Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* irq.c: UltraSparc IRQ handling/init/registry.
3 *
4 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
5 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
6 * Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz)
7 */
8
9#include <linux/sched.h>
10#include <linux/linkage.h>
11#include <linux/ptrace.h>
12#include <linux/errno.h>
13#include <linux/kernel_stat.h>
14#include <linux/signal.h>
15#include <linux/mm.h>
16#include <linux/interrupt.h>
17#include <linux/slab.h>
18#include <linux/random.h>
19#include <linux/init.h>
20#include <linux/delay.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/ftrace.h>
24#include <linux/irq.h>
25
26#include <asm/ptrace.h>
27#include <asm/processor.h>
28#include <linux/atomic.h>
29#include <asm/irq.h>
30#include <asm/io.h>
31#include <asm/iommu.h>
32#include <asm/upa.h>
33#include <asm/oplib.h>
34#include <asm/prom.h>
35#include <asm/timer.h>
36#include <asm/smp.h>
37#include <asm/starfire.h>
38#include <linux/uaccess.h>
39#include <asm/cache.h>
40#include <asm/cpudata.h>
41#include <asm/auxio.h>
42#include <asm/head.h>
43#include <asm/hypervisor.h>
44#include <asm/cacheflush.h>
45
46#include "entry.h"
47#include "cpumap.h"
48#include "kstack.h"
49
50struct ino_bucket *ivector_table;
51unsigned long ivector_table_pa;
52
53/* On several sun4u processors, it is illegal to mix bypass and
54 * non-bypass accesses. Therefore we access all INO buckets
55 * using bypass accesses only.
56 */
57static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
58{
59 unsigned long ret;
60
61 __asm__ __volatile__("ldxa [%1] %2, %0"
62 : "=&r" (ret)
63 : "r" (bucket_pa +
64 offsetof(struct ino_bucket,
65 __irq_chain_pa)),
66 "i" (ASI_PHYS_USE_EC));
67
68 return ret;
69}
70
71static void bucket_clear_chain_pa(unsigned long bucket_pa)
72{
73 __asm__ __volatile__("stxa %%g0, [%0] %1"
74 : /* no outputs */
75 : "r" (bucket_pa +
76 offsetof(struct ino_bucket,
77 __irq_chain_pa)),
78 "i" (ASI_PHYS_USE_EC));
79}
80
81static unsigned int bucket_get_irq(unsigned long bucket_pa)
82{
83 unsigned int ret;
84
85 __asm__ __volatile__("lduwa [%1] %2, %0"
86 : "=&r" (ret)
87 : "r" (bucket_pa +
88 offsetof(struct ino_bucket,
89 __irq)),
90 "i" (ASI_PHYS_USE_EC));
91
92 return ret;
93}
94
95static void bucket_set_irq(unsigned long bucket_pa, unsigned int irq)
96{
97 __asm__ __volatile__("stwa %0, [%1] %2"
98 : /* no outputs */
99 : "r" (irq),
100 "r" (bucket_pa +
101 offsetof(struct ino_bucket,
102 __irq)),
103 "i" (ASI_PHYS_USE_EC));
104}
105
106#define irq_work_pa(__cpu) &(trap_block[(__cpu)].irq_worklist_pa)
107
108static unsigned long hvirq_major __initdata;
109static int __init early_hvirq_major(char *p)
110{
111 int rc = kstrtoul(p, 10, &hvirq_major);
112
113 return rc;
114}
115early_param("hvirq", early_hvirq_major);
116
117static int hv_irq_version;
118
119/* Major version 2.0 of HV_GRP_INTR added support for the VIRQ cookie
120 * based interfaces, but:
121 *
122 * 1) Several OSs, Solaris and Linux included, use them even when only
123 * negotiating version 1.0 (or failing to negotiate at all). So the
124 * hypervisor has a workaround that provides the VIRQ interfaces even
125 * when only verion 1.0 of the API is in use.
126 *
127 * 2) Second, and more importantly, with major version 2.0 these VIRQ
128 * interfaces only were actually hooked up for LDC interrupts, even
129 * though the Hypervisor specification clearly stated:
130 *
131 * The new interrupt API functions will be available to a guest
132 * when it negotiates version 2.0 in the interrupt API group 0x2. When
133 * a guest negotiates version 2.0, all interrupt sources will only
134 * support using the cookie interface, and any attempt to use the
135 * version 1.0 interrupt APIs numbered 0xa0 to 0xa6 will result in the
136 * ENOTSUPPORTED error being returned.
137 *
138 * with an emphasis on "all interrupt sources".
139 *
140 * To correct this, major version 3.0 was created which does actually
141 * support VIRQs for all interrupt sources (not just LDC devices). So
142 * if we want to move completely over the cookie based VIRQs we must
143 * negotiate major version 3.0 or later of HV_GRP_INTR.
144 */
145static bool sun4v_cookie_only_virqs(void)
146{
147 if (hv_irq_version >= 3)
148 return true;
149 return false;
150}
151
152static void __init irq_init_hv(void)
153{
154 unsigned long hv_error, major, minor = 0;
155
156 if (tlb_type != hypervisor)
157 return;
158
159 if (hvirq_major)
160 major = hvirq_major;
161 else
162 major = 3;
163
164 hv_error = sun4v_hvapi_register(HV_GRP_INTR, major, &minor);
165 if (!hv_error)
166 hv_irq_version = major;
167 else
168 hv_irq_version = 1;
169
170 pr_info("SUN4V: Using IRQ API major %d, cookie only virqs %s\n",
171 hv_irq_version,
172 sun4v_cookie_only_virqs() ? "enabled" : "disabled");
173}
174
175/* This function is for the timer interrupt.*/
176int __init arch_probe_nr_irqs(void)
177{
178 return 1;
179}
180
181#define DEFAULT_NUM_IVECS (0xfffU)
182static unsigned int nr_ivec = DEFAULT_NUM_IVECS;
183#define NUM_IVECS (nr_ivec)
184
185static unsigned int __init size_nr_ivec(void)
186{
187 if (tlb_type == hypervisor) {
188 switch (sun4v_chip_type) {
189 /* Athena's devhandle|devino is large.*/
190 case SUN4V_CHIP_SPARC64X:
191 nr_ivec = 0xffff;
192 break;
193 }
194 }
195 return nr_ivec;
196}
197
198struct irq_handler_data {
199 union {
200 struct {
201 unsigned int dev_handle;
202 unsigned int dev_ino;
203 };
204 unsigned long sysino;
205 };
206 struct ino_bucket bucket;
207 unsigned long iclr;
208 unsigned long imap;
209};
210
211static inline unsigned int irq_data_to_handle(struct irq_data *data)
212{
213 struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
214
215 return ihd->dev_handle;
216}
217
218static inline unsigned int irq_data_to_ino(struct irq_data *data)
219{
220 struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
221
222 return ihd->dev_ino;
223}
224
225static inline unsigned long irq_data_to_sysino(struct irq_data *data)
226{
227 struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
228
229 return ihd->sysino;
230}
231
232void irq_free(unsigned int irq)
233{
234 void *data = irq_get_handler_data(irq);
235
236 kfree(data);
237 irq_set_handler_data(irq, NULL);
238 irq_free_descs(irq, 1);
239}
240
241unsigned int irq_alloc(unsigned int dev_handle, unsigned int dev_ino)
242{
243 int irq;
244
245 irq = __irq_alloc_descs(-1, 1, 1, numa_node_id(), NULL, NULL);
246 if (irq <= 0)
247 goto out;
248
249 return irq;
250out:
251 return 0;
252}
253
254static unsigned int cookie_exists(u32 devhandle, unsigned int devino)
255{
256 unsigned long hv_err, cookie;
257 struct ino_bucket *bucket;
258 unsigned int irq = 0U;
259
260 hv_err = sun4v_vintr_get_cookie(devhandle, devino, &cookie);
261 if (hv_err) {
262 pr_err("HV get cookie failed hv_err = %ld\n", hv_err);
263 goto out;
264 }
265
266 if (cookie & ((1UL << 63UL))) {
267 cookie = ~cookie;
268 bucket = (struct ino_bucket *) __va(cookie);
269 irq = bucket->__irq;
270 }
271out:
272 return irq;
273}
274
275static unsigned int sysino_exists(u32 devhandle, unsigned int devino)
276{
277 unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
278 struct ino_bucket *bucket;
279 unsigned int irq;
280
281 bucket = &ivector_table[sysino];
282 irq = bucket_get_irq(__pa(bucket));
283
284 return irq;
285}
286
287void ack_bad_irq(unsigned int irq)
288{
289 pr_crit("BAD IRQ ack %d\n", irq);
290}
291
292void irq_install_pre_handler(int irq,
293 void (*func)(unsigned int, void *, void *),
294 void *arg1, void *arg2)
295{
296 pr_warn("IRQ pre handler NOT supported.\n");
297}
298
299/*
300 * /proc/interrupts printing:
301 */
302int arch_show_interrupts(struct seq_file *p, int prec)
303{
304 int j;
305
306 seq_printf(p, "NMI: ");
307 for_each_online_cpu(j)
308 seq_printf(p, "%10u ", cpu_data(j).__nmi_count);
309 seq_printf(p, " Non-maskable interrupts\n");
310 return 0;
311}
312
313static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
314{
315 unsigned int tid;
316
317 if (this_is_starfire) {
318 tid = starfire_translate(imap, cpuid);
