Loading...
1/*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include <linux/log2.h>
19
20#include "xfs.h"
21#include "xfs_fs.h"
22#include "xfs_format.h"
23#include "xfs_log_format.h"
24#include "xfs_trans_resv.h"
25#include "xfs_mount.h"
26#include "xfs_inode.h"
27#include "xfs_trans.h"
28#include "xfs_inode_item.h"
29#include "xfs_btree.h"
30#include "xfs_bmap_btree.h"
31#include "xfs_bmap.h"
32#include "xfs_error.h"
33#include "xfs_trace.h"
34#include "xfs_attr_sf.h"
35#include "xfs_da_format.h"
36#include "xfs_da_btree.h"
37#include "xfs_dir2_priv.h"
38#include "xfs_attr_leaf.h"
39#include "xfs_shared.h"
40
41kmem_zone_t *xfs_ifork_zone;
42
43STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
44STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
45STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
46
47/*
48 * Copy inode type and data and attr format specific information from the
49 * on-disk inode to the in-core inode and fork structures. For fifos, devices,
50 * and sockets this means set i_rdev to the proper value. For files,
51 * directories, and symlinks this means to bring in the in-line data or extent
52 * pointers as well as the attribute fork. For a fork in B-tree format, only
53 * the root is immediately brought in-core. The rest will be read in later when
54 * first referenced (see xfs_iread_extents()).
55 */
56int
57xfs_iformat_fork(
58 struct xfs_inode *ip,
59 struct xfs_dinode *dip)
60{
61 struct inode *inode = VFS_I(ip);
62 struct xfs_attr_shortform *atp;
63 int size;
64 int error = 0;
65 xfs_fsize_t di_size;
66
67 switch (inode->i_mode & S_IFMT) {
68 case S_IFIFO:
69 case S_IFCHR:
70 case S_IFBLK:
71 case S_IFSOCK:
72 ip->i_d.di_size = 0;
73 inode->i_rdev = xfs_to_linux_dev_t(xfs_dinode_get_rdev(dip));
74 break;
75
76 case S_IFREG:
77 case S_IFLNK:
78 case S_IFDIR:
79 switch (dip->di_format) {
80 case XFS_DINODE_FMT_LOCAL:
81 di_size = be64_to_cpu(dip->di_size);
82 size = (int)di_size;
83 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
84 break;
85 case XFS_DINODE_FMT_EXTENTS:
86 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
87 break;
88 case XFS_DINODE_FMT_BTREE:
89 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
90 break;
91 default:
92 return -EFSCORRUPTED;
93 }
94 break;
95
96 default:
97 return -EFSCORRUPTED;
98 }
99 if (error)
100 return error;
101
102 if (xfs_is_reflink_inode(ip)) {
103 ASSERT(ip->i_cowfp == NULL);
104 xfs_ifork_init_cow(ip);
105 }
106
107 if (!XFS_DFORK_Q(dip))
108 return 0;
109
110 ASSERT(ip->i_afp == NULL);
111 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
112
113 switch (dip->di_aformat) {
114 case XFS_DINODE_FMT_LOCAL:
115 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
116 size = be16_to_cpu(atp->hdr.totsize);
117
118 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
119 break;
120 case XFS_DINODE_FMT_EXTENTS:
121 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
122 break;
123 case XFS_DINODE_FMT_BTREE:
124 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
125 break;
126 default:
127 error = -EFSCORRUPTED;
128 break;
129 }
130 if (error) {
131 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
132 ip->i_afp = NULL;
133 if (ip->i_cowfp)
134 kmem_zone_free(xfs_ifork_zone, ip->i_cowfp);
135 ip->i_cowfp = NULL;
136 xfs_idestroy_fork(ip, XFS_DATA_FORK);
137 }
138 return error;
139}
140
141void
142xfs_init_local_fork(
143 struct xfs_inode *ip,
144 int whichfork,
145 const void *data,
146 int size)
147{
148 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
149 int mem_size = size, real_size = 0;
150 bool zero_terminate;
151
152 /*
153 * If we are using the local fork to store a symlink body we need to
154 * zero-terminate it so that we can pass it back to the VFS directly.
155 * Overallocate the in-memory fork by one for that and add a zero
156 * to terminate it below.
157 */
158 zero_terminate = S_ISLNK(VFS_I(ip)->i_mode);
159 if (zero_terminate)
160 mem_size++;
161
162 if (size) {
163 real_size = roundup(mem_size, 4);
164 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
165 memcpy(ifp->if_u1.if_data, data, size);
166 if (zero_terminate)
167 ifp->if_u1.if_data[size] = '\0';
168 } else {
169 ifp->if_u1.if_data = NULL;
170 }
171
172 ifp->if_bytes = size;
173 ifp->if_real_bytes = real_size;
174 ifp->if_flags &= ~(XFS_IFEXTENTS | XFS_IFBROOT);
175 ifp->if_flags |= XFS_IFINLINE;
176}
177
178/*
179 * The file is in-lined in the on-disk inode.
180 */
181STATIC int
182xfs_iformat_local(
183 xfs_inode_t *ip,
184 xfs_dinode_t *dip,
185 int whichfork,
186 int size)
187{
188 /*
189 * If the size is unreasonable, then something
190 * is wrong and we just bail out rather than crash in
191 * kmem_alloc() or memcpy() below.
192 */
193 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
194 xfs_warn(ip->i_mount,
195 "corrupt inode %Lu (bad size %d for local fork, size = %d).",
196 (unsigned long long) ip->i_ino, size,
197 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
198 xfs_inode_verifier_error(ip, -EFSCORRUPTED,
199 "xfs_iformat_local", dip, sizeof(*dip),
200 __this_address);
201 return -EFSCORRUPTED;
202 }
203
204 xfs_init_local_fork(ip, whichfork, XFS_DFORK_PTR(dip, whichfork), size);
205 return 0;
206}
207
208/*
209 * The file consists of a set of extents all of which fit into the on-disk
210 * inode.
