Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * Copyright (C) 2012,2013 - ARM Ltd
  3 * Author: Marc Zyngier <marc.zyngier@arm.com>
  4 *
  5 * Derived from arch/arm/kvm/guest.c:
  6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
  7 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
  8 *
  9 * This program is free software; you can redistribute it and/or modify
 10 * it under the terms of the GNU General Public License version 2 as
 11 * published by the Free Software Foundation.
 12 *
 13 * This program is distributed in the hope that it will be useful,
 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 16 * GNU General Public License for more details.
 17 *
 18 * You should have received a copy of the GNU General Public License
 19 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 20 */
 21
 
 22#include <linux/errno.h>
 23#include <linux/err.h>
 
 24#include <linux/kvm_host.h>
 25#include <linux/module.h>
 
 
 26#include <linux/vmalloc.h>
 27#include <linux/fs.h>
 28#include <kvm/arm_psci.h>
 29#include <asm/cputype.h>
 30#include <linux/uaccess.h>
 
 31#include <asm/kvm.h>
 32#include <asm/kvm_emulate.h>
 33#include <asm/kvm_coproc.h>
 34
 35#include "trace.h"
 36
 37#define VM_STAT(x) { #x, offsetof(struct kvm, stat.x), KVM_STAT_VM }
 38#define VCPU_STAT(x) { #x, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU }
 
 39
 40struct kvm_stats_debugfs_item debugfs_entries[] = {
 41	VCPU_STAT(hvc_exit_stat),
 42	VCPU_STAT(wfe_exit_stat),
 43	VCPU_STAT(wfi_exit_stat),
 44	VCPU_STAT(mmio_exit_user),
 45	VCPU_STAT(mmio_exit_kernel),
 46	VCPU_STAT(exits),
 47	{ NULL }
 48};
 49
 50int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 51{
 52	return 0;
 
 53}
 54
 55static u64 core_reg_offset_from_id(u64 id)
 56{
 57	return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
 58}
 59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 60static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 61{
 62	/*
 63	 * Because the kvm_regs structure is a mix of 32, 64 and
 64	 * 128bit fields, we index it as if it was a 32bit
 65	 * array. Hence below, nr_regs is the number of entries, and
 66	 * off the index in the "array".
 67	 */
 68	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
 69	struct kvm_regs *regs = vcpu_gp_regs(vcpu);
 70	int nr_regs = sizeof(*regs) / sizeof(__u32);
 71	u32 off;
 72
 73	/* Our ID is an index into the kvm_regs struct. */
 74	off = core_reg_offset_from_id(reg->id);
 75	if (off >= nr_regs ||
 76	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
 77		return -ENOENT;
 78
 79	if (copy_to_user(uaddr, ((u32 *)regs) + off, KVM_REG_SIZE(reg->id)))
 
 
 
 
 80		return -EFAULT;
 81
 82	return 0;
 83}
 84
 85static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 86{
 87	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
 88	struct kvm_regs *regs = vcpu_gp_regs(vcpu);
 89	int nr_regs = sizeof(*regs) / sizeof(__u32);
 90	__uint128_t tmp;
 91	void *valp = &tmp;
 92	u64 off;
 93	int err = 0;
 94
 95	/* Our ID is an index into the kvm_regs struct. */
 96	off = core_reg_offset_from_id(reg->id);
 97	if (off >= nr_regs ||
 98	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
 99		return -ENOENT;
100
 
 
 
 
101	if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
102		return -EINVAL;
103
104	if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
105		err = -EFAULT;
106		goto out;
107	}
108
109	if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
110		u32 mode = (*(u32 *)valp) & COMPAT_PSR_MODE_MASK;
111		switch (mode) {
112		case COMPAT_PSR_MODE_USR:
113		case COMPAT_PSR_MODE_FIQ:
114		case COMPAT_PSR_MODE_IRQ:
115		case COMPAT_PSR_MODE_SVC:
116		case COMPAT_PSR_MODE_ABT:
117		case COMPAT_PSR_MODE_UND:
 
 
 
 
 
 
118		case PSR_MODE_EL0t:
119		case PSR_MODE_EL1t:
120		case PSR_MODE_EL1h:
 
 
121			break;
122		default:
123			err = -EINVAL;
124			goto out;
125		}
126	}
127
128	memcpy((u32 *)regs + off, valp, KVM_REG_SIZE(reg->id));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129out:
130	return err;
131}
132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
133int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
134{
135	return -EINVAL;
136}
137
138int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
139{
140	return -EINVAL;
141}
142
143static unsigned long num_core_regs(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144{
145	return sizeof(struct kvm_regs) / sizeof(__u32);
146}
147
148/**
149 * ARM64 versions of the TIMER registers, always available on arm64
150 */
151
152#define NUM_TIMER_REGS 3
153
154static bool is_timer_reg(u64 index)
155{
156	switch (index) {
157	case KVM_REG_ARM_TIMER_CTL:
158	case KVM_REG_ARM_TIMER_CNT:
159	case KVM_REG_ARM_TIMER_CVAL:
160		return true;
161	}
162	return false;
163}
164
165static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
166{
167	if (put_user(KVM_REG_ARM_TIMER_CTL, uindices))
168		return -EFAULT;
169	uindices++;
170	if (put_user(KVM_REG_ARM_TIMER_CNT, uindices))
171		return -EFAULT;
172	uindices++;
173	if (put_user(KVM_REG_ARM_TIMER_CVAL, uindices))
174		return -EFAULT;
175
176	return 0;
177}
178
179static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
180{
181	void __user *uaddr = (void __user *)(long)reg->addr;
182	u64 val;
183	int ret;
184
185	ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
186	if (ret != 0)
187		return -EFAULT;
188
189	return kvm_arm_timer_set_reg(vcpu, reg->id, val);
190}
191
192static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
193{
194	void __user *uaddr = (void __user *)(long)reg->addr;
195	u64 val;
196
197	val = kvm_arm_timer_get_reg(vcpu, reg->id);
198	return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
199}
200
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
201/**
202 * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
203 *
204 * This is for all registers.
205 */
206unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
207{
208	return num_core_regs() + kvm_arm_num_sys_reg_descs(vcpu)
209		+ kvm_arm_get_fw_num_regs(vcpu)	+ NUM_TIMER_REGS;
 
