Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * Procedures for maintaining information about logical memory blocks.
   3 *
   4 * Peter Bergner, IBM Corp.	June 2001.
   5 * Copyright (C) 2001 Peter Bergner.
   6 *
   7 *      This program is free software; you can redistribute it and/or
   8 *      modify it under the terms of the GNU General Public License
   9 *      as published by the Free Software Foundation; either version
  10 *      2 of the License, or (at your option) any later version.
  11 */
  12
  13#include <linux/kernel.h>
  14#include <linux/slab.h>
  15#include <linux/init.h>
  16#include <linux/bitops.h>
  17#include <linux/poison.h>
  18#include <linux/pfn.h>
  19#include <linux/debugfs.h>
  20#include <linux/kmemleak.h>
  21#include <linux/seq_file.h>
  22#include <linux/memblock.h>
  23
  24#include <asm/sections.h>
  25#include <linux/io.h>
  26
  27#include "internal.h"
  28
  29static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
  30static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  31#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
  32static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
  33#endif
  34
  35struct memblock memblock __initdata_memblock = {
  36	.memory.regions		= memblock_memory_init_regions,
  37	.memory.cnt		= 1,	/* empty dummy entry */
  38	.memory.max		= INIT_MEMBLOCK_REGIONS,
  39	.memory.name		= "memory",
  40
  41	.reserved.regions	= memblock_reserved_init_regions,
  42	.reserved.cnt		= 1,	/* empty dummy entry */
  43	.reserved.max		= INIT_MEMBLOCK_REGIONS,
  44	.reserved.name		= "reserved",
  45
  46#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
  47	.physmem.regions	= memblock_physmem_init_regions,
  48	.physmem.cnt		= 1,	/* empty dummy entry */
  49	.physmem.max		= INIT_PHYSMEM_REGIONS,
  50	.physmem.name		= "physmem",
  51#endif
  52
  53	.bottom_up		= false,
  54	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
  55};
  56
  57int memblock_debug __initdata_memblock;
  58static bool system_has_some_mirror __initdata_memblock = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  59static int memblock_can_resize __initdata_memblock;
  60static int memblock_memory_in_slab __initdata_memblock = 0;
  61static int memblock_reserved_in_slab __initdata_memblock = 0;
  62
  63ulong __init_memblock choose_memblock_flags(void)
 
 
 
 
 
  64{
  65	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
  66}
  67
  68/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
  69static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
  70{
  71	return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
  72}
  73
  74/*
  75 * Address comparison utilities
  76 */
  77static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
  78				       phys_addr_t base2, phys_addr_t size2)
 
  79{
  80	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
  81}
  82
  83bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
  84					phys_addr_t base, phys_addr_t size)
  85{
  86	unsigned long i;
  87
 
 
  88	for (i = 0; i < type->cnt; i++)
  89		if (memblock_addrs_overlap(base, size, type->regions[i].base,
  90					   type->regions[i].size))
  91			break;
  92	return i < type->cnt;
  93}
  94
  95/*
  96 * __memblock_find_range_bottom_up - find free area utility in bottom-up
  97 * @start: start of candidate range
  98 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 
  99 * @size: size of free area to find
 100 * @align: alignment of free area to find
 101 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 102 * @flags: pick from blocks based on memory attributes
 103 *
 104 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
 105 *
 106 * RETURNS:
 107 * Found address on success, 0 on failure.
 108 */
 109static phys_addr_t __init_memblock
 110__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
 111				phys_addr_t size, phys_addr_t align, int nid,
 112				ulong flags)
 113{
 114	phys_addr_t this_start, this_end, cand;
 115	u64 i;
 116
 117	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
 118		this_start = clamp(this_start, start, end);
 119		this_end = clamp(this_end, start, end);
 120
 121		cand = round_up(this_start, align);
 122		if (cand < this_end && this_end - cand >= size)
 123			return cand;
 124	}
 125
 126	return 0;
 127}
 128
 129/**
 130 * __memblock_find_range_top_down - find free area utility, in top-down
 131 * @start: start of candidate range
 132 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 
 133 * @size: size of free area to find
 134 * @align: alignment of free area to find
 135 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 136 * @flags: pick from blocks based on memory attributes
 137 *
 138 * Utility called from memblock_find_in_range_node(), find free area top-down.
 139 *
 140 * RETURNS:
 141 * Found address on success, 0 on failure.
 142 */
 143static phys_addr_t __init_memblock
 144__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
 145			       phys_addr_t size, phys_addr_t align, int nid,
 146			       ulong flags)
 147{
 148	phys_addr_t this_start, this_end, cand;
 149	u64 i;
 150
 151	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
 152					NULL) {
 153		this_start = clamp(this_start, start, end);
 154		this_end = clamp(this_end, start, end);
 155
 156		if (this_end < size)
 157			continue;
 158
 159		cand = round_down(this_end - size, align);
 160		if (cand >= this_start)
 161			return cand;
 162	}
 163
 164	return 0;
 165}
 166
 167/**
 168 * memblock_find_in_range_node - find free area in given range and node
 169 * @size: size of free area to find
 170 * @align: alignment of free area to find
 171 * @start: start of candidate range
 172 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 
 173 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 174 * @flags: pick from blocks based on memory attributes
 175 *
 176 * Find @size free area aligned to @align in the specified range and node.
 177 *
 178 * When allocation direction is bottom-up, the @start should be greater
 179 * than the end of the kernel image. Otherwise, it will be trimmed. The
 180 * reason is that we want the bottom-up allocation just near the kernel
 181 * image so it is highly likely that the allocated memory and the kernel
 182 * will reside in the same node.
 183 *
 184 * If bottom-up allocation failed, will try to allocate memory top-down.
 185 *
 186 * RETURNS:
 187 * Found address on success, 0 on failure.
 188 */
 189phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
 190					phys_addr_t align, phys_addr_t start,
 191					phys_addr_t end, int nid, ulong flags)
 
 192{
 193	phys_addr_t kernel_end, ret;
 194
 195	/* pump up @end */
 196	if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
 
 197		end = memblock.current_limit;
 198
 199	/* avoid allocating the first page */
 200	start = max_t(phys_addr_t, start, PAGE_SIZE);
 201	end = max(start, end);
 202	kernel_end = __pa_symbol(_end);
 203
 204	/*
 205	 * try bottom-up allocation only when bottom-up mode
 206	 * is set and @end is above the kernel image.
 207	 */
 208	if (memblock_bottom_up() && end > kernel_end) {
 209		phys_addr_t bottom_up_start;
 210
 211		/* make sure we will allocate above the kernel */
 212		bottom_up_start = max(start, kernel_end);
 213
 214		/* ok, try bottom-up allocation first */
 215		ret = __memblock_find_range_bottom_up(bottom_up_start, end,
 216						      size, align, nid, flags);
 217		if (ret)
 218			return ret;
 219
 220		/*
 221		 * we always limit bottom-up allocation above the kernel,
 222		 * but top-down allocation doesn't have the limit, so
 223		 * retrying top-down allocation may succeed when bottom-up
 224		 * allocation failed.
 225		 *
 226		 * bottom-up allocation is expected to be fail very rarely,
 227		 * so we use WARN_ONCE() here to see the stack trace if
 228		 * fail happens.
 229		 */
 230		WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n");
 231	}
 232
 233	return __memblock_find_range_top_down(start, end, size, align, nid,
 234					      flags);
 235}
 236
 237/**
 238 * memblock_find_in_range - find free area in given range
 239 * @start: start of candidate range
 240 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 
 241 * @size: size of free area to find
 242 * @align: alignment of free area to find
 243 *
 244 * Find @size free area aligned to @align in the specified range.
 245 *
 246 * RETURNS:
 247 * Found address on success, 0 on failure.
 248 */
 249phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
 250					phys_addr_t end, phys_addr_t size,
 251					phys_addr_t align)
 252{
 253	phys_addr_t ret;
 254	ulong flags = choose_memblock_flags();
 255
 256again:
 257	ret = memblock_find_in_range_node(size, align, start, end,
 258					    NUMA_NO_NODE, flags);
 259
 260	if (!ret && (flags & MEMBLOCK_MIRROR)) {
 261		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
 262			&size);
 263		flags &= ~MEMBLOCK_MIRROR;
 264		goto again;
 265	}
 266
 267	return ret;
 268}
 269
 270static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
 271{
 272	type->total_size -= type->regions[r].size;
 273	memmove(&type->regions[r], &type->regions[r + 1],
 274		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
 275	type->cnt--;
 276
 277	/* Special case for empty arrays */
 278	if (type->cnt == 0) {
 279		WARN_ON(type->total_size != 0);
 280		type->cnt = 1;
 281		type->regions[0].base = 0;
 282		type->regions[0].size = 0;
 283		type->regions[0].flags = 0;
 284		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
 285	}
 286}
 287
 288#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
 289/**
 290 * Discard memory and reserved arrays if they were allocated
 291 */
 292void __init memblock_discard(void)
 293{
 294	phys_addr_t addr, size;
 295
 296	if (memblock.reserved.regions != memblock_reserved_init_regions) {
 297		addr = __pa(memblock.reserved.regions);
 298		size = PAGE_ALIGN(sizeof(struct memblock_region) *
 299				  memblock.reserved.max);
 300		__memblock_free_late(addr, size);
 
 
 
 301	}
 302
 303	if (memblock.memory.regions != memblock_memory_init_regions) {
 304		addr = __pa(memblock.memory.regions);
 305		size = PAGE_ALIGN(sizeof(struct memblock_region) *
 306				  memblock.memory.max);
 307		__memblock_free_late(addr, size);
 
 
 
 308	}
 
 
 309}
 310#endif
 311
 312/**
 313 * memblock_double_array - double the size of the memblock regions array
 314 * @type: memblock type of the regions array being doubled
 315 * @new_area_start: starting address of memory range to avoid overlap with
 316 * @new_area_size: size of memory range to avoid overlap with
 317 *
 318 * Double the size of the @type regions array. If memblock is being used to
 319 * allocate memory for a new reserved regions array and there is a previously
 320 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
 321 * waiting to be reserved, ensure the memory used by the new array does
 322 * not overlap.
 323 *
 324 * RETURNS:
 325 * 0 on success, -1 on failure.
 326 */
 327static int __init_memblock memblock_double_array(struct memblock_type *type,
 328						phys_addr_t new_area_start,
 329						phys_addr_t new_area_size)
 330{
 331	struct memblock_region *new_array, *old_array;
 332	phys_addr_t old_alloc_size, new_alloc_size;
 333	phys_addr_t old_size, new_size, addr;
 334	int use_slab = slab_is_available();
 335	int *in_slab;
 336
 337	/* We don't allow resizing until we know about the reserved regions
 338	 * of memory that aren't suitable for allocation
 339	 */
 340	if (!memblock_can_resize)
 341		return -1;
 342
 343	/* Calculate new doubled size */
 344	old_size = type->max * sizeof(struct memblock_region);
 345	new_size = old_size << 1;
 346	/*
 347	 * We need to allocated new one align to PAGE_SIZE,
 348	 *   so we can free them completely later.
 349	 */
 350	old_alloc_size = PAGE_ALIGN(old_size);
 351	new_alloc_size = PAGE_ALIGN(new_size);
 352
 353	/* Retrieve the slab flag */
 354	if (type == &memblock.memory)
 355		in_slab = &memblock_memory_in_slab;
 356	else
 357		in_slab = &memblock_reserved_in_slab;
 358
 359	/* Try to find some space for it.
 360	 *
 361	 * WARNING: We assume that either slab_is_available() and we use it or
 362	 * we use MEMBLOCK for allocations. That means that this is unsafe to
 363	 * use when bootmem is currently active (unless bootmem itself is
 364	 * implemented on top of MEMBLOCK which isn't the case yet)
 365	 *
 366	 * This should however not be an issue for now, as we currently only
 367	 * call into MEMBLOCK while it's still active, or much later when slab
 368	 * is active for memory hotplug operations
 369	 */
 370	if (use_slab) {
 371		new_array = kmalloc(new_size, GFP_KERNEL);
 372		addr = new_array ? __pa(new_array) : 0;
 373	} else {
 374		/* only exclude range when trying to double reserved.regions */
 375		if (type != &memblock.reserved)
 376			new_area_start = new_area_size = 0;
 377
 378		addr = memblock_find_in_range(new_area_start + new_area_size,
 379						memblock.current_limit,
 380						new_alloc_size, PAGE_SIZE);
 381		if (!addr && new_area_size)
 382			addr = memblock_find_in_range(0,
 383				min(new_area_start, memblock.current_limit),
 384				new_alloc_size, PAGE_SIZE);
 385
 386		new_array = addr ? __va(addr) : NULL;
 387	}
 388	if (!addr) {
 389		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
 390		       type->name, type->max, type->max * 2);
 391		return -1;
 392	}
 393
 394	memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
 395			type->name, type->max * 2, (u64)addr,
 396			(u64)addr + new_size - 1);
 397
 398	/*
 399	 * Found space, we now need to move the array over before we add the
 400	 * reserved region since it may be our reserved array itself that is
 401	 * full.
 402	 */
 403	memcpy(new_array, type->regions, old_size);
 404	memset(new_array + type->max, 0, old_size);
 405	old_array = type->regions;
 406	type->regions = new_array;
 407	type->max <<= 1;
 408
 409	/* Free old array. We needn't free it if the array is the static one */
 410	if (*in_slab)
 411		kfree(old_array);
 412	else if (old_array != memblock_memory_init_regions &&
 413		 old_array != memblock_reserved_init_regions)
 414		memblock_free(__pa(old_array), old_alloc_size);
 415
 416	/*
 417	 * Reserve the new array if that comes from the memblock.  Otherwise, we
 418	 * needn't do it
 419	 */
 420	if (!use_slab)
 421		BUG_ON(memblock_reserve(addr, new_alloc_size));
 422
 423	/* Update slab flag */
 424	*in_slab = use_slab;
 425
 426	return 0;
 427}
 428
 429/**
 430 * memblock_merge_regions - merge neighboring compatible regions
 431 * @type: memblock type to scan
 432 *
 433 * Scan @type and merge neighboring compatible regions.
 434 */
 435static void __init_memblock memblock_merge_regions(struct memblock_type *type)
 
 
 
 436{
 437	int i = 0;
 438
 439	/* cnt never goes below 1 */
 440	while (i < type->cnt - 1) {
 
 441		struct memblock_region *this = &type->regions[i];
 442		struct memblock_region *next = &type->regions[i + 1];
 443
 444		if (this->base + this->size != next->base ||
 445		    memblock_get_region_node(this) !=
 446		    memblock_get_region_node(next) ||
 447		    this->flags != next->flags) {
 448			BUG_ON(this->base + this->size > next->base);
 449			i++;
 450			continue;
 451		}
 452
 453		this->size += next->size;
 454		/* move forward from next + 1, index of which is i + 2 */
 455		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
 456		type->cnt--;
 
 457	}
 458}
 459
 460/**
 461 * memblock_insert_region - insert new memblock region
 462 * @type:	memblock type to insert into
 463 * @idx:	index for the insertion point
 464 * @base:	base address of the new region
 465 * @size:	size of the new region
 466 * @nid:	node id of the new region
 467 * @flags:	flags of the new region
 468 *
 469 * Insert new memblock region [@base,@base+@size) into @type at @idx.
 470 * @type must already have extra room to accommodate the new region.
 471 */
 472static void __init_memblock memblock_insert_region(struct memblock_type *type,
 473						   int idx, phys_addr_t base,
 474						   phys_addr_t size,
 475						   int nid, unsigned long flags)
 
 476{
 477	struct memblock_region *rgn = &type->regions[idx];
 478
 479	BUG_ON(type->cnt >= type->max);
 480	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
 481	rgn->base = base;
 482	rgn->size = size;
 483	rgn->flags = flags;
 484	memblock_set_region_node(rgn, nid);
 485	type->cnt++;
 486	type->total_size += size;
 487}
 488
 489/**
 490 * memblock_add_range - add new memblock region
 491 * @type: memblock type to add new region into
 492 * @base: base address of the new region
 493 * @size: size of the new region
 494 * @nid: nid of the new region
 495 * @flags: flags of the new region
 496 *
 497 * Add new memblock region [@base,@base+@size) into @type.  The new region
 498 * is allowed to overlap with existing ones - overlaps don't affect already
 499 * existing regions.  @type is guaranteed to be minimal (all neighbouring
 500 * compatible regions are merged) after the addition.
 501 *
 502 * RETURNS:
 503 * 0 on success, -errno on failure.
 504 */
 505int __init_memblock memblock_add_range(struct memblock_type *type,
 506				phys_addr_t base, phys_addr_t size,
 507				int nid, unsigned long flags)
 508{
 509	bool insert = false;
 510	phys_addr_t obase = base;
 511	phys_addr_t end = base + memblock_cap_size(base, &size);
 512	int idx, nr_new;
 513	struct memblock_region *rgn;
 514
 515	if (!size)
 516		return 0;
 517
 518	/* special case for empty array */
 519	if (type->regions[0].size == 0) {
 520		WARN_ON(type->cnt != 1 || type->total_size);
 521		type->regions[0].base = base;
 522		type->regions[0].size = size;
 523		type->regions[0].flags = flags;
 524		memblock_set_region_node(&type->regions[0], nid);
 525		type->total_size = size;
 
