Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Filesystem-level keyring for fscrypt
   4 *
   5 * Copyright 2019 Google LLC
   6 */
   7
   8/*
   9 * This file implements management of fscrypt master keys in the
  10 * filesystem-level keyring, including the ioctls:
  11 *
  12 * - FS_IOC_ADD_ENCRYPTION_KEY
  13 * - FS_IOC_REMOVE_ENCRYPTION_KEY
  14 * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS
  15 * - FS_IOC_GET_ENCRYPTION_KEY_STATUS
  16 *
  17 * See the "User API" section of Documentation/filesystems/fscrypt.rst for more
  18 * information about these ioctls.
  19 */
  20
  21#include <asm/unaligned.h>
  22#include <crypto/skcipher.h>
  23#include <linux/key-type.h>
  24#include <linux/random.h>
  25#include <linux/seq_file.h>
  26
  27#include "fscrypt_private.h"
  28
  29/* The master encryption keys for a filesystem (->s_master_keys) */
  30struct fscrypt_keyring {
  31	/*
  32	 * Lock that protects ->key_hashtable.  It does *not* protect the
  33	 * fscrypt_master_key structs themselves.
  34	 */
  35	spinlock_t lock;
  36
  37	/* Hash table that maps fscrypt_key_specifier to fscrypt_master_key */
  38	struct hlist_head key_hashtable[128];
  39};
  40
  41static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret)
  42{
  43	fscrypt_destroy_hkdf(&secret->hkdf);
  44	memzero_explicit(secret, sizeof(*secret));
  45}
  46
  47static void move_master_key_secret(struct fscrypt_master_key_secret *dst,
  48				   struct fscrypt_master_key_secret *src)
  49{
  50	memcpy(dst, src, sizeof(*dst));
  51	memzero_explicit(src, sizeof(*src));
  52}
  53
  54static void fscrypt_free_master_key(struct rcu_head *head)
  55{
  56	struct fscrypt_master_key *mk =
  57		container_of(head, struct fscrypt_master_key, mk_rcu_head);
  58	/*
  59	 * The master key secret and any embedded subkeys should have already
  60	 * been wiped when the last active reference to the fscrypt_master_key
  61	 * struct was dropped; doing it here would be unnecessarily late.
  62	 * Nevertheless, use kfree_sensitive() in case anything was missed.
  63	 */
  64	kfree_sensitive(mk);
  65}
  66
  67void fscrypt_put_master_key(struct fscrypt_master_key *mk)
  68{
  69	if (!refcount_dec_and_test(&mk->mk_struct_refs))
  70		return;
  71	/*
  72	 * No structural references left, so free ->mk_users, and also free the
  73	 * fscrypt_master_key struct itself after an RCU grace period ensures
  74	 * that concurrent keyring lookups can no longer find it.
  75	 */
  76	WARN_ON(refcount_read(&mk->mk_active_refs) != 0);
  77	key_put(mk->mk_users);
  78	mk->mk_users = NULL;
  79	call_rcu(&mk->mk_rcu_head, fscrypt_free_master_key);
  80}
  81
  82void fscrypt_put_master_key_activeref(struct super_block *sb,
  83				      struct fscrypt_master_key *mk)
  84{
  85	size_t i;
  86
  87	if (!refcount_dec_and_test(&mk->mk_active_refs))
  88		return;
  89	/*
  90	 * No active references left, so complete the full removal of this
  91	 * fscrypt_master_key struct by removing it from the keyring and
  92	 * destroying any subkeys embedded in it.
  93	 */
  94
  95	spin_lock(&sb->s_master_keys->lock);
  96	hlist_del_rcu(&mk->mk_node);
  97	spin_unlock(&sb->s_master_keys->lock);
  98
  99	/*
 100	 * ->mk_active_refs == 0 implies that ->mk_secret is not present and
 101	 * that ->mk_decrypted_inodes is empty.
 102	 */
 103	WARN_ON(is_master_key_secret_present(&mk->mk_secret));
 104	WARN_ON(!list_empty(&mk->mk_decrypted_inodes));
 105
 106	for (i = 0; i <= FSCRYPT_MODE_MAX; i++) {
 107		fscrypt_destroy_prepared_key(
 108				sb, &mk->mk_direct_keys[i]);
 109		fscrypt_destroy_prepared_key(
 110				sb, &mk->mk_iv_ino_lblk_64_keys[i]);
 111		fscrypt_destroy_prepared_key(
 112				sb, &mk->mk_iv_ino_lblk_32_keys[i]);
 113	}
 114	memzero_explicit(&mk->mk_ino_hash_key,
 115			 sizeof(mk->mk_ino_hash_key));
 116	mk->mk_ino_hash_key_initialized = false;
 117
 118	/* Drop the structural ref associated with the active refs. */
 119	fscrypt_put_master_key(mk);
 120}
 121
 122static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec)
 123{
 124	if (spec->__reserved)
 125		return false;
 126	return master_key_spec_len(spec) != 0;
 127}
 128
 129static int fscrypt_user_key_instantiate(struct key *key,
 130					struct key_preparsed_payload *prep)
 131{
 132	/*
 133	 * We just charge FSCRYPT_MAX_KEY_SIZE bytes to the user's key quota for
 134	 * each key, regardless of the exact key size.  The amount of memory
 135	 * actually used is greater than the size of the raw key anyway.
 136	 */
 137	return key_payload_reserve(key, FSCRYPT_MAX_KEY_SIZE);
 138}
 139
 140static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m)
 141{
 142	seq_puts(m, key->description);
 143}
 144
 145/*
 146 * Type of key in ->mk_users.  Each key of this type represents a particular
 147 * user who has added a particular master key.