319 tid <<= IMAP_TID_SHIFT;
320 tid &= IMAP_TID_UPA;
321 } else {
322 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
323 unsigned long ver;
324
325 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
326 if ((ver >> 32UL) == __JALAPENO_ID ||
327 (ver >> 32UL) == __SERRANO_ID) {
328 tid = cpuid << IMAP_TID_SHIFT;
329 tid &= IMAP_TID_JBUS;
330 } else {
331 unsigned int a = cpuid & 0x1f;
332 unsigned int n = (cpuid >> 5) & 0x1f;
333
334 tid = ((a << IMAP_AID_SHIFT) |
335 (n << IMAP_NID_SHIFT));
336 tid &= (IMAP_AID_SAFARI |
337 IMAP_NID_SAFARI);
338 }
339 } else {
340 tid = cpuid << IMAP_TID_SHIFT;
341 tid &= IMAP_TID_UPA;
342 }
343 }
344
345 return tid;
346}
347
348#ifdef CONFIG_SMP
349static int irq_choose_cpu(unsigned int irq, const struct cpumask *affinity)
350{
351 cpumask_t mask;
352 int cpuid;
353
354 cpumask_copy(&mask, affinity);
355 if (cpumask_equal(&mask, cpu_online_mask)) {
356 cpuid = map_to_cpu(irq);
357 } else {
358 cpumask_t tmp;
359
360 cpumask_and(&tmp, cpu_online_mask, &mask);
361 cpuid = cpumask_empty(&tmp) ? map_to_cpu(irq) : cpumask_first(&tmp);
362 }
363
364 return cpuid;
365}
366#else
367#define irq_choose_cpu(irq, affinity) \
368 real_hard_smp_processor_id()
369#endif
370
371static void sun4u_irq_enable(struct irq_data *data)
372{
373 struct irq_handler_data *handler_data;
374
375 handler_data = irq_data_get_irq_handler_data(data);
376 if (likely(handler_data)) {
377 unsigned long cpuid, imap, val;
378 unsigned int tid;
379
380 cpuid = irq_choose_cpu(data->irq,
381 irq_data_get_affinity_mask(data));
382 imap = handler_data->imap;
383
384 tid = sun4u_compute_tid(imap, cpuid);
385
386 val = upa_readq(imap);
387 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
388 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
389 val |= tid | IMAP_VALID;
390 upa_writeq(val, imap);
391 upa_writeq(ICLR_IDLE, handler_data->iclr);
392 }
393}
394
395static int sun4u_set_affinity(struct irq_data *data,
396 const struct cpumask *mask, bool force)
397{
398 struct irq_handler_data *handler_data;
399
400 handler_data = irq_data_get_irq_handler_data(data);
401 if (likely(handler_data)) {
402 unsigned long cpuid, imap, val;
403 unsigned int tid;
404
405 cpuid = irq_choose_cpu(data->irq, mask);
406 imap = handler_data->imap;
407
408 tid = sun4u_compute_tid(imap, cpuid);
409
410 val = upa_readq(imap);
411 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
412 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
413 val |= tid | IMAP_VALID;
414 upa_writeq(val, imap);
415 upa_writeq(ICLR_IDLE, handler_data->iclr);
416 }
417
418 return 0;
419}
420
421/* Don't do anything. The desc->status check for IRQ_DISABLED in
422 * handler_irq() will skip the handler call and that will leave the
423 * interrupt in the sent state. The next ->enable() call will hit the
424 * ICLR register to reset the state machine.
425 *
426 * This scheme is necessary, instead of clearing the Valid bit in the
427 * IMAP register, to handle the case of IMAP registers being shared by
428 * multiple INOs (and thus ICLR registers). Since we use a different
429 * virtual IRQ for each shared IMAP instance, the generic code thinks
430 * there is only one user so it prematurely calls ->disable() on
431 * free_irq().
432 *
433 * We have to provide an explicit ->disable() method instead of using
434 * NULL to get the default. The reason is that if the generic code
435 * sees that, it also hooks up a default ->shutdown method which
436 * invokes ->mask() which we do not want. See irq_chip_set_defaults().
437 */
438static void sun4u_irq_disable(struct irq_data *data)
439{
440}
441
442static void sun4u_irq_eoi(struct irq_data *data)
443{
444 struct irq_handler_data *handler_data;
445
446 handler_data = irq_data_get_irq_handler_data(data);
447 if (likely(handler_data))
448 upa_writeq(ICLR_IDLE, handler_data->iclr);
449}
450
451static void sun4v_irq_enable(struct irq_data *data)
452{
453 unsigned long cpuid = irq_choose_cpu(data->irq,
454 irq_data_get_affinity_mask(data));
455 unsigned int ino = irq_data_to_sysino(data);
456 int err;
457
458 err = sun4v_intr_settarget(ino, cpuid);
459 if (err != HV_EOK)
460 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
461 "err(%d)\n", ino, cpuid, err);
462 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
463 if (err != HV_EOK)
464 printk(KERN_ERR "sun4v_intr_setstate(%x): "
465 "err(%d)\n", ino, err);
466 err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
467 if (err != HV_EOK)
468 printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
469 ino, err);
470}
471
472static int sun4v_set_affinity(struct irq_data *data,
473 const struct cpumask *mask, bool force)
474{
475 unsigned long cpuid = irq_choose_cpu(data->irq, mask);
476 unsigned int ino = irq_data_to_sysino(data);
477 int err;
478
479 err = sun4v_intr_settarget(ino, cpuid);
480 if (err != HV_EOK)
481 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
482 "err(%d)\n", ino, cpuid, err);
483
484 return 0;
485}
486
487static void sun4v_irq_disable(struct irq_data *data)
488{
489 unsigned int ino = irq_data_to_sysino(data);
490 int err;
491
492 err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
493 if (err != HV_EOK)
494 printk(KERN_ERR "sun4v_intr_setenabled(%x): "
495 "err(%d)\n", ino, err);
496}
497
498static void sun4v_irq_eoi(struct irq_data *data)
499{
500 unsigned int ino = irq_data_to_sysino(data);
501 int err;
502
503 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
504 if (err != HV_EOK)
505 printk(KERN_ERR "sun4v_intr_setstate(%x): "
506 "err(%d)\n", ino, err);
507}
508
509static void sun4v_virq_enable(struct irq_data *data)
510{
511 unsigned long dev_handle = irq_data_to_handle(data);
512 unsigned long dev_ino = irq_data_to_ino(data);
513 unsigned long cpuid;
514 int err;
515
516 cpuid = irq_choose_cpu(data->irq, irq_data_get_affinity_mask(data));
517
518 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
519 if (err != HV_EOK)
520 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
521 "err(%d)\n",
522 dev_handle, dev_ino, cpuid, err);
523 err = sun4v_vintr_set_state(dev_handle, dev_ino,
524 HV_INTR_STATE_IDLE);
525 if (err != HV_EOK)
526 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
527 "HV_INTR_STATE_IDLE): err(%d)\n",
528 dev_handle, dev_ino, err);
529 err = sun4v_vintr_set_valid(dev_handle, dev_ino,
530 HV_INTR_ENABLED);
531 if (err != HV_EOK)
532 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
533 "HV_INTR_ENABLED): err(%d)\n",
534 dev_handle, dev_ino, err);
535}
536
537static int sun4v_virt_set_affinity(struct irq_data *data,
538 const struct cpumask *mask, bool force)
539{
540 unsigned long dev_handle = irq_data_to_handle(data);
541 unsigned long dev_ino = irq_data_to_ino(data);
542 unsigned long cpuid;
543 int err;
544
545 cpuid = irq_choose_cpu(data->irq, mask);
546
547 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
548 if (err != HV_EOK)
549 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
550 "err(%d)\n",
551 dev_handle, dev_ino, cpuid, err);
552
553 return 0;
554}
555
556static void sun4v_virq_disable(struct irq_data *data)
557{
558 unsigned long dev_handle = irq_data_to_handle(data);
559 unsigned long dev_ino = irq_data_to_ino(data);
560 int err;
561
562
563 err = sun4v_vintr_set_valid(dev_handle, dev_ino,
564 HV_INTR_DISABLED);
565 if (err != HV_EOK)
566 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
567 "HV_INTR_DISABLED): err(%d)\n",
568 dev_handle, dev_ino, err);
569}
570
571static void sun4v_virq_eoi(struct irq_data *data)
572{
573 unsigned long dev_handle = irq_data_to_handle(data);
574 unsigned long dev_ino = irq_data_to_ino(data);
575 int err;
576
577 err = sun4v_vintr_set_state(dev_handle, dev_ino,
578 HV_INTR_STATE_IDLE);
579 if (err != HV_EOK)
580 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
581 "HV_INTR_STATE_IDLE): err(%d)\n",
582 dev_handle, dev_ino, err);
583}
584
585static struct irq_chip sun4u_irq = {
586 .name = "sun4u",
587 .irq_enable = sun4u_irq_enable,
588 .irq_disable = sun4u_irq_disable,
589 .irq_eoi = sun4u_irq_eoi,
590 .irq_set_affinity = sun4u_set_affinity,
591 .flags = IRQCHIP_EOI_IF_HANDLED,