 526		return 0;
 527	}
 
 
 
 
 
 
 
 
 
 
 
 528repeat:
 529	/*
 530	 * The following is executed twice.  Once with %false @insert and
 531	 * then with %true.  The first counts the number of regions needed
 532	 * to accommodate the new area.  The second actually inserts them.
 533	 */
 534	base = obase;
 535	nr_new = 0;
 536
 537	for_each_memblock_type(idx, type, rgn) {
 538		phys_addr_t rbase = rgn->base;
 539		phys_addr_t rend = rbase + rgn->size;
 540
 541		if (rbase >= end)
 542			break;
 543		if (rend <= base)
 544			continue;
 545		/*
 546		 * @rgn overlaps.  If it separates the lower part of new
 547		 * area, insert that portion.
 548		 */
 549		if (rbase > base) {
 550#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 551			WARN_ON(nid != memblock_get_region_node(rgn));
 552#endif
 553			WARN_ON(flags != rgn->flags);
 554			nr_new++;
 555			if (insert)
 
 
 
 556				memblock_insert_region(type, idx++, base,
 557						       rbase - base, nid,
 558						       flags);
 
 559		}
 560		/* area below @rend is dealt with, forget about it */
 561		base = min(rend, end);
 562	}
 563
 564	/* insert the remaining portion */
 565	if (base < end) {
 566		nr_new++;
 567		if (insert)
 
 
 
 568			memblock_insert_region(type, idx, base, end - base,
 569					       nid, flags);
 
 570	}
 571
 572	if (!nr_new)
 573		return 0;
 574
 575	/*
 576	 * If this was the first round, resize array and repeat for actual
 577	 * insertions; otherwise, merge and return.
 578	 */
 579	if (!insert) {
 580		while (type->cnt + nr_new > type->max)
 581			if (memblock_double_array(type, obase, size) < 0)
 582				return -ENOMEM;
 583		insert = true;
 584		goto repeat;
 585	} else {
 586		memblock_merge_regions(type);
 587		return 0;
 588	}
 589}
 590
 
 
 
 
 
 
 
 
 
 
 
 
 
 591int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
 592				       int nid)
 593{
 594	return memblock_add_range(&memblock.memory, base, size, nid, 0);
 
 
 
 
 
 595}
 596
 
 
 
 
 
 
 
 
 
 
 
 597int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
 598{
 599	phys_addr_t end = base + size - 1;
 600
 601	memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
 602		     &base, &end, (void *)_RET_IP_);
 603
 604	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
 605}
 606
 607/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 608 * memblock_isolate_range - isolate given range into disjoint memblocks
 609 * @type: memblock type to isolate range for
 610 * @base: base of range to isolate
 611 * @size: size of range to isolate
 612 * @start_rgn: out parameter for the start of isolated region
 613 * @end_rgn: out parameter for the end of isolated region
 614 *
 615 * Walk @type and ensure that regions don't cross the boundaries defined by
 616 * [@base,@base+@size).  Crossing regions are split at the boundaries,
 617 * which may create at most two more regions.  The index of the first
 618 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
 
 619 *
 620 * RETURNS:
 621 * 0 on success, -errno on failure.
 622 */
 623static int __init_memblock memblock_isolate_range(struct memblock_type *type,
 624					phys_addr_t base, phys_addr_t size,
 625					int *start_rgn, int *end_rgn)
 626{
 627	phys_addr_t end = base + memblock_cap_size(base, &size);
 628	int idx;
 629	struct memblock_region *rgn;
 630
 631	*start_rgn = *end_rgn = 0;
 632
 633	if (!size)
 634		return 0;
 635
 636	/* we'll create at most two more regions */
 637	while (type->cnt + 2 > type->max)
 638		if (memblock_double_array(type, base, size) < 0)
 639			return -ENOMEM;
 640
 641	for_each_memblock_type(idx, type, rgn) {
 642		phys_addr_t rbase = rgn->base;
 643		phys_addr_t rend = rbase + rgn->size;
 644
 645		if (rbase >= end)
 646			break;
 647		if (rend <= base)
 648			continue;
 649
 650		if (rbase < base) {
 651			/*
 652			 * @rgn intersects from below.  Split and continue
 653			 * to process the next region - the new top half.
 654			 */
 655			rgn->base = base;
 656			rgn->size -= base - rbase;
 657			type->total_size -= base - rbase;
 658			memblock_insert_region(type, idx, rbase, base - rbase,
 659					       memblock_get_region_node(rgn),
 660					       rgn->flags);
 661		} else if (rend > end) {
 662			/*
 663			 * @rgn intersects from above.  Split and redo the
 664			 * current region - the new bottom half.
 665			 */
 666			rgn->base = end;
 667			rgn->size -= end - rbase;
 668			type->total_size -= end - rbase;
 669			memblock_insert_region(type, idx--, rbase, end - rbase,
 670					       memblock_get_region_node(rgn),
 671					       rgn->flags);
 672		} else {
 673			/* @rgn is fully contained, record it */
 674			if (!*end_rgn)
 675				*start_rgn = idx;
 676			*end_rgn = idx + 1;
 677		}
 678	}
 679
 680	return 0;
 681}
 682
 683static int __init_memblock memblock_remove_range(struct memblock_type *type,
 684					  phys_addr_t base, phys_addr_t size)
 685{
 686	int start_rgn, end_rgn;
 687	int i, ret;
 688
 689	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 690	if (ret)
 691		return ret;
 692
 693	for (i = end_rgn - 1; i >= start_rgn; i--)
 694		memblock_remove_region(type, i);
 695	return 0;
 696}
 697
 698int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
 699{
 
 
 
 
 
 700	return memblock_remove_range(&memblock.memory, base, size);
 701}
 702
 
 
 
 
 
 
 
 
 
 
 
 
 
 703
 704int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
 
 
 
 
 
 
 
 
 705{
 706	phys_addr_t end = base + size - 1;
 707
 708	memblock_dbg("   memblock_free: [%pa-%pa] %pF\n",
 709		     &base, &end, (void *)_RET_IP_);
 710
 711	kmemleak_free_part_phys(base, size);
 712	return memblock_remove_range(&memblock.reserved, base, size);
 713}
 714
 715int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
 716{
 717	phys_addr_t end = base + size - 1;
 718
 719	memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
 720		     &base, &end, (void *)_RET_IP_);
 721
 722	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
 723}
 724
 
 
 
 
 
 
 
 
 
 
 
 
 725/**
 
 
 
 
 
 
 726 *
 727 * This function isolates region [@base, @base + @size), and sets/clears flag
 728 *
 729 * Return 0 on success, -errno on failure.
 730 */
 731static int __init_memblock memblock_setclr_flag(phys_addr_t base,
 732				phys_addr_t size, int set, int flag)
 733{
 734	struct memblock_type *type = &memblock.memory;
 735	int i, ret, start_rgn, end_rgn;
 736
 737	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 738	if (ret)
 739		return ret;
 740
 741	for (i = start_rgn; i < end_rgn; i++)
 
 
 742		if (set)
 743			memblock_set_region_flags(&type->regions[i], flag);
 744		else
 745			memblock_clear_region_flags(&type->regions[i], flag);
 
 746
 747	memblock_merge_regions(type);
 748	return 0;
 749}
 750
 751/**
 752 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
 753 * @base: the base phys addr of the region
 754 * @size: the size of the region
 755 *
 756 * Return 0 on success, -errno on failure.
 757 */
 758int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
 759{
 760	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
 761}
 762
 763/**
 764 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
 765 * @base: the base phys addr of the region
 766 * @size: the size of the region
 767 *
 768 * Return 0 on success, -errno on failure.
 769 */
 770int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
 771{
 772	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
 773}
 774
 775/**
 776 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
 777 * @base: the base phys addr of the region
 778 * @size: the size of the region
 779 *
 780 * Return 0 on success, -errno on failure.
 781 */
 782int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
 783{
 
 
 
 784	system_has_some_mirror = true;
 785
 786	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
 787}
 788
 789/**
 790 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
 791 * @base: the base phys addr of the region
 792 * @size: the size of the region
 793 *
 794 * Return 0 on success, -errno on failure.
 
 
 
 
 
 
 
 
 795 */
 796int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
 797{
 798	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
 799}
 800
 801/**
 802 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
 803 * @base: the base phys addr of the region
 804 * @size: the size of the region
 805 *
 806 * Return 0 on success, -errno on failure.
 807 */
 808int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
 809{
 810	return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
 811}
 812
 813/**
 814 * __next_reserved_mem_region - next function for for_each_reserved_region()
 815 * @idx: pointer to u64 loop variable
 816 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
 817 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
 
 818 *
 819 * Iterate over all reserved memory regions.
 
 
 
 820 */
 821void __init_memblock __next_reserved_mem_region(u64 *idx,
 822					   phys_addr_t *out_start,
 823					   phys_addr_t *out_end)
 824{
 825	struct memblock_type *type = &memblock.reserved;
 
 
 826
 827	if (*idx < type->cnt) {
 828		struct memblock_region *r = &type->regions[*idx];
 829		phys_addr_t base = r->base;
 830		phys_addr_t size = r->size;
 
 831
 832		if (out_start)
 833			*out_start = base;
 834		if (out_end)
 835			*out_end = base + size - 1;
 836
 837		*idx += 1;
 838		return;
 839	}
 840
 841	/* signal end of iteration */
 842	*idx = ULLONG_MAX;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 843}
 844
 845/**
 846 * __next__mem_range - next function for for_each_free_mem_range() etc.
 847 * @idx: pointer to u64 loop variable
 848 * @nid: node selector, %NUMA_NO_NODE for all nodes
 849 * @flags: pick from blocks based on memory attributes
 850 * @type_a: pointer to memblock_type from where the range is taken
 851 * @type_b: pointer to memblock_type which excludes memory from being taken
 852 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
 853 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
 854 * @out_nid: ptr to int for nid of the range, can be %NULL
 855 *
 856 * Find the first area from *@idx which matches @nid, fill the out
 857 * parameters, and update *@idx for the next iteration.  The lower 32bit of
 858 * *@idx contains index into type_a and the upper 32bit indexes the
 859 * areas before each region in type_b.	For example, if type_b regions
 860 * look like the following,
 861 *
 862 *	0:[0-16), 1:[32-48), 2:[128-130)
 863 *
 864 * The upper 32bit indexes the following regions.
 865 *
 866 *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
 867 *
 868 * As both region arrays are sorted, the function advances the two indices
 869 * in lockstep and returns each intersection.
 870 */
 871void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
 872				      struct memblock_type *type_a,
 873				      struct memblock_type *type_b,
 874				      phys_addr_t *out_start,
 875				      phys_addr_t *out_end, int *out_nid)
 876{
 877	int idx_a = *idx & 0xffffffff;
 878	int idx_b = *idx >> 32;
 879
 880	if (WARN_ONCE(nid == MAX_NUMNODES,
 881	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
 882		nid = NUMA_NO_NODE;
 883
 884	for (; idx_a < type_a->cnt; idx_a++) {
 885		struct memblock_region *m = &type_a->regions[idx_a];
 886
 887		phys_addr_t m_start = m->base;
 888		phys_addr_t m_end = m->base + m->size;
 889		int	    m_nid = memblock_get_region_node(m);
 890
 891		/* only memory regions are associated with nodes, check it */
 892		if (nid != NUMA_NO_NODE && nid != m_nid)
 893			continue;
 894
 895		/* skip hotpluggable memory regions if needed */
 896		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
 897			continue;
 898
 899		/* if we want mirror memory skip non-mirror memory regions */
 900		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
 901			continue;
 902
 903		/* skip nomap memory unless we were asked for it explicitly */
 904		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
 905			continue;
 906
 907		if (!type_b) {
 908			if (out_start)
 909				*out_start = m_start;
 910			if (out_end)
 911				*out_end = m_end;
 912			if (out_nid)
 913				*out_nid = m_nid;
 914			idx_a++;
 915			*idx = (u32)idx_a | (u64)idx_b << 32;
 916			return;
 917		}
 918
 919		/* scan areas before each reservation */
 920		for (; idx_b < type_b->cnt + 1; idx_b++) {
 921			struct memblock_region *r;
 922			phys_addr_t r_start;
 923			phys_addr_t r_end;
 924
 925			r = &type_b->regions[idx_b];
 926			r_start = idx_b ? r[-1].base + r[-1].size : 0;
 927			r_end = idx_b < type_b->cnt ?
 928				r->base : (phys_addr_t)ULLONG_MAX;
 929
 930			/*
 931			 * if idx_b advanced past idx_a,
 932			 * break out to advance idx_a
 933			 */
 934			if (r_start >= m_end)
 935				break;
 936			/* if the two regions intersect, we're done */
 937			if (m_start < r_end) {
 938				if (out_start)
 939					*out_start =
 940						max(m_start, r_start);
 941				if (out_end)
 942					*out_end = min(m_end, r_end);
 943				if (out_nid)
 944					*out_nid = m_nid;
 945				/*
 946				 * The region which ends first is
 947				 * advanced for the next iteration.
 948				 */
 949				if (m_end <= r_end)
 950					idx_a++;
 951				else
 952					idx_b++;
 953				*idx = (u32)idx_a | (u64)idx_b << 32;
 954				return;
 955			}
 956		}
 957	}
 958
 959	/* signal end of iteration */
 960	*idx = ULLONG_MAX;
 961}
 962
 963/**
 964 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
 965 *
 966 * Finds the next range from type_a which is not marked as unsuitable
 967 * in type_b.
 968 *
 969 * @idx: pointer to u64 loop variable
 970 * @nid: node selector, %NUMA_NO_NODE for all nodes
 971 * @flags: pick from blocks based on memory attributes
 972 * @type_a: pointer to memblock_type from where the range is taken
 973 * @type_b: pointer to memblock_type which excludes memory from being taken
 974 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
 975 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
 976 * @out_nid: ptr to int for nid of the range, can be %NULL
 977 *
 
 
 
 978 * Reverse of __next_mem_range().
 979 */
 980void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
 
 981					  struct memblock_type *type_a,
 982					  struct memblock_type *type_b,
 983					  phys_addr_t *out_start,
 984					  phys_addr_t *out_end, int *out_nid)
 985{
 986	int idx_a = *idx & 0xffffffff;
 987	int idx_b = *idx >> 32;
 988
 989	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
 990		nid = NUMA_NO_NODE;
 991
 992	if (*idx == (u64)ULLONG_MAX) {
 993		idx_a = type_a->cnt - 1;
 994		if (type_b != NULL)
 995			idx_b = type_b->cnt;
 996		else
 997			idx_b = 0;
 998	}
 999
1000	for (; idx_a >= 0; idx_a--) {
1001		struct memblock_region *m = &type_a->regions[idx_a];
1002
1003		phys_addr_t m_start = m->base;
1004		phys_addr_t m_end = m->base + m->size;
1005		int m_nid = memblock_get_region_node(m);
1006
1007		/* only memory regions are associated with nodes, check it */
1008		if (nid != NUMA_NO_NODE && nid != m_nid)
1009			continue;
1010
1011		/* skip hotpluggable memory regions if needed */
1012		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1013			continue;
1014
1015		/* if we want mirror memory skip non-mirror memory regions */
1016		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1017			continue;
1018
1019		/* skip nomap memory unless we were asked for it explicitly */
1020		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1021			continue;
1022
1023		if (!type_b) {
1024			if (out_start)
1025				*out_start = m_start;
1026			if (out_end)
1027				*out_end = m_end;
1028			if (out_nid)
1029				*out_nid = m_nid;
1030			idx_a--;
1031			*idx = (u32)idx_a | (u64)idx_b << 32;
1032			return;
1033		}
1034
1035		/* scan areas before each reservation */
1036		for (; idx_b >= 0; idx_b--) {
1037			struct memblock_region *r;
1038			phys_addr_t r_start;
1039			phys_addr_t r_end;
1040
1041			r = &type_b->regions[idx_b];
1042			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1043			r_end = idx_b < type_b->cnt ?
1044				r->base : (phys_addr_t)ULLONG_MAX;
1045			/*
1046			 * if idx_b advanced past idx_a,
1047			 * break out to advance idx_a
1048			 */
1049
1050			if (r_end <= m_start)
1051				break;
1052			/* if the two regions intersect, we're done */
1053			if (m_end > r_start) {
1054				if (out_start)
1055					*out_start = max(m_start, r_start);
1056				if (out_end)
1057					*out_end = min(m_end, r_end);
1058				if (out_nid)
1059					*out_nid = m_nid;
1060				if (m_start >= r_start)
1061					idx_a--;
1062				else
1063					idx_b--;
1064				*idx = (u32)idx_a | (u64)idx_b << 32;
1065				return;
1066			}
1067		}
1068	}
1069	/* signal end of iteration */
1070	*idx = ULLONG_MAX;
1071}
1072
1073#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1074/*
1075 * Common iterator interface used to define for_each_mem_range().
1076 */
1077void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1078				unsigned long *out_start_pfn,
1079				unsigned long *out_end_pfn, int *out_nid)
1080{
1081	struct memblock_type *type = &memblock.memory;
1082	struct memblock_region *r;
 
