Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Filesystem-level keyring for fscrypt
   4 *
   5 * Copyright 2019 Google LLC
   6 */
   7
   8/*
   9 * This file implements management of fscrypt master keys in the
  10 * filesystem-level keyring, including the ioctls:
  11 *
  12 * - FS_IOC_ADD_ENCRYPTION_KEY
  13 * - FS_IOC_REMOVE_ENCRYPTION_KEY
  14 * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS
  15 * - FS_IOC_GET_ENCRYPTION_KEY_STATUS
  16 *
  17 * See the "User API" section of Documentation/filesystems/fscrypt.rst for more
  18 * information about these ioctls.
  19 */
  20
  21#include <asm/unaligned.h>
  22#include <crypto/skcipher.h>
  23#include <linux/key-type.h>
  24#include <linux/random.h>
  25#include <linux/seq_file.h>
  26
  27#include "fscrypt_private.h"
  28
  29/* The master encryption keys for a filesystem (->s_master_keys) */
  30struct fscrypt_keyring {
  31	/*
  32	 * Lock that protects ->key_hashtable.  It does *not* protect the
  33	 * fscrypt_master_key structs themselves.
  34	 */
  35	spinlock_t lock;
  36
  37	/* Hash table that maps fscrypt_key_specifier to fscrypt_master_key */
  38	struct hlist_head key_hashtable[128];
  39};
  40
  41static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret)
  42{
  43	fscrypt_destroy_hkdf(&secret->hkdf);
  44	memzero_explicit(secret, sizeof(*secret));
  45}
  46
  47static void move_master_key_secret(struct fscrypt_master_key_secret *dst,
  48				   struct fscrypt_master_key_secret *src)
  49{
  50	memcpy(dst, src, sizeof(*dst));
  51	memzero_explicit(src, sizeof(*src));
  52}
  53
  54static void fscrypt_free_master_key(struct rcu_head *head)
  55{
  56	struct fscrypt_master_key *mk =
  57		container_of(head, struct fscrypt_master_key, mk_rcu_head);
  58	/*
  59	 * The master key secret and any embedded subkeys should have already
  60	 * been wiped when the last active reference to the fscrypt_master_key
  61	 * struct was dropped; doing it here would be unnecessarily late.
  62	 * Nevertheless, use kfree_sensitive() in case anything was missed.
  63	 */
  64	kfree_sensitive(mk);
  65}
  66
  67void fscrypt_put_master_key(struct fscrypt_master_key *mk)
  68{
  69	if (!refcount_dec_and_test(&mk->mk_struct_refs))
  70		return;
  71	/*
  72	 * No structural references left, so free ->mk_users, and also free the
  73	 * fscrypt_master_key struct itself after an RCU grace period ensures
  74	 * that concurrent keyring lookups can no longer find it.
  75	 */
  76	WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 0);
  77	if (mk->mk_users) {
  78		/* Clear the keyring so the quota gets released right away. */
  79		keyring_clear(mk->mk_users);
  80		key_put(mk->mk_users);
  81		mk->mk_users = NULL;
  82	}
  83	call_rcu(&mk->mk_rcu_head, fscrypt_free_master_key);
  84}
  85
  86void fscrypt_put_master_key_activeref(struct super_block *sb,
  87				      struct fscrypt_master_key *mk)
  88{
  89	size_t i;
  90
  91	if (!refcount_dec_and_test(&mk->mk_active_refs))
  92		return;
  93	/*
  94	 * No active references left, so complete the full removal of this
  95	 * fscrypt_master_key struct by removing it from the keyring and
  96	 * destroying any subkeys embedded in it.
  97	 */
  98
  99	if (WARN_ON_ONCE(!sb->s_master_keys))
 100		return;
 101	spin_lock(&sb->s_master_keys->lock);
 102	hlist_del_rcu(&mk->mk_node);
 103	spin_unlock(&sb->s_master_keys->lock);
 104
 105	/*
 106	 * ->mk_active_refs == 0 implies that ->mk_present is false and
 107	 * ->mk_decrypted_inodes is empty.
 108	 */
 109	WARN_ON_ONCE(mk->mk_present);
 110	WARN_ON_ONCE(!list_empty(&mk->mk_decrypted_inodes));
 111
 112	for (i = 0; i <= FSCRYPT_MODE_MAX; i++) {
 113		fscrypt_destroy_prepared_key(
 114				sb, &mk->mk_direct_keys[i]);
 115		fscrypt_destroy_prepared_key(
 116				sb, &mk->mk_iv_ino_lblk_64_keys[i]);
 117		fscrypt_destroy_prepared_key(
 118				sb, &mk->mk_iv_ino_lblk_32_keys[i]);
 119	}
 120	memzero_explicit(&mk->mk_ino_hash_key,
 121			 sizeof(mk->mk_ino_hash_key));
 122	mk->mk_ino_hash_key_initialized = false;
 123
 124	/* Drop the structural ref associated with the active refs. */
 125	fscrypt_put_master_key(mk);
 126}
 127
 128/*
 129 * This transitions the key state from present to incompletely removed, and then
 130 * potentially to absent (depending on whether inodes remain).
 131 */
 132static void fscrypt_initiate_key_removal(struct super_block *sb,
 133					 struct fscrypt_master_key *mk)
 134{
 135	WRITE_ONCE(mk->mk_present, false);
 136	wipe_master_key_secret(&mk->mk_secret);
 137	fscrypt_put_master_key_activeref(sb, mk);
 138}
 139
 140static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec)
 141{
 142	if (spec->__reserved)
 143		return false;
 144	return master_key_spec_len(spec) != 0;
 145}
 146
 147static int fscrypt_user_key_instantiate(struct key *key,
 148					struct key_preparsed_payload *prep)
 149{
 150	/*
 151	 * We just charge FSCRYPT_MAX_KEY_SIZE bytes to the user's key quota for
 152	 * each key, regardless of the exact key size.  The amount of memory
 153	 * actually used is greater than the size of the raw key anyway.
