * %0 on failure.
1440 */
1441phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1442 phys_addr_t align,
1443 phys_addr_t start,
1444 phys_addr_t end)
1445{
1446 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1447 __func__, (u64)size, (u64)align, &start, &end,
1448 (void *)_RET_IP_);
1449 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1450 false);
1451}
1452
1453/**
1454 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1455 * @size: size of memory block to be allocated in bytes
1456 * @align: alignment of the region and block's size
1457 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1458 *
1459 * Allocates memory block from the specified NUMA node. If the node
1460 * has no available memory, attempts to allocated from any node in the
1461 * system.
1462 *
1463 * Return: physical address of the allocated memory block on success,
1464 * %0 on failure.
1465 */
1466phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1467{
1468 return memblock_alloc_range_nid(size, align, 0,
1469 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1470}
1471
1472/**
1473 * memblock_alloc_internal - allocate boot memory block
1474 * @size: size of memory block to be allocated in bytes
1475 * @align: alignment of the region and block's size
1476 * @min_addr: the lower bound of the memory region to allocate (phys address)
1477 * @max_addr: the upper bound of the memory region to allocate (phys address)
1478 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1479 * @exact_nid: control the allocation fall back to other nodes
1480 *
1481 * Allocates memory block using memblock_alloc_range_nid() and
1482 * converts the returned physical address to virtual.
1483 *
1484 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1485 * will fall back to memory below @min_addr. Other constraints, such
1486 * as node and mirrored memory will be handled again in
1487 * memblock_alloc_range_nid().
1488 *
1489 * Return:
1490 * Virtual address of allocated memory block on success, NULL on failure.
1491 */
1492static void * __init memblock_alloc_internal(
1493 phys_addr_t size, phys_addr_t align,
1494 phys_addr_t min_addr, phys_addr_t max_addr,
1495 int nid, bool exact_nid)
1496{
1497 phys_addr_t alloc;
1498
1499 /*
1500 * Detect any accidental use of these APIs after slab is ready, as at
1501 * this moment memblock may be deinitialized already and its
1502 * internal data may be destroyed (after execution of memblock_free_all)
1503 */
1504 if (WARN_ON_ONCE(slab_is_available()))
1505 return kzalloc_node(size, GFP_NOWAIT, nid);
1506
1507 if (max_addr > memblock.current_limit)
1508 max_addr = memblock.current_limit;
1509
1510 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1511 exact_nid);
1512
1513 /* retry allocation without lower limit */
1514 if (!alloc && min_addr)
1515 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1516 exact_nid);
1517
1518 if (!alloc)
1519 return NULL;
1520
1521 return phys_to_virt(alloc);
1522}
1523
1524/**
1525 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1526 * without zeroing memory
1527 * @size: size of memory block to be allocated in bytes
1528 * @align: alignment of the region and block's size
1529 * @min_addr: the lower bound of the memory region from where the allocation
1530 * is preferred (phys address)
1531 * @max_addr: the upper bound of the memory region from where the allocation
1532 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1533 * allocate only from memory limited by memblock.current_limit value
1534 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1535 *
1536 * Public function, provides additional debug information (including caller
1537 * info), if enabled. Does not zero allocated memory.
1538 *
1539 * Return:
1540 * Virtual address of allocated memory block on success, NULL on failure.
1541 */
1542void * __init memblock_alloc_exact_nid_raw(
1543 phys_addr_t size, phys_addr_t align,
1544 phys_addr_t min_addr, phys_addr_t max_addr,
1545 int nid)
1546{
1547 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1548 __func__, (u64)size, (u64)align, nid, &min_addr,
1549 &max_addr, (void *)_RET_IP_);
1550
1551 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1552 true);
1553}
1554
1555/**
1556 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1557 * memory and without panicking
1558 * @size: size of memory block to be allocated in bytes
1559 * @align: alignment of the region and block's size
1560 * @min_addr: the lower bound of the memory region from where the allocation
1561 * is preferred (phys address)
1562 * @max_addr: the upper bound of the memory region from where the allocation
1563 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1564 * allocate only from memory limited by memblock.current_limit value
1565 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1566 *
1567 * Public function, provides additional debug information (including caller
1568 * info), if enabled. Does not zero allocated memory, does not panic if request
1569 * cannot be satisfied.
1570 *
1571 * Return:
1572 * Virtual address of allocated memory block on success, NULL on failure.