1083
1084	while (++*idx < type->cnt) {
1085		r = &type->regions[*idx];
 
1086
1087		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1088			continue;
1089		if (nid == MAX_NUMNODES || nid == r->nid)
1090			break;
1091	}
1092	if (*idx >= type->cnt) {
1093		*idx = -1;
1094		return;
1095	}
1096
1097	if (out_start_pfn)
1098		*out_start_pfn = PFN_UP(r->base);
1099	if (out_end_pfn)
1100		*out_end_pfn = PFN_DOWN(r->base + r->size);
1101	if (out_nid)
1102		*out_nid = r->nid;
1103}
1104
1105/**
1106 * memblock_set_node - set node ID on memblock regions
1107 * @base: base of area to set node ID for
1108 * @size: size of area to set node ID for
1109 * @type: memblock type to set node ID for
1110 * @nid: node ID to set
1111 *
1112 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1113 * Regions which cross the area boundaries are split as necessary.
1114 *
1115 * RETURNS:
1116 * 0 on success, -errno on failure.
1117 */
1118int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1119				      struct memblock_type *type, int nid)
1120{
 
1121	int start_rgn, end_rgn;
1122	int i, ret;
1123
1124	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1125	if (ret)
1126		return ret;
1127
1128	for (i = start_rgn; i < end_rgn; i++)
1129		memblock_set_region_node(&type->regions[i], nid);
1130
1131	memblock_merge_regions(type);
 
1132	return 0;
1133}
1134#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1135
1136static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1137					phys_addr_t align, phys_addr_t start,
1138					phys_addr_t end, int nid, ulong flags)
1139{
1140	phys_addr_t found;
1141
1142	if (!align)
1143		align = SMP_CACHE_BYTES;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1144
1145	found = memblock_find_in_range_node(size, align, start, end, nid,
1146					    flags);
1147	if (found && !memblock_reserve(found, size)) {
1148		/*
1149		 * The min_count is set to 0 so that memblock allocations are
1150		 * never reported as leaks.
1151		 */
1152		kmemleak_alloc_phys(found, size, 0, 0);
1153		return found;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1154	}
1155	return 0;
1156}
1157
1158phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1159					phys_addr_t start, phys_addr_t end,
1160					ulong flags)
1161{
1162	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1163					flags);
1164}
1165
1166phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1167					phys_addr_t align, phys_addr_t max_addr,
1168					int nid, ulong flags)
1169{
1170	return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1171}
1172
1173phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1174{
1175	ulong flags = choose_memblock_flags();
1176	phys_addr_t ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1177
1178again:
1179	ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1180				      nid, flags);
 
 
1181
1182	if (!ret && (flags & MEMBLOCK_MIRROR)) {
 
 
 
 
 
 
 
 
1183		flags &= ~MEMBLOCK_MIRROR;
 
 
1184		goto again;
1185	}
1186	return ret;
1187}
1188
1189phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1190{
1191	return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1192				       MEMBLOCK_NONE);
1193}
1194
1195phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1196{
1197	phys_addr_t alloc;
1198
1199	alloc = __memblock_alloc_base(size, align, max_addr);
 
 
 
 
 
 
 
 
 
 
 
 
1200
1201	if (alloc == 0)
1202		panic("ERROR: Failed to allocate %pa bytes below %pa.\n",
1203		      &size, &max_addr);
 
 
 
 
 
1204
1205	return alloc;
1206}
1207
1208phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1209{
1210	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
 
 
 
 
1211}
1212
1213phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
 
 
 
 
 
 
 
 
 
 
 
 
 
1214{
1215	phys_addr_t res = memblock_alloc_nid(size, align, nid);
1216
1217	if (res)
1218		return res;
1219	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1220}
1221
1222/**
1223 * memblock_virt_alloc_internal - allocate boot memory block
1224 * @size: size of memory block to be allocated in bytes
1225 * @align: alignment of the region and block's size
1226 * @min_addr: the lower bound of the memory region to allocate (phys address)
1227 * @max_addr: the upper bound of the memory region to allocate (phys address)
1228 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 
1229 *
1230 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1231 * will fall back to memory below @min_addr. Also, allocation may fall back
1232 * to any node in the system if the specified node can not
1233 * hold the requested memory.
1234 *
1235 * The allocation is performed from memory region limited by
1236 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1237 *
1238 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1239 *
1240 * The phys address of allocated boot memory block is converted to virtual and
1241 * allocated memory is reset to 0.
1242 *
1243 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1244 * allocated boot memory block, so that it is never reported as leaks.
1245 *
1246 * RETURNS:
1247 * Virtual address of allocated memory block on success, NULL on failure.
1248 */
1249static void * __init memblock_virt_alloc_internal(
1250				phys_addr_t size, phys_addr_t align,
1251				phys_addr_t min_addr, phys_addr_t max_addr,
1252				int nid)
1253{
1254	phys_addr_t alloc;
1255	void *ptr;
1256	ulong flags = choose_memblock_flags();
1257
1258	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1259		nid = NUMA_NO_NODE;
1260
1261	/*
1262	 * Detect any accidental use of these APIs after slab is ready, as at
1263	 * this moment memblock may be deinitialized already and its
1264	 * internal data may be destroyed (after execution of free_all_bootmem)
1265	 */
1266	if (WARN_ON_ONCE(slab_is_available()))
1267		return kzalloc_node(size, GFP_NOWAIT, nid);
1268
1269	if (!align)
1270		align = SMP_CACHE_BYTES;
1271
1272	if (max_addr > memblock.current_limit)
1273		max_addr = memblock.current_limit;
1274again:
1275	alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1276					    nid, flags);
1277	if (alloc && !memblock_reserve(alloc, size))
1278		goto done;
1279
1280	if (nid != NUMA_NO_NODE) {
1281		alloc = memblock_find_in_range_node(size, align, min_addr,
1282						    max_addr, NUMA_NO_NODE,
1283						    flags);
1284		if (alloc && !memblock_reserve(alloc, size))
1285			goto done;
1286	}
1287
1288	if (min_addr) {
1289		min_addr = 0;
1290		goto again;
1291	}
1292
1293	if (flags & MEMBLOCK_MIRROR) {
1294		flags &= ~MEMBLOCK_MIRROR;
1295		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1296			&size);
1297		goto again;
1298	}
1299
1300	return NULL;
1301done:
1302	ptr = phys_to_virt(alloc);
1303
1304	/*
1305	 * The min_count is set to 0 so that bootmem allocated blocks
1306	 * are never reported as leaks. This is because many of these blocks
1307	 * are only referred via the physical address which is not
1308	 * looked up by kmemleak.
1309	 */
1310	kmemleak_alloc(ptr, size, 0, 0);
1311
1312	return ptr;
1313}
1314
1315/**
1316 * memblock_virt_alloc_try_nid_raw - allocate boot memory block without zeroing
1317 * memory and without panicking
1318 * @size: size of memory block to be allocated in bytes
1319 * @align: alignment of the region and block's size
1320 * @min_addr: the lower bound of the memory region from where the allocation
1321 *	  is preferred (phys address)
1322 * @max_addr: the upper bound of the memory region from where the allocation
1323 *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1324 *	      allocate only from memory limited by memblock.current_limit value
1325 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1326 *
1327 * Public function, provides additional debug information (including caller
1328 * info), if enabled. Does not zero allocated memory, does not panic if request
1329 * cannot be satisfied.
1330 *
1331 * RETURNS:
1332 * Virtual address of allocated memory block on success, NULL on failure.
1333 */
1334void * __init memblock_virt_alloc_try_nid_raw(
1335			phys_addr_t size, phys_addr_t align,
1336			phys_addr_t min_addr, phys_addr_t max_addr,
1337			int nid)
1338{
1339	void *ptr;
 
 
1340
1341	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1342		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1343		     (u64)max_addr, (void *)_RET_IP_);
1344
1345	ptr = memblock_virt_alloc_internal(size, align,
1346					   min_addr, max_addr, nid);
1347#ifdef CONFIG_DEBUG_VM
1348	if (ptr && size > 0)
1349		memset(ptr, PAGE_POISON_PATTERN, size);
1350#endif
1351	return ptr;
1352}
1353
1354/**
1355 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
 
1356 * @size: size of memory block to be allocated in bytes
1357 * @align: alignment of the region and block's size
1358 * @min_addr: the lower bound of the memory region from where the allocation
1359 *	  is preferred (phys address)
1360 * @max_addr: the upper bound of the memory region from where the allocation
1361 *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1362 *	      allocate only from memory limited by memblock.current_limit value
1363 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1364 *
1365 * Public function, provides additional debug information (including caller
1366 * info), if enabled. This function zeroes the allocated memory.
 
1367 *
1368 * RETURNS:
1369 * Virtual address of allocated memory block on success, NULL on failure.
1370 */
1371void * __init memblock_virt_alloc_try_nid_nopanic(
1372				phys_addr_t size, phys_addr_t align,
1373				phys_addr_t min_addr, phys_addr_t max_addr,
1374				int nid)
1375{
1376	void *ptr;
1377
1378	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1379		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1380		     (u64)max_addr, (void *)_RET_IP_);
1381
1382	ptr = memblock_virt_alloc_internal(size, align,
1383					   min_addr, max_addr, nid);
1384	if (ptr)
1385		memset(ptr, 0, size);
1386	return ptr;
1387}
1388
1389/**
1390 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1391 * @size: size of memory block to be allocated in bytes
1392 * @align: alignment of the region and block's size
1393 * @min_addr: the lower bound of the memory region from where the allocation
1394 *	  is preferred (phys address)
1395 * @max_addr: the upper bound of the memory region from where the allocation
1396 *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1397 *	      allocate only from memory limited by memblock.current_limit value
1398 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1399 *
1400 * Public panicking version of memblock_virt_alloc_try_nid_nopanic()
1401 * which provides debug information (including caller info), if enabled,
1402 * and panics if the request can not be satisfied.
1403 *
1404 * RETURNS:
1405 * Virtual address of allocated memory block on success, NULL on failure.
1406 */
1407void * __init memblock_virt_alloc_try_nid(
1408			phys_addr_t size, phys_addr_t align,
1409			phys_addr_t min_addr, phys_addr_t max_addr,
1410			int nid)
1411{
1412	void *ptr;
1413
1414	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1415		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1416		     (u64)max_addr, (void *)_RET_IP_);
1417	ptr = memblock_virt_alloc_internal(size, align,
1418					   min_addr, max_addr, nid);
1419	if (ptr) {
1420		memset(ptr, 0, size);
1421		return ptr;
1422	}
1423
1424	panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1425	      __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1426	      (u64)max_addr);
1427	return NULL;
1428}
1429
1430/**
1431 * __memblock_free_early - free boot memory block
1432 * @base: phys starting address of the  boot memory block
1433 * @size: size of the boot memory block in bytes
1434 *
1435 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1436 * The freeing memory will not be released to the buddy allocator.
1437 */
1438void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1439{
1440	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1441		     __func__, (u64)base, (u64)base + size - 1,
1442		     (void *)_RET_IP_);
1443	kmemleak_free_part_phys(base, size);
1444	memblock_remove_range(&memblock.reserved, base, size);
1445}
1446
1447/*
1448 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1449 * @addr: phys starting address of the  boot memory block
1450 * @size: size of the boot memory block in bytes
1451 *
1452 * This is only useful when the bootmem allocator has already been torn
1453 * down, but we are still initializing the system.  Pages are released directly
1454 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1455 */
1456void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1457{
1458	u64 cursor, end;
1459
1460	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1461		     __func__, (u64)base, (u64)base + size - 1,
1462		     (void *)_RET_IP_);
1463	kmemleak_free_part_phys(base, size);
1464	cursor = PFN_UP(base);
1465	end = PFN_DOWN(base + size);
1466
1467	for (; cursor < end; cursor++) {
1468		__free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
1469		totalram_pages++;
1470	}
1471}
1472
1473/*
1474 * Remaining API functions
1475 */
1476
1477phys_addr_t __init_memblock memblock_phys_mem_size(void)
1478{
1479	return memblock.memory.total_size;
1480}
1481
1482phys_addr_t __init_memblock memblock_reserved_size(void)
1483{
1484	return memblock.reserved.total_size;
1485}
1486
1487phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
 
 
 
 
 
 
 
 
 
 
 
 
1488{
1489	unsigned long pages = 0;
1490	struct memblock_region *r;
1491	unsigned long start_pfn, end_pfn;
1492
1493	for_each_memblock(memory, r) {
1494		start_pfn = memblock_region_memory_base_pfn(r);
1495		end_pfn = memblock_region_memory_end_pfn(r);
1496		start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1497		end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1498		pages += end_pfn - start_pfn;
1499	}
1500
1501	return PFN_PHYS(pages);
1502}
1503
1504/* lowest address */
1505phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1506{
1507	return memblock.memory.regions[0].base;
1508}
1509
1510phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1511{
1512	int idx = memblock.memory.cnt - 1;
1513
1514	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1515}
1516
1517static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1518{
1519	phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1520	struct memblock_region *r;
1521
1522	/*
1523	 * translate the memory @limit size into the max address within one of
1524	 * the memory memblock regions, if the @limit exceeds the total size
1525	 * of those regions, max_addr will keep original value ULLONG_MAX
1526	 */
1527	for_each_memblock(memory, r) {
1528		if (limit <= r->size) {
1529			max_addr = r->base + limit;
1530			break;
1531		}
1532		limit -= r->size;
1533	}
1534
1535	return max_addr;
1536}
1537
1538void __init memblock_enforce_memory_limit(phys_addr_t limit)
1539{
1540	phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1541
1542	if (!limit)
1543		return;
1544
1545	max_addr = __find_max_addr(limit);
1546
1547	/* @limit exceeds the total size of the memory, do nothing */
1548	if (max_addr == (phys_addr_t)ULLONG_MAX)
1549		return;
1550
1551	/* truncate both memory and reserved regions */
1552	memblock_remove_range(&memblock.memory, max_addr,
1553			      (phys_addr_t)ULLONG_MAX);
1554	memblock_remove_range(&memblock.reserved, max_addr,
1555			      (phys_addr_t)ULLONG_MAX);
1556}
1557
1558void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1559{
1560	int start_rgn, end_rgn;
1561	int i, ret;
1562
1563	if (!size)
1564		return;
1565
 
 
 
 
 
1566	ret = memblock_isolate_range(&memblock.memory, base, size,
1567						&start_rgn, &end_rgn);
1568	if (ret)
1569		return;
1570
1571	/* remove all the MAP regions */
1572	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1573		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1574			memblock_remove_region(&memblock.memory, i);
1575
1576	for (i = start_rgn - 1; i >= 0; i--)
1577		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1578			memblock_remove_region(&memblock.memory, i);
1579
1580	/* truncate the reserved regions */
1581	memblock_remove_range(&memblock.reserved, 0, base);
1582	memblock_remove_range(&memblock.reserved,
1583			base + size, (phys_addr_t)ULLONG_MAX);
1584}
1585
1586void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1587{
1588	phys_addr_t max_addr;
1589
1590	if (!limit)
1591		return;
1592
1593	max_addr = __find_max_addr(limit);
1594
1595	/* @limit exceeds the total size of the memory, do nothing */
1596	if (max_addr == (phys_addr_t)ULLONG_MAX)
1597		return;
1598
1599	memblock_cap_memory_range(0, max_addr);
1600}
1601
1602static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1603{
1604	unsigned int left = 0, right = type->cnt;
1605
1606	do {
1607		unsigned int mid = (right + left) / 2;
1608
1609		if (addr < type->regions[mid].base)
1610			right = mid;
1611		else if (addr >= (type->regions[mid].base +
1612				  type->regions[mid].size))
1613			left = mid + 1;
1614		else
1615			return mid;
1616	} while (left < right);
1617	return -1;
1618}
1619
1620bool __init memblock_is_reserved(phys_addr_t addr)
1621{
1622	return memblock_search(&memblock.reserved, addr) != -1;
1623}
1624
1625bool __init_memblock memblock_is_memory(phys_addr_t addr)
1626{
1627	return memblock_search(&memblock.memory, addr) != -1;
1628}
1629
1630bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1631{
1632	int i = memblock_search(&memblock.memory, addr);
1633
1634	if (i == -1)
1635		return false;
1636	return !memblock_is_nomap(&memblock.memory.regions[i]);
1637}
1638
1639#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1640int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1641			 unsigned long *start_pfn, unsigned long *end_pfn)
1642{
1643	struct memblock_type *type = &memblock.memory;
1644	int mid = memblock_search(type, PFN_PHYS(pfn));
1645
1646	if (mid == -1)
1647		return -1;
1648
1649	*start_pfn = PFN_DOWN(type->regions[mid].base);
1650	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1651
1652	return type->regions[mid].nid;
1653}
1654#endif
1655
1656/**
1657 * memblock_is_region_memory - check if a region is a subset of memory
1658 * @base: base of region to check
1659 * @size: size of region to check
1660 *
1661 * Check if the region [@base, @base+@size) is a subset of a memory block.
1662 *
1663 * RETURNS:
1664 * 0 if false, non-zero if true
1665 */
1666bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1667{
1668	int idx = memblock_search(&memblock.memory, base);
1669	phys_addr_t end = base + memblock_cap_size(base, &size);
1670
1671	if (idx == -1)
1672		return false;
1673	return (memblock.memory.regions[idx].base +
1674		 memblock.memory.regions[idx].size) >= end;
1675}
1676
1677/**
1678 * memblock_is_region_reserved - check if a region intersects reserved memory
1679 * @base: base of region to check
1680 * @size: size of region to check
1681 *
1682 * Check if the region [@base, @base+@size) intersects a reserved memory block.
 