 154	 */
 155	return key_payload_reserve(key, FSCRYPT_MAX_KEY_SIZE);
 156}
 157
 158static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m)
 159{
 160	seq_puts(m, key->description);
 161}
 162
 163/*
 164 * Type of key in ->mk_users.  Each key of this type represents a particular
 165 * user who has added a particular master key.
 166 *
 167 * Note that the name of this key type really should be something like
 168 * ".fscrypt-user" instead of simply ".fscrypt".  But the shorter name is chosen
 169 * mainly for simplicity of presentation in /proc/keys when read by a non-root
 170 * user.  And it is expected to be rare that a key is actually added by multiple
 171 * users, since users should keep their encryption keys confidential.
 172 */
 173static struct key_type key_type_fscrypt_user = {
 174	.name			= ".fscrypt",
 175	.instantiate		= fscrypt_user_key_instantiate,
 176	.describe		= fscrypt_user_key_describe,
 177};
 178
 179#define FSCRYPT_MK_USERS_DESCRIPTION_SIZE	\
 180	(CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \
 181	 CONST_STRLEN("-users") + 1)
 182
 183#define FSCRYPT_MK_USER_DESCRIPTION_SIZE	\
 184	(2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1)
 185
 186static void format_mk_users_keyring_description(
 187			char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE],
 188			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
 189{
 190	sprintf(description, "fscrypt-%*phN-users",
 191		FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier);
 192}
 193
 194static void format_mk_user_description(
 195			char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE],
 196			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
 197{
 198
 199	sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE,
 200		mk_identifier, __kuid_val(current_fsuid()));
 201}
 202
 203/* Create ->s_master_keys if needed.  Synchronized by fscrypt_add_key_mutex. */
 204static int allocate_filesystem_keyring(struct super_block *sb)
 205{
 206	struct fscrypt_keyring *keyring;
 207
 208	if (sb->s_master_keys)
 209		return 0;
 210
 211	keyring = kzalloc(sizeof(*keyring), GFP_KERNEL);
 212	if (!keyring)
 213		return -ENOMEM;
 214	spin_lock_init(&keyring->lock);
 215	/*
 216	 * Pairs with the smp_load_acquire() in fscrypt_find_master_key().
 217	 * I.e., here we publish ->s_master_keys with a RELEASE barrier so that
 218	 * concurrent tasks can ACQUIRE it.
 219	 */
 220	smp_store_release(&sb->s_master_keys, keyring);
 221	return 0;
 222}
 223
 224/*
 225 * Release all encryption keys that have been added to the filesystem, along
 226 * with the keyring that contains them.
 227 *
 228 * This is called at unmount time, after all potentially-encrypted inodes have
 229 * been evicted.  The filesystem's underlying block device(s) are still
 230 * available at this time; this is important because after user file accesses
 231 * have been allowed, this function may need to evict keys from the keyslots of
 232 * an inline crypto engine, which requires the block device(s).
 233 */
 234void fscrypt_destroy_keyring(struct super_block *sb)
 235{
 236	struct fscrypt_keyring *keyring = sb->s_master_keys;
 237	size_t i;
 238
 239	if (!keyring)
 240		return;
 241
 242	for (i = 0; i < ARRAY_SIZE(keyring->key_hashtable); i++) {
 243		struct hlist_head *bucket = &keyring->key_hashtable[i];
 244		struct fscrypt_master_key *mk;
 245		struct hlist_node *tmp;
 246
 247		hlist_for_each_entry_safe(mk, tmp, bucket, mk_node) {
 248			/*
 249			 * Since all potentially-encrypted inodes were already
 250			 * evicted, every key remaining in the keyring should
 251			 * have an empty inode list, and should only still be in
 252			 * the keyring due to the single active ref associated
 253			 * with ->mk_present.  There should be no structural
 254			 * refs beyond the one associated with the active ref.
 255			 */
 256			WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 1);
 257			WARN_ON_ONCE(refcount_read(&mk->mk_struct_refs) != 1);
 258			WARN_ON_ONCE(!mk->mk_present);
 259			fscrypt_initiate_key_removal(sb, mk);
 260		}
 261	}
 262	kfree_sensitive(keyring);
 263	sb->s_master_keys = NULL;
 264}
 265
 266static struct hlist_head *
 267fscrypt_mk_hash_bucket(struct fscrypt_keyring *keyring,
 268		       const struct fscrypt_key_specifier *mk_spec)
 269{
 270	/*
 271	 * Since key specifiers should be "random" values, it is sufficient to
 272	 * use a trivial hash function that just takes the first several bits of
 273	 * the key specifier.
 274	 */
 275	unsigned long i = get_unaligned((unsigned long *)&mk_spec->u);
 276
 277	return &keyring->key_hashtable[i % ARRAY_SIZE(keyring->key_hashtable)];
 278}
 279
 280/*
 281 * Find the specified master key struct in ->s_master_keys and take a structural
 282 * ref to it.  The structural ref guarantees that the key struct continues to
 283 * exist, but it does *not* guarantee that ->s_master_keys continues to contain
 284 * the key struct.  The structural ref needs to be dropped by
 285 * fscrypt_put_master_key().  Returns NULL if the key struct is not found.
 286 */
 287struct fscrypt_master_key *
 288fscrypt_find_master_key(struct super_block *sb,
 289			const struct fscrypt_key_specifier *mk_spec)
 290{
 291	struct fscrypt_keyring *keyring;
 292	struct hlist_head *bucket;
 293	struct fscrypt_master_key *mk;
 294
 295	/*
 296	 * Pairs with the smp_store_release() in allocate_filesystem_keyring().