1573 */
1574void * __init memblock_alloc_try_nid_raw(
1575 phys_addr_t size, phys_addr_t align,
1576 phys_addr_t min_addr, phys_addr_t max_addr,
1577 int nid)
1578{
1579 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1580 __func__, (u64)size, (u64)align, nid, &min_addr,
1581 &max_addr, (void *)_RET_IP_);
1582
1583 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1584 false);
1585}
1586
1587/**
1588 * memblock_alloc_try_nid - allocate boot memory block
1589 * @size: size of memory block to be allocated in bytes
1590 * @align: alignment of the region and block's size
1591 * @min_addr: the lower bound of the memory region from where the allocation
1592 * is preferred (phys address)
1593 * @max_addr: the upper bound of the memory region from where the allocation
1594 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1595 * allocate only from memory limited by memblock.current_limit value
1596 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1597 *
1598 * Public function, provides additional debug information (including caller
1599 * info), if enabled. This function zeroes the allocated memory.
1600 *
1601 * Return:
1602 * Virtual address of allocated memory block on success, NULL on failure.
1603 */
1604void * __init memblock_alloc_try_nid(
1605 phys_addr_t size, phys_addr_t align,
1606 phys_addr_t min_addr, phys_addr_t max_addr,
1607 int nid)
1608{
1609 void *ptr;
1610
1611 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1612 __func__, (u64)size, (u64)align, nid, &min_addr,
1613 &max_addr, (void *)_RET_IP_);
1614 ptr = memblock_alloc_internal(size, align,
1615 min_addr, max_addr, nid, false);
1616 if (ptr)
1617 memset(ptr, 0, size);
1618
1619 return ptr;
1620}
1621
1622/**
1623 * memblock_free_late - free pages directly to buddy allocator
1624 * @base: phys starting address of the boot memory block
1625 * @size: size of the boot memory block in bytes
1626 *
1627 * This is only useful when the memblock allocator has already been torn
1628 * down, but we are still initializing the system. Pages are released directly
1629 * to the buddy allocator.
1630 */
1631void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
1632{
1633 phys_addr_t cursor, end;
1634
1635 end = base + size - 1;
1636 memblock_dbg("%s: [%pa-%pa] %pS\n",
1637 __func__, &base, &end, (void *)_RET_IP_);
1638 kmemleak_free_part_phys(base, size);
1639 cursor = PFN_UP(base);
1640 end = PFN_DOWN(base + size);
1641
1642 for (; cursor < end; cursor++) {
1643 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1644 totalram_pages_inc();
1645 }
1646}
1647
1648/*
1649 * Remaining API functions
1650 */
1651
1652phys_addr_t __init_memblock memblock_phys_mem_size(void)
1653{
1654 return memblock.memory.total_size;
1655}
1656
1657phys_addr_t __init_memblock memblock_reserved_size(void)
1658{
1659 return memblock.reserved.total_size;
1660}
1661
1662/* lowest address */
1663phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1664{
1665 return memblock.memory.regions[0].base;
1666}
1667
1668phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1669{
1670 int idx = memblock.memory.cnt - 1;
1671
1672 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1673}
1674
1675static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1676{
1677 phys_addr_t max_addr = PHYS_ADDR_MAX;
1678 struct memblock_region *r;
1679
1680 /*
1681 * translate the memory @limit size into the max address within one of
1682 * the memory memblock regions, if the @limit exceeds the total size
1683 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1684 */
1685 for_each_mem_region(r) {
1686 if (limit <= r->size) {
1687 max_addr = r->base + limit;
1688 break;
1689 }
1690 limit -= r->size;
1691 }
1692
1693 return max_addr;
1694}
1695
1696void __init memblock_enforce_memory_limit(phys_addr_t limit)
1697{
1698 phys_addr_t max_addr;
1699
1700 if (!limit)
1701 return;
1702
1703 max_addr = __find_max_addr(limit);
1704
1705 /* @limit exceeds the total size of the memory, do nothing */