592};
593
594static struct irq_chip sun4v_irq = {
595 .name = "sun4v",
596 .irq_enable = sun4v_irq_enable,
597 .irq_disable = sun4v_irq_disable,
598 .irq_eoi = sun4v_irq_eoi,
599 .irq_set_affinity = sun4v_set_affinity,
600 .flags = IRQCHIP_EOI_IF_HANDLED,
601};
602
603static struct irq_chip sun4v_virq = {
604 .name = "vsun4v",
605 .irq_enable = sun4v_virq_enable,
606 .irq_disable = sun4v_virq_disable,
607 .irq_eoi = sun4v_virq_eoi,
608 .irq_set_affinity = sun4v_virt_set_affinity,
609 .flags = IRQCHIP_EOI_IF_HANDLED,
610};
611
612unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
613{
614 struct irq_handler_data *handler_data;
615 struct ino_bucket *bucket;
616 unsigned int irq;
617 int ino;
618
619 BUG_ON(tlb_type == hypervisor);
620
621 ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
622 bucket = &ivector_table[ino];
623 irq = bucket_get_irq(__pa(bucket));
624 if (!irq) {
625 irq = irq_alloc(0, ino);
626 bucket_set_irq(__pa(bucket), irq);
627 irq_set_chip_and_handler_name(irq, &sun4u_irq,
628 handle_fasteoi_irq, "IVEC");
629 }
630
631 handler_data = irq_get_handler_data(irq);
632 if (unlikely(handler_data))
633 goto out;
634
635 handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
636 if (unlikely(!handler_data)) {
637 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
638 prom_halt();
639 }
640 irq_set_handler_data(irq, handler_data);
641
642 handler_data->imap = imap;
643 handler_data->iclr = iclr;
644
645out:
646 return irq;
647}
648
649static unsigned int sun4v_build_common(u32 devhandle, unsigned int devino,
650 void (*handler_data_init)(struct irq_handler_data *data,
651 u32 devhandle, unsigned int devino),
652 struct irq_chip *chip)
653{
654 struct irq_handler_data *data;
655 unsigned int irq;
656
657 irq = irq_alloc(devhandle, devino);
658 if (!irq)
659 goto out;
660
661 data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
662 if (unlikely(!data)) {
663 pr_err("IRQ handler data allocation failed.\n");
664 irq_free(irq);
665 irq = 0;
666 goto out;
667 }
668
669 irq_set_handler_data(irq, data);
670 handler_data_init(data, devhandle, devino);
671 irq_set_chip_and_handler_name(irq, chip, handle_fasteoi_irq, "IVEC");
672 data->imap = ~0UL;
673 data->iclr = ~0UL;
674out:
675 return irq;
676}
677
678static unsigned long cookie_assign(unsigned int irq, u32 devhandle,
679 unsigned int devino)
680{
681 struct irq_handler_data *ihd = irq_get_handler_data(irq);
682 unsigned long hv_error, cookie;
683
684 /* handler_irq needs to find the irq. cookie is seen signed in
685 * sun4v_dev_mondo and treated as a non ivector_table delivery.
686 */
687 ihd->bucket.__irq = irq;
688 cookie = ~__pa(&ihd->bucket);
689
690 hv_error = sun4v_vintr_set_cookie(devhandle, devino, cookie);
691 if (hv_error)
692 pr_err("HV vintr set cookie failed = %ld\n", hv_error);
693
694 return hv_error;
695}
696
697static void cookie_handler_data(struct irq_handler_data *data,
698 u32 devhandle, unsigned int devino)
699{
700 data->dev_handle = devhandle;
701 data->dev_ino = devino;
702}
703
704static unsigned int cookie_build_irq(u32 devhandle, unsigned int devino,
705 struct irq_chip *chip)
706{
707 unsigned long hv_error;
708 unsigned int irq;
709
710 irq = sun4v_build_common(devhandle, devino, cookie_handler_data, chip);
711
712 hv_error = cookie_assign(irq, devhandle, devino);
713 if (hv_error) {
714 irq_free(irq);
715 irq = 0;
716 }
717
718 return irq;
719}
720
721static unsigned int sun4v_build_cookie(u32 devhandle, unsigned int devino)
722{
723 unsigned int irq;
724
725 irq = cookie_exists(devhandle, devino);
726 if (irq)
727 goto out;
728
729 irq = cookie_build_irq(devhandle, devino, &sun4v_virq);
730
731out:
732 return irq;
733}
734
735static void sysino_set_bucket(unsigned int irq)
736{
737 struct irq_handler_data *ihd = irq_get_handler_data(irq);
738 struct ino_bucket *bucket;
739 unsigned long sysino;
740
741 sysino = sun4v_devino_to_sysino(ihd->dev_handle, ihd->dev_ino);
742 BUG_ON(sysino >= nr_ivec);
743 bucket = &ivector_table[sysino];
744 bucket_set_irq(__pa(bucket), irq);
745}
746
747static void sysino_handler_data(struct irq_handler_data *data,
748 u32 devhandle, unsigned int devino)
749{
750 unsigned long sysino;
751
752 sysino = sun4v_devino_to_sysino(devhandle, devino);
753 data->sysino = sysino;
754}
755
756static unsigned int sysino_build_irq(u32 devhandle, unsigned int devino,
757 struct irq_chip *chip)
758{
759 unsigned int irq;
760
761 irq = sun4v_build_common(devhandle, devino, sysino_handler_data, chip);
762 if (!irq)
763 goto out;
764
765 sysino_set_bucket(irq);
766out:
767 return irq;
768}
769
770static int sun4v_build_sysino(u32 devhandle, unsigned int devino)
771{
772 int irq;
773
774 irq = sysino_exists(devhandle, devino);
775 if (irq)
776 goto out;
777
778 irq = sysino_build_irq(devhandle, devino, &sun4v_irq);
779out:
780 return irq;
781}
782
783unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
784{
785 unsigned int irq;
786
787 if (sun4v_cookie_only_virqs())
788 irq = sun4v_build_cookie(devhandle, devino);
789 else
790 irq = sun4v_build_sysino(devhandle, devino);
791
792 return irq;
793}
794
795unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
796{
797 int irq;
798
799 irq = cookie_build_irq(devhandle, devino, &sun4v_virq);
800 if (!irq)
801 goto out;
802
803 /* This is borrowed from the original function.
804 */
805 irq_set_status_flags(irq, IRQ_NOAUTOEN);
806
807out:
808 return irq;
809}
810
811void *hardirq_stack[NR_CPUS];
812void *softirq_stack[NR_CPUS];
813
814void __irq_entry handler_irq(int pil, struct pt_regs *regs)
815{
816 unsigned long pstate, bucket_pa;
817 struct pt_regs *old_regs;
818 void *orig_sp;
819
820 clear_softint(1 << pil);
821
822 old_regs = set_irq_regs(regs);
823 irq_enter();
824
825 /* Grab an atomic snapshot of the pending IVECs. */
826 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
827 "wrpr %0, %3, %%pstate\n\t"
828 "ldx [%2], %1\n\t"
829 "stx %%g0, [%2]\n\t"
830 "wrpr %0, 0x0, %%pstate\n\t"
831 : "=&r" (pstate), "=&r" (bucket_pa)
832 : "r" (irq_work_pa(smp_processor_id())),
833 "i" (PSTATE_IE)
834 : "memory");
835
836 orig_sp = set_hardirq_stack();
837
838 while (bucket_pa) {
839 unsigned long next_pa;
840 unsigned int irq;
841
842 next_pa = bucket_get_chain_pa(bucket_pa);
843 irq = bucket_get_irq(bucket_pa);
844 bucket_clear_chain_pa(bucket_pa);
845
846 generic_handle_irq(irq);
847
848 bucket_pa = next_pa;
849 }
850
851 restore_hardirq_stack(orig_sp);
852
853 irq_exit();
854 set_irq_regs(old_regs);
855}
856
857void do_softirq_own_stack(void)
858{
859 void *orig_sp, *sp = softirq_stack[smp_processor_id()];
860
861 sp += THREAD_SIZE - 192 - STACK_BIAS;
862
863 __asm__ __volatile__("mov %%sp, %0\n\t"
864 "mov %1, %%sp"
865 : "=&r" (orig_sp)
866 : "r" (sp));
867 __do_softirq();
868 __asm__ __volatile__("mov %0, %%sp"
869 : : "r" (orig_sp));
870}
871
872#ifdef CONFIG_HOTPLUG_CPU
873void fixup_irqs(void)
874{
875 unsigned int irq;
876
877 for (irq = 0; irq < NR_IRQS; irq++) {
878 struct irq_desc *desc = irq_to_desc(irq);
879 struct irq_data *data;
880 unsigned long flags;
881
882 if (!desc)
883 continue;
884 data = irq_desc_get_irq_data(desc);
885 raw_spin_lock_irqsave(&desc->lock, flags);
886 if (desc->action && !irqd_is_per_cpu(data)) {
887 if (data->chip->irq_set_affinity)
888 data->chip->irq_set_affinity(data,
889 irq_data_get_affinity_mask(data),
890 false);
891 }
892 raw_spin_unlock_irqrestore(&desc->lock, flags);
893 }
894
895 tick_ops->disable_irq();
896}
897#endif
898
899struct sun5_timer {
900 u64 count0;
901 u64 limit0;
902 u64 count1;
903 u64 limit1;
904};
905
906static struct sun5_timer *prom_timers;
907static u64 prom_limit0, prom_limit1;
908
909static void map_prom_timers(void)
910{
911 struct device_node *dp;
912 const unsigned int *addr;
913
914 /* PROM timer node hangs out in the top level of device siblings... */
915 dp = of_find_node_by_path("/");
916 dp = dp->child;
917 while (dp) {
918 if (!strcmp(dp->name, "counter-timer"))
919 break;
920 dp = dp->sibling;
921 }
922
923 /* Assume if node is not present, PROM uses different tick mechanism
924 * which we should not care about.