 148 *
 149 * Note that the name of this key type really should be something like
 150 * ".fscrypt-user" instead of simply ".fscrypt".  But the shorter name is chosen
 151 * mainly for simplicity of presentation in /proc/keys when read by a non-root
 152 * user.  And it is expected to be rare that a key is actually added by multiple
 153 * users, since users should keep their encryption keys confidential.
 154 */
 155static struct key_type key_type_fscrypt_user = {
 156	.name			= ".fscrypt",
 157	.instantiate		= fscrypt_user_key_instantiate,
 158	.describe		= fscrypt_user_key_describe,
 159};
 160
 161#define FSCRYPT_MK_USERS_DESCRIPTION_SIZE	\
 162	(CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \
 163	 CONST_STRLEN("-users") + 1)
 164
 165#define FSCRYPT_MK_USER_DESCRIPTION_SIZE	\
 166	(2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1)
 167
 168static void format_mk_users_keyring_description(
 169			char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE],
 170			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
 171{
 172	sprintf(description, "fscrypt-%*phN-users",
 173		FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier);
 174}
 175
 176static void format_mk_user_description(
 177			char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE],
 178			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
 179{
 180
 181	sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE,
 182		mk_identifier, __kuid_val(current_fsuid()));
 183}
 184
 185/* Create ->s_master_keys if needed.  Synchronized by fscrypt_add_key_mutex. */
 186static int allocate_filesystem_keyring(struct super_block *sb)
 187{
 188	struct fscrypt_keyring *keyring;
 189
 190	if (sb->s_master_keys)
 191		return 0;
 192
 193	keyring = kzalloc(sizeof(*keyring), GFP_KERNEL);
 194	if (!keyring)
 195		return -ENOMEM;
 196	spin_lock_init(&keyring->lock);
 197	/*
 198	 * Pairs with the smp_load_acquire() in fscrypt_find_master_key().
 199	 * I.e., here we publish ->s_master_keys with a RELEASE barrier so that
 200	 * concurrent tasks can ACQUIRE it.
 201	 */
 202	smp_store_release(&sb->s_master_keys, keyring);
 203	return 0;
 204}
 205
 206/*
 207 * Release all encryption keys that have been added to the filesystem, along
 208 * with the keyring that contains them.
 209 *
 210 * This is called at unmount time.  The filesystem's underlying block device(s)
 211 * are still available at this time; this is important because after user file
 212 * accesses have been allowed, this function may need to evict keys from the
 213 * keyslots of an inline crypto engine, which requires the block device(s).
 214 *
 215 * This is also called when the super_block is being freed.  This is needed to
 216 * avoid a memory leak if mounting fails after the "test_dummy_encryption"
 217 * option was processed, as in that case the unmount-time call isn't made.
 218 */
 219void fscrypt_destroy_keyring(struct super_block *sb)
 220{
 221	struct fscrypt_keyring *keyring = sb->s_master_keys;
 222	size_t i;
 223
 224	if (!keyring)
 225		return;
 226
 227	for (i = 0; i < ARRAY_SIZE(keyring->key_hashtable); i++) {
 228		struct hlist_head *bucket = &keyring->key_hashtable[i];
 229		struct fscrypt_master_key *mk;
 230		struct hlist_node *tmp;
 231
 232		hlist_for_each_entry_safe(mk, tmp, bucket, mk_node) {
 233			/*
 234			 * Since all inodes were already evicted, every key
 235			 * remaining in the keyring should have an empty inode
 236			 * list, and should only still be in the keyring due to
 237			 * the single active ref associated with ->mk_secret.
 238			 * There should be no structural refs beyond the one
 239			 * associated with the active ref.
 240			 */
 241			WARN_ON(refcount_read(&mk->mk_active_refs) != 1);
 242			WARN_ON(refcount_read(&mk->mk_struct_refs) != 1);
 243			WARN_ON(!is_master_key_secret_present(&mk->mk_secret));
 244			wipe_master_key_secret(&mk->mk_secret);
 245			fscrypt_put_master_key_activeref(sb, mk);
 246		}
 247	}
 248	kfree_sensitive(keyring);
 249	sb->s_master_keys = NULL;
 250}
 251
 252static struct hlist_head *
 253fscrypt_mk_hash_bucket(struct fscrypt_keyring *keyring,
 254		       const struct fscrypt_key_specifier *mk_spec)
 255{
 256	/*
 257	 * Since key specifiers should be "random" values, it is sufficient to
 258	 * use a trivial hash function that just takes the first several bits of
 259	 * the key specifier.
 260	 */
 261	unsigned long i = get_unaligned((unsigned long *)&mk_spec->u);
 262
 263	return &keyring->key_hashtable[i % ARRAY_SIZE(keyring->key_hashtable)];
 264}
 265
 266/*
 267 * Find the specified master key struct in ->s_master_keys and take a structural
 268 * ref to it.  The structural ref guarantees that the key struct continues to
 269 * exist, but it does *not* guarantee that ->s_master_keys continues to contain
 270 * the key struct.  The structural ref needs to be dropped by
 271 * fscrypt_put_master_key().  Returns NULL if the key struct is not found.
 272 */
 273struct fscrypt_master_key *
 274fscrypt_find_master_key(struct super_block *sb,
 275			const struct fscrypt_key_specifier *mk_spec)
 276{
 277	struct fscrypt_keyring *keyring;
 278	struct hlist_head *bucket;
 279	struct fscrypt_master_key *mk;
 280
 281	/*
 282	 * Pairs with the smp_store_release() in allocate_filesystem_keyring().
 283	 * I.e., another task can publish ->s_master_keys concurrently,
 284	 * executing a RELEASE barrier.  We need to use smp_load_acquire() here
 285	 * to safely ACQUIRE the memory the other task published.
