Linux Audio

Check our new training course

Loading...
  1/* irq.c: UltraSparc IRQ handling/init/registry.
  2 *
  3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
  4 * Copyright (C) 1998  Eddie C. Dost    (ecd@skynet.be)
  5 * Copyright (C) 1998  Jakub Jelinek    (jj@ultra.linux.cz)
  6 */
  7
  8#include <linux/sched.h>
  9#include <linux/linkage.h>
 10#include <linux/ptrace.h>
 11#include <linux/errno.h>
 12#include <linux/kernel_stat.h>
 13#include <linux/signal.h>
 14#include <linux/mm.h>
 15#include <linux/interrupt.h>
 16#include <linux/slab.h>
 17#include <linux/random.h>
 18#include <linux/init.h>
 19#include <linux/delay.h>
 20#include <linux/proc_fs.h>
 21#include <linux/seq_file.h>
 22#include <linux/ftrace.h>
 23#include <linux/irq.h>
 24#include <linux/kmemleak.h>
 25
 26#include <asm/ptrace.h>
 27#include <asm/processor.h>
 28#include <linux/atomic.h>
 29#include <asm/irq.h>
 30#include <asm/io.h>
 31#include <asm/iommu.h>
 32#include <asm/upa.h>
 33#include <asm/oplib.h>
 34#include <asm/prom.h>
 35#include <asm/timer.h>
 36#include <asm/smp.h>
 37#include <asm/starfire.h>
 38#include <asm/uaccess.h>
 39#include <asm/cache.h>
 40#include <asm/cpudata.h>
 41#include <asm/auxio.h>
 42#include <asm/head.h>
 43#include <asm/hypervisor.h>
 44#include <asm/cacheflush.h>
 45
 46#include "entry.h"
 47#include "cpumap.h"
 48#include "kstack.h"
 49
 50#define NUM_IVECS	(IMAP_INR + 1)
 51
 52struct ino_bucket *ivector_table;
 53unsigned long ivector_table_pa;
 54
 55/* On several sun4u processors, it is illegal to mix bypass and
 56 * non-bypass accesses.  Therefore we access all INO buckets
 57 * using bypass accesses only.
 58 */
 59static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
 60{
 61	unsigned long ret;
 62
 63	__asm__ __volatile__("ldxa	[%1] %2, %0"
 64			     : "=&r" (ret)
 65			     : "r" (bucket_pa +
 66				    offsetof(struct ino_bucket,
 67					     __irq_chain_pa)),
 68			       "i" (ASI_PHYS_USE_EC));
 69
 70	return ret;
 71}
 72
 73static void bucket_clear_chain_pa(unsigned long bucket_pa)
 74{
 75	__asm__ __volatile__("stxa	%%g0, [%0] %1"
 76			     : /* no outputs */
 77			     : "r" (bucket_pa +
 78				    offsetof(struct ino_bucket,
 79					     __irq_chain_pa)),
 80			       "i" (ASI_PHYS_USE_EC));
 81}
 82
 83static unsigned int bucket_get_irq(unsigned long bucket_pa)
 84{
 85	unsigned int ret;
 86
 87	__asm__ __volatile__("lduwa	[%1] %2, %0"
 88			     : "=&r" (ret)
 89			     : "r" (bucket_pa +
 90				    offsetof(struct ino_bucket,
 91					     __irq)),
 92			       "i" (ASI_PHYS_USE_EC));
 93
 94	return ret;
 95}
 96
 97static void bucket_set_irq(unsigned long bucket_pa, unsigned int irq)
 98{
 99	__asm__ __volatile__("stwa	%0, [%1] %2"
100			     : /* no outputs */
101			     : "r" (irq),
102			       "r" (bucket_pa +
103				    offsetof(struct ino_bucket,
104					     __irq)),
105			       "i" (ASI_PHYS_USE_EC));
106}
107
108#define irq_work_pa(__cpu)	&(trap_block[(__cpu)].irq_worklist_pa)
109
110static struct {
111	unsigned int dev_handle;
112	unsigned int dev_ino;
113	unsigned int in_use;
114} irq_table[NR_IRQS];
115static DEFINE_SPINLOCK(irq_alloc_lock);
116
117unsigned char irq_alloc(unsigned int dev_handle, unsigned int dev_ino)
118{
119	unsigned long flags;
120	unsigned char ent;
121
122	BUILD_BUG_ON(NR_IRQS >= 256);
123
124	spin_lock_irqsave(&irq_alloc_lock, flags);
125
126	for (ent = 1; ent < NR_IRQS; ent++) {