1683 *
1684 * RETURNS:
1685 * True if they intersect, false if not.
1686 */
1687bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1688{
1689	memblock_cap_size(base, &size);
1690	return memblock_overlaps_region(&memblock.reserved, base, size);
1691}
1692
1693void __init_memblock memblock_trim_memory(phys_addr_t align)
1694{
1695	phys_addr_t start, end, orig_start, orig_end;
1696	struct memblock_region *r;
1697
1698	for_each_memblock(memory, r) {
1699		orig_start = r->base;
1700		orig_end = r->base + r->size;
1701		start = round_up(orig_start, align);
1702		end = round_down(orig_end, align);
1703
1704		if (start == orig_start && end == orig_end)
1705			continue;
1706
1707		if (start < end) {
1708			r->base = start;
1709			r->size = end - start;
1710		} else {
1711			memblock_remove_region(&memblock.memory,
1712					       r - memblock.memory.regions);
1713			r--;
1714		}
1715	}
1716}
1717
1718void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1719{
1720	memblock.current_limit = limit;
1721}
1722
1723phys_addr_t __init_memblock memblock_get_current_limit(void)
1724{
1725	return memblock.current_limit;
1726}
1727
1728static void __init_memblock memblock_dump(struct memblock_type *type)
1729{
1730	phys_addr_t base, end, size;
1731	unsigned long flags;
1732	int idx;
1733	struct memblock_region *rgn;
1734
1735	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1736
1737	for_each_memblock_type(idx, type, rgn) {
1738		char nid_buf[32] = "";
1739
1740		base = rgn->base;
1741		size = rgn->size;
1742		end = base + size - 1;
1743		flags = rgn->flags;
1744#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1745		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1746			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1747				 memblock_get_region_node(rgn));
1748#endif
1749		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#lx\n",
1750			type->name, idx, &base, &end, &size, nid_buf, flags);
1751	}
1752}
1753
1754void __init_memblock __memblock_dump_all(void)
1755{
1756	pr_info("MEMBLOCK configuration:\n");
1757	pr_info(" memory size = %pa reserved size = %pa\n",
1758		&memblock.memory.total_size,
1759		&memblock.reserved.total_size);
1760
1761	memblock_dump(&memblock.memory);
1762	memblock_dump(&memblock.reserved);
1763#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1764	memblock_dump(&memblock.physmem);
1765#endif
1766}
1767
 
 
 
 
 
 
1768void __init memblock_allow_resize(void)
1769{
1770	memblock_can_resize = 1;
1771}
1772
1773static int __init early_memblock(char *p)
1774{
1775	if (p && strstr(p, "debug"))
1776		memblock_debug = 1;
1777	return 0;
1778}
1779early_param("memblock", early_memblock);
1780
1781#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1782
1783static int memblock_debug_show(struct seq_file *m, void *private)
1784{
1785	struct memblock_type *type = m->private;
1786	struct memblock_region *reg;
1787	int i;
 
1788	phys_addr_t end;
1789
1790	for (i = 0; i < type->cnt; i++) {
1791		reg = &type->regions[i];
1792		end = reg->base + reg->size - 1;
 
1793
1794		seq_printf(m, "%4d: ", i);
1795		seq_printf(m, "%pa..%pa\n", &reg->base, &end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1796	}
1797	return 0;
1798}
1799DEFINE_SHOW_ATTRIBUTE(memblock_debug);
1800
1801static int __init memblock_init_debugfs(void)
1802{
1803	struct dentry *root = debugfs_create_dir("memblock", NULL);
1804	if (!root)
1805		return -ENXIO;
1806	debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1807	debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
 
1808#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1809	debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
 
1810#endif
1811
1812	return 0;
1813}
1814__initcall(memblock_init_debugfs);
1815
1816#endif /* CONFIG_DEBUG_FS */
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Procedures for maintaining information about logical memory blocks.
   4 *
   5 * Peter Bergner, IBM Corp.	June 2001.
   6 * Copyright (C) 2001 Peter Bergner.
 
 
 
 
 
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/slab.h>
  11#include <linux/init.h>
  12#include <linux/bitops.h>
  13#include <linux/poison.h>
  14#include <linux/pfn.h>
  15#include <linux/debugfs.h>
  16#include <linux/kmemleak.h>
  17#include <linux/seq_file.h>
  18#include <linux/memblock.h>
  19
  20#include <asm/sections.h>
  21#include <linux/io.h>
  22
  23#include "internal.h"
  24
  25#define INIT_MEMBLOCK_REGIONS			128
  26#define INIT_PHYSMEM_REGIONS			4
  27
  28#ifndef INIT_MEMBLOCK_RESERVED_REGIONS
  29# define INIT_MEMBLOCK_RESERVED_REGIONS		INIT_MEMBLOCK_REGIONS
  30#endif
  31
  32#ifndef INIT_MEMBLOCK_MEMORY_REGIONS
  33#define INIT_MEMBLOCK_MEMORY_REGIONS		INIT_MEMBLOCK_REGIONS
  34#endif
  35
  36/**
  37 * DOC: memblock overview
  38 *
  39 * Memblock is a method of managing memory regions during the early
  40 * boot period when the usual kernel memory allocators are not up and
  41 * running.
  42 *
  43 * Memblock views the system memory as collections of contiguous
  44 * regions. There are several types of these collections:
  45 *
  46 * * ``memory`` - describes the physical memory available to the
  47 *   kernel; this may differ from the actual physical memory installed
  48 *   in the system, for instance when the memory is restricted with
  49 *   ``mem=`` command line parameter
  50 * * ``reserved`` - describes the regions that were allocated
  51 * * ``physmem`` - describes the actual physical memory available during
  52 *   boot regardless of the possible restrictions and memory hot(un)plug;
  53 *   the ``physmem`` type is only available on some architectures.
  54 *
  55 * Each region is represented by struct memblock_region that
  56 * defines the region extents, its attributes and NUMA node id on NUMA
  57 * systems. Every memory type is described by the struct memblock_type
  58 * which contains an array of memory regions along with
  59 * the allocator metadata. The "memory" and "reserved" types are nicely
  60 * wrapped with struct memblock. This structure is statically
  61 * initialized at build time. The region arrays are initially sized to
  62 * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
  63 * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
  64 * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
  65 * The memblock_allow_resize() enables automatic resizing of the region
  66 * arrays during addition of new regions. This feature should be used
  67 * with care so that memory allocated for the region array will not
  68 * overlap with areas that should be reserved, for example initrd.
  69 *
  70 * The early architecture setup should tell memblock what the physical
  71 * memory layout is by using memblock_add() or memblock_add_node()
  72 * functions. The first function does not assign the region to a NUMA
  73 * node and it is appropriate for UMA systems. Yet, it is possible to
  74 * use it on NUMA systems as well and assign the region to a NUMA node
  75 * later in the setup process using memblock_set_node(). The
  76 * memblock_add_node() performs such an assignment directly.
  77 *
  78 * Once memblock is setup the memory can be allocated using one of the
  79 * API variants:
  80 *
  81 * * memblock_phys_alloc*() - these functions return the **physical**
  82 *   address of the allocated memory
  83 * * memblock_alloc*() - these functions return the **virtual** address
  84 *   of the allocated memory.
  85 *
  86 * Note, that both API variants use implicit assumptions about allowed
  87 * memory ranges and the fallback methods. Consult the documentation
  88 * of memblock_alloc_internal() and memblock_alloc_range_nid()
  89 * functions for more elaborate description.
  90 *
  91 * As the system boot progresses, the architecture specific mem_init()
  92 * function frees all the memory to the buddy page allocator.
  93 *
  94 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
  95 * memblock data structures (except "physmem") will be discarded after the
  96 * system initialization completes.
  97 */
  98
  99#ifndef CONFIG_NUMA
 100struct pglist_data __refdata contig_page_data;
 101EXPORT_SYMBOL(contig_page_data);
 102#endif
 103
 104unsigned long max_low_pfn;
 105unsigned long min_low_pfn;
 106unsigned long max_pfn;
 107unsigned long long max_possible_pfn;
 108
 109static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
 110static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
 111#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 112static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
 113#endif
 114
 115struct memblock memblock __initdata_memblock = {
 116	.memory.regions		= memblock_memory_init_regions,
 117	.memory.max		= INIT_MEMBLOCK_MEMORY_REGIONS,
 
 118	.memory.name		= "memory",
 119
 120	.reserved.regions	= memblock_reserved_init_regions,
 121	.reserved.max		= INIT_MEMBLOCK_RESERVED_REGIONS,
 
 122	.reserved.name		= "reserved",
 123
 
 
 
 
 
 
 
 124	.bottom_up		= false,
 125	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
 126};
 127
 128#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 129struct memblock_type physmem = {
 130	.regions		= memblock_physmem_init_regions,
 131	.max			= INIT_PHYSMEM_REGIONS,
 132	.name			= "physmem",
 133};
 134#endif
 135
 136/*
 137 * keep a pointer to &memblock.memory in the text section to use it in
 138 * __next_mem_range() and its helpers.
 139 *  For architectures that do not keep memblock data after init, this
 140 * pointer will be reset to NULL at memblock_discard()
 141 */
 142static __refdata struct memblock_type *memblock_memory = &memblock.memory;
 143
 144#define for_each_memblock_type(i, memblock_type, rgn)			\
 145	for (i = 0, rgn = &memblock_type->regions[0];			\
 146	     i < memblock_type->cnt;					\
 147	     i++, rgn = &memblock_type->regions[i])
 148
 149#define memblock_dbg(fmt, ...)						\
 150	do {								\
 151		if (memblock_debug)					\
 152			pr_info(fmt, ##__VA_ARGS__);			\
 153	} while (0)
 154
 155static int memblock_debug __initdata_memblock;
 156static bool system_has_some_mirror __initdata_memblock;
 157static int memblock_can_resize __initdata_memblock;
 158static int memblock_memory_in_slab __initdata_memblock;
 159static int memblock_reserved_in_slab __initdata_memblock;
 160
 161bool __init_memblock memblock_has_mirror(void)
 162{
 163	return system_has_some_mirror;
 164}
 165
 166static enum memblock_flags __init_memblock choose_memblock_flags(void)
 167{
 168	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
 169}
 170
 171/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
 172static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
 173{
 174	return *size = min(*size, PHYS_ADDR_MAX - base);
 175}
 176
 177/*
 178 * Address comparison utilities
 179 */
 180unsigned long __init_memblock
 181memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, phys_addr_t base2,
 182		       phys_addr_t size2)
 183{
 184	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
 185}
 186
 187bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
 188					phys_addr_t base, phys_addr_t size)
 189{
 190	unsigned long i;
 191
 192	memblock_cap_size(base, &size);
 193
 194	for (i = 0; i < type->cnt; i++)
 195		if (memblock_addrs_overlap(base, size, type->regions[i].base,
 196					   type->regions[i].size))
 197			return true;
 198	return false;
 199}
 200
 201/**
 202 * __memblock_find_range_bottom_up - find free area utility in bottom-up
 203 * @start: start of candidate range
 204 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 205 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 206 * @size: size of free area to find
 207 * @align: alignment of free area to find
 208 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 209 * @flags: pick from blocks based on memory attributes
 210 *
 211 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
 212 *
 213 * Return:
 214 * Found address on success, 0 on failure.
 215 */
 216static phys_addr_t __init_memblock
 217__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
 218				phys_addr_t size, phys_addr_t align, int nid,
 219				enum memblock_flags flags)
 220{
 221	phys_addr_t this_start, this_end, cand;
 222	u64 i;
 223
 224	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
 225		this_start = clamp(this_start, start, end);
 226		this_end = clamp(this_end, start, end);
 227
 228		cand = round_up(this_start, align);
 229		if (cand < this_end && this_end - cand >= size)
 230			return cand;
 231	}
 232
 233	return 0;
 234}
 235
 236/**
 237 * __memblock_find_range_top_down - find free area utility, in top-down
 238 * @start: start of candidate range
 239 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 240 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 241 * @size: size of free area to find
 242 * @align: alignment of free area to find
 243 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 244 * @flags: pick from blocks based on memory attributes
 245 *
 246 * Utility called from memblock_find_in_range_node(), find free area top-down.
 247 *
 248 * Return:
 249 * Found address on success, 0 on failure.
 250 */
 251static phys_addr_t __init_memblock
 252__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
 253			       phys_addr_t size, phys_addr_t align, int nid,
 254			       enum memblock_flags flags)
 255{
 256	phys_addr_t this_start, this_end, cand;
 257	u64 i;
 258
 259	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
 260					NULL) {
 261		this_start = clamp(this_start, start, end);
 262		this_end = clamp(this_end, start, end);
 263
 264		if (this_end < size)
 265			continue;
 266
 267		cand = round_down(this_end - size, align);
 268		if (cand >= this_start)
 269			return cand;
 270	}
 271
 272	return 0;
 273}
 274
 275/**
 276 * memblock_find_in_range_node - find free area in given range and node
 277 * @size: size of free area to find
 278 * @align: alignment of free area to find
 279 * @start: start of candidate range
 280 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 281 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 282 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 283 * @flags: pick from blocks based on memory attributes
 284 *
 285 * Find @size free area aligned to @align in the specified range and node.
 286 *
 287 * Return:
 
 
 
 
 
 
 
 
 288 * Found address on success, 0 on failure.
 289 */
 290static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
 291					phys_addr_t align, phys_addr_t start,
 292					phys_addr_t end, int nid,
 293					enum memblock_flags flags)
 294{
 
 
 295	/* pump up @end */
 296	if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
 297	    end == MEMBLOCK_ALLOC_NOLEAKTRACE)
 298		end = memblock.current_limit;
 299
 300	/* avoid allocating the first page */
 301	start = max_t(phys_addr_t, start, PAGE_SIZE);
 302	end = max(start, end);
 