1706 if (max_addr == PHYS_ADDR_MAX)
1707 return;
1708
1709 /* truncate both memory and reserved regions */
1710 memblock_remove_range(&memblock.memory, max_addr,
1711 PHYS_ADDR_MAX);
1712 memblock_remove_range(&memblock.reserved, max_addr,
1713 PHYS_ADDR_MAX);
1714}
1715
1716void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1717{
1718 int start_rgn, end_rgn;
1719 int i, ret;
1720
1721 if (!size)
1722 return;
1723
1724 if (!memblock_memory->total_size) {
1725 pr_warn("%s: No memory registered yet\n", __func__);
1726 return;
1727 }
1728
1729 ret = memblock_isolate_range(&memblock.memory, base, size,
1730 &start_rgn, &end_rgn);
1731 if (ret)
1732 return;
1733
1734 /* remove all the MAP regions */
1735 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1736 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1737 memblock_remove_region(&memblock.memory, i);
1738
1739 for (i = start_rgn - 1; i >= 0; i--)
1740 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1741 memblock_remove_region(&memblock.memory, i);
1742
1743 /* truncate the reserved regions */
1744 memblock_remove_range(&memblock.reserved, 0, base);
1745 memblock_remove_range(&memblock.reserved,
1746 base + size, PHYS_ADDR_MAX);
1747}
1748
1749void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1750{
1751 phys_addr_t max_addr;
1752
1753 if (!limit)
1754 return;
1755
1756 max_addr = __find_max_addr(limit);
1757
1758 /* @limit exceeds the total size of the memory, do nothing */
1759 if (max_addr == PHYS_ADDR_MAX)
1760 return;
1761
1762 memblock_cap_memory_range(0, max_addr);
1763}
1764
1765static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1766{
1767 unsigned int left = 0, right = type->cnt;
1768
1769 do {
1770 unsigned int mid = (right + left) / 2;
1771
1772 if (addr < type->regions[mid].base)
1773 right = mid;
1774 else if (addr >= (type->regions[mid].base +
1775 type->regions[mid].size))
1776 left = mid + 1;
1777 else
1778 return mid;
1779 } while (left < right);
1780 return -1;
1781}
1782
1783bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1784{
1785 return memblock_search(&memblock.reserved, addr) != -1;
1786}
1787
1788bool __init_memblock memblock_is_memory(phys_addr_t addr)
1789{
1790 return memblock_search(&memblock.memory, addr) != -1;
1791}
1792
1793bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1794{
1795 int i = memblock_search(&memblock.memory, addr);
1796
1797 if (i == -1)
1798 return false;
1799 return !memblock_is_nomap(&memblock.memory.regions[i]);
1800}
1801
1802int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1803 unsigned long *start_pfn, unsigned long *end_pfn)
1804{
1805 struct memblock_type *type = &memblock.memory;
1806 int mid = memblock_search(type, PFN_PHYS(pfn));
1807
1808 if (mid == -1)
1809 return -1;
1810
1811 *start_pfn = PFN_DOWN(type->regions[mid].base);
1812 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1813
1814 return memblock_get_region_node(&type->regions[mid]);
1815}
1816
1817/**
1818 * memblock_is_region_memory - check if a region is a subset of memory
1819 * @base: base of region to check
1820 * @size: size of region to check
1821 *
1822 * Check if the region [@base, @base + @size) is a subset of a memory block.
1823 *
1824 * Return:
1825 * 0 if false, non-zero if true
1826 */
1827bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1828{
1829 int idx = memblock_search(&memblock.memory, base);
1830 phys_addr_t end = base + memblock_cap_size(base, &size);
1831
1832 if (idx == -1)
1833 return false;
1834 return (memblock.memory.regions[idx].base +
1835 memblock.memory.regions[idx].size) >= end;
1836}
1837
1838/**
1839 * memblock_is_region_reserved - check if a region intersects reserved memory
1840 * @base: base of region to check
1841 * @size: size of region to check
1842 *
1843 * Check if the region [@base, @base + @size) intersects a reserved
1844 * memory block.
1845 *
1846 * Return:
1847 * True if they intersect, false if not.
