Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/ext4/inode.c
   4 *
   5 * Copyright (C) 1992, 1993, 1994, 1995
   6 * Remy Card (card@masi.ibp.fr)
   7 * Laboratoire MASI - Institut Blaise Pascal
   8 * Universite Pierre et Marie Curie (Paris VI)
   9 *
  10 *  from
  11 *
  12 *  linux/fs/minix/inode.c
  13 *
  14 *  Copyright (C) 1991, 1992  Linus Torvalds
  15 *
  16 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  17 *	(jj@sunsite.ms.mff.cuni.cz)
  18 *
  19 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  20 */
  21
  22#include <linux/fs.h>
 
  23#include <linux/time.h>
  24#include <linux/highuid.h>
  25#include <linux/pagemap.h>
  26#include <linux/dax.h>
  27#include <linux/quotaops.h>
  28#include <linux/string.h>
  29#include <linux/buffer_head.h>
  30#include <linux/writeback.h>
  31#include <linux/pagevec.h>
  32#include <linux/mpage.h>
  33#include <linux/namei.h>
  34#include <linux/uio.h>
  35#include <linux/bio.h>
  36#include <linux/workqueue.h>
  37#include <linux/kernel.h>
  38#include <linux/printk.h>
  39#include <linux/slab.h>
  40#include <linux/bitops.h>
  41#include <linux/iomap.h>
  42#include <linux/iversion.h>
  43
  44#include "ext4_jbd2.h"
  45#include "xattr.h"
  46#include "acl.h"
  47#include "truncate.h"
  48
  49#include <trace/events/ext4.h>
  50
  51#define MPAGE_DA_EXTENT_TAIL 0x01
  52
  53static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
  54			      struct ext4_inode_info *ei)
  55{
  56	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  57	__u32 csum;
  58	__u16 dummy_csum = 0;
  59	int offset = offsetof(struct ext4_inode, i_checksum_lo);
  60	unsigned int csum_size = sizeof(dummy_csum);
  61
  62	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
  63	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
  64	offset += csum_size;
  65	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  66			   EXT4_GOOD_OLD_INODE_SIZE - offset);
  67
  68	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  69		offset = offsetof(struct ext4_inode, i_checksum_hi);
  70		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
  71				   EXT4_GOOD_OLD_INODE_SIZE,
  72				   offset - EXT4_GOOD_OLD_INODE_SIZE);
  73		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
  74			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
  75					   csum_size);
  76			offset += csum_size;
  77		}
  78		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  79				   EXT4_INODE_SIZE(inode->i_sb) - offset);
  80	}
  81
  82	return csum;
  83}
  84
  85static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
  86				  struct ext4_inode_info *ei)
  87{
  88	__u32 provided, calculated;
  89
  90	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  91	    cpu_to_le32(EXT4_OS_LINUX) ||
  92	    !ext4_has_metadata_csum(inode->i_sb))
  93		return 1;
  94
  95	provided = le16_to_cpu(raw->i_checksum_lo);
  96	calculated = ext4_inode_csum(inode, raw, ei);
  97	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  98	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  99		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
 100	else
 101		calculated &= 0xFFFF;
 102
 103	return provided == calculated;
 104}
 105
 106static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
 107				struct ext4_inode_info *ei)
 108{
 109	__u32 csum;
 110
 111	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
 112	    cpu_to_le32(EXT4_OS_LINUX) ||
 113	    !ext4_has_metadata_csum(inode->i_sb))
 114		return;
 115
 116	csum = ext4_inode_csum(inode, raw, ei);
 117	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
 118	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
 119	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
 120		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
 121}
 122
 123static inline int ext4_begin_ordered_truncate(struct inode *inode,
 124					      loff_t new_size)
 125{
 126	trace_ext4_begin_ordered_truncate(inode, new_size);
 127	/*
 128	 * If jinode is zero, then we never opened the file for
 129	 * writing, so there's no need to call
 130	 * jbd2_journal_begin_ordered_truncate() since there's no
 131	 * outstanding writes we need to flush.
 132	 */
 133	if (!EXT4_I(inode)->jinode)
 134		return 0;
 135	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
 136						   EXT4_I(inode)->jinode,
 137						   new_size);
 138}
 139
 140static void ext4_invalidatepage(struct page *page, unsigned int offset,
 141				unsigned int length);
 142static int __ext4_journalled_writepage(struct page *page, unsigned int len);
 143static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
 144static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
 145				  int pextents);
 146
 147/*
 148 * Test whether an inode is a fast symlink.
 149 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
 150 */
 151int ext4_inode_is_fast_symlink(struct inode *inode)
 152{
 153	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
 154		int ea_blocks = EXT4_I(inode)->i_file_acl ?
 155				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
 156
 157		if (ext4_has_inline_data(inode))
 158			return 0;
 159
 160		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
 161	}
 162	return S_ISLNK(inode->i_mode) && inode->i_size &&
 163	       (inode->i_size < EXT4_N_BLOCKS * 4);
 164}
 165
 166/*
 167 * Restart the transaction associated with *handle.  This does a commit,
 168 * so before we call here everything must be consistently dirtied against
 169 * this transaction.
 170 */
 171int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
 172				 int nblocks)
 173{
 174	int ret;
 175
 176	/*
 177	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
 178	 * moment, get_block can be called only for blocks inside i_size since
 179	 * page cache has been already dropped and writes are blocked by
 180	 * i_mutex. So we can safely drop the i_data_sem here.
 181	 */
 182	BUG_ON(EXT4_JOURNAL(inode) == NULL);
 183	jbd_debug(2, "restarting handle %p\n", handle);
 184	up_write(&EXT4_I(inode)->i_data_sem);
 185	ret = ext4_journal_restart(handle, nblocks);
 186	down_write(&EXT4_I(inode)->i_data_sem);
 187	ext4_discard_preallocations(inode);
 188
 189	return ret;
 190}
 191
 192/*
 193 * Called at the last iput() if i_nlink is zero.
 194 */
 195void ext4_evict_inode(struct inode *inode)
 196{
 197	handle_t *handle;
 198	int err;
 199	int extra_credits = 3;
 
 
 
 
 
 200	struct ext4_xattr_inode_array *ea_inode_array = NULL;
 
 201
 202	trace_ext4_evict_inode(inode);
 203
 
 
 204	if (inode->i_nlink) {
 205		/*
 206		 * When journalling data dirty buffers are tracked only in the
 207		 * journal. So although mm thinks everything is clean and
 208		 * ready for reaping the inode might still have some pages to
 209		 * write in the running transaction or waiting to be
 210		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
 211		 * (via truncate_inode_pages()) to discard these buffers can
 212		 * cause data loss. Also even if we did not discard these
 213		 * buffers, we would have no way to find them after the inode
 214		 * is reaped and thus user could see stale data if he tries to
 215		 * read them before the transaction is checkpointed. So be
 216		 * careful and force everything to disk here... We use
 217		 * ei->i_datasync_tid to store the newest transaction
 218		 * containing inode's data.
 219		 *
 220		 * Note that directories do not have this problem because they
 221		 * don't use page cache.
 222		 */
 223		if (inode->i_ino != EXT4_JOURNAL_INO &&
 224		    ext4_should_journal_data(inode) &&
 225		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
 226		    inode->i_data.nrpages) {
 227			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
 228			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
 229
 230			jbd2_complete_transaction(journal, commit_tid);
 231			filemap_write_and_wait(&inode->i_data);
 232		}
 233		truncate_inode_pages_final(&inode->i_data);
 234
 235		goto no_delete;
 236	}
 237
 238	if (is_bad_inode(inode))
 239		goto no_delete;
 240	dquot_initialize(inode);
 241
 242	if (ext4_should_order_data(inode))
 243		ext4_begin_ordered_truncate(inode, 0);
 244	truncate_inode_pages_final(&inode->i_data);
 245
 246	/*
 247	 * Protect us against freezing - iput() caller didn't have to have any
 248	 * protection against it
 
 
 
 249	 */
 250	sb_start_intwrite(inode->i_sb);
 
 
 
 
 
 
 
 
 
 
 
 
 251
 252	if (!IS_NOQUOTA(inode))
 253		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
 254
 
 
 
 
 255	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
 256				 ext4_blocks_for_truncate(inode)+extra_credits);
 257	if (IS_ERR(handle)) {
 258		ext4_std_error(inode->i_sb, PTR_ERR(handle));
 259		/*
 260		 * If we're going to skip the normal cleanup, we still need to
 261		 * make sure that the in-core orphan linked list is properly
 262		 * cleaned up.
 263		 */
 264		ext4_orphan_del(NULL, inode);
 265		sb_end_intwrite(inode->i_sb);
 
 266		goto no_delete;
 267	}
 268
 269	if (IS_SYNC(inode))
 270		ext4_handle_sync(handle);
 271
 272	/*
 273	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
 274	 * special handling of symlinks here because i_size is used to
 275	 * determine whether ext4_inode_info->i_data contains symlink data or
 276	 * block mappings. Setting i_size to 0 will remove its fast symlink
 277	 * status. Erase i_data so that it becomes a valid empty block map.
 278	 */
 279	if (ext4_inode_is_fast_symlink(inode))
 280		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
 281	inode->i_size = 0;
 282	err = ext4_mark_inode_dirty(handle, inode);
 283	if (err) {
 284		ext4_warning(inode->i_sb,
 285			     "couldn't mark inode dirty (err %d)", err);
 286		goto stop_handle;
 287	}
 288	if (inode->i_blocks) {
 289		err = ext4_truncate(inode);
 290		if (err) {
 291			ext4_error(inode->i_sb,
 292				   "couldn't truncate inode %lu (err %d)",
 293				   inode->i_ino, err);
 294			goto stop_handle;
 295		}
 296	}
 297
 298	/* Remove xattr references. */
 299	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
 300				      extra_credits);
 301	if (err) {
 302		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
 303stop_handle:
 304		ext4_journal_stop(handle);
 305		ext4_orphan_del(NULL, inode);
 306		sb_end_intwrite(inode->i_sb);
 
 307		ext4_xattr_inode_array_free(ea_inode_array);
 308		goto no_delete;
 309	}
 310
 311	/*
 312	 * Kill off the orphan record which ext4_truncate created.
 313	 * AKPM: I think this can be inside the above `if'.
 314	 * Note that ext4_orphan_del() has to be able to cope with the
 315	 * deletion of a non-existent orphan - this is because we don't
 316	 * know if ext4_truncate() actually created an orphan record.
 317	 * (Well, we could do this if we need to, but heck - it works)
 318	 */
 319	ext4_orphan_del(handle, inode);
 320	EXT4_I(inode)->i_dtime	= get_seconds();
 321
 322	/*
 323	 * One subtle ordering requirement: if anything has gone wrong
 324	 * (transaction abort, IO errors, whatever), then we can still
 325	 * do these next steps (the fs will already have been marked as
 326	 * having errors), but we can't free the inode if the mark_dirty
 327	 * fails.
 328	 */
 329	if (ext4_mark_inode_dirty(handle, inode))
 330		/* If that failed, just do the required in-core inode clear. */
 331		ext4_clear_inode(inode);
 332	else
 333		ext4_free_inode(handle, inode);
 334	ext4_journal_stop(handle);
 335	sb_end_intwrite(inode->i_sb);
 
 336	ext4_xattr_inode_array_free(ea_inode_array);
 337	return;
 338no_delete:
 
 
 
 
 
 
 
 
 339	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
 340}
 341
 342#ifdef CONFIG_QUOTA
 343qsize_t *ext4_get_reserved_space(struct inode *inode)
 344{
 345	return &EXT4_I(inode)->i_reserved_quota;
 346}
 347#endif
 348
 349/*
 350 * Called with i_data_sem down, which is important since we can call
 351 * ext4_discard_preallocations() from here.
 352 */
 353void ext4_da_update_reserve_space(struct inode *inode,
 354					int used, int quota_claim)
 355{
 356	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 357	struct ext4_inode_info *ei = EXT4_I(inode);
 358
 359	spin_lock(&ei->i_block_reservation_lock);
 360	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
 361	if (unlikely(used > ei->i_reserved_data_blocks)) {
 362		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
 363			 "with only %d reserved data blocks",
 364			 __func__, inode->i_ino, used,
 365			 ei->i_reserved_data_blocks);
 366		WARN_ON(1);
 367		used = ei->i_reserved_data_blocks;
 368	}
 369
 370	/* Update per-inode reservations */
 371	ei->i_reserved_data_blocks -= used;
 372	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
 373
 374	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
 375
 376	/* Update quota subsystem for data blocks */
 377	if (quota_claim)
 378		dquot_claim_block(inode, EXT4_C2B(sbi, used));
 379	else {
 380		/*
 381		 * We did fallocate with an offset that is already delayed
 382		 * allocated. So on delayed allocated writeback we should
 383		 * not re-claim the quota for fallocated blocks.
 384		 */
 385		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
 386	}
 387
 388	/*
 389	 * If we have done all the pending block allocations and if
 390	 * there aren't any writers on the inode, we can discard the
 391	 * inode's preallocations.
 392	 */
 393	if ((ei->i_reserved_data_blocks == 0) &&
 394	    (atomic_read(&inode->i_writecount) == 0))
 395		ext4_discard_preallocations(inode);
 396}
 397
 398static int __check_block_validity(struct inode *inode, const char *func,
 399				unsigned int line,
 400				struct ext4_map_blocks *map)
 401{
 402	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
 403				   map->m_len)) {
 
 
 
 404		ext4_error_inode(inode, func, line, map->m_pblk,
 405				 "lblock %lu mapped to illegal pblock "
 406				 "(length %d)", (unsigned long) map->m_lblk,
 407				 map->m_len);
 408		return -EFSCORRUPTED;
 409	}
 410	return 0;
 411}
 412
 413int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
 414		       ext4_lblk_t len)
 415{
 416	int ret;
 417
 418	if (ext4_encrypted_inode(inode))
 419		return fscrypt_zeroout_range(inode, lblk, pblk, len);
 420
 421	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
 422	if (ret > 0)
 423		ret = 0;
 424
 425	return ret;
 426}
 427
 428#define check_block_validity(inode, map)	\
 429	__check_block_validity((inode), __func__, __LINE__, (map))
 430
 431#ifdef ES_AGGRESSIVE_TEST
 432static void ext4_map_blocks_es_recheck(handle_t *handle,
 433				       struct inode *inode,
 434				       struct ext4_map_blocks *es_map,
 435				       struct ext4_map_blocks *map,
 436				       int flags)
 437{
 438	int retval;
 439
 440	map->m_flags = 0;
 441	/*
 442	 * There is a race window that the result is not the same.
 443	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
 444	 * is that we lookup a block mapping in extent status tree with
 445	 * out taking i_data_sem.  So at the time the unwritten extent
 446	 * could be converted.
 447	 */
 448	down_read(&EXT4_I(inode)->i_data_sem);
 449	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 450		retval = ext4_ext_map_blocks(handle, inode, map, flags &
 451					     EXT4_GET_BLOCKS_KEEP_SIZE);
 452	} else {
 453		retval = ext4_ind_map_blocks(handle, inode, map, flags &
 454					     EXT4_GET_BLOCKS_KEEP_SIZE);
 455	}
 456	up_read((&EXT4_I(inode)->i_data_sem));
 457
 458	/*
 459	 * We don't check m_len because extent will be collpased in status
 460	 * tree.  So the m_len might not equal.
 461	 */
 462	if (es_map->m_lblk != map->m_lblk ||
 463	    es_map->m_flags != map->m_flags ||
 464	    es_map->m_pblk != map->m_pblk) {
 465		printk("ES cache assertion failed for inode: %lu "
 466		       "es_cached ex [%d/%d/%llu/%x] != "
 467		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
 468		       inode->i_ino, es_map->m_lblk, es_map->m_len,
 469		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
 470		       map->m_len, map->m_pblk, map->m_flags,
 471		       retval, flags);
 472	}
 473}
 474#endif /* ES_AGGRESSIVE_TEST */
 475
 476/*
 477 * The ext4_map_blocks() function tries to look up the requested blocks,
 478 * and returns if the blocks are already mapped.
 479 *
 480 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 481 * and store the allocated blocks in the result buffer head and mark it
 482 * mapped.
 483 *
 484 * If file type is extents based, it will call ext4_ext_map_blocks(),
 485 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
 486 * based files
 487 *
 488 * On success, it returns the number of blocks being mapped or allocated.  if
 489 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
 490 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
 491 *
 492 * It returns 0 if plain look up failed (blocks have not been allocated), in
 493 * that case, @map is returned as unmapped but we still do fill map->m_len to
 494 * indicate the length of a hole starting at map->m_lblk.
 495 *
 496 * It returns the error in case of allocation failure.
 497 */
 498int ext4_map_blocks(handle_t *handle, struct inode *inode,
 499		    struct ext4_map_blocks *map, int flags)
 500{
 501	struct extent_status es;
 502	int retval;
 503	int ret = 0;
 504#ifdef ES_AGGRESSIVE_TEST
 505	struct ext4_map_blocks orig_map;
 506
 507	memcpy(&orig_map, map, sizeof(*map));
 508#endif
 509
 510	map->m_flags = 0;
 511	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
 512		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
 513		  (unsigned long) map->m_lblk);
 514
 515	/*
 516	 * ext4_map_blocks returns an int, and m_len is an unsigned int
 517	 */
 518	if (unlikely(map->m_len > INT_MAX))
 519		map->m_len = INT_MAX;
 520
 521	/* We can handle the block number less than EXT_MAX_BLOCKS */
 522	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
 523		return -EFSCORRUPTED;
 524
 525	/* Lookup extent status tree firstly */
 526	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
 
 527		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
 528			map->m_pblk = ext4_es_pblock(&es) +
 529					map->m_lblk - es.es_lblk;
 530			map->m_flags |= ext4_es_is_written(&es) ?
 531					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
 532			retval = es.es_len - (map->m_lblk - es.es_lblk);
 533			if (retval > map->m_len)
 534				retval = map->m_len;
 535			map->m_len = retval;
 536		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
 537			map->m_pblk = 0;
 538			retval = es.es_len - (map->m_lblk - es.es_lblk);
 539			if (retval > map->m_len)
 540				retval = map->m_len;
 541			map->m_len = retval;
 542			retval = 0;
 543		} else {
 544			BUG_ON(1);
 545		}
 
 
 
 546#ifdef ES_AGGRESSIVE_TEST
 547		ext4_map_blocks_es_recheck(handle, inode, map,
 548					   &orig_map, flags);
 549#endif
 550		goto found;
 551	}
 
 
 
 
 
 
 552
 553	/*
 554	 * Try to see if we can get the block without requesting a new
 555	 * file system block.
 556	 */
 557	down_read(&EXT4_I(inode)->i_data_sem);
 558	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 559		retval = ext4_ext_map_blocks(handle, inode, map, flags &
 560					     EXT4_GET_BLOCKS_KEEP_SIZE);
 561	} else {
 562		retval = ext4_ind_map_blocks(handle, inode, map, flags &
 563					     EXT4_GET_BLOCKS_KEEP_SIZE);
 564	}
 565	if (retval > 0) {
 566		unsigned int status;
 567
 568		if (unlikely(retval != map->m_len)) {
 569			ext4_warning(inode->i_sb,
 570				     "ES len assertion failed for inode "
 571				     "%lu: retval %d != map->m_len %d",
 572				     inode->i_ino, retval, map->m_len);
 573			WARN_ON(1);
 574		}
 575
 576		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 577				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 578		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 579		    !(status & EXTENT_STATUS_WRITTEN) &&
 580		    ext4_find_delalloc_range(inode, map->m_lblk,
 581					     map->m_lblk + map->m_len - 1))
 582			status |= EXTENT_STATUS_DELAYED;
 583		ret = ext4_es_insert_extent(inode, map->m_lblk,
 584					    map->m_len, map->m_pblk, status);
 585		if (ret < 0)
 586			retval = ret;
 587	}
 588	up_read((&EXT4_I(inode)->i_data_sem));
 589
 590found:
 591	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 592		ret = check_block_validity(inode, map);
 593		if (ret != 0)
 594			return ret;
 595	}
 596
 597	/* If it is only a block(s) look up */
 598	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
 599		return retval;
 600
 601	/*
 602	 * Returns if the blocks have already allocated
 603	 *
 604	 * Note that if blocks have been preallocated
 605	 * ext4_ext_get_block() returns the create = 0
 606	 * with buffer head unmapped.
 607	 */
 608	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
 609		/*
 610		 * If we need to convert extent to unwritten
 611		 * we continue and do the actual work in
 612		 * ext4_ext_map_blocks()
 613		 */
 614		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
 615			return retval;
 616
 617	/*
 618	 * Here we clear m_flags because after allocating an new extent,
 619	 * it will be set again.
 620	 */
 621	map->m_flags &= ~EXT4_MAP_FLAGS;
 622
 623	/*
 624	 * New blocks allocate and/or writing to unwritten extent
 625	 * will possibly result in updating i_data, so we take
 626	 * the write lock of i_data_sem, and call get_block()
 627	 * with create == 1 flag.
 628	 */
 629	down_write(&EXT4_I(inode)->i_data_sem);
 630
 631	/*
 632	 * We need to check for EXT4 here because migrate
 633	 * could have changed the inode type in between
 634	 */
 635	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 636		retval = ext4_ext_map_blocks(handle, inode, map, flags);
 637	} else {
 638		retval = ext4_ind_map_blocks(handle, inode, map, flags);
 639
 640		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
 641			/*
 642			 * We allocated new blocks which will result in
 643			 * i_data's format changing.  Force the migrate
 644			 * to fail by clearing migrate flags
 645			 */
 646			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
 647		}
 648
 649		/*
 650		 * Update reserved blocks/metadata blocks after successful
 651		 * block allocation which had been deferred till now. We don't
 652		 * support fallocate for non extent files. So we can update
 653		 * reserve space here.
 654		 */
 655		if ((retval > 0) &&
 656			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
 657			ext4_da_update_reserve_space(inode, retval, 1);
 658	}
 659
 660	if (retval > 0) {
 661		unsigned int status;
 662
 663		if (unlikely(retval != map->m_len)) {
 664			ext4_warning(inode->i_sb,
 665				     "ES len assertion failed for inode "
 666				     "%lu: retval %d != map->m_len %d",
 667				     inode->i_ino, retval, map->m_len);
 668			WARN_ON(1);
 669		}
 670
 671		/*
 672		 * We have to zeroout blocks before inserting them into extent
 673		 * status tree. Otherwise someone could look them up there and
 674		 * use them before they are really zeroed. We also have to
 675		 * unmap metadata before zeroing as otherwise writeback can
 676		 * overwrite zeros with stale data from block device.
 677		 */
 678		if (flags & EXT4_GET_BLOCKS_ZERO &&
 679		    map->m_flags & EXT4_MAP_MAPPED &&
 680		    map->m_flags & EXT4_MAP_NEW) {
 681			clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
 682					   map->m_len);
 683			ret = ext4_issue_zeroout(inode, map->m_lblk,
 684						 map->m_pblk, map->m_len);
 685			if (ret) {
 686				retval = ret;
 687				goto out_sem;
 688			}
 689		}
 690
 691		/*
 692		 * If the extent has been zeroed out, we don't need to update
 693		 * extent status tree.
 694		 */
 695		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
 696		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
 697			if (ext4_es_is_written(&es))
 698				goto out_sem;
 699		}
 700		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 701				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 702		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 703		    !(status & EXTENT_STATUS_WRITTEN) &&
 704		    ext4_find_delalloc_range(inode, map->m_lblk,
 705					     map->m_lblk + map->m_len - 1))
 706			status |= EXTENT_STATUS_DELAYED;
 707		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
 708					    map->m_pblk, status);
 709		if (ret < 0) {
 710			retval = ret;
 711			goto out_sem;
 712		}
 713	}
 714
 715out_sem:
 716	up_write((&EXT4_I(inode)->i_data_sem));
 717	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 718		ret = check_block_validity(inode, map);
 719		if (ret != 0)
 720			return ret;
 721
 722		/*
 723		 * Inodes with freshly allocated blocks where contents will be
 724		 * visible after transaction commit must be on transaction's
 725		 * ordered data list.
 726		 */
 727		if (map->m_flags & EXT4_MAP_NEW &&
 728		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
 729		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
 730		    !ext4_is_quota_file(inode) &&
 731		    ext4_should_order_data(inode)) {
 
 
 
 
 732			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
 733				ret = ext4_jbd2_inode_add_wait(handle, inode);
 
 734			else
 735				ret = ext4_jbd2_inode_add_write(handle, inode);
 
 736			if (ret)
 737				return ret;
 738		}
 739	}
 
 
 
 
 
 
 740	return retval;
 741}
 742
 743/*
 744 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
 745 * we have to be careful as someone else may be manipulating b_state as well.
 746 */
 747static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
 748{
 749	unsigned long old_state;
 750	unsigned long new_state;
 751
 752	flags &= EXT4_MAP_FLAGS;
 753
 754	/* Dummy buffer_head? Set non-atomically. */
 755	if (!bh->b_page) {
 756		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
 757		return;
 758	}
 759	/*
 760	 * Someone else may be modifying b_state. Be careful! This is ugly but
 761	 * once we get rid of using bh as a container for mapping information
 762	 * to pass to / from get_block functions, this can go away.
 763	 */
 764	do {
 765		old_state = READ_ONCE(bh->b_state);
 766		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
 767	} while (unlikely(
 768		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
 769}
 770
 771static int _ext4_get_block(struct inode *inode, sector_t iblock,
 772			   struct buffer_head *bh, int flags)
 773{
 774	struct ext4_map_blocks map;
 775	int ret = 0;
 776
 777	if (ext4_has_inline_data(inode))
 778		return -ERANGE;
 779
 780	map.m_lblk = iblock;
 781	map.m_len = bh->b_size >> inode->i_blkbits;
 782
 783	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
 784			      flags);
 785	if (ret > 0) {
 786		map_bh(bh, inode->i_sb, map.m_pblk);
 787		ext4_update_bh_state(bh, map.m_flags);
 788		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 789		ret = 0;
 790	} else if (ret == 0) {
 791		/* hole case, need to fill in bh->b_size */
 792		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 793	}
 794	return ret;
 795}
 796
 797int ext4_get_block(struct inode *inode, sector_t iblock,
 798		   struct buffer_head *bh, int create)
 799{
 800	return _ext4_get_block(inode, iblock, bh,
 801			       create ? EXT4_GET_BLOCKS_CREATE : 0);
 802}
 803
 804/*
 805 * Get block function used when preparing for buffered write if we require
 806 * creating an unwritten extent if blocks haven't been allocated.  The extent
 807 * will be converted to written after the IO is complete.
 808 */
 809int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
 810			     struct buffer_head *bh_result, int create)
 811{
 812	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
 813		   inode->i_ino, create);
 814	return _ext4_get_block(inode, iblock, bh_result,
 815			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
 816}
 817
 818/* Maximum number of blocks we map for direct IO at once. */
 819#define DIO_MAX_BLOCKS 4096
 820
 821/*
 822 * Get blocks function for the cases that need to start a transaction -
 823 * generally difference cases of direct IO and DAX IO. It also handles retries
 824 * in case of ENOSPC.
 825 */
 826static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
 827				struct buffer_head *bh_result, int flags)
 828{
 829	int dio_credits;
 830	handle_t *handle;
 831	int retries = 0;
 832	int ret;
 833
 834	/* Trim mapping request to maximum we can map at once for DIO */
 835	if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
 836		bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
 837	dio_credits = ext4_chunk_trans_blocks(inode,
 838				      bh_result->b_size >> inode->i_blkbits);
 839retry:
 840	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
 841	if (IS_ERR(handle))
 842		return PTR_ERR(handle);
 843
 844	ret = _ext4_get_block(inode, iblock, bh_result, flags);
 845	ext4_journal_stop(handle);
 846
 847	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
 848		goto retry;
 849	return ret;
 850}
 851
 852/* Get block function for DIO reads and writes to inodes without extents */
 853int ext4_dio_get_block(struct inode *inode, sector_t iblock,
 854		       struct buffer_head *bh, int create)
 855{
 856	/* We don't expect handle for direct IO */
 857	WARN_ON_ONCE(ext4_journal_current_handle());
 858
 859	if (!create)
 860		return _ext4_get_block(inode, iblock, bh, 0);
 861	return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
 862}
 863
 864/*
 865 * Get block function for AIO DIO writes when we create unwritten extent if
 866 * blocks are not allocated yet. The extent will be converted to written
 867 * after IO is complete.
 868 */
 869static int ext4_dio_get_block_unwritten_async(struct inode *inode,
 870		sector_t iblock, struct buffer_head *bh_result,	int create)
 871{
 872	int ret;
 873
 874	/* We don't expect handle for direct IO */
 875	WARN_ON_ONCE(ext4_journal_current_handle());
 876
 877	ret = ext4_get_block_trans(inode, iblock, bh_result,
 878				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
 879
 880	/*
 881	 * When doing DIO using unwritten extents, we need io_end to convert
 882	 * unwritten extents to written on IO completion. We allocate io_end
 883	 * once we spot unwritten extent and store it in b_private. Generic
 884	 * DIO code keeps b_private set and furthermore passes the value to
 885	 * our completion callback in 'private' argument.
 886	 */
 887	if (!ret && buffer_unwritten(bh_result)) {
 888		if (!bh_result->b_private) {
 889			ext4_io_end_t *io_end;
 890
 891			io_end = ext4_init_io_end(inode, GFP_KERNEL);
 892			if (!io_end)
 893				return -ENOMEM;
 894			bh_result->b_private = io_end;
 895			ext4_set_io_unwritten_flag(inode, io_end);
 896		}
 897		set_buffer_defer_completion(bh_result);
 898	}
 899
 900	return ret;
 901}
 902
 903/*
 904 * Get block function for non-AIO DIO writes when we create unwritten extent if
 905 * blocks are not allocated yet. The extent will be converted to written
 906 * after IO is complete by ext4_direct_IO_write().
 907 */
 908static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
 909		sector_t iblock, struct buffer_head *bh_result,	int create)
 910{
 911	int ret;
 912
 913	/* We don't expect handle for direct IO */
 914	WARN_ON_ONCE(ext4_journal_current_handle());
 915
 916	ret = ext4_get_block_trans(inode, iblock, bh_result,
 917				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
 918
 919	/*
 920	 * Mark inode as having pending DIO writes to unwritten extents.
 921	 * ext4_direct_IO_write() checks this flag and converts extents to
 922	 * written.
 923	 */
 924	if (!ret && buffer_unwritten(bh_result))
 925		ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
 926
 927	return ret;
 928}
 929
 930static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
 931		   struct buffer_head *bh_result, int create)
 932{
 933	int ret;
 934
 935	ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
 936		   inode->i_ino, create);
 937	/* We don't expect handle for direct IO */
 938	WARN_ON_ONCE(ext4_journal_current_handle());
 939
 940	ret = _ext4_get_block(inode, iblock, bh_result, 0);
 941	/*
 942	 * Blocks should have been preallocated! ext4_file_write_iter() checks
 943	 * that.
 944	 */
 945	WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
 946
 947	return ret;
 948}
 949
 950
 951/*
 952 * `handle' can be NULL if create is zero
 953 */
 954struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
 955				ext4_lblk_t block, int map_flags)
 956{
 957	struct ext4_map_blocks map;
 958	struct buffer_head *bh;
 959	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
 