 297	 * I.e., another task can publish ->s_master_keys concurrently,
 298	 * executing a RELEASE barrier.  We need to use smp_load_acquire() here
 299	 * to safely ACQUIRE the memory the other task published.
 300	 */
 301	keyring = smp_load_acquire(&sb->s_master_keys);
 302	if (keyring == NULL)
 303		return NULL; /* No keyring yet, so no keys yet. */
 304
 305	bucket = fscrypt_mk_hash_bucket(keyring, mk_spec);
 306	rcu_read_lock();
 307	switch (mk_spec->type) {
 308	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
 309		hlist_for_each_entry_rcu(mk, bucket, mk_node) {
 310			if (mk->mk_spec.type ==
 311				FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
 312			    memcmp(mk->mk_spec.u.descriptor,
 313				   mk_spec->u.descriptor,
 314				   FSCRYPT_KEY_DESCRIPTOR_SIZE) == 0 &&
 315			    refcount_inc_not_zero(&mk->mk_struct_refs))
 316				goto out;
 317		}
 318		break;
 319	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
 320		hlist_for_each_entry_rcu(mk, bucket, mk_node) {
 321			if (mk->mk_spec.type ==
 322				FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
 323			    memcmp(mk->mk_spec.u.identifier,
 324				   mk_spec->u.identifier,
 325				   FSCRYPT_KEY_IDENTIFIER_SIZE) == 0 &&
 326			    refcount_inc_not_zero(&mk->mk_struct_refs))
 327				goto out;
 328		}
 329		break;
 330	}
 331	mk = NULL;
 332out:
 333	rcu_read_unlock();
 334	return mk;
 335}
 336
 337static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk)
 338{
 339	char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE];
 340	struct key *keyring;
 341
 342	format_mk_users_keyring_description(description,
 343					    mk->mk_spec.u.identifier);
 344	keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
 345				current_cred(), KEY_POS_SEARCH |
 346				  KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW,
 347				KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
 348	if (IS_ERR(keyring))
 349		return PTR_ERR(keyring);
 350
 351	mk->mk_users = keyring;
 352	return 0;
 353}
 354
 355/*
 356 * Find the current user's "key" in the master key's ->mk_users.
 357 * Returns ERR_PTR(-ENOKEY) if not found.
 358 */
 359static struct key *find_master_key_user(struct fscrypt_master_key *mk)
 360{
 361	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
 362	key_ref_t keyref;
 363
 364	format_mk_user_description(description, mk->mk_spec.u.identifier);
 365
 366	/*
 367	 * We need to mark the keyring reference as "possessed" so that we
 368	 * acquire permission to search it, via the KEY_POS_SEARCH permission.
 369	 */
 370	keyref = keyring_search(make_key_ref(mk->mk_users, true /*possessed*/),
 371				&key_type_fscrypt_user, description, false);
 372	if (IS_ERR(keyref)) {
 373		if (PTR_ERR(keyref) == -EAGAIN || /* not found */
 374		    PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */
 375			keyref = ERR_PTR(-ENOKEY);
 376		return ERR_CAST(keyref);
 377	}
 378	return key_ref_to_ptr(keyref);
 379}
 380
 381/*
 382 * Give the current user a "key" in ->mk_users.  This charges the user's quota
 383 * and marks the master key as added by the current user, so that it cannot be
 384 * removed by another user with the key.  Either ->mk_sem must be held for
 385 * write, or the master key must be still undergoing initialization.
 386 */
 387static int add_master_key_user(struct fscrypt_master_key *mk)
 388{
 389	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
 390	struct key *mk_user;
 391	int err;
 392
 393	format_mk_user_description(description, mk->mk_spec.u.identifier);
 394	mk_user = key_alloc(&key_type_fscrypt_user, description,
 395			    current_fsuid(), current_gid(), current_cred(),
 396			    KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL);
 397	if (IS_ERR(mk_user))
 398		return PTR_ERR(mk_user);
 399
 400	err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL);
 401	key_put(mk_user);
 402	return err;
 403}
 404
 405/*
 406 * Remove the current user's "key" from ->mk_users.
 407 * ->mk_sem must be held for write.
 408 *
 409 * Returns 0 if removed, -ENOKEY if not found, or another -errno code.
 410 */
 411static int remove_master_key_user(struct fscrypt_master_key *mk)
 412{
 413	struct key *mk_user;
 414	int err;
 415
 416	mk_user = find_master_key_user(mk);
 417	if (IS_ERR(mk_user))
 418		return PTR_ERR(mk_user);
 419	err = key_unlink(mk->mk_users, mk_user);
 420	key_put(mk_user);
 421	return err;
 422}
 423
 424/*
 425 * Allocate a new fscrypt_master_key, transfer the given secret over to it, and
 426 * insert it into sb->s_master_keys.
