Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3 * All Rights Reserved.
  4 *
  5 * This program is free software; you can redistribute it and/or
  6 * modify it under the terms of the GNU General Public License as
  7 * published by the Free Software Foundation.
  8 *
  9 * This program is distributed in the hope that it would be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write the Free Software Foundation,
 16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 17 */
 18#include <linux/log2.h>
 19
 20#include "xfs.h"
 21#include "xfs_fs.h"
 
 22#include "xfs_format.h"
 23#include "xfs_log_format.h"
 24#include "xfs_trans_resv.h"
 25#include "xfs_mount.h"
 26#include "xfs_inode.h"
 27#include "xfs_trans.h"
 28#include "xfs_inode_item.h"
 29#include "xfs_btree.h"
 30#include "xfs_bmap_btree.h"
 31#include "xfs_bmap.h"
 32#include "xfs_error.h"
 33#include "xfs_trace.h"
 34#include "xfs_attr_sf.h"
 35#include "xfs_da_format.h"
 36#include "xfs_da_btree.h"
 37#include "xfs_dir2_priv.h"
 38#include "xfs_attr_leaf.h"
 39#include "xfs_shared.h"
 40
 41kmem_zone_t *xfs_ifork_zone;
 42
 43STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
 44STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
 45STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
 46
 47/*
 48 * Copy inode type and data and attr format specific information from the
 49 * on-disk inode to the in-core inode and fork structures.  For fifos, devices,
 50 * and sockets this means set i_rdev to the proper value.  For files,
 51 * directories, and symlinks this means to bring in the in-line data or extent
 52 * pointers as well as the attribute fork.  For a fork in B-tree format, only
 53 * the root is immediately brought in-core.  The rest will be read in later when
 54 * first referenced (see xfs_iread_extents()).
 55 */
 56int
 57xfs_iformat_fork(
 58	struct xfs_inode	*ip,
 59	struct xfs_dinode	*dip)
 60{
 61	struct inode		*inode = VFS_I(ip);
 62	struct xfs_attr_shortform *atp;
 63	int			size;
 64	int			error = 0;
 65	xfs_fsize_t             di_size;
 66
 67	switch (inode->i_mode & S_IFMT) {
 68	case S_IFIFO:
 69	case S_IFCHR:
 70	case S_IFBLK:
 71	case S_IFSOCK:
 72		ip->i_d.di_size = 0;
 73		inode->i_rdev = xfs_to_linux_dev_t(xfs_dinode_get_rdev(dip));
 74		break;
 75
 76	case S_IFREG:
 77	case S_IFLNK:
 78	case S_IFDIR:
 79		switch (dip->di_format) {
 80		case XFS_DINODE_FMT_LOCAL:
 81			di_size = be64_to_cpu(dip->di_size);
 82			size = (int)di_size;
 83			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
 84			break;
 85		case XFS_DINODE_FMT_EXTENTS:
 86			error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
 87			break;
 88		case XFS_DINODE_FMT_BTREE:
 89			error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
 90			break;
 91		default:
 92			return -EFSCORRUPTED;
 93		}
 94		break;
 95
 96	default:
 97		return -EFSCORRUPTED;
 98	}
 99	if (error)
100		return error;
101
102	if (xfs_is_reflink_inode(ip)) {
103		ASSERT(ip->i_cowfp == NULL);
104		xfs_ifork_init_cow(ip);
105	}
106
107	if (!XFS_DFORK_Q(dip))
108		return 0;
109
110	ASSERT(ip->i_afp == NULL);
111	ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
112
113	switch (dip->di_aformat) {
114	case XFS_DINODE_FMT_LOCAL:
115		atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
116		size = be16_to_cpu(atp->hdr.totsize);
117
118		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
119		break;
120	case XFS_DINODE_FMT_EXTENTS:
121		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
122		break;
123	case XFS_DINODE_FMT_BTREE:
124		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
125		break;
126	default:
127		error = -EFSCORRUPTED;
128		break;
129	}
130	if (error) {
131		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
132		ip->i_afp = NULL;
133		if (ip->i_cowfp)
134			kmem_zone_free(xfs_ifork_zone, ip->i_cowfp);
135		ip->i_cowfp = NULL;
136		xfs_idestroy_fork(ip, XFS_DATA_FORK);
137	}
138	return error;
139}
140
141void
142xfs_init_local_fork(
143	struct xfs_inode	*ip,
144	int			whichfork,
145	const void		*data,
146	int			size)
147{
148	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, whichfork);
149	int			mem_size = size, real_size = 0;
150	bool			zero_terminate;
151
152	/*
153	 * If we are using the local fork to store a symlink body we need to
154	 * zero-terminate it so that we can pass it back to the VFS directly.
155	 * Overallocate the in-memory fork by one for that and add a zero
156	 * to terminate it below.
157	 */
158	zero_terminate = S_ISLNK(VFS_I(ip)->i_mode);
159	if (zero_terminate)
160		mem_size++;
161
162	if (size) {
163		real_size = roundup(mem_size, 4);
164		ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
165		memcpy(ifp->if_u1.if_data, data, size);
166		if (zero_terminate)
167			ifp->if_u1.if_data[size] = '\0';
168	} else {
169		ifp->if_u1.if_data = NULL;
170	}
171
172	ifp->if_bytes = size;
173	ifp->if_real_bytes = real_size;
174	ifp->if_flags &= ~(XFS_IFEXTENTS | XFS_IFBROOT);
175	ifp->if_flags |= XFS_IFINLINE;
176}
177
178/*
179 * The file is in-lined in the on-disk inode.
180 */
181STATIC int