 960	int err;
 961
 962	J_ASSERT(handle != NULL || create == 0);
 
 
 963
 964	map.m_lblk = block;
 965	map.m_len = 1;
 966	err = ext4_map_blocks(handle, inode, &map, map_flags);
 967
 968	if (err == 0)
 969		return create ? ERR_PTR(-ENOSPC) : NULL;
 970	if (err < 0)
 971		return ERR_PTR(err);
 972
 
 
 
 973	bh = sb_getblk(inode->i_sb, map.m_pblk);
 974	if (unlikely(!bh))
 975		return ERR_PTR(-ENOMEM);
 976	if (map.m_flags & EXT4_MAP_NEW) {
 977		J_ASSERT(create != 0);
 978		J_ASSERT(handle != NULL);
 
 979
 980		/*
 981		 * Now that we do not always journal data, we should
 982		 * keep in mind whether this should always journal the
 983		 * new buffer as metadata.  For now, regular file
 984		 * writes use ext4_get_block instead, so it's not a
 985		 * problem.
 986		 */
 987		lock_buffer(bh);
 988		BUFFER_TRACE(bh, "call get_create_access");
 989		err = ext4_journal_get_create_access(handle, bh);
 
 990		if (unlikely(err)) {
 991			unlock_buffer(bh);
 992			goto errout;
 993		}
 994		if (!buffer_uptodate(bh)) {
 995			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
 996			set_buffer_uptodate(bh);
 997		}
 998		unlock_buffer(bh);
 999		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1000		err = ext4_handle_dirty_metadata(handle, inode, bh);
1001		if (unlikely(err))
1002			goto errout;
1003	} else
1004		BUFFER_TRACE(bh, "not a new buffer");
1005	return bh;
1006errout:
1007	brelse(bh);
1008	return ERR_PTR(err);
1009}
1010
1011struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1012			       ext4_lblk_t block, int map_flags)
1013{
1014	struct buffer_head *bh;
 
1015
1016	bh = ext4_getblk(handle, inode, block, map_flags);
1017	if (IS_ERR(bh))
1018		return bh;
1019	if (!bh || buffer_uptodate(bh))
1020		return bh;
1021	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1022	wait_on_buffer(bh);
1023	if (buffer_uptodate(bh))
1024		return bh;
1025	put_bh(bh);
1026	return ERR_PTR(-EIO);
 
 
 
 
 
1027}
1028
1029/* Read a contiguous batch of blocks. */
1030int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1031		     bool wait, struct buffer_head **bhs)
1032{
1033	int i, err;
1034
1035	for (i = 0; i < bh_count; i++) {
1036		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1037		if (IS_ERR(bhs[i])) {
1038			err = PTR_ERR(bhs[i]);
1039			bh_count = i;
1040			goto out_brelse;
1041		}
1042	}
1043
1044	for (i = 0; i < bh_count; i++)
1045		/* Note that NULL bhs[i] is valid because of holes. */
1046		if (bhs[i] && !buffer_uptodate(bhs[i]))
1047			ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1048				    &bhs[i]);
1049
1050	if (!wait)
1051		return 0;
1052
1053	for (i = 0; i < bh_count; i++)
1054		if (bhs[i])
1055			wait_on_buffer(bhs[i]);
1056
1057	for (i = 0; i < bh_count; i++) {
1058		if (bhs[i] && !buffer_uptodate(bhs[i])) {
1059			err = -EIO;
1060			goto out_brelse;
1061		}
1062	}
1063	return 0;
1064
1065out_brelse:
1066	for (i = 0; i < bh_count; i++) {
1067		brelse(bhs[i]);
1068		bhs[i] = NULL;
1069	}
1070	return err;
1071}
1072
1073int ext4_walk_page_buffers(handle_t *handle,
1074			   struct buffer_head *head,
1075			   unsigned from,
1076			   unsigned to,
1077			   int *partial,
1078			   int (*fn)(handle_t *handle,
1079				     struct buffer_head *bh))
1080{
1081	struct buffer_head *bh;
1082	unsigned block_start, block_end;
1083	unsigned blocksize = head->b_size;
1084	int err, ret = 0;
1085	struct buffer_head *next;
1086
1087	for (bh = head, block_start = 0;
1088	     ret == 0 && (bh != head || !block_start);
1089	     block_start = block_end, bh = next) {
1090		next = bh->b_this_page;
1091		block_end = block_start + blocksize;
1092		if (block_end <= from || block_start >= to) {
1093			if (partial && !buffer_uptodate(bh))
1094				*partial = 1;
1095			continue;
1096		}
1097		err = (*fn)(handle, bh);
1098		if (!ret)
1099			ret = err;
1100	}
1101	return ret;
1102}
1103
1104/*
1105 * To preserve ordering, it is essential that the hole instantiation and
1106 * the data write be encapsulated in a single transaction.  We cannot
1107 * close off a transaction and start a new one between the ext4_get_block()
1108 * and the commit_write().  So doing the jbd2_journal_start at the start of
1109 * prepare_write() is the right place.
1110 *
1111 * Also, this function can nest inside ext4_writepage().  In that case, we
1112 * *know* that ext4_writepage() has generated enough buffer credits to do the
1113 * whole page.  So we won't block on the journal in that case, which is good,
1114 * because the caller may be PF_MEMALLOC.
1115 *
1116 * By accident, ext4 can be reentered when a transaction is open via
1117 * quota file writes.  If we were to commit the transaction while thus
1118 * reentered, there can be a deadlock - we would be holding a quota
1119 * lock, and the commit would never complete if another thread had a
1120 * transaction open and was blocking on the quota lock - a ranking
1121 * violation.
1122 *
1123 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1124 * will _not_ run commit under these circumstances because handle->h_ref
1125 * is elevated.  We'll still have enough credits for the tiny quotafile
1126 * write.
1127 */
1128int do_journal_get_write_access(handle_t *handle,
1129				struct buffer_head *bh)
1130{
1131	int dirty = buffer_dirty(bh);
1132	int ret;
1133
1134	if (!buffer_mapped(bh) || buffer_freed(bh))
1135		return 0;
1136	/*
1137	 * __block_write_begin() could have dirtied some buffers. Clean
1138	 * the dirty bit as jbd2_journal_get_write_access() could complain
1139	 * otherwise about fs integrity issues. Setting of the dirty bit
1140	 * by __block_write_begin() isn't a real problem here as we clear
1141	 * the bit before releasing a page lock and thus writeback cannot
1142	 * ever write the buffer.
1143	 */
1144	if (dirty)
1145		clear_buffer_dirty(bh);
1146	BUFFER_TRACE(bh, "get write access");
1147	ret = ext4_journal_get_write_access(handle, bh);
 
1148	if (!ret && dirty)
1149		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1150	return ret;
1151}
1152
1153#ifdef CONFIG_EXT4_FS_ENCRYPTION
1154static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1155				  get_block_t *get_block)
1156{
1157	unsigned from = pos & (PAGE_SIZE - 1);
1158	unsigned to = from + len;
1159	struct inode *inode = page->mapping->host;
1160	unsigned block_start, block_end;
1161	sector_t block;
1162	int err = 0;
1163	unsigned blocksize = inode->i_sb->s_blocksize;
1164	unsigned bbits;
1165	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1166	bool decrypt = false;
 
1167
1168	BUG_ON(!PageLocked(page));
1169	BUG_ON(from > PAGE_SIZE);
1170	BUG_ON(to > PAGE_SIZE);
1171	BUG_ON(from > to);
1172
1173	if (!page_has_buffers(page))
1174		create_empty_buffers(page, blocksize, 0);
1175	head = page_buffers(page);
1176	bbits = ilog2(blocksize);
1177	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1178
1179	for (bh = head, block_start = 0; bh != head || !block_start;
1180	    block++, block_start = block_end, bh = bh->b_this_page) {
1181		block_end = block_start + blocksize;
1182		if (block_end <= from || block_start >= to) {
1183			if (PageUptodate(page)) {
1184				if (!buffer_uptodate(bh))
1185					set_buffer_uptodate(bh);
1186			}
1187			continue;
1188		}
1189		if (buffer_new(bh))
1190			clear_buffer_new(bh);
1191		if (!buffer_mapped(bh)) {
1192			WARN_ON(bh->b_size != blocksize);
1193			err = get_block(inode, block, bh, 1);
1194			if (err)
1195				break;
1196			if (buffer_new(bh)) {
1197				clean_bdev_bh_alias(bh);
1198				if (PageUptodate(page)) {
1199					clear_buffer_new(bh);
1200					set_buffer_uptodate(bh);
1201					mark_buffer_dirty(bh);
1202					continue;
1203				}
1204				if (block_end > to || block_start < from)
1205					zero_user_segments(page, to, block_end,
1206							   block_start, from);
1207				continue;
1208			}
1209		}
1210		if (PageUptodate(page)) {
1211			if (!buffer_uptodate(bh))
1212				set_buffer_uptodate(bh);
1213			continue;
1214		}
1215		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1216		    !buffer_unwritten(bh) &&
1217		    (block_start < from || block_end > to)) {
1218			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1219			*wait_bh++ = bh;
1220			decrypt = ext4_encrypted_inode(inode) &&
1221				S_ISREG(inode->i_mode);
1222		}
1223	}
1224	/*
1225	 * If we issued read requests, let them complete.
1226	 */
1227	while (wait_bh > wait) {
1228		wait_on_buffer(*--wait_bh);
1229		if (!buffer_uptodate(*wait_bh))
1230			err = -EIO;
1231	}
1232	if (unlikely(err))
1233		page_zero_new_buffers(page, from, to);
1234	else if (decrypt)
1235		err = fscrypt_decrypt_page(page->mapping->host, page,
1236				PAGE_SIZE, 0, page->index);
 
 
 
 
 
 
 
 
 
 
1237	return err;
1238}
1239#endif
1240
1241static int ext4_write_begin(struct file *file, struct address_space *mapping,
1242			    loff_t pos, unsigned len, unsigned flags,
1243			    struct page **pagep, void **fsdata)
1244{
1245	struct inode *inode = mapping->host;
1246	int ret, needed_blocks;
1247	handle_t *handle;
1248	int retries = 0;
1249	struct page *page;
1250	pgoff_t index;
1251	unsigned from, to;
1252
1253	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1254		return -EIO;
1255
1256	trace_ext4_write_begin(inode, pos, len, flags);
1257	/*
1258	 * Reserve one block more for addition to orphan list in case
1259	 * we allocate blocks but write fails for some reason
1260	 */
1261	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1262	index = pos >> PAGE_SHIFT;
1263	from = pos & (PAGE_SIZE - 1);
1264	to = from + len;
1265
1266	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1267		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1268						    flags, pagep);
1269		if (ret < 0)
1270			return ret;
1271		if (ret == 1)
1272			return 0;
1273	}
1274
1275	/*
1276	 * grab_cache_page_write_begin() can take a long time if the
1277	 * system is thrashing due to memory pressure, or if the page
1278	 * is being written back.  So grab it first before we start
1279	 * the transaction handle.  This also allows us to allocate
1280	 * the page (if needed) without using GFP_NOFS.
1281	 */
1282retry_grab:
1283	page = grab_cache_page_write_begin(mapping, index, flags);
1284	if (!page)
1285		return -ENOMEM;
 
 
 
 
 
 
 
1286	unlock_page(page);
1287
1288retry_journal:
1289	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1290	if (IS_ERR(handle)) {
1291		put_page(page);
1292		return PTR_ERR(handle);
1293	}
1294
1295	lock_page(page);
1296	if (page->mapping != mapping) {
1297		/* The page got truncated from under us */
1298		unlock_page(page);
1299		put_page(page);
1300		ext4_journal_stop(handle);
1301		goto retry_grab;
1302	}
1303	/* In case writeback began while the page was unlocked */
1304	wait_for_stable_page(page);
1305
1306#ifdef CONFIG_EXT4_FS_ENCRYPTION
1307	if (ext4_should_dioread_nolock(inode))
1308		ret = ext4_block_write_begin(page, pos, len,
1309					     ext4_get_block_unwritten);
1310	else
1311		ret = ext4_block_write_begin(page, pos, len,
1312					     ext4_get_block);
1313#else
1314	if (ext4_should_dioread_nolock(inode))
1315		ret = __block_write_begin(page, pos, len,
1316					  ext4_get_block_unwritten);
1317	else
1318		ret = __block_write_begin(page, pos, len, ext4_get_block);
1319#endif
1320	if (!ret && ext4_should_journal_data(inode)) {
1321		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1322					     from, to, NULL,
1323					     do_journal_get_write_access);
1324	}
1325
1326	if (ret) {
 
 
 
1327		unlock_page(page);
1328		/*
1329		 * __block_write_begin may have instantiated a few blocks
1330		 * outside i_size.  Trim these off again. Don't need
1331		 * i_size_read because we hold i_mutex.
1332		 *
1333		 * Add inode to orphan list in case we crash before
1334		 * truncate finishes
1335		 */
1336		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1337			ext4_orphan_add(handle, inode);
1338
1339		ext4_journal_stop(handle);
1340		if (pos + len > inode->i_size) {
1341			ext4_truncate_failed_write(inode);
1342			/*
1343			 * If truncate failed early the inode might
1344			 * still be on the orphan list; we need to
1345			 * make sure the inode is removed from the
1346			 * orphan list in that case.
1347			 */
1348			if (inode->i_nlink)
1349				ext4_orphan_del(NULL, inode);
1350		}
1351
1352		if (ret == -ENOSPC &&
1353		    ext4_should_retry_alloc(inode->i_sb, &retries))
1354			goto retry_journal;
1355		put_page(page);
1356		return ret;
1357	}
1358	*pagep = page;
1359	return ret;
1360}
1361
1362/* For write_end() in data=journal mode */
1363static int write_end_fn(handle_t *handle, struct buffer_head *bh)
 
1364{
1365	int ret;
1366	if (!buffer_mapped(bh) || buffer_freed(bh))
1367		return 0;
1368	set_buffer_uptodate(bh);
1369	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1370	clear_buffer_meta(bh);
1371	clear_buffer_prio(bh);
1372	return ret;
1373}
1374
1375/*
1376 * We need to pick up the new inode size which generic_commit_write gave us
1377 * `file' can be NULL - eg, when called from page_symlink().
1378 *
1379 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1380 * buffers are managed internally.
1381 */
1382static int ext4_write_end(struct file *file,
1383			  struct address_space *mapping,
1384			  loff_t pos, unsigned len, unsigned copied,
1385			  struct page *page, void *fsdata)
1386{
1387	handle_t *handle = ext4_journal_current_handle();
1388	struct inode *inode = mapping->host;
1389	loff_t old_size = inode->i_size;
1390	int ret = 0, ret2;
1391	int i_size_changed = 0;
 
1392
1393	trace_ext4_write_end(inode, pos, len, copied);
1394	if (ext4_has_inline_data(inode)) {
1395		ret = ext4_write_inline_data_end(inode, pos, len,
1396						 copied, page);
1397		if (ret < 0) {
1398			unlock_page(page);
1399			put_page(page);
1400			goto errout;
1401		}
1402		copied = ret;
1403	} else
1404		copied = block_write_end(file, mapping, pos,
1405					 len, copied, page, fsdata);
1406	/*
1407	 * it's important to update i_size while still holding page lock:
1408	 * page writeout could otherwise come in and zero beyond i_size.
 
 
 
1409	 */
1410	i_size_changed = ext4_update_inode_size(inode, pos + copied);
 
1411	unlock_page(page);
1412	put_page(page);
1413
1414	if (old_size < pos)
1415		pagecache_isize_extended(inode, old_size, pos);
1416	/*
1417	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1418	 * makes the holding time of page lock longer. Second, it forces lock
1419	 * ordering of page lock and transaction start for journaling
1420	 * filesystems.
1421	 */
1422	if (i_size_changed)
1423		ext4_mark_inode_dirty(handle, inode);
1424
1425	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1426		/* if we have allocated more blocks and copied
1427		 * less. We will have blocks allocated outside
1428		 * inode->i_size. So truncate them
1429		 */
1430		ext4_orphan_add(handle, inode);
1431errout:
1432	ret2 = ext4_journal_stop(handle);
1433	if (!ret)
1434		ret = ret2;
1435
1436	if (pos + len > inode->i_size) {
1437		ext4_truncate_failed_write(inode);
1438		/*
1439		 * If truncate failed early the inode might still be
1440		 * on the orphan list; we need to make sure the inode
1441		 * is removed from the orphan list in that case.
1442		 */
1443		if (inode->i_nlink)
1444			ext4_orphan_del(NULL, inode);
1445	}
1446
1447	return ret ? ret : copied;
1448}
1449
1450/*
1451 * This is a private version of page_zero_new_buffers() which doesn't
1452 * set the buffer to be dirty, since in data=journalled mode we need
1453 * to call ext4_handle_dirty_metadata() instead.
1454 */
1455static void ext4_journalled_zero_new_buffers(handle_t *handle,
 
1456					    struct page *page,
1457					    unsigned from, unsigned to)
1458{
1459	unsigned int block_start = 0, block_end;
1460	struct buffer_head *head, *bh;
1461
1462	bh = head = page_buffers(page);
1463	do {
1464		block_end = block_start + bh->b_size;
1465		if (buffer_new(bh)) {
1466			if (block_end > from && block_start < to) {
1467				if (!PageUptodate(page)) {
1468					unsigned start, size;
1469
1470					start = max(from, block_start);
1471					size = min(to, block_end) - start;
1472
1473					zero_user(page, start, size);
1474					write_end_fn(handle, bh);
1475				}
1476				clear_buffer_new(bh);
1477			}
1478		}
1479		block_start = block_end;
1480		bh = bh->b_this_page;
1481	} while (bh != head);
1482}
1483
1484static int ext4_journalled_write_end(struct file *file,
1485				     struct address_space *mapping,
1486				     loff_t pos, unsigned len, unsigned copied,
1487				     struct page *page, void *fsdata)
1488{
1489	handle_t *handle = ext4_journal_current_handle();
1490	struct inode *inode = mapping->host;
1491	loff_t old_size = inode->i_size;
1492	int ret = 0, ret2;
1493	int partial = 0;
1494	unsigned from, to;
1495	int size_changed = 0;
 
1496
1497	trace_ext4_journalled_write_end(inode, pos, len, copied);
1498	from = pos & (PAGE_SIZE - 1);
1499	to = from + len;
1500
1501	BUG_ON(!ext4_handle_valid(handle));
1502
1503	if (ext4_has_inline_data(inode)) {
1504		ret = ext4_write_inline_data_end(inode, pos, len,
1505						 copied, page);
1506		if (ret < 0) {
1507			unlock_page(page);
1508			put_page(page);
1509			goto errout;
1510		}
1511		copied = ret;
1512	} else if (unlikely(copied < len) && !PageUptodate(page)) {
1513		copied = 0;
1514		ext4_journalled_zero_new_buffers(handle, page, from, to);
1515	} else {
1516		if (unlikely(copied < len))
1517			ext4_journalled_zero_new_buffers(handle, page,
1518							 from + copied, to);
1519		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1520					     from + copied, &partial,
1521					     write_end_fn);
1522		if (!partial)
1523			SetPageUptodate(page);
1524	}
1525	size_changed = ext4_update_inode_size(inode, pos + copied);
 
1526	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1527	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1528	unlock_page(page);
1529	put_page(page);
1530
1531	if (old_size < pos)
1532		pagecache_isize_extended(inode, old_size, pos);
1533
1534	if (size_changed) {
1535		ret2 = ext4_mark_inode_dirty(handle, inode);
1536		if (!ret)
1537			ret = ret2;
1538	}
1539
1540	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1541		/* if we have allocated more blocks and copied
1542		 * less. We will have blocks allocated outside
1543		 * inode->i_size. So truncate them
1544		 */
1545		ext4_orphan_add(handle, inode);
1546
1547errout:
1548	ret2 = ext4_journal_stop(handle);
1549	if (!ret)
1550		ret = ret2;
1551	if (pos + len > inode->i_size) {
1552		ext4_truncate_failed_write(inode);
1553		/*
1554		 * If truncate failed early the inode might still be
1555		 * on the orphan list; we need to make sure the inode
1556		 * is removed from the orphan list in that case.
1557		 */
1558		if (inode->i_nlink)
1559			ext4_orphan_del(NULL, inode);
1560	}
1561
1562	return ret ? ret : copied;
1563}
1564
1565/*
1566 * Reserve space for a single cluster
1567 */
1568static int ext4_da_reserve_space(struct inode *inode)
1569{
1570	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1571	struct ext4_inode_info *ei = EXT4_I(inode);
1572	int ret;
1573
1574	/*
1575	 * We will charge metadata quota at writeout time; this saves
1576	 * us from metadata over-estimation, though we may go over by
1577	 * a small amount in the end.  Here we just reserve for data.
1578	 */
1579	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1580	if (ret)
1581		return ret;
1582
1583	spin_lock(&ei->i_block_reservation_lock);
1584	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1585		spin_unlock(&ei->i_block_reservation_lock);
1586		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1587		return -ENOSPC;
1588	}
1589	ei->i_reserved_data_blocks++;
1590	trace_ext4_da_reserve_space(inode);
1591	spin_unlock(&ei->i_block_reservation_lock);
1592
1593	return 0;       /* success */
1594}
1595
1596static void ext4_da_release_space(struct inode *inode, int to_free)
1597{
1598	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1599	struct ext4_inode_info *ei = EXT4_I(inode);
1600
1601	if (!to_free)
1602		return;		/* Nothing to release, exit */
1603
1604	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1605
1606	trace_ext4_da_release_space(inode, to_free);
1607	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1608		/*
1609		 * if there aren't enough reserved blocks, then the
1610		 * counter is messed up somewhere.  Since this
1611		 * function is called from invalidate page, it's
1612		 * harmless to return without any action.
1613		 */
1614		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1615			 "ino %lu, to_free %d with only %d reserved "
1616			 "data blocks", inode->i_ino, to_free,
1617			 ei->i_reserved_data_blocks);
1618		WARN_ON(1);
1619		to_free = ei->i_reserved_data_blocks;
1620	}
1621	ei->i_reserved_data_blocks -= to_free;
1622
1623	/* update fs dirty data blocks counter */
1624	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1625
1626	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1627
1628	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1629}
1630
1631static void ext4_da_page_release_reservation(struct page *page,
1632					     unsigned int offset,
1633					     unsigned int length)
1634{
1635	int to_release = 0, contiguous_blks = 0;
1636	struct buffer_head *head, *bh;
1637	unsigned int curr_off = 0;
1638	struct inode *inode = page->mapping->host;
1639	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1640	unsigned int stop = offset + length;
1641	int num_clusters;
1642	ext4_fsblk_t lblk;
1643
1644	BUG_ON(stop > PAGE_SIZE || stop < length);
1645
1646	head = page_buffers(page);
1647	bh = head;
1648	do {
1649		unsigned int next_off = curr_off + bh->b_size;
1650
1651		if (next_off > stop)
1652			break;
1653
1654		if ((offset <= curr_off) && (buffer_delay(bh))) {
1655			to_release++;
1656			contiguous_blks++;
1657			clear_buffer_delay(bh);
1658		} else if (contiguous_blks) {
1659			lblk = page->index <<
1660			       (PAGE_SHIFT - inode->i_blkbits);
1661			lblk += (curr_off >> inode->i_blkbits) -
1662				contiguous_blks;
1663			ext4_es_remove_extent(inode, lblk, contiguous_blks);
1664			contiguous_blks = 0;
1665		}
1666		curr_off = next_off;
1667	} while ((bh = bh->b_this_page) != head);
1668
1669	if (contiguous_blks) {
1670		lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1671		lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1672		ext4_es_remove_extent(inode, lblk, contiguous_blks);
1673	}
1674
1675	/* If we have released all the blocks belonging to a cluster, then we
1676	 * need to release the reserved space for that cluster. */
1677	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1678	while (num_clusters > 0) {
1679		lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1680			((num_clusters - 1) << sbi->s_cluster_bits);
1681		if (sbi->s_cluster_ratio == 1 ||
1682		    !ext4_find_delalloc_cluster(inode, lblk))
1683			ext4_da_release_space(inode, 1);
1684
1685		num_clusters--;
1686	}
1687}
1688
1689/*
1690 * Delayed allocation stuff
1691 */
1692
1693struct mpage_da_data {
 
1694	struct inode *inode;
1695	struct writeback_control *wbc;
 
1696
 
1697	pgoff_t first_page;	/* The first page to write */
1698	pgoff_t next_page;	/* Current page to examine */
1699	pgoff_t last_page;	/* Last page to examine */
1700	/*
1701	 * Extent to map - this can be after first_page because that can be
1702	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1703	 * is delalloc or unwritten.
1704	 */
1705	struct ext4_map_blocks map;
1706	struct ext4_io_submit io_submit;	/* IO submission data */
1707	unsigned int do_map:1;
 
1708};
1709
1710static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1711				       bool invalidate)
1712{
1713	int nr_pages, i;
1714	pgoff_t index, end;
1715	struct pagevec pvec;
1716	struct inode *inode = mpd->inode;
1717	struct address_space *mapping = inode->i_mapping;
1718
1719	/* This is necessary when next_page == 0. */
1720	if (mpd->first_page >= mpd->next_page)
1721		return;
1722
 