 286	 */
 287	keyring = smp_load_acquire(&sb->s_master_keys);
 288	if (keyring == NULL)
 289		return NULL; /* No keyring yet, so no keys yet. */
 290
 291	bucket = fscrypt_mk_hash_bucket(keyring, mk_spec);
 292	rcu_read_lock();
 293	switch (mk_spec->type) {
 294	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
 295		hlist_for_each_entry_rcu(mk, bucket, mk_node) {
 296			if (mk->mk_spec.type ==
 297				FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
 298			    memcmp(mk->mk_spec.u.descriptor,
 299				   mk_spec->u.descriptor,
 300				   FSCRYPT_KEY_DESCRIPTOR_SIZE) == 0 &&
 301			    refcount_inc_not_zero(&mk->mk_struct_refs))
 302				goto out;
 303		}
 304		break;
 305	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
 306		hlist_for_each_entry_rcu(mk, bucket, mk_node) {
 307			if (mk->mk_spec.type ==
 308				FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
 309			    memcmp(mk->mk_spec.u.identifier,
 310				   mk_spec->u.identifier,
 311				   FSCRYPT_KEY_IDENTIFIER_SIZE) == 0 &&
 312			    refcount_inc_not_zero(&mk->mk_struct_refs))
 313				goto out;
 314		}
 315		break;
 316	}
 317	mk = NULL;
 318out:
 319	rcu_read_unlock();
 320	return mk;
 321}
 322
 323static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk)
 324{
 325	char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE];
 326	struct key *keyring;
 327
 328	format_mk_users_keyring_description(description,
 329					    mk->mk_spec.u.identifier);
 330	keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
 331				current_cred(), KEY_POS_SEARCH |
 332				  KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW,
 333				KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
 334	if (IS_ERR(keyring))
 335		return PTR_ERR(keyring);
 336
 337	mk->mk_users = keyring;
 338	return 0;
 339}
 340
 341/*
 342 * Find the current user's "key" in the master key's ->mk_users.
 343 * Returns ERR_PTR(-ENOKEY) if not found.
 344 */
 345static struct key *find_master_key_user(struct fscrypt_master_key *mk)
 346{
 347	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
 348	key_ref_t keyref;
 349
 350	format_mk_user_description(description, mk->mk_spec.u.identifier);
 351
 352	/*
 353	 * We need to mark the keyring reference as "possessed" so that we
 354	 * acquire permission to search it, via the KEY_POS_SEARCH permission.
 355	 */
 356	keyref = keyring_search(make_key_ref(mk->mk_users, true /*possessed*/),
 357				&key_type_fscrypt_user, description, false);
 358	if (IS_ERR(keyref)) {
 359		if (PTR_ERR(keyref) == -EAGAIN || /* not found */
 360		    PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */
 361			keyref = ERR_PTR(-ENOKEY);
 362		return ERR_CAST(keyref);
 363	}
 364	return key_ref_to_ptr(keyref);
 365}
 366
 367/*
 368 * Give the current user a "key" in ->mk_users.  This charges the user's quota
 369 * and marks the master key as added by the current user, so that it cannot be
 370 * removed by another user with the key.  Either ->mk_sem must be held for
 371 * write, or the master key must be still undergoing initialization.
 372 */
 373static int add_master_key_user(struct fscrypt_master_key *mk)
 374{
 375	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
 376	struct key *mk_user;
 377	int err;
 378
 379	format_mk_user_description(description, mk->mk_spec.u.identifier);
 380	mk_user = key_alloc(&key_type_fscrypt_user, description,
 381			    current_fsuid(), current_gid(), current_cred(),
 382			    KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL);
 383	if (IS_ERR(mk_user))
 384		return PTR_ERR(mk_user);
 385
 386	err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL);
 387	key_put(mk_user);
 388	return err;
 389}
 390
 391/*
 392 * Remove the current user's "key" from ->mk_users.
 393 * ->mk_sem must be held for write.
 394 *
 395 * Returns 0 if removed, -ENOKEY if not found, or another -errno code.
 396 */
 397static int remove_master_key_user(struct fscrypt_master_key *mk)
 398{
 399	struct key *mk_user;
 400	int err;
 401
 402	mk_user = find_master_key_user(mk);
 403	if (IS_ERR(mk_user))
 404		return PTR_ERR(mk_user);
 405	err = key_unlink(mk->mk_users, mk_user);
 406	key_put(mk_user);
 407	return err;
 408}
 409
 410/*
 411 * Allocate a new fscrypt_master_key, transfer the given secret over to it, and
 412 * insert it into sb->s_master_keys.
 413 */
 414static int add_new_master_key(struct super_block *sb,
 415			      struct fscrypt_master_key_secret *secret,
 416			      const struct fscrypt_key_specifier *mk_spec)
 417{
 418	struct fscrypt_keyring *keyring = sb->s_master_keys;
 419	struct fscrypt_master_key *mk;
 420	int err;
 421
 422	mk = kzalloc(sizeof(*mk), GFP_KERNEL);
 423	if (!mk)
 424		return -ENOMEM;
 425
 426	init_rwsem(&mk->mk_sem);
 427	refcount_set(&mk->mk_struct_refs, 1);
 428	mk->mk_spec = *mk_spec;
 429
 430	INIT_LIST_HEAD(&mk->mk_decrypted_inodes);
 431	spin_lock_init(&mk->mk_decrypted_inodes_lock);
 432
 433	if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
 434		err = allocate_master_key_users_keyring(mk);
 435		if (err)
 436			goto out_put;
 437		err = add_master_key_user(mk);
 438		if (err)
 439			goto out_put;
 440	}
 441
 442	move_master_key_secret(&mk->mk_secret, secret);
 443	refcount_set(&mk->mk_active_refs, 1); /* ->mk_secret is present */
 444
 445	spin_lock(&keyring->lock);
 446	hlist_add_head_rcu(&mk->mk_node,
 447			   fscrypt_mk_hash_bucket(keyring, mk_spec));
 448	spin_unlock(&keyring->lock);
 449	return 0;
 450
 451out_put:
 452	fscrypt_put_master_key(mk);
 453	return err;
 454}
 455
 456#define KEY_DEAD	1
 457
 458static int add_existing_master_key(struct fscrypt_master_key *mk,
 459				   struct fscrypt_master_key_secret *secret)
 460{
 461	int err;
 462
 463	/*
 464	 * If the current user is already in ->mk_users, then there's nothing to
 465	 * do.  Otherwise, we need to add the user to ->mk_users.  (Neither is
 466	 * applicable for v1 policy keys, which have NULL ->mk_users.)