182xfs_iformat_local(
183	xfs_inode_t	*ip,
184	xfs_dinode_t	*dip,
185	int		whichfork,
186	int		size)
187{
188	/*
189	 * If the size is unreasonable, then something
190	 * is wrong and we just bail out rather than crash in
191	 * kmem_alloc() or memcpy() below.
192	 */
193	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
194		xfs_warn(ip->i_mount,
195	"corrupt inode %Lu (bad size %d for local fork, size = %d).",
196			(unsigned long long) ip->i_ino, size,
197			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
198		xfs_inode_verifier_error(ip, -EFSCORRUPTED,
199				"xfs_iformat_local", dip, sizeof(*dip),
200				__this_address);
201		return -EFSCORRUPTED;
202	}
203
204	xfs_init_local_fork(ip, whichfork, XFS_DFORK_PTR(dip, whichfork), size);
205	return 0;
206}
207
208/*
209 * The file consists of a set of extents all of which fit into the on-disk
210 * inode.
211 */
212STATIC int
213xfs_iformat_extents(
214	struct xfs_inode	*ip,
215	struct xfs_dinode	*dip,
216	int			whichfork)
217{
218	struct xfs_mount	*mp = ip->i_mount;
219	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, whichfork);
220	int			state = xfs_bmap_fork_to_state(whichfork);
221	int			nex = XFS_DFORK_NEXTENTS(dip, whichfork);
222	int			size = nex * sizeof(xfs_bmbt_rec_t);
223	struct xfs_iext_cursor	icur;
224	struct xfs_bmbt_rec	*dp;
225	struct xfs_bmbt_irec	new;
226	int			i;
227
228	/*
229	 * If the number of extents is unreasonable, then something is wrong and
230	 * we just bail out rather than crash in kmem_alloc() or memcpy() below.
231	 */
232	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, mp, whichfork))) {
233		xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
234			(unsigned long long) ip->i_ino, nex);
235		xfs_inode_verifier_error(ip, -EFSCORRUPTED,
236				"xfs_iformat_extents(1)", dip, sizeof(*dip),
237				__this_address);
238		return -EFSCORRUPTED;
239	}
240
241	ifp->if_real_bytes = 0;
242	ifp->if_bytes = 0;
243	ifp->if_u1.if_root = NULL;
244	ifp->if_height = 0;
245	if (size) {
246		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
247
248		xfs_iext_first(ifp, &icur);
249		for (i = 0; i < nex; i++, dp++) {
250			xfs_failaddr_t	fa;
251
252			xfs_bmbt_disk_get_all(dp, &new);
253			fa = xfs_bmap_validate_extent(ip, whichfork, &new);
254			if (fa) {
255				xfs_inode_verifier_error(ip, -EFSCORRUPTED,
256						"xfs_iformat_extents(2)",
257						dp, sizeof(*dp), fa);
258				return -EFSCORRUPTED;
259			}
260
261			xfs_iext_insert(ip, &icur, &new, state);
262			trace_xfs_read_extent(ip, &icur, state, _THIS_IP_);
263			xfs_iext_next(ifp, &icur);
264		}
265	}
266	ifp->if_flags |= XFS_IFEXTENTS;
267	return 0;
268}
269
270/*
271 * The file has too many extents to fit into
272 * the inode, so they are in B-tree format.
273 * Allocate a buffer for the root of the B-tree
274 * and copy the root into it.  The i_extents
275 * field will remain NULL until all of the
276 * extents are read in (when they are needed).
277 */
278STATIC int
279xfs_iformat_btree(
280	xfs_inode_t		*ip,
281	xfs_dinode_t		*dip,
282	int			whichfork)
283{
284	struct xfs_mount	*mp = ip->i_mount;
285	xfs_bmdr_block_t	*dfp;
286	xfs_ifork_t		*ifp;
287	/* REFERENCED */
288	int			nrecs;
289	int			size;
290	int			level;
291
292	ifp = XFS_IFORK_PTR(ip, whichfork);
293	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
294	size = XFS_BMAP_BROOT_SPACE(mp, dfp);
295	nrecs = be16_to_cpu(dfp->bb_numrecs);
296	level = be16_to_cpu(dfp->bb_level);
297
298	/*
299	 * blow out if -- fork has less extents than can fit in
300	 * fork (fork shouldn't be a btree format), root btree
301	 * block has more records than can fit into the fork,
302	 * or the number of extents is greater than the number of
303	 * blocks.
304	 */
305	if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <=
306					XFS_IFORK_MAXEXT(ip, whichfork) ||
307		     nrecs == 0 ||
308		     XFS_BMDR_SPACE_CALC(nrecs) >
309					XFS_DFORK_SIZE(dip, mp, whichfork) ||
310		     XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks) ||
311		     level == 0 || level > XFS_BTREE_MAXLEVELS) {
312		xfs_warn(mp, "corrupt inode %Lu (btree).",
313					(unsigned long long) ip->i_ino);
314		xfs_inode_verifier_error(ip, -EFSCORRUPTED,
315				"xfs_iformat_btree", dfp, size,
316				__this_address);
317		return -EFSCORRUPTED;
318	}
319
320	ifp->if_broot_bytes = size;
321	ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
322	ASSERT(ifp->if_broot != NULL);
323	/*
324	 * Copy and convert from the on-disk structure
325	 * to the in-memory structure.
326	 */
327	xfs_bmdr_to_bmbt(ip, dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
328			 ifp->if_broot, size);
329	ifp->if_flags &= ~XFS_IFEXTENTS;
330	ifp->if_flags |= XFS_IFBROOT;
331
332	ifp->if_real_bytes = 0;
333	ifp->if_bytes = 0;
334	ifp->if_u1.if_root = NULL;
335	ifp->if_height = 0;
336	return 0;
337}
338
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
339/*
340 * Reallocate the space for if_broot based on the number of records
341 * being added or deleted as indicated in rec_diff.  Move the records
342 * and pointers in if_broot to fit the new size.  When shrinking this