1723	index = mpd->first_page;
1724	end   = mpd->next_page - 1;
1725	if (invalidate) {
1726		ext4_lblk_t start, last;
1727		start = index << (PAGE_SHIFT - inode->i_blkbits);
1728		last = end << (PAGE_SHIFT - inode->i_blkbits);
 
 
 
 
 
 
1729		ext4_es_remove_extent(inode, start, last - start + 1);
 
1730	}
1731
1732	pagevec_init(&pvec);
1733	while (index <= end) {
1734		nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1735		if (nr_pages == 0)
1736			break;
1737		for (i = 0; i < nr_pages; i++) {
1738			struct page *page = pvec.pages[i];
1739
1740			BUG_ON(!PageLocked(page));
1741			BUG_ON(PageWriteback(page));
 
 
 
 
1742			if (invalidate) {
1743				if (page_mapped(page))
1744					clear_page_dirty_for_io(page);
1745				block_invalidatepage(page, 0, PAGE_SIZE);
1746				ClearPageUptodate(page);
 
1747			}
1748			unlock_page(page);
1749		}
1750		pagevec_release(&pvec);
1751	}
1752}
1753
1754static void ext4_print_free_blocks(struct inode *inode)
1755{
1756	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1757	struct super_block *sb = inode->i_sb;
1758	struct ext4_inode_info *ei = EXT4_I(inode);
1759
1760	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1761	       EXT4_C2B(EXT4_SB(inode->i_sb),
1762			ext4_count_free_clusters(sb)));
1763	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1764	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1765	       (long long) EXT4_C2B(EXT4_SB(sb),
1766		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1767	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1768	       (long long) EXT4_C2B(EXT4_SB(sb),
1769		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1770	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1771	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1772		 ei->i_reserved_data_blocks);
1773	return;
1774}
1775
1776static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
 
1777{
1778	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1779}
1780
1781/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1782 * This function is grabs code from the very beginning of
1783 * ext4_map_blocks, but assumes that the caller is from delayed write
1784 * time. This function looks up the requested blocks and sets the
1785 * buffer delay bit under the protection of i_data_sem.
1786 */
1787static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1788			      struct ext4_map_blocks *map,
1789			      struct buffer_head *bh)
1790{
1791	struct extent_status es;
1792	int retval;
1793	sector_t invalid_block = ~((sector_t) 0xffff);
1794#ifdef ES_AGGRESSIVE_TEST
1795	struct ext4_map_blocks orig_map;
1796
1797	memcpy(&orig_map, map, sizeof(*map));
1798#endif
1799
1800	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1801		invalid_block = ~0;
1802
1803	map->m_flags = 0;
1804	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1805		  "logical block %lu\n", inode->i_ino, map->m_len,
1806		  (unsigned long) map->m_lblk);
1807
1808	/* Lookup extent status tree firstly */
1809	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1810		if (ext4_es_is_hole(&es)) {
1811			retval = 0;
1812			down_read(&EXT4_I(inode)->i_data_sem);
1813			goto add_delayed;
1814		}
1815
1816		/*
1817		 * Delayed extent could be allocated by fallocate.
1818		 * So we need to check it.
1819		 */
1820		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1821			map_bh(bh, inode->i_sb, invalid_block);
1822			set_buffer_new(bh);
1823			set_buffer_delay(bh);
1824			return 0;
1825		}
1826
1827		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1828		retval = es.es_len - (iblock - es.es_lblk);
1829		if (retval > map->m_len)
1830			retval = map->m_len;
1831		map->m_len = retval;
1832		if (ext4_es_is_written(&es))
1833			map->m_flags |= EXT4_MAP_MAPPED;
1834		else if (ext4_es_is_unwritten(&es))
1835			map->m_flags |= EXT4_MAP_UNWRITTEN;
1836		else
1837			BUG_ON(1);
1838
1839#ifdef ES_AGGRESSIVE_TEST
1840		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1841#endif
1842		return retval;
1843	}
1844
1845	/*
1846	 * Try to see if we can get the block without requesting a new
1847	 * file system block.
1848	 */
1849	down_read(&EXT4_I(inode)->i_data_sem);
1850	if (ext4_has_inline_data(inode))
1851		retval = 0;
1852	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1853		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1854	else
1855		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1856
1857add_delayed:
1858	if (retval == 0) {
1859		int ret;
 
1860		/*
1861		 * XXX: __block_prepare_write() unmaps passed block,
1862		 * is it OK?
1863		 */
1864		/*
1865		 * If the block was allocated from previously allocated cluster,
1866		 * then we don't need to reserve it again. However we still need
1867		 * to reserve metadata for every block we're going to write.
1868		 */
1869		if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1870		    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1871			ret = ext4_da_reserve_space(inode);
1872			if (ret) {
1873				/* not enough space to reserve */
1874				retval = ret;
1875				goto out_unlock;
1876			}
1877		}
1878
1879		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1880					    ~0, EXTENT_STATUS_DELAYED);
1881		if (ret) {
1882			retval = ret;
1883			goto out_unlock;
1884		}
1885
1886		map_bh(bh, inode->i_sb, invalid_block);
1887		set_buffer_new(bh);
1888		set_buffer_delay(bh);
1889	} else if (retval > 0) {
1890		int ret;
1891		unsigned int status;
1892
1893		if (unlikely(retval != map->m_len)) {
1894			ext4_warning(inode->i_sb,
1895				     "ES len assertion failed for inode "
1896				     "%lu: retval %d != map->m_len %d",
1897				     inode->i_ino, retval, map->m_len);
1898			WARN_ON(1);
1899		}
1900
1901		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1902				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1903		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1904					    map->m_pblk, status);
1905		if (ret != 0)
1906			retval = ret;
1907	}
1908
1909out_unlock:
1910	up_read((&EXT4_I(inode)->i_data_sem));
1911
1912	return retval;
1913}
1914
1915/*
1916 * This is a special get_block_t callback which is used by
1917 * ext4_da_write_begin().  It will either return mapped block or
1918 * reserve space for a single block.
1919 *
1920 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1921 * We also have b_blocknr = -1 and b_bdev initialized properly
1922 *
1923 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1924 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1925 * initialized properly.
1926 */
1927int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1928			   struct buffer_head *bh, int create)
1929{
1930	struct ext4_map_blocks map;
1931	int ret = 0;
1932
1933	BUG_ON(create == 0);
1934	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1935
1936	map.m_lblk = iblock;
1937	map.m_len = 1;
1938
1939	/*
1940	 * first, we need to know whether the block is allocated already
1941	 * preallocated blocks are unmapped but should treated
1942	 * the same as allocated blocks.
1943	 */
1944	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1945	if (ret <= 0)
1946		return ret;
1947
1948	map_bh(bh, inode->i_sb, map.m_pblk);
1949	ext4_update_bh_state(bh, map.m_flags);
1950
1951	if (buffer_unwritten(bh)) {
1952		/* A delayed write to unwritten bh should be marked
1953		 * new and mapped.  Mapped ensures that we don't do
1954		 * get_block multiple times when we write to the same
1955		 * offset and new ensures that we do proper zero out
1956		 * for partial write.
1957		 */
1958		set_buffer_new(bh);
1959		set_buffer_mapped(bh);
1960	}
1961	return 0;
1962}
1963
1964static int bget_one(handle_t *handle, struct buffer_head *bh)
1965{
1966	get_bh(bh);
1967	return 0;
1968}
1969
1970static int bput_one(handle_t *handle, struct buffer_head *bh)
1971{
1972	put_bh(bh);
1973	return 0;
1974}
1975
1976static int __ext4_journalled_writepage(struct page *page,
1977				       unsigned int len)
1978{
1979	struct address_space *mapping = page->mapping;
1980	struct inode *inode = mapping->host;
1981	struct buffer_head *page_bufs = NULL;
1982	handle_t *handle = NULL;
1983	int ret = 0, err = 0;
1984	int inline_data = ext4_has_inline_data(inode);
1985	struct buffer_head *inode_bh = NULL;
 
1986
1987	ClearPageChecked(page);
1988
1989	if (inline_data) {
1990		BUG_ON(page->index != 0);
1991		BUG_ON(len > ext4_get_max_inline_size(inode));
1992		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1993		if (inode_bh == NULL)
1994			goto out;
1995	} else {
1996		page_bufs = page_buffers(page);
1997		if (!page_bufs) {
1998			BUG();
1999			goto out;
2000		}
2001		ext4_walk_page_buffers(handle, page_bufs, 0, len,
2002				       NULL, bget_one);
2003	}
2004	/*
2005	 * We need to release the page lock before we start the
2006	 * journal, so grab a reference so the page won't disappear
2007	 * out from under us.
2008	 */
2009	get_page(page);
2010	unlock_page(page);
2011
2012	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2013				    ext4_writepage_trans_blocks(inode));
2014	if (IS_ERR(handle)) {
2015		ret = PTR_ERR(handle);
2016		put_page(page);
2017		goto out_no_pagelock;
2018	}
2019	BUG_ON(!ext4_handle_valid(handle));
2020
2021	lock_page(page);
2022	put_page(page);
2023	if (page->mapping != mapping) {
 
2024		/* The page got truncated from under us */
2025		ext4_journal_stop(handle);
2026		ret = 0;
2027		goto out;
2028	}
2029
2030	if (inline_data) {
2031		BUFFER_TRACE(inode_bh, "get write access");
2032		ret = ext4_journal_get_write_access(handle, inode_bh);
 
2033
2034		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
 
 
 
2035
2036	} else {
2037		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2038					     do_journal_get_write_access);
2039
2040		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2041					     write_end_fn);
2042	}
2043	if (ret == 0)
2044		ret = err;
 
 
 
2045	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2046	err = ext4_journal_stop(handle);
2047	if (!ret)
2048		ret = err;
2049
2050	if (!ext4_has_inline_data(inode))
2051		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2052				       NULL, bput_one);
2053	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2054out:
2055	unlock_page(page);
2056out_no_pagelock:
2057	brelse(inode_bh);
2058	return ret;
2059}
2060
2061/*
2062 * Note that we don't need to start a transaction unless we're journaling data
2063 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2064 * need to file the inode to the transaction's list in ordered mode because if
2065 * we are writing back data added by write(), the inode is already there and if
2066 * we are writing back data modified via mmap(), no one guarantees in which
2067 * transaction the data will hit the disk. In case we are journaling data, we
2068 * cannot start transaction directly because transaction start ranks above page
2069 * lock so we have to do some magic.
2070 *
2071 * This function can get called via...
2072 *   - ext4_writepages after taking page lock (have journal handle)
2073 *   - journal_submit_inode_data_buffers (no journal handle)
2074 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2075 *   - grab_page_cache when doing write_begin (have journal handle)
2076 *
2077 * We don't do any block allocation in this function. If we have page with
2078 * multiple blocks we need to write those buffer_heads that are mapped. This
2079 * is important for mmaped based write. So if we do with blocksize 1K
2080 * truncate(f, 1024);
2081 * a = mmap(f, 0, 4096);
2082 * a[0] = 'a';
2083 * truncate(f, 4096);
2084 * we have in the page first buffer_head mapped via page_mkwrite call back
2085 * but other buffer_heads would be unmapped but dirty (dirty done via the
2086 * do_wp_page). So writepage should write the first block. If we modify
2087 * the mmap area beyond 1024 we will again get a page_fault and the
2088 * page_mkwrite callback will do the block allocation and mark the
2089 * buffer_heads mapped.
2090 *
2091 * We redirty the page if we have any buffer_heads that is either delay or
2092 * unwritten in the page.
2093 *
2094 * We can get recursively called as show below.
2095 *
2096 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2097 *		ext4_writepage()
2098 *
2099 * But since we don't do any block allocation we should not deadlock.
2100 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2101 */
2102static int ext4_writepage(struct page *page,
2103			  struct writeback_control *wbc)
2104{
 
2105	int ret = 0;
2106	loff_t size;
2107	unsigned int len;
2108	struct buffer_head *page_bufs = NULL;
2109	struct inode *inode = page->mapping->host;
2110	struct ext4_io_submit io_submit;
2111	bool keep_towrite = false;
2112
2113	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2114		ext4_invalidatepage(page, 0, PAGE_SIZE);
2115		unlock_page(page);
2116		return -EIO;
2117	}
2118
2119	trace_ext4_writepage(page);
2120	size = i_size_read(inode);
2121	if (page->index == size >> PAGE_SHIFT)
 
2122		len = size & ~PAGE_MASK;
2123	else
2124		len = PAGE_SIZE;
2125
 
 
 
 
 
 
 
 
 
2126	page_bufs = page_buffers(page);
2127	/*
2128	 * We cannot do block allocation or other extent handling in this
2129	 * function. If there are buffers needing that, we have to redirty
2130	 * the page. But we may reach here when we do a journal commit via
2131	 * journal_submit_inode_data_buffers() and in that case we must write
2132	 * allocated buffers to achieve data=ordered mode guarantees.
2133	 *
2134	 * Also, if there is only one buffer per page (the fs block
2135	 * size == the page size), if one buffer needs block
2136	 * allocation or needs to modify the extent tree to clear the
2137	 * unwritten flag, we know that the page can't be written at
2138	 * all, so we might as well refuse the write immediately.
2139	 * Unfortunately if the block size != page size, we can't as
2140	 * easily detect this case using ext4_walk_page_buffers(), but
2141	 * for the extremely common case, this is an optimization that
2142	 * skips a useless round trip through ext4_bio_write_page().
2143	 */
2144	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2145				   ext4_bh_delay_or_unwritten)) {
2146		redirty_page_for_writepage(wbc, page);
2147		if ((current->flags & PF_MEMALLOC) ||
2148		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2149			/*
2150			 * For memory cleaning there's no point in writing only
2151			 * some buffers. So just bail out. Warn if we came here
2152			 * from direct reclaim.
2153			 */
2154			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2155							== PF_MEMALLOC);
2156			unlock_page(page);
2157			return 0;
2158		}
2159		keep_towrite = true;
2160	}
2161
2162	if (PageChecked(page) && ext4_should_journal_data(inode))
2163		/*
2164		 * It's mmapped pagecache.  Add buffers and journal it.  There
2165		 * doesn't seem much point in redirtying the page here.
2166		 */
2167		return __ext4_journalled_writepage(page, len);
2168
2169	ext4_io_submit_init(&io_submit, wbc);
2170	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2171	if (!io_submit.io_end) {
2172		redirty_page_for_writepage(wbc, page);
2173		unlock_page(page);
2174		return -ENOMEM;
2175	}
2176	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2177	ext4_io_submit(&io_submit);
2178	/* Drop io_end reference we got from init */
2179	ext4_put_io_end_defer(io_submit.io_end);
2180	return ret;
2181}
2182
2183static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2184{
2185	int len;
2186	loff_t size;
2187	int err;
2188
2189	BUG_ON(page->index != mpd->first_page);
2190	clear_page_dirty_for_io(page);
2191	/*
2192	 * We have to be very careful here!  Nothing protects writeback path
2193	 * against i_size changes and the page can be writeably mapped into
2194	 * page tables. So an application can be growing i_size and writing
2195	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2196	 * write-protects our page in page tables and the page cannot get
2197	 * written to again until we release page lock. So only after
2198	 * clear_page_dirty_for_io() we are safe to sample i_size for
2199	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2200	 * on the barrier provided by TestClearPageDirty in
2201	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2202	 * after page tables are updated.
2203	 */
2204	size = i_size_read(mpd->inode);
2205	if (page->index == size >> PAGE_SHIFT)
 
2206		len = size & ~PAGE_MASK;
2207	else
2208		len = PAGE_SIZE;
2209	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2210	if (!err)
2211		mpd->wbc->nr_to_write--;
2212	mpd->first_page++;
2213
2214	return err;
2215}
2216
2217#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2218
2219/*
2220 * mballoc gives us at most this number of blocks...
2221 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2222 * The rest of mballoc seems to handle chunks up to full group size.
2223 */
2224#define MAX_WRITEPAGES_EXTENT_LEN 2048
2225
2226/*
2227 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2228 *
2229 * @mpd - extent of blocks
2230 * @lblk - logical number of the block in the file
2231 * @bh - buffer head we want to add to the extent
2232 *
2233 * The function is used to collect contig. blocks in the same state. If the
2234 * buffer doesn't require mapping for writeback and we haven't started the
2235 * extent of buffers to map yet, the function returns 'true' immediately - the
2236 * caller can write the buffer right away. Otherwise the function returns true
2237 * if the block has been added to the extent, false if the block couldn't be
2238 * added.
2239 */
2240static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2241				   struct buffer_head *bh)
2242{
2243	struct ext4_map_blocks *map = &mpd->map;
2244
2245	/* Buffer that doesn't need mapping for writeback? */
2246	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2247	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2248		/* So far no extent to map => we write the buffer right away */
2249		if (map->m_len == 0)
2250			return true;
2251		return false;
2252	}
2253
2254	/* First block in the extent? */
2255	if (map->m_len == 0) {
2256		/* We cannot map unless handle is started... */
2257		if (!mpd->do_map)
2258			return false;
2259		map->m_lblk = lblk;
2260		map->m_len = 1;
2261		map->m_flags = bh->b_state & BH_FLAGS;
2262		return true;
2263	}
2264
2265	/* Don't go larger than mballoc is willing to allocate */
2266	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2267		return false;
2268
2269	/* Can we merge the block to our big extent? */
2270	if (lblk == map->m_lblk + map->m_len &&
2271	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2272		map->m_len++;
2273		return true;
2274	}
2275	return false;
2276}
2277
2278/*
2279 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2280 *
2281 * @mpd - extent of blocks for mapping
2282 * @head - the first buffer in the page
2283 * @bh - buffer we should start processing from
2284 * @lblk - logical number of the block in the file corresponding to @bh
2285 *
2286 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2287 * the page for IO if all buffers in this page were mapped and there's no
2288 * accumulated extent of buffers to map or add buffers in the page to the
2289 * extent of buffers to map. The function returns 1 if the caller can continue
2290 * by processing the next page, 0 if it should stop adding buffers to the
2291 * extent to map because we cannot extend it anymore. It can also return value
2292 * < 0 in case of error during IO submission.
2293 */
2294static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2295				   struct buffer_head *head,
2296				   struct buffer_head *bh,
2297				   ext4_lblk_t lblk)
2298{
2299	struct inode *inode = mpd->inode;
2300	int err;
2301	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2302							>> inode->i_blkbits;
2303
 
 
 
2304	do {
2305		BUG_ON(buffer_locked(bh));
2306
2307		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2308			/* Found extent to map? */
2309			if (mpd->map.m_len)
2310				return 0;
2311			/* Buffer needs mapping and handle is not started? */
2312			if (!mpd->do_map)
2313				return 0;
2314			/* Everything mapped so far and we hit EOF */
2315			break;
2316		}
2317	} while (lblk++, (bh = bh->b_this_page) != head);
2318	/* So far everything mapped? Submit the page for IO. */
2319	if (mpd->map.m_len == 0) {
2320		err = mpage_submit_page(mpd, head->b_page);
2321		if (err < 0)
2322			return err;
2323	}
2324	return lblk < blocks;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2325}
2326
2327/*
2328 * mpage_map_buffers - update buffers corresponding to changed extent and
2329 *		       submit fully mapped pages for IO
2330 *
2331 * @mpd - description of extent to map, on return next extent to map
2332 *
2333 * Scan buffers corresponding to changed extent (we expect corresponding pages
2334 * to be already locked) and update buffer state according to new extent state.
2335 * We map delalloc buffers to their physical location, clear unwritten bits,
2336 * and mark buffers as uninit when we perform writes to unwritten extents
2337 * and do extent conversion after IO is finished. If the last page is not fully
2338 * mapped, we update @map to the next extent in the last page that needs
2339 * mapping. Otherwise we submit the page for IO.
2340 */
2341static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2342{
2343	struct pagevec pvec;
2344	int nr_pages, i;
2345	struct inode *inode = mpd->inode;
2346	struct buffer_head *head, *bh;
2347	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2348	pgoff_t start, end;
2349	ext4_lblk_t lblk;
2350	sector_t pblock;
2351	int err;
 
2352
2353	start = mpd->map.m_lblk >> bpp_bits;
2354	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2355	lblk = start << bpp_bits;
2356	pblock = mpd->map.m_pblk;
2357
2358	pagevec_init(&pvec);
2359	while (start <= end) {
2360		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2361						&start, end);
2362		if (nr_pages == 0)
2363			break;
2364		for (i = 0; i < nr_pages; i++) {
2365			struct page *page = pvec.pages[i];
2366
2367			bh = head = page_buffers(page);
2368			do {
2369				if (lblk < mpd->map.m_lblk)
2370					continue;
2371				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2372					/*
2373					 * Buffer after end of mapped extent.
2374					 * Find next buffer in the page to map.
2375					 */
2376					mpd->map.m_len = 0;
2377					mpd->map.m_flags = 0;
2378					/*
2379					 * FIXME: If dioread_nolock supports
2380					 * blocksize < pagesize, we need to make
2381					 * sure we add size mapped so far to
2382					 * io_end->size as the following call
2383					 * can submit the page for IO.
2384					 */
2385					err = mpage_process_page_bufs(mpd, head,
2386								      bh, lblk);
2387					pagevec_release(&pvec);
2388					if (err > 0)
2389						err = 0;
2390					return err;
2391				}
2392				if (buffer_delay(bh)) {
2393					clear_buffer_delay(bh);
2394					bh->b_blocknr = pblock++;
2395				}
2396				clear_buffer_unwritten(bh);
2397			} while (lblk++, (bh = bh->b_this_page) != head);
2398
 
 
2399			/*
2400			 * FIXME: This is going to break if dioread_nolock
2401			 * supports blocksize < pagesize as we will try to
2402			 * convert potentially unmapped parts of inode.
2403			 */
2404			mpd->io_submit.io_end->size += PAGE_SIZE;
 
2405			/* Page fully mapped - let IO run! */
2406			err = mpage_submit_page(mpd, page);
2407			if (err < 0) {
2408				pagevec_release(&pvec);
2409				return err;
2410			}
2411		}
2412		pagevec_release(&pvec);
2413	}
2414	/* Extent fully mapped and matches with page boundary. We are done. */
2415	mpd->map.m_len = 0;
2416	mpd->map.m_flags = 0;
2417	return 0;
 
 
 
2418}
2419
2420static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2421{
2422	struct inode *inode = mpd->inode;
2423	struct ext4_map_blocks *map = &mpd->map;
2424	int get_blocks_flags;
2425	int err, dioread_nolock;
2426
2427	trace_ext4_da_write_pages_extent(inode, map);
2428	/*
2429	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2430	 * to convert an unwritten extent to be initialized (in the case
2431	 * where we have written into one or more preallocated blocks).  It is
2432	 * possible that we're going to need more metadata blocks than
2433	 * previously reserved. However we must not fail because we're in
2434	 * writeback and there is nothing we can do about it so it might result
2435	 * in data loss.  So use reserved blocks to allocate metadata if
2436	 * possible.
2437	 *
2438	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2439	 * the blocks in question are delalloc blocks.  This indicates
2440	 * that the blocks and quotas has already been checked when
2441	 * the data was copied into the page cache.
2442	 */
2443	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2444			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2445			   EXT4_GET_BLOCKS_IO_SUBMIT;
2446	dioread_nolock = ext4_should_dioread_nolock(inode);
2447	if (dioread_nolock)
2448		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2449	if (map->m_flags & (1 << BH_Delay))
2450		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2451
2452	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2453	if (err < 0)
2454		return err;
2455	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2456		if (!mpd->io_submit.io_end->handle &&
2457		    ext4_handle_valid(handle)) {
2458			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2459			handle->h_rsv_handle = NULL;
2460		}
2461		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2462	}
2463
2464	BUG_ON(map->m_len == 0);
2465	if (map->m_flags & EXT4_MAP_NEW) {
2466		clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2467				   map->m_len);
2468	}
2469	return 0;
2470}
2471
2472/*
2473 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2474 *				 mpd->len and submit pages underlying it for IO
2475 *
2476 * @handle - handle for journal operations
2477 * @mpd - extent to map
2478 * @give_up_on_write - we set this to true iff there is a fatal error and there
2479 *                     is no hope of writing the data. The caller should discard
2480 *                     dirty pages to avoid infinite loops.
2481 *
2482 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2483 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2484 * them to initialized or split the described range from larger unwritten
2485 * extent. Note that we need not map all the described range since allocation
2486 * can return less blocks or the range is covered by more unwritten extents. We
2487 * cannot map more because we are limited by reserved transaction credits. On
2488 * the other hand we always make sure that the last touched page is fully
2489 * mapped so that it can be written out (and thus forward progress is
2490 * guaranteed). After mapping we submit all mapped pages for IO.
2491 */
2492static int mpage_map_and_submit_extent(handle_t *handle,
2493				       struct mpage_da_data *mpd,
2494				       bool *give_up_on_write)
2495{
2496	struct inode *inode = mpd->inode;
2497	struct ext4_map_blocks *map = &mpd->map;
2498	int err;
2499	loff_t disksize;
2500	int progress = 0;
 
 
2501
2502	mpd->io_submit.io_end->offset =
2503				((loff_t)map->m_lblk) << inode->i_blkbits;
 
 
2504	do {
2505		err = mpage_map_one_extent(handle, mpd);
2506		if (err < 0) {
2507			struct super_block *sb = inode->i_sb;
2508
2509			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2510			    EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2511				goto invalidate_dirty_pages;
2512			/*
2513			 * Let the uper layers retry transient errors.
2514			 * In the case of ENOSPC, if ext4_count_free_blocks()
2515			 * is non-zero, a commit should free up blocks.
2516			 */
2517			if ((err == -ENOMEM) ||
2518			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2519				if (progress)
2520					goto update_disksize;
2521				return err;
2522			}
2523			ext4_msg(sb, KERN_CRIT,
2524				 "Delayed block allocation failed for "
2525				 "inode %lu at logical offset %llu with"
2526				 " max blocks %u with error %d",
2527				 inode->i_ino,
2528				 (unsigned long long)map->m_lblk,
2529				 (unsigned)map->m_len, -err);
2530			ext4_msg(sb, KERN_CRIT,
2531				 "This should not happen!! Data will "
2532				 "be lost\n");
2533			if (err == -ENOSPC)
2534				ext4_print_free_blocks(inode);
2535		invalidate_dirty_pages:
2536			*give_up_on_write = true;
2537			return err;
2538		}
2539		progress = 1;
2540		/*
2541		 * Update buffer state, submit mapped pages, and get us new
2542		 * extent to map
2543		 */
2544		err = mpage_map_and_submit_buffers(mpd);
2545		if (err < 0)
2546			goto update_disksize;
2547	} while (map->m_len);
2548
2549update_disksize:
2550	/*
2551	 * Update on-disk size after IO is submitted.  Races with
2552	 * truncate are avoided by checking i_size under i_data_sem.
2553	 */
2554	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2555	if (disksize > EXT4_I(inode)->i_disksize) {
2556		int err2;
2557		loff_t i_size;
2558
2559		down_write(&EXT4_I(inode)->i_data_sem);
2560		i_size = i_size_read(inode);
2561		if (disksize > i_size)
2562			disksize = i_size;
2563		if (disksize > EXT4_I(inode)->i_disksize)
2564			EXT4_I(inode)->i_disksize = disksize;
2565		up_write(&EXT4_I(inode)->i_data_sem);
2566		err2 = ext4_mark_inode_dirty(handle, inode);
2567		if (err2)
2568			ext4_error(inode->i_sb,
2569				   "Failed to mark inode %lu dirty",
2570				   inode->i_ino);
 
2571		if (!err)
2572			err = err2;
2573	}
2574	return err;
2575}
2576
2577/*
2578 * Calculate the total number of credits to reserve for one writepages
2579 * iteration. This is called from ext4_writepages(). We map an extent of
2580 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2581 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2582 * bpp - 1 blocks in bpp different extents.
2583 */
2584static int ext4_da_writepages_trans_blocks(struct inode *inode)
2585{
2586	int bpp = ext4_journal_blocks_per_page(inode);
2587
2588	return ext4_meta_trans_blocks(inode,
2589				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2590}
2591
 
 
 
 
 
 
 
 
 
 
 
 
 
2592/*
2593 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2594 * 				 and underlying extent to map
2595 *
2596 * @mpd - where to look for pages
2597 *
2598 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2599 * IO immediately. When we find a page which isn't mapped we start accumulating
2600 * extent of buffers underlying these pages that needs mapping (formed by
2601 * either delayed or unwritten buffers). We also lock the pages containing
2602 * these buffers. The extent found is returned in @mpd structure (starting at
2603 * mpd->lblk with length mpd->len blocks).
 