 427 */
 428static int add_new_master_key(struct super_block *sb,
 429			      struct fscrypt_master_key_secret *secret,
 430			      const struct fscrypt_key_specifier *mk_spec)
 431{
 432	struct fscrypt_keyring *keyring = sb->s_master_keys;
 433	struct fscrypt_master_key *mk;
 434	int err;
 435
 436	mk = kzalloc(sizeof(*mk), GFP_KERNEL);
 437	if (!mk)
 438		return -ENOMEM;
 439
 440	init_rwsem(&mk->mk_sem);
 441	refcount_set(&mk->mk_struct_refs, 1);
 442	mk->mk_spec = *mk_spec;
 443
 444	INIT_LIST_HEAD(&mk->mk_decrypted_inodes);
 445	spin_lock_init(&mk->mk_decrypted_inodes_lock);
 446
 447	if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
 448		err = allocate_master_key_users_keyring(mk);
 449		if (err)
 450			goto out_put;
 451		err = add_master_key_user(mk);
 452		if (err)
 453			goto out_put;
 454	}
 455
 456	move_master_key_secret(&mk->mk_secret, secret);
 457	mk->mk_present = true;
 458	refcount_set(&mk->mk_active_refs, 1); /* ->mk_present is true */
 459
 460	spin_lock(&keyring->lock);
 461	hlist_add_head_rcu(&mk->mk_node,
 462			   fscrypt_mk_hash_bucket(keyring, mk_spec));
 463	spin_unlock(&keyring->lock);
 464	return 0;
 465
 466out_put:
 467	fscrypt_put_master_key(mk);
 468	return err;
 469}
 470
 471#define KEY_DEAD	1
 472
 473static int add_existing_master_key(struct fscrypt_master_key *mk,
 474				   struct fscrypt_master_key_secret *secret)
 475{
 476	int err;
 477
 478	/*
 479	 * If the current user is already in ->mk_users, then there's nothing to
 480	 * do.  Otherwise, we need to add the user to ->mk_users.  (Neither is
 481	 * applicable for v1 policy keys, which have NULL ->mk_users.)
 482	 */
 483	if (mk->mk_users) {
 484		struct key *mk_user = find_master_key_user(mk);
 485
 486		if (mk_user != ERR_PTR(-ENOKEY)) {
 487			if (IS_ERR(mk_user))
 488				return PTR_ERR(mk_user);
 489			key_put(mk_user);
 490			return 0;
 491		}
 492		err = add_master_key_user(mk);
 493		if (err)
 494			return err;
 495	}
 496
 497	/* If the key is incompletely removed, make it present again. */
 498	if (!mk->mk_present) {
 499		if (!refcount_inc_not_zero(&mk->mk_active_refs)) {
 500			/*
 501			 * Raced with the last active ref being dropped, so the
 502			 * key has become, or is about to become, "absent".
 503			 * Therefore, we need to allocate a new key struct.
 504			 */
 505			return KEY_DEAD;
 506		}
 507		move_master_key_secret(&mk->mk_secret, secret);
 508		WRITE_ONCE(mk->mk_present, true);
 509	}
 510
 511	return 0;
 512}
 513
 514static int do_add_master_key(struct super_block *sb,
 515			     struct fscrypt_master_key_secret *secret,
 516			     const struct fscrypt_key_specifier *mk_spec)
 517{
 518	static DEFINE_MUTEX(fscrypt_add_key_mutex);
 519	struct fscrypt_master_key *mk;
 520	int err;
 521
 522	mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */
 523
 524	mk = fscrypt_find_master_key(sb, mk_spec);
 525	if (!mk) {
 526		/* Didn't find the key in ->s_master_keys.  Add it. */
 527		err = allocate_filesystem_keyring(sb);
 528		if (!err)
 529			err = add_new_master_key(sb, secret, mk_spec);
 530	} else {
 531		/*
 532		 * Found the key in ->s_master_keys.  Add the user to ->mk_users
 533		 * if needed, and make the key "present" again if possible.
 534		 */
 535		down_write(&mk->mk_sem);
 536		err = add_existing_master_key(mk, secret);
 537		up_write(&mk->mk_sem);
 538		if (err == KEY_DEAD) {
 539			/*
 540			 * We found a key struct, but it's already been fully
 541			 * removed.  Ignore the old struct and add a new one.
 542			 * fscrypt_add_key_mutex means we don't need to worry
 543			 * about concurrent adds.
 544			 */
 545			err = add_new_master_key(sb, secret, mk_spec);
 546		}
 547		fscrypt_put_master_key(mk);
 548	}
 549	mutex_unlock(&fscrypt_add_key_mutex);
 550	return err;
 551}
 552
 553static int add_master_key(struct super_block *sb,
 554			  struct fscrypt_master_key_secret *secret,
 555			  struct fscrypt_key_specifier *key_spec)
 556{
 557	int err;
 558
 559	if (key_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
 560		err = fscrypt_init_hkdf(&secret->hkdf, secret->raw,
 561					secret->size);
 562		if (err)
 563			return err;
 564
 565		/*
 566		 * Now that the HKDF context is initialized, the raw key is no
 567		 * longer needed.
 568		 */
 569		memzero_explicit(secret->raw, secret->size);
 570
 571		/* Calculate the key identifier */
 572		err = fscrypt_hkdf_expand(&secret->hkdf,
 573					  HKDF_CONTEXT_KEY_IDENTIFIER, NULL, 0,
 574					  key_spec->u.identifier,
 575					  FSCRYPT_KEY_IDENTIFIER_SIZE);
 576		if (err)
 577			return err;
 578	}
 579	return do_add_master_key(sb, secret, key_spec);
 580}
 581
 582static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload *prep)
 583{
 584	const struct fscrypt_provisioning_key_payload *payload = prep->data;
 585
 586	if (prep->datalen < sizeof(*payload) + FSCRYPT_MIN_KEY_SIZE ||
 587	    prep->datalen > sizeof(*payload) + FSCRYPT_MAX_KEY_SIZE)
 588		return -EINVAL;
 589
 590	if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
 591	    payload->type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER)
 592		return -EINVAL;
 593
 594	if (payload->__reserved)
 595		return -EINVAL;
 596
 597	prep->payload.data[0] = kmemdup(payload, prep->datalen, GFP_KERNEL);
 598	if (!prep->payload.data[0])
 599		return -ENOMEM;
 600
 601	prep->quotalen = prep->datalen;
 602	return 0;
 603}
 604
 605static void fscrypt_provisioning_key_free_preparse(
 606					struct key_preparsed_payload *prep)
 607{
 608	kfree_sensitive(prep->payload.data[0]);
 609}
 610
 611static void fscrypt_provisioning_key_describe(const struct key *key,
 612					      struct seq_file *m)
 613{
 614	seq_puts(m, key->description);
 615	if (key_is_positive(key)) {
 616		const struct fscrypt_provisioning_key_payload *payload =
 617			key->payload.data[0];
 618
 619		seq_printf(m, ": %u [%u]", key->datalen, payload->type);
 620	}
 621}
 622
 623static void fscrypt_provisioning_key_destroy(struct key *key)
 624{
 625	kfree_sensitive(key->payload.data[0]);
 626}
 627
 628static struct key_type key_type_fscrypt_provisioning = {
 629	.name			= "fscrypt-provisioning",
 630	.preparse		= fscrypt_provisioning_key_preparse,
 631	.free_preparse		= fscrypt_provisioning_key_free_preparse,
 632	.instantiate		= generic_key_instantiate,
 633	.describe		= fscrypt_provisioning_key_describe,
 634	.destroy		= fscrypt_provisioning_key_destroy,
 635};
 636
 637/*
 638 * Retrieve the raw key from the Linux keyring key specified by 'key_id', and
 639 * store it into 'secret'.