343 * will eliminate holes between the records and pointers created by
344 * the caller.  When growing this will create holes to be filled in
345 * by the caller.
346 *
347 * The caller must not request to add more records than would fit in
348 * the on-disk inode root.  If the if_broot is currently NULL, then
349 * if we are adding records, one will be allocated.  The caller must also
350 * not request that the number of records go below zero, although
351 * it can go to zero.
352 *
353 * ip -- the inode whose if_broot area is changing
354 * ext_diff -- the change in the number of records, positive or negative,
355 *	 requested for the if_broot array.
356 */
357void
358xfs_iroot_realloc(
359	xfs_inode_t		*ip,
360	int			rec_diff,
361	int			whichfork)
362{
363	struct xfs_mount	*mp = ip->i_mount;
364	int			cur_max;
365	xfs_ifork_t		*ifp;
366	struct xfs_btree_block	*new_broot;
367	int			new_max;
368	size_t			new_size;
369	char			*np;
370	char			*op;
371
372	/*
373	 * Handle the degenerate case quietly.
374	 */
375	if (rec_diff == 0) {
376		return;
377	}
378
379	ifp = XFS_IFORK_PTR(ip, whichfork);
380	if (rec_diff > 0) {
381		/*
382		 * If there wasn't any memory allocated before, just
383		 * allocate it now and get out.
384		 */
385		if (ifp->if_broot_bytes == 0) {
386			new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, rec_diff);
387			ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
388			ifp->if_broot_bytes = (int)new_size;
389			return;
390		}
391
392		/*
393		 * If there is already an existing if_broot, then we need
394		 * to realloc() it and shift the pointers to their new
395		 * location.  The records don't change location because
396		 * they are kept butted up against the btree block header.
397		 */
398		cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
399		new_max = cur_max + rec_diff;
400		new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max);
401		ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
402				KM_SLEEP | KM_NOFS);
403		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
404						     ifp->if_broot_bytes);
405		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
406						     (int)new_size);
407		ifp->if_broot_bytes = (int)new_size;
408		ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
409			XFS_IFORK_SIZE(ip, whichfork));
410		memmove(np, op, cur_max * (uint)sizeof(xfs_fsblock_t));
411		return;
412	}
413
414	/*
415	 * rec_diff is less than 0.  In this case, we are shrinking the
416	 * if_broot buffer.  It must already exist.  If we go to zero
417	 * records, just get rid of the root and clear the status bit.
418	 */
419	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
420	cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
421	new_max = cur_max + rec_diff;
422	ASSERT(new_max >= 0);
423	if (new_max > 0)
424		new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max);
425	else
426		new_size = 0;
427	if (new_size > 0) {
428		new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
429		/*
430		 * First copy over the btree block header.
431		 */
432		memcpy(new_broot, ifp->if_broot,
433			XFS_BMBT_BLOCK_LEN(ip->i_mount));
434	} else {
435		new_broot = NULL;
436		ifp->if_flags &= ~XFS_IFBROOT;
437	}
438
439	/*
440	 * Only copy the records and pointers if there are any.
441	 */
442	if (new_max > 0) {
443		/*
444		 * First copy the records.
445		 */
446		op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
447		np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
448		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
449
450		/*
451		 * Then copy the pointers.
452		 */
453		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
454						     ifp->if_broot_bytes);
455		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
456						     (int)new_size);
457		memcpy(np, op, new_max * (uint)sizeof(xfs_fsblock_t));
458	}
459	kmem_free(ifp->if_broot);
460	ifp->if_broot = new_broot;
461	ifp->if_broot_bytes = (int)new_size;
462	if (ifp->if_broot)
463		ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
464			XFS_IFORK_SIZE(ip, whichfork));
465	return;
466}
467
468
469/*
470 * This is called when the amount of space needed for if_data
471 * is increased or decreased.  The change in size is indicated by
472 * the number of bytes that need to be added or deleted in the
473 * byte_diff parameter.
474 *
475 * If the amount of space needed has decreased below the size of the
476 * inline buffer, then switch to using the inline buffer.  Otherwise,
477 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
478 * to what is needed.
479 *
480 * ip -- the inode whose if_data area is changing
481 * byte_diff -- the change in the number of bytes, positive or negative,
482 *	 requested for the if_data array.
483 */
484void
485xfs_idata_realloc(
486	xfs_inode_t	*ip,
487	int		byte_diff,
488	int		whichfork)
489{
490	xfs_ifork_t	*ifp;
491	int		new_size;
492	int		real_size;
493
494	if (byte_diff == 0) {
495		return;
496	}
497
498	ifp = XFS_IFORK_PTR(ip, whichfork);
499	new_size = (int)ifp->if_bytes + byte_diff;
500	ASSERT(new_size >= 0);
 