 
2604 *
2605 * Note that this function can attach bios to one io_end structure which are
2606 * neither logically nor physically contiguous. Although it may seem as an
2607 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2608 * case as we need to track IO to all buffers underlying a page in one io_end.
2609 */
2610static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2611{
2612	struct address_space *mapping = mpd->inode->i_mapping;
2613	struct pagevec pvec;
2614	unsigned int nr_pages;
2615	long left = mpd->wbc->nr_to_write;
2616	pgoff_t index = mpd->first_page;
2617	pgoff_t end = mpd->last_page;
2618	int tag;
2619	int i, err = 0;
2620	int blkbits = mpd->inode->i_blkbits;
2621	ext4_lblk_t lblk;
2622	struct buffer_head *head;
2623
2624	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2625		tag = PAGECACHE_TAG_TOWRITE;
2626	else
2627		tag = PAGECACHE_TAG_DIRTY;
2628
2629	pagevec_init(&pvec);
2630	mpd->map.m_len = 0;
2631	mpd->next_page = index;
2632	while (index <= end) {
2633		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2634				tag);
2635		if (nr_pages == 0)
2636			goto out;
2637
2638		for (i = 0; i < nr_pages; i++) {
2639			struct page *page = pvec.pages[i];
2640
2641			/*
2642			 * Accumulated enough dirty pages? This doesn't apply
2643			 * to WB_SYNC_ALL mode. For integrity sync we have to
2644			 * keep going because someone may be concurrently
2645			 * dirtying pages, and we might have synced a lot of
2646			 * newly appeared dirty pages, but have not synced all
2647			 * of the old dirty pages.
2648			 */
2649			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2650				goto out;
2651
2652			/* If we can't merge this page, we are done. */
2653			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2654				goto out;
2655
2656			lock_page(page);
2657			/*
2658			 * If the page is no longer dirty, or its mapping no
2659			 * longer corresponds to inode we are writing (which
2660			 * means it has been truncated or invalidated), or the
2661			 * page is already under writeback and we are not doing
2662			 * a data integrity writeback, skip the page
2663			 */
2664			if (!PageDirty(page) ||
2665			    (PageWriteback(page) &&
2666			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2667			    unlikely(page->mapping != mapping)) {
2668				unlock_page(page);
2669				continue;
2670			}
2671
2672			wait_on_page_writeback(page);
2673			BUG_ON(PageWriteback(page));
2674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2675			if (mpd->map.m_len == 0)
2676				mpd->first_page = page->index;
2677			mpd->next_page = page->index + 1;
2678			/* Add all dirty buffers to mpd */
2679			lblk = ((ext4_lblk_t)page->index) <<
2680				(PAGE_SHIFT - blkbits);
2681			head = page_buffers(page);
2682			err = mpage_process_page_bufs(mpd, head, head, lblk);
2683			if (err <= 0)
2684				goto out;
2685			err = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2686			left--;
2687		}
2688		pagevec_release(&pvec);
2689		cond_resched();
2690	}
 
2691	return 0;
2692out:
2693	pagevec_release(&pvec);
2694	return err;
2695}
2696
2697static int ext4_writepages(struct address_space *mapping,
2698			   struct writeback_control *wbc)
2699{
 
 
 
 
 
 
2700	pgoff_t	writeback_index = 0;
2701	long nr_to_write = wbc->nr_to_write;
2702	int range_whole = 0;
2703	int cycled = 1;
2704	handle_t *handle = NULL;
2705	struct mpage_da_data mpd;
2706	struct inode *inode = mapping->host;
2707	int needed_blocks, rsv_blocks = 0, ret = 0;
2708	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2709	bool done;
2710	struct blk_plug plug;
2711	bool give_up_on_write = false;
2712
2713	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2714		return -EIO;
2715
2716	percpu_down_read(&sbi->s_journal_flag_rwsem);
2717	trace_ext4_writepages(inode, wbc);
2718
2719	/*
2720	 * No pages to write? This is mainly a kludge to avoid starting
2721	 * a transaction for special inodes like journal inode on last iput()
2722	 * because that could violate lock ordering on umount
2723	 */
2724	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2725		goto out_writepages;
2726
2727	if (ext4_should_journal_data(inode)) {
2728		ret = generic_writepages(mapping, wbc);
 
 
2729		goto out_writepages;
2730	}
2731
2732	/*
2733	 * If the filesystem has aborted, it is read-only, so return
2734	 * right away instead of dumping stack traces later on that
2735	 * will obscure the real source of the problem.  We test
2736	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2737	 * the latter could be true if the filesystem is mounted
2738	 * read-only, and in that case, ext4_writepages should
2739	 * *never* be called, so if that ever happens, we would want
2740	 * the stack trace.
2741	 */
2742	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2743		     sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2744		ret = -EROFS;
2745		goto out_writepages;
2746	}
2747
2748	if (ext4_should_dioread_nolock(inode)) {
2749		/*
2750		 * We may need to convert up to one extent per block in
2751		 * the page and we may dirty the inode.
2752		 */
2753		rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2754	}
2755
2756	/*
2757	 * If we have inline data and arrive here, it means that
2758	 * we will soon create the block for the 1st page, so
2759	 * we'd better clear the inline data here.
2760	 */
2761	if (ext4_has_inline_data(inode)) {
2762		/* Just inode will be modified... */
2763		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2764		if (IS_ERR(handle)) {
2765			ret = PTR_ERR(handle);
2766			goto out_writepages;
2767		}
2768		BUG_ON(ext4_test_inode_state(inode,
2769				EXT4_STATE_MAY_INLINE_DATA));
2770		ext4_destroy_inline_data(handle, inode);
2771		ext4_journal_stop(handle);
2772	}
2773
 
 
 
 
 
 
 
 
 
2774	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2775		range_whole = 1;
2776
2777	if (wbc->range_cyclic) {
2778		writeback_index = mapping->writeback_index;
2779		if (writeback_index)
2780			cycled = 0;
2781		mpd.first_page = writeback_index;
2782		mpd.last_page = -1;
2783	} else {
2784		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2785		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2786	}
2787
2788	mpd.inode = inode;
2789	mpd.wbc = wbc;
2790	ext4_io_submit_init(&mpd.io_submit, wbc);
2791retry:
2792	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2793		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2794	done = false;
2795	blk_start_plug(&plug);
2796
2797	/*
2798	 * First writeback pages that don't need mapping - we can avoid
2799	 * starting a transaction unnecessarily and also avoid being blocked
2800	 * in the block layer on device congestion while having transaction
2801	 * started.
2802	 */
2803	mpd.do_map = 0;
2804	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2805	if (!mpd.io_submit.io_end) {
 
2806		ret = -ENOMEM;
2807		goto unplug;
2808	}
2809	ret = mpage_prepare_extent_to_map(&mpd);
2810	/* Submit prepared bio */
2811	ext4_io_submit(&mpd.io_submit);
2812	ext4_put_io_end_defer(mpd.io_submit.io_end);
2813	mpd.io_submit.io_end = NULL;
2814	/* Unlock pages we didn't use */
2815	mpage_release_unused_pages(&mpd, false);
 
 
 
 
2816	if (ret < 0)
2817		goto unplug;
2818
2819	while (!done && mpd.first_page <= mpd.last_page) {
2820		/* For each extent of pages we use new io_end */
2821		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2822		if (!mpd.io_submit.io_end) {
2823			ret = -ENOMEM;
2824			break;
2825		}
2826
 
2827		/*
2828		 * We have two constraints: We find one extent to map and we
2829		 * must always write out whole page (makes a difference when
2830		 * blocksize < pagesize) so that we don't block on IO when we
2831		 * try to write out the rest of the page. Journalled mode is
2832		 * not supported by delalloc.
2833		 */
2834		BUG_ON(ext4_should_journal_data(inode));
2835		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2836
2837		/* start a new transaction */
2838		handle = ext4_journal_start_with_reserve(inode,
2839				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2840		if (IS_ERR(handle)) {
2841			ret = PTR_ERR(handle);
2842			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2843			       "%ld pages, ino %lu; err %d", __func__,
2844				wbc->nr_to_write, inode->i_ino, ret);
2845			/* Release allocated io_end */
2846			ext4_put_io_end(mpd.io_submit.io_end);
2847			mpd.io_submit.io_end = NULL;
2848			break;
2849		}
2850		mpd.do_map = 1;
2851
2852		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2853		ret = mpage_prepare_extent_to_map(&mpd);
2854		if (!ret) {
2855			if (mpd.map.m_len)
2856				ret = mpage_map_and_submit_extent(handle, &mpd,
2857					&give_up_on_write);
2858			else {
2859				/*
2860				 * We scanned the whole range (or exhausted
2861				 * nr_to_write), submitted what was mapped and
2862				 * didn't find anything needing mapping. We are
2863				 * done.
2864				 */
2865				done = true;
2866			}
2867		}
2868		/*
2869		 * Caution: If the handle is synchronous,
2870		 * ext4_journal_stop() can wait for transaction commit
2871		 * to finish which may depend on writeback of pages to
2872		 * complete or on page lock to be released.  In that
2873		 * case, we have to wait until after after we have
2874		 * submitted all the IO, released page locks we hold,
2875		 * and dropped io_end reference (for extent conversion
2876		 * to be able to complete) before stopping the handle.
2877		 */
2878		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2879			ext4_journal_stop(handle);
2880			handle = NULL;
2881			mpd.do_map = 0;
2882		}
2883		/* Submit prepared bio */
2884		ext4_io_submit(&mpd.io_submit);
2885		/* Unlock pages we didn't use */
2886		mpage_release_unused_pages(&mpd, give_up_on_write);
 
 
 
2887		/*
2888		 * Drop our io_end reference we got from init. We have
2889		 * to be careful and use deferred io_end finishing if
2890		 * we are still holding the transaction as we can
2891		 * release the last reference to io_end which may end
2892		 * up doing unwritten extent conversion.
2893		 */
2894		if (handle) {
2895			ext4_put_io_end_defer(mpd.io_submit.io_end);
2896			ext4_journal_stop(handle);
2897		} else
2898			ext4_put_io_end(mpd.io_submit.io_end);
2899		mpd.io_submit.io_end = NULL;
2900
2901		if (ret == -ENOSPC && sbi->s_journal) {
2902			/*
2903			 * Commit the transaction which would
2904			 * free blocks released in the transaction
2905			 * and try again
2906			 */
2907			jbd2_journal_force_commit_nested(sbi->s_journal);
2908			ret = 0;
2909			continue;
2910		}
2911		/* Fatal error - ENOMEM, EIO... */
2912		if (ret)
2913			break;
2914	}
2915unplug:
2916	blk_finish_plug(&plug);
2917	if (!ret && !cycled && wbc->nr_to_write > 0) {
2918		cycled = 1;
2919		mpd.last_page = writeback_index - 1;
2920		mpd.first_page = 0;
2921		goto retry;
2922	}
2923
2924	/* Update index */
2925	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2926		/*
2927		 * Set the writeback_index so that range_cyclic
2928		 * mode will write it back later
2929		 */
2930		mapping->writeback_index = mpd.first_page;
2931
2932out_writepages:
2933	trace_ext4_writepages_result(inode, wbc, ret,
2934				     nr_to_write - wbc->nr_to_write);
2935	percpu_up_read(&sbi->s_journal_flag_rwsem);
2936	return ret;
2937}
2938
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2939static int ext4_dax_writepages(struct address_space *mapping,
2940			       struct writeback_control *wbc)
2941{
2942	int ret;
2943	long nr_to_write = wbc->nr_to_write;
2944	struct inode *inode = mapping->host;
2945	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2946
2947	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2948		return -EIO;
2949
2950	percpu_down_read(&sbi->s_journal_flag_rwsem);
2951	trace_ext4_writepages(inode, wbc);
2952
2953	ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
2954	trace_ext4_writepages_result(inode, wbc, ret,
2955				     nr_to_write - wbc->nr_to_write);
2956	percpu_up_read(&sbi->s_journal_flag_rwsem);
2957	return ret;
2958}
2959
2960static int ext4_nonda_switch(struct super_block *sb)
2961{
2962	s64 free_clusters, dirty_clusters;
2963	struct ext4_sb_info *sbi = EXT4_SB(sb);
2964
2965	/*
2966	 * switch to non delalloc mode if we are running low
2967	 * on free block. The free block accounting via percpu
2968	 * counters can get slightly wrong with percpu_counter_batch getting
2969	 * accumulated on each CPU without updating global counters
2970	 * Delalloc need an accurate free block accounting. So switch
2971	 * to non delalloc when we are near to error range.
2972	 */
2973	free_clusters =
2974		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2975	dirty_clusters =
2976		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2977	/*
2978	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2979	 */
2980	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2981		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2982
2983	if (2 * free_clusters < 3 * dirty_clusters ||
2984	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2985		/*
2986		 * free block count is less than 150% of dirty blocks
2987		 * or free blocks is less than watermark
2988		 */
2989		return 1;
2990	}
2991	return 0;
2992}
2993
2994/* We always reserve for an inode update; the superblock could be there too */
2995static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2996{
2997	if (likely(ext4_has_feature_large_file(inode->i_sb)))
2998		return 1;
2999
3000	if (pos + len <= 0x7fffffffULL)
3001		return 1;
3002
3003	/* We might need to update the superblock to set LARGE_FILE */
3004	return 2;
3005}
3006
3007static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3008			       loff_t pos, unsigned len, unsigned flags,
3009			       struct page **pagep, void **fsdata)
3010{
3011	int ret, retries = 0;
3012	struct page *page;
3013	pgoff_t index;
3014	struct inode *inode = mapping->host;
3015	handle_t *handle;
3016
3017	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3018		return -EIO;
3019
3020	index = pos >> PAGE_SHIFT;
3021
3022	if (ext4_nonda_switch(inode->i_sb) ||
3023	    S_ISLNK(inode->i_mode)) {
3024		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3025		return ext4_write_begin(file, mapping, pos,
3026					len, flags, pagep, fsdata);
3027	}
3028	*fsdata = (void *)0;
3029	trace_ext4_da_write_begin(inode, pos, len, flags);
3030
3031	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3032		ret = ext4_da_write_inline_data_begin(mapping, inode,
3033						      pos, len, flags,
3034						      pagep, fsdata);
3035		if (ret < 0)
3036			return ret;
3037		if (ret == 1)
3038			return 0;
3039	}
3040
3041	/*
3042	 * grab_cache_page_write_begin() can take a long time if the
3043	 * system is thrashing due to memory pressure, or if the page
3044	 * is being written back.  So grab it first before we start
3045	 * the transaction handle.  This also allows us to allocate
3046	 * the page (if needed) without using GFP_NOFS.
3047	 */
3048retry_grab:
3049	page = grab_cache_page_write_begin(mapping, index, flags);
3050	if (!page)
3051		return -ENOMEM;
3052	unlock_page(page);
3053
3054	/*
3055	 * With delayed allocation, we don't log the i_disksize update
3056	 * if there is delayed block allocation. But we still need
3057	 * to journalling the i_disksize update if writes to the end
3058	 * of file which has an already mapped buffer.
3059	 */
3060retry_journal:
3061	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3062				ext4_da_write_credits(inode, pos, len));
3063	if (IS_ERR(handle)) {
3064		put_page(page);
3065		return PTR_ERR(handle);
3066	}
3067
3068	lock_page(page);
3069	if (page->mapping != mapping) {
3070		/* The page got truncated from under us */
3071		unlock_page(page);
3072		put_page(page);
3073		ext4_journal_stop(handle);
3074		goto retry_grab;
3075	}
3076	/* In case writeback began while the page was unlocked */
3077	wait_for_stable_page(page);
3078
3079#ifdef CONFIG_EXT4_FS_ENCRYPTION
3080	ret = ext4_block_write_begin(page, pos, len,
3081				     ext4_da_get_block_prep);
3082#else
3083	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3084#endif
3085	if (ret < 0) {
3086		unlock_page(page);
3087		ext4_journal_stop(handle);
3088		/*
3089		 * block_write_begin may have instantiated a few blocks
3090		 * outside i_size.  Trim these off again. Don't need
3091		 * i_size_read because we hold i_mutex.
3092		 */
3093		if (pos + len > inode->i_size)
3094			ext4_truncate_failed_write(inode);
3095
3096		if (ret == -ENOSPC &&
3097		    ext4_should_retry_alloc(inode->i_sb, &retries))
3098			goto retry_journal;
3099
3100		put_page(page);
3101		return ret;
3102	}
3103
3104	*pagep = page;
3105	return ret;
3106}
3107
3108/*
3109 * Check if we should update i_disksize
3110 * when write to the end of file but not require block allocation
3111 */
3112static int ext4_da_should_update_i_disksize(struct page *page,
3113					    unsigned long offset)
3114{
3115	struct buffer_head *bh;
3116	struct inode *inode = page->mapping->host;
3117	unsigned int idx;
3118	int i;
3119
3120	bh = page_buffers(page);
3121	idx = offset >> inode->i_blkbits;
3122
3123	for (i = 0; i < idx; i++)
3124		bh = bh->b_this_page;
3125
3126	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3127		return 0;
3128	return 1;
3129}
3130
3131static int ext4_da_write_end(struct file *file,
3132			     struct address_space *mapping,
3133			     loff_t pos, unsigned len, unsigned copied,
3134			     struct page *page, void *fsdata)
3135{
3136	struct inode *inode = mapping->host;
3137	int ret = 0, ret2;
3138	handle_t *handle = ext4_journal_current_handle();
3139	loff_t new_i_size;
3140	unsigned long start, end;
3141	int write_mode = (int)(unsigned long)fsdata;
3142
3143	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3144		return ext4_write_end(file, mapping, pos,
3145				      len, copied, page, fsdata);
3146
3147	trace_ext4_da_write_end(inode, pos, len, copied);
3148	start = pos & (PAGE_SIZE - 1);
3149	end = start + copied - 1;
3150
3151	/*
3152	 * generic_write_end() will run mark_inode_dirty() if i_size
3153	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3154	 * into that.
3155	 */
3156	new_i_size = pos + copied;
3157	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3158		if (ext4_has_inline_data(inode) ||
3159		    ext4_da_should_update_i_disksize(page, end)) {
3160			ext4_update_i_disksize(inode, new_i_size);
3161			/* We need to mark inode dirty even if
3162			 * new_i_size is less that inode->i_size
3163			 * bu greater than i_disksize.(hint delalloc)
3164			 */
3165			ext4_mark_inode_dirty(handle, inode);
3166		}
3167	}
3168
3169	if (write_mode != CONVERT_INLINE_DATA &&
3170	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3171	    ext4_has_inline_data(inode))
3172		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3173						     page);
3174	else
3175		ret2 = generic_write_end(file, mapping, pos, len, copied,
3176							page, fsdata);
3177
3178	copied = ret2;
3179	if (ret2 < 0)
3180		ret = ret2;
3181	ret2 = ext4_journal_stop(handle);
3182	if (!ret)
3183		ret = ret2;
3184
3185	return ret ? ret : copied;
3186}
3187
3188static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3189				   unsigned int length)
3190{
3191	/*
3192	 * Drop reserved blocks
 
 
 
 
 
 
 
 
 
 
 
 
3193	 */
3194	BUG_ON(!PageLocked(page));
3195	if (!page_has_buffers(page))
3196		goto out;
3197
3198	ext4_da_page_release_reservation(page, offset, length);
3199
3200out:
3201	ext4_invalidatepage(page, offset, length);
3202
3203	return;
3204}
3205
3206/*
3207 * Force all delayed allocation blocks to be allocated for a given inode.
3208 */
3209int ext4_alloc_da_blocks(struct inode *inode)
3210{
3211	trace_ext4_alloc_da_blocks(inode);
3212
3213	if (!EXT4_I(inode)->i_reserved_data_blocks)
3214		return 0;
3215
3216	/*
3217	 * We do something simple for now.  The filemap_flush() will
3218	 * also start triggering a write of the data blocks, which is
3219	 * not strictly speaking necessary (and for users of
3220	 * laptop_mode, not even desirable).  However, to do otherwise
3221	 * would require replicating code paths in:
3222	 *
3223	 * ext4_writepages() ->
3224	 *    write_cache_pages() ---> (via passed in callback function)
3225	 *        __mpage_da_writepage() -->
3226	 *           mpage_add_bh_to_extent()
3227	 *           mpage_da_map_blocks()
3228	 *
3229	 * The problem is that write_cache_pages(), located in
3230	 * mm/page-writeback.c, marks pages clean in preparation for
3231	 * doing I/O, which is not desirable if we're not planning on
3232	 * doing I/O at all.
3233	 *
3234	 * We could call write_cache_pages(), and then redirty all of
3235	 * the pages by calling redirty_page_for_writepage() but that
3236	 * would be ugly in the extreme.  So instead we would need to
3237	 * replicate parts of the code in the above functions,
3238	 * simplifying them because we wouldn't actually intend to
3239	 * write out the pages, but rather only collect contiguous
3240	 * logical block extents, call the multi-block allocator, and
3241	 * then update the buffer heads with the block allocations.
3242	 *
3243	 * For now, though, we'll cheat by calling filemap_flush(),
3244	 * which will map the blocks, and start the I/O, but not
3245	 * actually wait for the I/O to complete.
3246	 */
3247	return filemap_flush(inode->i_mapping);
3248}
3249
3250/*
3251 * bmap() is special.  It gets used by applications such as lilo and by
3252 * the swapper to find the on-disk block of a specific piece of data.
3253 *
3254 * Naturally, this is dangerous if the block concerned is still in the
3255 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3256 * filesystem and enables swap, then they may get a nasty shock when the
3257 * data getting swapped to that swapfile suddenly gets overwritten by
3258 * the original zero's written out previously to the journal and
3259 * awaiting writeback in the kernel's buffer cache.
3260 *
3261 * So, if we see any bmap calls here on a modified, data-journaled file,
3262 * take extra steps to flush any blocks which might be in the cache.
3263 */
3264static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3265{
3266	struct inode *inode = mapping->host;
3267	journal_t *journal;
 
3268	int err;
3269
 
3270	/*
3271	 * We can get here for an inline file via the FIBMAP ioctl
3272	 */
3273	if (ext4_has_inline_data(inode))
3274		return 0;
3275
3276	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3277			test_opt(inode->i_sb, DELALLOC)) {
3278		/*
3279		 * With delalloc we want to sync the file
3280		 * so that we can make sure we allocate
3281		 * blocks for file
3282		 */
3283		filemap_write_and_wait(mapping);
3284	}
3285
3286	if (EXT4_JOURNAL(inode) &&
3287	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3288		/*
3289		 * This is a REALLY heavyweight approach, but the use of
3290		 * bmap on dirty files is expected to be extremely rare:
3291		 * only if we run lilo or swapon on a freshly made file
3292		 * do we expect this to happen.
3293		 *
3294		 * (bmap requires CAP_SYS_RAWIO so this does not
3295		 * represent an unprivileged user DOS attack --- we'd be
3296		 * in trouble if mortal users could trigger this path at
3297		 * will.)
3298		 *
3299		 * NB. EXT4_STATE_JDATA is not set on files other than
3300		 * regular files.  If somebody wants to bmap a directory
3301		 * or symlink and gets confused because the buffer
3302		 * hasn't yet been flushed to disk, they deserve
3303		 * everything they get.
3304		 */
3305
3306		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3307		journal = EXT4_JOURNAL(inode);
3308		jbd2_journal_lock_updates(journal);
3309		err = jbd2_journal_flush(journal);
3310		jbd2_journal_unlock_updates(journal);
3311
3312		if (err)
3313			return 0;
3314	}
3315
3316	return generic_block_bmap(mapping, block, ext4_get_block);
 
 
 
 
3317}
3318
3319static int ext4_readpage(struct file *file, struct page *page)
3320{
 
3321	int ret = -EAGAIN;
3322	struct inode *inode = page->mapping->host;
3323
3324	trace_ext4_readpage(page);
3325
3326	if (ext4_has_inline_data(inode))
3327		ret = ext4_readpage_inline(inode, page);
3328
3329	if (ret == -EAGAIN)
3330		return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3331
3332	return ret;
3333}
3334
3335static int
3336ext4_readpages(struct file *file, struct address_space *mapping,
3337		struct list_head *pages, unsigned nr_pages)
3338{
3339	struct inode *inode = mapping->host;
3340
3341	/* If the file has inline data, no need to do readpages. */
3342	if (ext4_has_inline_data(inode))
3343		return 0;
3344
3345	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3346}
3347
3348static void ext4_invalidatepage(struct page *page, unsigned int offset,
3349				unsigned int length)
3350{
3351	trace_ext4_invalidatepage(page, offset, length);
3352
3353	/* No journalling happens on data buffers when this function is used */
3354	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3355
3356	block_invalidatepage(page, offset, length);
3357}
3358
3359static int __ext4_journalled_invalidatepage(struct page *page,
3360					    unsigned int offset,
3361					    unsigned int length)
3362{
3363	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3364
3365	trace_ext4_journalled_invalidatepage(page, offset, length);
3366
3367	/*
3368	 * If it's a full truncate we just forget about the pending dirtying
3369	 */
3370	if (offset == 0 && length == PAGE_SIZE)
3371		ClearPageChecked(page);
3372
3373	return jbd2_journal_invalidatepage(journal, page, offset, length);
3374}
3375
3376/* Wrapper for aops... */
3377static void ext4_journalled_invalidatepage(struct page *page,
3378					   unsigned int offset,
3379					   unsigned int length)
3380{
3381	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3382}
3383
3384static int ext4_releasepage(struct page *page, gfp_t wait)
3385{
3386	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3387
3388	trace_ext4_releasepage(page);
3389
3390	/* Page has dirty journalled data -> cannot release */
3391	if (PageChecked(page))
3392		return 0;
3393	if (journal)
3394		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3395	else
3396		return try_to_free_buffers(page);
3397}
3398
3399static bool ext4_inode_datasync_dirty(struct inode *inode)
3400{
3401	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3402
3403	if (journal)
3404		return !jbd2_transaction_committed(journal,
3405					EXT4_I(inode)->i_datasync_tid);
 
 
 
 
 
 
3406	/* Any metadata buffers to write? */
3407	if (!list_empty(&inode->i_mapping->private_list))
3408		return true;
3409	return inode->i_state & I_DIRTY_DATASYNC;
3410}
3411
3412static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3413			    unsigned flags, struct iomap *iomap)
 
3414{
3415	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3416	unsigned int blkbits = inode->i_blkbits;
3417	unsigned long first_block = offset >> blkbits;
3418	unsigned long last_block = (offset + length - 1) >> blkbits;
3419	struct ext4_map_blocks map;
3420	bool delalloc = false;
3421	int ret;
3422
 
 
 
 
 
 
 
 
 
3423
3424	if (flags & IOMAP_REPORT) {
3425		if (ext4_has_inline_data(inode)) {
3426			ret = ext4_inline_data_iomap(inode, iomap);
3427			if (ret != -EAGAIN) {
3428				if (ret == 0 && offset >= iomap->length)
3429					ret = -ENOENT;
3430				return ret;
3431			}
3432		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3433	} else {
3434		if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3435			return -ERANGE;
3436	}
 
3437
3438	map.m_lblk = first_block;
3439	map.m_len = last_block - first_block + 1;
 
 
 
 
3440
3441	if (flags & IOMAP_REPORT) {
3442		ret = ext4_map_blocks(NULL, inode, &map, 0);
3443		if (ret < 0)
3444			return ret;
 
 
 
3445
3446		if (ret == 0) {
3447			ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3448			struct extent_status es;
3449
3450			ext4_es_find_delayed_extent_range(inode, map.m_lblk, end, &es);
3451
3452			if (!es.es_len || es.es_lblk > end) {
3453				/* entire range is a hole */
3454			} else if (es.es_lblk > map.m_lblk) {
3455				/* range starts with a hole */
3456				map.m_len = es.es_lblk - map.m_lblk;
3457			} else {
3458				ext4_lblk_t offs = 0;
3459
3460				if (es.es_lblk < map.m_lblk)
3461					offs = map.m_lblk - es.es_lblk;
3462				map.m_lblk = es.es_lblk + offs;
3463				map.m_len = es.es_len - offs;
3464				delalloc = true;
3465			}
3466		}
3467	} else if (flags & IOMAP_WRITE) {
3468		int dio_credits;
3469		handle_t *handle;
3470		int retries = 0;
 
 
 
 
 
 
3471
3472		/* Trim mapping request to maximum we can map at once for DIO */
3473		if (map.m_len > DIO_MAX_BLOCKS)
3474			map.m_len = DIO_MAX_BLOCKS;
3475		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3476retry:
3477		/*
3478		 * Either we allocate blocks and then we don't get unwritten
3479		 * extent so we have reserved enough credits, or the blocks
3480		 * are already allocated and unwritten and in that case
3481		 * extent conversion fits in the credits as well.
3482		 */
3483		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3484					    dio_credits);
3485		if (IS_ERR(handle))
3486			return PTR_ERR(handle);
3487
3488		ret = ext4_map_blocks(handle, inode, &map,
3489				      EXT4_GET_BLOCKS_CREATE_ZERO);
3490		if (ret < 0) {
3491			ext4_journal_stop(handle);
3492			if (ret == -ENOSPC &&
3493			    ext4_should_retry_alloc(inode->i_sb, &retries))
3494				goto retry;
3495			return ret;
3496		}
3497
3498		/*
3499		 * If we added blocks beyond i_size, we need to make sure they
3500		 * will get truncated if we crash before updating i_size in
3501		 * ext4_iomap_end(). For faults we don't need to do that (and
3502		 * even cannot because for orphan list operations inode_lock is
3503		 * required) - if we happen to instantiate block beyond i_size,
3504		 * it is because we race with truncate which has already added
3505		 * the inode to the orphan list.
3506		 */
3507		if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3508		    (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3509			int err;
3510
3511			err = ext4_orphan_add(handle, inode);
3512			if (err < 0) {
3513				ext4_journal_stop(handle);
3514				return err;
3515			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3516		}
3517		ext4_journal_stop(handle);
3518	} else {
3519		ret = ext4_map_blocks(NULL, inode, &map, 0);
3520		if (ret < 0)
3521			return ret;
3522	}
3523
3524	iomap->flags = 0;
3525	if (ext4_inode_datasync_dirty(inode))
3526		iomap->flags |= IOMAP_F_DIRTY;
3527	iomap->bdev = inode->i_sb->s_bdev;
3528	iomap->dax_dev = sbi->s_daxdev;
3529	iomap->offset = (u64)first_block << blkbits;
3530	iomap->length = (u64)map.m_len << blkbits;
3531
3532	if (ret == 0) {
3533		iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
3534		iomap->addr = IOMAP_NULL_ADDR;
3535	} else {
3536		if (map.m_flags & EXT4_MAP_MAPPED) {
3537			iomap->type = IOMAP_MAPPED;
3538		} else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3539			iomap->type = IOMAP_UNWRITTEN;
3540		} else {
3541			WARN_ON_ONCE(1);
3542			return -EIO;
3543		}
3544		iomap->addr = (u64)map.m_pblk << blkbits;
3545	}
3546
3547	if (map.m_flags & EXT4_MAP_NEW)
3548		iomap->flags |= IOMAP_F_NEW;
3549
3550	return 0;
3551}
3552
3553static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3554			  ssize_t written, unsigned flags, struct iomap *iomap)
 
3555{
3556	int ret = 0;
3557	handle_t *handle;
3558	int blkbits = inode->i_blkbits;
3559	bool truncate = false;
3560
3561	if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3562		return 0;
3563
3564	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3565	if (IS_ERR(handle)) {
3566		ret = PTR_ERR(handle);
3567		goto orphan_del;
3568	}
3569	if (ext4_update_inode_size(inode, offset + written))
3570		ext4_mark_inode_dirty(handle, inode);
3571	/*
3572	 * We may need to truncate allocated but not written blocks beyond EOF.
 