 
 
 
 
 
 
210}
211
212/**
213 * kvm_arm_copy_reg_indices - get indices of all registers.
214 *
215 * We do core registers right here, then we append system regs.
216 */
217int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
218{
219	unsigned int i;
220	const u64 core_reg = KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE;
221	int ret;
222
223	for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
224		if (put_user(core_reg | i, uindices))
225			return -EFAULT;
226		uindices++;
227	}
 
 
 
 
228
229	ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
230	if (ret)
231		return ret;
232	uindices += kvm_arm_get_fw_num_regs(vcpu);
233
234	ret = copy_timer_indices(vcpu, uindices);
235	if (ret)
236		return ret;
237	uindices += NUM_TIMER_REGS;
238
239	return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
240}
241
242int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
243{
244	/* We currently use nothing arch-specific in upper 32 bits */
245	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
246		return -EINVAL;
247
248	/* Register group 16 means we want a core register. */
249	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_CORE)
250		return get_core_reg(vcpu, reg);
251
252	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_FW)
253		return kvm_arm_get_fw_reg(vcpu, reg);
 
 
254
255	if (is_timer_reg(reg->id))
256		return get_timer_reg(vcpu, reg);
257
258	return kvm_arm_sys_reg_get_reg(vcpu, reg);
259}
260
261int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
262{
263	/* We currently use nothing arch-specific in upper 32 bits */
264	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
265		return -EINVAL;
266
267	/* Register group 16 means we set a core register. */
268	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_CORE)
269		return set_core_reg(vcpu, reg);
270
271	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_FW)
272		return kvm_arm_set_fw_reg(vcpu, reg);
 
 
273
274	if (is_timer_reg(reg->id))
275		return set_timer_reg(vcpu, reg);
276
277	return kvm_arm_sys_reg_set_reg(vcpu, reg);
278}
279
280int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
281				  struct kvm_sregs *sregs)
282{
283	return -EINVAL;
284}
285
286int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
287				  struct kvm_sregs *sregs)
288{
289	return -EINVAL;
290}
291
292int __attribute_const__ kvm_target_cpu(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
293{
294	unsigned long implementor = read_cpuid_implementor();
295	unsigned long part_number = read_cpuid_part_number();
296
297	switch (implementor) {
298	case ARM_CPU_IMP_ARM:
299		switch (part_number) {
300		case ARM_CPU_PART_AEM_V8:
301			return KVM_ARM_TARGET_AEM_V8;
302		case ARM_CPU_PART_FOUNDATION:
303			return KVM_ARM_TARGET_FOUNDATION_V8;
304		case ARM_CPU_PART_CORTEX_A53:
305			return KVM_ARM_TARGET_CORTEX_A53;
306		case ARM_CPU_PART_CORTEX_A57:
307			return KVM_ARM_TARGET_CORTEX_A57;
308		};
309		break;
310	case ARM_CPU_IMP_APM:
311		switch (part_number) {
312		case APM_CPU_PART_POTENZA:
313			return KVM_ARM_TARGET_XGENE_POTENZA;
314		};
315		break;
316	};
317
318	/* Return a default generic target */
319	return KVM_ARM_TARGET_GENERIC_V8;
320}
321
322int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init)
323{
324	int target = kvm_target_cpu();
325
326	if (target < 0)
327		return -ENODEV;
328
329	memset(init, 0, sizeof(*init));
330
331	/*
332	 * For now, we don't return any features.
333	 * In future, we might use features to return target
334	 * specific features available for the preferred
335	 * target type.
336	 */
337	init->target = (__u32)target;
338
339	return 0;
340}
341
342int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
343{
344	return -EINVAL;
345}
346
347int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
348{
349	return -EINVAL;
350}
351
352int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
353				  struct kvm_translation *tr)
354{
355	return -EINVAL;
356}
357
358#define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE |    \
359			    KVM_GUESTDBG_USE_SW_BP | \
360			    KVM_GUESTDBG_USE_HW | \
361			    KVM_GUESTDBG_SINGLESTEP)
362
363/**
364 * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
365 * @kvm:	pointer to the KVM struct
366 * @kvm_guest_debug: the ioctl data buffer
367 *
368 * This sets up and enables the VM for guest debugging. Userspace
369 * passes in a control flag to enable different debug types and
370 * potentially other architecture specific information in the rest of
371 * the structure.
372 */
373int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
374					struct kvm_guest_debug *dbg)
375{
376	int ret = 0;
377
378	trace_kvm_set_guest_debug(vcpu, dbg->control);
379
380	if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
381		ret = -EINVAL;
382		goto out;
383	}
384
385	if (dbg->control & KVM_GUESTDBG_ENABLE) {
386		vcpu->guest_debug = dbg->control;
387
388		/* Hardware assisted Break and Watch points */
389		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
390			vcpu->arch.external_debug_state = dbg->arch;
391		}
392
393	} else {
394		/* If not enabled clear all flags */
395		vcpu->guest_debug = 0;
 
396	}
397
398out:
399	return ret;
400}
401
402int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
403			       struct kvm_device_attr *attr)
404{
405	int ret;
406
407	switch (attr->group) {
408	case KVM_ARM_VCPU_PMU_V3_CTRL:
409		ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
410		break;
411	case KVM_ARM_VCPU_TIMER_CTRL:
412		ret = kvm_arm_timer_set_attr(vcpu, attr);
413		break;
 
 
 