 
 
 
501
502	if (new_size == 0) {
503		kmem_free(ifp->if_u1.if_data);
504		ifp->if_u1.if_data = NULL;
505		real_size = 0;
506	} else {
507		/*
508		 * Stuck with malloc/realloc.
509		 * For inline data, the underlying buffer must be
510		 * a multiple of 4 bytes in size so that it can be
511		 * logged and stay on word boundaries.  We enforce
512		 * that here.
513		 */
514		real_size = roundup(new_size, 4);
515		if (ifp->if_u1.if_data == NULL) {
516			ASSERT(ifp->if_real_bytes == 0);
517			ifp->if_u1.if_data = kmem_alloc(real_size,
518							KM_SLEEP | KM_NOFS);
519		} else {
520			/*
521			 * Only do the realloc if the underlying size
522			 * is really changing.
523			 */
524			if (ifp->if_real_bytes != real_size) {
525				ifp->if_u1.if_data =
526					kmem_realloc(ifp->if_u1.if_data,
527							real_size,
528							KM_SLEEP | KM_NOFS);
529			}
530		}
531	}
532	ifp->if_real_bytes = real_size;
 
 
533	ifp->if_bytes = new_size;
534	ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
535}
536
537void
538xfs_idestroy_fork(
539	xfs_inode_t	*ip,
540	int		whichfork)
541{
542	xfs_ifork_t	*ifp;
543
544	ifp = XFS_IFORK_PTR(ip, whichfork);
545	if (ifp->if_broot != NULL) {
546		kmem_free(ifp->if_broot);
547		ifp->if_broot = NULL;
548	}
549
550	/*
551	 * If the format is local, then we can't have an extents
552	 * array so just look for an inline data array.  If we're
553	 * not local then we may or may not have an extents list,
554	 * so check and free it up if we do.
555	 */
556	if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
557		if (ifp->if_u1.if_data != NULL) {
558			ASSERT(ifp->if_real_bytes != 0);
559			kmem_free(ifp->if_u1.if_data);
560			ifp->if_u1.if_data = NULL;
561			ifp->if_real_bytes = 0;
562		}
563	} else if ((ifp->if_flags & XFS_IFEXTENTS) && ifp->if_height) {
564		xfs_iext_destroy(ifp);
565	}
566
567	ASSERT(ifp->if_real_bytes == 0);
568
569	if (whichfork == XFS_ATTR_FORK) {
570		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
571		ip->i_afp = NULL;
572	} else if (whichfork == XFS_COW_FORK) {
573		kmem_zone_free(xfs_ifork_zone, ip->i_cowfp);
574		ip->i_cowfp = NULL;
575	}
576}
577
578/*
579 * Convert in-core extents to on-disk form
580 *
581 * In the case of the data fork, the in-core and on-disk fork sizes can be
582 * different due to delayed allocation extents. We only copy on-disk extents
583 * here, so callers must always use the physical fork size to determine the
584 * size of the buffer passed to this routine.  We will return the size actually
585 * used.
586 */
587int
588xfs_iextents_copy(
589	struct xfs_inode	*ip,
590	struct xfs_bmbt_rec	*dp,
591	int			whichfork)
592{
593	int			state = xfs_bmap_fork_to_state(whichfork);
594	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, whichfork);
595	struct xfs_iext_cursor	icur;
596	struct xfs_bmbt_irec	rec;
597	int			copied = 0;
598
599	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED));
600	ASSERT(ifp->if_bytes > 0);
601
602	for_each_xfs_iext(ifp, &icur, &rec) {
603		if (isnullstartblock(rec.br_startblock))
604			continue;
605		ASSERT(xfs_bmap_validate_extent(ip, whichfork, &rec) == NULL);
606		xfs_bmbt_disk_set_all(dp, &rec);
607		trace_xfs_write_extent(ip, &icur, state, _RET_IP_);
608		copied += sizeof(struct xfs_bmbt_rec);
609		dp++;
610	}
611
612	ASSERT(copied > 0);
613	ASSERT(copied <= ifp->if_bytes);
614	return copied;
615}
616
617/*
618 * Each of the following cases stores data into the same region
619 * of the on-disk inode, so only one of them can be valid at
620 * any given time. While it is possible to have conflicting formats
621 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
622 * in EXTENTS format, this can only happen when the fork has
623 * changed formats after being modified but before being flushed.
624 * In these cases, the format always takes precedence, because the
625 * format indicates the current state of the fork.
626 */
627void
628xfs_iflush_fork(
629	xfs_inode_t		*ip,
630	xfs_dinode_t		*dip,
631	xfs_inode_log_item_t	*iip,
632	int			whichfork)
633{
634	char			*cp;
635	xfs_ifork_t		*ifp;
636	xfs_mount_t		*mp;
637	static const short	brootflag[2] =
638		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
639	static const short	dataflag[2] =
640		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
641	static const short	extflag[2] =
642		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
643
644	if (!iip)
645		return;
646	ifp = XFS_IFORK_PTR(ip, whichfork);
647	/*
648	 * This can happen if we gave up in iformat in an error path,
649	 * for the attribute fork.
650	 */
651	if (!ifp) {
652		ASSERT(whichfork == XFS_ATTR_FORK);
653		return;
654	}
655	cp = XFS_DFORK_PTR(dip, whichfork);
656	mp = ip->i_mount;
657	switch (XFS_IFORK_FORMAT(ip, whichfork)) {
658	case XFS_DINODE_FMT_LOCAL:
659		if ((iip->ili_fields & dataflag[whichfork]) &&
660		    (ifp->if_bytes > 0)) {
661			ASSERT(ifp->if_u1.if_data != NULL);
662			ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
663			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
664		}
665		break;
666
667	case XFS_DINODE_FMT_EXTENTS:
668		ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
669		       !(iip->ili_fields & extflag[whichfork]));
670		if ((iip->ili_fields & extflag[whichfork]) &&
671		    (ifp->if_bytes > 0)) {
672			ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
673			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
674				whichfork);
675		}
676		break;
677
678	case XFS_DINODE_FMT_BTREE:
679		if ((iip->ili_fields & brootflag[whichfork]) &&
680		    (ifp->if_broot_bytes > 0)) {
681			ASSERT(ifp->if_broot != NULL);
682			ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
683			        XFS_IFORK_SIZE(ip, whichfork));
684			xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
685				(xfs_bmdr_block_t *)cp,
686				XFS_DFORK_SIZE(dip, mp, whichfork));
687		}
688		break;
689
690	case XFS_DINODE_FMT_DEV:
691		if (iip->ili_fields & XFS_ILOG_DEV) {
692			ASSERT(whichfork == XFS_DATA_FORK);
693			xfs_dinode_put_rdev(dip,
694					linux_to_xfs_dev_t(VFS_I(ip)->i_rdev));
695		}
696		break;
697
698	default:
699		ASSERT(0);
700		break;
701	}
702}
703
704/* Convert bmap state flags to an inode fork. */
705struct xfs_ifork *
706xfs_iext_state_to_fork(
707	struct xfs_inode	*ip,
708	int			state)
709{
710	if (state & BMAP_COWFORK)
711		return ip->i_cowfp;
712	else if (state & BMAP_ATTRFORK)
713		return ip->i_afp;
714	return &ip->i_df;
715}
716
717/*
718 * Initialize an inode's copy-on-write fork.
719 */
720void
721xfs_ifork_init_cow(
722	struct xfs_inode	*ip)
723{
724	if (ip->i_cowfp)
725		return;
726
727	ip->i_cowfp = kmem_zone_zalloc(xfs_ifork_zone,
728				       KM_SLEEP | KM_NOFS);
729	ip->i_cowfp->if_flags = XFS_IFEXTENTS;
730	ip->i_cformat = XFS_DINODE_FMT_EXTENTS;
731	ip->i_cnextents = 0;
732}
733
734/* Default fork content verifiers. */
735struct xfs_ifork_ops xfs_default_ifork_ops = {
736	.verify_attr	= xfs_attr_shortform_verify,
737	.verify_dir	= xfs_dir2_sf_verify,
738	.verify_symlink	= xfs_symlink_shortform_verify,
739};
740
741/* Verify the inline contents of the data fork of an inode. */
742xfs_failaddr_t
743xfs_ifork_verify_data(
744	struct xfs_inode	*ip,
745	struct xfs_ifork_ops	*ops)
746{
747	/* Non-local data fork, we're done. */
748	if (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL)
749		return NULL;
750
751	/* Check the inline data fork if there is one. */
752	switch (VFS_I(ip)->i_mode & S_IFMT) {
753	case S_IFDIR:
754		return ops->verify_dir(ip);
 
755	case S_IFLNK:
756		return ops->verify_symlink(ip);
 
757	default:
758		return NULL;
759	}
 
 
 
 
 
 
 
 
760}
761
762/* Verify the inline contents of the attr fork of an inode. */
763xfs_failaddr_t
764xfs_ifork_verify_attr(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
765	struct xfs_inode	*ip,
766	struct xfs_ifork_ops	*ops)
 
767{
768	/* There has to be an attr fork allocated if aformat is local. */
769	if (ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)
770		return NULL;
771	if (!XFS_IFORK_PTR(ip, XFS_ATTR_FORK))
772		return __this_address;
773	return ops->verify_attr(ip);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
774}
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
  5 */
 