3573	 */
3574	if (iomap->offset + iomap->length > 
3575	    ALIGN(inode->i_size, 1 << blkbits)) {
3576		ext4_lblk_t written_blk, end_blk;
 
 
3577
3578		written_blk = (offset + written) >> blkbits;
3579		end_blk = (offset + length) >> blkbits;
3580		if (written_blk < end_blk && ext4_can_truncate(inode))
3581			truncate = true;
3582	}
3583	/*
3584	 * Remove inode from orphan list if we were extending a inode and
3585	 * everything went fine.
 
 
 
3586	 */
3587	if (!truncate && inode->i_nlink &&
3588	    !list_empty(&EXT4_I(inode)->i_orphan))
3589		ext4_orphan_del(handle, inode);
3590	ext4_journal_stop(handle);
3591	if (truncate) {
3592		ext4_truncate_failed_write(inode);
3593orphan_del:
3594		/*
3595		 * If truncate failed early the inode might still be on the
3596		 * orphan list; we need to make sure the inode is removed from
3597		 * the orphan list in that case.
3598		 */
3599		if (inode->i_nlink)
3600			ext4_orphan_del(NULL, inode);
3601	}
3602	return ret;
3603}
3604
3605const struct iomap_ops ext4_iomap_ops = {
3606	.iomap_begin		= ext4_iomap_begin,
3607	.iomap_end		= ext4_iomap_end,
3608};
3609
3610static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3611			    ssize_t size, void *private)
 
 
 
 
 
3612{
3613        ext4_io_end_t *io_end = private;
 
3614
3615	/* if not async direct IO just return */
3616	if (!io_end)
3617		return 0;
3618
3619	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3620		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3621		  io_end, io_end->inode->i_ino, iocb, offset, size);
3622
3623	/*
3624	 * Error during AIO DIO. We cannot convert unwritten extents as the
3625	 * data was not written. Just clear the unwritten flag and drop io_end.
3626	 */
3627	if (size <= 0) {
3628		ext4_clear_io_unwritten_flag(io_end);
3629		size = 0;
3630	}
3631	io_end->offset = offset;
3632	io_end->size = size;
3633	ext4_put_io_end(io_end);
3634
3635	return 0;
 
 
 
3636}
3637
3638/*
3639 * Handling of direct IO writes.
3640 *
3641 * For ext4 extent files, ext4 will do direct-io write even to holes,
3642 * preallocated extents, and those write extend the file, no need to
3643 * fall back to buffered IO.
3644 *
3645 * For holes, we fallocate those blocks, mark them as unwritten
3646 * If those blocks were preallocated, we mark sure they are split, but
3647 * still keep the range to write as unwritten.
3648 *
3649 * The unwritten extents will be converted to written when DIO is completed.
3650 * For async direct IO, since the IO may still pending when return, we
3651 * set up an end_io call back function, which will do the conversion
3652 * when async direct IO completed.
3653 *
3654 * If the O_DIRECT write will extend the file then add this inode to the
3655 * orphan list.  So recovery will truncate it back to the original size
3656 * if the machine crashes during the write.
3657 *
3658 */
3659static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3660{
3661	struct file *file = iocb->ki_filp;
3662	struct inode *inode = file->f_mapping->host;
3663	struct ext4_inode_info *ei = EXT4_I(inode);
3664	ssize_t ret;
3665	loff_t offset = iocb->ki_pos;
3666	size_t count = iov_iter_count(iter);
3667	int overwrite = 0;
3668	get_block_t *get_block_func = NULL;
3669	int dio_flags = 0;
3670	loff_t final_size = offset + count;
3671	int orphan = 0;
3672	handle_t *handle;
3673
3674	if (final_size > inode->i_size || final_size > ei->i_disksize) {
3675		/* Credits for sb + inode write */
3676		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3677		if (IS_ERR(handle)) {
3678			ret = PTR_ERR(handle);
3679			goto out;
3680		}
3681		ret = ext4_orphan_add(handle, inode);
3682		if (ret) {
3683			ext4_journal_stop(handle);
3684			goto out;
3685		}
3686		orphan = 1;
3687		ext4_update_i_disksize(inode, inode->i_size);
3688		ext4_journal_stop(handle);
3689	}
3690
3691	BUG_ON(iocb->private == NULL);
3692
3693	/*
3694	 * Make all waiters for direct IO properly wait also for extent
3695	 * conversion. This also disallows race between truncate() and
3696	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3697	 */
3698	inode_dio_begin(inode);
3699
3700	/* If we do a overwrite dio, i_mutex locking can be released */
3701	overwrite = *((int *)iocb->private);
3702
3703	if (overwrite)
3704		inode_unlock(inode);
3705
3706	/*
3707	 * For extent mapped files we could direct write to holes and fallocate.
3708	 *
3709	 * Allocated blocks to fill the hole are marked as unwritten to prevent
3710	 * parallel buffered read to expose the stale data before DIO complete
3711	 * the data IO.
3712	 *
3713	 * As to previously fallocated extents, ext4 get_block will just simply
3714	 * mark the buffer mapped but still keep the extents unwritten.
3715	 *
3716	 * For non AIO case, we will convert those unwritten extents to written
3717	 * after return back from blockdev_direct_IO. That way we save us from
3718	 * allocating io_end structure and also the overhead of offloading
3719	 * the extent convertion to a workqueue.
3720	 *
3721	 * For async DIO, the conversion needs to be deferred when the
3722	 * IO is completed. The ext4 end_io callback function will be
3723	 * called to take care of the conversion work.  Here for async
3724	 * case, we allocate an io_end structure to hook to the iocb.
3725	 */
3726	iocb->private = NULL;
3727	if (overwrite)
3728		get_block_func = ext4_dio_get_block_overwrite;
3729	else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3730		   round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3731		get_block_func = ext4_dio_get_block;
3732		dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3733	} else if (is_sync_kiocb(iocb)) {
3734		get_block_func = ext4_dio_get_block_unwritten_sync;
3735		dio_flags = DIO_LOCKING;
3736	} else {
3737		get_block_func = ext4_dio_get_block_unwritten_async;
3738		dio_flags = DIO_LOCKING;
3739	}
3740	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3741				   get_block_func, ext4_end_io_dio, NULL,
3742				   dio_flags);
3743
3744	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3745						EXT4_STATE_DIO_UNWRITTEN)) {
3746		int err;
3747		/*
3748		 * for non AIO case, since the IO is already
3749		 * completed, we could do the conversion right here
3750		 */
3751		err = ext4_convert_unwritten_extents(NULL, inode,
3752						     offset, ret);
3753		if (err < 0)
3754			ret = err;
3755		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3756	}
3757
3758	inode_dio_end(inode);
3759	/* take i_mutex locking again if we do a ovewrite dio */
3760	if (overwrite)
3761		inode_lock(inode);
3762
3763	if (ret < 0 && final_size > inode->i_size)
3764		ext4_truncate_failed_write(inode);
3765
3766	/* Handle extending of i_size after direct IO write */
3767	if (orphan) {
3768		int err;
3769
3770		/* Credits for sb + inode write */
3771		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3772		if (IS_ERR(handle)) {
3773			/*
3774			 * We wrote the data but cannot extend
3775			 * i_size. Bail out. In async io case, we do
3776			 * not return error here because we have
3777			 * already submmitted the corresponding
3778			 * bio. Returning error here makes the caller
3779			 * think that this IO is done and failed
3780			 * resulting in race with bio's completion
3781			 * handler.
3782			 */
3783			if (!ret)
3784				ret = PTR_ERR(handle);
3785			if (inode->i_nlink)
3786				ext4_orphan_del(NULL, inode);
3787
3788			goto out;
3789		}
3790		if (inode->i_nlink)
3791			ext4_orphan_del(handle, inode);
3792		if (ret > 0) {
3793			loff_t end = offset + ret;
3794			if (end > inode->i_size || end > ei->i_disksize) {
3795				ext4_update_i_disksize(inode, end);
3796				if (end > inode->i_size)
3797					i_size_write(inode, end);
3798				/*
3799				 * We're going to return a positive `ret'
3800				 * here due to non-zero-length I/O, so there's
3801				 * no way of reporting error returns from
3802				 * ext4_mark_inode_dirty() to userspace.  So
3803				 * ignore it.
3804				 */
3805				ext4_mark_inode_dirty(handle, inode);
3806			}
3807		}
3808		err = ext4_journal_stop(handle);
3809		if (ret == 0)
3810			ret = err;
3811	}
3812out:
3813	return ret;
3814}
3815
3816static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3817{
3818	struct address_space *mapping = iocb->ki_filp->f_mapping;
3819	struct inode *inode = mapping->host;
3820	size_t count = iov_iter_count(iter);
3821	ssize_t ret;
3822
3823	/*
3824	 * Shared inode_lock is enough for us - it protects against concurrent
3825	 * writes & truncates and since we take care of writing back page cache,
3826	 * we are protected against page writeback as well.
3827	 */
3828	inode_lock_shared(inode);
3829	ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3830					   iocb->ki_pos + count - 1);
3831	if (ret)
3832		goto out_unlock;
3833	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3834				   iter, ext4_dio_get_block, NULL, NULL, 0);
3835out_unlock:
3836	inode_unlock_shared(inode);
3837	return ret;
3838}
3839
3840static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3841{
3842	struct file *file = iocb->ki_filp;
3843	struct inode *inode = file->f_mapping->host;
3844	size_t count = iov_iter_count(iter);
3845	loff_t offset = iocb->ki_pos;
3846	ssize_t ret;
3847
3848#ifdef CONFIG_EXT4_FS_ENCRYPTION
3849	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3850		return 0;
3851#endif
3852
3853	/*
3854	 * If we are doing data journalling we don't support O_DIRECT
3855	 */
3856	if (ext4_should_journal_data(inode))
3857		return 0;
3858
3859	/* Let buffer I/O handle the inline data case. */
3860	if (ext4_has_inline_data(inode))
3861		return 0;
 
3862
3863	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3864	if (iov_iter_rw(iter) == READ)
3865		ret = ext4_direct_IO_read(iocb, iter);
3866	else
3867		ret = ext4_direct_IO_write(iocb, iter);
3868	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3869	return ret;
3870}
3871
 
 
 
 
3872/*
3873 * Pages can be marked dirty completely asynchronously from ext4's journalling
3874 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3875 * much here because ->set_page_dirty is called under VFS locks.  The page is
3876 * not necessarily locked.
 
3877 *
3878 * We cannot just dirty the page and leave attached buffers clean, because the
3879 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3880 * or jbddirty because all the journalling code will explode.
3881 *
3882 * So what we do is to mark the page "pending dirty" and next time writepage
3883 * is called, propagate that into the buffers appropriately.
3884 */
3885static int ext4_journalled_set_page_dirty(struct page *page)
 
 
 
 
 
 
 
 
3886{
3887	SetPageChecked(page);
3888	return __set_page_dirty_nobuffers(page);
 
3889}
3890
3891static int ext4_set_page_dirty(struct page *page)
 
3892{
3893	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3894	WARN_ON_ONCE(!page_has_buffers(page));
3895	return __set_page_dirty_buffers(page);
3896}
3897
3898static const struct address_space_operations ext4_aops = {
3899	.readpage		= ext4_readpage,
3900	.readpages		= ext4_readpages,
3901	.writepage		= ext4_writepage,
3902	.writepages		= ext4_writepages,
3903	.write_begin		= ext4_write_begin,
3904	.write_end		= ext4_write_end,
3905	.set_page_dirty		= ext4_set_page_dirty,
3906	.bmap			= ext4_bmap,
3907	.invalidatepage		= ext4_invalidatepage,
3908	.releasepage		= ext4_releasepage,
3909	.direct_IO		= ext4_direct_IO,
3910	.migratepage		= buffer_migrate_page,
3911	.is_partially_uptodate  = block_is_partially_uptodate,
3912	.error_remove_page	= generic_error_remove_page,
 
3913};
3914
3915static const struct address_space_operations ext4_journalled_aops = {
3916	.readpage		= ext4_readpage,
3917	.readpages		= ext4_readpages,
3918	.writepage		= ext4_writepage,
3919	.writepages		= ext4_writepages,
3920	.write_begin		= ext4_write_begin,
3921	.write_end		= ext4_journalled_write_end,
3922	.set_page_dirty		= ext4_journalled_set_page_dirty,
3923	.bmap			= ext4_bmap,
3924	.invalidatepage		= ext4_journalled_invalidatepage,
3925	.releasepage		= ext4_releasepage,
3926	.direct_IO		= ext4_direct_IO,
 
3927	.is_partially_uptodate  = block_is_partially_uptodate,
3928	.error_remove_page	= generic_error_remove_page,
 
3929};
3930
3931static const struct address_space_operations ext4_da_aops = {
3932	.readpage		= ext4_readpage,
3933	.readpages		= ext4_readpages,
3934	.writepage		= ext4_writepage,
3935	.writepages		= ext4_writepages,
3936	.write_begin		= ext4_da_write_begin,
3937	.write_end		= ext4_da_write_end,
3938	.set_page_dirty		= ext4_set_page_dirty,
3939	.bmap			= ext4_bmap,
3940	.invalidatepage		= ext4_da_invalidatepage,
3941	.releasepage		= ext4_releasepage,
3942	.direct_IO		= ext4_direct_IO,
3943	.migratepage		= buffer_migrate_page,
3944	.is_partially_uptodate  = block_is_partially_uptodate,
3945	.error_remove_page	= generic_error_remove_page,
 
3946};
3947
3948static const struct address_space_operations ext4_dax_aops = {
3949	.writepages		= ext4_dax_writepages,
3950	.direct_IO		= noop_direct_IO,
3951	.set_page_dirty		= noop_set_page_dirty,
3952	.invalidatepage		= noop_invalidatepage,
 
3953};
3954
3955void ext4_set_aops(struct inode *inode)
3956{
3957	switch (ext4_inode_journal_mode(inode)) {
3958	case EXT4_INODE_ORDERED_DATA_MODE:
3959	case EXT4_INODE_WRITEBACK_DATA_MODE:
3960		break;
3961	case EXT4_INODE_JOURNAL_DATA_MODE:
3962		inode->i_mapping->a_ops = &ext4_journalled_aops;
3963		return;
3964	default:
3965		BUG();
3966	}
3967	if (IS_DAX(inode))
3968		inode->i_mapping->a_ops = &ext4_dax_aops;
3969	else if (test_opt(inode->i_sb, DELALLOC))
3970		inode->i_mapping->a_ops = &ext4_da_aops;
3971	else
3972		inode->i_mapping->a_ops = &ext4_aops;
3973}
3974
3975static int __ext4_block_zero_page_range(handle_t *handle,
3976		struct address_space *mapping, loff_t from, loff_t length)
3977{
3978	ext4_fsblk_t index = from >> PAGE_SHIFT;
3979	unsigned offset = from & (PAGE_SIZE-1);
3980	unsigned blocksize, pos;
3981	ext4_lblk_t iblock;
3982	struct inode *inode = mapping->host;
3983	struct buffer_head *bh;
3984	struct page *page;
3985	int err = 0;
3986
3987	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3988				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3989	if (!page)
3990		return -ENOMEM;
3991
3992	blocksize = inode->i_sb->s_blocksize;
3993
3994	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3995
3996	if (!page_has_buffers(page))
3997		create_empty_buffers(page, blocksize, 0);
3998
3999	/* Find the buffer that contains "offset" */
4000	bh = page_buffers(page);
4001	pos = blocksize;
4002	while (offset >= pos) {
4003		bh = bh->b_this_page;
4004		iblock++;
4005		pos += blocksize;
4006	}
4007	if (buffer_freed(bh)) {
4008		BUFFER_TRACE(bh, "freed: skip");
4009		goto unlock;
4010	}
4011	if (!buffer_mapped(bh)) {
4012		BUFFER_TRACE(bh, "unmapped");
4013		ext4_get_block(inode, iblock, bh, 0);
4014		/* unmapped? It's a hole - nothing to do */
4015		if (!buffer_mapped(bh)) {
4016			BUFFER_TRACE(bh, "still unmapped");
4017			goto unlock;
4018		}
4019	}
4020
4021	/* Ok, it's mapped. Make sure it's up-to-date */
4022	if (PageUptodate(page))
4023		set_buffer_uptodate(bh);
4024
4025	if (!buffer_uptodate(bh)) {
4026		err = -EIO;
4027		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4028		wait_on_buffer(bh);
4029		/* Uhhuh. Read error. Complain and punt. */
4030		if (!buffer_uptodate(bh))
4031			goto unlock;
4032		if (S_ISREG(inode->i_mode) &&
4033		    ext4_encrypted_inode(inode)) {
4034			/* We expect the key to be set. */
4035			BUG_ON(!fscrypt_has_encryption_key(inode));
4036			BUG_ON(blocksize != PAGE_SIZE);
4037			WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
4038						page, PAGE_SIZE, 0, page->index));
 
 
 
4039		}
4040	}
4041	if (ext4_should_journal_data(inode)) {
4042		BUFFER_TRACE(bh, "get write access");
4043		err = ext4_journal_get_write_access(handle, bh);
 
4044		if (err)
4045			goto unlock;
4046	}
4047	zero_user(page, offset, length);
4048	BUFFER_TRACE(bh, "zeroed end of block");
4049
4050	if (ext4_should_journal_data(inode)) {
4051		err = ext4_handle_dirty_metadata(handle, inode, bh);
4052	} else {
4053		err = 0;
4054		mark_buffer_dirty(bh);
4055		if (ext4_should_order_data(inode))
4056			err = ext4_jbd2_inode_add_write(handle, inode);
 
4057	}
4058
4059unlock:
4060	unlock_page(page);
4061	put_page(page);
4062	return err;
4063}
4064
4065/*
4066 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4067 * starting from file offset 'from'.  The range to be zero'd must
4068 * be contained with in one block.  If the specified range exceeds
4069 * the end of the block it will be shortened to end of the block
4070 * that cooresponds to 'from'
4071 */
4072static int ext4_block_zero_page_range(handle_t *handle,
4073		struct address_space *mapping, loff_t from, loff_t length)
4074{
4075	struct inode *inode = mapping->host;
4076	unsigned offset = from & (PAGE_SIZE-1);
4077	unsigned blocksize = inode->i_sb->s_blocksize;
4078	unsigned max = blocksize - (offset & (blocksize - 1));
4079
4080	/*
4081	 * correct length if it does not fall between
4082	 * 'from' and the end of the block
4083	 */
4084	if (length > max || length < 0)
4085		length = max;
4086
4087	if (IS_DAX(inode)) {
4088		return iomap_zero_range(inode, from, length, NULL,
4089					&ext4_iomap_ops);
4090	}
4091	return __ext4_block_zero_page_range(handle, mapping, from, length);
4092}
4093
4094/*
4095 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4096 * up to the end of the block which corresponds to `from'.
4097 * This required during truncate. We need to physically zero the tail end
4098 * of that block so it doesn't yield old data if the file is later grown.
4099 */
4100static int ext4_block_truncate_page(handle_t *handle,
4101		struct address_space *mapping, loff_t from)
4102{
4103	unsigned offset = from & (PAGE_SIZE-1);
4104	unsigned length;
4105	unsigned blocksize;
4106	struct inode *inode = mapping->host;
4107
4108	/* If we are processing an encrypted inode during orphan list handling */
4109	if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4110		return 0;
4111
4112	blocksize = inode->i_sb->s_blocksize;
4113	length = blocksize - (offset & (blocksize - 1));
4114
4115	return ext4_block_zero_page_range(handle, mapping, from, length);
4116}
4117
4118int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4119			     loff_t lstart, loff_t length)
4120{
4121	struct super_block *sb = inode->i_sb;
4122	struct address_space *mapping = inode->i_mapping;
4123	unsigned partial_start, partial_end;
4124	ext4_fsblk_t start, end;
4125	loff_t byte_end = (lstart + length - 1);
4126	int err = 0;
4127
4128	partial_start = lstart & (sb->s_blocksize - 1);
4129	partial_end = byte_end & (sb->s_blocksize - 1);
4130
4131	start = lstart >> sb->s_blocksize_bits;
4132	end = byte_end >> sb->s_blocksize_bits;
4133
4134	/* Handle partial zero within the single block */
4135	if (start == end &&
4136	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
4137		err = ext4_block_zero_page_range(handle, mapping,
4138						 lstart, length);
4139		return err;
4140	}
4141	/* Handle partial zero out on the start of the range */
4142	if (partial_start) {
4143		err = ext4_block_zero_page_range(handle, mapping,
4144						 lstart, sb->s_blocksize);
4145		if (err)
4146			return err;
4147	}
4148	/* Handle partial zero out on the end of the range */
4149	if (partial_end != sb->s_blocksize - 1)
4150		err = ext4_block_zero_page_range(handle, mapping,
4151						 byte_end - partial_end,
4152						 partial_end + 1);
4153	return err;
4154}
4155
4156int ext4_can_truncate(struct inode *inode)
4157{
4158	if (S_ISREG(inode->i_mode))
4159		return 1;
4160	if (S_ISDIR(inode->i_mode))
4161		return 1;
4162	if (S_ISLNK(inode->i_mode))
4163		return !ext4_inode_is_fast_symlink(inode);
4164	return 0;
4165}
4166
4167/*
4168 * We have to make sure i_disksize gets properly updated before we truncate
4169 * page cache due to hole punching or zero range. Otherwise i_disksize update
4170 * can get lost as it may have been postponed to submission of writeback but
4171 * that will never happen after we truncate page cache.
4172 */
4173int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4174				      loff_t len)
4175{
4176	handle_t *handle;
 
 
4177	loff_t size = i_size_read(inode);
4178
4179	WARN_ON(!inode_is_locked(inode));
4180	if (offset > size || offset + len < size)
4181		return 0;
4182
4183	if (EXT4_I(inode)->i_disksize >= size)
4184		return 0;
4185
4186	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4187	if (IS_ERR(handle))
4188		return PTR_ERR(handle);
4189	ext4_update_i_disksize(inode, size);
4190	ext4_mark_inode_dirty(handle, inode);
4191	ext4_journal_stop(handle);
4192
4193	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4194}
4195
4196/*
4197 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4198 * associated with the given offset and length
4199 *
4200 * @inode:  File inode
4201 * @offset: The offset where the hole will begin
4202 * @len:    The length of the hole
4203 *
4204 * Returns: 0 on success or negative on failure
4205 */
4206
4207int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4208{
 
4209	struct super_block *sb = inode->i_sb;
4210	ext4_lblk_t first_block, stop_block;
4211	struct address_space *mapping = inode->i_mapping;
4212	loff_t first_block_offset, last_block_offset;
 
4213	handle_t *handle;
4214	unsigned int credits;
4215	int ret = 0;
4216
4217	if (!S_ISREG(inode->i_mode))
4218		return -EOPNOTSUPP;
4219
4220	trace_ext4_punch_hole(inode, offset, length, 0);
4221
4222	/*
4223	 * Write out all dirty pages to avoid race conditions
4224	 * Then release them.
4225	 */
4226	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4227		ret = filemap_write_and_wait_range(mapping, offset,
4228						   offset + length - 1);
4229		if (ret)
4230			return ret;
4231	}
4232
4233	inode_lock(inode);
4234
4235	/* No need to punch hole beyond i_size */
4236	if (offset >= inode->i_size)
4237		goto out_mutex;
4238
4239	/*
4240	 * If the hole extends beyond i_size, set the hole
4241	 * to end after the page that contains i_size
4242	 */
4243	if (offset + length > inode->i_size) {
4244		length = inode->i_size +
4245		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4246		   offset;
4247	}
4248
 
 
 
 
 
 
 
 
4249	if (offset & (sb->s_blocksize - 1) ||
4250	    (offset + length) & (sb->s_blocksize - 1)) {
4251		/*
4252		 * Attach jinode to inode for jbd2 if we do any zeroing of
4253		 * partial block
4254		 */
4255		ret = ext4_inode_attach_jinode(inode);
4256		if (ret < 0)
4257			goto out_mutex;
4258
4259	}
4260
4261	/* Wait all existing dio workers, newcomers will block on i_mutex */
4262	inode_dio_wait(inode);
4263
 
 
 
 
4264	/*
4265	 * Prevent page faults from reinstantiating pages we have released from
4266	 * page cache.
4267	 */
4268	down_write(&EXT4_I(inode)->i_mmap_sem);
 
 
 
 
 