211 */
212STATIC int
213xfs_iformat_extents(
214 struct xfs_inode *ip,
215 struct xfs_dinode *dip,
216 int whichfork)
217{
218 struct xfs_mount *mp = ip->i_mount;
219 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
220 int state = xfs_bmap_fork_to_state(whichfork);
221 int nex = XFS_DFORK_NEXTENTS(dip, whichfork);
222 int size = nex * sizeof(xfs_bmbt_rec_t);
223 struct xfs_iext_cursor icur;
224 struct xfs_bmbt_rec *dp;
225 struct xfs_bmbt_irec new;
226 int i;
227
228 /*
229 * If the number of extents is unreasonable, then something is wrong and
230 * we just bail out rather than crash in kmem_alloc() or memcpy() below.
231 */
232 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, mp, whichfork))) {
233 xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
234 (unsigned long long) ip->i_ino, nex);
235 xfs_inode_verifier_error(ip, -EFSCORRUPTED,
236 "xfs_iformat_extents(1)", dip, sizeof(*dip),
237 __this_address);
238 return -EFSCORRUPTED;
239 }
240
241 ifp->if_real_bytes = 0;
242 ifp->if_bytes = 0;
243 ifp->if_u1.if_root = NULL;
244 ifp->if_height = 0;
245 if (size) {
246 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
247
248 xfs_iext_first(ifp, &icur);
249 for (i = 0; i < nex; i++, dp++) {
250 xfs_failaddr_t fa;
251
252 xfs_bmbt_disk_get_all(dp, &new);
253 fa = xfs_bmap_validate_extent(ip, whichfork, &new);
254 if (fa) {
255 xfs_inode_verifier_error(ip, -EFSCORRUPTED,
256 "xfs_iformat_extents(2)",
257 dp, sizeof(*dp), fa);
258 return -EFSCORRUPTED;
259 }
260
261 xfs_iext_insert(ip, &icur, &new, state);
262 trace_xfs_read_extent(ip, &icur, state, _THIS_IP_);
263 xfs_iext_next(ifp, &icur);
264 }
265 }
266 ifp->if_flags |= XFS_IFEXTENTS;
267 return 0;
268}
269
270/*
271 * The file has too many extents to fit into
272 * the inode, so they are in B-tree format.
273 * Allocate a buffer for the root of the B-tree
274 * and copy the root into it. The i_extents
275 * field will remain NULL until all of the
276 * extents are read in (when they are needed).
277 */
278STATIC int
279xfs_iformat_btree(
280 xfs_inode_t *ip,
281 xfs_dinode_t *dip,
282 int whichfork)
283{
284 struct xfs_mount *mp = ip->i_mount;
285 xfs_bmdr_block_t *dfp;
286 xfs_ifork_t *ifp;
287 /* REFERENCED */
288 int nrecs;
289 int size;
290 int level;
291
292 ifp = XFS_IFORK_PTR(ip, whichfork);
293 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
294 size = XFS_BMAP_BROOT_SPACE(mp, dfp);
295 nrecs = be16_to_cpu(dfp->bb_numrecs);
296 level = be16_to_cpu(dfp->bb_level);
297
298 /*
299 * blow out if -- fork has less extents than can fit in
300 * fork (fork shouldn't be a btree format), root btree
301 * block has more records than can fit into the fork,
302 * or the number of extents is greater than the number of
303 * blocks.
304 */
305 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <=
306 XFS_IFORK_MAXEXT(ip, whichfork) ||
307 nrecs == 0 ||
308 XFS_BMDR_SPACE_CALC(nrecs) >
309 XFS_DFORK_SIZE(dip, mp, whichfork) ||
310 XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks) ||
311 level == 0 || level > XFS_BTREE_MAXLEVELS) {
312 xfs_warn(mp, "corrupt inode %Lu (btree).",
313 (unsigned long long) ip->i_ino);
314 xfs_inode_verifier_error(ip, -EFSCORRUPTED,
315 "xfs_iformat_btree", dfp, size,
316 __this_address);
317 return -EFSCORRUPTED;
318 }
319
320 ifp->if_broot_bytes = size;
321 ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
322 ASSERT(ifp->if_broot != NULL);
323 /*
324 * Copy and convert from the on-disk structure
325 * to the in-memory structure.
326 */
327 xfs_bmdr_to_bmbt(ip, dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
328 ifp->if_broot, size);
329 ifp->if_flags &= ~XFS_IFEXTENTS;
330 ifp->if_flags |= XFS_IFBROOT;
331
332 ifp->if_real_bytes = 0;
333 ifp->if_bytes = 0;
334 ifp->if_u1.if_root = NULL;
335 ifp->if_height = 0;
336 return 0;
337}
338
339/*
340 * Reallocate the space for if_broot based on the number of records
341 * being added or deleted as indicated in rec_diff. Move the records
342 * and pointers in if_broot to fit the new size. When shrinking this
343 * will eliminate holes between the records and pointers created by
344 * the caller. When growing this will create holes to be filled in
345 * by the caller.
346 *
347 * The caller must not request to add more records than would fit in
348 * the on-disk inode root. If the if_broot is currently NULL, then
349 * if we are adding records, one will be allocated. The caller must also
350 * not request that the number of records go below zero, although
351 * it can go to zero.
352 *
353 * ip -- the inode whose if_broot area is changing
354 * ext_diff -- the change in the number of records, positive or negative,
355 * requested for the if_broot array.
356 */
357void
358xfs_iroot_realloc(
359 xfs_inode_t *ip,
360 int rec_diff,
361 int whichfork)
362{
363 struct xfs_mount *mp = ip->i_mount;
364 int cur_max;
365 xfs_ifork_t *ifp;
366 struct xfs_btree_block *new_broot;
367 int new_max;
368 size_t new_size;
369 char *np;
370 char *op;
371
372 /*
373 * Handle the degenerate case quietly.
374 */
375 if (rec_diff == 0) {
376 return;
377 }
378
379 ifp = XFS_IFORK_PTR(ip, whichfork);
380 if (rec_diff > 0) {
381 /*
382 * If there wasn't any memory allocated before, just
383 * allocate it now and get out.