  6
  7#include "xfs.h"
  8#include "xfs_fs.h"
  9#include "xfs_shared.h"
 10#include "xfs_format.h"
 11#include "xfs_log_format.h"
 12#include "xfs_trans_resv.h"
 13#include "xfs_mount.h"
 14#include "xfs_inode.h"
 15#include "xfs_trans.h"
 16#include "xfs_inode_item.h"
 17#include "xfs_btree.h"
 18#include "xfs_bmap_btree.h"
 19#include "xfs_bmap.h"
 20#include "xfs_error.h"
 21#include "xfs_trace.h"
 
 22#include "xfs_da_format.h"
 23#include "xfs_da_btree.h"
 24#include "xfs_dir2_priv.h"
 25#include "xfs_attr_leaf.h"
 26#include "xfs_types.h"
 27#include "xfs_errortag.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 28
 29struct kmem_cache *xfs_ifork_cache;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 30
 31void
 32xfs_init_local_fork(
 33	struct xfs_inode	*ip,
 34	int			whichfork,
 35	const void		*data,
 36	int64_t			size)
 37{
 38	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
 39	int			mem_size = size;
 40	bool			zero_terminate;
 41
 42	/*
 43	 * If we are using the local fork to store a symlink body we need to
 44	 * zero-terminate it so that we can pass it back to the VFS directly.
 45	 * Overallocate the in-memory fork by one for that and add a zero
 46	 * to terminate it below.
 47	 */
 48	zero_terminate = S_ISLNK(VFS_I(ip)->i_mode);
 49	if (zero_terminate)
 50		mem_size++;
 51
 52	if (size) {
 53		ifp->if_u1.if_data = kmem_alloc(mem_size, KM_NOFS);
 
 54		memcpy(ifp->if_u1.if_data, data, size);
 55		if (zero_terminate)
 56			ifp->if_u1.if_data[size] = '\0';
 57	} else {
 58		ifp->if_u1.if_data = NULL;
 59	}
 60
 61	ifp->if_bytes = size;
 
 
 
 62}
 63
 64/*
 65 * The file is in-lined in the on-disk inode.
 66 */
 67STATIC int
 68xfs_iformat_local(
 69	struct xfs_inode	*ip,
 70	struct xfs_dinode	*dip,
 71	int			whichfork,
 72	int			size)
 73{
 74	/*
 75	 * If the size is unreasonable, then something
 76	 * is wrong and we just bail out rather than crash in
 77	 * kmem_alloc() or memcpy() below.
 78	 */
 79	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
 80		xfs_warn(ip->i_mount,
 81	"corrupt inode %llu (bad size %d for local fork, size = %zd).",
 82			(unsigned long long) ip->i_ino, size,
 83			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
 84		xfs_inode_verifier_error(ip, -EFSCORRUPTED,
 85				"xfs_iformat_local", dip, sizeof(*dip),
 86				__this_address);
 87		return -EFSCORRUPTED;
 88	}
 89
 90	xfs_init_local_fork(ip, whichfork, XFS_DFORK_PTR(dip, whichfork), size);
 91	return 0;
 92}
 93
 94/*
 95 * The file consists of a set of extents all of which fit into the on-disk
 96 * inode.
 97 */
 98STATIC int
 99xfs_iformat_extents(
100	struct xfs_inode	*ip,
101	struct xfs_dinode	*dip,
102	int			whichfork)
103{
104	struct xfs_mount	*mp = ip->i_mount;
105	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
106	int			state = xfs_bmap_fork_to_state(whichfork);
107	xfs_extnum_t		nex = xfs_dfork_nextents(dip, whichfork);
108	int			size = nex * sizeof(xfs_bmbt_rec_t);
109	struct xfs_iext_cursor	icur;
110	struct xfs_bmbt_rec	*dp;
111	struct xfs_bmbt_irec	new;
112	int			i;
113
114	/*
115	 * If the number of extents is unreasonable, then something is wrong and
116	 * we just bail out rather than crash in kmem_alloc() or memcpy() below.
117	 */
118	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, mp, whichfork))) {
119		xfs_warn(ip->i_mount, "corrupt inode %llu ((a)extents = %llu).",
120			ip->i_ino, nex);
121		xfs_inode_verifier_error(ip, -EFSCORRUPTED,
122				"xfs_iformat_extents(1)", dip, sizeof(*dip),
123				__this_address);
124		return -EFSCORRUPTED;
125	}
126
 
127	ifp->if_bytes = 0;
128	ifp->if_u1.if_root = NULL;
129	ifp->if_height = 0;
130	if (size) {
131		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
132
133		xfs_iext_first(ifp, &icur);
134		for (i = 0; i < nex; i++, dp++) {
135			xfs_failaddr_t	fa;
136
137			xfs_bmbt_disk_get_all(dp, &new);
138			fa = xfs_bmap_validate_extent(ip, whichfork, &new);
139			if (fa) {
140				xfs_inode_verifier_error(ip, -EFSCORRUPTED,
141						"xfs_iformat_extents(2)",
142						dp, sizeof(*dp), fa);
143				return -EFSCORRUPTED;
144			}
145
146			xfs_iext_insert(ip, &icur, &new, state);
147			trace_xfs_read_extent(ip, &icur, state, _THIS_IP_);
148			xfs_iext_next(ifp, &icur);
149		}
150	}
 
151	return 0;
152}
153
154/*
155 * The file has too many extents to fit into
156 * the inode, so they are in B-tree format.
157 * Allocate a buffer for the root of the B-tree
158 * and copy the root into it.  The i_extents
159 * field will remain NULL until all of the
160 * extents are read in (when they are needed).
161 */
162STATIC int
163xfs_iformat_btree(
164	struct xfs_inode	*ip,
165	struct xfs_dinode	*dip,
166	int			whichfork)
167{
168	struct xfs_mount	*mp = ip->i_mount;
169	xfs_bmdr_block_t	*dfp;
170	struct xfs_ifork	*ifp;
171	/* REFERENCED */
172	int			nrecs;
173	int			size;
174	int			level;
175
176	ifp = xfs_ifork_ptr(ip, whichfork);
177	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
178	size = XFS_BMAP_BROOT_SPACE(mp, dfp);
179	nrecs = be16_to_cpu(dfp->bb_numrecs);
180	level = be16_to_cpu(dfp->bb_level);
181
182	/*
183	 * blow out if -- fork has less extents than can fit in
184	 * fork (fork shouldn't be a btree format), root btree
185	 * block has more records than can fit into the fork,
186	 * or the number of extents is greater than the number of
187	 * blocks.
188	 */
189	if (unlikely(ifp->if_nextents <= XFS_IFORK_MAXEXT(ip, whichfork) ||
 