925 */
926 if (!dp) {
927 prom_timers = (struct sun5_timer *) 0;
928 return;
929 }
930
931 /* If PROM is really using this, it must be mapped by him. */
932 addr = of_get_property(dp, "address", NULL);
933 if (!addr) {
934 prom_printf("PROM does not have timer mapped, trying to continue.\n");
935 prom_timers = (struct sun5_timer *) 0;
936 return;
937 }
938 prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
939}
940
941static void kill_prom_timer(void)
942{
943 if (!prom_timers)
944 return;
945
946 /* Save them away for later. */
947 prom_limit0 = prom_timers->limit0;
948 prom_limit1 = prom_timers->limit1;
949
950 /* Just as in sun4c PROM uses timer which ticks at IRQ 14.
951 * We turn both off here just to be paranoid.
952 */
953 prom_timers->limit0 = 0;
954 prom_timers->limit1 = 0;
955
956 /* Wheee, eat the interrupt packet too... */
957 __asm__ __volatile__(
958" mov 0x40, %%g2\n"
959" ldxa [%%g0] %0, %%g1\n"
960" ldxa [%%g2] %1, %%g1\n"
961" stxa %%g0, [%%g0] %0\n"
962" membar #Sync\n"
963 : /* no outputs */
964 : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
965 : "g1", "g2");
966}
967
968void notrace init_irqwork_curcpu(void)
969{
970 int cpu = hard_smp_processor_id();
971
972 trap_block[cpu].irq_worklist_pa = 0UL;
973}
974
975/* Please be very careful with register_one_mondo() and
976 * sun4v_register_mondo_queues().
977 *
978 * On SMP this gets invoked from the CPU trampoline before
979 * the cpu has fully taken over the trap table from OBP,
980 * and it's kernel stack + %g6 thread register state is
981 * not fully cooked yet.
982 *
983 * Therefore you cannot make any OBP calls, not even prom_printf,
984 * from these two routines.
985 */
986static void notrace register_one_mondo(unsigned long paddr, unsigned long type,
987 unsigned long qmask)
988{
989 unsigned long num_entries = (qmask + 1) / 64;
990 unsigned long status;
991
992 status = sun4v_cpu_qconf(type, paddr, num_entries);
993 if (status != HV_EOK) {
994 prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
995 "err %lu\n", type, paddr, num_entries, status);
996 prom_halt();
997 }
998}
999
1000void notrace sun4v_register_mondo_queues(int this_cpu)
1001{
1002 struct trap_per_cpu *tb = &trap_block[this_cpu];
1003
1004 register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
1005 tb->cpu_mondo_qmask);
1006 register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
1007 tb->dev_mondo_qmask);
1008 register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
1009 tb->resum_qmask);
1010 register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
1011 tb->nonresum_qmask);
1012}
1013
1014/* Each queue region must be a power of 2 multiple of 64 bytes in
1015 * size. The base real address must be aligned to the size of the
1016 * region. Thus, an 8KB queue must be 8KB aligned, for example.
1017 */
1018static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask)
1019{
1020 unsigned long size = PAGE_ALIGN(qmask + 1);
1021 unsigned long order = get_order(size);
1022 unsigned long p;
1023
1024 p = __get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1025 if (!p) {
1026 prom_printf("SUN4V: Error, cannot allocate queue.\n");
1027 prom_halt();
1028 }
1029
1030 *pa_ptr = __pa(p);
1031}
1032
1033static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
1034{
1035#ifdef CONFIG_SMP
1036 unsigned long page;
1037 void *mondo, *p;
1038
1039 BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > PAGE_SIZE);
1040
1041 /* Make sure mondo block is 64byte aligned */
1042 p = kzalloc(127, GFP_KERNEL);
1043 if (!p) {
1044 prom_printf("SUN4V: Error, cannot allocate mondo block.\n");
1045 prom_halt();
1046 }
1047 mondo = (void *)(((unsigned long)p + 63) & ~0x3f);
1048 tb->cpu_mondo_block_pa = __pa(mondo);
1049
1050 page = get_zeroed_page(GFP_KERNEL);
1051 if (!page) {
1052 prom_printf("SUN4V: Error, cannot allocate cpu list page.\n");
1053 prom_halt();
1054 }
1055
1056 tb->cpu_list_pa = __pa(page);
1057#endif
1058}
1059
1060/* Allocate mondo and error queues for all possible cpus. */
1061static void __init sun4v_init_mondo_queues(void)
1062{
1063 int cpu;
1064
1065 for_each_possible_cpu(cpu) {
1066 struct trap_per_cpu *tb = &trap_block[cpu];
1067
1068 alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
1069 alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
1070 alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask);
1071 alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask);
1072 alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
1073 alloc_one_queue(&tb->nonresum_kernel_buf_pa,
1074 tb->nonresum_qmask);
1075 }
1076}
1077
1078static void __init init_send_mondo_info(void)
1079{
1080 int cpu;
1081
1082 for_each_possible_cpu(cpu) {
1083 struct trap_per_cpu *tb = &trap_block[cpu];
1084
1085 init_cpu_send_mondo_info(tb);
1086 }
1087}
1088
1089static struct irqaction timer_irq_action = {
1090 .name = "timer",
1091};
1092
1093static void __init irq_ivector_init(void)
1094{
1095 unsigned long size, order;
1096 unsigned int ivecs;
1097
1098 /* If we are doing cookie only VIRQs then we do not need the ivector
1099 * table to process interrupts.
1100 */
1101 if (sun4v_cookie_only_virqs())
1102 return;
1103
1104 ivecs = size_nr_ivec();
1105 size = sizeof(struct ino_bucket) * ivecs;
1106 order = get_order(size);
1107 ivector_table = (struct ino_bucket *)
1108 __get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1109 if (!ivector_table) {
1110 prom_printf("Fatal error, cannot allocate ivector_table\n");
1111 prom_halt();
1112 }
1113 __flush_dcache_range((unsigned long) ivector_table,
1114 ((unsigned long) ivector_table) + size);
1115
1116 ivector_table_pa = __pa(ivector_table);
1117}
1118
1119/* Only invoked on boot processor.*/
1120void __init init_IRQ(void)
1121{
1122 irq_init_hv();
1123 irq_ivector_init();
1124 map_prom_timers();
1125 kill_prom_timer();
1126
1127 if (tlb_type == hypervisor)
1128 sun4v_init_mondo_queues();
1129
1130 init_send_mondo_info();
1131
1132 if (tlb_type == hypervisor) {
1133 /* Load up the boot cpu's entries. */
1134 sun4v_register_mondo_queues(hard_smp_processor_id());
1135 }
1136
1137 /* We need to clear any IRQ's pending in the soft interrupt
1138 * registers, a spurious one could be left around from the
1139 * PROM timer which we just disabled.
1140 */
1141 clear_softint(get_softint());
1142
1143 /* Now that ivector table is initialized, it is safe
1144 * to receive IRQ vector traps. We will normally take
1145 * one or two right now, in case some device PROM used
1146 * to boot us wants to speak to us. We just ignore them.
1147 */
1148 __asm__ __volatile__("rdpr %%pstate, %%g1\n\t"
1149 "or %%g1, %0, %%g1\n\t"
1150 "wrpr %%g1, 0x0, %%pstate"
1151 : /* No outputs */
1152 : "i" (PSTATE_IE)
1153 : "g1");
1154
1155 irq_to_desc(0)->action = &timer_irq_action;
1156}
1// SPDX-License-Identifier: GPL-2.0
2/* irq.c: UltraSparc IRQ handling/init/registry.