 640 *
 641 * The key must be of type "fscrypt-provisioning" and must have the field
 642 * fscrypt_provisioning_key_payload::type set to 'type', indicating that it's
 643 * only usable with fscrypt with the particular KDF version identified by
 644 * 'type'.  We don't use the "logon" key type because there's no way to
 645 * completely restrict the use of such keys; they can be used by any kernel API
 646 * that accepts "logon" keys and doesn't require a specific service prefix.
 647 *
 648 * The ability to specify the key via Linux keyring key is intended for cases
 649 * where userspace needs to re-add keys after the filesystem is unmounted and
 650 * re-mounted.  Most users should just provide the raw key directly instead.
 651 */
 652static int get_keyring_key(u32 key_id, u32 type,
 653			   struct fscrypt_master_key_secret *secret)
 654{
 655	key_ref_t ref;
 656	struct key *key;
 657	const struct fscrypt_provisioning_key_payload *payload;
 658	int err;
 659
 660	ref = lookup_user_key(key_id, 0, KEY_NEED_SEARCH);
 661	if (IS_ERR(ref))
 662		return PTR_ERR(ref);
 663	key = key_ref_to_ptr(ref);
 664
 665	if (key->type != &key_type_fscrypt_provisioning)
 666		goto bad_key;
 667	payload = key->payload.data[0];
 668
 669	/* Don't allow fscrypt v1 keys to be used as v2 keys and vice versa. */
 670	if (payload->type != type)
 671		goto bad_key;
 672
 673	secret->size = key->datalen - sizeof(*payload);
 674	memcpy(secret->raw, payload->raw, secret->size);
 675	err = 0;
 676	goto out_put;
 677
 678bad_key:
 679	err = -EKEYREJECTED;
 680out_put:
 681	key_ref_put(ref);
 682	return err;
 683}
 684
 685/*
 686 * Add a master encryption key to the filesystem, causing all files which were
 687 * encrypted with it to appear "unlocked" (decrypted) when accessed.
 688 *
 689 * When adding a key for use by v1 encryption policies, this ioctl is
 690 * privileged, and userspace must provide the 'key_descriptor'.
 691 *
 692 * When adding a key for use by v2+ encryption policies, this ioctl is
 693 * unprivileged.  This is needed, in general, to allow non-root users to use
 694 * encryption without encountering the visibility problems of process-subscribed
 695 * keyrings and the inability to properly remove keys.  This works by having
 696 * each key identified by its cryptographically secure hash --- the
 697 * 'key_identifier'.  The cryptographic hash ensures that a malicious user
 698 * cannot add the wrong key for a given identifier.  Furthermore, each added key
 699 * is charged to the appropriate user's quota for the keyrings service, which
 700 * prevents a malicious user from adding too many keys.  Finally, we forbid a
 701 * user from removing a key while other users have added it too, which prevents
 702 * a user who knows another user's key from causing a denial-of-service by
 703 * removing it at an inopportune time.  (We tolerate that a user who knows a key
 704 * can prevent other users from removing it.)
 705 *
 706 * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of
 707 * Documentation/filesystems/fscrypt.rst.
 708 */
 709int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg)
 710{
 711	struct super_block *sb = file_inode(filp)->i_sb;
 712	struct fscrypt_add_key_arg __user *uarg = _uarg;
 713	struct fscrypt_add_key_arg arg;
 714	struct fscrypt_master_key_secret secret;
 715	int err;
 716
 717	if (copy_from_user(&arg, uarg, sizeof(arg)))
 718		return -EFAULT;
 719
 720	if (!valid_key_spec(&arg.key_spec))
 721		return -EINVAL;
 722
 723	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
 724		return -EINVAL;
 725
 726	/*
 727	 * Only root can add keys that are identified by an arbitrary descriptor
 728	 * rather than by a cryptographic hash --- since otherwise a malicious
 729	 * user could add the wrong key.