414	default:
415		ret = -ENXIO;
416		break;
417	}
418
419	return ret;
420}
421
422int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
423			       struct kvm_device_attr *attr)
424{
425	int ret;
426
427	switch (attr->group) {
428	case KVM_ARM_VCPU_PMU_V3_CTRL:
429		ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
430		break;
431	case KVM_ARM_VCPU_TIMER_CTRL:
432		ret = kvm_arm_timer_get_attr(vcpu, attr);
433		break;
 
 
 
434	default:
435		ret = -ENXIO;
436		break;
437	}
438
439	return ret;
440}
441
442int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
443			       struct kvm_device_attr *attr)
444{
445	int ret;
446
447	switch (attr->group) {
448	case KVM_ARM_VCPU_PMU_V3_CTRL:
449		ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
450		break;
451	case KVM_ARM_VCPU_TIMER_CTRL:
452		ret = kvm_arm_timer_has_attr(vcpu, attr);
453		break;
 
 
 
454	default:
455		ret = -ENXIO;
456		break;
457	}
458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
459	return ret;
460}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2012,2013 - ARM Ltd
   4 * Author: Marc Zyngier <marc.zyngier@arm.com>
   5 *
   6 * Derived from arch/arm/kvm/guest.c:
   7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
   8 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 
 
 
 
 
 
 
 
 
 
 
 
   9 */
  10
  11#include <linux/bits.h>
  12#include <linux/errno.h>
  13#include <linux/err.h>
  14#include <linux/nospec.h>
  15#include <linux/kvm_host.h>
  16#include <linux/module.h>
  17#include <linux/stddef.h>
  18#include <linux/string.h>
  19#include <linux/vmalloc.h>
  20#include <linux/fs.h>
  21#include <kvm/arm_hypercalls.h>
  22#include <asm/cputype.h>
  23#include <linux/uaccess.h>
  24#include <asm/fpsimd.h>
  25#include <asm/kvm.h>
  26#include <asm/kvm_emulate.h>
  27#include <asm/sigcontext.h>
  28
  29#include "trace.h"
  30
  31const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
  32	KVM_GENERIC_VM_STATS()
  33};
  34
  35const struct kvm_stats_header kvm_vm_stats_header = {
  36	.name_size = KVM_STATS_NAME_SIZE,
  37	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
  38	.id_offset =  sizeof(struct kvm_stats_header),
  39	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
  40	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
  41		       sizeof(kvm_vm_stats_desc),
 
  42};
  43
  44const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
  45	KVM_GENERIC_VCPU_STATS(),
  46	STATS_DESC_COUNTER(VCPU, hvc_exit_stat),
  47	STATS_DESC_COUNTER(VCPU, wfe_exit_stat),
  48	STATS_DESC_COUNTER(VCPU, wfi_exit_stat),
  49	STATS_DESC_COUNTER(VCPU, mmio_exit_user),
  50	STATS_DESC_COUNTER(VCPU, mmio_exit_kernel),
  51	STATS_DESC_COUNTER(VCPU, signal_exits),
  52	STATS_DESC_COUNTER(VCPU, exits)
  53};
  54
  55const struct kvm_stats_header kvm_vcpu_stats_header = {
  56	.name_size = KVM_STATS_NAME_SIZE,
  57	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
  58	.id_offset = sizeof(struct kvm_stats_header),
  59	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
  60	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
  61		       sizeof(kvm_vcpu_stats_desc),
  62};
  63
  64static bool core_reg_offset_is_vreg(u64 off)
  65{
  66	return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
  67		off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
  68}
  69
  70static u64 core_reg_offset_from_id(u64 id)
  71{
  72	return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
  73}
  74
  75static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
  76{
  77	int size;
  78
  79	switch (off) {
  80	case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
  81	     KVM_REG_ARM_CORE_REG(regs.regs[30]):
  82	case KVM_REG_ARM_CORE_REG(regs.sp):
  83	case KVM_REG_ARM_CORE_REG(regs.pc):
  84	case KVM_REG_ARM_CORE_REG(regs.pstate):
  85	case KVM_REG_ARM_CORE_REG(sp_el1):
  86	case KVM_REG_ARM_CORE_REG(elr_el1):
  87	case KVM_REG_ARM_CORE_REG(spsr[0]) ...
  88	     KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
  89		size = sizeof(__u64);
  90		break;
  91
  92	case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
  93	     KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
  94		size = sizeof(__uint128_t);
  95		break;
  96
  97	case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
  98	case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
  99		size = sizeof(__u32);
 100		break;
 101
 102	default:
 103		return -EINVAL;
 104	}
 105
 106	if (!IS_ALIGNED(off, size / sizeof(__u32)))
 107		return -EINVAL;
 108
 109	/*
 110	 * The KVM_REG_ARM64_SVE regs must be used instead of
 111	 * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
 112	 * SVE-enabled vcpus:
 113	 */
 114	if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
 115		return -EINVAL;
 116
 117	return size;
 118}
 119
 120static void *core_reg_addr(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 121{
 122	u64 off = core_reg_offset_from_id(reg->id);
 123	int size = core_reg_size_from_offset(vcpu, off);
 124
 125	if (size < 0)
 126		return NULL;
 127
 128	if (KVM_REG_SIZE(reg->id) != size)
 129		return NULL;
 130
 131	switch (off) {
 132	case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
 133	     KVM_REG_ARM_CORE_REG(regs.regs[30]):
 134		off -= KVM_REG_ARM_CORE_REG(regs.regs[0]);
 135		off /= 2;
 136		return &vcpu->arch.ctxt.regs.regs[off];
 137
 138	case KVM_REG_ARM_CORE_REG(regs.sp):
 139		return &vcpu->arch.ctxt.regs.sp;
 140
 141	case KVM_REG_ARM_CORE_REG(regs.pc):
 142		return &vcpu->arch.ctxt.regs.pc;
 143
 144	case KVM_REG_ARM_CORE_REG(regs.pstate):
 145		return &vcpu->arch.ctxt.regs.pstate;
 146
 147	case KVM_REG_ARM_CORE_REG(sp_el1):
 148		return __ctxt_sys_reg(&vcpu->arch.ctxt, SP_EL1);
 149
 150	case KVM_REG_ARM_CORE_REG(elr_el1):
 151		return __ctxt_sys_reg(&vcpu->arch.ctxt, ELR_EL1);
 152
 153	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_EL1]):
 154		return __ctxt_sys_reg(&vcpu->arch.ctxt, SPSR_EL1);
 155
 156	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_ABT]):
 157		return &vcpu->arch.ctxt.spsr_abt;
 158
 159	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_UND]):
 160		return &vcpu->arch.ctxt.spsr_und;
 161
 162	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_IRQ]):
 163		return &vcpu->arch.ctxt.spsr_irq;
 164
 165	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_FIQ]):
 166		return &vcpu->arch.ctxt.spsr_fiq;
 167
 168	case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
 169	     KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
 170		off -= KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]);
 171		off /= 4;
 172		return &vcpu->arch.ctxt.fp_regs.vregs[off];
 173
 174	case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
 175		return &vcpu->arch.ctxt.fp_regs.fpsr;
 176
 177	case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
 178		return &vcpu->arch.ctxt.fp_regs.fpcr;
 179
 180	default:
 181		return NULL;
 182	}
 183}
 184
 185static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 186{
 187	/*
 188	 * Because the kvm_regs structure is a mix of 32, 64 and
 189	 * 128bit fields, we index it as if it was a 32bit
 190	 * array. Hence below, nr_regs is the number of entries, and
 191	 * off the index in the "array".
 192	 */
 193	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
 194	int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
 195	void *addr;
 196	u32 off;
 197
 198	/* Our ID is an index into the kvm_regs struct. */
 199	off = core_reg_offset_from_id(reg->id);
 200	if (off >= nr_regs ||
 201	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
 202		return -ENOENT;
 203
 204	addr = core_reg_addr(vcpu, reg);
 205	if (!addr)
 206		return -EINVAL;
 207
 208	if (copy_to_user(uaddr, addr, KVM_REG_SIZE(reg->id)))
 209		return -EFAULT;
 210
 211	return 0;
 212}
 213
 214static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 215{
 216	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
 217	int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
 