 467	 */
 468	if (mk->mk_users) {
 469		struct key *mk_user = find_master_key_user(mk);
 470
 471		if (mk_user != ERR_PTR(-ENOKEY)) {
 472			if (IS_ERR(mk_user))
 473				return PTR_ERR(mk_user);
 474			key_put(mk_user);
 475			return 0;
 476		}
 477		err = add_master_key_user(mk);
 478		if (err)
 479			return err;
 480	}
 481
 482	/* Re-add the secret if needed. */
 483	if (!is_master_key_secret_present(&mk->mk_secret)) {
 484		if (!refcount_inc_not_zero(&mk->mk_active_refs))
 485			return KEY_DEAD;
 486		move_master_key_secret(&mk->mk_secret, secret);
 487	}
 488
 489	return 0;
 490}
 491
 492static int do_add_master_key(struct super_block *sb,
 493			     struct fscrypt_master_key_secret *secret,
 494			     const struct fscrypt_key_specifier *mk_spec)
 495{
 496	static DEFINE_MUTEX(fscrypt_add_key_mutex);
 497	struct fscrypt_master_key *mk;
 498	int err;
 499
 500	mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */
 501
 502	mk = fscrypt_find_master_key(sb, mk_spec);
 503	if (!mk) {
 504		/* Didn't find the key in ->s_master_keys.  Add it. */
 505		err = allocate_filesystem_keyring(sb);
 506		if (!err)
 507			err = add_new_master_key(sb, secret, mk_spec);
 508	} else {
 509		/*
 510		 * Found the key in ->s_master_keys.  Re-add the secret if
 511		 * needed, and add the user to ->mk_users if needed.
 512		 */
 513		down_write(&mk->mk_sem);
 514		err = add_existing_master_key(mk, secret);
 515		up_write(&mk->mk_sem);
 516		if (err == KEY_DEAD) {
 517			/*
 518			 * We found a key struct, but it's already been fully
 519			 * removed.  Ignore the old struct and add a new one.
 520			 * fscrypt_add_key_mutex means we don't need to worry
 521			 * about concurrent adds.
 522			 */
 523			err = add_new_master_key(sb, secret, mk_spec);
 524		}
 525		fscrypt_put_master_key(mk);
 526	}
 527	mutex_unlock(&fscrypt_add_key_mutex);
 528	return err;
 529}
 530
 531static int add_master_key(struct super_block *sb,
 532			  struct fscrypt_master_key_secret *secret,
 533			  struct fscrypt_key_specifier *key_spec)
 534{
 535	int err;
 536
 537	if (key_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
 538		err = fscrypt_init_hkdf(&secret->hkdf, secret->raw,
 539					secret->size);
 540		if (err)
 541			return err;
 542
 543		/*
 544		 * Now that the HKDF context is initialized, the raw key is no
 545		 * longer needed.
 546		 */
 547		memzero_explicit(secret->raw, secret->size);
 548
 549		/* Calculate the key identifier */
 550		err = fscrypt_hkdf_expand(&secret->hkdf,
 551					  HKDF_CONTEXT_KEY_IDENTIFIER, NULL, 0,
 552					  key_spec->u.identifier,
 553					  FSCRYPT_KEY_IDENTIFIER_SIZE);
 554		if (err)
 555			return err;
 556	}
 557	return do_add_master_key(sb, secret, key_spec);
 558}
 559
 560static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload *prep)
 561{
 562	const struct fscrypt_provisioning_key_payload *payload = prep->data;
 563
 564	if (prep->datalen < sizeof(*payload) + FSCRYPT_MIN_KEY_SIZE ||
 565	    prep->datalen > sizeof(*payload) + FSCRYPT_MAX_KEY_SIZE)
 566		return -EINVAL;
 567
 568	if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
 569	    payload->type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER)
 570		return -EINVAL;
 571
 572	if (payload->__reserved)
 573		return -EINVAL;
 574
 575	prep->payload.data[0] = kmemdup(payload, prep->datalen, GFP_KERNEL);
 576	if (!prep->payload.data[0])
 577		return -ENOMEM;
 578
 579	prep->quotalen = prep->datalen;
 580	return 0;
 581}
 582
 583static void fscrypt_provisioning_key_free_preparse(
 584					struct key_preparsed_payload *prep)
 585{
 586	kfree_sensitive(prep->payload.data[0]);
 587}
 588
 589static void fscrypt_provisioning_key_describe(const struct key *key,
 590					      struct seq_file *m)
 591{
 592	seq_puts(m, key->description);
 593	if (key_is_positive(key)) {
 594		const struct fscrypt_provisioning_key_payload *payload =
 595			key->payload.data[0];
 596
 597		seq_printf(m, ": %u [%u]", key->datalen, payload->type);
 598	}
 599}
 600
 601static void fscrypt_provisioning_key_destroy(struct key *key)
 602{
 603	kfree_sensitive(key->payload.data[0]);
 604}
 605
 606static struct key_type key_type_fscrypt_provisioning = {
 607	.name			= "fscrypt-provisioning",
 608	.preparse		= fscrypt_provisioning_key_preparse,
 609	.free_preparse		= fscrypt_provisioning_key_free_preparse,
 610	.instantiate		= generic_key_instantiate,
 611	.describe		= fscrypt_provisioning_key_describe,
 612	.destroy		= fscrypt_provisioning_key_destroy,
 613};
 614
 615/*
 616 * Retrieve the raw key from the Linux keyring key specified by 'key_id', and
 617 * store it into 'secret'.