127		if (!irq_table[ent].in_use)
128			break;
129	}
130	if (ent >= NR_IRQS) {
131		printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
132		ent = 0;
133	} else {
134		irq_table[ent].dev_handle = dev_handle;
135		irq_table[ent].dev_ino = dev_ino;
136		irq_table[ent].in_use = 1;
137	}
138
139	spin_unlock_irqrestore(&irq_alloc_lock, flags);
140
141	return ent;
142}
143
144#ifdef CONFIG_PCI_MSI
145void irq_free(unsigned int irq)
146{
147	unsigned long flags;
148
149	if (irq >= NR_IRQS)
150		return;
151
152	spin_lock_irqsave(&irq_alloc_lock, flags);
153
154	irq_table[irq].in_use = 0;
155
156	spin_unlock_irqrestore(&irq_alloc_lock, flags);
157}
158#endif
159
160/*
161 * /proc/interrupts printing:
162 */
163int arch_show_interrupts(struct seq_file *p, int prec)
164{
165	int j;
166
167	seq_printf(p, "NMI: ");
168	for_each_online_cpu(j)
169		seq_printf(p, "%10u ", cpu_data(j).__nmi_count);
170	seq_printf(p, "     Non-maskable interrupts\n");
171	return 0;
172}
173
174static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
175{
176	unsigned int tid;
177
178	if (this_is_starfire) {
179		tid = starfire_translate(imap, cpuid);
180		tid <<= IMAP_TID_SHIFT;
181		tid &= IMAP_TID_UPA;
182	} else {
183		if (tlb_type == cheetah || tlb_type == cheetah_plus) {
184			unsigned long ver;
185
186			__asm__ ("rdpr %%ver, %0" : "=r" (ver));
187			if ((ver >> 32UL) == __JALAPENO_ID ||
188			    (ver >> 32UL) == __SERRANO_ID) {
189				tid = cpuid << IMAP_TID_SHIFT;
190				tid &= IMAP_TID_JBUS;
191			} else {
192				unsigned int a = cpuid & 0x1f;
193				unsigned int n = (cpuid >> 5) & 0x1f;
194
195				tid = ((a << IMAP_AID_SHIFT) |
196				       (n << IMAP_NID_SHIFT));
197				tid &= (IMAP_AID_SAFARI |
198					IMAP_NID_SAFARI);
199			}
200		} else {
201			tid = cpuid << IMAP_TID_SHIFT;
202			tid &= IMAP_TID_UPA;
203		}
204	}
205
206	return tid;
207}
208
209struct irq_handler_data {
210	unsigned long	iclr;
211	unsigned long	imap;
212
213	void		(*pre_handler)(unsigned int, void *, void *);
214	void		*arg1;
215	void		*arg2;
216};
217
218#ifdef CONFIG_SMP
219static int irq_choose_cpu(unsigned int irq, const struct cpumask *affinity)
220{
221	cpumask_t mask;
222	int cpuid;
223
224	cpumask_copy(&mask, affinity);
225	if (cpumask_equal(&mask, cpu_online_mask)) {
226		cpuid = map_to_cpu(irq);
227	} else {
228		cpumask_t tmp;
229
230		cpumask_and(&tmp, cpu_online_mask, &mask);
231		cpuid = cpumask_empty(&tmp) ? map_to_cpu(irq) : cpumask_first(&tmp);
232	}
233
234	return cpuid;
235}
236#else
237#define irq_choose_cpu(irq, affinity)	\
238	real_hard_smp_processor_id()
239#endif
240
241static void sun4u_irq_enable(struct irq_data *data)
242{
243	struct irq_handler_data *handler_data = data->handler_data;
244
245	if (likely(handler_data)) {
246		unsigned long cpuid, imap, val;
247		unsigned int tid;
248
249		cpuid = irq_choose_cpu(data->irq, data->affinity);
250		imap = handler_data->imap;
251
252		tid = sun4u_compute_tid(imap, cpuid);
253
254		val = upa_readq(imap);
255		val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
256			 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
257		val |= tid | IMAP_VALID;
258		upa_writeq(val, imap);
259		upa_writeq(ICLR_IDLE, handler_data->iclr);
260	}
261}
262
263static int sun4u_set_affinity(struct irq_data *data,
264			       const struct cpumask *mask, bool force)
265{
266	struct irq_handler_data *handler_data = data->handler_data;
267