 218	__uint128_t tmp;
 219	void *valp = &tmp, *addr;
 220	u64 off;
 221	int err = 0;
 222
 223	/* Our ID is an index into the kvm_regs struct. */
 224	off = core_reg_offset_from_id(reg->id);
 225	if (off >= nr_regs ||
 226	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
 227		return -ENOENT;
 228
 229	addr = core_reg_addr(vcpu, reg);
 230	if (!addr)
 231		return -EINVAL;
 232
 233	if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
 234		return -EINVAL;
 235
 236	if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
 237		err = -EFAULT;
 238		goto out;
 239	}
 240
 241	if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
 242		u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
 243		switch (mode) {
 244		case PSR_AA32_MODE_USR:
 245			if (!kvm_supports_32bit_el0())
 246				return -EINVAL;
 247			break;
 248		case PSR_AA32_MODE_FIQ:
 249		case PSR_AA32_MODE_IRQ:
 250		case PSR_AA32_MODE_SVC:
 251		case PSR_AA32_MODE_ABT:
 252		case PSR_AA32_MODE_UND:
 253			if (!vcpu_el1_is_32bit(vcpu))
 254				return -EINVAL;
 255			break;
 256		case PSR_MODE_EL0t:
 257		case PSR_MODE_EL1t:
 258		case PSR_MODE_EL1h:
 259			if (vcpu_el1_is_32bit(vcpu))
 260				return -EINVAL;
 261			break;
 262		default:
 263			err = -EINVAL;
 264			goto out;
 265		}
 266	}
 267
 268	memcpy(addr, valp, KVM_REG_SIZE(reg->id));
 269
 270	if (*vcpu_cpsr(vcpu) & PSR_MODE32_BIT) {
 271		int i, nr_reg;
 272
 273		switch (*vcpu_cpsr(vcpu)) {
 274		/*
 275		 * Either we are dealing with user mode, and only the
 276		 * first 15 registers (+ PC) must be narrowed to 32bit.
 277		 * AArch32 r0-r14 conveniently map to AArch64 x0-x14.
 278		 */
 279		case PSR_AA32_MODE_USR:
 280		case PSR_AA32_MODE_SYS:
 281			nr_reg = 15;
 282			break;
 283
 284		/*
 285		 * Otherwise, this is a privileged mode, and *all* the
 286		 * registers must be narrowed to 32bit.
 287		 */
 288		default:
 289			nr_reg = 31;
 290			break;
 291		}
 292
 293		for (i = 0; i < nr_reg; i++)
 294			vcpu_set_reg(vcpu, i, (u32)vcpu_get_reg(vcpu, i));
 295
 296		*vcpu_pc(vcpu) = (u32)*vcpu_pc(vcpu);
 297	}
 298out:
 299	return err;
 300}
 301
 302#define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64)
 303#define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64)
 304#define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq)))
 305
 306static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 307{
 308	unsigned int max_vq, vq;
 309	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
 310
 311	if (!vcpu_has_sve(vcpu))
 312		return -ENOENT;
 313
 314	if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl)))
 315		return -EINVAL;
 316
 317	memset(vqs, 0, sizeof(vqs));
 318
 319	max_vq = vcpu_sve_max_vq(vcpu);
 320	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
 321		if (sve_vq_available(vq))
 322			vqs[vq_word(vq)] |= vq_mask(vq);
 323
 324	if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs)))
 325		return -EFAULT;
 326
 327	return 0;
 328}
 329
 330static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 331{
 332	unsigned int max_vq, vq;
 333	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
 334
 335	if (!vcpu_has_sve(vcpu))
 336		return -ENOENT;
 337
 338	if (kvm_arm_vcpu_sve_finalized(vcpu))
 339		return -EPERM; /* too late! */
 340
 341	if (WARN_ON(vcpu->arch.sve_state))
 342		return -EINVAL;
 343
 344	if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs)))
 345		return -EFAULT;
 346
 347	max_vq = 0;
 348	for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq)
 349		if (vq_present(vqs, vq))
 350			max_vq = vq;
 351
 352	if (max_vq > sve_vq_from_vl(kvm_sve_max_vl))
 353		return -EINVAL;
 354
 355	/*
 356	 * Vector lengths supported by the host can't currently be
 357	 * hidden from the guest individually: instead we can only set a
 358	 * maximum via ZCR_EL2.LEN.  So, make sure the available vector
 359	 * lengths match the set requested exactly up to the requested
 360	 * maximum:
 361	 */
 362	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
 363		if (vq_present(vqs, vq) != sve_vq_available(vq))
 364			return -EINVAL;
 365
 366	/* Can't run with no vector lengths at all: */
 367	if (max_vq < SVE_VQ_MIN)
 368		return -EINVAL;
 369
 370	/* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */
 371	vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq);
 372
 373	return 0;
 374}
 375
 376#define SVE_REG_SLICE_SHIFT	0
 377#define SVE_REG_SLICE_BITS	5
 378#define SVE_REG_ID_SHIFT	(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
 379#define SVE_REG_ID_BITS		5
 380
 381#define SVE_REG_SLICE_MASK					\
 382	GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1,	\
 383		SVE_REG_SLICE_SHIFT)
 384#define SVE_REG_ID_MASK							\
 385	GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)
 386
 387#define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)
 388
 389#define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
 390#define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))
 391
 392/*
 393 * Number of register slices required to cover each whole SVE register.
 394 * NOTE: Only the first slice every exists, for now.
 395 * If you are tempted to modify this, you must also rework sve_reg_to_region()
 396 * to match:
 397 */
 398#define vcpu_sve_slices(vcpu) 1
 399
 400/* Bounds of a single SVE register slice within vcpu->arch.sve_state */
 401struct sve_state_reg_region {
 402	unsigned int koffset;	/* offset into sve_state in kernel memory */
 403	unsigned int klen;	/* length in kernel memory */
 404	unsigned int upad;	/* extra trailing padding in user memory */
 405};
 406
 407/*
 408 * Validate SVE register ID and get sanitised bounds for user/kernel SVE
 409 * register copy
 410 */
 411static int sve_reg_to_region(struct sve_state_reg_region *region,
 412			     struct kvm_vcpu *vcpu,
 413			     const struct kvm_one_reg *reg)
 414{
 415	/* reg ID ranges for Z- registers */
 416	const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
 417	const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
 418						       SVE_NUM_SLICES - 1);
 419
 420	/* reg ID ranges for P- registers and FFR (which are contiguous) */
 421	const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
 422	const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);
 423
 424	unsigned int vq;
 425	unsigned int reg_num;
 426
 427	unsigned int reqoffset, reqlen; /* User-requested offset and length */
 428	unsigned int maxlen; /* Maximum permitted length */
 429
 430	size_t sve_state_size;
 431
 432	const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1,
 433							SVE_NUM_SLICES - 1);
 434
 435	/* Verify that the P-regs and FFR really do have contiguous IDs: */
 436	BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1);
 437
 438	/* Verify that we match the UAPI header: */
 439	BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES);
 440
 441	reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;
 442
 443	if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
 444		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
 445			return -ENOENT;
 446