 618 *
 619 * The key must be of type "fscrypt-provisioning" and must have the field
 620 * fscrypt_provisioning_key_payload::type set to 'type', indicating that it's
 621 * only usable with fscrypt with the particular KDF version identified by
 622 * 'type'.  We don't use the "logon" key type because there's no way to
 623 * completely restrict the use of such keys; they can be used by any kernel API
 624 * that accepts "logon" keys and doesn't require a specific service prefix.
 625 *
 626 * The ability to specify the key via Linux keyring key is intended for cases
 627 * where userspace needs to re-add keys after the filesystem is unmounted and
 628 * re-mounted.  Most users should just provide the raw key directly instead.
 629 */
 630static int get_keyring_key(u32 key_id, u32 type,
 631			   struct fscrypt_master_key_secret *secret)
 632{
 633	key_ref_t ref;
 634	struct key *key;
 635	const struct fscrypt_provisioning_key_payload *payload;
 636	int err;
 637
 638	ref = lookup_user_key(key_id, 0, KEY_NEED_SEARCH);
 639	if (IS_ERR(ref))
 640		return PTR_ERR(ref);
 641	key = key_ref_to_ptr(ref);
 642
 643	if (key->type != &key_type_fscrypt_provisioning)
 644		goto bad_key;
 645	payload = key->payload.data[0];
 646
 647	/* Don't allow fscrypt v1 keys to be used as v2 keys and vice versa. */
 648	if (payload->type != type)
 649		goto bad_key;
 650
 651	secret->size = key->datalen - sizeof(*payload);
 652	memcpy(secret->raw, payload->raw, secret->size);
 653	err = 0;
 654	goto out_put;
 655
 656bad_key:
 657	err = -EKEYREJECTED;
 658out_put:
 659	key_ref_put(ref);
 660	return err;
 661}
 662
 663/*
 664 * Add a master encryption key to the filesystem, causing all files which were
 665 * encrypted with it to appear "unlocked" (decrypted) when accessed.
 666 *
 667 * When adding a key for use by v1 encryption policies, this ioctl is
 668 * privileged, and userspace must provide the 'key_descriptor'.
 669 *
 670 * When adding a key for use by v2+ encryption policies, this ioctl is
 671 * unprivileged.  This is needed, in general, to allow non-root users to use
 672 * encryption without encountering the visibility problems of process-subscribed
 673 * keyrings and the inability to properly remove keys.  This works by having
 674 * each key identified by its cryptographically secure hash --- the
 675 * 'key_identifier'.  The cryptographic hash ensures that a malicious user
 676 * cannot add the wrong key for a given identifier.  Furthermore, each added key
 677 * is charged to the appropriate user's quota for the keyrings service, which
 678 * prevents a malicious user from adding too many keys.  Finally, we forbid a
 679 * user from removing a key while other users have added it too, which prevents
 680 * a user who knows another user's key from causing a denial-of-service by
 681 * removing it at an inopportune time.  (We tolerate that a user who knows a key
 682 * can prevent other users from removing it.)
 683 *
 684 * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of
 685 * Documentation/filesystems/fscrypt.rst.
 686 */
 687int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg)
 688{
 689	struct super_block *sb = file_inode(filp)->i_sb;
 690	struct fscrypt_add_key_arg __user *uarg = _uarg;
 691	struct fscrypt_add_key_arg arg;
 692	struct fscrypt_master_key_secret secret;
 693	int err;
 694
 695	if (copy_from_user(&arg, uarg, sizeof(arg)))
 696		return -EFAULT;
 697
 698	if (!valid_key_spec(&arg.key_spec))
 699		return -EINVAL;
 700
 701	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
 702		return -EINVAL;
 703
 704	/*
 705	 * Only root can add keys that are identified by an arbitrary descriptor
 706	 * rather than by a cryptographic hash --- since otherwise a malicious
 707	 * user could add the wrong key.