 303
 304	if (memblock_bottom_up())
 305		return __memblock_find_range_bottom_up(start, end, size, align,
 306						       nid, flags);
 307	else
 308		return __memblock_find_range_top_down(start, end, size, align,
 309						      nid, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 310}
 311
 312/**
 313 * memblock_find_in_range - find free area in given range
 314 * @start: start of candidate range
 315 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 316 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 317 * @size: size of free area to find
 318 * @align: alignment of free area to find
 319 *
 320 * Find @size free area aligned to @align in the specified range.
 321 *
 322 * Return:
 323 * Found address on success, 0 on failure.
 324 */
 325static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
 326					phys_addr_t end, phys_addr_t size,
 327					phys_addr_t align)
 328{
 329	phys_addr_t ret;
 330	enum memblock_flags flags = choose_memblock_flags();
 331
 332again:
 333	ret = memblock_find_in_range_node(size, align, start, end,
 334					    NUMA_NO_NODE, flags);
 335
 336	if (!ret && (flags & MEMBLOCK_MIRROR)) {
 337		pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
 338			&size);
 339		flags &= ~MEMBLOCK_MIRROR;
 340		goto again;
 341	}
 342
 343	return ret;
 344}
 345
 346static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
 347{
 348	type->total_size -= type->regions[r].size;
 349	memmove(&type->regions[r], &type->regions[r + 1],
 350		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
 351	type->cnt--;
 352
 353	/* Special case for empty arrays */
 354	if (type->cnt == 0) {
 355		WARN_ON(type->total_size != 0);
 
 356		type->regions[0].base = 0;
 357		type->regions[0].size = 0;
 358		type->regions[0].flags = 0;
 359		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
 360	}
 361}
 362
 363#ifndef CONFIG_ARCH_KEEP_MEMBLOCK
 364/**
 365 * memblock_discard - discard memory and reserved arrays if they were allocated
 366 */
 367void __init memblock_discard(void)
 368{
 369	phys_addr_t addr, size;
 370
 371	if (memblock.reserved.regions != memblock_reserved_init_regions) {
 372		addr = __pa(memblock.reserved.regions);
 373		size = PAGE_ALIGN(sizeof(struct memblock_region) *
 374				  memblock.reserved.max);
 375		if (memblock_reserved_in_slab)
 376			kfree(memblock.reserved.regions);
 377		else
 378			memblock_free_late(addr, size);
 379	}
 380
 381	if (memblock.memory.regions != memblock_memory_init_regions) {
 382		addr = __pa(memblock.memory.regions);
 383		size = PAGE_ALIGN(sizeof(struct memblock_region) *
 384				  memblock.memory.max);
 385		if (memblock_memory_in_slab)
 386			kfree(memblock.memory.regions);
 387		else
 388			memblock_free_late(addr, size);
 389	}
 390
 391	memblock_memory = NULL;
 392}
 393#endif
 394
 395/**
 396 * memblock_double_array - double the size of the memblock regions array
 397 * @type: memblock type of the regions array being doubled
 398 * @new_area_start: starting address of memory range to avoid overlap with
 399 * @new_area_size: size of memory range to avoid overlap with
 400 *
 401 * Double the size of the @type regions array. If memblock is being used to
 402 * allocate memory for a new reserved regions array and there is a previously
 403 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
 404 * waiting to be reserved, ensure the memory used by the new array does
 405 * not overlap.
 406 *
 407 * Return:
 408 * 0 on success, -1 on failure.
 409 */
 410static int __init_memblock memblock_double_array(struct memblock_type *type,
 411						phys_addr_t new_area_start,
 412						phys_addr_t new_area_size)
 413{
 414	struct memblock_region *new_array, *old_array;
 415	phys_addr_t old_alloc_size, new_alloc_size;
 416	phys_addr_t old_size, new_size, addr, new_end;
 417	int use_slab = slab_is_available();
 418	int *in_slab;
 419
 420	/* We don't allow resizing until we know about the reserved regions
 421	 * of memory that aren't suitable for allocation
 422	 */
 423	if (!memblock_can_resize)
 424		panic("memblock: cannot resize %s array\n", type->name);
 425
 426	/* Calculate new doubled size */
 427	old_size = type->max * sizeof(struct memblock_region);
 428	new_size = old_size << 1;
 429	/*
 430	 * We need to allocated new one align to PAGE_SIZE,
 431	 *   so we can free them completely later.
 432	 */
 433	old_alloc_size = PAGE_ALIGN(old_size);
 434	new_alloc_size = PAGE_ALIGN(new_size);
 435
 436	/* Retrieve the slab flag */
 437	if (type == &memblock.memory)
 438		in_slab = &memblock_memory_in_slab;
 439	else
 440		in_slab = &memblock_reserved_in_slab;
 441
 442	/* Try to find some space for it */
 
 
 
 
 
 
 
 
 
 
 443	if (use_slab) {
 444		new_array = kmalloc(new_size, GFP_KERNEL);
 445		addr = new_array ? __pa(new_array) : 0;
 446	} else {
 447		/* only exclude range when trying to double reserved.regions */
 448		if (type != &memblock.reserved)
 449			new_area_start = new_area_size = 0;
 450
 451		addr = memblock_find_in_range(new_area_start + new_area_size,
 452						memblock.current_limit,
 453						new_alloc_size, PAGE_SIZE);
 454		if (!addr && new_area_size)
 455			addr = memblock_find_in_range(0,
 456				min(new_area_start, memblock.current_limit),
 457				new_alloc_size, PAGE_SIZE);
 458
 459		new_array = addr ? __va(addr) : NULL;
 460	}
 461	if (!addr) {
 462		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
 463		       type->name, type->max, type->max * 2);
 464		return -1;
 465	}
 466
 467	new_end = addr + new_size - 1;
 468	memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
 469			type->name, type->max * 2, &addr, &new_end);
 470
 471	/*
 472	 * Found space, we now need to move the array over before we add the
 473	 * reserved region since it may be our reserved array itself that is
 474	 * full.
 475	 */
 476	memcpy(new_array, type->regions, old_size);
 477	memset(new_array + type->max, 0, old_size);
 478	old_array = type->regions;
 479	type->regions = new_array;
 480	type->max <<= 1;
 481
 482	/* Free old array. We needn't free it if the array is the static one */
 483	if (*in_slab)
 484		kfree(old_array);
 485	else if (old_array != memblock_memory_init_regions &&
 486		 old_array != memblock_reserved_init_regions)
 487		memblock_free(old_array, old_alloc_size);
 488
 489	/*
 490	 * Reserve the new array if that comes from the memblock.  Otherwise, we
 491	 * needn't do it
 492	 */
 493	if (!use_slab)
 494		BUG_ON(memblock_reserve(addr, new_alloc_size));
 495
 496	/* Update slab flag */
 497	*in_slab = use_slab;
 498
 499	return 0;
 500}
 501
 502/**
 503 * memblock_merge_regions - merge neighboring compatible regions
 504 * @type: memblock type to scan
 505 * @start_rgn: start scanning from (@start_rgn - 1)
 506 * @end_rgn: end scanning at (@end_rgn - 1)
 507 * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn)
 508 */
 509static void __init_memblock memblock_merge_regions(struct memblock_type *type,
 510						   unsigned long start_rgn,
 511						   unsigned long end_rgn)
 512{
 513	int i = 0;
 514	if (start_rgn)
 515		i = start_rgn - 1;
 516	end_rgn = min(end_rgn, type->cnt - 1);
 517	while (i < end_rgn) {
 518		struct memblock_region *this = &type->regions[i];
 519		struct memblock_region *next = &type->regions[i + 1];
 520
 521		if (this->base + this->size != next->base ||
 522		    memblock_get_region_node(this) !=
 523		    memblock_get_region_node(next) ||
 524		    this->flags != next->flags) {
 525			BUG_ON(this->base + this->size > next->base);
 526			i++;
 527			continue;
 528		}
 529
 530		this->size += next->size;
 531		/* move forward from next + 1, index of which is i + 2 */
 532		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
 533		type->cnt--;
 534		end_rgn--;
 535	}
 536}
 537
 538/**
 539 * memblock_insert_region - insert new memblock region
 540 * @type:	memblock type to insert into
 541 * @idx:	index for the insertion point
 542 * @base:	base address of the new region
 543 * @size:	size of the new region
 544 * @nid:	node id of the new region
 545 * @flags:	flags of the new region
 546 *
 547 * Insert new memblock region [@base, @base + @size) into @type at @idx.
 548 * @type must already have extra room to accommodate the new region.
 549 */
 550static void __init_memblock memblock_insert_region(struct memblock_type *type,
 551						   int idx, phys_addr_t base,
 552						   phys_addr_t size,
 553						   int nid,
 554						   enum memblock_flags flags)
 555{
 556	struct memblock_region *rgn = &type->regions[idx];
 557
 558	BUG_ON(type->cnt >= type->max);
 559	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
 560	rgn->base = base;
 561	rgn->size = size;
 562	rgn->flags = flags;
 563	memblock_set_region_node(rgn, nid);
 564	type->cnt++;
 565	type->total_size += size;
 566}
 567
 568/**
 569 * memblock_add_range - add new memblock region
 570 * @type: memblock type to add new region into
 571 * @base: base address of the new region
 572 * @size: size of the new region
 573 * @nid: nid of the new region
 574 * @flags: flags of the new region
 575 *
 576 * Add new memblock region [@base, @base + @size) into @type.  The new region
 577 * is allowed to overlap with existing ones - overlaps don't affect already
 578 * existing regions.  @type is guaranteed to be minimal (all neighbouring
 579 * compatible regions are merged) after the addition.
 580 *
 581 * Return:
 582 * 0 on success, -errno on failure.
 583 */
 584static int __init_memblock memblock_add_range(struct memblock_type *type,
 585				phys_addr_t base, phys_addr_t size,
 586				int nid, enum memblock_flags flags)
 587{
 588	bool insert = false;
 589	phys_addr_t obase = base;
 590	phys_addr_t end = base + memblock_cap_size(base, &size);
 591	int idx, nr_new, start_rgn = -1, end_rgn;
 592	struct memblock_region *rgn;
 593
 594	if (!size)
 595		return 0;
 596
 597	/* special case for empty array */
 598	if (type->regions[0].size == 0) {
 599		WARN_ON(type->cnt != 0 || type->total_size);
 600		type->regions[0].base = base;
 601		type->regions[0].size = size;
 602		type->regions[0].flags = flags;
 603		memblock_set_region_node(&type->regions[0], nid);
 604		type->total_size = size;
 605		type->cnt = 1;
 606		return 0;
 607	}
 608
 609	/*
 610	 * The worst case is when new range overlaps all existing regions,
 611	 * then we'll need type->cnt + 1 empty regions in @type. So if
 612	 * type->cnt * 2 + 1 is less than or equal to type->max, we know
 613	 * that there is enough empty regions in @type, and we can insert
 614	 * regions directly.
 615	 */
 616	if (type->cnt * 2 + 1 <= type->max)
 617		insert = true;
 618
 619repeat:
 620	/*
 621	 * The following is executed twice.  Once with %false @insert and
 622	 * then with %true.  The first counts the number of regions needed
 623	 * to accommodate the new area.  The second actually inserts them.
 624	 */
 625	base = obase;
 626	nr_new = 0;
 627
 628	for_each_memblock_type(idx, type, rgn) {
 629		phys_addr_t rbase = rgn->base;
 630		phys_addr_t rend = rbase + rgn->size;
 631
 632		if (rbase >= end)
 633			break;
 634		if (rend <= base)
 635			continue;
 636		/*
 637		 * @rgn overlaps.  If it separates the lower part of new
 638		 * area, insert that portion.
 639		 */
 640		if (rbase > base) {
 641#ifdef CONFIG_NUMA
 642			WARN_ON(nid != memblock_get_region_node(rgn));
 643#endif
 644			WARN_ON(flags != rgn->flags);
 645			nr_new++;
 646			if (insert) {
 647				if (start_rgn == -1)
 648					start_rgn = idx;
 649				end_rgn = idx + 1;
 650				memblock_insert_region(type, idx++, base,
 651						       rbase - base, nid,
 652						       flags);
 653			}
 654		}
 655		/* area below @rend is dealt with, forget about it */
 656		base = min(rend, end);
 657	}
 658
 659	/* insert the remaining portion */
 660	if (base < end) {
 661		nr_new++;
 662		if (insert) {
 663			if (start_rgn == -1)
 664				start_rgn = idx;
 665			end_rgn = idx + 1;
 666			memblock_insert_region(type, idx, base, end - base,
 667					       nid, flags);
 668		}
 669	}
 670
 671	if (!nr_new)
 672		return 0;
 673
 674	/*
 675	 * If this was the first round, resize array and repeat for actual
 676	 * insertions; otherwise, merge and return.
 677	 */
 678	if (!insert) {
 679		while (type->cnt + nr_new > type->max)
 680			if (memblock_double_array(type, obase, size) < 0)
 681				return -ENOMEM;
 682		insert = true;
 683		goto repeat;
 684	} else {
 685		memblock_merge_regions(type, start_rgn, end_rgn);
 686		return 0;
 687	}
 688}
 689
 690/**
 691 * memblock_add_node - add new memblock region within a NUMA node
 692 * @base: base address of the new region
 693 * @size: size of the new region
 694 * @nid: nid of the new region
 695 * @flags: flags of the new region
 696 *
 697 * Add new memblock region [@base, @base + @size) to the "memory"
 698 * type. See memblock_add_range() description for mode details
 699 *
 700 * Return:
 701 * 0 on success, -errno on failure.
 702 */
 703int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
 704				      int nid, enum memblock_flags flags)
 705{
 706	phys_addr_t end = base + size - 1;
 707
 708	memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
 709		     &base, &end, nid, flags, (void *)_RET_IP_);
 710
 711	return memblock_add_range(&memblock.memory, base, size, nid, flags);
 712}
 713
 714/**
 715 * memblock_add - add new memblock region
 716 * @base: base address of the new region
 717 * @size: size of the new region
 718 *
 719 * Add new memblock region [@base, @base + @size) to the "memory"
 720 * type. See memblock_add_range() description for mode details
 721 *
 722 * Return:
 723 * 0 on success, -errno on failure.
 724 */
 725int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
 726{
 727	phys_addr_t end = base + size - 1;
 728
 729	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 730		     &base, &end, (void *)_RET_IP_);
 731
 732	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
 733}
 734
 735/**
 736 * memblock_validate_numa_coverage - check if amount of memory with
 737 * no node ID assigned is less than a threshold
 738 * @threshold_bytes: maximal memory size that can have unassigned node
 739 * ID (in bytes).
 740 *
 741 * A buggy firmware may report memory that does not belong to any node.
 742 * Check if amount of such memory is below @threshold_bytes.
 743 *
 744 * Return: true on success, false on failure.
 745 */
 746bool __init_memblock memblock_validate_numa_coverage(unsigned long threshold_bytes)
 747{
 748	unsigned long nr_pages = 0;
 749	unsigned long start_pfn, end_pfn, mem_size_mb;
 750	int nid, i;
 751
 752	/* calculate lose page */
 753	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
 754		if (!numa_valid_node(nid))
 755			nr_pages += end_pfn - start_pfn;
 756	}
 757
 758	if ((nr_pages << PAGE_SHIFT) > threshold_bytes) {
 759		mem_size_mb = memblock_phys_mem_size() >> 20;
 760		pr_err("NUMA: no nodes coverage for %luMB of %luMB RAM\n",
 761		       (nr_pages << PAGE_SHIFT) >> 20, mem_size_mb);
 762		return false;
 763	}
 764
 765	return true;
 766}
 767
 768
 769/**
 770 * memblock_isolate_range - isolate given range into disjoint memblocks
 771 * @type: memblock type to isolate range for
 772 * @base: base of range to isolate
 773 * @size: size of range to isolate
 774 * @start_rgn: out parameter for the start of isolated region
 775 * @end_rgn: out parameter for the end of isolated region
 776 *
 777 * Walk @type and ensure that regions don't cross the boundaries defined by
 778 * [@base, @base + @size).  Crossing regions are split at the boundaries,
 779 * which may create at most two more regions.  The index of the first
 780 * region inside the range is returned in *@start_rgn and the index of the
 781 * first region after the range is returned in *@end_rgn.
 782 *
 783 * Return:
 784 * 0 on success, -errno on failure.
 785 */
 786static int __init_memblock memblock_isolate_range(struct memblock_type *type,
 787					phys_addr_t base, phys_addr_t size,
 788					int *start_rgn, int *end_rgn)
 789{
 790	phys_addr_t end = base + memblock_cap_size(base, &size);
 791	int idx;
 792	struct memblock_region *rgn;
 793
 794	*start_rgn = *end_rgn = 0;
 795
 796	if (!size)
 797		return 0;
 798
 799	/* we'll create at most two more regions */
 800	while (type->cnt + 2 > type->max)
 801		if (memblock_double_array(type, base, size) < 0)
 802			return -ENOMEM;
 803
 804	for_each_memblock_type(idx, type, rgn) {
 805		phys_addr_t rbase = rgn->base;
 806		phys_addr_t rend = rbase + rgn->size;
 807
 808		if (rbase >= end)
 809			break;
 810		if (rend <= base)
 811			continue;
 812
 813		if (rbase < base) {
 814			/*
 815			 * @rgn intersects from below.  Split and continue
 816			 * to process the next region - the new top half.
 817			 */
 818			rgn->base = base;
 819			rgn->size -= base - rbase;
 820			type->total_size -= base - rbase;
 821			memblock_insert_region(type, idx, rbase, base - rbase,
 822					       memblock_get_region_node(rgn),
 823					       rgn->flags);
 824		} else if (rend > end) {
 825			/*
 826			 * @rgn intersects from above.  Split and redo the
 827			 * current region - the new bottom half.
 828			 */
 829			rgn->base = end;
 830			rgn->size -= end - rbase;
 831			type->total_size -= end - rbase;
 832			memblock_insert_region(type, idx--, rbase, end - rbase,
 833					       memblock_get_region_node(rgn),
 834					       rgn->flags);
 835		} else {
 836			/* @rgn is fully contained, record it */
 837			if (!*end_rgn)
 838				*start_rgn = idx;
 839			*end_rgn = idx + 1;
 840		}
 841	}
 842
 843	return 0;
 844}
 845
 846static int __init_memblock memblock_remove_range(struct memblock_type *type,
 847					  phys_addr_t base, phys_addr_t size)
 848{
 849	int start_rgn, end_rgn;
 850	int i, ret;
 851
 852	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 853	if (ret)
 854		return ret;
 855
 856	for (i = end_rgn - 1; i >= start_rgn; i--)
 857		memblock_remove_region(type, i);
 858	return 0;
 859}
 860
 861int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
 862{
 863	phys_addr_t end = base + size - 1;
 864
 865	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 866		     &base, &end, (void *)_RET_IP_);
 867
 868	return memblock_remove_range(&memblock.memory, base, size);
 869}
 870
 871/**
 872 * memblock_free - free boot memory allocation
 873 * @ptr: starting address of the  boot memory allocation
 874 * @size: size of the boot memory block in bytes
 875 *
 876 * Free boot memory block previously allocated by memblock_alloc_xx() API.
 877 * The freeing memory will not be released to the buddy allocator.
 878 */
 879void __init_memblock memblock_free(void *ptr, size_t size)
 880{
 881	if (ptr)
 882		memblock_phys_free(__pa(ptr), size);
 883}
 884
 885/**
 886 * memblock_phys_free - free boot memory block
 887 * @base: phys starting address of the  boot memory block
 888 * @size: size of the boot memory block in bytes
 889 *
 890 * Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
 891 * The freeing memory will not be released to the buddy allocator.
 892 */
 893int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
 894{
 895	phys_addr_t end = base + size - 1;
 896
 897	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 898		     &base, &end, (void *)_RET_IP_);
 899
 900	kmemleak_free_part_phys(base, size);
 901	return memblock_remove_range(&memblock.reserved, base, size);
 902}
 903
 904int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
 905{
 906	phys_addr_t end = base + size - 1;
 907
 908	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 909		     &base, &end, (void *)_RET_IP_);
 910
 911	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
 912}
 913
 914#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 915int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
 916{
 917	phys_addr_t end = base + size - 1;
 918
 919	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 920		     &base, &end, (void *)_RET_IP_);
 921
 922	return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
 923}
 924#endif
 925
 926/**
 927 * memblock_setclr_flag - set or clear flag for a memory region
 928 * @type: memblock type to set/clear flag for
 929 * @base: base address of the region
 930 * @size: size of the region
 931 * @set: set or clear the flag
 932 * @flag: the flag to update
 933 *
 934 * This function isolates region [@base, @base + @size), and sets/clears flag
 935 *
 936 * Return: 0 on success, -errno on failure.
 937 */
 938static int __init_memblock memblock_setclr_flag(struct memblock_type *type,
 939				phys_addr_t base, phys_addr_t size, int set, int flag)
 940{
 