4269	first_block_offset = round_up(offset, sb->s_blocksize);
4270	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4271
4272	/* Now release the pages and zero block aligned part of pages*/
4273	if (last_block_offset > first_block_offset) {
4274		ret = ext4_update_disksize_before_punch(inode, offset, length);
4275		if (ret)
4276			goto out_dio;
4277		truncate_pagecache_range(inode, first_block_offset,
4278					 last_block_offset);
4279	}
4280
4281	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4282		credits = ext4_writepage_trans_blocks(inode);
4283	else
4284		credits = ext4_blocks_for_truncate(inode);
4285	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4286	if (IS_ERR(handle)) {
4287		ret = PTR_ERR(handle);
4288		ext4_std_error(sb, ret);
4289		goto out_dio;
4290	}
4291
4292	ret = ext4_zero_partial_blocks(handle, inode, offset,
4293				       length);
4294	if (ret)
4295		goto out_stop;
4296
4297	first_block = (offset + sb->s_blocksize - 1) >>
4298		EXT4_BLOCK_SIZE_BITS(sb);
4299	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4300
4301	/* If there are no blocks to remove, return now */
4302	if (first_block >= stop_block)
4303		goto out_stop;
4304
4305	down_write(&EXT4_I(inode)->i_data_sem);
4306	ext4_discard_preallocations(inode);
4307
4308	ret = ext4_es_remove_extent(inode, first_block,
4309				    stop_block - first_block);
4310	if (ret) {
4311		up_write(&EXT4_I(inode)->i_data_sem);
4312		goto out_stop;
4313	}
4314
4315	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4316		ret = ext4_ext_remove_space(inode, first_block,
4317					    stop_block - 1);
4318	else
4319		ret = ext4_ind_remove_space(handle, inode, first_block,
4320					    stop_block);
4321
4322	up_write(&EXT4_I(inode)->i_data_sem);
 
 
4323	if (IS_SYNC(inode))
4324		ext4_handle_sync(handle);
4325
4326	inode->i_mtime = inode->i_ctime = current_time(inode);
4327	ext4_mark_inode_dirty(handle, inode);
 
 
4328	if (ret >= 0)
4329		ext4_update_inode_fsync_trans(handle, inode, 1);
4330out_stop:
4331	ext4_journal_stop(handle);
4332out_dio:
4333	up_write(&EXT4_I(inode)->i_mmap_sem);
4334out_mutex:
4335	inode_unlock(inode);
4336	return ret;
4337}
4338
4339int ext4_inode_attach_jinode(struct inode *inode)
4340{
4341	struct ext4_inode_info *ei = EXT4_I(inode);
4342	struct jbd2_inode *jinode;
4343
4344	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4345		return 0;
4346
4347	jinode = jbd2_alloc_inode(GFP_KERNEL);
4348	spin_lock(&inode->i_lock);
4349	if (!ei->jinode) {
4350		if (!jinode) {
4351			spin_unlock(&inode->i_lock);
4352			return -ENOMEM;
4353		}
4354		ei->jinode = jinode;
4355		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4356		jinode = NULL;
4357	}
4358	spin_unlock(&inode->i_lock);
4359	if (unlikely(jinode != NULL))
4360		jbd2_free_inode(jinode);
4361	return 0;
4362}
4363
4364/*
4365 * ext4_truncate()
4366 *
4367 * We block out ext4_get_block() block instantiations across the entire
4368 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4369 * simultaneously on behalf of the same inode.
4370 *
4371 * As we work through the truncate and commit bits of it to the journal there
4372 * is one core, guiding principle: the file's tree must always be consistent on
4373 * disk.  We must be able to restart the truncate after a crash.
4374 *
4375 * The file's tree may be transiently inconsistent in memory (although it
4376 * probably isn't), but whenever we close off and commit a journal transaction,
4377 * the contents of (the filesystem + the journal) must be consistent and
4378 * restartable.  It's pretty simple, really: bottom up, right to left (although
4379 * left-to-right works OK too).
4380 *
4381 * Note that at recovery time, journal replay occurs *before* the restart of
4382 * truncate against the orphan inode list.
4383 *
4384 * The committed inode has the new, desired i_size (which is the same as
4385 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4386 * that this inode's truncate did not complete and it will again call
4387 * ext4_truncate() to have another go.  So there will be instantiated blocks
4388 * to the right of the truncation point in a crashed ext4 filesystem.  But
4389 * that's fine - as long as they are linked from the inode, the post-crash
4390 * ext4_truncate() run will find them and release them.
4391 */
4392int ext4_truncate(struct inode *inode)
4393{
4394	struct ext4_inode_info *ei = EXT4_I(inode);
4395	unsigned int credits;
4396	int err = 0;
4397	handle_t *handle;
4398	struct address_space *mapping = inode->i_mapping;
4399
4400	/*
4401	 * There is a possibility that we're either freeing the inode
4402	 * or it's a completely new inode. In those cases we might not
4403	 * have i_mutex locked because it's not necessary.
4404	 */
4405	if (!(inode->i_state & (I_NEW|I_FREEING)))
4406		WARN_ON(!inode_is_locked(inode));
4407	trace_ext4_truncate_enter(inode);
4408
4409	if (!ext4_can_truncate(inode))
4410		return 0;
4411
4412	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4413
4414	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4415		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4416
4417	if (ext4_has_inline_data(inode)) {
4418		int has_inline = 1;
4419
4420		err = ext4_inline_data_truncate(inode, &has_inline);
4421		if (err)
4422			return err;
4423		if (has_inline)
4424			return 0;
4425	}
4426
4427	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4428	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4429		if (ext4_inode_attach_jinode(inode) < 0)
4430			return 0;
 
4431	}
4432
4433	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4434		credits = ext4_writepage_trans_blocks(inode);
4435	else
4436		credits = ext4_blocks_for_truncate(inode);
4437
4438	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4439	if (IS_ERR(handle))
4440		return PTR_ERR(handle);
 
 
4441
4442	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4443		ext4_block_truncate_page(handle, mapping, inode->i_size);
4444
4445	/*
4446	 * We add the inode to the orphan list, so that if this
4447	 * truncate spans multiple transactions, and we crash, we will
4448	 * resume the truncate when the filesystem recovers.  It also
4449	 * marks the inode dirty, to catch the new size.
4450	 *
4451	 * Implication: the file must always be in a sane, consistent
4452	 * truncatable state while each transaction commits.
4453	 */
4454	err = ext4_orphan_add(handle, inode);
4455	if (err)
4456		goto out_stop;
4457
4458	down_write(&EXT4_I(inode)->i_data_sem);
4459
4460	ext4_discard_preallocations(inode);
4461
4462	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4463		err = ext4_ext_truncate(handle, inode);
4464	else
4465		ext4_ind_truncate(handle, inode);
4466
4467	up_write(&ei->i_data_sem);
4468	if (err)
4469		goto out_stop;
4470
4471	if (IS_SYNC(inode))
4472		ext4_handle_sync(handle);
4473
4474out_stop:
4475	/*
4476	 * If this was a simple ftruncate() and the file will remain alive,
4477	 * then we need to clear up the orphan record which we created above.
4478	 * However, if this was a real unlink then we were called by
4479	 * ext4_evict_inode(), and we allow that function to clean up the
4480	 * orphan info for us.
4481	 */
4482	if (inode->i_nlink)
4483		ext4_orphan_del(handle, inode);
4484
4485	inode->i_mtime = inode->i_ctime = current_time(inode);
4486	ext4_mark_inode_dirty(handle, inode);
 
 
4487	ext4_journal_stop(handle);
4488
 
4489	trace_ext4_truncate_exit(inode);
4490	return err;
4491}
4492
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4493/*
4494 * ext4_get_inode_loc returns with an extra refcount against the inode's
4495 * underlying buffer_head on success. If 'in_mem' is true, we have all
4496 * data in memory that is needed to recreate the on-disk version of this
4497 * inode.
4498 */
4499static int __ext4_get_inode_loc(struct inode *inode,
4500				struct ext4_iloc *iloc, int in_mem)
 
4501{
4502	struct ext4_group_desc	*gdp;
4503	struct buffer_head	*bh;
4504	struct super_block	*sb = inode->i_sb;
4505	ext4_fsblk_t		block;
 
4506	int			inodes_per_block, inode_offset;
4507
4508	iloc->bh = NULL;
4509	if (!ext4_valid_inum(sb, inode->i_ino))
 
4510		return -EFSCORRUPTED;
4511
4512	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4513	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4514	if (!gdp)
4515		return -EIO;
4516
4517	/*
4518	 * Figure out the offset within the block group inode table
4519	 */
4520	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4521	inode_offset = ((inode->i_ino - 1) %
4522			EXT4_INODES_PER_GROUP(sb));
4523	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4524	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4525
 
 
 
 
 
 
 
 
 
4526	bh = sb_getblk(sb, block);
4527	if (unlikely(!bh))
4528		return -ENOMEM;
4529	if (!buffer_uptodate(bh)) {
4530		lock_buffer(bh);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4531
4532		/*
4533		 * If the buffer has the write error flag, we have failed
4534		 * to write out another inode in the same block.  In this
4535		 * case, we don't have to read the block because we may
4536		 * read the old inode data successfully.
4537		 */
4538		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4539			set_buffer_uptodate(bh);
4540
4541		if (buffer_uptodate(bh)) {
4542			/* someone brought it uptodate while we waited */
4543			unlock_buffer(bh);
4544			goto has_buffer;
4545		}
4546
4547		/*
4548		 * If we have all information of the inode in memory and this
4549		 * is the only valid inode in the block, we need not read the
4550		 * block.
4551		 */
4552		if (in_mem) {
4553			struct buffer_head *bitmap_bh;
4554			int i, start;
4555
4556			start = inode_offset & ~(inodes_per_block - 1);
4557
4558			/* Is the inode bitmap in cache? */
4559			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4560			if (unlikely(!bitmap_bh))
4561				goto make_io;
4562
4563			/*
4564			 * If the inode bitmap isn't in cache then the
4565			 * optimisation may end up performing two reads instead
4566			 * of one, so skip it.
4567			 */
4568			if (!buffer_uptodate(bitmap_bh)) {
4569				brelse(bitmap_bh);
4570				goto make_io;
4571			}
4572			for (i = start; i < start + inodes_per_block; i++) {
4573				if (i == inode_offset)
4574					continue;
4575				if (ext4_test_bit(i, bitmap_bh->b_data))
4576					break;
4577			}
4578			brelse(bitmap_bh);
4579			if (i == start + inodes_per_block) {
4580				/* all other inodes are free, so skip I/O */
4581				memset(bh->b_data, 0, bh->b_size);
4582				set_buffer_uptodate(bh);
4583				unlock_buffer(bh);
4584				goto has_buffer;
4585			}
4586		}
4587
4588make_io:
4589		/*
4590		 * If we need to do any I/O, try to pre-readahead extra
4591		 * blocks from the inode table.
4592		 */
4593		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4594			ext4_fsblk_t b, end, table;
4595			unsigned num;
4596			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4597
4598			table = ext4_inode_table(sb, gdp);
4599			/* s_inode_readahead_blks is always a power of 2 */
4600			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4601			if (table > b)
4602				b = table;
4603			end = b + ra_blks;
4604			num = EXT4_INODES_PER_GROUP(sb);
4605			if (ext4_has_group_desc_csum(sb))
4606				num -= ext4_itable_unused_count(sb, gdp);
4607			table += num / inodes_per_block;
4608			if (end > table)
4609				end = table;
4610			while (b <= end)
4611				sb_breadahead(sb, b++);
4612		}
 
4613
4614		/*
4615		 * There are other valid inodes in the buffer, this inode
4616		 * has in-inode xattrs, or we don't have this inode in memory.
4617		 * Read the block from disk.
4618		 */
4619		trace_ext4_load_inode(inode);
4620		get_bh(bh);
4621		bh->b_end_io = end_buffer_read_sync;
4622		submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4623		wait_on_buffer(bh);
4624		if (!buffer_uptodate(bh)) {
4625			EXT4_ERROR_INODE_BLOCK(inode, block,
4626					       "unable to read itable block");
4627			brelse(bh);
4628			return -EIO;
4629		}
4630	}
4631has_buffer:
4632	iloc->bh = bh;
4633	return 0;
4634}
4635
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4636int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4637{
4638	/* We have all inode data except xattrs in memory here. */
4639	return __ext4_get_inode_loc(inode, iloc,
4640		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4641}
4642
4643static bool ext4_should_use_dax(struct inode *inode)
4644{
4645	if (!test_opt(inode->i_sb, DAX))
 
 
4646		return false;
4647	if (!S_ISREG(inode->i_mode))
4648		return false;
4649	if (ext4_should_journal_data(inode))
4650		return false;
4651	if (ext4_has_inline_data(inode))
4652		return false;
4653	if (ext4_encrypted_inode(inode))
4654		return false;
4655	return true;
 
 
 
 
 
 
 
4656}
4657
4658void ext4_set_inode_flags(struct inode *inode)
4659{
4660	unsigned int flags = EXT4_I(inode)->i_flags;
4661	unsigned int new_fl = 0;
4662
 
 
4663	if (flags & EXT4_SYNC_FL)
4664		new_fl |= S_SYNC;
4665	if (flags & EXT4_APPEND_FL)
4666		new_fl |= S_APPEND;
4667	if (flags & EXT4_IMMUTABLE_FL)
4668		new_fl |= S_IMMUTABLE;
4669	if (flags & EXT4_NOATIME_FL)
4670		new_fl |= S_NOATIME;
4671	if (flags & EXT4_DIRSYNC_FL)
4672		new_fl |= S_DIRSYNC;
4673	if (ext4_should_use_dax(inode))
 
 
 
 
4674		new_fl |= S_DAX;
 
4675	if (flags & EXT4_ENCRYPT_FL)
4676		new_fl |= S_ENCRYPTED;
 
 
 
 
4677	inode_set_flags(inode, new_fl,
4678			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4679			S_ENCRYPTED);
4680}
4681
4682static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4683				  struct ext4_inode_info *ei)
4684{
4685	blkcnt_t i_blocks ;
4686	struct inode *inode = &(ei->vfs_inode);
4687	struct super_block *sb = inode->i_sb;
4688
4689	if (ext4_has_feature_huge_file(sb)) {
4690		/* we are using combined 48 bit field */
4691		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4692					le32_to_cpu(raw_inode->i_blocks_lo);
4693		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4694			/* i_blocks represent file system block size */
4695			return i_blocks  << (inode->i_blkbits - 9);
4696		} else {
4697			return i_blocks;
4698		}
4699	} else {
4700		return le32_to_cpu(raw_inode->i_blocks_lo);
4701	}
4702}
4703
4704static inline void ext4_iget_extra_inode(struct inode *inode,
4705					 struct ext4_inode *raw_inode,
4706					 struct ext4_inode_info *ei)
4707{
4708	__le32 *magic = (void *)raw_inode +
4709			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4710	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4711	    EXT4_INODE_SIZE(inode->i_sb) &&
4712	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4713		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4714		ext4_find_inline_data_nolock(inode);
4715	} else
4716		EXT4_I(inode)->i_inline_off = 0;
 
4717}
4718
4719int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4720{
4721	if (!ext4_has_feature_project(inode->i_sb))
4722		return -EOPNOTSUPP;
4723	*projid = EXT4_I(inode)->i_projid;
4724	return 0;
4725}
4726
4727struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4728{
4729	struct ext4_iloc iloc;
4730	struct ext4_inode *raw_inode;
4731	struct ext4_inode_info *ei;
 
4732	struct inode *inode;
4733	journal_t *journal = EXT4_SB(sb)->s_journal;
4734	long ret;
4735	loff_t size;
4736	int block;
4737	uid_t i_uid;
4738	gid_t i_gid;
4739	projid_t i_projid;
4740
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4741	inode = iget_locked(sb, ino);
4742	if (!inode)
4743		return ERR_PTR(-ENOMEM);
4744	if (!(inode->i_state & I_NEW))
4745		return inode;
4746
4747	ei = EXT4_I(inode);
4748	iloc.bh = NULL;
4749
4750	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4751	if (ret < 0)
4752		goto bad_inode;
4753	raw_inode = ext4_raw_inode(&iloc);
4754
4755	if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4756		EXT4_ERROR_INODE(inode, "root inode unallocated");
 
4757		ret = -EFSCORRUPTED;
4758		goto bad_inode;
4759	}
4760
 
 
 
 
 
 
4761	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4762		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4763		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4764			EXT4_INODE_SIZE(inode->i_sb) ||
4765		    (ei->i_extra_isize & 3)) {
4766			EXT4_ERROR_INODE(inode,
4767					 "bad extra_isize %u (inode size %u)",
 
4768					 ei->i_extra_isize,
4769					 EXT4_INODE_SIZE(inode->i_sb));
4770			ret = -EFSCORRUPTED;
4771			goto bad_inode;
4772		}
4773	} else
4774		ei->i_extra_isize = 0;
4775
4776	/* Precompute checksum seed for inode metadata */
4777	if (ext4_has_metadata_csum(sb)) {
4778		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4779		__u32 csum;
4780		__le32 inum = cpu_to_le32(inode->i_ino);
4781		__le32 gen = raw_inode->i_generation;
4782		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4783				   sizeof(inum));
4784		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4785					      sizeof(gen));
4786	}
4787
4788	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4789		EXT4_ERROR_INODE(inode, "checksum invalid");
 
 
 
4790		ret = -EFSBADCRC;
4791		goto bad_inode;
4792	}
4793
4794	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4795	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4796	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4797	if (ext4_has_feature_project(sb) &&
4798	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4799	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4800		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4801	else
4802		i_projid = EXT4_DEF_PROJID;
4803
4804	if (!(test_opt(inode->i_sb, NO_UID32))) {
4805		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4806		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4807	}
4808	i_uid_write(inode, i_uid);
4809	i_gid_write(inode, i_gid);
4810	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4811	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4812
4813	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4814	ei->i_inline_off = 0;
4815	ei->i_dir_start_lookup = 0;
4816	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4817	/* We now have enough fields to check if the inode was active or not.
4818	 * This is needed because nfsd might try to access dead inodes
4819	 * the test is that same one that e2fsck uses
4820	 * NeilBrown 1999oct15
4821	 */
4822	if (inode->i_nlink == 0) {
4823		if ((inode->i_mode == 0 ||
4824		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4825		    ino != EXT4_BOOT_LOADER_INO) {
4826			/* this inode is deleted */
4827			ret = -ESTALE;
4828			goto bad_inode;
4829		}
4830		/* The only unlinked inodes we let through here have
4831		 * valid i_mode and are being read by the orphan
4832		 * recovery code: that's fine, we're about to complete
4833		 * the process of deleting those.
4834		 * OR it is the EXT4_BOOT_LOADER_INO which is
4835		 * not initialized on a new filesystem. */
4836	}
4837	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
 
4838	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4839	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4840	if (ext4_has_feature_64bit(sb))
4841		ei->i_file_acl |=
4842			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4843	inode->i_size = ext4_isize(sb, raw_inode);
4844	if ((size = i_size_read(inode)) < 0) {
4845		EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
 
 
 
 
 
 
 
 
 
 
 
 
 
4846		ret = -EFSCORRUPTED;
4847		goto bad_inode;
4848	}
4849	ei->i_disksize = inode->i_size;
4850#ifdef CONFIG_QUOTA
4851	ei->i_reserved_quota = 0;
4852#endif
4853	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4854	ei->i_block_group = iloc.block_group;
4855	ei->i_last_alloc_group = ~0;
4856	/*
4857	 * NOTE! The in-memory inode i_data array is in little-endian order
4858	 * even on big-endian machines: we do NOT byteswap the block numbers!
4859	 */
4860	for (block = 0; block < EXT4_N_BLOCKS; block++)
4861		ei->i_data[block] = raw_inode->i_block[block];
4862	INIT_LIST_HEAD(&ei->i_orphan);
 
4863
4864	/*
4865	 * Set transaction id's of transactions that have to be committed
4866	 * to finish f[data]sync. We set them to currently running transaction
4867	 * as we cannot be sure that the inode or some of its metadata isn't
4868	 * part of the transaction - the inode could have been reclaimed and
4869	 * now it is reread from disk.
4870	 */
4871	if (journal) {
4872		transaction_t *transaction;
4873		tid_t tid;
4874
4875		read_lock(&journal->j_state_lock);
4876		if (journal->j_running_transaction)
4877			transaction = journal->j_running_transaction;
4878		else
4879			transaction = journal->j_committing_transaction;
4880		if (transaction)
4881			tid = transaction->t_tid;
4882		else
4883			tid = journal->j_commit_sequence;
4884		read_unlock(&journal->j_state_lock);
4885		ei->i_sync_tid = tid;
4886		ei->i_datasync_tid = tid;
4887	}
4888
4889	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4890		if (ei->i_extra_isize == 0) {
4891			/* The extra space is currently unused. Use it. */
4892			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4893			ei->i_extra_isize = sizeof(struct ext4_inode) -
4894					    EXT4_GOOD_OLD_INODE_SIZE;
4895		} else {
4896			ext4_iget_extra_inode(inode, raw_inode, ei);
 
 
4897		}
4898	}
4899
4900	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4901	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4902	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4903	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4904
4905	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4906		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4907
4908		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4909			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4910				ivers |=
4911		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4912		}
4913		inode_set_iversion_queried(inode, ivers);
4914	}
4915
4916	ret = 0;
4917	if (ei->i_file_acl &&
4918	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4919		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
 
4920				 ei->i_file_acl);
4921		ret = -EFSCORRUPTED;
4922		goto bad_inode;
4923	} else if (!ext4_has_inline_data(inode)) {
4924		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4925			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4926			    (S_ISLNK(inode->i_mode) &&
4927			     !ext4_inode_is_fast_symlink(inode))))
4928				/* Validate extent which is part of inode */
 
4929				ret = ext4_ext_check_inode(inode);
4930		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4931			   (S_ISLNK(inode->i_mode) &&
4932			    !ext4_inode_is_fast_symlink(inode))) {
4933			/* Validate block references which are part of inode */
4934			ret = ext4_ind_check_inode(inode);
4935		}
4936	}
4937	if (ret)
4938		goto bad_inode;
4939
4940	if (S_ISREG(inode->i_mode)) {
4941		inode->i_op = &ext4_file_inode_operations;
4942		inode->i_fop = &ext4_file_operations;
4943		ext4_set_aops(inode);
4944	} else if (S_ISDIR(inode->i_mode)) {
4945		inode->i_op = &ext4_dir_inode_operations;
4946		inode->i_fop = &ext4_dir_operations;
4947	} else if (S_ISLNK(inode->i_mode)) {
4948		if (ext4_encrypted_inode(inode)) {
 
 
 
 
 
 
 
 
4949			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4950			ext4_set_aops(inode);
4951		} else if (ext4_inode_is_fast_symlink(inode)) {
4952			inode->i_link = (char *)ei->i_data;
4953			inode->i_op = &ext4_fast_symlink_inode_operations;
4954			nd_terminate_link(ei->i_data, inode->i_size,
4955				sizeof(ei->i_data) - 1);
4956		} else {
4957			inode->i_op = &ext4_symlink_inode_operations;
4958			ext4_set_aops(inode);
4959		}
4960		inode_nohighmem(inode);
4961	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4962	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4963		inode->i_op = &ext4_special_inode_operations;
4964		if (raw_inode->i_block[0])
4965			init_special_inode(inode, inode->i_mode,
4966			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4967		else
4968			init_special_inode(inode, inode->i_mode,
4969			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4970	} else if (ino == EXT4_BOOT_LOADER_INO) {
4971		make_bad_inode(inode);
4972	} else {
4973		ret = -EFSCORRUPTED;
4974		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
 
 
 
 
 
 
 
 
 
 
4975		goto bad_inode;
4976	}
4977	brelse(iloc.bh);
4978	ext4_set_inode_flags(inode);
4979
 
4980	unlock_new_inode(inode);
4981	return inode;
4982
4983bad_inode:
4984	brelse(iloc.bh);
4985	iget_failed(inode);
4986	return ERR_PTR(ret);
4987}
4988
4989struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4990{
4991	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4992		return ERR_PTR(-EFSCORRUPTED);
4993	return ext4_iget(sb, ino);
4994}
4995
4996static int ext4_inode_blocks_set(handle_t *handle,
4997				struct ext4_inode *raw_inode,
4998				struct ext4_inode_info *ei)
4999{
5000	struct inode *inode = &(ei->vfs_inode);
5001	u64 i_blocks = inode->i_blocks;
5002	struct super_block *sb = inode->i_sb;
5003
5004	if (i_blocks <= ~0U) {
5005		/*
5006		 * i_blocks can be represented in a 32 bit variable
5007		 * as multiple of 512 bytes
5008		 */
5009		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5010		raw_inode->i_blocks_high = 0;
5011		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5012		return 0;
5013	}
5014	if (!ext4_has_feature_huge_file(sb))
5015		return -EFBIG;
5016
5017	if (i_blocks <= 0xffffffffffffULL) {
5018		/*
5019		 * i_blocks can be represented in a 48 bit variable
5020		 * as multiple of 512 bytes
5021		 */
5022		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5023		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5024		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5025	} else {
5026		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5027		/* i_block is stored in file system block size */
5028		i_blocks = i_blocks >> (inode->i_blkbits - 9);
5029		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5030		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5031	}
5032	return 0;
5033}
5034
5035struct other_inode {
5036	unsigned long		orig_ino;
5037	struct ext4_inode	*raw_inode;
5038};
5039
5040static int other_inode_match(struct inode * inode, unsigned long ino,
5041			     void *data)
5042{
5043	struct other_inode *oi = (struct other_inode *) data;
5044
5045	if ((inode->i_ino != ino) ||
5046	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5047			       I_DIRTY_INODE)) ||
5048	    ((inode->i_state & I_DIRTY_TIME) == 0))
5049		return 0;
5050	spin_lock(&inode->i_lock);
5051	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5052				I_DIRTY_INODE)) == 0) &&
5053	    (inode->i_state & I_DIRTY_TIME)) {
5054		struct ext4_inode_info	*ei = EXT4_I(inode);
5055
5056		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5057		spin_unlock(&inode->i_lock);
5058
5059		spin_lock(&ei->i_raw_lock);
5060		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5061		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5062		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5063		ext4_inode_csum_set(inode, oi->raw_inode, ei);
5064		spin_unlock(&ei->i_raw_lock);
5065		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5066		return -1;
5067	}
5068	spin_unlock(&inode->i_lock);
5069	return -1;
5070}
5071
5072/*
5073 * Opportunistically update the other time fields for other inodes in
5074 * the same inode table block.
5075 */
5076static void ext4_update_other_inodes_time(struct super_block *sb,
5077					  unsigned long orig_ino, char *buf)
5078{
5079	struct other_inode oi;
5080	unsigned long ino;
5081	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5082	int inode_size = EXT4_INODE_SIZE(sb);
5083
5084	oi.orig_ino = orig_ino;
5085	/*
5086	 * Calculate the first inode in the inode table block.  Inode
5087	 * numbers are one-based.  That is, the first inode in a block
5088	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5089	 */
5090	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
 
5091	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5092		if (ino == orig_ino)
5093			continue;
5094		oi.raw_inode = (struct ext4_inode *) buf;
5095		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5096	}
 
5097}
5098
5099/*
5100 * Post the struct inode info into an on-disk inode location in the
5101 * buffer-cache.  This gobbles the caller's reference to the
5102 * buffer_head in the inode location struct.
5103 *
5104 * The caller must have write access to iloc->bh.
5105 */
5106static int ext4_do_update_inode(handle_t *handle,
5107				struct inode *inode,
5108				struct ext4_iloc *iloc)
5109{
5110	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5111	struct ext4_inode_info *ei = EXT4_I(inode);
5112	struct buffer_head *bh = iloc->bh;
5113	struct super_block *sb = inode->i_sb;
5114	int err = 0, rc, block;
5115	int need_datasync = 0, set_large_file = 0;
5116	uid_t i_uid;
5117	gid_t i_gid;
5118	projid_t i_projid;
5119
5120	spin_lock(&ei->i_raw_lock);
5121
5122	/* For fields not tracked in the in-memory inode,
5123	 * initialise them to zero for new inodes. */
 