3 *
4 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
5 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
6 * Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz)
7 */
8
9#include <linux/sched.h>
10#include <linux/linkage.h>
11#include <linux/ptrace.h>
12#include <linux/errno.h>
13#include <linux/kernel_stat.h>
14#include <linux/signal.h>
15#include <linux/mm.h>
16#include <linux/interrupt.h>
17#include <linux/slab.h>
18#include <linux/random.h>
19#include <linux/init.h>
20#include <linux/delay.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/ftrace.h>
24#include <linux/irq.h>
25
26#include <asm/ptrace.h>
27#include <asm/processor.h>
28#include <linux/atomic.h>
29#include <asm/irq.h>
30#include <asm/io.h>
31#include <asm/iommu.h>
32#include <asm/upa.h>
33#include <asm/oplib.h>
34#include <asm/prom.h>
35#include <asm/timer.h>
36#include <asm/smp.h>
37#include <asm/starfire.h>
38#include <linux/uaccess.h>
39#include <asm/cache.h>
40#include <asm/cpudata.h>
41#include <asm/auxio.h>
42#include <asm/head.h>
43#include <asm/hypervisor.h>
44#include <asm/cacheflush.h>
45#include <asm/softirq_stack.h>
46
47#include "entry.h"
48#include "cpumap.h"
49#include "kstack.h"
50
51struct ino_bucket *ivector_table;
52unsigned long ivector_table_pa;
53
54/* On several sun4u processors, it is illegal to mix bypass and
55 * non-bypass accesses. Therefore we access all INO buckets
56 * using bypass accesses only.
57 */
58static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
59{
60 unsigned long ret;
61
62 __asm__ __volatile__("ldxa [%1] %2, %0"
63 : "=&r" (ret)
64 : "r" (bucket_pa +
65 offsetof(struct ino_bucket,
66 __irq_chain_pa)),
67 "i" (ASI_PHYS_USE_EC));
68
69 return ret;
70}
71
72static void bucket_clear_chain_pa(unsigned long bucket_pa)
73{
74 __asm__ __volatile__("stxa %%g0, [%0] %1"
75 : /* no outputs */
76 : "r" (bucket_pa +
77 offsetof(struct ino_bucket,
78 __irq_chain_pa)),
79 "i" (ASI_PHYS_USE_EC));
80}
81
82static unsigned int bucket_get_irq(unsigned long bucket_pa)
83{
84 unsigned int ret;
85
86 __asm__ __volatile__("lduwa [%1] %2, %0"
87 : "=&r" (ret)
88 : "r" (bucket_pa +
89 offsetof(struct ino_bucket,
90 __irq)),
91 "i" (ASI_PHYS_USE_EC));
92
93 return ret;
94}
95
96static void bucket_set_irq(unsigned long bucket_pa, unsigned int irq)
97{
98 __asm__ __volatile__("stwa %0, [%1] %2"
99 : /* no outputs */
100 : "r" (irq),
101 "r" (bucket_pa +
102 offsetof(struct ino_bucket,
103 __irq)),
104 "i" (ASI_PHYS_USE_EC));
105}
106
107#define irq_work_pa(__cpu) &(trap_block[(__cpu)].irq_worklist_pa)
108
109static unsigned long hvirq_major __initdata;
110static int __init early_hvirq_major(char *p)
111{
112 int rc = kstrtoul(p, 10, &hvirq_major);
113
114 return rc;
115}
116early_param("hvirq", early_hvirq_major);
117
118static int hv_irq_version;
119
120/* Major version 2.0 of HV_GRP_INTR added support for the VIRQ cookie
121 * based interfaces, but:
122 *
123 * 1) Several OSs, Solaris and Linux included, use them even when only
124 * negotiating version 1.0 (or failing to negotiate at all). So the
125 * hypervisor has a workaround that provides the VIRQ interfaces even
126 * when only verion 1.0 of the API is in use.
127 *
128 * 2) Second, and more importantly, with major version 2.0 these VIRQ
129 * interfaces only were actually hooked up for LDC interrupts, even
130 * though the Hypervisor specification clearly stated:
131 *
132 * The new interrupt API functions will be available to a guest
133 * when it negotiates version 2.0 in the interrupt API group 0x2. When
134 * a guest negotiates version 2.0, all interrupt sources will only
135 * support using the cookie interface, and any attempt to use the
136 * version 1.0 interrupt APIs numbered 0xa0 to 0xa6 will result in the
137 * ENOTSUPPORTED error being returned.
138 *
139 * with an emphasis on "all interrupt sources".
140 *
141 * To correct this, major version 3.0 was created which does actually
142 * support VIRQs for all interrupt sources (not just LDC devices). So
143 * if we want to move completely over the cookie based VIRQs we must
144 * negotiate major version 3.0 or later of HV_GRP_INTR.
145 */
146static bool sun4v_cookie_only_virqs(void)
147{
148 if (hv_irq_version >= 3)
149 return true;
150 return false;
151}
152
153static void __init irq_init_hv(void)
154{
155 unsigned long hv_error, major, minor = 0;
156
157 if (tlb_type != hypervisor)
158 return;
159
160 if (hvirq_major)
161 major = hvirq_major;
162 else
163 major = 3;
164
165 hv_error = sun4v_hvapi_register(HV_GRP_INTR, major, &minor);
166 if (!hv_error)
167 hv_irq_version = major;
168 else
169 hv_irq_version = 1;
170
171 pr_info("SUN4V: Using IRQ API major %d, cookie only virqs %s\n",
172 hv_irq_version,
173 sun4v_cookie_only_virqs() ? "enabled" : "disabled");
174}
175
176/* This function is for the timer interrupt.*/
177int __init arch_probe_nr_irqs(void)
178{
179 return 1;
180}
181
182#define DEFAULT_NUM_IVECS (0xfffU)
183static unsigned int nr_ivec = DEFAULT_NUM_IVECS;
184#define NUM_IVECS (nr_ivec)
185
186static unsigned int __init size_nr_ivec(void)
187{
188 if (tlb_type == hypervisor) {
189 switch (sun4v_chip_type) {
190 /* Athena's devhandle|devino is large.*/
191 case SUN4V_CHIP_SPARC64X:
192 nr_ivec = 0xffff;
193 break;
194 }
195 }
196 return nr_ivec;
197}
198
199struct irq_handler_data {
200 union {
201 struct {
202 unsigned int dev_handle;
203 unsigned int dev_ino;
204 };
205 unsigned long sysino;
206 };
207 struct ino_bucket bucket;
208 unsigned long iclr;
209 unsigned long imap;
210};
211
212static inline unsigned int irq_data_to_handle(struct irq_data *data)
213{
214 struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
215
216 return ihd->dev_handle;
217}
218
219static inline unsigned int irq_data_to_ino(struct irq_data *data)
220{
221 struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
222
223 return ihd->dev_ino;
224}
225
226static inline unsigned long irq_data_to_sysino(struct irq_data *data)
227{
228 struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
229
230 return ihd->sysino;
231}
232
233void irq_free(unsigned int irq)
234{
235 void *data = irq_get_handler_data(irq);
236
237 kfree(data);
238 irq_set_handler_data(irq, NULL);
239 irq_free_descs(irq, 1);
240}
241
242unsigned int irq_alloc(unsigned int dev_handle, unsigned int dev_ino)
243{
244 int irq;
245
246 irq = __irq_alloc_descs(-1, 1, 1, numa_node_id(), NULL, NULL);
247 if (irq <= 0)
248 goto out;
249
250 return irq;
251out:
252 return 0;
253}
254
255static unsigned int cookie_exists(u32 devhandle, unsigned int devino)
256{
257 unsigned long hv_err, cookie;
258 struct ino_bucket *bucket;
259 unsigned int irq = 0U;
260
261 hv_err = sun4v_vintr_get_cookie(devhandle, devino, &cookie);
262 if (hv_err) {
263 pr_err("HV get cookie failed hv_err = %ld\n", hv_err);
264 goto out;
265 }
266
267 if (cookie & ((1UL << 63UL))) {
268 cookie = ~cookie;
269 bucket = (struct ino_bucket *) __va(cookie);
270 irq = bucket->__irq;
271 }
272out:
273 return irq;
274}
275
276static unsigned int sysino_exists(u32 devhandle, unsigned int devino)
277{
278 unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
279 struct ino_bucket *bucket;
280 unsigned int irq;
281
282 bucket = &ivector_table[sysino];
283 irq = bucket_get_irq(__pa(bucket));
284
285 return irq;
286}
287
288void ack_bad_irq(unsigned int irq)
289{
290 pr_crit("BAD IRQ ack %d\n", irq);
291}
292
293void irq_install_pre_handler(int irq,
294 void (*func)(unsigned int, void *, void *),
295 void *arg1, void *arg2)
296{
297 pr_warn("IRQ pre handler NOT supported.\n");
298}
299
300/*
301 * /proc/interrupts printing:
302 */
303int arch_show_interrupts(struct seq_file *p, int prec)
304{
305 int j;
306
307 seq_printf(p, "NMI: ");
308 for_each_online_cpu(j)
309 seq_printf(p, "%10u ", cpu_data(j).__nmi_count);
310 seq_printf(p, " Non-maskable interrupts\n");
311 return 0;
312}
313
314static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
315{
316 unsigned int tid;
317
318 if (this_is_starfire) {
319 tid = starfire_translate(imap, cpuid);
320 tid <<= IMAP_TID_SHIFT;
321 tid &= IMAP_TID_UPA;
322 } else {