 447		vq = vcpu_sve_max_vq(vcpu);
 448
 449		reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
 450				SVE_SIG_REGS_OFFSET;
 451		reqlen = KVM_SVE_ZREG_SIZE;
 452		maxlen = SVE_SIG_ZREG_SIZE(vq);
 453	} else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
 454		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
 455			return -ENOENT;
 456
 457		vq = vcpu_sve_max_vq(vcpu);
 458
 459		reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
 460				SVE_SIG_REGS_OFFSET;
 461		reqlen = KVM_SVE_PREG_SIZE;
 462		maxlen = SVE_SIG_PREG_SIZE(vq);
 463	} else {
 464		return -EINVAL;
 465	}
 466
 467	sve_state_size = vcpu_sve_state_size(vcpu);
 468	if (WARN_ON(!sve_state_size))
 469		return -EINVAL;
 470
 471	region->koffset = array_index_nospec(reqoffset, sve_state_size);
 472	region->klen = min(maxlen, reqlen);
 473	region->upad = reqlen - region->klen;
 474
 475	return 0;
 476}
 477
 478static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 479{
 480	int ret;
 481	struct sve_state_reg_region region;
 482	char __user *uptr = (char __user *)reg->addr;
 483
 484	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
 485	if (reg->id == KVM_REG_ARM64_SVE_VLS)
 486		return get_sve_vls(vcpu, reg);
 487
 488	/* Try to interpret reg ID as an architectural SVE register... */
 489	ret = sve_reg_to_region(&region, vcpu, reg);
 490	if (ret)
 491		return ret;
 492
 493	if (!kvm_arm_vcpu_sve_finalized(vcpu))
 494		return -EPERM;
 495
 496	if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
 497			 region.klen) ||
 498	    clear_user(uptr + region.klen, region.upad))
 499		return -EFAULT;
 500
 501	return 0;
 502}
 503
 504static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 505{
 506	int ret;
 507	struct sve_state_reg_region region;
 508	const char __user *uptr = (const char __user *)reg->addr;
 509
 510	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
 511	if (reg->id == KVM_REG_ARM64_SVE_VLS)
 512		return set_sve_vls(vcpu, reg);
 513
 514	/* Try to interpret reg ID as an architectural SVE register... */
 515	ret = sve_reg_to_region(&region, vcpu, reg);
 516	if (ret)
 517		return ret;
 518
 519	if (!kvm_arm_vcpu_sve_finalized(vcpu))
 520		return -EPERM;
 521
 522	if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
 523			   region.klen))
 524		return -EFAULT;
 525
 526	return 0;
 527}
 528
 529int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
 530{
 531	return -EINVAL;
 532}
 533
 534int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
 535{
 536	return -EINVAL;
 537}
 538
 539static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
 540				 u64 __user *uindices)
 541{
 542	unsigned int i;
 543	int n = 0;
 544
 545	for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
 546		u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i;
 547		int size = core_reg_size_from_offset(vcpu, i);
 548
 549		if (size < 0)
 550			continue;
 551
 552		switch (size) {
 553		case sizeof(__u32):
 554			reg |= KVM_REG_SIZE_U32;
 555			break;
 556
 557		case sizeof(__u64):
 558			reg |= KVM_REG_SIZE_U64;
 559			break;
 560
 561		case sizeof(__uint128_t):
 562			reg |= KVM_REG_SIZE_U128;
 563			break;
 564
 565		default:
 566			WARN_ON(1);
 567			continue;
 568		}
 569
 570		if (uindices) {
 571			if (put_user(reg, uindices))
 572				return -EFAULT;
 573			uindices++;
 574		}
 575
 576		n++;
 577	}
 578
 579	return n;
 580}
 581
 582static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
 583{
 584	return copy_core_reg_indices(vcpu, NULL);
 585}
 586
 587/**
 588 * ARM64 versions of the TIMER registers, always available on arm64
 589 */
 590
 591#define NUM_TIMER_REGS 3
 592
 593static bool is_timer_reg(u64 index)
 594{
 595	switch (index) {
 596	case KVM_REG_ARM_TIMER_CTL:
 597	case KVM_REG_ARM_TIMER_CNT:
 598	case KVM_REG_ARM_TIMER_CVAL:
 599		return true;
 600	}
 601	return false;
 602}
 603
 604static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
 605{
 606	if (put_user(KVM_REG_ARM_TIMER_CTL, uindices))
 607		return -EFAULT;
 608	uindices++;
 609	if (put_user(KVM_REG_ARM_TIMER_CNT, uindices))
 610		return -EFAULT;
 611	uindices++;
 612	if (put_user(KVM_REG_ARM_TIMER_CVAL, uindices))
 613		return -EFAULT;
 614
 615	return 0;
 616}
 617
 618static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 619{
 620	void __user *uaddr = (void __user *)(long)reg->addr;
 621	u64 val;
 622	int ret;
 623
 624	ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
 625	if (ret != 0)
 626		return -EFAULT;
 627
 628	return kvm_arm_timer_set_reg(vcpu, reg->id, val);
 629}
 630
 631static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 632{
 633	void __user *uaddr = (void __user *)(long)reg->addr;
 634	u64 val;
 635
 636	val = kvm_arm_timer_get_reg(vcpu, reg->id);
 637	return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
 638}
 639
 640static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
 641{
 642	const unsigned int slices = vcpu_sve_slices(vcpu);
 643
 644	if (!vcpu_has_sve(vcpu))
 645		return 0;
 646
 647	/* Policed by KVM_GET_REG_LIST: */
 648	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
 649
 650	return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */)
 651		+ 1; /* KVM_REG_ARM64_SVE_VLS */
 652}
 653
 654static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
 655				u64 __user *uindices)
 656{
 657	const unsigned int slices = vcpu_sve_slices(vcpu);
 658	u64 reg;
 659	unsigned int i, n;
 660	int num_regs = 0;
 661
 662	if (!vcpu_has_sve(vcpu))
 663		return 0;
 664
 665	/* Policed by KVM_GET_REG_LIST: */
 666	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
 667
 668	/*
 669	 * Enumerate this first, so that userspace can save/restore in
 670	 * the order reported by KVM_GET_REG_LIST:
 671	 */
 672	reg = KVM_REG_ARM64_SVE_VLS;
 673	if (put_user(reg, uindices++))
 674		return -EFAULT;
 675	++num_regs;
 676
 677	for (i = 0; i < slices; i++) {
 678		for (n = 0; n < SVE_NUM_ZREGS; n++) {
 679			reg = KVM_REG_ARM64_SVE_ZREG(n, i);
 680			if (put_user(reg, uindices++))
 681				return -EFAULT;
 682			num_regs++;
 683		}
 684
 685		for (n = 0; n < SVE_NUM_PREGS; n++) {
 686			reg = KVM_REG_ARM64_SVE_PREG(n, i);
 687			if (put_user(reg, uindices++))
 688				return -EFAULT;
 689			num_regs++;
 690		}
 691
 692		reg = KVM_REG_ARM64_SVE_FFR(i);
 693		if (put_user(reg, uindices++))
 694			return -EFAULT;
 695		num_regs++;
 696	}
 697
 698	return num_regs;
 699}
 700
 701/**
 702 * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
 703 *
 704 * This is for all registers.
 705 */
 706unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
 707{
 708	unsigned long res = 0;
 709
 710	res += num_core_regs(vcpu);
 711	res += num_sve_regs(vcpu);
 712	res += kvm_arm_num_sys_reg_descs(vcpu);
 713	res += kvm_arm_get_fw_num_regs(vcpu);
 714	res += NUM_TIMER_REGS;
 715
 716	return res;
 717}
 718
 719/**
 720 * kvm_arm_copy_reg_indices - get indices of all registers.
 721 *
 722 * We do core registers right here, then we append system regs.
 723 */
 724int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
 725{
 