 708	 */
 709	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
 710	    !capable(CAP_SYS_ADMIN))
 711		return -EACCES;
 712
 713	memset(&secret, 0, sizeof(secret));
 714	if (arg.key_id) {
 715		if (arg.raw_size != 0)
 716			return -EINVAL;
 717		err = get_keyring_key(arg.key_id, arg.key_spec.type, &secret);
 718		if (err)
 719			goto out_wipe_secret;
 720	} else {
 721		if (arg.raw_size < FSCRYPT_MIN_KEY_SIZE ||
 722		    arg.raw_size > FSCRYPT_MAX_KEY_SIZE)
 723			return -EINVAL;
 724		secret.size = arg.raw_size;
 725		err = -EFAULT;
 726		if (copy_from_user(secret.raw, uarg->raw, secret.size))
 727			goto out_wipe_secret;
 728	}
 729
 730	err = add_master_key(sb, &secret, &arg.key_spec);
 731	if (err)
 732		goto out_wipe_secret;
 733
 734	/* Return the key identifier to userspace, if applicable */
 735	err = -EFAULT;
 736	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
 737	    copy_to_user(uarg->key_spec.u.identifier, arg.key_spec.u.identifier,
 738			 FSCRYPT_KEY_IDENTIFIER_SIZE))
 739		goto out_wipe_secret;
 740	err = 0;
 741out_wipe_secret:
 742	wipe_master_key_secret(&secret);
 743	return err;
 744}
 745EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key);
 746
 747static void
 748fscrypt_get_test_dummy_secret(struct fscrypt_master_key_secret *secret)
 749{
 750	static u8 test_key[FSCRYPT_MAX_KEY_SIZE];
 751
 752	get_random_once(test_key, FSCRYPT_MAX_KEY_SIZE);
 753
 754	memset(secret, 0, sizeof(*secret));
 755	secret->size = FSCRYPT_MAX_KEY_SIZE;
 756	memcpy(secret->raw, test_key, FSCRYPT_MAX_KEY_SIZE);
 757}
 758
 759int fscrypt_get_test_dummy_key_identifier(
 760				u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
 761{
 762	struct fscrypt_master_key_secret secret;
 763	int err;
 764
 765	fscrypt_get_test_dummy_secret(&secret);
 766
 767	err = fscrypt_init_hkdf(&secret.hkdf, secret.raw, secret.size);
 768	if (err)
 769		goto out;
 770	err = fscrypt_hkdf_expand(&secret.hkdf, HKDF_CONTEXT_KEY_IDENTIFIER,
 771				  NULL, 0, key_identifier,
 772				  FSCRYPT_KEY_IDENTIFIER_SIZE);
 773out:
 774	wipe_master_key_secret(&secret);
 775	return err;
 776}
 777
 778/**
 779 * fscrypt_add_test_dummy_key() - add the test dummy encryption key
 780 * @sb: the filesystem instance to add the key to
 781 * @dummy_policy: the encryption policy for test_dummy_encryption
 782 *
 783 * If needed, add the key for the test_dummy_encryption mount option to the
 784 * filesystem.  To prevent misuse of this mount option, a per-boot random key is
 785 * used instead of a hardcoded one.  This makes it so that any encrypted files
 786 * created using this option won't be accessible after a reboot.
 787 *
 788 * Return: 0 on success, -errno on failure
 789 */
 790int fscrypt_add_test_dummy_key(struct super_block *sb,
 791			       const struct fscrypt_dummy_policy *dummy_policy)
 792{
 793	const union fscrypt_policy *policy = dummy_policy->policy;
 794	struct fscrypt_key_specifier key_spec;
 795	struct fscrypt_master_key_secret secret;
 796	int err;
 797
 798	if (!policy)
 799		return 0;
 800	err = fscrypt_policy_to_key_spec(policy, &key_spec);
 801	if (err)
 802		return err;
 803	fscrypt_get_test_dummy_secret(&secret);
 804	err = add_master_key(sb, &secret, &key_spec);
 805	wipe_master_key_secret(&secret);
 806	return err;
 807}
 808EXPORT_SYMBOL_GPL(fscrypt_add_test_dummy_key);
 809
 810/*
 811 * Verify that the current user has added a master key with the given identifier
 812 * (returns -ENOKEY if not).  This is needed to prevent a user from encrypting
 813 * their files using some other user's key which they don't actually know.
 814 * Cryptographically this isn't much of a problem, but the semantics of this
 815 * would be a bit weird, so it's best to just forbid it.
 816 *
 817 * The system administrator (CAP_FOWNER) can override this, which should be
 818 * enough for any use cases where encryption policies are being set using keys
 819 * that were chosen ahead of time but aren't available at the moment.
 820 *
 821 * Note that the key may have already removed by the time this returns, but
 822 * that's okay; we just care whether the key was there at some point.
 823 *
 824 * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code
 825 */
 826int fscrypt_verify_key_added(struct super_block *sb,
 827			     const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
 828{
 829	struct fscrypt_key_specifier mk_spec;
 830	struct fscrypt_master_key *mk;
 831	struct key *mk_user;
 832	int err;
 833
 834	mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
 835	memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE);
 836
 837	mk = fscrypt_find_master_key(sb, &mk_spec);
 838	if (!mk) {
 839		err = -ENOKEY;
 840		goto out;
 841	}
 842	down_read(&mk->mk_sem);
 843	mk_user = find_master_key_user(mk);
 844	if (IS_ERR(mk_user)) {
 845		err = PTR_ERR(mk_user);
 846	} else {
 847		key_put(mk_user);
 848		err = 0;
 849	}
 850	up_read(&mk->mk_sem);
 851	fscrypt_put_master_key(mk);
 852out:
 853	if (err == -ENOKEY && capable(CAP_FOWNER))
 854		err = 0;
 855	return err;
 856}
 857
 858/*
 859 * Try to evict the inode's dentries from the dentry cache.  If the inode is a
 860 * directory, then it can have at most one dentry; however, that dentry may be
 861 * pinned by child dentries, so first try to evict the children too.