384 */
385 if (ifp->if_broot_bytes == 0) {
386 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, rec_diff);
387 ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
388 ifp->if_broot_bytes = (int)new_size;
389 return;
390 }
391
392 /*
393 * If there is already an existing if_broot, then we need
394 * to realloc() it and shift the pointers to their new
395 * location. The records don't change location because
396 * they are kept butted up against the btree block header.
397 */
398 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
399 new_max = cur_max + rec_diff;
400 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max);
401 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
402 KM_SLEEP | KM_NOFS);
403 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
404 ifp->if_broot_bytes);
405 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
406 (int)new_size);
407 ifp->if_broot_bytes = (int)new_size;
408 ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
409 XFS_IFORK_SIZE(ip, whichfork));
410 memmove(np, op, cur_max * (uint)sizeof(xfs_fsblock_t));
411 return;
412 }
413
414 /*
415 * rec_diff is less than 0. In this case, we are shrinking the
416 * if_broot buffer. It must already exist. If we go to zero
417 * records, just get rid of the root and clear the status bit.
418 */
419 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
420 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
421 new_max = cur_max + rec_diff;
422 ASSERT(new_max >= 0);
423 if (new_max > 0)
424 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max);
425 else
426 new_size = 0;
427 if (new_size > 0) {
428 new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
429 /*
430 * First copy over the btree block header.
431 */
432 memcpy(new_broot, ifp->if_broot,
433 XFS_BMBT_BLOCK_LEN(ip->i_mount));
434 } else {
435 new_broot = NULL;
436 ifp->if_flags &= ~XFS_IFBROOT;
437 }
438
439 /*
440 * Only copy the records and pointers if there are any.
441 */
442 if (new_max > 0) {
443 /*
444 * First copy the records.
445 */
446 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
447 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
448 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
449
450 /*
451 * Then copy the pointers.
452 */
453 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
454 ifp->if_broot_bytes);
455 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
456 (int)new_size);
457 memcpy(np, op, new_max * (uint)sizeof(xfs_fsblock_t));
458 }
459 kmem_free(ifp->if_broot);
460 ifp->if_broot = new_broot;
461 ifp->if_broot_bytes = (int)new_size;
462 if (ifp->if_broot)
463 ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
464 XFS_IFORK_SIZE(ip, whichfork));
465 return;
466}
467
468
469/*
470 * This is called when the amount of space needed for if_data
471 * is increased or decreased. The change in size is indicated by
472 * the number of bytes that need to be added or deleted in the
473 * byte_diff parameter.
474 *
475 * If the amount of space needed has decreased below the size of the
476 * inline buffer, then switch to using the inline buffer. Otherwise,
477 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
478 * to what is needed.
479 *
480 * ip -- the inode whose if_data area is changing
481 * byte_diff -- the change in the number of bytes, positive or negative,
482 * requested for the if_data array.
483 */
484void
485xfs_idata_realloc(
486 xfs_inode_t *ip,
487 int byte_diff,
488 int whichfork)
489{
490 xfs_ifork_t *ifp;
491 int new_size;
492 int real_size;
493
494 if (byte_diff == 0) {
495 return;
496 }
497
498 ifp = XFS_IFORK_PTR(ip, whichfork);
499 new_size = (int)ifp->if_bytes + byte_diff;
500 ASSERT(new_size >= 0);
501
502 if (new_size == 0) {
503 kmem_free(ifp->if_u1.if_data);
504 ifp->if_u1.if_data = NULL;
505 real_size = 0;
506 } else {
507 /*
508 * Stuck with malloc/realloc.
509 * For inline data, the underlying buffer must be
510 * a multiple of 4 bytes in size so that it can be
511 * logged and stay on word boundaries. We enforce
512 * that here.
513 */
514 real_size = roundup(new_size, 4);
515 if (ifp->if_u1.if_data == NULL) {
516 ASSERT(ifp->if_real_bytes == 0);
517 ifp->if_u1.if_data = kmem_alloc(real_size,
518 KM_SLEEP | KM_NOFS);
519 } else {
520 /*
521 * Only do the realloc if the underlying size
522 * is really changing.
523 */
524 if (ifp->if_real_bytes != real_size) {
525 ifp->if_u1.if_data =
526 kmem_realloc(ifp->if_u1.if_data,
527 real_size,
528 KM_SLEEP | KM_NOFS);
529 }
530 }
531 }
532 ifp->if_real_bytes = real_size;
533 ifp->if_bytes = new_size;
534 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
535}
536
537void
538xfs_idestroy_fork(
539 xfs_inode_t *ip,
540 int whichfork)
541{
542 xfs_ifork_t *ifp;
543
544 ifp = XFS_IFORK_PTR(ip, whichfork);
545 if (ifp->if_broot != NULL) {
546 kmem_free(ifp->if_broot);
547 ifp->if_broot = NULL;
548 }
549
550 /*
551 * If the format is local, then we can't have an extents
552 * array so just look for an inline data array. If we're
553 * not local then we may or may not have an extents list,
554 * so check and free it up if we do.
555 */
556 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
557 if (ifp->if_u1.if_data != NULL) {
558 ASSERT(ifp->if_real_bytes != 0);
559 kmem_free(ifp->if_u1.if_data);
560 ifp->if_u1.if_data = NULL;
561 ifp->if_real_bytes = 0;
562 }
563 } else if ((ifp->if_flags & XFS_IFEXTENTS) && ifp->if_height) {
564 xfs_iext_destroy(ifp);
565 }
566
567 ASSERT(ifp->if_real_bytes == 0);
568
569 if (whichfork == XFS_ATTR_FORK) {
570 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
571 ip->i_afp = NULL;
572 } else if (whichfork == XFS_COW_FORK) {
573 kmem_zone_free(xfs_ifork_zone, ip->i_cowfp);
574 ip->i_cowfp = NULL;
575 }
576}
577
578/*
579 * Convert in-core extents to on-disk form
580 *
581 * In the case of the data fork, the in-core and on-disk fork sizes can be
582 * different due to delayed allocation extents. We only copy on-disk extents
583 * here, so callers must always use the physical fork size to determine the
584 * size of the buffer passed to this routine. We will return the size actually
585 * used.