 
5124	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5125		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5126
5127	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5128	i_uid = i_uid_read(inode);
5129	i_gid = i_gid_read(inode);
5130	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5131	if (!(test_opt(inode->i_sb, NO_UID32))) {
5132		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5133		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5134/*
5135 * Fix up interoperability with old kernels. Otherwise, old inodes get
5136 * re-used with the upper 16 bits of the uid/gid intact
5137 */
5138		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5139			raw_inode->i_uid_high = 0;
5140			raw_inode->i_gid_high = 0;
5141		} else {
5142			raw_inode->i_uid_high =
5143				cpu_to_le16(high_16_bits(i_uid));
5144			raw_inode->i_gid_high =
5145				cpu_to_le16(high_16_bits(i_gid));
5146		}
5147	} else {
5148		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5149		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5150		raw_inode->i_uid_high = 0;
5151		raw_inode->i_gid_high = 0;
5152	}
5153	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5154
5155	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5156	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5157	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5158	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5159
5160	err = ext4_inode_blocks_set(handle, raw_inode, ei);
5161	if (err) {
5162		spin_unlock(&ei->i_raw_lock);
5163		goto out_brelse;
5164	}
5165	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5166	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5167	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5168		raw_inode->i_file_acl_high =
5169			cpu_to_le16(ei->i_file_acl >> 32);
5170	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5171	if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5172		ext4_isize_set(raw_inode, ei->i_disksize);
5173		need_datasync = 1;
5174	}
5175	if (ei->i_disksize > 0x7fffffffULL) {
5176		if (!ext4_has_feature_large_file(sb) ||
5177				EXT4_SB(sb)->s_es->s_rev_level ==
5178		    cpu_to_le32(EXT4_GOOD_OLD_REV))
5179			set_large_file = 1;
5180	}
5181	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5182	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5183		if (old_valid_dev(inode->i_rdev)) {
5184			raw_inode->i_block[0] =
5185				cpu_to_le32(old_encode_dev(inode->i_rdev));
5186			raw_inode->i_block[1] = 0;
5187		} else {
5188			raw_inode->i_block[0] = 0;
5189			raw_inode->i_block[1] =
5190				cpu_to_le32(new_encode_dev(inode->i_rdev));
5191			raw_inode->i_block[2] = 0;
5192		}
5193	} else if (!ext4_has_inline_data(inode)) {
5194		for (block = 0; block < EXT4_N_BLOCKS; block++)
5195			raw_inode->i_block[block] = ei->i_data[block];
5196	}
5197
5198	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5199		u64 ivers = inode_peek_iversion(inode);
5200
5201		raw_inode->i_disk_version = cpu_to_le32(ivers);
5202		if (ei->i_extra_isize) {
5203			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5204				raw_inode->i_version_hi =
5205					cpu_to_le32(ivers >> 32);
5206			raw_inode->i_extra_isize =
5207				cpu_to_le16(ei->i_extra_isize);
5208		}
5209	}
5210
5211	BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5212	       i_projid != EXT4_DEF_PROJID);
5213
5214	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5215	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5216		raw_inode->i_projid = cpu_to_le32(i_projid);
5217
5218	ext4_inode_csum_set(inode, raw_inode, ei);
5219	spin_unlock(&ei->i_raw_lock);
5220	if (inode->i_sb->s_flags & SB_LAZYTIME)
5221		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5222					      bh->b_data);
5223
5224	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5225	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5226	if (!err)
5227		err = rc;
5228	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5229	if (set_large_file) {
5230		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5231		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
 
 
5232		if (err)
5233			goto out_brelse;
5234		ext4_update_dynamic_rev(sb);
5235		ext4_set_feature_large_file(sb);
 
 
5236		ext4_handle_sync(handle);
5237		err = ext4_handle_dirty_super(handle, sb);
 
5238	}
5239	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
 
 
5240out_brelse:
5241	brelse(bh);
5242	ext4_std_error(inode->i_sb, err);
5243	return err;
5244}
5245
5246/*
5247 * ext4_write_inode()
5248 *
5249 * We are called from a few places:
5250 *
5251 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5252 *   Here, there will be no transaction running. We wait for any running
5253 *   transaction to commit.
5254 *
5255 * - Within flush work (sys_sync(), kupdate and such).
5256 *   We wait on commit, if told to.
5257 *
5258 * - Within iput_final() -> write_inode_now()
5259 *   We wait on commit, if told to.
5260 *
5261 * In all cases it is actually safe for us to return without doing anything,
5262 * because the inode has been copied into a raw inode buffer in
5263 * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5264 * writeback.
5265 *
5266 * Note that we are absolutely dependent upon all inode dirtiers doing the
5267 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5268 * which we are interested.
5269 *
5270 * It would be a bug for them to not do this.  The code:
5271 *
5272 *	mark_inode_dirty(inode)
5273 *	stuff();
5274 *	inode->i_size = expr;
5275 *
5276 * is in error because write_inode() could occur while `stuff()' is running,
5277 * and the new i_size will be lost.  Plus the inode will no longer be on the
5278 * superblock's dirty inode list.
5279 */
5280int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5281{
5282	int err;
5283
5284	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
 
5285		return 0;
5286
 
 
 
5287	if (EXT4_SB(inode->i_sb)->s_journal) {
5288		if (ext4_journal_current_handle()) {
5289			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5290			dump_stack();
5291			return -EIO;
5292		}
5293
5294		/*
5295		 * No need to force transaction in WB_SYNC_NONE mode. Also
5296		 * ext4_sync_fs() will force the commit after everything is
5297		 * written.
5298		 */
5299		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5300			return 0;
5301
5302		err = ext4_force_commit(inode->i_sb);
 
5303	} else {
5304		struct ext4_iloc iloc;
5305
5306		err = __ext4_get_inode_loc(inode, &iloc, 0);
5307		if (err)
5308			return err;
5309		/*
5310		 * sync(2) will flush the whole buffer cache. No need to do
5311		 * it here separately for each inode.
5312		 */
5313		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5314			sync_dirty_buffer(iloc.bh);
5315		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5316			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5317					 "IO error syncing inode");
5318			err = -EIO;
5319		}
5320		brelse(iloc.bh);
5321	}
5322	return err;
5323}
5324
5325/*
5326 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5327 * buffers that are attached to a page stradding i_size and are undergoing
5328 * commit. In that case we have to wait for commit to finish and try again.
5329 */
5330static void ext4_wait_for_tail_page_commit(struct inode *inode)
5331{
5332	struct page *page;
5333	unsigned offset;
5334	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5335	tid_t commit_tid = 0;
5336	int ret;
5337
5338	offset = inode->i_size & (PAGE_SIZE - 1);
5339	/*
5340	 * All buffers in the last page remain valid? Then there's nothing to
5341	 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5342	 * blocksize case
 
 
 
 
5343	 */
5344	if (offset > PAGE_SIZE - i_blocksize(inode))
5345		return;
5346	while (1) {
5347		page = find_lock_page(inode->i_mapping,
5348				      inode->i_size >> PAGE_SHIFT);
5349		if (!page)
5350			return;
5351		ret = __ext4_journalled_invalidatepage(page, offset,
5352						PAGE_SIZE - offset);
5353		unlock_page(page);
5354		put_page(page);
5355		if (ret != -EBUSY)
5356			return;
5357		commit_tid = 0;
5358		read_lock(&journal->j_state_lock);
5359		if (journal->j_committing_transaction)
5360			commit_tid = journal->j_committing_transaction->t_tid;
5361		read_unlock(&journal->j_state_lock);
5362		if (commit_tid)
5363			jbd2_log_wait_commit(journal, commit_tid);
5364	}
5365}
5366
5367/*
5368 * ext4_setattr()
5369 *
5370 * Called from notify_change.
5371 *
5372 * We want to trap VFS attempts to truncate the file as soon as
5373 * possible.  In particular, we want to make sure that when the VFS
5374 * shrinks i_size, we put the inode on the orphan list and modify
5375 * i_disksize immediately, so that during the subsequent flushing of
5376 * dirty pages and freeing of disk blocks, we can guarantee that any
5377 * commit will leave the blocks being flushed in an unused state on
5378 * disk.  (On recovery, the inode will get truncated and the blocks will
5379 * be freed, so we have a strong guarantee that no future commit will
5380 * leave these blocks visible to the user.)
5381 *
5382 * Another thing we have to assure is that if we are in ordered mode
5383 * and inode is still attached to the committing transaction, we must
5384 * we start writeout of all the dirty pages which are being truncated.
5385 * This way we are sure that all the data written in the previous
5386 * transaction are already on disk (truncate waits for pages under
5387 * writeback).
5388 *
5389 * Called with inode->i_mutex down.
5390 */
5391int ext4_setattr(struct dentry *dentry, struct iattr *attr)
 
5392{
5393	struct inode *inode = d_inode(dentry);
5394	int error, rc = 0;
5395	int orphan = 0;
5396	const unsigned int ia_valid = attr->ia_valid;
 
5397
5398	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5399		return -EIO;
5400
5401	error = setattr_prepare(dentry, attr);
 
 
 
 
 
 
 
 
5402	if (error)
5403		return error;
5404
5405	error = fscrypt_prepare_setattr(dentry, attr);
5406	if (error)
5407		return error;
5408
5409	if (is_quota_modification(inode, attr)) {
 
 
 
 
5410		error = dquot_initialize(inode);
5411		if (error)
5412			return error;
5413	}
5414	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5415	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
 
5416		handle_t *handle;
5417
5418		/* (user+group)*(old+new) structure, inode write (sb,
5419		 * inode block, ? - but truncate inode update has it) */
5420		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5421			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5422			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5423		if (IS_ERR(handle)) {
5424			error = PTR_ERR(handle);
5425			goto err_out;
5426		}
5427
5428		/* dquot_transfer() calls back ext4_get_inode_usage() which
5429		 * counts xattr inode references.
5430		 */
5431		down_read(&EXT4_I(inode)->xattr_sem);
5432		error = dquot_transfer(inode, attr);
5433		up_read(&EXT4_I(inode)->xattr_sem);
5434
5435		if (error) {
5436			ext4_journal_stop(handle);
5437			return error;
5438		}
5439		/* Update corresponding info in inode so that everything is in
5440		 * one transaction */
5441		if (attr->ia_valid & ATTR_UID)
5442			inode->i_uid = attr->ia_uid;
5443		if (attr->ia_valid & ATTR_GID)
5444			inode->i_gid = attr->ia_gid;
5445		error = ext4_mark_inode_dirty(handle, inode);
5446		ext4_journal_stop(handle);
 
 
 
5447	}
5448
5449	if (attr->ia_valid & ATTR_SIZE) {
5450		handle_t *handle;
5451		loff_t oldsize = inode->i_size;
5452		int shrink = (attr->ia_size <= inode->i_size);
 
5453
5454		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5455			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5456
5457			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5458				return -EFBIG;
 
5459		}
5460		if (!S_ISREG(inode->i_mode))
5461			return -EINVAL;
 
5462
5463		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5464			inode_inc_iversion(inode);
5465
5466		if (ext4_should_order_data(inode) &&
5467		    (attr->ia_size < inode->i_size)) {
5468			error = ext4_begin_ordered_truncate(inode,
5469							    attr->ia_size);
5470			if (error)
5471				goto err_out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5472		}
 
5473		if (attr->ia_size != inode->i_size) {
5474			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5475			if (IS_ERR(handle)) {
5476				error = PTR_ERR(handle);
5477				goto err_out;
5478			}
5479			if (ext4_handle_valid(handle) && shrink) {
5480				error = ext4_orphan_add(handle, inode);
5481				orphan = 1;
5482			}
5483			/*
5484			 * Update c/mtime on truncate up, ext4_truncate() will
5485			 * update c/mtime in shrink case below
5486			 */
5487			if (!shrink) {
5488				inode->i_mtime = current_time(inode);
5489				inode->i_ctime = inode->i_mtime;
5490			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5491			down_write(&EXT4_I(inode)->i_data_sem);
 
5492			EXT4_I(inode)->i_disksize = attr->ia_size;
5493			rc = ext4_mark_inode_dirty(handle, inode);
5494			if (!error)
5495				error = rc;
5496			/*
5497			 * We have to update i_size under i_data_sem together
5498			 * with i_disksize to avoid races with writeback code
5499			 * running ext4_wb_update_i_disksize().
5500			 */
5501			if (!error)
5502				i_size_write(inode, attr->ia_size);
 
 
5503			up_write(&EXT4_I(inode)->i_data_sem);
5504			ext4_journal_stop(handle);
5505			if (error) {
5506				if (orphan)
5507					ext4_orphan_del(NULL, inode);
5508				goto err_out;
 
 
 
5509			}
5510		}
5511		if (!shrink)
5512			pagecache_isize_extended(inode, oldsize, inode->i_size);
5513
5514		/*
5515		 * Blocks are going to be removed from the inode. Wait
5516		 * for dio in flight.  Temporarily disable
5517		 * dioread_nolock to prevent livelock.
5518		 */
5519		if (orphan) {
5520			if (!ext4_should_journal_data(inode)) {
5521				inode_dio_wait(inode);
5522			} else
5523				ext4_wait_for_tail_page_commit(inode);
5524		}
5525		down_write(&EXT4_I(inode)->i_mmap_sem);
5526		/*
5527		 * Truncate pagecache after we've waited for commit
5528		 * in data=journal mode to make pages freeable.
5529		 */
5530		truncate_pagecache(inode, inode->i_size);
5531		if (shrink) {
 
 
 
 
5532			rc = ext4_truncate(inode);
5533			if (rc)
5534				error = rc;
5535		}
5536		up_write(&EXT4_I(inode)->i_mmap_sem);
 
5537	}
5538
5539	if (!error) {
5540		setattr_copy(inode, attr);
 
 
5541		mark_inode_dirty(inode);
5542	}
5543
5544	/*
5545	 * If the call to ext4_truncate failed to get a transaction handle at
5546	 * all, we need to clean up the in-core orphan list manually.
5547	 */
5548	if (orphan && inode->i_nlink)
5549		ext4_orphan_del(NULL, inode);
5550
5551	if (!error && (ia_valid & ATTR_MODE))
5552		rc = posix_acl_chmod(inode, inode->i_mode);
5553
5554err_out:
5555	ext4_std_error(inode->i_sb, error);
 
5556	if (!error)
5557		error = rc;
5558	return error;
5559}
5560
5561int ext4_getattr(const struct path *path, struct kstat *stat,
5562		 u32 request_mask, unsigned int query_flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5563{
5564	struct inode *inode = d_inode(path->dentry);
5565	struct ext4_inode *raw_inode;
5566	struct ext4_inode_info *ei = EXT4_I(inode);
5567	unsigned int flags;
5568
5569	if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
 
5570		stat->result_mask |= STATX_BTIME;
5571		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5572		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5573	}
5574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5575	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5576	if (flags & EXT4_APPEND_FL)
5577		stat->attributes |= STATX_ATTR_APPEND;
5578	if (flags & EXT4_COMPR_FL)
5579		stat->attributes |= STATX_ATTR_COMPRESSED;
5580	if (flags & EXT4_ENCRYPT_FL)
5581		stat->attributes |= STATX_ATTR_ENCRYPTED;
5582	if (flags & EXT4_IMMUTABLE_FL)
5583		stat->attributes |= STATX_ATTR_IMMUTABLE;
5584	if (flags & EXT4_NODUMP_FL)
5585		stat->attributes |= STATX_ATTR_NODUMP;
 
 
5586
5587	stat->attributes_mask |= (STATX_ATTR_APPEND |
5588				  STATX_ATTR_COMPRESSED |
5589				  STATX_ATTR_ENCRYPTED |
5590				  STATX_ATTR_IMMUTABLE |
5591				  STATX_ATTR_NODUMP);
 
5592
5593	generic_fillattr(inode, stat);
5594	return 0;
5595}
5596
5597int ext4_file_getattr(const struct path *path, struct kstat *stat,
 
5598		      u32 request_mask, unsigned int query_flags)
5599{
5600	struct inode *inode = d_inode(path->dentry);
5601	u64 delalloc_blocks;
5602
5603	ext4_getattr(path, stat, request_mask, query_flags);
5604
5605	/*
5606	 * If there is inline data in the inode, the inode will normally not
5607	 * have data blocks allocated (it may have an external xattr block).
5608	 * Report at least one sector for such files, so tools like tar, rsync,
5609	 * others don't incorrectly think the file is completely sparse.
5610	 */
5611	if (unlikely(ext4_has_inline_data(inode)))
5612		stat->blocks += (stat->size + 511) >> 9;
5613
5614	/*
5615	 * We can't update i_blocks if the block allocation is delayed
5616	 * otherwise in the case of system crash before the real block
5617	 * allocation is done, we will have i_blocks inconsistent with
5618	 * on-disk file blocks.
5619	 * We always keep i_blocks updated together with real
5620	 * allocation. But to not confuse with user, stat
5621	 * will return the blocks that include the delayed allocation
5622	 * blocks for this file.
5623	 */
5624	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5625				   EXT4_I(inode)->i_reserved_data_blocks);
5626	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5627	return 0;
5628}
5629
5630static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5631				   int pextents)
5632{
5633	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5634		return ext4_ind_trans_blocks(inode, lblocks);
5635	return ext4_ext_index_trans_blocks(inode, pextents);
5636}
5637
5638/*
5639 * Account for index blocks, block groups bitmaps and block group
5640 * descriptor blocks if modify datablocks and index blocks
5641 * worse case, the indexs blocks spread over different block groups
5642 *
5643 * If datablocks are discontiguous, they are possible to spread over
5644 * different block groups too. If they are contiguous, with flexbg,
5645 * they could still across block group boundary.
5646 *
5647 * Also account for superblock, inode, quota and xattr blocks
5648 */
5649static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5650				  int pextents)
5651{
5652	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5653	int gdpblocks;
5654	int idxblocks;
5655	int ret = 0;
5656
5657	/*
5658	 * How many index blocks need to touch to map @lblocks logical blocks
5659	 * to @pextents physical extents?
5660	 */
5661	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5662
5663	ret = idxblocks;
5664
5665	/*
5666	 * Now let's see how many group bitmaps and group descriptors need
5667	 * to account
5668	 */
5669	groups = idxblocks + pextents;
5670	gdpblocks = groups;
5671	if (groups > ngroups)
5672		groups = ngroups;
5673	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5674		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5675
5676	/* bitmaps and block group descriptor blocks */
5677	ret += groups + gdpblocks;
5678
5679	/* Blocks for super block, inode, quota and xattr blocks */
5680	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5681
5682	return ret;
5683}
5684
5685/*
5686 * Calculate the total number of credits to reserve to fit
5687 * the modification of a single pages into a single transaction,
5688 * which may include multiple chunks of block allocations.
5689 *
5690 * This could be called via ext4_write_begin()
5691 *
5692 * We need to consider the worse case, when
5693 * one new block per extent.
5694 */
5695int ext4_writepage_trans_blocks(struct inode *inode)
5696{
5697	int bpp = ext4_journal_blocks_per_page(inode);
5698	int ret;
5699
5700	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5701
5702	/* Account for data blocks for journalled mode */
5703	if (ext4_should_journal_data(inode))
5704		ret += bpp;
5705	return ret;
5706}
5707
5708/*
5709 * Calculate the journal credits for a chunk of data modification.
5710 *
5711 * This is called from DIO, fallocate or whoever calling
5712 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5713 *
5714 * journal buffers for data blocks are not included here, as DIO
5715 * and fallocate do no need to journal data buffers.
5716 */
5717int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5718{
5719	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5720}
5721
5722/*
5723 * The caller must have previously called ext4_reserve_inode_write().
5724 * Give this, we know that the caller already has write access to iloc->bh.
5725 */
5726int ext4_mark_iloc_dirty(handle_t *handle,
5727			 struct inode *inode, struct ext4_iloc *iloc)
5728{
5729	int err = 0;
5730
5731	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
 
5732		return -EIO;
5733
5734	if (IS_I_VERSION(inode))
5735		inode_inc_iversion(inode);
5736
5737	/* the do_update_inode consumes one bh->b_count */
5738	get_bh(iloc->bh);
5739
5740	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5741	err = ext4_do_update_inode(handle, inode, iloc);
5742	put_bh(iloc->bh);
5743	return err;
5744}
5745
5746/*
5747 * On success, We end up with an outstanding reference count against
5748 * iloc->bh.  This _must_ be cleaned up later.
5749 */
5750
5751int
5752ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5753			 struct ext4_iloc *iloc)
5754{
5755	int err;
5756
5757	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5758		return -EIO;
5759
5760	err = ext4_get_inode_loc(inode, iloc);
5761	if (!err) {
5762		BUFFER_TRACE(iloc->bh, "get_write_access");
5763		err = ext4_journal_get_write_access(handle, iloc->bh);
 
5764		if (err) {
5765			brelse(iloc->bh);
5766			iloc->bh = NULL;
5767		}
5768	}
5769	ext4_std_error(inode->i_sb, err);
5770	return err;
5771}
5772
5773static int __ext4_expand_extra_isize(struct inode *inode,
5774				     unsigned int new_extra_isize,
5775				     struct ext4_iloc *iloc,
5776				     handle_t *handle, int *no_expand)
5777{
5778	struct ext4_inode *raw_inode;
5779	struct ext4_xattr_ibody_header *header;
 
 
5780	int error;
5781
 
 
 
 
 
 
 
 
 
 
 
 
 
5782	raw_inode = ext4_raw_inode(iloc);
5783
5784	header = IHDR(inode, raw_inode);
5785
5786	/* No extended attributes present */
5787	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5788	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5789		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5790		       EXT4_I(inode)->i_extra_isize, 0,
5791		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5792		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5793		return 0;
5794	}
5795
 
 
 
 
 
 
 
 
5796	/* try to expand with EAs present */
5797	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5798					   raw_inode, handle);
5799	if (error) {
5800		/*
5801		 * Inode size expansion failed; don't try again
5802		 */
5803		*no_expand = 1;
5804	}
5805
5806	return error;
5807}
5808
5809/*
5810 * Expand an inode by new_extra_isize bytes.
5811 * Returns 0 on success or negative error number on failure.
5812 */
5813static int ext4_try_to_expand_extra_isize(struct inode *inode,
5814					  unsigned int new_extra_isize,
5815					  struct ext4_iloc iloc,
5816					  handle_t *handle)
5817{
5818	int no_expand;
5819	int error;
5820
5821	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5822		return -EOVERFLOW;
5823
5824	/*
5825	 * In nojournal mode, we can immediately attempt to expand
5826	 * the inode.  When journaled, we first need to obtain extra
5827	 * buffer credits since we may write into the EA block
5828	 * with this same handle. If journal_extend fails, then it will
5829	 * only result in a minor loss of functionality for that inode.
5830	 * If this is felt to be critical, then e2fsck should be run to
5831	 * force a large enough s_min_extra_isize.
5832	 */
5833	if (ext4_handle_valid(handle) &&
5834	    jbd2_journal_extend(handle,
5835				EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5836		return -ENOSPC;
5837
5838	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5839		return -EBUSY;
5840
5841	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5842					  handle, &no_expand);
5843	ext4_write_unlock_xattr(inode, &no_expand);
5844
5845	return error;
5846}
5847
5848int ext4_expand_extra_isize(struct inode *inode,
5849			    unsigned int new_extra_isize,
5850			    struct ext4_iloc *iloc)
5851{
5852	handle_t *handle;
5853	int no_expand;
5854	int error, rc;
5855
5856	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5857		brelse(iloc->bh);
5858		return -EOVERFLOW;
5859	}
5860
5861	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5862				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5863	if (IS_ERR(handle)) {
5864		error = PTR_ERR(handle);
5865		brelse(iloc->bh);
5866		return error;
5867	}
5868
5869	ext4_write_lock_xattr(inode, &no_expand);
5870
5871	BUFFER_TRACE(iloc.bh, "get_write_access");
5872	error = ext4_journal_get_write_access(handle, iloc->bh);
 
5873	if (error) {
5874		brelse(iloc->bh);
5875		goto out_stop;
5876	}
5877
5878	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5879					  handle, &no_expand);
5880
5881	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5882	if (!error)
5883		error = rc;
5884
 
5885	ext4_write_unlock_xattr(inode, &no_expand);
5886out_stop:
5887	ext4_journal_stop(handle);
5888	return error;
5889}
5890
5891/*
5892 * What we do here is to mark the in-core inode as clean with respect to inode
5893 * dirtiness (it may still be data-dirty).
5894 * This means that the in-core inode may be reaped by prune_icache
5895 * without having to perform any I/O.  This is a very good thing,
5896 * because *any* task may call prune_icache - even ones which
5897 * have a transaction open against a different journal.
5898 *
5899 * Is this cheating?  Not really.  Sure, we haven't written the
5900 * inode out, but prune_icache isn't a user-visible syncing function.
5901 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5902 * we start and wait on commits.
5903 */
5904int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
 
5905{
5906	struct ext4_iloc iloc;
5907	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5908	int err;
5909
5910	might_sleep();
5911	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5912	err = ext4_reserve_inode_write(handle, inode, &iloc);
5913	if (err)
5914		return err;
5915
5916	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5917		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5918					       iloc, handle);
5919
5920	return ext4_mark_iloc_dirty(handle, inode, &iloc);
 
 
 
 
 
5921}
5922
5923/*
5924 * ext4_dirty_inode() is called from __mark_inode_dirty()
5925 *
5926 * We're really interested in the case where a file is being extended.
5927 * i_size has been changed by generic_commit_write() and we thus need
5928 * to include the updated inode in the current transaction.
5929 *
5930 * Also, dquot_alloc_block() will always dirty the inode when blocks
5931 * are allocated to the file.
5932 *
5933 * If the inode is marked synchronous, we don't honour that here - doing
5934 * so would cause a commit on atime updates, which we don't bother doing.
5935 * We handle synchronous inodes at the highest possible level.
5936 *
5937 * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5938 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5939 * to copy into the on-disk inode structure are the timestamp files.
5940 */
5941void ext4_dirty_inode(struct inode *inode, int flags)
5942{
5943	handle_t *handle;
5944
5945	if (flags == I_DIRTY_TIME)
5946		return;
5947	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5948	if (IS_ERR(handle))
5949		goto out;
5950
5951	ext4_mark_inode_dirty(handle, inode);
5952
5953	ext4_journal_stop(handle);
5954out:
5955	return;
5956}
5957
5958#if 0
5959/*
5960 * Bind an inode's backing buffer_head into this transaction, to prevent
5961 * it from being flushed to disk early.  Unlike
5962 * ext4_reserve_inode_write, this leaves behind no bh reference and
5963 * returns no iloc structure, so the caller needs to repeat the iloc
5964 * lookup to mark the inode dirty later.
5965 */
5966static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5967{
5968	struct ext4_iloc iloc;
5969
5970	int err = 0;
5971	if (handle) {
5972		err = ext4_get_inode_loc(inode, &iloc);
5973		if (!err) {
5974			BUFFER_TRACE(iloc.bh, "get_write_access");
5975			err = jbd2_journal_get_write_access(handle, iloc.bh);
5976			if (!err)
5977				err = ext4_handle_dirty_metadata(handle,
5978								 NULL,
5979								 iloc.bh);
5980			brelse(iloc.bh);
5981		}
5982	}
5983	ext4_std_error(inode->i_sb, err);
5984	return err;
5985}
5986#endif
5987
5988int ext4_change_inode_journal_flag(struct inode *inode, int val)
5989{
5990	journal_t *journal;
5991	handle_t *handle;
5992	int err;
5993	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5994
5995	/*
5996	 * We have to be very careful here: changing a data block's
5997	 * journaling status dynamically is dangerous.  If we write a
5998	 * data block to the journal, change the status and then delete
5999	 * that block, we risk forgetting to revoke the old log record
6000	 * from the journal and so a subsequent replay can corrupt data.
6001	 * So, first we make sure that the journal is empty and that
6002	 * nobody is changing anything.
6003	 */
6004
6005	journal = EXT4_JOURNAL(inode);
6006	if (!journal)
6007		return 0;
6008	if (is_journal_aborted(journal))
6009		return -EROFS;
6010
6011	/* Wait for all existing dio workers */
6012	inode_dio_wait(inode);
6013
6014	/*
6015	 * Before flushing the journal and switching inode's aops, we have
6016	 * to flush all dirty data the inode has. There can be outstanding
6017	 * delayed allocations, there can be unwritten extents created by
6018	 * fallocate or buffered writes in dioread_nolock mode covered by
6019	 * dirty data which can be converted only after flushing the dirty
6020	 * data (and journalled aops don't know how to handle these cases).
6021	 */
6022	if (val) {
6023		down_write(&EXT4_I(inode)->i_mmap_sem);
6024		err = filemap_write_and_wait(inode->i_mapping);
6025		if (err < 0) {
6026			up_write(&EXT4_I(inode)->i_mmap_sem);
6027			return err;
6028		}
6029	}
6030
6031	percpu_down_write(&sbi->s_journal_flag_rwsem);
6032	jbd2_journal_lock_updates(journal);
6033
6034	/*
6035	 * OK, there are no updates running now, and all cached data is
6036	 * synced to disk.  We are now in a completely consistent state
6037	 * which doesn't have anything in the journal, and we know that
6038	 * no filesystem updates are running, so it is safe to modify
6039	 * the inode's in-core data-journaling state flag now.
6040	 */
6041
6042	if (val)
6043		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6044	else {
6045		err = jbd2_journal_flush(journal);
6046		if (err < 0) {
6047			jbd2_journal_unlock_updates(journal);
6048			percpu_up_write(&sbi->s_journal_flag_rwsem);
6049			return err;
6050		}
6051		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6052	}
6053	ext4_set_aops(inode);
6054
6055	jbd2_journal_unlock_updates(journal);
6056	percpu_up_write(&sbi->s_journal_flag_rwsem);
6057
6058	if (val)
6059		up_write(&EXT4_I(inode)->i_mmap_sem);
6060
6061	/* Finally we can mark the inode as dirty. */
6062
6063	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6064	if (IS_ERR(handle))
6065		return PTR_ERR(handle);
6066
 