 941	int i, ret, start_rgn, end_rgn;
 942
 943	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 944	if (ret)
 945		return ret;
 946
 947	for (i = start_rgn; i < end_rgn; i++) {
 948		struct memblock_region *r = &type->regions[i];
 949
 950		if (set)
 951			r->flags |= flag;
 952		else
 953			r->flags &= ~flag;
 954	}
 955
 956	memblock_merge_regions(type, start_rgn, end_rgn);
 957	return 0;
 958}
 959
 960/**
 961 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
 962 * @base: the base phys addr of the region
 963 * @size: the size of the region
 964 *
 965 * Return: 0 on success, -errno on failure.
 966 */
 967int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
 968{
 969	return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_HOTPLUG);
 970}
 971
 972/**
 973 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
 974 * @base: the base phys addr of the region
 975 * @size: the size of the region
 976 *
 977 * Return: 0 on success, -errno on failure.
 978 */
 979int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
 980{
 981	return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_HOTPLUG);
 982}
 983
 984/**
 985 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
 986 * @base: the base phys addr of the region
 987 * @size: the size of the region
 988 *
 989 * Return: 0 on success, -errno on failure.
 990 */
 991int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
 992{
 993	if (!mirrored_kernelcore)
 994		return 0;
 995
 996	system_has_some_mirror = true;
 997
 998	return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_MIRROR);
 999}
1000
1001/**
1002 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
1003 * @base: the base phys addr of the region
1004 * @size: the size of the region
1005 *
1006 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
1007 * direct mapping of the physical memory. These regions will still be
1008 * covered by the memory map. The struct page representing NOMAP memory
1009 * frames in the memory map will be PageReserved()
1010 *
1011 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
1012 * memblock, the caller must inform kmemleak to ignore that memory
1013 *
1014 * Return: 0 on success, -errno on failure.
1015 */
1016int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
1017{
1018	return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_NOMAP);
1019}
1020
1021/**
1022 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
1023 * @base: the base phys addr of the region
1024 * @size: the size of the region
1025 *
1026 * Return: 0 on success, -errno on failure.
1027 */
1028int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
1029{
1030	return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_NOMAP);
1031}
1032
1033/**
1034 * memblock_reserved_mark_noinit - Mark a reserved memory region with flag
1035 * MEMBLOCK_RSRV_NOINIT which results in the struct pages not being initialized
1036 * for this region.
1037 * @base: the base phys addr of the region
1038 * @size: the size of the region
1039 *
1040 * struct pages will not be initialized for reserved memory regions marked with
1041 * %MEMBLOCK_RSRV_NOINIT.
1042 *
1043 * Return: 0 on success, -errno on failure.
1044 */
1045int __init_memblock memblock_reserved_mark_noinit(phys_addr_t base, phys_addr_t size)
 
 
1046{
1047	return memblock_setclr_flag(&memblock.reserved, base, size, 1,
1048				    MEMBLOCK_RSRV_NOINIT);
1049}
1050
1051static bool should_skip_region(struct memblock_type *type,
1052			       struct memblock_region *m,
1053			       int nid, int flags)
1054{
1055	int m_nid = memblock_get_region_node(m);
1056
1057	/* we never skip regions when iterating memblock.reserved or physmem */
1058	if (type != memblock_memory)
1059		return false;
 
1060
1061	/* only memory regions are associated with nodes, check it */
1062	if (numa_valid_node(nid) && nid != m_nid)
1063		return true;
1064
1065	/* skip hotpluggable memory regions if needed */
1066	if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
1067	    !(flags & MEMBLOCK_HOTPLUG))
1068		return true;
1069
1070	/* if we want mirror memory skip non-mirror memory regions */
1071	if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1072		return true;
1073
1074	/* skip nomap memory unless we were asked for it explicitly */
1075	if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1076		return true;
1077
1078	/* skip driver-managed memory unless we were asked for it explicitly */
1079	if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
1080		return true;
1081
1082	return false;
1083}
1084
1085/**
1086 * __next_mem_range - next function for for_each_free_mem_range() etc.
1087 * @idx: pointer to u64 loop variable
1088 * @nid: node selector, %NUMA_NO_NODE for all nodes
1089 * @flags: pick from blocks based on memory attributes
1090 * @type_a: pointer to memblock_type from where the range is taken
1091 * @type_b: pointer to memblock_type which excludes memory from being taken
1092 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1093 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1094 * @out_nid: ptr to int for nid of the range, can be %NULL
1095 *
1096 * Find the first area from *@idx which matches @nid, fill the out
1097 * parameters, and update *@idx for the next iteration.  The lower 32bit of
1098 * *@idx contains index into type_a and the upper 32bit indexes the
1099 * areas before each region in type_b.	For example, if type_b regions
1100 * look like the following,
1101 *
1102 *	0:[0-16), 1:[32-48), 2:[128-130)
1103 *
1104 * The upper 32bit indexes the following regions.
1105 *
1106 *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1107 *
1108 * As both region arrays are sorted, the function advances the two indices
1109 * in lockstep and returns each intersection.
1110 */
1111void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1112		      struct memblock_type *type_a,
1113		      struct memblock_type *type_b, phys_addr_t *out_start,
1114		      phys_addr_t *out_end, int *out_nid)
 
1115{
1116	int idx_a = *idx & 0xffffffff;
1117	int idx_b = *idx >> 32;
1118
 
 
 
 
1119	for (; idx_a < type_a->cnt; idx_a++) {
1120		struct memblock_region *m = &type_a->regions[idx_a];
1121
1122		phys_addr_t m_start = m->base;
1123		phys_addr_t m_end = m->base + m->size;
1124		int	    m_nid = memblock_get_region_node(m);
1125
1126		if (should_skip_region(type_a, m, nid, flags))
 
 
 
 
 
 
 
 
 
 
 
 
 
1127			continue;
1128
1129		if (!type_b) {
1130			if (out_start)
1131				*out_start = m_start;
1132			if (out_end)
1133				*out_end = m_end;
1134			if (out_nid)
1135				*out_nid = m_nid;
1136			idx_a++;
1137			*idx = (u32)idx_a | (u64)idx_b << 32;
1138			return;
1139		}
1140
1141		/* scan areas before each reservation */
1142		for (; idx_b < type_b->cnt + 1; idx_b++) {
1143			struct memblock_region *r;
1144			phys_addr_t r_start;
1145			phys_addr_t r_end;
1146
1147			r = &type_b->regions[idx_b];
1148			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1149			r_end = idx_b < type_b->cnt ?
1150				r->base : PHYS_ADDR_MAX;
1151
1152			/*
1153			 * if idx_b advanced past idx_a,
1154			 * break out to advance idx_a
1155			 */
1156			if (r_start >= m_end)
1157				break;
1158			/* if the two regions intersect, we're done */
1159			if (m_start < r_end) {
1160				if (out_start)
1161					*out_start =
1162						max(m_start, r_start);
1163				if (out_end)
1164					*out_end = min(m_end, r_end);
1165				if (out_nid)
1166					*out_nid = m_nid;
1167				/*
1168				 * The region which ends first is
1169				 * advanced for the next iteration.
1170				 */
1171				if (m_end <= r_end)
1172					idx_a++;
1173				else
1174					idx_b++;
1175				*idx = (u32)idx_a | (u64)idx_b << 32;
1176				return;
1177			}
1178		}
1179	}
1180
1181	/* signal end of iteration */
1182	*idx = ULLONG_MAX;
1183}
1184
1185/**
1186 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1187 *
 
 
 
1188 * @idx: pointer to u64 loop variable
1189 * @nid: node selector, %NUMA_NO_NODE for all nodes
1190 * @flags: pick from blocks based on memory attributes
1191 * @type_a: pointer to memblock_type from where the range is taken
1192 * @type_b: pointer to memblock_type which excludes memory from being taken
1193 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1194 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1195 * @out_nid: ptr to int for nid of the range, can be %NULL
1196 *
1197 * Finds the next range from type_a which is not marked as unsuitable
1198 * in type_b.
1199 *
1200 * Reverse of __next_mem_range().
1201 */
1202void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1203					  enum memblock_flags flags,
1204					  struct memblock_type *type_a,
1205					  struct memblock_type *type_b,
1206					  phys_addr_t *out_start,
1207					  phys_addr_t *out_end, int *out_nid)
1208{
1209	int idx_a = *idx & 0xffffffff;
1210	int idx_b = *idx >> 32;
1211
 
 
 
1212	if (*idx == (u64)ULLONG_MAX) {
1213		idx_a = type_a->cnt - 1;
1214		if (type_b != NULL)
1215			idx_b = type_b->cnt;
1216		else
1217			idx_b = 0;
1218	}
1219
1220	for (; idx_a >= 0; idx_a--) {
1221		struct memblock_region *m = &type_a->regions[idx_a];
1222
1223		phys_addr_t m_start = m->base;
1224		phys_addr_t m_end = m->base + m->size;
1225		int m_nid = memblock_get_region_node(m);
1226
1227		if (should_skip_region(type_a, m, nid, flags))
 
 
 
 
 
 
 
 
 
 
 
 
 
1228			continue;
1229
1230		if (!type_b) {
1231			if (out_start)
1232				*out_start = m_start;
1233			if (out_end)
1234				*out_end = m_end;
1235			if (out_nid)
1236				*out_nid = m_nid;
1237			idx_a--;
1238			*idx = (u32)idx_a | (u64)idx_b << 32;
1239			return;
1240		}
1241
1242		/* scan areas before each reservation */
1243		for (; idx_b >= 0; idx_b--) {
1244			struct memblock_region *r;
1245			phys_addr_t r_start;
1246			phys_addr_t r_end;
1247
1248			r = &type_b->regions[idx_b];
1249			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1250			r_end = idx_b < type_b->cnt ?
1251				r->base : PHYS_ADDR_MAX;
1252			/*
1253			 * if idx_b advanced past idx_a,
1254			 * break out to advance idx_a
1255			 */
1256
1257			if (r_end <= m_start)
1258				break;
1259			/* if the two regions intersect, we're done */
1260			if (m_end > r_start) {
1261				if (out_start)
1262					*out_start = max(m_start, r_start);
1263				if (out_end)
1264					*out_end = min(m_end, r_end);
1265				if (out_nid)
1266					*out_nid = m_nid;
1267				if (m_start >= r_start)
1268					idx_a--;
1269				else
1270					idx_b--;
1271				*idx = (u32)idx_a | (u64)idx_b << 32;
1272				return;
1273			}
1274		}
1275	}
1276	/* signal end of iteration */
1277	*idx = ULLONG_MAX;
1278}
1279
 
1280/*
1281 * Common iterator interface used to define for_each_mem_pfn_range().
1282 */
1283void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1284				unsigned long *out_start_pfn,
1285				unsigned long *out_end_pfn, int *out_nid)
1286{
1287	struct memblock_type *type = &memblock.memory;
1288	struct memblock_region *r;
1289	int r_nid;
1290
1291	while (++*idx < type->cnt) {
1292		r = &type->regions[*idx];
1293		r_nid = memblock_get_region_node(r);
1294
1295		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1296			continue;
1297		if (!numa_valid_node(nid) || nid == r_nid)
1298			break;
1299	}
1300	if (*idx >= type->cnt) {
1301		*idx = -1;
1302		return;
1303	}
1304
1305	if (out_start_pfn)
1306		*out_start_pfn = PFN_UP(r->base);
1307	if (out_end_pfn)
1308		*out_end_pfn = PFN_DOWN(r->base + r->size);
1309	if (out_nid)
1310		*out_nid = r_nid;
1311}
1312
1313/**
1314 * memblock_set_node - set node ID on memblock regions
1315 * @base: base of area to set node ID for
1316 * @size: size of area to set node ID for
1317 * @type: memblock type to set node ID for
1318 * @nid: node ID to set
1319 *
1320 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1321 * Regions which cross the area boundaries are split as necessary.
1322 *
1323 * Return:
1324 * 0 on success, -errno on failure.
1325 */
1326int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1327				      struct memblock_type *type, int nid)
1328{
1329#ifdef CONFIG_NUMA
1330	int start_rgn, end_rgn;
1331	int i, ret;
1332
1333	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1334	if (ret)
1335		return ret;
1336
1337	for (i = start_rgn; i < end_rgn; i++)
1338		memblock_set_region_node(&type->regions[i], nid);
1339
1340	memblock_merge_regions(type, start_rgn, end_rgn);
1341#endif
1342	return 0;
1343}
 
 
 
 
 
 
 
1344
1345#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1346/**
1347 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1348 *
1349 * @idx: pointer to u64 loop variable
1350 * @zone: zone in which all of the memory blocks reside
1351 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1352 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1353 *
1354 * This function is meant to be a zone/pfn specific wrapper for the
1355 * for_each_mem_range type iterators. Specifically they are used in the
1356 * deferred memory init routines and as such we were duplicating much of
1357 * this logic throughout the code. So instead of having it in multiple
1358 * locations it seemed like it would make more sense to centralize this to
1359 * one new iterator that does everything they need.
1360 */
1361void __init_memblock
1362__next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1363			     unsigned long *out_spfn, unsigned long *out_epfn)
1364{
1365	int zone_nid = zone_to_nid(zone);
1366	phys_addr_t spa, epa;
1367
1368	__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1369			 &memblock.memory, &memblock.reserved,
1370			 &spa, &epa, NULL);
1371
1372	while (*idx != U64_MAX) {
1373		unsigned long epfn = PFN_DOWN(epa);
1374		unsigned long spfn = PFN_UP(spa);
1375
 