586 */
587int
588xfs_iextents_copy(
589 struct xfs_inode *ip,
590 struct xfs_bmbt_rec *dp,
591 int whichfork)
592{
593 int state = xfs_bmap_fork_to_state(whichfork);
594 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
595 struct xfs_iext_cursor icur;
596 struct xfs_bmbt_irec rec;
597 int copied = 0;
598
599 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED));
600 ASSERT(ifp->if_bytes > 0);
601
602 for_each_xfs_iext(ifp, &icur, &rec) {
603 if (isnullstartblock(rec.br_startblock))
604 continue;
605 ASSERT(xfs_bmap_validate_extent(ip, whichfork, &rec) == NULL);
606 xfs_bmbt_disk_set_all(dp, &rec);
607 trace_xfs_write_extent(ip, &icur, state, _RET_IP_);
608 copied += sizeof(struct xfs_bmbt_rec);
609 dp++;
610 }
611
612 ASSERT(copied > 0);
613 ASSERT(copied <= ifp->if_bytes);
614 return copied;
615}
616
617/*
618 * Each of the following cases stores data into the same region
619 * of the on-disk inode, so only one of them can be valid at
620 * any given time. While it is possible to have conflicting formats
621 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
622 * in EXTENTS format, this can only happen when the fork has
623 * changed formats after being modified but before being flushed.
624 * In these cases, the format always takes precedence, because the
625 * format indicates the current state of the fork.
626 */
627void
628xfs_iflush_fork(
629 xfs_inode_t *ip,
630 xfs_dinode_t *dip,
631 xfs_inode_log_item_t *iip,
632 int whichfork)
633{
634 char *cp;
635 xfs_ifork_t *ifp;
636 xfs_mount_t *mp;
637 static const short brootflag[2] =
638 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
639 static const short dataflag[2] =
640 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
641 static const short extflag[2] =
642 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
643
644 if (!iip)
645 return;
646 ifp = XFS_IFORK_PTR(ip, whichfork);
647 /*
648 * This can happen if we gave up in iformat in an error path,
649 * for the attribute fork.
650 */
651 if (!ifp) {
652 ASSERT(whichfork == XFS_ATTR_FORK);
653 return;
654 }
655 cp = XFS_DFORK_PTR(dip, whichfork);
656 mp = ip->i_mount;
657 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
658 case XFS_DINODE_FMT_LOCAL:
659 if ((iip->ili_fields & dataflag[whichfork]) &&
660 (ifp->if_bytes > 0)) {
661 ASSERT(ifp->if_u1.if_data != NULL);
662 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
663 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
664 }
665 break;
666
667 case XFS_DINODE_FMT_EXTENTS:
668 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
669 !(iip->ili_fields & extflag[whichfork]));
670 if ((iip->ili_fields & extflag[whichfork]) &&
671 (ifp->if_bytes > 0)) {
672 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
673 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
674 whichfork);
675 }
676 break;
677
678 case XFS_DINODE_FMT_BTREE:
679 if ((iip->ili_fields & brootflag[whichfork]) &&
680 (ifp->if_broot_bytes > 0)) {
681 ASSERT(ifp->if_broot != NULL);
682 ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
683 XFS_IFORK_SIZE(ip, whichfork));
684 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
685 (xfs_bmdr_block_t *)cp,
686 XFS_DFORK_SIZE(dip, mp, whichfork));
687 }
688 break;
689
690 case XFS_DINODE_FMT_DEV:
691 if (iip->ili_fields & XFS_ILOG_DEV) {
692 ASSERT(whichfork == XFS_DATA_FORK);
693 xfs_dinode_put_rdev(dip,
694 linux_to_xfs_dev_t(VFS_I(ip)->i_rdev));
695 }
696 break;
697
698 default:
699 ASSERT(0);
700 break;
701 }
702}
703
704/* Convert bmap state flags to an inode fork. */
705struct xfs_ifork *
706xfs_iext_state_to_fork(
707 struct xfs_inode *ip,
708 int state)
709{
710 if (state & BMAP_COWFORK)
711 return ip->i_cowfp;
712 else if (state & BMAP_ATTRFORK)
713 return ip->i_afp;
714 return &ip->i_df;
715}
716
717/*
718 * Initialize an inode's copy-on-write fork.
719 */
720void
721xfs_ifork_init_cow(
722 struct xfs_inode *ip)
723{
724 if (ip->i_cowfp)
725 return;
726
727 ip->i_cowfp = kmem_zone_zalloc(xfs_ifork_zone,
728 KM_SLEEP | KM_NOFS);
729 ip->i_cowfp->if_flags = XFS_IFEXTENTS;
730 ip->i_cformat = XFS_DINODE_FMT_EXTENTS;
731 ip->i_cnextents = 0;
732}
733
734/* Default fork content verifiers. */
735struct xfs_ifork_ops xfs_default_ifork_ops = {
736 .verify_attr = xfs_attr_shortform_verify,
737 .verify_dir = xfs_dir2_sf_verify,
738 .verify_symlink = xfs_symlink_shortform_verify,
739};
740
741/* Verify the inline contents of the data fork of an inode. */
742xfs_failaddr_t
743xfs_ifork_verify_data(
744 struct xfs_inode *ip,
745 struct xfs_ifork_ops *ops)
746{
747 /* Non-local data fork, we're done. */
748 if (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL)
749 return NULL;
750
751 /* Check the inline data fork if there is one. */
752 switch (VFS_I(ip)->i_mode & S_IFMT) {
753 case S_IFDIR:
754 return ops->verify_dir(ip);
755 case S_IFLNK:
756 return ops->verify_symlink(ip);
757 default:
758 return NULL;
759 }
760}
761
762/* Verify the inline contents of the attr fork of an inode. */
763xfs_failaddr_t
764xfs_ifork_verify_attr(
765 struct xfs_inode *ip,
766 struct xfs_ifork_ops *ops)
767{
768 /* There has to be an attr fork allocated if aformat is local. */
769 if (ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)
770 return NULL;
771 if (!XFS_IFORK_PTR(ip, XFS_ATTR_FORK))
772 return __this_address;
773 return ops->verify_attr(ip);
774}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6
7#include "xfs.h"
8#include "xfs_fs.h"
9#include "xfs_shared.h"
10#include "xfs_format.h"
11#include "xfs_log_format.h"
12#include "xfs_trans_resv.h"
13#include "xfs_mount.h"
14#include "xfs_inode.h"
15#include "xfs_trans.h"
16#include "xfs_inode_item.h"
17#include "xfs_btree.h"
18#include "xfs_bmap_btree.h"
19#include "xfs_bmap.h"
20#include "xfs_error.h"
21#include "xfs_trace.h"
22#include "xfs_da_format.h"
23#include "xfs_da_btree.h"
24#include "xfs_dir2_priv.h"
25#include "xfs_attr_leaf.h"
26#include "xfs_types.h"
27#include "xfs_errortag.h"
28
29kmem_zone_t *xfs_ifork_zone;
30
31void
32xfs_init_local_fork(
33 struct xfs_inode *ip,
34 int whichfork,
35 const void *data,
36 int64_t size)
37{
38 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
39 int mem_size = size, real_size = 0;
40 bool zero_terminate;
41
42 /*
43 * If we are using the local fork to store a symlink body we need to
44 * zero-terminate it so that we can pass it back to the VFS directly.