1848 */
1849bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1850{
1851 return memblock_overlaps_region(&memblock.reserved, base, size);
1852}
1853
1854void __init_memblock memblock_trim_memory(phys_addr_t align)
1855{
1856 phys_addr_t start, end, orig_start, orig_end;
1857 struct memblock_region *r;
1858
1859 for_each_mem_region(r) {
1860 orig_start = r->base;
1861 orig_end = r->base + r->size;
1862 start = round_up(orig_start, align);
1863 end = round_down(orig_end, align);
1864
1865 if (start == orig_start && end == orig_end)
1866 continue;
1867
1868 if (start < end) {
1869 r->base = start;
1870 r->size = end - start;
1871 } else {
1872 memblock_remove_region(&memblock.memory,
1873 r - memblock.memory.regions);
1874 r--;
1875 }
1876 }
1877}
1878
1879void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1880{
1881 memblock.current_limit = limit;
1882}
1883
1884phys_addr_t __init_memblock memblock_get_current_limit(void)
1885{
1886 return memblock.current_limit;
1887}
1888
1889static void __init_memblock memblock_dump(struct memblock_type *type)
1890{
1891 phys_addr_t base, end, size;
1892 enum memblock_flags flags;
1893 int idx;
1894 struct memblock_region *rgn;
1895
1896 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
1897
1898 for_each_memblock_type(idx, type, rgn) {
1899 char nid_buf[32] = "";
1900
1901 base = rgn->base;
1902 size = rgn->size;
1903 end = base + size - 1;
1904 flags = rgn->flags;
1905#ifdef CONFIG_NUMA
1906 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1907 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1908 memblock_get_region_node(rgn));
1909#endif
1910 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1911 type->name, idx, &base, &end, &size, nid_buf, flags);
1912 }
1913}
1914
1915static void __init_memblock __memblock_dump_all(void)
1916{
1917 pr_info("MEMBLOCK configuration:\n");
1918 pr_info(" memory size = %pa reserved size = %pa\n",
1919 &memblock.memory.total_size,
1920 &memblock.reserved.total_size);
1921
1922 memblock_dump(&memblock.memory);
1923 memblock_dump(&memblock.reserved);
1924#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1925 memblock_dump(&physmem);
1926#endif
1927}
1928
1929void __init_memblock memblock_dump_all(void)
1930{
1931 if (memblock_debug)
1932 __memblock_dump_all();
1933}
1934
1935void __init memblock_allow_resize(void)
1936{
1937 memblock_can_resize = 1;
1938}
1939
1940static int __init early_memblock(char *p)
1941{
1942 if (p && strstr(p, "debug"))
1943 memblock_debug = 1;
1944 return 0;
1945}
1946early_param("memblock", early_memblock);
1947
1948static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
1949{
1950 struct page *start_pg, *end_pg;
1951 phys_addr_t pg, pgend;
1952
1953 /*
1954 * Convert start_pfn/end_pfn to a struct page pointer.
1955 */
1956 start_pg = pfn_to_page(start_pfn - 1) + 1;
1957 end_pg = pfn_to_page(end_pfn - 1) + 1;
1958
1959 /*
1960 * Convert to physical addresses, and round start upwards and end
1961 * downwards.
1962 */
1963 pg = PAGE_ALIGN(__pa(start_pg));
1964 pgend = __pa(end_pg) & PAGE_MASK;
1965
1966 /*
1967 * If there are free pages between these, free the section of the
1968 * memmap array.
1969 */
1970 if (pg < pgend)
1971 memblock_phys_free(pg, pgend - pg);
1972}
1973
1974/*
1975 * The mem_map array can get very big. Free the unused area of the memory map.
1976 */
1977static void __init free_unused_memmap(void)
1978{
1979 unsigned long start, end, prev_end = 0;
1980 int i;
1981
1982 if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
1983 IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
1984 return;
1985
1986 /*
1987 * This relies on each bank being in address order.
1988 * The banks are sorted previously in bootmem_init().
1989 */
1990 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
1991#ifdef CONFIG_SPARSEMEM
1992 /*
1993 * Take care not to free memmap entries that don't exist
1994 * due to SPARSEMEM sections which aren't present.
1995 */
1996 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
1997#endif
1998 /*
1999 * Align down here since many operations in VM subsystem
2000 * presume that there are no holes in the memory map inside
2001 * a pageblock
2002 */
2003 start = pageblock_start_pfn(start);
2004
2005 /*
2006 * If we had a previous bank, and there is a space
2007 * between the current bank and the previous, free it.