 
 
1376		/*
1377		 * Verify the end is at least past the start of the zone and
1378		 * that we have at least one PFN to initialize.
1379		 */
1380		if (zone->zone_start_pfn < epfn && spfn < epfn) {
1381			/* if we went too far just stop searching */
1382			if (zone_end_pfn(zone) <= spfn) {
1383				*idx = U64_MAX;
1384				break;
1385			}
1386
1387			if (out_spfn)
1388				*out_spfn = max(zone->zone_start_pfn, spfn);
1389			if (out_epfn)
1390				*out_epfn = min(zone_end_pfn(zone), epfn);
1391
1392			return;
1393		}
1394
1395		__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1396				 &memblock.memory, &memblock.reserved,
1397				 &spa, &epa, NULL);
1398	}
 
 
1399
1400	/* signal end of iteration */
1401	if (out_spfn)
1402		*out_spfn = ULONG_MAX;
1403	if (out_epfn)
1404		*out_epfn = 0;
 
1405}
1406
1407#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
 
 
 
 
 
1408
1409/**
1410 * memblock_alloc_range_nid - allocate boot memory block
1411 * @size: size of memory block to be allocated in bytes
1412 * @align: alignment of the region and block's size
1413 * @start: the lower bound of the memory region to allocate (phys address)
1414 * @end: the upper bound of the memory region to allocate (phys address)
1415 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1416 * @exact_nid: control the allocation fall back to other nodes
1417 *
1418 * The allocation is performed from memory region limited by
1419 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1420 *
1421 * If the specified node can not hold the requested memory and @exact_nid
1422 * is false, the allocation falls back to any node in the system.
1423 *
1424 * For systems with memory mirroring, the allocation is attempted first
1425 * from the regions with mirroring enabled and then retried from any
1426 * memory region.
1427 *
1428 * In addition, function using kmemleak_alloc_phys for allocated boot
1429 * memory block, it is never reported as leaks.
1430 *
1431 * Return:
1432 * Physical address of allocated memory block on success, %0 on failure.
1433 */
1434phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1435					phys_addr_t align, phys_addr_t start,
1436					phys_addr_t end, int nid,
1437					bool exact_nid)
1438{
1439	enum memblock_flags flags = choose_memblock_flags();
1440	phys_addr_t found;
1441
1442	/*
1443	 * Detect any accidental use of these APIs after slab is ready, as at
1444	 * this moment memblock may be deinitialized already and its
1445	 * internal data may be destroyed (after execution of memblock_free_all)
1446	 */
1447	if (WARN_ON_ONCE(slab_is_available())) {
1448		void *vaddr = kzalloc_node(size, GFP_NOWAIT, nid);
1449
1450		return vaddr ? virt_to_phys(vaddr) : 0;
1451	}
1452
1453	if (!align) {
1454		/* Can't use WARNs this early in boot on powerpc */
1455		dump_stack();
1456		align = SMP_CACHE_BYTES;
1457	}
1458
1459again:
1460	found = memblock_find_in_range_node(size, align, start, end, nid,
1461					    flags);
1462	if (found && !memblock_reserve(found, size))
1463		goto done;
1464
1465	if (numa_valid_node(nid) && !exact_nid) {
1466		found = memblock_find_in_range_node(size, align, start,
1467						    end, NUMA_NO_NODE,
1468						    flags);
1469		if (found && !memblock_reserve(found, size))
1470			goto done;
1471	}
1472
1473	if (flags & MEMBLOCK_MIRROR) {
1474		flags &= ~MEMBLOCK_MIRROR;
1475		pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
1476			&size);
1477		goto again;
1478	}
 
 
 
 
 
 
 
 
1479
1480	return 0;
 
 
1481
1482done:
1483	/*
1484	 * Skip kmemleak for those places like kasan_init() and
1485	 * early_pgtable_alloc() due to high volume.
1486	 */
1487	if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
1488		/*
1489		 * Memblock allocated blocks are never reported as
1490		 * leaks. This is because many of these blocks are
1491		 * only referred via the physical address which is
1492		 * not looked up by kmemleak.
1493		 */
1494		kmemleak_alloc_phys(found, size, 0);
1495
1496	/*
1497	 * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP,
1498	 * require memory to be accepted before it can be used by the
1499	 * guest.
1500	 *
1501	 * Accept the memory of the allocated buffer.
1502	 */
1503	accept_memory(found, size);
1504
1505	return found;
1506}
1507
1508/**
1509 * memblock_phys_alloc_range - allocate a memory block inside specified range
1510 * @size: size of memory block to be allocated in bytes
1511 * @align: alignment of the region and block's size
1512 * @start: the lower bound of the memory region to allocate (physical address)
1513 * @end: the upper bound of the memory region to allocate (physical address)
1514 *
1515 * Allocate @size bytes in the between @start and @end.
1516 *
1517 * Return: physical address of the allocated memory block on success,
1518 * %0 on failure.
1519 */
1520phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1521					     phys_addr_t align,
1522					     phys_addr_t start,
1523					     phys_addr_t end)
1524{
1525	memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1526		     __func__, (u64)size, (u64)align, &start, &end,
1527		     (void *)_RET_IP_);
1528	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1529					false);
1530}
1531
1532/**
1533 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1534 * @size: size of memory block to be allocated in bytes
1535 * @align: alignment of the region and block's size
1536 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1537 *
1538 * Allocates memory block from the specified NUMA node. If the node
1539 * has no available memory, attempts to allocated from any node in the
1540 * system.
1541 *
1542 * Return: physical address of the allocated memory block on success,
1543 * %0 on failure.
1544 */
1545phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1546{
1547	return memblock_alloc_range_nid(size, align, 0,
1548					MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
 
 
 
1549}
1550
1551/**
1552 * memblock_alloc_internal - allocate boot memory block
1553 * @size: size of memory block to be allocated in bytes
1554 * @align: alignment of the region and block's size
1555 * @min_addr: the lower bound of the memory region to allocate (phys address)
1556 * @max_addr: the upper bound of the memory region to allocate (phys address)
1557 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1558 * @exact_nid: control the allocation fall back to other nodes
1559 *
1560 * Allocates memory block using memblock_alloc_range_nid() and
1561 * converts the returned physical address to virtual.
 
 
 
 
 
 
 
1562 *
1563 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1564 * will fall back to memory below @min_addr. Other constraints, such
1565 * as node and mirrored memory will be handled again in
1566 * memblock_alloc_range_nid().
 
1567 *
1568 * Return:
1569 * Virtual address of allocated memory block on success, NULL on failure.
1570 */
1571static void * __init memblock_alloc_internal(
1572				phys_addr_t size, phys_addr_t align,
1573				phys_addr_t min_addr, phys_addr_t max_addr,
1574				int nid, bool exact_nid)
1575{
1576	phys_addr_t alloc;
 
 
 
 
 
1577
 
 
 
 
 
 
 
 
 
 
1578
1579	if (max_addr > memblock.current_limit)
1580		max_addr = memblock.current_limit;
 
 
 
 
 
1581
1582	alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1583					exact_nid);
 
 
 
 
 
1584
1585	/* retry allocation without lower limit */
1586	if (!alloc && min_addr)
1587		alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1588						exact_nid);
1589
1590	if (!alloc)
1591		return NULL;
 
 
 
 
1592
1593	return phys_to_virt(alloc);
 
 
 
 
 
 
 
 
 
 
 
 
1594}
1595
1596/**
1597 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1598 * without zeroing memory
1599 * @size: size of memory block to be allocated in bytes
1600 * @align: alignment of the region and block's size
1601 * @min_addr: the lower bound of the memory region from where the allocation
1602 *	  is preferred (phys address)
1603 * @max_addr: the upper bound of the memory region from where the allocation
1604 *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1605 *	      allocate only from memory limited by memblock.current_limit value
1606 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1607 *
1608 * Public function, provides additional debug information (including caller
1609 * info), if enabled. Does not zero allocated memory.
 
1610 *
1611 * Return:
1612 * Virtual address of allocated memory block on success, NULL on failure.
1613 */
1614void * __init memblock_alloc_exact_nid_raw(
1615			phys_addr_t size, phys_addr_t align,
1616			phys_addr_t min_addr, phys_addr_t max_addr,
1617			int nid)
1618{
1619	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1620		     __func__, (u64)size, (u64)align, nid, &min_addr,
1621		     &max_addr, (void *)_RET_IP_);
1622
1623	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1624				       true);
 
 
 
 
 
 
 
 
 
1625}
1626
1627/**
1628 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1629 * memory and without panicking
1630 * @size: size of memory block to be allocated in bytes
1631 * @align: alignment of the region and block's size
1632 * @min_addr: the lower bound of the memory region from where the allocation
1633 *	  is preferred (phys address)
1634 * @max_addr: the upper bound of the memory region from where the allocation
1635 *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1636 *	      allocate only from memory limited by memblock.current_limit value
1637 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1638 *
1639 * Public function, provides additional debug information (including caller
1640 * info), if enabled. Does not zero allocated memory, does not panic if request
1641 * cannot be satisfied.
1642 *
1643 * Return:
1644 * Virtual address of allocated memory block on success, NULL on failure.
1645 */
1646void * __init memblock_alloc_try_nid_raw(
1647			phys_addr_t size, phys_addr_t align,
1648			phys_addr_t min_addr, phys_addr_t max_addr,
1649			int nid)
1650{
1651	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1652		     __func__, (u64)size, (u64)align, nid, &min_addr,
1653		     &max_addr, (void *)_RET_IP_);
 
 
1654
1655	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1656				       false);
 
 
 
1657}
1658
1659/**
1660 * memblock_alloc_try_nid - allocate boot memory block
1661 * @size: size of memory block to be allocated in bytes
1662 * @align: alignment of the region and block's size
1663 * @min_addr: the lower bound of the memory region from where the allocation
1664 *	  is preferred (phys address)
1665 * @max_addr: the upper bound of the memory region from where the allocation
1666 *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1667 *	      allocate only from memory limited by memblock.current_limit value
1668 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1669 *
1670 * Public function, provides additional debug information (including caller
1671 * info), if enabled. This function zeroes the allocated memory.
 
1672 *
1673 * Return:
1674 * Virtual address of allocated memory block on success, NULL on failure.
1675 */
1676void * __init memblock_alloc_try_nid(
1677			phys_addr_t size, phys_addr_t align,
1678			phys_addr_t min_addr, phys_addr_t max_addr,
1679			int nid)
1680{
1681	void *ptr;
1682
1683	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1684		     __func__, (u64)size, (u64)align, nid, &min_addr,
1685		     &max_addr, (void *)_RET_IP_);
1686	ptr = memblock_alloc_internal(size, align,
1687					   min_addr, max_addr, nid, false);
1688	if (ptr)
1689		memset(ptr, 0, size);
 
 
1690
1691	return ptr;
 
 
 
1692}
1693
1694/**
1695 * memblock_free_late - free pages directly to buddy allocator
1696 * @base: phys starting address of the  boot memory block
1697 * @size: size of the boot memory block in bytes
1698 *
1699 * This is only useful when the memblock allocator has already been torn
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1700 * down, but we are still initializing the system.  Pages are released directly
1701 * to the buddy allocator.
1702 */
1703void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
1704{
1705	phys_addr_t cursor, end;
1706
1707	end = base + size - 1;
1708	memblock_dbg("%s: [%pa-%pa] %pS\n",
1709		     __func__, &base, &end, (void *)_RET_IP_);
1710	kmemleak_free_part_phys(base, size);
1711	cursor = PFN_UP(base);
1712	end = PFN_DOWN(base + size);
1713
1714	for (; cursor < end; cursor++) {
1715		memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1716		totalram_pages_inc();
1717	}
1718}
1719
1720/*
1721 * Remaining API functions
1722 */
1723
1724phys_addr_t __init_memblock memblock_phys_mem_size(void)
1725{
1726	return memblock.memory.total_size;
1727}
1728
1729phys_addr_t __init_memblock memblock_reserved_size(void)
1730{
1731	return memblock.reserved.total_size;
1732}
1733
1734/**
1735 * memblock_estimated_nr_free_pages - return estimated number of free pages
1736 * from memblock point of view
1737 *
1738 * During bootup, subsystems might need a rough estimate of the number of free
1739 * pages in the whole system, before precise numbers are available from the
1740 * buddy. Especially with CONFIG_DEFERRED_STRUCT_PAGE_INIT, the numbers
1741 * obtained from the buddy might be very imprecise during bootup.
1742 *
1743 * Return:
1744 * An estimated number of free pages from memblock point of view.
1745 */
1746unsigned long __init memblock_estimated_nr_free_pages(void)
1747{
1748	return PHYS_PFN(memblock_phys_mem_size() - memblock_reserved_size());
 
 
 
 
 
 
 
 
 
 
 
 
1749}
1750
1751/* lowest address */
1752phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1753{
1754	return memblock.memory.regions[0].base;
1755}
1756
1757phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1758{
1759	int idx = memblock.memory.cnt - 1;
1760
1761	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1762}
1763
1764static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1765{
1766	phys_addr_t max_addr = PHYS_ADDR_MAX;
1767	struct memblock_region *r;
1768
1769	/*
1770	 * translate the memory @limit size into the max address within one of
1771	 * the memory memblock regions, if the @limit exceeds the total size
1772	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1773	 */
1774	for_each_mem_region(r) {
1775		if (limit <= r->size) {
1776			max_addr = r->base + limit;
1777			break;
1778		}
1779		limit -= r->size;
1780	}
1781
1782	return max_addr;
1783}
1784
1785void __init memblock_enforce_memory_limit(phys_addr_t limit)
1786{
1787	phys_addr_t max_addr;
1788
1789	if (!limit)
1790		return;
1791
1792	max_addr = __find_max_addr(limit);
1793
1794	/* @limit exceeds the total size of the memory, do nothing */
1795	if (max_addr == PHYS_ADDR_MAX)
1796		return;
1797
1798	/* truncate both memory and reserved regions */
1799	memblock_remove_range(&memblock.memory, max_addr,
1800			      PHYS_ADDR_MAX);
1801	memblock_remove_range(&memblock.reserved, max_addr,
1802			      PHYS_ADDR_MAX);
1803}
1804
1805void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1806{
1807	int start_rgn, end_rgn;
1808	int i, ret;
1809
1810	if (!size)
1811		return;
1812
1813	if (!memblock_memory->total_size) {
1814		pr_warn("%s: No memory registered yet\n", __func__);
1815		return;
1816	}
1817
1818	ret = memblock_isolate_range(&memblock.memory, base, size,
1819						&start_rgn, &end_rgn);
1820	if (ret)
1821		return;
1822
1823	/* remove all the MAP regions */
1824	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1825		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1826			memblock_remove_region(&memblock.memory, i);
1827
1828	for (i = start_rgn - 1; i >= 0; i--)
1829		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1830			memblock_remove_region(&memblock.memory, i);
1831
1832	/* truncate the reserved regions */
1833	memblock_remove_range(&memblock.reserved, 0, base);
1834	memblock_remove_range(&memblock.reserved,
1835			base + size, PHYS_ADDR_MAX);
1836}
1837
1838void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1839{
1840	phys_addr_t max_addr;
1841
1842	if (!limit)
1843		return;
1844
1845	max_addr = __find_max_addr(limit);
1846
1847	/* @limit exceeds the total size of the memory, do nothing */
1848	if (max_addr == PHYS_ADDR_MAX)
1849		return;
1850
1851	memblock_cap_memory_range(0, max_addr);
1852}
1853
1854static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1855{
1856	unsigned int left = 0, right = type->cnt;
1857
1858	do {
1859		unsigned int mid = (right + left) / 2;
1860
1861		if (addr < type->regions[mid].base)
1862			right = mid;
1863		else if (addr >= (type->regions[mid].base +
1864				  type->regions[mid].size))
1865			left = mid + 1;
1866		else
1867			return mid;
1868	} while (left < right);
1869	return -1;
1870}
1871
1872bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1873{
1874	return memblock_search(&memblock.reserved, addr) != -1;
1875}
1876
1877bool __init_memblock memblock_is_memory(phys_addr_t addr)
1878{
1879	return memblock_search(&memblock.memory, addr) != -1;
1880}
1881
1882bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1883{
1884	int i = memblock_search(&memblock.memory, addr);
1885
1886	if (i == -1)
1887		return false;
1888	return !memblock_is_nomap(&memblock.memory.regions[i]);
1889}
1890
 