45 * Overallocate the in-memory fork by one for that and add a zero
46 * to terminate it below.
47 */
48 zero_terminate = S_ISLNK(VFS_I(ip)->i_mode);
49 if (zero_terminate)
50 mem_size++;
51
52 if (size) {
53 real_size = roundup(mem_size, 4);
54 ifp->if_u1.if_data = kmem_alloc(real_size, KM_NOFS);
55 memcpy(ifp->if_u1.if_data, data, size);
56 if (zero_terminate)
57 ifp->if_u1.if_data[size] = '\0';
58 } else {
59 ifp->if_u1.if_data = NULL;
60 }
61
62 ifp->if_bytes = size;
63}
64
65/*
66 * The file is in-lined in the on-disk inode.
67 */
68STATIC int
69xfs_iformat_local(
70 xfs_inode_t *ip,
71 xfs_dinode_t *dip,
72 int whichfork,
73 int size)
74{
75 /*
76 * If the size is unreasonable, then something
77 * is wrong and we just bail out rather than crash in
78 * kmem_alloc() or memcpy() below.
79 */
80 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
81 xfs_warn(ip->i_mount,
82 "corrupt inode %Lu (bad size %d for local fork, size = %zd).",
83 (unsigned long long) ip->i_ino, size,
84 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
85 xfs_inode_verifier_error(ip, -EFSCORRUPTED,
86 "xfs_iformat_local", dip, sizeof(*dip),
87 __this_address);
88 return -EFSCORRUPTED;
89 }
90
91 xfs_init_local_fork(ip, whichfork, XFS_DFORK_PTR(dip, whichfork), size);
92 return 0;
93}
94
95/*
96 * The file consists of a set of extents all of which fit into the on-disk
97 * inode.
98 */
99STATIC int
100xfs_iformat_extents(
101 struct xfs_inode *ip,
102 struct xfs_dinode *dip,
103 int whichfork)
104{
105 struct xfs_mount *mp = ip->i_mount;
106 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
107 int state = xfs_bmap_fork_to_state(whichfork);
108 int nex = XFS_DFORK_NEXTENTS(dip, whichfork);
109 int size = nex * sizeof(xfs_bmbt_rec_t);
110 struct xfs_iext_cursor icur;
111 struct xfs_bmbt_rec *dp;
112 struct xfs_bmbt_irec new;
113 int i;
114
115 /*
116 * If the number of extents is unreasonable, then something is wrong and
117 * we just bail out rather than crash in kmem_alloc() or memcpy() below.
118 */
119 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, mp, whichfork))) {
120 xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
121 (unsigned long long) ip->i_ino, nex);
122 xfs_inode_verifier_error(ip, -EFSCORRUPTED,
123 "xfs_iformat_extents(1)", dip, sizeof(*dip),
124 __this_address);
125 return -EFSCORRUPTED;
126 }
127
128 ifp->if_bytes = 0;
129 ifp->if_u1.if_root = NULL;
130 ifp->if_height = 0;
131 if (size) {
132 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
133
134 xfs_iext_first(ifp, &icur);
135 for (i = 0; i < nex; i++, dp++) {
136 xfs_failaddr_t fa;
137
138 xfs_bmbt_disk_get_all(dp, &new);
139 fa = xfs_bmap_validate_extent(ip, whichfork, &new);
140 if (fa) {
141 xfs_inode_verifier_error(ip, -EFSCORRUPTED,
142 "xfs_iformat_extents(2)",
143 dp, sizeof(*dp), fa);
144 return -EFSCORRUPTED;
145 }
146
147 xfs_iext_insert(ip, &icur, &new, state);
148 trace_xfs_read_extent(ip, &icur, state, _THIS_IP_);
149 xfs_iext_next(ifp, &icur);
150 }
151 }
152 return 0;
153}
154
155/*
156 * The file has too many extents to fit into
157 * the inode, so they are in B-tree format.
158 * Allocate a buffer for the root of the B-tree
159 * and copy the root into it. The i_extents
160 * field will remain NULL until all of the
161 * extents are read in (when they are needed).
162 */
163STATIC int
164xfs_iformat_btree(
165 xfs_inode_t *ip,
166 xfs_dinode_t *dip,
167 int whichfork)
168{
169 struct xfs_mount *mp = ip->i_mount;
170 xfs_bmdr_block_t *dfp;
171 struct xfs_ifork *ifp;
172 /* REFERENCED */
173 int nrecs;
174 int size;
175 int level;
176
177 ifp = XFS_IFORK_PTR(ip, whichfork);
178 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
179 size = XFS_BMAP_BROOT_SPACE(mp, dfp);
180 nrecs = be16_to_cpu(dfp->bb_numrecs);
181 level = be16_to_cpu(dfp->bb_level);
182
183 /*
184 * blow out if -- fork has less extents than can fit in
185 * fork (fork shouldn't be a btree format), root btree
186 * block has more records than can fit into the fork,
187 * or the number of extents is greater than the number of
188 * blocks.