190		     nrecs == 0 ||
191		     XFS_BMDR_SPACE_CALC(nrecs) >
192					XFS_DFORK_SIZE(dip, mp, whichfork) ||
193		     ifp->if_nextents > ip->i_nblocks) ||
194		     level == 0 || level > XFS_BM_MAXLEVELS(mp, whichfork)) {
195		xfs_warn(mp, "corrupt inode %llu (btree).",
196					(unsigned long long) ip->i_ino);
197		xfs_inode_verifier_error(ip, -EFSCORRUPTED,
198				"xfs_iformat_btree", dfp, size,
199				__this_address);
200		return -EFSCORRUPTED;
201	}
202
203	ifp->if_broot_bytes = size;
204	ifp->if_broot = kmem_alloc(size, KM_NOFS);
205	ASSERT(ifp->if_broot != NULL);
206	/*
207	 * Copy and convert from the on-disk structure
208	 * to the in-memory structure.
209	 */
210	xfs_bmdr_to_bmbt(ip, dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
211			 ifp->if_broot, size);
 
 
212
 
213	ifp->if_bytes = 0;
214	ifp->if_u1.if_root = NULL;
215	ifp->if_height = 0;
216	return 0;
217}
218
219int
220xfs_iformat_data_fork(
221	struct xfs_inode	*ip,
222	struct xfs_dinode	*dip)
223{
224	struct inode		*inode = VFS_I(ip);
225	int			error;
226
227	/*
228	 * Initialize the extent count early, as the per-format routines may
229	 * depend on it.
230	 */
231	ip->i_df.if_format = dip->di_format;
232	ip->i_df.if_nextents = xfs_dfork_data_extents(dip);
233
234	switch (inode->i_mode & S_IFMT) {
235	case S_IFIFO:
236	case S_IFCHR:
237	case S_IFBLK:
238	case S_IFSOCK:
239		ip->i_disk_size = 0;
240		inode->i_rdev = xfs_to_linux_dev_t(xfs_dinode_get_rdev(dip));
241		return 0;
242	case S_IFREG:
243	case S_IFLNK:
244	case S_IFDIR:
245		switch (ip->i_df.if_format) {
246		case XFS_DINODE_FMT_LOCAL:
247			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK,
248					be64_to_cpu(dip->di_size));
249			if (!error)
250				error = xfs_ifork_verify_local_data(ip);
251			return error;
252		case XFS_DINODE_FMT_EXTENTS:
253			return xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
254		case XFS_DINODE_FMT_BTREE:
255			return xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
256		default:
257			xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__,
258					dip, sizeof(*dip), __this_address);
259			return -EFSCORRUPTED;
260		}
261		break;
262	default:
263		xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
264				sizeof(*dip), __this_address);
265		return -EFSCORRUPTED;
266	}
267}
268
269static uint16_t
270xfs_dfork_attr_shortform_size(
271	struct xfs_dinode		*dip)
272{
273	struct xfs_attr_shortform	*atp =
274		(struct xfs_attr_shortform *)XFS_DFORK_APTR(dip);
275
276	return be16_to_cpu(atp->hdr.totsize);
277}
278
279void
280xfs_ifork_init_attr(
281	struct xfs_inode	*ip,
282	enum xfs_dinode_fmt	format,
283	xfs_extnum_t		nextents)
284{
285	ip->i_af.if_format = format;
286	ip->i_af.if_nextents = nextents;
287}
288
289void
290xfs_ifork_zap_attr(
291	struct xfs_inode	*ip)
292{
293	xfs_idestroy_fork(&ip->i_af);
294	memset(&ip->i_af, 0, sizeof(struct xfs_ifork));
295	ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS;
296}
297
298int
299xfs_iformat_attr_fork(
300	struct xfs_inode	*ip,
301	struct xfs_dinode	*dip)
302{
303	xfs_extnum_t		naextents = xfs_dfork_attr_extents(dip);
304	int			error = 0;
305
306	/*
307	 * Initialize the extent count early, as the per-format routines may
308	 * depend on it.
309	 */
310	xfs_ifork_init_attr(ip, dip->di_aformat, naextents);
311
312	switch (ip->i_af.if_format) {
313	case XFS_DINODE_FMT_LOCAL:
314		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK,
315				xfs_dfork_attr_shortform_size(dip));
316		if (!error)
317			error = xfs_ifork_verify_local_attr(ip);
318		break;
319	case XFS_DINODE_FMT_EXTENTS:
320		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
321		break;
322	case XFS_DINODE_FMT_BTREE:
323		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
324		break;
325	default:
326		xfs_inode_verifier_error(ip, error, __func__, dip,
327				sizeof(*dip), __this_address);
328		error = -EFSCORRUPTED;
329		break;
330	}
331
332	if (error)
333		xfs_ifork_zap_attr(ip);
334	return error;
335}
336
337/*
338 * Reallocate the space for if_broot based on the number of records
339 * being added or deleted as indicated in rec_diff.  Move the records
340 * and pointers in if_broot to fit the new size.  When shrinking this
341 * will eliminate holes between the records and pointers created by
342 * the caller.  When growing this will create holes to be filled in
343 * by the caller.
344 *
345 * The caller must not request to add more records than would fit in
346 * the on-disk inode root.  If the if_broot is currently NULL, then
347 * if we are adding records, one will be allocated.  The caller must also
348 * not request that the number of records go below zero, although
349 * it can go to zero.
350 *
351 * ip -- the inode whose if_broot area is changing
352 * ext_diff -- the change in the number of records, positive or negative,
353 *	 requested for the if_broot array.
354 */
355void
356xfs_iroot_realloc(
357	xfs_inode_t		*ip,
358	int			rec_diff,
359	int			whichfork)
360{
361	struct xfs_mount	*mp = ip->i_mount;
362	int			cur_max;
363	struct xfs_ifork	*ifp;
364	struct xfs_btree_block	*new_broot;
365	int			new_max;
366	size_t			new_size;
367	char			*np;
368	char			*op;
369
370	/*
371	 * Handle the degenerate case quietly.
372	 */
373	if (rec_diff == 0) {
374		return;
375	}
376
377	ifp = xfs_ifork_ptr(ip, whichfork);
378	if (rec_diff > 0) {
379		/*
380		 * If there wasn't any memory allocated before, just
381		 * allocate it now and get out.
382		 */
383		if (ifp->if_broot_bytes == 0) {
384			new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, rec_diff);
385			ifp->if_broot = kmem_alloc(new_size, KM_NOFS);
386			ifp->if_broot_bytes = (int)new_size;
387			return;
388		}
389
390		/*
391		 * If there is already an existing if_broot, then we need
392		 * to realloc() it and shift the pointers to their new
393		 * location.  The records don't change location because
394		 * they are kept butted up against the btree block header.
395		 */
396		cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
397		new_max = cur_max + rec_diff;
398		new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max);
399		ifp->if_broot = krealloc(ifp->if_broot, new_size,
400					 GFP_NOFS | __GFP_NOFAIL);
401		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
402						     ifp->if_broot_bytes);
403		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
404						     (int)new_size);
405		ifp->if_broot_bytes = (int)new_size;
406		ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
407			xfs_inode_fork_size(ip, whichfork));
408		memmove(np, op, cur_max * (uint)sizeof(xfs_fsblock_t));
409		return;
410	}
411
412	/*
413	 * rec_diff is less than 0.  In this case, we are shrinking the
414	 * if_broot buffer.  It must already exist.  If we go to zero
415	 * records, just get rid of the root and clear the status bit.
416	 */
417	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
418	cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
419	new_max = cur_max + rec_diff;
420	ASSERT(new_max >= 0);
421	if (new_max > 0)
422		new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max);
423	else
424		new_size = 0;
425	if (new_size > 0) {
426		new_broot = kmem_alloc(new_size, KM_NOFS);
427		/*
428		 * First copy over the btree block header.
429		 */
430		memcpy(new_broot, ifp->if_broot,
431			XFS_BMBT_BLOCK_LEN(ip->i_mount));
432	} else {
433		new_broot = NULL;
 