268	if (likely(handler_data)) {
269		unsigned long cpuid, imap, val;
270		unsigned int tid;
271
272		cpuid = irq_choose_cpu(data->irq, mask);
273		imap = handler_data->imap;
274
275		tid = sun4u_compute_tid(imap, cpuid);
276
277		val = upa_readq(imap);
278		val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
279			 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
280		val |= tid | IMAP_VALID;
281		upa_writeq(val, imap);
282		upa_writeq(ICLR_IDLE, handler_data->iclr);
283	}
284
285	return 0;
286}
287
288/* Don't do anything.  The desc->status check for IRQ_DISABLED in
289 * handler_irq() will skip the handler call and that will leave the
290 * interrupt in the sent state.  The next ->enable() call will hit the
291 * ICLR register to reset the state machine.
292 *
293 * This scheme is necessary, instead of clearing the Valid bit in the
294 * IMAP register, to handle the case of IMAP registers being shared by
295 * multiple INOs (and thus ICLR registers).  Since we use a different
296 * virtual IRQ for each shared IMAP instance, the generic code thinks
297 * there is only one user so it prematurely calls ->disable() on
298 * free_irq().
299 *
300 * We have to provide an explicit ->disable() method instead of using
301 * NULL to get the default.  The reason is that if the generic code
302 * sees that, it also hooks up a default ->shutdown method which
303 * invokes ->mask() which we do not want.  See irq_chip_set_defaults().
304 */
305static void sun4u_irq_disable(struct irq_data *data)
306{
307}
308
309static void sun4u_irq_eoi(struct irq_data *data)
310{
311	struct irq_handler_data *handler_data = data->handler_data;
312
313	if (likely(handler_data))
314		upa_writeq(ICLR_IDLE, handler_data->iclr);
315}
316
317static void sun4v_irq_enable(struct irq_data *data)
318{
319	unsigned int ino = irq_table[data->irq].dev_ino;
320	unsigned long cpuid = irq_choose_cpu(data->irq, data->affinity);
321	int err;
322
323	err = sun4v_intr_settarget(ino, cpuid);
324	if (err != HV_EOK)
325		printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
326		       "err(%d)\n", ino, cpuid, err);
327	err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
328	if (err != HV_EOK)
329		printk(KERN_ERR "sun4v_intr_setstate(%x): "
330		       "err(%d)\n", ino, err);
331	err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
332	if (err != HV_EOK)
333		printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
334		       ino, err);
335}
336
337static int sun4v_set_affinity(struct irq_data *data,
338			       const struct cpumask *mask, bool force)
339{
340	unsigned int ino = irq_table[data->irq].dev_ino;
341	unsigned long cpuid = irq_choose_cpu(data->irq, mask);
342	int err;
343
344	err = sun4v_intr_settarget(ino, cpuid);
345	if (err != HV_EOK)
346		printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
347		       "err(%d)\n", ino, cpuid, err);
348
349	return 0;
350}
351
352static void sun4v_irq_disable(struct irq_data *data)
353{
354	unsigned int ino = irq_table[data->irq].dev_ino;
355	int err;
356
357	err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
358	if (err != HV_EOK)
359		printk(KERN_ERR "sun4v_intr_setenabled(%x): "
360		       "err(%d)\n", ino, err);
361}
362
363static void sun4v_irq_eoi(struct irq_data *data)
364{
365	unsigned int ino = irq_table[data->irq].dev_ino;
366	int err;
367
368	err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
369	if (err != HV_EOK)