 
 726	int ret;
 727
 728	ret = copy_core_reg_indices(vcpu, uindices);
 729	if (ret < 0)
 730		return ret;
 731	uindices += ret;
 732
 733	ret = copy_sve_reg_indices(vcpu, uindices);
 734	if (ret < 0)
 735		return ret;
 736	uindices += ret;
 737
 738	ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
 739	if (ret < 0)
 740		return ret;
 741	uindices += kvm_arm_get_fw_num_regs(vcpu);
 742
 743	ret = copy_timer_indices(vcpu, uindices);
 744	if (ret < 0)
 745		return ret;
 746	uindices += NUM_TIMER_REGS;
 747
 748	return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
 749}
 750
 751int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 752{
 753	/* We currently use nothing arch-specific in upper 32 bits */
 754	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
 755		return -EINVAL;
 756
 757	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
 758	case KVM_REG_ARM_CORE:	return get_core_reg(vcpu, reg);
 759	case KVM_REG_ARM_FW:
 760	case KVM_REG_ARM_FW_FEAT_BMAP:
 
 761		return kvm_arm_get_fw_reg(vcpu, reg);
 762	case KVM_REG_ARM64_SVE:	return get_sve_reg(vcpu, reg);
 763	}
 764
 765	if (is_timer_reg(reg->id))
 766		return get_timer_reg(vcpu, reg);
 767
 768	return kvm_arm_sys_reg_get_reg(vcpu, reg);
 769}
 770
 771int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 772{
 773	/* We currently use nothing arch-specific in upper 32 bits */
 774	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
 775		return -EINVAL;
 776
 777	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
 778	case KVM_REG_ARM_CORE:	return set_core_reg(vcpu, reg);
 779	case KVM_REG_ARM_FW:
 780	case KVM_REG_ARM_FW_FEAT_BMAP:
 