1891int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1892			 unsigned long *start_pfn, unsigned long *end_pfn)
1893{
1894	struct memblock_type *type = &memblock.memory;
1895	int mid = memblock_search(type, PFN_PHYS(pfn));
1896
1897	if (mid == -1)
1898		return NUMA_NO_NODE;
1899
1900	*start_pfn = PFN_DOWN(type->regions[mid].base);
1901	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1902
1903	return memblock_get_region_node(&type->regions[mid]);
1904}
 
1905
1906/**
1907 * memblock_is_region_memory - check if a region is a subset of memory
1908 * @base: base of region to check
1909 * @size: size of region to check
1910 *
1911 * Check if the region [@base, @base + @size) is a subset of a memory block.
1912 *
1913 * Return:
1914 * 0 if false, non-zero if true
1915 */
1916bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1917{
1918	int idx = memblock_search(&memblock.memory, base);
1919	phys_addr_t end = base + memblock_cap_size(base, &size);
1920
1921	if (idx == -1)
1922		return false;
1923	return (memblock.memory.regions[idx].base +
1924		 memblock.memory.regions[idx].size) >= end;
1925}
1926
1927/**
1928 * memblock_is_region_reserved - check if a region intersects reserved memory
1929 * @base: base of region to check
1930 * @size: size of region to check
1931 *
1932 * Check if the region [@base, @base + @size) intersects a reserved
1933 * memory block.
1934 *
1935 * Return:
1936 * True if they intersect, false if not.
1937 */
1938bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1939{
 
1940	return memblock_overlaps_region(&memblock.reserved, base, size);
1941}
1942
1943void __init_memblock memblock_trim_memory(phys_addr_t align)
1944{
1945	phys_addr_t start, end, orig_start, orig_end;
1946	struct memblock_region *r;
1947
1948	for_each_mem_region(r) {
1949		orig_start = r->base;
1950		orig_end = r->base + r->size;
1951		start = round_up(orig_start, align);
1952		end = round_down(orig_end, align);
1953
1954		if (start == orig_start && end == orig_end)
1955			continue;
1956
1957		if (start < end) {
1958			r->base = start;
1959			r->size = end - start;
1960		} else {
1961			memblock_remove_region(&memblock.memory,
1962					       r - memblock.memory.regions);
1963			r--;
1964		}
1965	}
1966}
1967
1968void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1969{
1970	memblock.current_limit = limit;
1971}
1972
1973phys_addr_t __init_memblock memblock_get_current_limit(void)
1974{
1975	return memblock.current_limit;
1976}
1977
1978static void __init_memblock memblock_dump(struct memblock_type *type)
1979{
1980	phys_addr_t base, end, size;
1981	enum memblock_flags flags;
1982	int idx;
1983	struct memblock_region *rgn;
1984
1985	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1986
1987	for_each_memblock_type(idx, type, rgn) {
1988		char nid_buf[32] = "";
1989
1990		base = rgn->base;
1991		size = rgn->size;
1992		end = base + size - 1;
1993		flags = rgn->flags;
1994#ifdef CONFIG_NUMA
1995		if (numa_valid_node(memblock_get_region_node(rgn)))
1996			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1997				 memblock_get_region_node(rgn));
1998#endif
1999		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
2000			type->name, idx, &base, &end, &size, nid_buf, flags);
2001	}
2002}
2003
2004static void __init_memblock __memblock_dump_all(void)
2005{
2006	pr_info("MEMBLOCK configuration:\n");
2007	pr_info(" memory size = %pa reserved size = %pa\n",
2008		&memblock.memory.total_size,
2009		&memblock.reserved.total_size);
2010
2011	memblock_dump(&memblock.memory);
2012	memblock_dump(&memblock.reserved);
2013#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2014	memblock_dump(&physmem);
2015#endif
2016}
2017
2018void __init_memblock memblock_dump_all(void)
2019{
2020	if (memblock_debug)
2021		__memblock_dump_all();
2022}
2023
2024void __init memblock_allow_resize(void)
2025{
2026	memblock_can_resize = 1;
2027}
2028
2029static int __init early_memblock(char *p)
2030{
2031	if (p && strstr(p, "debug"))
2032		memblock_debug = 1;
2033	return 0;
2034}
2035early_param("memblock", early_memblock);
2036
2037static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
2038{
2039	struct page *start_pg, *end_pg;
2040	phys_addr_t pg, pgend;
2041
2042	/*
2043	 * Convert start_pfn/end_pfn to a struct page pointer.
2044	 */
2045	start_pg = pfn_to_page(start_pfn - 1) + 1;
2046	end_pg = pfn_to_page(end_pfn - 1) + 1;
2047
2048	/*
2049	 * Convert to physical addresses, and round start upwards and end
2050	 * downwards.
2051	 */
2052	pg = PAGE_ALIGN(__pa(start_pg));
2053	pgend = PAGE_ALIGN_DOWN(__pa(end_pg));
2054
2055	/*
2056	 * If there are free pages between these, free the section of the
2057	 * memmap array.
2058	 */
2059	if (pg < pgend)
2060		memblock_phys_free(pg, pgend - pg);
2061}
2062
2063/*
2064 * The mem_map array can get very big.  Free the unused area of the memory map.
2065 */
2066static void __init free_unused_memmap(void)
2067{
2068	unsigned long start, end, prev_end = 0;
2069	int i;
2070
2071	if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
2072	    IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
2073		return;
2074
2075	/*
2076	 * This relies on each bank being in address order.
2077	 * The banks are sorted previously in bootmem_init().
2078	 */
2079	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
2080#ifdef CONFIG_SPARSEMEM
2081		/*
2082		 * Take care not to free memmap entries that don't exist
2083		 * due to SPARSEMEM sections which aren't present.
2084		 */
2085		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
2086#endif
2087		/*
2088		 * Align down here since many operations in VM subsystem
2089		 * presume that there are no holes in the memory map inside
2090		 * a pageblock
2091		 */
2092		start = pageblock_start_pfn(start);
2093
2094		/*
2095		 * If we had a previous bank, and there is a space
2096		 * between the current bank and the previous, free it.
2097		 */
2098		if (prev_end && prev_end < start)
2099			free_memmap(prev_end, start);
2100
2101		/*
2102		 * Align up here since many operations in VM subsystem
2103		 * presume that there are no holes in the memory map inside
2104		 * a pageblock
2105		 */
2106		prev_end = pageblock_align(end);
2107	}
2108
2109#ifdef CONFIG_SPARSEMEM
2110	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
2111		prev_end = pageblock_align(end);
2112		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
2113	}
2114#endif
2115}
2116
2117static void __init __free_pages_memory(unsigned long start, unsigned long end)
2118{
2119	int order;
2120
2121	while (start < end) {
2122		/*
2123		 * Free the pages in the largest chunks alignment allows.
2124		 *
2125		 * __ffs() behaviour is undefined for 0. start == 0 is
2126		 * MAX_PAGE_ORDER-aligned, set order to MAX_PAGE_ORDER for
2127		 * the case.
2128		 */
2129		if (start)
2130			order = min_t(int, MAX_PAGE_ORDER, __ffs(start));
2131		else
2132			order = MAX_PAGE_ORDER;
2133
2134		while (start + (1UL << order) > end)
2135			order--;
2136
2137		memblock_free_pages(pfn_to_page(start), start, order);
2138
2139		start += (1UL << order);
2140	}
2141}
2142
2143static unsigned long __init __free_memory_core(phys_addr_t start,
2144				 phys_addr_t end)
2145{
2146	unsigned long start_pfn = PFN_UP(start);
2147	unsigned long end_pfn = min_t(unsigned long,
2148				      PFN_DOWN(end), max_low_pfn);
2149
2150	if (start_pfn >= end_pfn)
2151		return 0;
2152
2153	__free_pages_memory(start_pfn, end_pfn);
2154
2155	return end_pfn - start_pfn;
2156}
2157
2158static void __init memmap_init_reserved_pages(void)
2159{
2160	struct memblock_region *region;
2161	phys_addr_t start, end;
2162	int nid;
2163
2164	/*
2165	 * set nid on all reserved pages and also treat struct
2166	 * pages for the NOMAP regions as PageReserved
2167	 */
2168	for_each_mem_region(region) {
2169		nid = memblock_get_region_node(region);
2170		start = region->base;
2171		end = start + region->size;
2172
2173		if (memblock_is_nomap(region))
2174			reserve_bootmem_region(start, end, nid);
2175
2176		memblock_set_node(start, end, &memblock.reserved, nid);
2177	}
2178
2179	/*
2180	 * initialize struct pages for reserved regions that don't have
2181	 * the MEMBLOCK_RSRV_NOINIT flag set
2182	 */
2183	for_each_reserved_mem_region(region) {
2184		if (!memblock_is_reserved_noinit(region)) {
2185			nid = memblock_get_region_node(region);
2186			start = region->base;
2187			end = start + region->size;
2188
2189			if (!numa_valid_node(nid))
2190				nid = early_pfn_to_nid(PFN_DOWN(start));
2191
2192			reserve_bootmem_region(start, end, nid);
2193		}
2194	}
2195}
2196
2197static unsigned long __init free_low_memory_core_early(void)
2198{
2199	unsigned long count = 0;
2200	phys_addr_t start, end;
2201	u64 i;
2202
2203	memblock_clear_hotplug(0, -1);
2204
2205	memmap_init_reserved_pages();
2206
2207	/*
2208	 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2209	 *  because in some case like Node0 doesn't have RAM installed
2210	 *  low ram will be on Node1
2211	 */
2212	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2213				NULL)
2214		count += __free_memory_core(start, end);
2215
2216	return count;
2217}
2218
2219static int reset_managed_pages_done __initdata;
2220
2221static void __init reset_node_managed_pages(pg_data_t *pgdat)
2222{
2223	struct zone *z;
2224
2225	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2226		atomic_long_set(&z->managed_pages, 0);
2227}
2228
2229void __init reset_all_zones_managed_pages(void)
2230{
2231	struct pglist_data *pgdat;
2232
2233	if (reset_managed_pages_done)
2234		return;
2235
2236	for_each_online_pgdat(pgdat)
2237		reset_node_managed_pages(pgdat);
2238
2239	reset_managed_pages_done = 1;
2240}
2241
2242/**
2243 * memblock_free_all - release free pages to the buddy allocator
2244 */
2245void __init memblock_free_all(void)
2246{
2247	unsigned long pages;
2248
2249	free_unused_memmap();
2250	reset_all_zones_managed_pages();
2251
2252	pages = free_low_memory_core_early();
2253	totalram_pages_add(pages);
2254}
2255
2256/* Keep a table to reserve named memory */
2257#define RESERVE_MEM_MAX_ENTRIES		8
2258#define RESERVE_MEM_NAME_SIZE		16
2259struct reserve_mem_table {
2260	char			name[RESERVE_MEM_NAME_SIZE];
2261	phys_addr_t		start;
2262	phys_addr_t		size;
2263};
2264static struct reserve_mem_table reserved_mem_table[RESERVE_MEM_MAX_ENTRIES];
2265static int reserved_mem_count;
2266
2267/* Add wildcard region with a lookup name */
2268static void __init reserved_mem_add(phys_addr_t start, phys_addr_t size,
2269				   const char *name)
2270{
2271	struct reserve_mem_table *map;
2272
2273	map = &reserved_mem_table[reserved_mem_count++];
2274	map->start = start;
2275	map->size = size;
2276	strscpy(map->name, name);
2277}
2278
2279/**
2280 * reserve_mem_find_by_name - Find reserved memory region with a given name
2281 * @name: The name that is attached to a reserved memory region
2282 * @start: If found, holds the start address
2283 * @size: If found, holds the size of the address.
2284 *
2285 * @start and @size are only updated if @name is found.
2286 *
2287 * Returns: 1 if found or 0 if not found.
2288 */
2289int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size)
2290{
2291	struct reserve_mem_table *map;
2292	int i;
2293
2294	for (i = 0; i < reserved_mem_count; i++) {
2295		map = &reserved_mem_table[i];
2296		if (!map->size)
2297			continue;
2298		if (strcmp(name, map->name) == 0) {
2299			*start = map->start;
2300			*size = map->size;
2301			return 1;
2302		}
2303	}
2304	return 0;
2305}
2306EXPORT_SYMBOL_GPL(reserve_mem_find_by_name);
2307
2308/*
2309 * Parse reserve_mem=nn:align:name
2310 */
2311static int __init reserve_mem(char *p)
2312{
2313	phys_addr_t start, size, align, tmp;
2314	char *name;
2315	char *oldp;
2316	int len;
2317
2318	if (!p)
2319		return -EINVAL;
2320
2321	/* Check if there's room for more reserved memory */
2322	if (reserved_mem_count >= RESERVE_MEM_MAX_ENTRIES)
2323		return -EBUSY;
2324
2325	oldp = p;
2326	size = memparse(p, &p);
2327	if (!size || p == oldp)
2328		return -EINVAL;
2329
2330	if (*p != ':')
2331		return -EINVAL;
2332
2333	align = memparse(p+1, &p);
2334	if (*p != ':')
2335		return -EINVAL;
2336
2337	/*
2338	 * memblock_phys_alloc() doesn't like a zero size align,
2339	 * but it is OK for this command to have it.
2340	 */
2341	if (align < SMP_CACHE_BYTES)
2342		align = SMP_CACHE_BYTES;
2343
2344	name = p + 1;
2345	len = strlen(name);
2346
2347	/* name needs to have length but not too big */
2348	if (!len || len >= RESERVE_MEM_NAME_SIZE)
2349		return -EINVAL;
2350
2351	/* Make sure that name has text */
2352	for (p = name; *p; p++) {
2353		if (!isspace(*p))
2354			break;
2355	}
2356	if (!*p)
2357		return -EINVAL;
2358
2359	/* Make sure the name is not already used */
2360	if (reserve_mem_find_by_name(name, &start, &tmp))
2361		return -EBUSY;
2362
2363	start = memblock_phys_alloc(size, align);
2364	if (!start)
2365		return -ENOMEM;
2366
2367	reserved_mem_add(start, size, name);
2368
2369	return 1;
2370}
2371__setup("reserve_mem=", reserve_mem);
2372
2373#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2374static const char * const flagname[] = {
2375	[ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG",
2376	[ilog2(MEMBLOCK_MIRROR)] = "MIRROR",
2377	[ilog2(MEMBLOCK_NOMAP)] = "NOMAP",
2378	[ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG",
2379	[ilog2(MEMBLOCK_RSRV_NOINIT)] = "RSV_NIT",
2380};
2381
2382static int memblock_debug_show(struct seq_file *m, void *private)
2383{
2384	struct memblock_type *type = m->private;
2385	struct memblock_region *reg;
2386	int i, j, nid;
2387	unsigned int count = ARRAY_SIZE(flagname);
2388	phys_addr_t end;
2389
2390	for (i = 0; i < type->cnt; i++) {
2391		reg = &type->regions[i];
2392		end = reg->base + reg->size - 1;
2393		nid = memblock_get_region_node(reg);
2394
2395		seq_printf(m, "%4d: ", i);
2396		seq_printf(m, "%pa..%pa ", &reg->base, &end);
2397		if (numa_valid_node(nid))
2398			seq_printf(m, "%4d ", nid);
2399		else
2400			seq_printf(m, "%4c ", 'x');
2401		if (reg->flags) {
2402			for (j = 0; j < count; j++) {
2403				if (reg->flags & (1U << j)) {
2404					seq_printf(m, "%s\n", flagname[j]);
2405					break;
2406				}
2407			}
2408			if (j == count)
2409				seq_printf(m, "%s\n", "UNKNOWN");
2410		} else {
2411			seq_printf(m, "%s\n", "NONE");
2412		}
2413	}
2414	return 0;
2415}
2416DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2417
2418static int __init memblock_init_debugfs(void)
2419{
2420	struct dentry *root = debugfs_create_dir("memblock", NULL);
2421
2422	debugfs_create_file("memory", 0444, root,
2423			    &memblock.memory, &memblock_debug_fops);
2424	debugfs_create_file("reserved", 0444, root,
2425			    &memblock.reserved, &memblock_debug_fops);
2426#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2427	debugfs_create_file("physmem", 0444, root, &physmem,
2428			    &memblock_debug_fops);
2429#endif
2430
2431	return 0;
2432}
2433__initcall(memblock_init_debugfs);
2434
2435#endif /* CONFIG_DEBUG_FS */