 862 */
 863static void shrink_dcache_inode(struct inode *inode)
 864{
 865	struct dentry *dentry;
 866
 867	if (S_ISDIR(inode->i_mode)) {
 868		dentry = d_find_any_alias(inode);
 869		if (dentry) {
 870			shrink_dcache_parent(dentry);
 871			dput(dentry);
 872		}
 873	}
 874	d_prune_aliases(inode);
 875}
 876
 877static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk)
 878{
 879	struct fscrypt_info *ci;
 880	struct inode *inode;
 881	struct inode *toput_inode = NULL;
 882
 883	spin_lock(&mk->mk_decrypted_inodes_lock);
 884
 885	list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) {
 886		inode = ci->ci_inode;
 887		spin_lock(&inode->i_lock);
 888		if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) {
 889			spin_unlock(&inode->i_lock);
 890			continue;
 891		}
 892		__iget(inode);
 893		spin_unlock(&inode->i_lock);
 894		spin_unlock(&mk->mk_decrypted_inodes_lock);
 895
 896		shrink_dcache_inode(inode);
 897		iput(toput_inode);
 898		toput_inode = inode;
 899
 900		spin_lock(&mk->mk_decrypted_inodes_lock);
 901	}
 902
 903	spin_unlock(&mk->mk_decrypted_inodes_lock);
 904	iput(toput_inode);
 905}
 906
 907static int check_for_busy_inodes(struct super_block *sb,
 908				 struct fscrypt_master_key *mk)
 909{
 910	struct list_head *pos;
 911	size_t busy_count = 0;
 912	unsigned long ino;
 913	char ino_str[50] = "";
 914
 915	spin_lock(&mk->mk_decrypted_inodes_lock);
 916
 917	list_for_each(pos, &mk->mk_decrypted_inodes)
 918		busy_count++;
 919
 920	if (busy_count == 0) {
 921		spin_unlock(&mk->mk_decrypted_inodes_lock);
 922		return 0;
 923	}
 924
 925	{
 926		/* select an example file to show for debugging purposes */
 927		struct inode *inode =
 928			list_first_entry(&mk->mk_decrypted_inodes,
 929					 struct fscrypt_info,
 930					 ci_master_key_link)->ci_inode;
 931		ino = inode->i_ino;
 932	}
 933	spin_unlock(&mk->mk_decrypted_inodes_lock);
 934
 935	/* If the inode is currently being created, ino may still be 0. */
 936	if (ino)
 937		snprintf(ino_str, sizeof(ino_str), ", including ino %lu", ino);
 938
 939	fscrypt_warn(NULL,
 940		     "%s: %zu inode(s) still busy after removing key with %s %*phN%s",
 941		     sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec),
 942		     master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u,
 943		     ino_str);
 944	return -EBUSY;
 945}
 946
 947static int try_to_lock_encrypted_files(struct super_block *sb,
 948				       struct fscrypt_master_key *mk)
 949{
 950	int err1;
 951	int err2;
 952
 953	/*
 954	 * An inode can't be evicted while it is dirty or has dirty pages.
 955	 * Thus, we first have to clean the inodes in ->mk_decrypted_inodes.
 956	 *
 957	 * Just do it the easy way: call sync_filesystem().  It's overkill, but
 958	 * it works, and it's more important to minimize the amount of caches we
 959	 * drop than the amount of data we sync.  Also, unprivileged users can
 960	 * already call sync_filesystem() via sys_syncfs() or sys_sync().
 961	 */
 962	down_read(&sb->s_umount);
 963	err1 = sync_filesystem(sb);
 964	up_read(&sb->s_umount);
 965	/* If a sync error occurs, still try to evict as much as possible. */
 966
 967	/*
 968	 * Inodes are pinned by their dentries, so we have to evict their
 969	 * dentries.  shrink_dcache_sb() would suffice, but would be overkill
 970	 * and inappropriate for use by unprivileged users.  So instead go
 971	 * through the inodes' alias lists and try to evict each dentry.
 972	 */
 973	evict_dentries_for_decrypted_inodes(mk);
 974
 975	/*
 976	 * evict_dentries_for_decrypted_inodes() already iput() each inode in
 977	 * the list; any inodes for which that dropped the last reference will
 978	 * have been evicted due to fscrypt_drop_inode() detecting the key
 979	 * removal and telling the VFS to evict the inode.  So to finish, we
 980	 * just need to check whether any inodes couldn't be evicted.
 981	 */
 982	err2 = check_for_busy_inodes(sb, mk);
 983
 984	return err1 ?: err2;
 985}
 986
 987/*
 988 * Try to remove an fscrypt master encryption key.
 989 *
 990 * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's
 991 * claim to the key, then removes the key itself if no other users have claims.
 992 * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the
 993 * key itself.
 994 *
 995 * To "remove the key itself", first we wipe the actual master key secret, so
 996 * that no more inodes can be unlocked with it.  Then we try to evict all cached
 997 * inodes that had been unlocked with the key.
 998 *
 999 * If all inodes were evicted, then we unlink the fscrypt_master_key from the
1000 * keyring.  Otherwise it remains in the keyring in the "incompletely removed"
1001 * state (without the actual secret key) where it tracks the list of remaining
1002 * inodes.  Userspace can execute the ioctl again later to retry eviction, or
1003 * alternatively can re-add the secret key again.
1004 *
1005 * For more details, see the "Removing keys" section of
1006 * Documentation/filesystems/fscrypt.rst.
1007 */
1008static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users)
1009{
1010	struct super_block *sb = file_inode(filp)->i_sb;
1011	struct fscrypt_remove_key_arg __user *uarg = _uarg;
1012	struct fscrypt_remove_key_arg arg;
1013	struct fscrypt_master_key *mk;
1014	u32 status_flags = 0;
1015	int err;
1016	bool inodes_remain;
1017
1018	if (copy_from_user(&arg, uarg, sizeof(arg)))
1019		return -EFAULT;
1020
1021	if (!valid_key_spec(&arg.key_spec))
1022		return -EINVAL;
1023
1024	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
1025		return -EINVAL;
1026
1027	/*
1028	 * Only root can add and remove keys that are identified by an arbitrary
1029	 * descriptor rather than by a cryptographic hash.
1030	 */
1031	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
1032	    !capable(CAP_SYS_ADMIN))
1033		return -EACCES;
1034
1035	/* Find the key being removed. */
1036	mk = fscrypt_find_master_key(sb, &arg.key_spec);
1037	if (!mk)
1038		return -ENOKEY;
1039	down_write(&mk->mk_sem);
1040
1041	/* If relevant, remove current user's (or all users) claim to the key */
1042	if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) {
1043		if (all_users)
1044			err = keyring_clear(mk->mk_users);
1045		else
1046			err = remove_master_key_user(mk);
1047		if (err) {
1048			up_write(&mk->mk_sem);
1049			goto out_put_key;
1050		}
1051		if (mk->mk_users->keys.nr_leaves_on_tree != 0) {
1052			/*
1053			 * Other users have still added the key too.  We removed
1054			 * the current user's claim to the key, but we still
1055			 * can't remove the key itself.