 730	 */
 731	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
 732	    !capable(CAP_SYS_ADMIN))
 733		return -EACCES;
 734
 735	memset(&secret, 0, sizeof(secret));
 736	if (arg.key_id) {
 737		if (arg.raw_size != 0)
 738			return -EINVAL;
 739		err = get_keyring_key(arg.key_id, arg.key_spec.type, &secret);
 740		if (err)
 741			goto out_wipe_secret;
 742	} else {
 743		if (arg.raw_size < FSCRYPT_MIN_KEY_SIZE ||
 744		    arg.raw_size > FSCRYPT_MAX_KEY_SIZE)
 745			return -EINVAL;
 746		secret.size = arg.raw_size;
 747		err = -EFAULT;
 748		if (copy_from_user(secret.raw, uarg->raw, secret.size))
 749			goto out_wipe_secret;
 750	}
 751
 752	err = add_master_key(sb, &secret, &arg.key_spec);
 753	if (err)
 754		goto out_wipe_secret;
 755
 756	/* Return the key identifier to userspace, if applicable */
 757	err = -EFAULT;
 758	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
 759	    copy_to_user(uarg->key_spec.u.identifier, arg.key_spec.u.identifier,
 760			 FSCRYPT_KEY_IDENTIFIER_SIZE))
 761		goto out_wipe_secret;
 762	err = 0;
 763out_wipe_secret:
 764	wipe_master_key_secret(&secret);
 765	return err;
 766}
 767EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key);
 768
 769static void
 770fscrypt_get_test_dummy_secret(struct fscrypt_master_key_secret *secret)
 771{
 772	static u8 test_key[FSCRYPT_MAX_KEY_SIZE];
 773
 774	get_random_once(test_key, FSCRYPT_MAX_KEY_SIZE);
 775
 776	memset(secret, 0, sizeof(*secret));
 777	secret->size = FSCRYPT_MAX_KEY_SIZE;
 778	memcpy(secret->raw, test_key, FSCRYPT_MAX_KEY_SIZE);
 779}
 780
 781int fscrypt_get_test_dummy_key_identifier(
 782				u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
 783{
 784	struct fscrypt_master_key_secret secret;
 785	int err;
 786
 787	fscrypt_get_test_dummy_secret(&secret);
 788
 789	err = fscrypt_init_hkdf(&secret.hkdf, secret.raw, secret.size);
 790	if (err)
 791		goto out;
 792	err = fscrypt_hkdf_expand(&secret.hkdf, HKDF_CONTEXT_KEY_IDENTIFIER,
 793				  NULL, 0, key_identifier,
 794				  FSCRYPT_KEY_IDENTIFIER_SIZE);
 795out:
 796	wipe_master_key_secret(&secret);
 797	return err;
 798}
 799
 800/**
 801 * fscrypt_add_test_dummy_key() - add the test dummy encryption key
 802 * @sb: the filesystem instance to add the key to
 803 * @key_spec: the key specifier of the test dummy encryption key
 804 *
 805 * Add the key for the test_dummy_encryption mount option to the filesystem.  To
 806 * prevent misuse of this mount option, a per-boot random key is used instead of
 807 * a hardcoded one.  This makes it so that any encrypted files created using
 808 * this option won't be accessible after a reboot.
 809 *
 810 * Return: 0 on success, -errno on failure
 811 */
 812int fscrypt_add_test_dummy_key(struct super_block *sb,
 813			       struct fscrypt_key_specifier *key_spec)
 814{
 815	struct fscrypt_master_key_secret secret;
 816	int err;
 817
 818	fscrypt_get_test_dummy_secret(&secret);
 819	err = add_master_key(sb, &secret, key_spec);
 820	wipe_master_key_secret(&secret);
 821	return err;
 822}
 823
 824/*
 825 * Verify that the current user has added a master key with the given identifier
 826 * (returns -ENOKEY if not).  This is needed to prevent a user from encrypting
 827 * their files using some other user's key which they don't actually know.
 828 * Cryptographically this isn't much of a problem, but the semantics of this
 829 * would be a bit weird, so it's best to just forbid it.
 830 *
 831 * The system administrator (CAP_FOWNER) can override this, which should be
 832 * enough for any use cases where encryption policies are being set using keys
 833 * that were chosen ahead of time but aren't available at the moment.
 834 *
 835 * Note that the key may have already removed by the time this returns, but
 836 * that's okay; we just care whether the key was there at some point.
 837 *
 838 * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code
 839 */
 840int fscrypt_verify_key_added(struct super_block *sb,
 841			     const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
 842{
 843	struct fscrypt_key_specifier mk_spec;
 844	struct fscrypt_master_key *mk;
 845	struct key *mk_user;
 846	int err;
 847
 848	mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
 849	memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE);
 850
 851	mk = fscrypt_find_master_key(sb, &mk_spec);
 852	if (!mk) {
 853		err = -ENOKEY;
 854		goto out;
 855	}
 856	down_read(&mk->mk_sem);
 857	mk_user = find_master_key_user(mk);
 858	if (IS_ERR(mk_user)) {
 859		err = PTR_ERR(mk_user);
 860	} else {
 861		key_put(mk_user);
 862		err = 0;
 863	}
 864	up_read(&mk->mk_sem);
 865	fscrypt_put_master_key(mk);
 866out:
 867	if (err == -ENOKEY && capable(CAP_FOWNER))
 868		err = 0;
 869	return err;
 870}
 871
 872/*
 873 * Try to evict the inode's dentries from the dentry cache.  If the inode is a
 874 * directory, then it can have at most one dentry; however, that dentry may be
 875 * pinned by child dentries, so first try to evict the children too.