370		printk(KERN_ERR "sun4v_intr_setstate(%x): "
371		       "err(%d)\n", ino, err);
372}
373
374static void sun4v_virq_enable(struct irq_data *data)
375{
376	unsigned long cpuid, dev_handle, dev_ino;
377	int err;
378
379	cpuid = irq_choose_cpu(data->irq, data->affinity);
380
381	dev_handle = irq_table[data->irq].dev_handle;
382	dev_ino = irq_table[data->irq].dev_ino;
383
384	err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
385	if (err != HV_EOK)
386		printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
387		       "err(%d)\n",
388		       dev_handle, dev_ino, cpuid, err);
389	err = sun4v_vintr_set_state(dev_handle, dev_ino,
390				    HV_INTR_STATE_IDLE);
391	if (err != HV_EOK)
392		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
393		       "HV_INTR_STATE_IDLE): err(%d)\n",
394		       dev_handle, dev_ino, err);
395	err = sun4v_vintr_set_valid(dev_handle, dev_ino,
396				    HV_INTR_ENABLED);
397	if (err != HV_EOK)
398		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
399		       "HV_INTR_ENABLED): err(%d)\n",
400		       dev_handle, dev_ino, err);
401}
402
403static int sun4v_virt_set_affinity(struct irq_data *data,
404				    const struct cpumask *mask, bool force)
405{
406	unsigned long cpuid, dev_handle, dev_ino;
407	int err;
408
409	cpuid = irq_choose_cpu(data->irq, mask);
410
411	dev_handle = irq_table[data->irq].dev_handle;
412	dev_ino = irq_table[data->irq].dev_ino;
413
414	err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
415	if (err != HV_EOK)
416		printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
417		       "err(%d)\n",
418		       dev_handle, dev_ino, cpuid, err);
419
420	return 0;
421}
422
423static void sun4v_virq_disable(struct irq_data *data)
424{
425	unsigned long dev_handle, dev_ino;
426	int err;
427
428	dev_handle = irq_table[data->irq].dev_handle;
429	dev_ino = irq_table[data->irq].dev_ino;
430
431	err = sun4v_vintr_set_valid(dev_handle, dev_ino,
432				    HV_INTR_DISABLED);
433	if (err != HV_EOK)
434		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
435		       "HV_INTR_DISABLED): err(%d)\n",
436		       dev_handle, dev_ino, err);
437}
438
439static void sun4v_virq_eoi(struct irq_data *data)
440{
441	unsigned long dev_handle, dev_ino;
442	int err;
443
444	dev_handle = irq_table[data->irq].dev_handle;
445	dev_ino = irq_table[data->irq].dev_ino;
446
447	err = sun4v_vintr_set_state(dev_handle, dev_ino,
448				    HV_INTR_STATE_IDLE);
449	if (err != HV_EOK)
450		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
451		       "HV_INTR_STATE_IDLE): err(%d)\n",
452		       dev_handle, dev_ino, err);
453}
454
455static struct irq_chip sun4u_irq = {
456	.name			= "sun4u",
457	.irq_enable		= sun4u_irq_enable,
458	.irq_disable		= sun4u_irq_disable,
459	.irq_eoi		= sun4u_irq_eoi,
460	.irq_set_affinity	= sun4u_set_affinity,
461	.flags			= IRQCHIP_EOI_IF_HANDLED,
462};
463
464static struct irq_chip sun4v_irq = {
465	.name			= "sun4v",
466	.irq_enable		= sun4v_irq_enable,
467	.irq_disable		= sun4v_irq_disable,
468	.irq_eoi		= sun4v_irq_eoi,
469	.irq_set_affinity	= sun4v_set_affinity,
470	.flags			= IRQCHIP_EOI_IF_HANDLED,
471};
472
473static struct irq_chip sun4v_virq = {
474	.name			= "vsun4v",
475	.irq_enable		= sun4v_virq_enable,
476	.irq_disable		= sun4v_virq_disable,
477	.irq_eoi		= sun4v_virq_eoi,
478	.irq_set_affinity	= sun4v_virt_set_affinity,
479	.flags			= IRQCHIP_EOI_IF_HANDLED,
480};