1056			 */
1057			status_flags |=
1058				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS;
1059			err = 0;
1060			up_write(&mk->mk_sem);
1061			goto out_put_key;
1062		}
1063	}
1064
1065	/* No user claims remaining.  Go ahead and wipe the secret. */
1066	err = -ENOKEY;
1067	if (is_master_key_secret_present(&mk->mk_secret)) {
1068		wipe_master_key_secret(&mk->mk_secret);
1069		fscrypt_put_master_key_activeref(sb, mk);
1070		err = 0;
1071	}
1072	inodes_remain = refcount_read(&mk->mk_active_refs) > 0;
1073	up_write(&mk->mk_sem);
1074
1075	if (inodes_remain) {
1076		/* Some inodes still reference this key; try to evict them. */
1077		err = try_to_lock_encrypted_files(sb, mk);
1078		if (err == -EBUSY) {
1079			status_flags |=
1080				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY;
1081			err = 0;
1082		}
1083	}
1084	/*
1085	 * We return 0 if we successfully did something: removed a claim to the
1086	 * key, wiped the secret, or tried locking the files again.  Users need
1087	 * to check the informational status flags if they care whether the key
1088	 * has been fully removed including all files locked.
1089	 */
1090out_put_key:
1091	fscrypt_put_master_key(mk);
1092	if (err == 0)
1093		err = put_user(status_flags, &uarg->removal_status_flags);
1094	return err;
1095}
1096
1097int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg)
1098{
1099	return do_remove_key(filp, uarg, false);
1100}
1101EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key);
1102
1103int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg)
1104{
1105	if (!capable(CAP_SYS_ADMIN))
1106		return -EACCES;
1107	return do_remove_key(filp, uarg, true);
1108}
1109EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users);
1110
1111/*
1112 * Retrieve the status of an fscrypt master encryption key.
1113 *
1114 * We set ->status to indicate whether the key is absent, present, or
1115 * incompletely removed.  "Incompletely removed" means that the master key
1116 * secret has been removed, but some files which had been unlocked with it are
1117 * still in use.  This field allows applications to easily determine the state
1118 * of an encrypted directory without using a hack such as trying to open a
1119 * regular file in it (which can confuse the "incompletely removed" state with
1120 * absent or present).
1121 *
1122 * In addition, for v2 policy keys we allow applications to determine, via
1123 * ->status_flags and ->user_count, whether the key has been added by the
1124 * current user, by other users, or by both.  Most applications should not need
1125 * this, since ordinarily only one user should know a given key.  However, if a
1126 * secret key is shared by multiple users, applications may wish to add an
1127 * already-present key to prevent other users from removing it.  This ioctl can
1128 * be used to check whether that really is the case before the work is done to
1129 * add the key --- which might e.g. require prompting the user for a passphrase.
1130 *
1131 * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of
1132 * Documentation/filesystems/fscrypt.rst.
1133 */
1134int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg)
1135{
1136	struct super_block *sb = file_inode(filp)->i_sb;
1137	struct fscrypt_get_key_status_arg arg;
1138	struct fscrypt_master_key *mk;
1139	int err;
1140
1141	if (copy_from_user(&arg, uarg, sizeof(arg)))
1142		return -EFAULT;
1143
1144	if (!valid_key_spec(&arg.key_spec))
1145		return -EINVAL;
1146
1147	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
1148		return -EINVAL;
1149
1150	arg.status_flags = 0;
1151	arg.user_count = 0;
1152	memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved));
1153
1154	mk = fscrypt_find_master_key(sb, &arg.key_spec);
1155	if (!mk) {
1156		arg.status = FSCRYPT_KEY_STATUS_ABSENT;
1157		err = 0;
1158		goto out;
1159	}
1160	down_read(&mk->mk_sem);
1161
1162	if (!is_master_key_secret_present(&mk->mk_secret)) {
1163		arg.status = refcount_read(&mk->mk_active_refs) > 0 ?
1164			FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED :
1165			FSCRYPT_KEY_STATUS_ABSENT /* raced with full removal */;
1166		err = 0;
1167		goto out_release_key;
1168	}
1169
1170	arg.status = FSCRYPT_KEY_STATUS_PRESENT;
1171	if (mk->mk_users) {
1172		struct key *mk_user;
1173
1174		arg.user_count = mk->mk_users->keys.nr_leaves_on_tree;
1175		mk_user = find_master_key_user(mk);
1176		if (!IS_ERR(mk_user)) {
1177			arg.status_flags |=
1178				FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF;
1179			key_put(mk_user);
1180		} else if (mk_user != ERR_PTR(-ENOKEY)) {
1181			err = PTR_ERR(mk_user);
1182			goto out_release_key;
1183		}
1184	}
1185	err = 0;
1186out_release_key:
1187	up_read(&mk->mk_sem);
1188	fscrypt_put_master_key(mk);
1189out:
1190	if (!err && copy_to_user(uarg, &arg, sizeof(arg)))
1191		err = -EFAULT;
1192	return err;
1193}
1194EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status);
1195
1196int __init fscrypt_init_keyring(void)
1197{
1198	int err;
1199
1200	err = register_key_type(&key_type_fscrypt_user);
1201	if (err)
1202		return err;
1203
1204	err = register_key_type(&key_type_fscrypt_provisioning);
1205	if (err)
1206		goto err_unregister_fscrypt_user;
1207
1208	return 0;
1209
1210err_unregister_fscrypt_user:
1211	unregister_key_type(&key_type_fscrypt_user);
1212	return err;
1213}