 876 */
 877static void shrink_dcache_inode(struct inode *inode)
 878{
 879	struct dentry *dentry;
 880
 881	if (S_ISDIR(inode->i_mode)) {
 882		dentry = d_find_any_alias(inode);
 883		if (dentry) {
 884			shrink_dcache_parent(dentry);
 885			dput(dentry);
 886		}
 887	}
 888	d_prune_aliases(inode);
 889}
 890
 891static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk)
 892{
 893	struct fscrypt_inode_info *ci;
 894	struct inode *inode;
 895	struct inode *toput_inode = NULL;
 896
 897	spin_lock(&mk->mk_decrypted_inodes_lock);
 898
 899	list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) {
 900		inode = ci->ci_inode;
 901		spin_lock(&inode->i_lock);
 902		if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) {
 903			spin_unlock(&inode->i_lock);
 904			continue;
 905		}
 906		__iget(inode);
 907		spin_unlock(&inode->i_lock);
 908		spin_unlock(&mk->mk_decrypted_inodes_lock);
 909
 910		shrink_dcache_inode(inode);
 911		iput(toput_inode);
 912		toput_inode = inode;
 913
 914		spin_lock(&mk->mk_decrypted_inodes_lock);
 915	}
 916
 917	spin_unlock(&mk->mk_decrypted_inodes_lock);
 918	iput(toput_inode);
 919}
 920
 921static int check_for_busy_inodes(struct super_block *sb,
 922				 struct fscrypt_master_key *mk)
 923{
 924	struct list_head *pos;
 925	size_t busy_count = 0;
 926	unsigned long ino;
 927	char ino_str[50] = "";
 928
 929	spin_lock(&mk->mk_decrypted_inodes_lock);
 930
 931	list_for_each(pos, &mk->mk_decrypted_inodes)
 932		busy_count++;
 933
 934	if (busy_count == 0) {
 935		spin_unlock(&mk->mk_decrypted_inodes_lock);
 936		return 0;
 937	}
 938
 939	{
 940		/* select an example file to show for debugging purposes */
 941		struct inode *inode =
 942			list_first_entry(&mk->mk_decrypted_inodes,
 943					 struct fscrypt_inode_info,
 944					 ci_master_key_link)->ci_inode;
 945		ino = inode->i_ino;
 946	}
 947	spin_unlock(&mk->mk_decrypted_inodes_lock);
 948
 949	/* If the inode is currently being created, ino may still be 0. */
 950	if (ino)
 951		snprintf(ino_str, sizeof(ino_str), ", including ino %lu", ino);
 952
 953	fscrypt_warn(NULL,
 954		     "%s: %zu inode(s) still busy after removing key with %s %*phN%s",
 955		     sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec),
 956		     master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u,
 957		     ino_str);
 958	return -EBUSY;
 959}
 960
 961static int try_to_lock_encrypted_files(struct super_block *sb,
 962				       struct fscrypt_master_key *mk)
 963{
 964	int err1;
 965	int err2;
 966
 967	/*
 968	 * An inode can't be evicted while it is dirty or has dirty pages.
 969	 * Thus, we first have to clean the inodes in ->mk_decrypted_inodes.
 970	 *
 971	 * Just do it the easy way: call sync_filesystem().  It's overkill, but
 972	 * it works, and it's more important to minimize the amount of caches we
 973	 * drop than the amount of data we sync.  Also, unprivileged users can
 974	 * already call sync_filesystem() via sys_syncfs() or sys_sync().
 975	 */
 976	down_read(&sb->s_umount);
 977	err1 = sync_filesystem(sb);
 978	up_read(&sb->s_umount);
 979	/* If a sync error occurs, still try to evict as much as possible. */
 980
 981	/*
 982	 * Inodes are pinned by their dentries, so we have to evict their
 983	 * dentries.  shrink_dcache_sb() would suffice, but would be overkill
 984	 * and inappropriate for use by unprivileged users.  So instead go
 985	 * through the inodes' alias lists and try to evict each dentry.
 986	 */
 987	evict_dentries_for_decrypted_inodes(mk);
 988
 989	/*
 990	 * evict_dentries_for_decrypted_inodes() already iput() each inode in
 991	 * the list; any inodes for which that dropped the last reference will
 992	 * have been evicted due to fscrypt_drop_inode() detecting the key
 993	 * removal and telling the VFS to evict the inode.  So to finish, we
 994	 * just need to check whether any inodes couldn't be evicted.
 995	 */
 996	err2 = check_for_busy_inodes(sb, mk);
 997
 998	return err1 ?: err2;
 999}
1000
1001/*
1002 * Try to remove an fscrypt master encryption key.
1003 *
1004 * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's
1005 * claim to the key, then removes the key itself if no other users have claims.
1006 * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the
1007 * key itself.
1008 *
1009 * To "remove the key itself", first we transition the key to the "incompletely
1010 * removed" state, so that no more inodes can be unlocked with it.  Then we try
1011 * to evict all cached inodes that had been unlocked with the key.
1012 *
1013 * If all inodes were evicted, then we unlink the fscrypt_master_key from the
1014 * keyring.  Otherwise it remains in the keyring in the "incompletely removed"
1015 * state where it tracks the list of remaining inodes.  Userspace can execute
1016 * the ioctl again later to retry eviction, or alternatively can re-add the key.
1017 *
1018 * For more details, see the "Removing keys" section of
1019 * Documentation/filesystems/fscrypt.rst.
1020 */
1021static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users)
1022{
1023	struct super_block *sb = file_inode(filp)->i_sb;
1024	struct fscrypt_remove_key_arg __user *uarg = _uarg;
1025	struct fscrypt_remove_key_arg arg;
1026	struct fscrypt_master_key *mk;
1027	u32 status_flags = 0;
1028	int err;
1029	bool inodes_remain;
1030
1031	if (copy_from_user(&arg, uarg, sizeof(arg)))
1032		return -EFAULT;
1033
1034	if (!valid_key_spec(&arg.key_spec))
1035		return -EINVAL;
1036
1037	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
1038		return -EINVAL;
1039
1040	/*
1041	 * Only root can add and remove keys that are identified by an arbitrary
1042	 * descriptor rather than by a cryptographic hash.
1043	 */
1044	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
1045	    !capable(CAP_SYS_ADMIN))
1046		return -EACCES;
1047
1048	/* Find the key being removed. */
1049	mk = fscrypt_find_master_key(sb, &arg.key_spec);
1050	if (!mk)
1051		return -ENOKEY;
1052	down_write(&mk->mk_sem);
1053
1054	/* If relevant, remove current user's (or all users) claim to the key */
1055	if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) {
1056		if (all_users)
1057			err = keyring_clear(mk->mk_users);
1058		else
1059			err = remove_master_key_user(mk);
1060		if (err) {
1061			up_write(&mk->mk_sem);
1062			goto out_put_key;
1063		}
1064		if (mk->mk_users->keys.nr_leaves_on_tree != 0) {
1065			/*
1066			 * Other users have still added the key too.  We removed
1067			 * the current user's claim to the key, but we still
1068			 * can't remove the key itself.