481
482static void pre_flow_handler(struct irq_data *d)
483{
484	struct irq_handler_data *handler_data = irq_data_get_irq_handler_data(d);
485	unsigned int ino = irq_table[d->irq].dev_ino;
486
487	handler_data->pre_handler(ino, handler_data->arg1, handler_data->arg2);
488}
489
490void irq_install_pre_handler(int irq,
491			     void (*func)(unsigned int, void *, void *),
492			     void *arg1, void *arg2)
493{
494	struct irq_handler_data *handler_data = irq_get_handler_data(irq);
495
496	handler_data->pre_handler = func;
497	handler_data->arg1 = arg1;
498	handler_data->arg2 = arg2;
499
500	__irq_set_preflow_handler(irq, pre_flow_handler);
501}
502
503unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
504{
505	struct ino_bucket *bucket;
506	struct irq_handler_data *handler_data;
507	unsigned int irq;
508	int ino;
509
510	BUG_ON(tlb_type == hypervisor);
511
512	ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
513	bucket = &ivector_table[ino];
514	irq = bucket_get_irq(__pa(bucket));
515	if (!irq) {
516		irq = irq_alloc(0, ino);
517		bucket_set_irq(__pa(bucket), irq);
518		irq_set_chip_and_handler_name(irq, &sun4u_irq,
519					      handle_fasteoi_irq, "IVEC");
520	}
521
522	handler_data = irq_get_handler_data(irq);
523	if (unlikely(handler_data))
524		goto out;
525
526	handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
527	if (unlikely(!handler_data)) {
528		prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
529		prom_halt();
530	}
531	irq_set_handler_data(irq, handler_data);
532
533	handler_data->imap  = imap;
534	handler_data->iclr  = iclr;
535
536out:
537	return irq;
538}
539
540static unsigned int sun4v_build_common(unsigned long sysino,
541				       struct irq_chip *chip)
542{
543	struct ino_bucket *bucket;
544	struct irq_handler_data *handler_data;
545	unsigned int irq;
546
547	BUG_ON(tlb_type != hypervisor);
548
549	bucket = &ivector_table[sysino];
550	irq = bucket_get_irq(__pa(bucket));
551	if (!irq) {
552		irq = irq_alloc(0, sysino);
553		bucket_set_irq(__pa(bucket), irq);
554		irq_set_chip_and_handler_name(irq, chip, handle_fasteoi_irq,
555					      "IVEC");
556	}
557
558	handler_data = irq_get_handler_data(irq);
559	if (unlikely(handler_data))
560		goto out;
561
562	handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
563	if (unlikely(!handler_data)) {
564		prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
565		prom_halt();
566	}
567	irq_set_handler_data(irq, handler_data);
568
569	/* Catch accidental accesses to these things.  IMAP/ICLR handling
570	 * is done by hypervisor calls on sun4v platforms, not by direct
571	 * register accesses.
572	 */
573	handler_data->imap = ~0UL;
574	handler_data->iclr = ~0UL;
575
576out:
577	return irq;
578}
579
580unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
581{
582	unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
583
584	return sun4v_build_common(sysino, &sun4v_irq);
585}
586
587unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
588{
589	struct irq_handler_data *handler_data;
590	unsigned long hv_err, cookie;
591	struct ino_bucket *bucket;
592	unsigned int irq;
593
594	bucket = kzalloc(sizeof(struct ino_bucket), GFP_ATOMIC);
595	if (unlikely(!bucket))
596		return 0;
597
598	/* The only reference we store to the IRQ bucket is
599	 * by physical address which kmemleak can't see, tell
600	 * it that this object explicitly is not a leak and
601	 * should be scanned.