 781		return kvm_arm_set_fw_reg(vcpu, reg);
 782	case KVM_REG_ARM64_SVE:	return set_sve_reg(vcpu, reg);
 783	}
 784
 785	if (is_timer_reg(reg->id))
 786		return set_timer_reg(vcpu, reg);
 787
 788	return kvm_arm_sys_reg_set_reg(vcpu, reg);
 789}
 790
 791int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
 792				  struct kvm_sregs *sregs)
 793{
 794	return -EINVAL;
 795}
 796
 797int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
 798				  struct kvm_sregs *sregs)
 799{
 800	return -EINVAL;
 801}
 802
 803int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
 804			      struct kvm_vcpu_events *events)
 805{
 806	events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE);
 807	events->exception.serror_has_esr = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
 808
 809	if (events->exception.serror_pending && events->exception.serror_has_esr)
 810		events->exception.serror_esr = vcpu_get_vsesr(vcpu);
 811
 812	/*
 813	 * We never return a pending ext_dabt here because we deliver it to
 814	 * the virtual CPU directly when setting the event and it's no longer
 815	 * 'pending' at this point.
 816	 */
 817
 818	return 0;
 819}
 820
 821int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
 822			      struct kvm_vcpu_events *events)
 823{
 824	bool serror_pending = events->exception.serror_pending;
 825	bool has_esr = events->exception.serror_has_esr;
 826	bool ext_dabt_pending = events->exception.ext_dabt_pending;
 827
 828	if (serror_pending && has_esr) {
 829		if (!cpus_have_const_cap(ARM64_HAS_RAS_EXTN))
 830			return -EINVAL;
 831
 832		if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK))
 833			kvm_set_sei_esr(vcpu, events->exception.serror_esr);
 834		else
 835			return -EINVAL;
 836	} else if (serror_pending) {
 837		kvm_inject_vabt(vcpu);
 838	}
 839
 840	if (ext_dabt_pending)
 841		kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
 842
 843	return 0;
 844}
 845
 846u32 __attribute_const__ kvm_target_cpu(void)
 847{
 848	unsigned long implementor = read_cpuid_implementor();
 849	unsigned long part_number = read_cpuid_part_number();
 850
 851	switch (implementor) {
 852	case ARM_CPU_IMP_ARM:
 853		switch (part_number) {
 854		case ARM_CPU_PART_AEM_V8:
 855			return KVM_ARM_TARGET_AEM_V8;
 856		case ARM_CPU_PART_FOUNDATION:
 857			return KVM_ARM_TARGET_FOUNDATION_V8;
 858		case ARM_CPU_PART_CORTEX_A53:
 859			return KVM_ARM_TARGET_CORTEX_A53;
 860		case ARM_CPU_PART_CORTEX_A57:
 861			return KVM_ARM_TARGET_CORTEX_A57;
 862		}
 863		break;
 864	case ARM_CPU_IMP_APM:
 865		switch (part_number) {
 866		case APM_CPU_PART_POTENZA:
 867			return KVM_ARM_TARGET_XGENE_POTENZA;
 868		}
 869		break;
 870	}
 871
 872	/* Return a default generic target */
 873	return KVM_ARM_TARGET_GENERIC_V8;
 874}
 875
 876void kvm_vcpu_preferred_target(struct kvm_vcpu_init *init)
 877{
 878	u32 target = kvm_target_cpu();
 
 
 
 879
 880	memset(init, 0, sizeof(*init));
 881
 882	/*
 883	 * For now, we don't return any features.
 884	 * In future, we might use features to return target
 885	 * specific features available for the preferred
 886	 * target type.
 887	 */
 888	init->target = (__u32)target;
 
 
 889}
 890
 891int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
 892{
 893	return -EINVAL;
 894}
 895
 896int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
 897{
 898	return -EINVAL;
 899}
 900
 901int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
 902				  struct kvm_translation *tr)
 903{
 904	return -EINVAL;
 905}
 906
 
 
 
 
 