323 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
324 unsigned long ver;
325
326 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
327 if ((ver >> 32UL) == __JALAPENO_ID ||
328 (ver >> 32UL) == __SERRANO_ID) {
329 tid = cpuid << IMAP_TID_SHIFT;
330 tid &= IMAP_TID_JBUS;
331 } else {
332 unsigned int a = cpuid & 0x1f;
333 unsigned int n = (cpuid >> 5) & 0x1f;
334
335 tid = ((a << IMAP_AID_SHIFT) |
336 (n << IMAP_NID_SHIFT));
337 tid &= (IMAP_AID_SAFARI |
338 IMAP_NID_SAFARI);
339 }
340 } else {
341 tid = cpuid << IMAP_TID_SHIFT;
342 tid &= IMAP_TID_UPA;
343 }
344 }
345
346 return tid;
347}
348
349#ifdef CONFIG_SMP
350static int irq_choose_cpu(unsigned int irq, const struct cpumask *affinity)
351{
352 cpumask_t mask;
353 int cpuid;
354
355 cpumask_copy(&mask, affinity);
356 if (cpumask_equal(&mask, cpu_online_mask)) {
357 cpuid = map_to_cpu(irq);
358 } else {
359 cpumask_t tmp;
360
361 cpumask_and(&tmp, cpu_online_mask, &mask);
362 cpuid = cpumask_empty(&tmp) ? map_to_cpu(irq) : cpumask_first(&tmp);
363 }
364
365 return cpuid;
366}
367#else
368#define irq_choose_cpu(irq, affinity) \
369 real_hard_smp_processor_id()
370#endif
371
372static void sun4u_irq_enable(struct irq_data *data)
373{
374 struct irq_handler_data *handler_data;
375
376 handler_data = irq_data_get_irq_handler_data(data);
377 if (likely(handler_data)) {
378 unsigned long cpuid, imap, val;
379 unsigned int tid;
380
381 cpuid = irq_choose_cpu(data->irq,
382 irq_data_get_affinity_mask(data));
383 imap = handler_data->imap;
384
385 tid = sun4u_compute_tid(imap, cpuid);
386
387 val = upa_readq(imap);
388 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
389 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
390 val |= tid | IMAP_VALID;
391 upa_writeq(val, imap);
392 upa_writeq(ICLR_IDLE, handler_data->iclr);
393 }
394}
395
396static int sun4u_set_affinity(struct irq_data *data,
397 const struct cpumask *mask, bool force)
398{
399 struct irq_handler_data *handler_data;
400
401 handler_data = irq_data_get_irq_handler_data(data);
402 if (likely(handler_data)) {
403 unsigned long cpuid, imap, val;
404 unsigned int tid;
405
406 cpuid = irq_choose_cpu(data->irq, mask);
407 imap = handler_data->imap;
408
409 tid = sun4u_compute_tid(imap, cpuid);
410
411 val = upa_readq(imap);
412 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
413 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
414 val |= tid | IMAP_VALID;
415 upa_writeq(val, imap);
416 upa_writeq(ICLR_IDLE, handler_data->iclr);
417 }
418
419 return 0;
420}
421
422/* Don't do anything. The desc->status check for IRQ_DISABLED in
423 * handler_irq() will skip the handler call and that will leave the
424 * interrupt in the sent state. The next ->enable() call will hit the
425 * ICLR register to reset the state machine.
426 *
427 * This scheme is necessary, instead of clearing the Valid bit in the
428 * IMAP register, to handle the case of IMAP registers being shared by
429 * multiple INOs (and thus ICLR registers). Since we use a different
430 * virtual IRQ for each shared IMAP instance, the generic code thinks
431 * there is only one user so it prematurely calls ->disable() on
432 * free_irq().
433 *
434 * We have to provide an explicit ->disable() method instead of using
435 * NULL to get the default. The reason is that if the generic code
436 * sees that, it also hooks up a default ->shutdown method which
437 * invokes ->mask() which we do not want. See irq_chip_set_defaults().
438 */
439static void sun4u_irq_disable(struct irq_data *data)
440{
441}
442
443static void sun4u_irq_eoi(struct irq_data *data)
444{
445 struct irq_handler_data *handler_data;
446
447 handler_data = irq_data_get_irq_handler_data(data);
448 if (likely(handler_data))
449 upa_writeq(ICLR_IDLE, handler_data->iclr);
450}
451
452static void sun4v_irq_enable(struct irq_data *data)
453{
454 unsigned long cpuid = irq_choose_cpu(data->irq,
455 irq_data_get_affinity_mask(data));
456 unsigned int ino = irq_data_to_sysino(data);
457 int err;
458
459 err = sun4v_intr_settarget(ino, cpuid);
460 if (err != HV_EOK)
461 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
462 "err(%d)\n", ino, cpuid, err);
463 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
464 if (err != HV_EOK)
465 printk(KERN_ERR "sun4v_intr_setstate(%x): "
466 "err(%d)\n", ino, err);
467 err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
468 if (err != HV_EOK)
469 printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
470 ino, err);
471}
472
473static int sun4v_set_affinity(struct irq_data *data,
474 const struct cpumask *mask, bool force)
475{
476 unsigned long cpuid = irq_choose_cpu(data->irq, mask);
477 unsigned int ino = irq_data_to_sysino(data);
478 int err;
479
480 err = sun4v_intr_settarget(ino, cpuid);
481 if (err != HV_EOK)
482 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
483 "err(%d)\n", ino, cpuid, err);
484
485 return 0;
486}
487
488static void sun4v_irq_disable(struct irq_data *data)
489{
490 unsigned int ino = irq_data_to_sysino(data);
491 int err;
492
493 err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
494 if (err != HV_EOK)
495 printk(KERN_ERR "sun4v_intr_setenabled(%x): "
496 "err(%d)\n", ino, err);
497}
498
499static void sun4v_irq_eoi(struct irq_data *data)
500{
501 unsigned int ino = irq_data_to_sysino(data);
502 int err;
503
504 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
505 if (err != HV_EOK)
506 printk(KERN_ERR "sun4v_intr_setstate(%x): "
507 "err(%d)\n", ino, err);
508}
509
510static void sun4v_virq_enable(struct irq_data *data)
511{
512 unsigned long dev_handle = irq_data_to_handle(data);
513 unsigned long dev_ino = irq_data_to_ino(data);
514 unsigned long cpuid;
515 int err;
516
517 cpuid = irq_choose_cpu(data->irq, irq_data_get_affinity_mask(data));
518
519 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
520 if (err != HV_EOK)
521 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
522 "err(%d)\n",
523 dev_handle, dev_ino, cpuid, err);
524 err = sun4v_vintr_set_state(dev_handle, dev_ino,
525 HV_INTR_STATE_IDLE);
526 if (err != HV_EOK)
527 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
528 "HV_INTR_STATE_IDLE): err(%d)\n",
529 dev_handle, dev_ino, err);
530 err = sun4v_vintr_set_valid(dev_handle, dev_ino,
531 HV_INTR_ENABLED);
532 if (err != HV_EOK)
533 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
534 "HV_INTR_ENABLED): err(%d)\n",
535 dev_handle, dev_ino, err);
536}
537
538static int sun4v_virt_set_affinity(struct irq_data *data,
539 const struct cpumask *mask, bool force)
540{
541 unsigned long dev_handle = irq_data_to_handle(data);
542 unsigned long dev_ino = irq_data_to_ino(data);
543 unsigned long cpuid;
544 int err;
545
546 cpuid = irq_choose_cpu(data->irq, mask);
547
548 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
549 if (err != HV_EOK)
550 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
551 "err(%d)\n",
552 dev_handle, dev_ino, cpuid, err);
553
554 return 0;
555}
556
557static void sun4v_virq_disable(struct irq_data *data)
558{
559 unsigned long dev_handle = irq_data_to_handle(data);
560 unsigned long dev_ino = irq_data_to_ino(data);
561 int err;
562
563
564 err = sun4v_vintr_set_valid(dev_handle, dev_ino,
565 HV_INTR_DISABLED);
566 if (err != HV_EOK)
567 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
568 "HV_INTR_DISABLED): err(%d)\n",
569 dev_handle, dev_ino, err);
570}
571
572static void sun4v_virq_eoi(struct irq_data *data)
573{
574 unsigned long dev_handle = irq_data_to_handle(data);
575 unsigned long dev_ino = irq_data_to_ino(data);
576 int err;
577
578 err = sun4v_vintr_set_state(dev_handle, dev_ino,
579 HV_INTR_STATE_IDLE);
580 if (err != HV_EOK)
581 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
582 "HV_INTR_STATE_IDLE): err(%d)\n",
583 dev_handle, dev_ino, err);
584}
585
586static struct irq_chip sun4u_irq = {
587 .name = "sun4u",
588 .irq_enable = sun4u_irq_enable,
589 .irq_disable = sun4u_irq_disable,
590 .irq_eoi = sun4u_irq_eoi,
591 .irq_set_affinity = sun4u_set_affinity,
592 .flags = IRQCHIP_EOI_IF_HANDLED,
593};
594
595static struct irq_chip sun4v_irq = {