189 */
190 if (unlikely(ifp->if_nextents <= XFS_IFORK_MAXEXT(ip, whichfork) ||
191 nrecs == 0 ||
192 XFS_BMDR_SPACE_CALC(nrecs) >
193 XFS_DFORK_SIZE(dip, mp, whichfork) ||
194 ifp->if_nextents > ip->i_nblocks) ||
195 level == 0 || level > XFS_BM_MAXLEVELS(mp, whichfork)) {
196 xfs_warn(mp, "corrupt inode %Lu (btree).",
197 (unsigned long long) ip->i_ino);
198 xfs_inode_verifier_error(ip, -EFSCORRUPTED,
199 "xfs_iformat_btree", dfp, size,
200 __this_address);
201 return -EFSCORRUPTED;
202 }
203
204 ifp->if_broot_bytes = size;
205 ifp->if_broot = kmem_alloc(size, KM_NOFS);
206 ASSERT(ifp->if_broot != NULL);
207 /*
208 * Copy and convert from the on-disk structure
209 * to the in-memory structure.
210 */
211 xfs_bmdr_to_bmbt(ip, dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
212 ifp->if_broot, size);
213
214 ifp->if_bytes = 0;
215 ifp->if_u1.if_root = NULL;
216 ifp->if_height = 0;
217 return 0;
218}
219
220int
221xfs_iformat_data_fork(
222 struct xfs_inode *ip,
223 struct xfs_dinode *dip)
224{
225 struct inode *inode = VFS_I(ip);
226 int error;
227
228 /*
229 * Initialize the extent count early, as the per-format routines may
230 * depend on it.
231 */
232 ip->i_df.if_format = dip->di_format;
233 ip->i_df.if_nextents = be32_to_cpu(dip->di_nextents);
234
235 switch (inode->i_mode & S_IFMT) {
236 case S_IFIFO:
237 case S_IFCHR:
238 case S_IFBLK:
239 case S_IFSOCK:
240 ip->i_disk_size = 0;
241 inode->i_rdev = xfs_to_linux_dev_t(xfs_dinode_get_rdev(dip));
242 return 0;
243 case S_IFREG:
244 case S_IFLNK:
245 case S_IFDIR:
246 switch (ip->i_df.if_format) {
247 case XFS_DINODE_FMT_LOCAL:
248 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK,
249 be64_to_cpu(dip->di_size));
250 if (!error)
251 error = xfs_ifork_verify_local_data(ip);
252 return error;
253 case XFS_DINODE_FMT_EXTENTS:
254 return xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
255 case XFS_DINODE_FMT_BTREE:
256 return xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
257 default:
258 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__,
259 dip, sizeof(*dip), __this_address);
260 return -EFSCORRUPTED;
261 }
262 break;
263 default:
264 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
265 sizeof(*dip), __this_address);
266 return -EFSCORRUPTED;
267 }
268}
269
270static uint16_t
271xfs_dfork_attr_shortform_size(
272 struct xfs_dinode *dip)
273{
274 struct xfs_attr_shortform *atp =
275 (struct xfs_attr_shortform *)XFS_DFORK_APTR(dip);
276
277 return be16_to_cpu(atp->hdr.totsize);
278}
279
280struct xfs_ifork *
281xfs_ifork_alloc(
282 enum xfs_dinode_fmt format,
283 xfs_extnum_t nextents)
284{
285 struct xfs_ifork *ifp;
286
287 ifp = kmem_cache_zalloc(xfs_ifork_zone, GFP_NOFS | __GFP_NOFAIL);
288 ifp->if_format = format;
289 ifp->if_nextents = nextents;
290 return ifp;
291}
292
293int
294xfs_iformat_attr_fork(
295 struct xfs_inode *ip,
296 struct xfs_dinode *dip)
297{
298 int error = 0;
299
300 /*
301 * Initialize the extent count early, as the per-format routines may
302 * depend on it.
303 */
304 ip->i_afp = xfs_ifork_alloc(dip->di_aformat,
305 be16_to_cpu(dip->di_anextents));
306
307 switch (ip->i_afp->if_format) {
308 case XFS_DINODE_FMT_LOCAL:
309 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK,
310 xfs_dfork_attr_shortform_size(dip));
311 if (!error)
312 error = xfs_ifork_verify_local_attr(ip);
313 break;
314 case XFS_DINODE_FMT_EXTENTS:
315 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
316 break;
317 case XFS_DINODE_FMT_BTREE:
318 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
319 break;
320 default:
321 xfs_inode_verifier_error(ip, error, __func__, dip,
322 sizeof(*dip), __this_address);
323 error = -EFSCORRUPTED;
324 break;
325 }
326
327 if (error) {
328 kmem_cache_free(xfs_ifork_zone, ip->i_afp);
329 ip->i_afp = NULL;
330 }
331 return error;
332}
333
334/*
335 * Reallocate the space for if_broot based on the number of records
336 * being added or deleted as indicated in rec_diff. Move the records
337 * and pointers in if_broot to fit the new size. When shrinking this
338 * will eliminate holes between the records and pointers created by
339 * the caller. When growing this will create holes to be filled in
340 * by the caller.
341 *
342 * The caller must not request to add more records than would fit in
343 * the on-disk inode root. If the if_broot is currently NULL, then
344 * if we are adding records, one will be allocated. The caller must also
345 * not request that the number of records go below zero, although
346 * it can go to zero.
347 *
348 * ip -- the inode whose if_broot area is changing
349 * ext_diff -- the change in the number of records, positive or negative,
350 * requested for the if_broot array.
351 */
352void
353xfs_iroot_realloc(
354 xfs_inode_t *ip,
355 int rec_diff,
356 int whichfork)
357{
358 struct xfs_mount *mp = ip->i_mount;
359 int cur_max;
360 struct xfs_ifork *ifp;
361 struct xfs_btree_block *new_broot;
362 int new_max;
363 size_t new_size;
364 char *np;
365 char *op;
366
367 /*
368 * Handle the degenerate case quietly.