 907/**
 908 * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
 909 * @kvm:	pointer to the KVM struct
 910 * @kvm_guest_debug: the ioctl data buffer
 911 *
 912 * This sets up and enables the VM for guest debugging. Userspace
 913 * passes in a control flag to enable different debug types and
 914 * potentially other architecture specific information in the rest of
 915 * the structure.
 916 */
 917int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
 918					struct kvm_guest_debug *dbg)
 919{
 920	int ret = 0;
 921
 922	trace_kvm_set_guest_debug(vcpu, dbg->control);
 923
 924	if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
 925		ret = -EINVAL;
 926		goto out;
 927	}
 928
 929	if (dbg->control & KVM_GUESTDBG_ENABLE) {
 930		vcpu->guest_debug = dbg->control;
 931
 932		/* Hardware assisted Break and Watch points */
 933		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
 934			vcpu->arch.external_debug_state = dbg->arch;
 935		}
 936
 937	} else {
 938		/* If not enabled clear all flags */
 939		vcpu->guest_debug = 0;
 940		vcpu_clear_flag(vcpu, DBG_SS_ACTIVE_PENDING);
 941	}
 942
 943out:
 944	return ret;
 945}
 946
 947int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
 948			       struct kvm_device_attr *attr)
 949{
 950	int ret;
 951
 952	switch (attr->group) {
 953	case KVM_ARM_VCPU_PMU_V3_CTRL:
 954		ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
 955		break;
 956	case KVM_ARM_VCPU_TIMER_CTRL:
 957		ret = kvm_arm_timer_set_attr(vcpu, attr);
 958		break;
 959	case KVM_ARM_VCPU_PVTIME_CTRL:
 960		ret = kvm_arm_pvtime_set_attr(vcpu, attr);
 961		break;
 962	default:
 963		ret = -ENXIO;
 964		break;
 965	}
 966
 967	return ret;
 968}
 969
 970int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
 971			       struct kvm_device_attr *attr)
 972{
 973	int ret;
 974
 975	switch (attr->group) {
 976	case KVM_ARM_VCPU_PMU_V3_CTRL:
 977		ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
 978		break;
 979	case KVM_ARM_VCPU_TIMER_CTRL:
 980		ret = kvm_arm_timer_get_attr(vcpu, attr);
 981		break;
 982	case KVM_ARM_VCPU_PVTIME_CTRL:
 983		ret = kvm_arm_pvtime_get_attr(vcpu, attr);
 984		break;
 985	default:
 986		ret = -ENXIO;
 987		break;
 988	}
 989
 990	return ret;
 991}
 992
 993int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
 994			       struct kvm_device_attr *attr)
 995{
 996	int ret;
 997
 998	switch (attr->group) {
 999	case KVM_ARM_VCPU_PMU_V3_CTRL:
1000		ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
1001		break;
1002	case KVM_ARM_VCPU_TIMER_CTRL:
1003		ret = kvm_arm_timer_has_attr(vcpu, attr);
1004		break;
1005	case KVM_ARM_VCPU_PVTIME_CTRL:
1006		ret = kvm_arm_pvtime_has_attr(vcpu, attr);
1007		break;
1008	default:
1009		ret = -ENXIO;
1010		break;
1011	}
1012
1013	return ret;
1014}
1015
1016long kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
1017				struct kvm_arm_copy_mte_tags *copy_tags)
1018{
1019	gpa_t guest_ipa = copy_tags->guest_ipa;
1020	size_t length = copy_tags->length;
1021	void __user *tags = copy_tags->addr;
1022	gpa_t gfn;
1023	bool write = !(copy_tags->flags & KVM_ARM_TAGS_FROM_GUEST);
1024	int ret = 0;
1025
1026	if (!kvm_has_mte(kvm))
1027		return -EINVAL;
1028
1029	if (copy_tags->reserved[0] || copy_tags->reserved[1])
1030		return -EINVAL;
1031
1032	if (copy_tags->flags & ~KVM_ARM_TAGS_FROM_GUEST)
1033		return -EINVAL;
1034
1035	if (length & ~PAGE_MASK || guest_ipa & ~PAGE_MASK)
1036		return -EINVAL;
1037
1038	gfn = gpa_to_gfn(guest_ipa);
1039
1040	mutex_lock(&kvm->slots_lock);
1041
1042	while (length > 0) {
1043		kvm_pfn_t pfn = gfn_to_pfn_prot(kvm, gfn, write, NULL);
1044		void *maddr;
1045		unsigned long num_tags;
1046		struct page *page;
1047
1048		if (is_error_noslot_pfn(pfn)) {
1049			ret = -EFAULT;
1050			goto out;
1051		}
1052
1053		page = pfn_to_online_page(pfn);
1054		if (!page) {
1055			/* Reject ZONE_DEVICE memory */
1056			ret = -EFAULT;
1057			goto out;
1058		}
1059		maddr = page_address(page);
1060
1061		if (!write) {
1062			if (page_mte_tagged(page))
1063				num_tags = mte_copy_tags_to_user(tags, maddr,
1064							MTE_GRANULES_PER_PAGE);
1065			else
1066				/* No tags in memory, so write zeros */
1067				num_tags = MTE_GRANULES_PER_PAGE -
1068					clear_user(tags, MTE_GRANULES_PER_PAGE);
1069			kvm_release_pfn_clean(pfn);
1070		} else {
1071			/*
1072			 * Only locking to serialise with a concurrent
1073			 * set_pte_at() in the VMM but still overriding the
1074			 * tags, hence ignoring the return value.
1075			 */
1076			try_page_mte_tagging(page);
1077			num_tags = mte_copy_tags_from_user(maddr, tags,
1078							MTE_GRANULES_PER_PAGE);
1079
1080			/* uaccess failed, don't leave stale tags */
1081			if (num_tags != MTE_GRANULES_PER_PAGE)
1082				mte_clear_page_tags(maddr);
1083			set_page_mte_tagged(page);
1084
1085			kvm_release_pfn_dirty(pfn);
1086		}
1087
1088		if (num_tags != MTE_GRANULES_PER_PAGE) {
1089			ret = -EFAULT;
1090			goto out;
1091		}
1092
1093		gfn++;
1094		tags += num_tags;
1095		length -= PAGE_SIZE;
1096	}
1097
1098out:
1099	mutex_unlock(&kvm->slots_lock);
1100	/* If some data has been copied report the number of bytes copied */
1101	if (length != copy_tags->length)
1102		return copy_tags->length - length;
1103	return ret;
1104}