2008 */
2009 if (prev_end && prev_end < start)
2010 free_memmap(prev_end, start);
2011
2012 /*
2013 * Align up here since many operations in VM subsystem
2014 * presume that there are no holes in the memory map inside
2015 * a pageblock
2016 */
2017 prev_end = pageblock_align(end);
2018 }
2019
2020#ifdef CONFIG_SPARSEMEM
2021 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
2022 prev_end = pageblock_align(end);
2023 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
2024 }
2025#endif
2026}
2027
2028static void __init __free_pages_memory(unsigned long start, unsigned long end)
2029{
2030 int order;
2031
2032 while (start < end) {
2033 order = min(MAX_ORDER - 1UL, __ffs(start));
2034
2035 while (start + (1UL << order) > end)
2036 order--;
2037
2038 memblock_free_pages(pfn_to_page(start), start, order);
2039
2040 start += (1UL << order);
2041 }
2042}
2043
2044static unsigned long __init __free_memory_core(phys_addr_t start,
2045 phys_addr_t end)
2046{
2047 unsigned long start_pfn = PFN_UP(start);
2048 unsigned long end_pfn = min_t(unsigned long,
2049 PFN_DOWN(end), max_low_pfn);
2050
2051 if (start_pfn >= end_pfn)
2052 return 0;
2053
2054 __free_pages_memory(start_pfn, end_pfn);
2055
2056 return end_pfn - start_pfn;
2057}
2058
2059static void __init memmap_init_reserved_pages(void)
2060{
2061 struct memblock_region *region;
2062 phys_addr_t start, end;
2063 u64 i;
2064
2065 /* initialize struct pages for the reserved regions */
2066 for_each_reserved_mem_range(i, &start, &end)
2067 reserve_bootmem_region(start, end);
2068
2069 /* and also treat struct pages for the NOMAP regions as PageReserved */
2070 for_each_mem_region(region) {
2071 if (memblock_is_nomap(region)) {
2072 start = region->base;
2073 end = start + region->size;
2074 reserve_bootmem_region(start, end);
2075 }
2076 }
2077}
2078
2079static unsigned long __init free_low_memory_core_early(void)
2080{
2081 unsigned long count = 0;
2082 phys_addr_t start, end;
2083 u64 i;
2084
2085 memblock_clear_hotplug(0, -1);
2086
2087 memmap_init_reserved_pages();
2088
2089 /*
2090 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2091 * because in some case like Node0 doesn't have RAM installed
2092 * low ram will be on Node1
2093 */
2094 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2095 NULL)
2096 count += __free_memory_core(start, end);
2097
2098 return count;
2099}
2100
2101static int reset_managed_pages_done __initdata;
2102
2103void reset_node_managed_pages(pg_data_t *pgdat)
2104{
2105 struct zone *z;
2106
2107 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2108 atomic_long_set(&z->managed_pages, 0);
2109}
2110
2111void __init reset_all_zones_managed_pages(void)
2112{
2113 struct pglist_data *pgdat;
2114
2115 if (reset_managed_pages_done)
2116 return;
2117
2118 for_each_online_pgdat(pgdat)
2119 reset_node_managed_pages(pgdat);
2120
2121 reset_managed_pages_done = 1;
2122}
2123
2124/**
2125 * memblock_free_all - release free pages to the buddy allocator
2126 */
2127void __init memblock_free_all(void)
2128{
2129 unsigned long pages;
2130
2131 free_unused_memmap();
2132 reset_all_zones_managed_pages();
2133
2134 pages = free_low_memory_core_early();
2135 totalram_pages_add(pages);
2136}
2137
2138#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2139
2140static int memblock_debug_show(struct seq_file *m, void *private)
2141{
2142 struct memblock_type *type = m->private;
2143 struct memblock_region *reg;
2144 int i;
2145 phys_addr_t end;
2146
2147 for (i = 0; i < type->cnt; i++) {
2148 reg = &type->regions[i];
2149 end = reg->base + reg->size - 1;
2150
2151 seq_printf(m, "%4d: ", i);
2152 seq_printf(m, "%pa..%pa\n", ®->base, &end);
2153 }
2154 return 0;
2155}
2156DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2157
2158static int __init memblock_init_debugfs(void)
2159{
2160 struct dentry *root = debugfs_create_dir("memblock", NULL);
2161
2162 debugfs_create_file("memory", 0444, root,
2163 &memblock.memory, &memblock_debug_fops);
2164 debugfs_create_file("reserved", 0444, root,
2165 &memblock.reserved, &memblock_debug_fops);
2166#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2167 debugfs_create_file("physmem", 0444, root, &physmem,
2168 &memblock_debug_fops);
2169#endif
2170
2171 return 0;
2172}
2173__initcall(memblock_init_debugfs);
2174
2175#endif /* CONFIG_DEBUG_FS */