369 */
370 if (rec_diff == 0) {
371 return;
372 }
373
374 ifp = XFS_IFORK_PTR(ip, whichfork);
375 if (rec_diff > 0) {
376 /*
377 * If there wasn't any memory allocated before, just
378 * allocate it now and get out.
379 */
380 if (ifp->if_broot_bytes == 0) {
381 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, rec_diff);
382 ifp->if_broot = kmem_alloc(new_size, KM_NOFS);
383 ifp->if_broot_bytes = (int)new_size;
384 return;
385 }
386
387 /*
388 * If there is already an existing if_broot, then we need
389 * to realloc() it and shift the pointers to their new
390 * location. The records don't change location because
391 * they are kept butted up against the btree block header.
392 */
393 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
394 new_max = cur_max + rec_diff;
395 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max);
396 ifp->if_broot = krealloc(ifp->if_broot, new_size,
397 GFP_NOFS | __GFP_NOFAIL);
398 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
399 ifp->if_broot_bytes);
400 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
401 (int)new_size);
402 ifp->if_broot_bytes = (int)new_size;
403 ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
404 XFS_IFORK_SIZE(ip, whichfork));
405 memmove(np, op, cur_max * (uint)sizeof(xfs_fsblock_t));
406 return;
407 }
408
409 /*
410 * rec_diff is less than 0. In this case, we are shrinking the
411 * if_broot buffer. It must already exist. If we go to zero
412 * records, just get rid of the root and clear the status bit.
413 */
414 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
415 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
416 new_max = cur_max + rec_diff;
417 ASSERT(new_max >= 0);
418 if (new_max > 0)
419 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max);
420 else
421 new_size = 0;
422 if (new_size > 0) {
423 new_broot = kmem_alloc(new_size, KM_NOFS);
424 /*
425 * First copy over the btree block header.
426 */
427 memcpy(new_broot, ifp->if_broot,
428 XFS_BMBT_BLOCK_LEN(ip->i_mount));
429 } else {
430 new_broot = NULL;
431 }
432
433 /*
434 * Only copy the records and pointers if there are any.
435 */
436 if (new_max > 0) {
437 /*
438 * First copy the records.
439 */
440 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
441 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
442 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
443
444 /*
445 * Then copy the pointers.
446 */
447 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
448 ifp->if_broot_bytes);
449 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
450 (int)new_size);
451 memcpy(np, op, new_max * (uint)sizeof(xfs_fsblock_t));
452 }
453 kmem_free(ifp->if_broot);
454 ifp->if_broot = new_broot;
455 ifp->if_broot_bytes = (int)new_size;
456 if (ifp->if_broot)
457 ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
458 XFS_IFORK_SIZE(ip, whichfork));
459 return;
460}
461
462
463/*
464 * This is called when the amount of space needed for if_data
465 * is increased or decreased. The change in size is indicated by
466 * the number of bytes that need to be added or deleted in the
467 * byte_diff parameter.
468 *
469 * If the amount of space needed has decreased below the size of the
470 * inline buffer, then switch to using the inline buffer. Otherwise,
471 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
472 * to what is needed.
473 *
474 * ip -- the inode whose if_data area is changing
475 * byte_diff -- the change in the number of bytes, positive or negative,
476 * requested for the if_data array.
477 */
478void
479xfs_idata_realloc(
480 struct xfs_inode *ip,
481 int64_t byte_diff,
482 int whichfork)
483{
484 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
485 int64_t new_size = ifp->if_bytes + byte_diff;
486
487 ASSERT(new_size >= 0);
488 ASSERT(new_size <= XFS_IFORK_SIZE(ip, whichfork));
489
490 if (byte_diff == 0)
491 return;
492
493 if (new_size == 0) {
494 kmem_free(ifp->if_u1.if_data);
495 ifp->if_u1.if_data = NULL;
496 ifp->if_bytes = 0;
497 return;
498 }
499
500 /*
501 * For inline data, the underlying buffer must be a multiple of 4 bytes
502 * in size so that it can be logged and stay on word boundaries.
503 * We enforce that here.
504 */
505 ifp->if_u1.if_data = krealloc(ifp->if_u1.if_data, roundup(new_size, 4),
506 GFP_NOFS | __GFP_NOFAIL);
507 ifp->if_bytes = new_size;
508}
509
510void
511xfs_idestroy_fork(
512 struct xfs_ifork *ifp)
513{
514 if (ifp->if_broot != NULL) {
515 kmem_free(ifp->if_broot);
516 ifp->if_broot = NULL;
517 }
518
519 switch (ifp->if_format) {
520 case XFS_DINODE_FMT_LOCAL:
521 kmem_free(ifp->if_u1.if_data);
522 ifp->if_u1.if_data = NULL;
523 break;
524 case XFS_DINODE_FMT_EXTENTS:
525 case XFS_DINODE_FMT_BTREE:
526 if (ifp->if_height)
527 xfs_iext_destroy(ifp);
528 break;
529 }
530}
531
532/*
533 * Convert in-core extents to on-disk form
534 *
535 * In the case of the data fork, the in-core and on-disk fork sizes can be
536 * different due to delayed allocation extents. We only copy on-disk extents
537 * here, so callers must always use the physical fork size to determine the
538 * size of the buffer passed to this routine. We will return the size actually
539 * used.
540 */
541int
542xfs_iextents_copy(
543 struct xfs_inode *ip,
544 struct xfs_bmbt_rec *dp,
545 int whichfork)
546{
547 int state = xfs_bmap_fork_to_state(whichfork);
548 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
549 struct xfs_iext_cursor icur;
550 struct xfs_bmbt_irec rec;
551 int64_t copied = 0;
552
553 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED));
554 ASSERT(ifp->if_bytes > 0);
555
556 for_each_xfs_iext(ifp, &icur, &rec) {
557 if (isnullstartblock(rec.br_startblock))
558 continue;
559 ASSERT(xfs_bmap_validate_extent(ip, whichfork, &rec) == NULL);
560 xfs_bmbt_disk_set_all(dp, &rec);
561 trace_xfs_write_extent(ip, &icur, state, _RET_IP_);
562 copied += sizeof(struct xfs_bmbt_rec);
563 dp++;
564 }
565
566 ASSERT(copied > 0);
567 ASSERT(copied <= ifp->if_bytes);
568 return copied;
569}
570
571/*
572 * Each of the following cases stores data into the same region
573 * of the on-disk inode, so only one of them can be valid at
574 * any given time. While it is possible to have conflicting formats
575 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
576 * in EXTENTS format, this can only happen when the fork has
577 * changed formats after being modified but before being flushed.