596 .name = "sun4v",
597 .irq_enable = sun4v_irq_enable,
598 .irq_disable = sun4v_irq_disable,
599 .irq_eoi = sun4v_irq_eoi,
600 .irq_set_affinity = sun4v_set_affinity,
601 .flags = IRQCHIP_EOI_IF_HANDLED,
602};
603
604static struct irq_chip sun4v_virq = {
605 .name = "vsun4v",
606 .irq_enable = sun4v_virq_enable,
607 .irq_disable = sun4v_virq_disable,
608 .irq_eoi = sun4v_virq_eoi,
609 .irq_set_affinity = sun4v_virt_set_affinity,
610 .flags = IRQCHIP_EOI_IF_HANDLED,
611};
612
613unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
614{
615 struct irq_handler_data *handler_data;
616 struct ino_bucket *bucket;
617 unsigned int irq;
618 int ino;
619
620 BUG_ON(tlb_type == hypervisor);
621
622 ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
623 bucket = &ivector_table[ino];
624 irq = bucket_get_irq(__pa(bucket));
625 if (!irq) {
626 irq = irq_alloc(0, ino);
627 bucket_set_irq(__pa(bucket), irq);
628 irq_set_chip_and_handler_name(irq, &sun4u_irq,
629 handle_fasteoi_irq, "IVEC");
630 }
631
632 handler_data = irq_get_handler_data(irq);
633 if (unlikely(handler_data))
634 goto out;
635
636 handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
637 if (unlikely(!handler_data)) {
638 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
639 prom_halt();
640 }
641 irq_set_handler_data(irq, handler_data);
642
643 handler_data->imap = imap;
644 handler_data->iclr = iclr;
645
646out:
647 return irq;
648}
649
650static unsigned int sun4v_build_common(u32 devhandle, unsigned int devino,
651 void (*handler_data_init)(struct irq_handler_data *data,
652 u32 devhandle, unsigned int devino),
653 struct irq_chip *chip)
654{
655 struct irq_handler_data *data;
656 unsigned int irq;
657
658 irq = irq_alloc(devhandle, devino);
659 if (!irq)
660 goto out;
661
662 data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
663 if (unlikely(!data)) {
664 pr_err("IRQ handler data allocation failed.\n");
665 irq_free(irq);
666 irq = 0;
667 goto out;
668 }
669
670 irq_set_handler_data(irq, data);
671 handler_data_init(data, devhandle, devino);
672 irq_set_chip_and_handler_name(irq, chip, handle_fasteoi_irq, "IVEC");
673 data->imap = ~0UL;
674 data->iclr = ~0UL;
675out:
676 return irq;
677}
678
679static unsigned long cookie_assign(unsigned int irq, u32 devhandle,
680 unsigned int devino)
681{
682 struct irq_handler_data *ihd = irq_get_handler_data(irq);
683 unsigned long hv_error, cookie;
684
685 /* handler_irq needs to find the irq. cookie is seen signed in
686 * sun4v_dev_mondo and treated as a non ivector_table delivery.
687 */
688 ihd->bucket.__irq = irq;
689 cookie = ~__pa(&ihd->bucket);
690
691 hv_error = sun4v_vintr_set_cookie(devhandle, devino, cookie);
692 if (hv_error)
693 pr_err("HV vintr set cookie failed = %ld\n", hv_error);
694
695 return hv_error;
696}
697
698static void cookie_handler_data(struct irq_handler_data *data,
699 u32 devhandle, unsigned int devino)
700{
701 data->dev_handle = devhandle;
702 data->dev_ino = devino;
703}
704
705static unsigned int cookie_build_irq(u32 devhandle, unsigned int devino,
706 struct irq_chip *chip)
707{
708 unsigned long hv_error;
709 unsigned int irq;
710
711 irq = sun4v_build_common(devhandle, devino, cookie_handler_data, chip);
712
713 hv_error = cookie_assign(irq, devhandle, devino);
714 if (hv_error) {
715 irq_free(irq);
716 irq = 0;
717 }
718
719 return irq;
720}
721
722static unsigned int sun4v_build_cookie(u32 devhandle, unsigned int devino)
723{
724 unsigned int irq;
725
726 irq = cookie_exists(devhandle, devino);
727 if (irq)
728 goto out;
729
730 irq = cookie_build_irq(devhandle, devino, &sun4v_virq);
731
732out:
733 return irq;
734}
735
736static void sysino_set_bucket(unsigned int irq)
737{
738 struct irq_handler_data *ihd = irq_get_handler_data(irq);
739 struct ino_bucket *bucket;
740 unsigned long sysino;
741
742 sysino = sun4v_devino_to_sysino(ihd->dev_handle, ihd->dev_ino);
743 BUG_ON(sysino >= nr_ivec);
744 bucket = &ivector_table[sysino];
745 bucket_set_irq(__pa(bucket), irq);
746}
747
748static void sysino_handler_data(struct irq_handler_data *data,
749 u32 devhandle, unsigned int devino)
750{
751 unsigned long sysino;
752
753 sysino = sun4v_devino_to_sysino(devhandle, devino);
754 data->sysino = sysino;
755}
756
757static unsigned int sysino_build_irq(u32 devhandle, unsigned int devino,
758 struct irq_chip *chip)
759{
760 unsigned int irq;
761
762 irq = sun4v_build_common(devhandle, devino, sysino_handler_data, chip);
763 if (!irq)
764 goto out;
765
766 sysino_set_bucket(irq);
767out:
768 return irq;
769}
770
771static int sun4v_build_sysino(u32 devhandle, unsigned int devino)
772{
773 int irq;
774
775 irq = sysino_exists(devhandle, devino);
776 if (irq)
777 goto out;
778
779 irq = sysino_build_irq(devhandle, devino, &sun4v_irq);
780out:
781 return irq;
782}
783
784unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
785{
786 unsigned int irq;
787
788 if (sun4v_cookie_only_virqs())
789 irq = sun4v_build_cookie(devhandle, devino);
790 else
791 irq = sun4v_build_sysino(devhandle, devino);
792
793 return irq;
794}
795
796unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
797{
798 int irq;
799
800 irq = cookie_build_irq(devhandle, devino, &sun4v_virq);
801 if (!irq)
802 goto out;
803
804 /* This is borrowed from the original function.
805 */
806 irq_set_status_flags(irq, IRQ_NOAUTOEN);
807
808out:
809 return irq;
810}
811
812void *hardirq_stack[NR_CPUS];
813void *softirq_stack[NR_CPUS];
814
815void __irq_entry handler_irq(int pil, struct pt_regs *regs)
816{
817 unsigned long pstate, bucket_pa;
818 struct pt_regs *old_regs;
819 void *orig_sp;
820
821 clear_softint(1 << pil);
822
823 old_regs = set_irq_regs(regs);
824 irq_enter();
825
826 /* Grab an atomic snapshot of the pending IVECs. */
827 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
828 "wrpr %0, %3, %%pstate\n\t"
829 "ldx [%2], %1\n\t"
830 "stx %%g0, [%2]\n\t"
831 "wrpr %0, 0x0, %%pstate\n\t"
832 : "=&r" (pstate), "=&r" (bucket_pa)
833 : "r" (irq_work_pa(smp_processor_id())),
834 "i" (PSTATE_IE)
835 : "memory");
836
837 orig_sp = set_hardirq_stack();
838
839 while (bucket_pa) {
840 unsigned long next_pa;
841 unsigned int irq;
842
843 next_pa = bucket_get_chain_pa(bucket_pa);
844 irq = bucket_get_irq(bucket_pa);
845 bucket_clear_chain_pa(bucket_pa);
846
847 generic_handle_irq(irq);
848
849 bucket_pa = next_pa;
850 }
851
852 restore_hardirq_stack(orig_sp);
853
854 irq_exit();
855 set_irq_regs(old_regs);
856}
857
858#ifdef CONFIG_SOFTIRQ_ON_OWN_STACK
859void do_softirq_own_stack(void)
860{
861 void *orig_sp, *sp = softirq_stack[smp_processor_id()];
862
863 sp += THREAD_SIZE - 192 - STACK_BIAS;
864
865 __asm__ __volatile__("mov %%sp, %0\n\t"
866 "mov %1, %%sp"
867 : "=&r" (orig_sp)
868 : "r" (sp));
869 __do_softirq();
870 __asm__ __volatile__("mov %0, %%sp"
871 : : "r" (orig_sp));
872}
873#endif
874
875#ifdef CONFIG_HOTPLUG_CPU
876void fixup_irqs(void)
877{
878 unsigned int irq;
879
880 for (irq = 0; irq < NR_IRQS; irq++) {
881 struct irq_desc *desc = irq_to_desc(irq);
882 struct irq_data *data;
883 unsigned long flags;
884
885 if (!desc)
886 continue;
887 data = irq_desc_get_irq_data(desc);
888 raw_spin_lock_irqsave(&desc->lock, flags);
889 if (desc->action && !irqd_is_per_cpu(data)) {
890 if (data->chip->irq_set_affinity)
891 data->chip->irq_set_affinity(data,
892 irq_data_get_affinity_mask(data),
893 false);
894 }
895 raw_spin_unlock_irqrestore(&desc->lock, flags);
896 }
897
898 tick_ops->disable_irq();
899}
900#endif
901
902struct sun5_timer {
903 u64 count0;
904 u64 limit0;
905 u64 count1;
906 u64 limit1;
907};
908
909static struct sun5_timer *prom_timers;
910static u64 prom_limit0, prom_limit1;
911
912static void map_prom_timers(void)
913{
914 struct device_node *dp;
915 const unsigned int *addr;
916
917 /* PROM timer node hangs out in the top level of device siblings... */
918 dp = of_find_node_by_path("/");
919 dp = dp->child;
920 while (dp) {
921 if (of_node_name_eq(dp, "counter-timer"))
922 break;
923 dp = dp->sibling;
924 }
925
926 /* Assume if node is not present, PROM uses different tick mechanism
927 * which we should not care about.