602	 */
603	kmemleak_not_leak(bucket);
604
605	__flush_dcache_range((unsigned long) bucket,
606			     ((unsigned long) bucket +
607			      sizeof(struct ino_bucket)));
608
609	irq = irq_alloc(devhandle, devino);
610	bucket_set_irq(__pa(bucket), irq);
611
612	irq_set_chip_and_handler_name(irq, &sun4v_virq, handle_fasteoi_irq,
613				      "IVEC");
614
615	handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
616	if (unlikely(!handler_data))
617		return 0;
618
619	/* In order to make the LDC channel startup sequence easier,
620	 * especially wrt. locking, we do not let request_irq() enable
621	 * the interrupt.
622	 */
623	irq_set_status_flags(irq, IRQ_NOAUTOEN);
624	irq_set_handler_data(irq, handler_data);
625
626	/* Catch accidental accesses to these things.  IMAP/ICLR handling
627	 * is done by hypervisor calls on sun4v platforms, not by direct
628	 * register accesses.
629	 */
630	handler_data->imap = ~0UL;
631	handler_data->iclr = ~0UL;
632
633	cookie = ~__pa(bucket);
634	hv_err = sun4v_vintr_set_cookie(devhandle, devino, cookie);
635	if (hv_err) {
636		prom_printf("IRQ: Fatal, cannot set cookie for [%x:%x] "
637			    "err=%lu\n", devhandle, devino, hv_err);
638		prom_halt();
639	}
640
641	return irq;
642}
643
644void ack_bad_irq(unsigned int irq)
645{
646	unsigned int ino = irq_table[irq].dev_ino;
647
648	if (!ino)
649		ino = 0xdeadbeef;
650
651	printk(KERN_CRIT "Unexpected IRQ from ino[%x] irq[%u]\n",
652	       ino, irq);
653}
654
655void *hardirq_stack[NR_CPUS];
656void *softirq_stack[NR_CPUS];
657
658void __irq_entry handler_irq(int pil, struct pt_regs *regs)
659{
660	unsigned long pstate, bucket_pa;
661	struct pt_regs *old_regs;
662	void *orig_sp;
663
664	clear_softint(1 << pil);
665
666	old_regs = set_irq_regs(regs);
667	irq_enter();
668
669	/* Grab an atomic snapshot of the pending IVECs.  */
670	__asm__ __volatile__("rdpr	%%pstate, %0\n\t"
671			     "wrpr	%0, %3, %%pstate\n\t"
672			     "ldx	[%2], %1\n\t"
673			     "stx	%%g0, [%2]\n\t"
674			     "wrpr	%0, 0x0, %%pstate\n\t"
675			     : "=&r" (pstate), "=&r" (bucket_pa)
676			     : "r" (irq_work_pa(smp_processor_id())),
677			       "i" (PSTATE_IE)
678			     : "memory");
679
680	orig_sp = set_hardirq_stack();
681
682	while (bucket_pa) {
683		unsigned long next_pa;
684		unsigned int irq;
685
686		next_pa = bucket_get_chain_pa(bucket_pa);
687		irq = bucket_get_irq(bucket_pa);
688		bucket_clear_chain_pa(bucket_pa);
689
690		generic_handle_irq(irq);
691
692		bucket_pa = next_pa;
693	}
694
695	restore_hardirq_stack(orig_sp);
696
697	irq_exit();
698	set_irq_regs(old_regs);
699}
700
701void do_softirq(void)
702{
703	unsigned long flags;
704
705	if (in_interrupt())
706		return;
707
708	local_irq_save(flags);
709
710	if (local_softirq_pending()) {
711		void *orig_sp, *sp = softirq_stack[smp_processor_id()];
712
713		sp += THREAD_SIZE - 192 - STACK_BIAS;
714
715		__asm__ __volatile__("mov %%sp, %0\n\t"
716				     "mov %1, %%sp"
717				     : "=&r" (orig_sp)
718				     : "r" (sp));
719		__do_softirq();