434	}
435
436	/*
437	 * Only copy the records and pointers if there are any.
438	 */
439	if (new_max > 0) {
440		/*
441		 * First copy the records.
442		 */
443		op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
444		np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
445		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
446
447		/*
448		 * Then copy the pointers.
449		 */
450		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
451						     ifp->if_broot_bytes);
452		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
453						     (int)new_size);
454		memcpy(np, op, new_max * (uint)sizeof(xfs_fsblock_t));
455	}
456	kmem_free(ifp->if_broot);
457	ifp->if_broot = new_broot;
458	ifp->if_broot_bytes = (int)new_size;
459	if (ifp->if_broot)
460		ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
461			xfs_inode_fork_size(ip, whichfork));
462	return;
463}
464
465
466/*
467 * This is called when the amount of space needed for if_data
468 * is increased or decreased.  The change in size is indicated by
469 * the number of bytes that need to be added or deleted in the
470 * byte_diff parameter.
471 *
472 * If the amount of space needed has decreased below the size of the
473 * inline buffer, then switch to using the inline buffer.  Otherwise,
474 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
475 * to what is needed.
476 *
477 * ip -- the inode whose if_data area is changing
478 * byte_diff -- the change in the number of bytes, positive or negative,
479 *	 requested for the if_data array.
480 */
481void
482xfs_idata_realloc(
483	struct xfs_inode	*ip,
484	int64_t			byte_diff,
485	int			whichfork)
486{
487	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
488	int64_t			new_size = ifp->if_bytes + byte_diff;
 
 
 
 
 
489
 
 
490	ASSERT(new_size >= 0);
491	ASSERT(new_size <= xfs_inode_fork_size(ip, whichfork));
492
493	if (byte_diff == 0)
494		return;
495
496	if (new_size == 0) {
497		kmem_free(ifp->if_u1.if_data);
498		ifp->if_u1.if_data = NULL;
499		ifp->if_bytes = 0;
500		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
501	}
502
503	ifp->if_u1.if_data = krealloc(ifp->if_u1.if_data, new_size,
504				      GFP_NOFS | __GFP_NOFAIL);
505	ifp->if_bytes = new_size;
 
506}
507
508void
509xfs_idestroy_fork(
510	struct xfs_ifork	*ifp)
 
511{
 
 
 
512	if (ifp->if_broot != NULL) {
513		kmem_free(ifp->if_broot);
514		ifp->if_broot = NULL;
515	}
516
517	switch (ifp->if_format) {
518	case XFS_DINODE_FMT_LOCAL:
519		kmem_free(ifp->if_u1.if_data);
520		ifp->if_u1.if_data = NULL;
521		break;
522	case XFS_DINODE_FMT_EXTENTS:
523	case XFS_DINODE_FMT_BTREE:
524		if (ifp->if_height)
525			xfs_iext_destroy(ifp);
526		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
527	}
528}
529
530/*
531 * Convert in-core extents to on-disk form
532 *
533 * In the case of the data fork, the in-core and on-disk fork sizes can be
534 * different due to delayed allocation extents. We only copy on-disk extents
535 * here, so callers must always use the physical fork size to determine the
536 * size of the buffer passed to this routine.  We will return the size actually
537 * used.
538 */
539int
540xfs_iextents_copy(
541	struct xfs_inode	*ip,
542	struct xfs_bmbt_rec	*dp,
543	int			whichfork)
544{
545	int			state = xfs_bmap_fork_to_state(whichfork);
546	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
547	struct xfs_iext_cursor	icur;
548	struct xfs_bmbt_irec	rec;
549	int64_t			copied = 0;
550
551	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED));
552	ASSERT(ifp->if_bytes > 0);
553
554	for_each_xfs_iext(ifp, &icur, &rec) {
555		if (isnullstartblock(rec.br_startblock))
556			continue;
557		ASSERT(xfs_bmap_validate_extent(ip, whichfork, &rec) == NULL);
558		xfs_bmbt_disk_set_all(dp, &rec);
559		trace_xfs_write_extent(ip, &icur, state, _RET_IP_);
560		copied += sizeof(struct xfs_bmbt_rec);
561		dp++;
562	}
563
564	ASSERT(copied > 0);
565	ASSERT(copied <= ifp->if_bytes);
566	return copied;
567}
568
569/*
570 * Each of the following cases stores data into the same region
571 * of the on-disk inode, so only one of them can be valid at
572 * any given time. While it is possible to have conflicting formats
573 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
574 * in EXTENTS format, this can only happen when the fork has
575 * changed formats after being modified but before being flushed.
576 * In these cases, the format always takes precedence, because the
577 * format indicates the current state of the fork.
578 */
579void
580xfs_iflush_fork(
581	struct xfs_inode	*ip,
582	struct xfs_dinode	*dip,
583	struct xfs_inode_log_item *iip,
584	int			whichfork)
585{
586	char			*cp;
587	struct xfs_ifork	*ifp;
588	xfs_mount_t		*mp;
589	static const short	brootflag[2] =
590		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
591	static const short	dataflag[2] =
592		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
593	static const short	extflag[2] =
594		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
595
596	if (!iip)
597		return;
598	ifp = xfs_ifork_ptr(ip, whichfork);
599	/*
600	 * This can happen if we gave up in iformat in an error path,
601	 * for the attribute fork.
602	 */
603	if (!ifp) {
604		ASSERT(whichfork == XFS_ATTR_FORK);
605		return;
606	}
607	cp = XFS_DFORK_PTR(dip, whichfork);
608	mp = ip->i_mount;
609	switch (ifp->if_format) {
610	case XFS_DINODE_FMT_LOCAL:
611		if ((iip->ili_fields & dataflag[whichfork]) &&
612		    (ifp->if_bytes > 0)) {
613			ASSERT(ifp->if_u1.if_data != NULL);
614			ASSERT(ifp->if_bytes <= xfs_inode_fork_size(ip, whichfork));
615			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
616		}
617		break;
618
619	case XFS_DINODE_FMT_EXTENTS:
 