1069			 */
1070			status_flags |=
1071				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS;
1072			err = 0;
1073			up_write(&mk->mk_sem);
1074			goto out_put_key;
1075		}
1076	}
1077
1078	/* No user claims remaining.  Initiate removal of the key. */
1079	err = -ENOKEY;
1080	if (mk->mk_present) {
1081		fscrypt_initiate_key_removal(sb, mk);
1082		err = 0;
1083	}
1084	inodes_remain = refcount_read(&mk->mk_active_refs) > 0;
1085	up_write(&mk->mk_sem);
1086
1087	if (inodes_remain) {
1088		/* Some inodes still reference this key; try to evict them. */
1089		err = try_to_lock_encrypted_files(sb, mk);
1090		if (err == -EBUSY) {
1091			status_flags |=
1092				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY;
1093			err = 0;
1094		}
1095	}
1096	/*
1097	 * We return 0 if we successfully did something: removed a claim to the
1098	 * key, initiated removal of the key, or tried locking the files again.
1099	 * Users need to check the informational status flags if they care
1100	 * whether the key has been fully removed including all files locked.
1101	 */
1102out_put_key:
1103	fscrypt_put_master_key(mk);
1104	if (err == 0)
1105		err = put_user(status_flags, &uarg->removal_status_flags);
1106	return err;
1107}
1108
1109int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg)
1110{
1111	return do_remove_key(filp, uarg, false);
1112}
1113EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key);
1114
1115int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg)
1116{
1117	if (!capable(CAP_SYS_ADMIN))
1118		return -EACCES;
1119	return do_remove_key(filp, uarg, true);
1120}
1121EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users);
1122
1123/*
1124 * Retrieve the status of an fscrypt master encryption key.
1125 *
1126 * We set ->status to indicate whether the key is absent, present, or
1127 * incompletely removed.  (For an explanation of what these statuses mean and
1128 * how they are represented internally, see struct fscrypt_master_key.)  This
1129 * field allows applications to easily determine the status of an encrypted
1130 * directory without using a hack such as trying to open a regular file in it
1131 * (which can confuse the "incompletely removed" status with absent or present).
1132 *
1133 * In addition, for v2 policy keys we allow applications to determine, via
1134 * ->status_flags and ->user_count, whether the key has been added by the
1135 * current user, by other users, or by both.  Most applications should not need
1136 * this, since ordinarily only one user should know a given key.  However, if a
1137 * secret key is shared by multiple users, applications may wish to add an
1138 * already-present key to prevent other users from removing it.  This ioctl can
1139 * be used to check whether that really is the case before the work is done to
1140 * add the key --- which might e.g. require prompting the user for a passphrase.
1141 *
1142 * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of
1143 * Documentation/filesystems/fscrypt.rst.
1144 */
1145int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg)
1146{
1147	struct super_block *sb = file_inode(filp)->i_sb;
1148	struct fscrypt_get_key_status_arg arg;
1149	struct fscrypt_master_key *mk;
1150	int err;
1151
1152	if (copy_from_user(&arg, uarg, sizeof(arg)))
1153		return -EFAULT;
1154
1155	if (!valid_key_spec(&arg.key_spec))
1156		return -EINVAL;
1157
1158	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
1159		return -EINVAL;
1160
1161	arg.status_flags = 0;
1162	arg.user_count = 0;
1163	memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved));
1164
1165	mk = fscrypt_find_master_key(sb, &arg.key_spec);
1166	if (!mk) {
1167		arg.status = FSCRYPT_KEY_STATUS_ABSENT;
1168		err = 0;
1169		goto out;
1170	}
1171	down_read(&mk->mk_sem);
1172
1173	if (!mk->mk_present) {
1174		arg.status = refcount_read(&mk->mk_active_refs) > 0 ?
1175			FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED :
1176			FSCRYPT_KEY_STATUS_ABSENT /* raced with full removal */;
1177		err = 0;
1178		goto out_release_key;
1179	}
1180
1181	arg.status = FSCRYPT_KEY_STATUS_PRESENT;
1182	if (mk->mk_users) {
1183		struct key *mk_user;
1184
1185		arg.user_count = mk->mk_users->keys.nr_leaves_on_tree;
1186		mk_user = find_master_key_user(mk);
1187		if (!IS_ERR(mk_user)) {
1188			arg.status_flags |=
1189				FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF;
1190			key_put(mk_user);
1191		} else if (mk_user != ERR_PTR(-ENOKEY)) {
1192			err = PTR_ERR(mk_user);
1193			goto out_release_key;
1194		}
1195	}
1196	err = 0;
1197out_release_key:
1198	up_read(&mk->mk_sem);
1199	fscrypt_put_master_key(mk);
1200out:
1201	if (!err && copy_to_user(uarg, &arg, sizeof(arg)))
1202		err = -EFAULT;
1203	return err;
1204}
1205EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status);
1206
1207int __init fscrypt_init_keyring(void)
1208{
1209	int err;
1210
1211	err = register_key_type(&key_type_fscrypt_user);
1212	if (err)
1213		return err;
1214
1215	err = register_key_type(&key_type_fscrypt_provisioning);
1216	if (err)
1217		goto err_unregister_fscrypt_user;
1218
1219	return 0;
1220
1221err_unregister_fscrypt_user:
1222	unregister_key_type(&key_type_fscrypt_user);
1223	return err;
1224}