720		__asm__ __volatile__("mov %0, %%sp"
721				     : : "r" (orig_sp));
722	}
723
724	local_irq_restore(flags);
725}
726
727#ifdef CONFIG_HOTPLUG_CPU
728void fixup_irqs(void)
729{
730	unsigned int irq;
731
732	for (irq = 0; irq < NR_IRQS; irq++) {
733		struct irq_desc *desc = irq_to_desc(irq);
734		struct irq_data *data = irq_desc_get_irq_data(desc);
735		unsigned long flags;
736
737		raw_spin_lock_irqsave(&desc->lock, flags);
738		if (desc->action && !irqd_is_per_cpu(data)) {
739			if (data->chip->irq_set_affinity)
740				data->chip->irq_set_affinity(data,
741							     data->affinity,
742							     false);
743		}
744		raw_spin_unlock_irqrestore(&desc->lock, flags);
745	}
746
747	tick_ops->disable_irq();
748}
749#endif
750
751struct sun5_timer {
752	u64	count0;
753	u64	limit0;
754	u64	count1;
755	u64	limit1;
756};
757
758static struct sun5_timer *prom_timers;
759static u64 prom_limit0, prom_limit1;
760
761static void map_prom_timers(void)
762{
763	struct device_node *dp;
764	const unsigned int *addr;
765
766	/* PROM timer node hangs out in the top level of device siblings... */
767	dp = of_find_node_by_path("/");
768	dp = dp->child;
769	while (dp) {
770		if (!strcmp(dp->name, "counter-timer"))
771			break;
772		dp = dp->sibling;
773	}
774
775	/* Assume if node is not present, PROM uses different tick mechanism
776	 * which we should not care about.
777	 */
778	if (!dp) {
779		prom_timers = (struct sun5_timer *) 0;
780		return;
781	}
782
783	/* If PROM is really using this, it must be mapped by him. */
784	addr = of_get_property(dp, "address", NULL);
785	if (!addr) {
786		prom_printf("PROM does not have timer mapped, trying to continue.\n");
787		prom_timers = (struct sun5_timer *) 0;
788		return;
789	}
790	prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
791}
792
793static void kill_prom_timer(void)
794{
795	if (!prom_timers)
796		return;
797
798	/* Save them away for later. */
799	prom_limit0 = prom_timers->limit0;
800	prom_limit1 = prom_timers->limit1;
801
802	/* Just as in sun4c PROM uses timer which ticks at IRQ 14.
803	 * We turn both off here just to be paranoid.
804	 */
805	prom_timers->limit0 = 0;
806	prom_timers->limit1 = 0;
807
808	/* Wheee, eat the interrupt packet too... */
809	__asm__ __volatile__(
810"	mov	0x40, %%g2\n"
811"	ldxa	[%%g0] %0, %%g1\n"
812"	ldxa	[%%g2] %1, %%g1\n"
813"	stxa	%%g0, [%%g0] %0\n"
814"	membar	#Sync\n"
815	: /* no outputs */
816	: "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
817	: "g1", "g2");
818}
819
820void notrace init_irqwork_curcpu(void)
821{
822	int cpu = hard_smp_processor_id();
823
824	trap_block[cpu].irq_worklist_pa = 0UL;
825}
826
827/* Please be very careful with register_one_mondo() and
828 * sun4v_register_mondo_queues().
829 *
830 * On SMP this gets invoked from the CPU trampoline before
831 * the cpu has fully taken over the trap table from OBP,
832 * and it's kernel stack + %g6 thread register state is
833 * not fully cooked yet.
834 *
835 * Therefore you cannot make any OBP calls, not even prom_printf,
836 * from these two routines.