 
620		if ((iip->ili_fields & extflag[whichfork]) &&
621		    (ifp->if_bytes > 0)) {
622			ASSERT(ifp->if_nextents > 0);
623			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
624				whichfork);
625		}
626		break;
627
628	case XFS_DINODE_FMT_BTREE:
629		if ((iip->ili_fields & brootflag[whichfork]) &&
630		    (ifp->if_broot_bytes > 0)) {
631			ASSERT(ifp->if_broot != NULL);
632			ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
633			        xfs_inode_fork_size(ip, whichfork));
634			xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
635				(xfs_bmdr_block_t *)cp,
636				XFS_DFORK_SIZE(dip, mp, whichfork));
637		}
638		break;
639
640	case XFS_DINODE_FMT_DEV:
641		if (iip->ili_fields & XFS_ILOG_DEV) {
642			ASSERT(whichfork == XFS_DATA_FORK);
643			xfs_dinode_put_rdev(dip,
644					linux_to_xfs_dev_t(VFS_I(ip)->i_rdev));
645		}
646		break;
647
648	default:
649		ASSERT(0);
650		break;
651	}
652}
653
654/* Convert bmap state flags to an inode fork. */
655struct xfs_ifork *
656xfs_iext_state_to_fork(
657	struct xfs_inode	*ip,
658	int			state)
659{
660	if (state & BMAP_COWFORK)
661		return ip->i_cowfp;
662	else if (state & BMAP_ATTRFORK)
663		return &ip->i_af;
664	return &ip->i_df;
665}
666
667/*
668 * Initialize an inode's copy-on-write fork.
669 */
670void
671xfs_ifork_init_cow(
672	struct xfs_inode	*ip)
673{
674	if (ip->i_cowfp)
675		return;
676
677	ip->i_cowfp = kmem_cache_zalloc(xfs_ifork_cache,
678				       GFP_NOFS | __GFP_NOFAIL);
679	ip->i_cowfp->if_format = XFS_DINODE_FMT_EXTENTS;
 
 
680}
681
 
 
 
 
 
 
 
682/* Verify the inline contents of the data fork of an inode. */
683int
684xfs_ifork_verify_local_data(
685	struct xfs_inode	*ip)
 
686{
687	xfs_failaddr_t		fa = NULL;
 
 
688
 
689	switch (VFS_I(ip)->i_mode & S_IFMT) {
690	case S_IFDIR:
691		fa = xfs_dir2_sf_verify(ip);
692		break;
693	case S_IFLNK:
694		fa = xfs_symlink_shortform_verify(ip);
695		break;
696	default:
697		break;
698	}
699
700	if (fa) {
701		xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork",
702				ip->i_df.if_u1.if_data, ip->i_df.if_bytes, fa);
703		return -EFSCORRUPTED;
704	}
705
706	return 0;
707}
708
709/* Verify the inline contents of the attr fork of an inode. */
710int
711xfs_ifork_verify_local_attr(
712	struct xfs_inode	*ip)
713{
714	struct xfs_ifork	*ifp = &ip->i_af;
715	xfs_failaddr_t		fa;
716
717	if (!xfs_inode_has_attr_fork(ip))
718		fa = __this_address;
719	else
720		fa = xfs_attr_shortform_verify(ip);
721
722	if (fa) {
723		xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork",
724				ifp->if_u1.if_data, ifp->if_bytes, fa);
725		return -EFSCORRUPTED;
726	}
727
728	return 0;
729}
730
731int
732xfs_iext_count_may_overflow(
733	struct xfs_inode	*ip,
734	int			whichfork,
735	int			nr_to_add)
736{
737	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
738	uint64_t		max_exts;
739	uint64_t		nr_exts;
740
741	if (whichfork == XFS_COW_FORK)
742		return 0;
743
744	max_exts = xfs_iext_max_nextents(xfs_inode_has_large_extent_counts(ip),
745				whichfork);
746
747	if (XFS_TEST_ERROR(false, ip->i_mount, XFS_ERRTAG_REDUCE_MAX_IEXTENTS))
748		max_exts = 10;
749
750	nr_exts = ifp->if_nextents + nr_to_add;
751	if (nr_exts < ifp->if_nextents || nr_exts > max_exts)
752		return -EFBIG;
753
754	return 0;
755}
756
757/*
758 * Upgrade this inode's extent counter fields to be able to handle a potential
759 * increase in the extent count by nr_to_add.  Normally this is the same
760 * quantity that caused xfs_iext_count_may_overflow() to return -EFBIG.
761 */
762int
763xfs_iext_count_upgrade(
764	struct xfs_trans	*tp,
765	struct xfs_inode	*ip,
766	uint			nr_to_add)
767{
768	ASSERT(nr_to_add <= XFS_MAX_EXTCNT_UPGRADE_NR);
769
770	if (!xfs_has_large_extent_counts(ip->i_mount) ||
771	    xfs_inode_has_large_extent_counts(ip) ||
772	    XFS_TEST_ERROR(false, ip->i_mount, XFS_ERRTAG_REDUCE_MAX_IEXTENTS))
773		return -EFBIG;
774
775	ip->i_diflags2 |= XFS_DIFLAG2_NREXT64;
776	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
777
778	return 0;
779}