928 */
929 if (!dp) {
930 prom_timers = (struct sun5_timer *) 0;
931 return;
932 }
933
934 /* If PROM is really using this, it must be mapped by him. */
935 addr = of_get_property(dp, "address", NULL);
936 if (!addr) {
937 prom_printf("PROM does not have timer mapped, trying to continue.\n");
938 prom_timers = (struct sun5_timer *) 0;
939 return;
940 }
941 prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
942}
943
944static void kill_prom_timer(void)
945{
946 if (!prom_timers)
947 return;
948
949 /* Save them away for later. */
950 prom_limit0 = prom_timers->limit0;
951 prom_limit1 = prom_timers->limit1;
952
953 /* Just as in sun4c PROM uses timer which ticks at IRQ 14.
954 * We turn both off here just to be paranoid.
955 */
956 prom_timers->limit0 = 0;
957 prom_timers->limit1 = 0;
958
959 /* Wheee, eat the interrupt packet too... */
960 __asm__ __volatile__(
961" mov 0x40, %%g2\n"
962" ldxa [%%g0] %0, %%g1\n"
963" ldxa [%%g2] %1, %%g1\n"
964" stxa %%g0, [%%g0] %0\n"
965" membar #Sync\n"
966 : /* no outputs */
967 : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
968 : "g1", "g2");
969}
970
971void notrace init_irqwork_curcpu(void)
972{
973 int cpu = hard_smp_processor_id();
974
975 trap_block[cpu].irq_worklist_pa = 0UL;
976}
977
978/* Please be very careful with register_one_mondo() and
979 * sun4v_register_mondo_queues().
980 *
981 * On SMP this gets invoked from the CPU trampoline before
982 * the cpu has fully taken over the trap table from OBP,
983 * and it's kernel stack + %g6 thread register state is
984 * not fully cooked yet.
985 *
986 * Therefore you cannot make any OBP calls, not even prom_printf,
987 * from these two routines.
988 */
989static void notrace register_one_mondo(unsigned long paddr, unsigned long type,
990 unsigned long qmask)
991{
992 unsigned long num_entries = (qmask + 1) / 64;
993 unsigned long status;
994
995 status = sun4v_cpu_qconf(type, paddr, num_entries);
996 if (status != HV_EOK) {
997 prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
998 "err %lu\n", type, paddr, num_entries, status);
999 prom_halt();
1000 }
1001}
1002
1003void notrace sun4v_register_mondo_queues(int this_cpu)
1004{
1005 struct trap_per_cpu *tb = &trap_block[this_cpu];
1006
1007 register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
1008 tb->cpu_mondo_qmask);
1009 register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
1010 tb->dev_mondo_qmask);
1011 register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
1012 tb->resum_qmask);
1013 register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
1014 tb->nonresum_qmask);
1015}
1016
1017/* Each queue region must be a power of 2 multiple of 64 bytes in
1018 * size. The base real address must be aligned to the size of the
1019 * region. Thus, an 8KB queue must be 8KB aligned, for example.
1020 */
1021static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask)
1022{
1023 unsigned long size = PAGE_ALIGN(qmask + 1);
1024 unsigned long order = get_order(size);
1025 unsigned long p;
1026
1027 p = __get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1028 if (!p) {
1029 prom_printf("SUN4V: Error, cannot allocate queue.\n");
1030 prom_halt();
1031 }
1032
1033 *pa_ptr = __pa(p);
1034}
1035
1036static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
1037{
1038#ifdef CONFIG_SMP
1039 unsigned long page;
1040 void *mondo, *p;
1041
1042 BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > PAGE_SIZE);
1043
1044 /* Make sure mondo block is 64byte aligned */
1045 p = kzalloc(127, GFP_KERNEL);
1046 if (!p) {
1047 prom_printf("SUN4V: Error, cannot allocate mondo block.\n");
1048 prom_halt();
1049 }
1050 mondo = (void *)(((unsigned long)p + 63) & ~0x3f);
1051 tb->cpu_mondo_block_pa = __pa(mondo);
1052
1053 page = get_zeroed_page(GFP_KERNEL);
1054 if (!page) {
1055 prom_printf("SUN4V: Error, cannot allocate cpu list page.\n");
1056 prom_halt();
1057 }
1058
1059 tb->cpu_list_pa = __pa(page);
1060#endif
1061}
1062
1063/* Allocate mondo and error queues for all possible cpus. */
1064static void __init sun4v_init_mondo_queues(void)
1065{
1066 int cpu;
1067
1068 for_each_possible_cpu(cpu) {
1069 struct trap_per_cpu *tb = &trap_block[cpu];
1070
1071 alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
1072 alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
1073 alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask);
1074 alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask);
1075 alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
1076 alloc_one_queue(&tb->nonresum_kernel_buf_pa,
1077 tb->nonresum_qmask);
1078 }
1079}
1080
1081static void __init init_send_mondo_info(void)
1082{
1083 int cpu;
1084
1085 for_each_possible_cpu(cpu) {
1086 struct trap_per_cpu *tb = &trap_block[cpu];
1087
1088 init_cpu_send_mondo_info(tb);
1089 }
1090}
1091
1092static struct irqaction timer_irq_action = {
1093 .name = "timer",
1094};
1095
1096static void __init irq_ivector_init(void)
1097{
1098 unsigned long size, order;
1099 unsigned int ivecs;
1100
1101 /* If we are doing cookie only VIRQs then we do not need the ivector
1102 * table to process interrupts.
1103 */
1104 if (sun4v_cookie_only_virqs())
1105 return;
1106
1107 ivecs = size_nr_ivec();
1108 size = sizeof(struct ino_bucket) * ivecs;
1109 order = get_order(size);
1110 ivector_table = (struct ino_bucket *)
1111 __get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1112 if (!ivector_table) {
1113 prom_printf("Fatal error, cannot allocate ivector_table\n");
1114 prom_halt();
1115 }
1116 __flush_dcache_range((unsigned long) ivector_table,
1117 ((unsigned long) ivector_table) + size);
1118
1119 ivector_table_pa = __pa(ivector_table);
1120}
1121
1122/* Only invoked on boot processor.*/
1123void __init init_IRQ(void)
1124{
1125 irq_init_hv();
1126 irq_ivector_init();
1127 map_prom_timers();
1128 kill_prom_timer();
1129
1130 if (tlb_type == hypervisor)
1131 sun4v_init_mondo_queues();
1132
1133 init_send_mondo_info();
1134
1135 if (tlb_type == hypervisor) {
1136 /* Load up the boot cpu's entries. */
1137 sun4v_register_mondo_queues(hard_smp_processor_id());
1138 }
1139
1140 /* We need to clear any IRQ's pending in the soft interrupt
1141 * registers, a spurious one could be left around from the
1142 * PROM timer which we just disabled.
1143 */
1144 clear_softint(get_softint());
1145
1146 /* Now that ivector table is initialized, it is safe
1147 * to receive IRQ vector traps. We will normally take
1148 * one or two right now, in case some device PROM used
1149 * to boot us wants to speak to us. We just ignore them.
1150 */
1151 __asm__ __volatile__("rdpr %%pstate, %%g1\n\t"
1152 "or %%g1, %0, %%g1\n\t"
1153 "wrpr %%g1, 0x0, %%pstate"
1154 : /* No outputs */
1155 : "i" (PSTATE_IE)
1156 : "g1");
1157
1158 irq_to_desc(0)->action = &timer_irq_action;
1159}