837 */
838static void __cpuinit notrace register_one_mondo(unsigned long paddr, unsigned long type, unsigned long qmask)
839{
840	unsigned long num_entries = (qmask + 1) / 64;
841	unsigned long status;
842
843	status = sun4v_cpu_qconf(type, paddr, num_entries);
844	if (status != HV_EOK) {
845		prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
846			    "err %lu\n", type, paddr, num_entries, status);
847		prom_halt();
848	}
849}
850
851void __cpuinit notrace sun4v_register_mondo_queues(int this_cpu)
852{
853	struct trap_per_cpu *tb = &trap_block[this_cpu];
854
855	register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
856			   tb->cpu_mondo_qmask);
857	register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
858			   tb->dev_mondo_qmask);
859	register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
860			   tb->resum_qmask);
861	register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
862			   tb->nonresum_qmask);
863}
864
865/* Each queue region must be a power of 2 multiple of 64 bytes in
866 * size.  The base real address must be aligned to the size of the
867 * region.  Thus, an 8KB queue must be 8KB aligned, for example.
868 */
869static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask)
870{
871	unsigned long size = PAGE_ALIGN(qmask + 1);
872	unsigned long order = get_order(size);
873	unsigned long p;
874
875	p = __get_free_pages(GFP_KERNEL, order);
876	if (!p) {
877		prom_printf("SUN4V: Error, cannot allocate queue.\n");
878		prom_halt();
879	}
880
881	*pa_ptr = __pa(p);
882}
883
884static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
885{
886#ifdef CONFIG_SMP
887	unsigned long page;
888
889	BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64));
890
891	page = get_zeroed_page(GFP_KERNEL);
892	if (!page) {
893		prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n");
894		prom_halt();
895	}
896
897	tb->cpu_mondo_block_pa = __pa(page);
898	tb->cpu_list_pa = __pa(page + 64);
899#endif
900}
901
902/* Allocate mondo and error queues for all possible cpus.  */
903static void __init sun4v_init_mondo_queues(void)
904{
905	int cpu;
906
907	for_each_possible_cpu(cpu) {
908		struct trap_per_cpu *tb = &trap_block[cpu];
909
910		alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
911		alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
912		alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask);
913		alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask);
914		alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
915		alloc_one_queue(&tb->nonresum_kernel_buf_pa,
916				tb->nonresum_qmask);
917	}
918}
919
920static void __init init_send_mondo_info(void)
921{
922	int cpu;
923
924	for_each_possible_cpu(cpu) {
925		struct trap_per_cpu *tb = &trap_block[cpu];
926
927		init_cpu_send_mondo_info(tb);
928	}
929}
930
931static struct irqaction timer_irq_action = {
932	.name = "timer",
933};
934
935/* Only invoked on boot processor. */
936void __init init_IRQ(void)
937{
938	unsigned long size;
939
940	map_prom_timers();
941	kill_prom_timer();
942
943	size = sizeof(struct ino_bucket) * NUM_IVECS;
944	ivector_table = kzalloc(size, GFP_KERNEL);
945	if (!ivector_table) {
946		prom_printf("Fatal error, cannot allocate ivector_table\n");
947		prom_halt();
948	}
949	__flush_dcache_range((unsigned long) ivector_table,
950			     ((unsigned long) ivector_table) + size);
951
952	ivector_table_pa = __pa(ivector_table);
953
954	if (tlb_type == hypervisor)
955		sun4v_init_mondo_queues();
956
957	init_send_mondo_info();
958
959	if (tlb_type == hypervisor) {
960		/* Load up the boot cpu's entries.  */
961		sun4v_register_mondo_queues(hard_smp_processor_id());
962	}
963
964	/* We need to clear any IRQ's pending in the soft interrupt
965	 * registers, a spurious one could be left around from the
966	 * PROM timer which we just disabled.
967	 */
968	clear_softint(get_softint());
969
970	/* Now that ivector table is initialized, it is safe
971	 * to receive IRQ vector traps.  We will normally take
972	 * one or two right now, in case some device PROM used
973	 * to boot us wants to speak to us.  We just ignore them.
974	 */
975	__asm__ __volatile__("rdpr	%%pstate, %%g1\n\t"
976			     "or	%%g1, %0, %%g1\n\t"
977			     "wrpr	%%g1, 0x0, %%pstate"
978			     : /* No outputs */
979			     : "i" (PSTATE_IE)
980			     : "g1");
981
982	irq_to_desc(0)->action = &timer_irq_action;
983}