578 * In these cases, the format always takes precedence, because the
579 * format indicates the current state of the fork.
580 */
581void
582xfs_iflush_fork(
583 xfs_inode_t *ip,
584 xfs_dinode_t *dip,
585 struct xfs_inode_log_item *iip,
586 int whichfork)
587{
588 char *cp;
589 struct xfs_ifork *ifp;
590 xfs_mount_t *mp;
591 static const short brootflag[2] =
592 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
593 static const short dataflag[2] =
594 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
595 static const short extflag[2] =
596 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
597
598 if (!iip)
599 return;
600 ifp = XFS_IFORK_PTR(ip, whichfork);
601 /*
602 * This can happen if we gave up in iformat in an error path,
603 * for the attribute fork.
604 */
605 if (!ifp) {
606 ASSERT(whichfork == XFS_ATTR_FORK);
607 return;
608 }
609 cp = XFS_DFORK_PTR(dip, whichfork);
610 mp = ip->i_mount;
611 switch (ifp->if_format) {
612 case XFS_DINODE_FMT_LOCAL:
613 if ((iip->ili_fields & dataflag[whichfork]) &&
614 (ifp->if_bytes > 0)) {
615 ASSERT(ifp->if_u1.if_data != NULL);
616 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
617 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
618 }
619 break;
620
621 case XFS_DINODE_FMT_EXTENTS:
622 if ((iip->ili_fields & extflag[whichfork]) &&
623 (ifp->if_bytes > 0)) {
624 ASSERT(ifp->if_nextents > 0);
625 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
626 whichfork);
627 }
628 break;
629
630 case XFS_DINODE_FMT_BTREE:
631 if ((iip->ili_fields & brootflag[whichfork]) &&
632 (ifp->if_broot_bytes > 0)) {
633 ASSERT(ifp->if_broot != NULL);
634 ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
635 XFS_IFORK_SIZE(ip, whichfork));
636 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
637 (xfs_bmdr_block_t *)cp,
638 XFS_DFORK_SIZE(dip, mp, whichfork));
639 }
640 break;
641
642 case XFS_DINODE_FMT_DEV:
643 if (iip->ili_fields & XFS_ILOG_DEV) {
644 ASSERT(whichfork == XFS_DATA_FORK);
645 xfs_dinode_put_rdev(dip,
646 linux_to_xfs_dev_t(VFS_I(ip)->i_rdev));
647 }
648 break;
649
650 default:
651 ASSERT(0);
652 break;
653 }
654}
655
656/* Convert bmap state flags to an inode fork. */
657struct xfs_ifork *
658xfs_iext_state_to_fork(
659 struct xfs_inode *ip,
660 int state)
661{
662 if (state & BMAP_COWFORK)
663 return ip->i_cowfp;
664 else if (state & BMAP_ATTRFORK)
665 return ip->i_afp;
666 return &ip->i_df;
667}
668
669/*
670 * Initialize an inode's copy-on-write fork.
671 */
672void
673xfs_ifork_init_cow(
674 struct xfs_inode *ip)
675{
676 if (ip->i_cowfp)
677 return;
678
679 ip->i_cowfp = kmem_cache_zalloc(xfs_ifork_zone,
680 GFP_NOFS | __GFP_NOFAIL);
681 ip->i_cowfp->if_format = XFS_DINODE_FMT_EXTENTS;
682}
683
684/* Verify the inline contents of the data fork of an inode. */
685int
686xfs_ifork_verify_local_data(
687 struct xfs_inode *ip)
688{
689 xfs_failaddr_t fa = NULL;
690
691 switch (VFS_I(ip)->i_mode & S_IFMT) {
692 case S_IFDIR:
693 fa = xfs_dir2_sf_verify(ip);
694 break;
695 case S_IFLNK:
696 fa = xfs_symlink_shortform_verify(ip);
697 break;
698 default:
699 break;
700 }
701
702 if (fa) {
703 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork",
704 ip->i_df.if_u1.if_data, ip->i_df.if_bytes, fa);
705 return -EFSCORRUPTED;
706 }
707
708 return 0;
709}
710
711/* Verify the inline contents of the attr fork of an inode. */
712int
713xfs_ifork_verify_local_attr(
714 struct xfs_inode *ip)
715{
716 struct xfs_ifork *ifp = ip->i_afp;
717 xfs_failaddr_t fa;
718
719 if (!ifp)
720 fa = __this_address;
721 else
722 fa = xfs_attr_shortform_verify(ip);
723
724 if (fa) {
725 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork",
726 ifp ? ifp->if_u1.if_data : NULL,
727 ifp ? ifp->if_bytes : 0, fa);
728 return -EFSCORRUPTED;
729 }
730
731 return 0;
732}
733
734int
735xfs_iext_count_may_overflow(
736 struct xfs_inode *ip,
737 int whichfork,
738 int nr_to_add)
739{
740 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
741 uint64_t max_exts;
742 uint64_t nr_exts;
743
744 if (whichfork == XFS_COW_FORK)
745 return 0;
746
747 max_exts = (whichfork == XFS_ATTR_FORK) ? MAXAEXTNUM : MAXEXTNUM;
748
749 if (XFS_TEST_ERROR(false, ip->i_mount, XFS_ERRTAG_REDUCE_MAX_IEXTENTS))
750 max_exts = 10;
751
752 nr_exts = ifp->if_nextents + nr_to_add;
753 if (nr_exts < ifp->if_nextents || nr_exts > max_exts)
754 return -EFBIG;
755
756 return 0;
757}