 
6067	err = ext4_mark_inode_dirty(handle, inode);
6068	ext4_handle_sync(handle);
6069	ext4_journal_stop(handle);
6070	ext4_std_error(inode->i_sb, err);
6071
6072	return err;
6073}
6074
6075static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
 
6076{
6077	return !buffer_mapped(bh);
6078}
6079
6080int ext4_page_mkwrite(struct vm_fault *vmf)
6081{
6082	struct vm_area_struct *vma = vmf->vma;
6083	struct page *page = vmf->page;
6084	loff_t size;
6085	unsigned long len;
6086	int ret;
 
6087	struct file *file = vma->vm_file;
6088	struct inode *inode = file_inode(file);
6089	struct address_space *mapping = inode->i_mapping;
6090	handle_t *handle;
6091	get_block_t *get_block;
6092	int retries = 0;
6093
 
 
 
6094	sb_start_pagefault(inode->i_sb);
6095	file_update_time(vma->vm_file);
6096
6097	down_read(&EXT4_I(inode)->i_mmap_sem);
6098
6099	ret = ext4_convert_inline_data(inode);
6100	if (ret)
6101		goto out_ret;
6102
 
 
 
 
 
 
 
 
 
6103	/* Delalloc case is easy... */
6104	if (test_opt(inode->i_sb, DELALLOC) &&
6105	    !ext4_should_journal_data(inode) &&
6106	    !ext4_nonda_switch(inode->i_sb)) {
6107		do {
6108			ret = block_page_mkwrite(vma, vmf,
6109						   ext4_da_get_block_prep);
6110		} while (ret == -ENOSPC &&
6111		       ext4_should_retry_alloc(inode->i_sb, &retries));
6112		goto out_ret;
6113	}
6114
6115	lock_page(page);
6116	size = i_size_read(inode);
6117	/* Page got truncated from under us? */
6118	if (page->mapping != mapping || page_offset(page) > size) {
6119		unlock_page(page);
6120		ret = VM_FAULT_NOPAGE;
6121		goto out;
6122	}
6123
6124	if (page->index == size >> PAGE_SHIFT)
6125		len = size & ~PAGE_MASK;
6126	else
6127		len = PAGE_SIZE;
6128	/*
6129	 * Return if we have all the buffers mapped. This avoids the need to do
6130	 * journal_start/journal_stop which can block and take a long time
 
 
 
6131	 */
6132	if (page_has_buffers(page)) {
6133		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6134					    0, len, NULL,
6135					    ext4_bh_unmapped)) {
6136			/* Wait so that we don't change page under IO */
6137			wait_for_stable_page(page);
6138			ret = VM_FAULT_LOCKED;
6139			goto out;
6140		}
6141	}
6142	unlock_page(page);
6143	/* OK, we need to fill the hole... */
6144	if (ext4_should_dioread_nolock(inode))
6145		get_block = ext4_get_block_unwritten;
6146	else
6147		get_block = ext4_get_block;
6148retry_alloc:
6149	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6150				    ext4_writepage_trans_blocks(inode));
6151	if (IS_ERR(handle)) {
6152		ret = VM_FAULT_SIGBUS;
6153		goto out;
6154	}
6155	ret = block_page_mkwrite(vma, vmf, get_block);
6156	if (!ret && ext4_should_journal_data(inode)) {
6157		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6158			  PAGE_SIZE, NULL, do_journal_get_write_access)) {
6159			unlock_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6160			ret = VM_FAULT_SIGBUS;
6161			ext4_journal_stop(handle);
6162			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
6163		}
6164		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6165	}
6166	ext4_journal_stop(handle);
6167	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6168		goto retry_alloc;
6169out_ret:
6170	ret = block_page_mkwrite_return(ret);
6171out:
6172	up_read(&EXT4_I(inode)->i_mmap_sem);
6173	sb_end_pagefault(inode->i_sb);
6174	return ret;
6175}
6176
6177int ext4_filemap_fault(struct vm_fault *vmf)
6178{
6179	struct inode *inode = file_inode(vmf->vma->vm_file);
6180	int err;
6181
6182	down_read(&EXT4_I(inode)->i_mmap_sem);
6183	err = filemap_fault(vmf);
6184	up_read(&EXT4_I(inode)->i_mmap_sem);
6185
6186	return err;
6187}
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/ext4/inode.c
   4 *
   5 * Copyright (C) 1992, 1993, 1994, 1995
   6 * Remy Card (card@masi.ibp.fr)
   7 * Laboratoire MASI - Institut Blaise Pascal
   8 * Universite Pierre et Marie Curie (Paris VI)
   9 *
  10 *  from
  11 *
  12 *  linux/fs/minix/inode.c
  13 *
  14 *  Copyright (C) 1991, 1992  Linus Torvalds
  15 *
  16 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  17 *	(jj@sunsite.ms.mff.cuni.cz)
  18 *
  19 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  20 */
  21
  22#include <linux/fs.h>
  23#include <linux/mount.h>
  24#include <linux/time.h>
  25#include <linux/highuid.h>
  26#include <linux/pagemap.h>
  27#include <linux/dax.h>
  28#include <linux/quotaops.h>
  29#include <linux/string.h>
  30#include <linux/buffer_head.h>
  31#include <linux/writeback.h>
  32#include <linux/pagevec.h>
  33#include <linux/mpage.h>
  34#include <linux/namei.h>
  35#include <linux/uio.h>
  36#include <linux/bio.h>
  37#include <linux/workqueue.h>
  38#include <linux/kernel.h>
  39#include <linux/printk.h>
  40#include <linux/slab.h>
  41#include <linux/bitops.h>
  42#include <linux/iomap.h>
  43#include <linux/iversion.h>
  44
  45#include "ext4_jbd2.h"
  46#include "xattr.h"
  47#include "acl.h"
  48#include "truncate.h"
  49
  50#include <trace/events/ext4.h>
  51
 
 
  52static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
  53			      struct ext4_inode_info *ei)
  54{
  55	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  56	__u32 csum;
  57	__u16 dummy_csum = 0;
  58	int offset = offsetof(struct ext4_inode, i_checksum_lo);
  59	unsigned int csum_size = sizeof(dummy_csum);
  60
  61	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
  62	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
  63	offset += csum_size;
  64	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  65			   EXT4_GOOD_OLD_INODE_SIZE - offset);
  66
  67	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  68		offset = offsetof(struct ext4_inode, i_checksum_hi);
  69		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
  70				   EXT4_GOOD_OLD_INODE_SIZE,
  71				   offset - EXT4_GOOD_OLD_INODE_SIZE);
  72		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
  73			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
  74					   csum_size);
  75			offset += csum_size;
  76		}
  77		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  78				   EXT4_INODE_SIZE(inode->i_sb) - offset);
  79	}
  80
  81	return csum;
  82}
  83
  84static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
  85				  struct ext4_inode_info *ei)
  86{
  87	__u32 provided, calculated;
  88
  89	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  90	    cpu_to_le32(EXT4_OS_LINUX) ||
  91	    !ext4_has_metadata_csum(inode->i_sb))
  92		return 1;
  93
  94	provided = le16_to_cpu(raw->i_checksum_lo);
  95	calculated = ext4_inode_csum(inode, raw, ei);
  96	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  97	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  98		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
  99	else
 100		calculated &= 0xFFFF;
 101
 102	return provided == calculated;
 103}
 104
 105void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
 106			 struct ext4_inode_info *ei)
 107{
 108	__u32 csum;
 109
 110	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
 111	    cpu_to_le32(EXT4_OS_LINUX) ||
 112	    !ext4_has_metadata_csum(inode->i_sb))
 113		return;
 114
 115	csum = ext4_inode_csum(inode, raw, ei);
 116	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
 117	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
 118	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
 119		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
 120}
 121
 122static inline int ext4_begin_ordered_truncate(struct inode *inode,
 123					      loff_t new_size)
 124{
 125	trace_ext4_begin_ordered_truncate(inode, new_size);
 126	/*
 127	 * If jinode is zero, then we never opened the file for
 128	 * writing, so there's no need to call
 129	 * jbd2_journal_begin_ordered_truncate() since there's no
 130	 * outstanding writes we need to flush.
 131	 */
 132	if (!EXT4_I(inode)->jinode)
 133		return 0;
 134	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
 135						   EXT4_I(inode)->jinode,
 136						   new_size);
 137}
 138
 
 
 139static int __ext4_journalled_writepage(struct page *page, unsigned int len);
 
 140static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
 141				  int pextents);
 142
 143/*
 144 * Test whether an inode is a fast symlink.
 145 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
 146 */
 147int ext4_inode_is_fast_symlink(struct inode *inode)
 148{
 149	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
 150		int ea_blocks = EXT4_I(inode)->i_file_acl ?
 151				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
 152
 153		if (ext4_has_inline_data(inode))
 154			return 0;
 155
 156		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
 157	}
 158	return S_ISLNK(inode->i_mode) && inode->i_size &&
 159	       (inode->i_size < EXT4_N_BLOCKS * 4);
 160}
 161
 162/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 163 * Called at the last iput() if i_nlink is zero.
 164 */
 165void ext4_evict_inode(struct inode *inode)
 166{
 167	handle_t *handle;
 168	int err;
 169	/*
 170	 * Credits for final inode cleanup and freeing:
 171	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
 172	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
 173	 */
 174	int extra_credits = 6;
 175	struct ext4_xattr_inode_array *ea_inode_array = NULL;
 176	bool freeze_protected = false;
 177
 178	trace_ext4_evict_inode(inode);
 179
 180	if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
 181		ext4_evict_ea_inode(inode);
 182	if (inode->i_nlink) {
 183		/*
 184		 * When journalling data dirty buffers are tracked only in the
 185		 * journal. So although mm thinks everything is clean and
 186		 * ready for reaping the inode might still have some pages to
 187		 * write in the running transaction or waiting to be
 188		 * checkpointed. Thus calling jbd2_journal_invalidate_folio()
 189		 * (via truncate_inode_pages()) to discard these buffers can
 190		 * cause data loss. Also even if we did not discard these
 191		 * buffers, we would have no way to find them after the inode
 192		 * is reaped and thus user could see stale data if he tries to
 193		 * read them before the transaction is checkpointed. So be
 194		 * careful and force everything to disk here... We use
 195		 * ei->i_datasync_tid to store the newest transaction
 196		 * containing inode's data.
 197		 *
 198		 * Note that directories do not have this problem because they
 199		 * don't use page cache.
 200		 */
 201		if (inode->i_ino != EXT4_JOURNAL_INO &&
 202		    ext4_should_journal_data(inode) &&
 203		    S_ISREG(inode->i_mode) && inode->i_data.nrpages) {
 
 204			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
 205			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
 206
 207			jbd2_complete_transaction(journal, commit_tid);
 208			filemap_write_and_wait(&inode->i_data);
 209		}
 210		truncate_inode_pages_final(&inode->i_data);
 211
 212		goto no_delete;
 213	}
 214
 215	if (is_bad_inode(inode))
 216		goto no_delete;
 217	dquot_initialize(inode);
 218
 219	if (ext4_should_order_data(inode))
 220		ext4_begin_ordered_truncate(inode, 0);
 221	truncate_inode_pages_final(&inode->i_data);
 222
 223	/*
 224	 * For inodes with journalled data, transaction commit could have
 225	 * dirtied the inode. And for inodes with dioread_nolock, unwritten
 226	 * extents converting worker could merge extents and also have dirtied
 227	 * the inode. Flush worker is ignoring it because of I_FREEING flag but
 228	 * we still need to remove the inode from the writeback lists.
 229	 */
 230	if (!list_empty_careful(&inode->i_io_list))
 231		inode_io_list_del(inode);
 232
 233	/*
 234	 * Protect us against freezing - iput() caller didn't have to have any
 235	 * protection against it. When we are in a running transaction though,
 236	 * we are already protected against freezing and we cannot grab further
 237	 * protection due to lock ordering constraints.
 238	 */
 239	if (!ext4_journal_current_handle()) {
 240		sb_start_intwrite(inode->i_sb);
 241		freeze_protected = true;
 242	}
 243
 244	if (!IS_NOQUOTA(inode))
 245		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
 246
 247	/*
 248	 * Block bitmap, group descriptor, and inode are accounted in both
 249	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
 250	 */
 251	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
 252			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
 253	if (IS_ERR(handle)) {
 254		ext4_std_error(inode->i_sb, PTR_ERR(handle));
 255		/*
 256		 * If we're going to skip the normal cleanup, we still need to
 257		 * make sure that the in-core orphan linked list is properly
 258		 * cleaned up.
 259		 */
 260		ext4_orphan_del(NULL, inode);
 261		if (freeze_protected)
 262			sb_end_intwrite(inode->i_sb);
 263		goto no_delete;
 264	}
 265
 266	if (IS_SYNC(inode))
 267		ext4_handle_sync(handle);
 268
 269	/*
 270	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
 271	 * special handling of symlinks here because i_size is used to
 272	 * determine whether ext4_inode_info->i_data contains symlink data or
 273	 * block mappings. Setting i_size to 0 will remove its fast symlink
 274	 * status. Erase i_data so that it becomes a valid empty block map.
 275	 */
 276	if (ext4_inode_is_fast_symlink(inode))
 277		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
 278	inode->i_size = 0;
 279	err = ext4_mark_inode_dirty(handle, inode);
 280	if (err) {
 281		ext4_warning(inode->i_sb,
 282			     "couldn't mark inode dirty (err %d)", err);
 283		goto stop_handle;
 284	}
 285	if (inode->i_blocks) {
 286		err = ext4_truncate(inode);
 287		if (err) {
 288			ext4_error_err(inode->i_sb, -err,
 289				       "couldn't truncate inode %lu (err %d)",
 290				       inode->i_ino, err);
 291			goto stop_handle;
 292		}
 293	}
 294
 295	/* Remove xattr references. */
 296	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
 297				      extra_credits);
 298	if (err) {
 299		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
 300stop_handle:
 301		ext4_journal_stop(handle);
 302		ext4_orphan_del(NULL, inode);
 303		if (freeze_protected)
 304			sb_end_intwrite(inode->i_sb);
 305		ext4_xattr_inode_array_free(ea_inode_array);
 306		goto no_delete;
 307	}
 308
 309	/*
 310	 * Kill off the orphan record which ext4_truncate created.
 311	 * AKPM: I think this can be inside the above `if'.
 312	 * Note that ext4_orphan_del() has to be able to cope with the
 313	 * deletion of a non-existent orphan - this is because we don't
 314	 * know if ext4_truncate() actually created an orphan record.
 315	 * (Well, we could do this if we need to, but heck - it works)
 316	 */
 317	ext4_orphan_del(handle, inode);
 318	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
 319
 320	/*
 321	 * One subtle ordering requirement: if anything has gone wrong
 322	 * (transaction abort, IO errors, whatever), then we can still
 323	 * do these next steps (the fs will already have been marked as
 324	 * having errors), but we can't free the inode if the mark_dirty
 325	 * fails.
 326	 */
 327	if (ext4_mark_inode_dirty(handle, inode))
 328		/* If that failed, just do the required in-core inode clear. */
 329		ext4_clear_inode(inode);
 330	else
 331		ext4_free_inode(handle, inode);
 332	ext4_journal_stop(handle);
 333	if (freeze_protected)
 334		sb_end_intwrite(inode->i_sb);
 335	ext4_xattr_inode_array_free(ea_inode_array);
 336	return;
 337no_delete:
 338	/*
 339	 * Check out some where else accidentally dirty the evicting inode,
 340	 * which may probably cause inode use-after-free issues later.
 341	 */
 342	WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
 343
 344	if (!list_empty(&EXT4_I(inode)->i_fc_list))
 345		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
 346	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
 347}
 348
 349#ifdef CONFIG_QUOTA
 350qsize_t *ext4_get_reserved_space(struct inode *inode)
 351{
 352	return &EXT4_I(inode)->i_reserved_quota;
 353}
 354#endif
 355
 356/*
 357 * Called with i_data_sem down, which is important since we can call
 358 * ext4_discard_preallocations() from here.
 359 */
 360void ext4_da_update_reserve_space(struct inode *inode,
 361					int used, int quota_claim)
 362{
 363	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 364	struct ext4_inode_info *ei = EXT4_I(inode);
 365
 366	spin_lock(&ei->i_block_reservation_lock);
 367	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
 368	if (unlikely(used > ei->i_reserved_data_blocks)) {
 369		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
 370			 "with only %d reserved data blocks",
 371			 __func__, inode->i_ino, used,
 372			 ei->i_reserved_data_blocks);
 373		WARN_ON(1);
 374		used = ei->i_reserved_data_blocks;
 375	}
 376
 377	/* Update per-inode reservations */
 378	ei->i_reserved_data_blocks -= used;
 379	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
 380
 381	spin_unlock(&ei->i_block_reservation_lock);
 382
 383	/* Update quota subsystem for data blocks */
 384	if (quota_claim)
 385		dquot_claim_block(inode, EXT4_C2B(sbi, used));
 386	else {
 387		/*
 388		 * We did fallocate with an offset that is already delayed
 389		 * allocated. So on delayed allocated writeback we should
 390		 * not re-claim the quota for fallocated blocks.
 391		 */
 392		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
 393	}
 394
 395	/*
 396	 * If we have done all the pending block allocations and if
 397	 * there aren't any writers on the inode, we can discard the
 398	 * inode's preallocations.
 399	 */
 400	if ((ei->i_reserved_data_blocks == 0) &&
 401	    !inode_is_open_for_write(inode))
 402		ext4_discard_preallocations(inode, 0);
 403}
 404
 405static int __check_block_validity(struct inode *inode, const char *func,
 406				unsigned int line,
 407				struct ext4_map_blocks *map)
 408{
 409	if (ext4_has_feature_journal(inode->i_sb) &&
 410	    (inode->i_ino ==
 411	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
 412		return 0;
 413	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
 414		ext4_error_inode(inode, func, line, map->m_pblk,
 415				 "lblock %lu mapped to illegal pblock %llu "
 416				 "(length %d)", (unsigned long) map->m_lblk,
 417				 map->m_pblk, map->m_len);
 418		return -EFSCORRUPTED;
 419	}
 420	return 0;
 421}
 422
 423int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
 424		       ext4_lblk_t len)
 425{
 426	int ret;
 427
 428	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
 429		return fscrypt_zeroout_range(inode, lblk, pblk, len);
 430
 431	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
 432	if (ret > 0)
 433		ret = 0;
 434
 435	return ret;
 436}
 437
 438#define check_block_validity(inode, map)	\
 439	__check_block_validity((inode), __func__, __LINE__, (map))
 440
 441#ifdef ES_AGGRESSIVE_TEST
 442static void ext4_map_blocks_es_recheck(handle_t *handle,
 443				       struct inode *inode,
 444				       struct ext4_map_blocks *es_map,
 445				       struct ext4_map_blocks *map,
 446				       int flags)
 447{
 448	int retval;
 449
 450	map->m_flags = 0;
 451	/*
 452	 * There is a race window that the result is not the same.
 453	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
 454	 * is that we lookup a block mapping in extent status tree with
 455	 * out taking i_data_sem.  So at the time the unwritten extent
 456	 * could be converted.
 457	 */
 458	down_read(&EXT4_I(inode)->i_data_sem);
 459	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 460		retval = ext4_ext_map_blocks(handle, inode, map, 0);
 
 461	} else {
 462		retval = ext4_ind_map_blocks(handle, inode, map, 0);
 
 463	}
 464	up_read((&EXT4_I(inode)->i_data_sem));
 465
 466	/*
 467	 * We don't check m_len because extent will be collpased in status
 468	 * tree.  So the m_len might not equal.
 469	 */
 470	if (es_map->m_lblk != map->m_lblk ||
 471	    es_map->m_flags != map->m_flags ||
 472	    es_map->m_pblk != map->m_pblk) {
 473		printk("ES cache assertion failed for inode: %lu "
 474		       "es_cached ex [%d/%d/%llu/%x] != "
 475		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
 476		       inode->i_ino, es_map->m_lblk, es_map->m_len,
 477		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
 478		       map->m_len, map->m_pblk, map->m_flags,
 479		       retval, flags);
 480	}
 481}
 482#endif /* ES_AGGRESSIVE_TEST */
 483
 484/*
 485 * The ext4_map_blocks() function tries to look up the requested blocks,
 486 * and returns if the blocks are already mapped.
 487 *
 488 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 489 * and store the allocated blocks in the result buffer head and mark it
 490 * mapped.
 491 *
 492 * If file type is extents based, it will call ext4_ext_map_blocks(),
 493 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
 494 * based files
 495 *
 496 * On success, it returns the number of blocks being mapped or allocated.  if
 497 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
 498 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
 499 *
 500 * It returns 0 if plain look up failed (blocks have not been allocated), in
 501 * that case, @map is returned as unmapped but we still do fill map->m_len to
 502 * indicate the length of a hole starting at map->m_lblk.
 503 *
 504 * It returns the error in case of allocation failure.
 505 */
 506int ext4_map_blocks(handle_t *handle, struct inode *inode,
 507		    struct ext4_map_blocks *map, int flags)
 508{
 509	struct extent_status es;
 510	int retval;
 511	int ret = 0;
 512#ifdef ES_AGGRESSIVE_TEST
 513	struct ext4_map_blocks orig_map;
 514
 515	memcpy(&orig_map, map, sizeof(*map));
 516#endif
 517
 518	map->m_flags = 0;
 519	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
 520		  flags, map->m_len, (unsigned long) map->m_lblk);
 
 521
 522	/*
 523	 * ext4_map_blocks returns an int, and m_len is an unsigned int
 524	 */
 525	if (unlikely(map->m_len > INT_MAX))
 526		map->m_len = INT_MAX;
 527
 528	/* We can handle the block number less than EXT_MAX_BLOCKS */
 529	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
 530		return -EFSCORRUPTED;
 531
 532	/* Lookup extent status tree firstly */
 533	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
 534	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
 535		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
 536			map->m_pblk = ext4_es_pblock(&es) +
 537					map->m_lblk - es.es_lblk;
 538			map->m_flags |= ext4_es_is_written(&es) ?
 539					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
 540			retval = es.es_len - (map->m_lblk - es.es_lblk);
 541			if (retval > map->m_len)
 542				retval = map->m_len;
 543			map->m_len = retval;
 544		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
 545			map->m_pblk = 0;
 546			retval = es.es_len - (map->m_lblk - es.es_lblk);
 547			if (retval > map->m_len)
 548				retval = map->m_len;
 549			map->m_len = retval;
 550			retval = 0;
 551		} else {
 552			BUG();
 553		}
 554
 555		if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
 556			return retval;
 557#ifdef ES_AGGRESSIVE_TEST
 558		ext4_map_blocks_es_recheck(handle, inode, map,
 559					   &orig_map, flags);
 560#endif
 561		goto found;
 562	}
 563	/*
 564	 * In the query cache no-wait mode, nothing we can do more if we
 565	 * cannot find extent in the cache.
 566	 */
 567	if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
 568		return 0;
 569
 570	/*
 571	 * Try to see if we can get the block without requesting a new
 572	 * file system block.
 573	 */
 574	down_read(&EXT4_I(inode)->i_data_sem);
 575	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 576		retval = ext4_ext_map_blocks(handle, inode, map, 0);
 
 577	} else {
 578		retval = ext4_ind_map_blocks(handle, inode, map, 0);
 
 579	}
 580	if (retval > 0) {
 581		unsigned int status;
 582
 583		if (unlikely(retval != map->m_len)) {
 584			ext4_warning(inode->i_sb,
 585				     "ES len assertion failed for inode "
 586				     "%lu: retval %d != map->m_len %d",
 587				     inode->i_ino, retval, map->m_len);
 588			WARN_ON(1);
 589		}
 590
 591		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 592				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 593		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 594		    !(status & EXTENT_STATUS_WRITTEN) &&
 595		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
 596				       map->m_lblk + map->m_len - 1))
 597			status |= EXTENT_STATUS_DELAYED;
 598		ret = ext4_es_insert_extent(inode, map->m_lblk,
 599					    map->m_len, map->m_pblk, status);
 600		if (ret < 0)
 601			retval = ret;
 602	}
 603	up_read((&EXT4_I(inode)->i_data_sem));
 604
 605found:
 606	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 607		ret = check_block_validity(inode, map);
 608		if (ret != 0)
 609			return ret;
 610	}
 611
 612	/* If it is only a block(s) look up */
 613	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
 614		return retval;
 615
 616	/*
 617	 * Returns if the blocks have already allocated
 618	 *
 619	 * Note that if blocks have been preallocated
 620	 * ext4_ext_get_block() returns the create = 0
 621	 * with buffer head unmapped.
 622	 */
 623	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
 624		/*
 625		 * If we need to convert extent to unwritten
 626		 * we continue and do the actual work in
 627		 * ext4_ext_map_blocks()
 628		 */
 629		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
 630			return retval;
 631
 632	/*
 633	 * Here we clear m_flags because after allocating an new extent,
 634	 * it will be set again.
 635	 */
 636	map->m_flags &= ~EXT4_MAP_FLAGS;
 637
 638	/*
 639	 * New blocks allocate and/or writing to unwritten extent
 640	 * will possibly result in updating i_data, so we take
 641	 * the write lock of i_data_sem, and call get_block()
 642	 * with create == 1 flag.
 643	 */
 644	down_write(&EXT4_I(inode)->i_data_sem);
 645
 646	/*
 647	 * We need to check for EXT4 here because migrate
 648	 * could have changed the inode type in between
 649	 */
 650	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 651		retval = ext4_ext_map_blocks(handle, inode, map, flags);
 652	} else {
 653		retval = ext4_ind_map_blocks(handle, inode, map, flags);
 654
 655		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
 656			/*
 657			 * We allocated new blocks which will result in
 658			 * i_data's format changing.  Force the migrate
 659			 * to fail by clearing migrate flags
 660			 */
 661			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
 662		}
 663
 664		/*
 665		 * Update reserved blocks/metadata blocks after successful
 666		 * block allocation which had been deferred till now. We don't
 667		 * support fallocate for non extent files. So we can update
 668		 * reserve space here.
 669		 */
 670		if ((retval > 0) &&
 671			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
 672			ext4_da_update_reserve_space(inode, retval, 1);
 673	}
 674
 675	if (retval > 0) {
 676		unsigned int status;
 677
 678		if (unlikely(retval != map->m_len)) {
 679			ext4_warning(inode->i_sb,
 680				     "ES len assertion failed for inode "
 681				     "%lu: retval %d != map->m_len %d",
 682				     inode->i_ino, retval, map->m_len);
 683			WARN_ON(1);
 684		}
 685
 686		/*
 687		 * We have to zeroout blocks before inserting them into extent
 688		 * status tree. Otherwise someone could look them up there and
 689		 * use them before they are really zeroed. We also have to
 690		 * unmap metadata before zeroing as otherwise writeback can
 691		 * overwrite zeros with stale data from block device.
 692		 */
 693		if (flags & EXT4_GET_BLOCKS_ZERO &&
 694		    map->m_flags & EXT4_MAP_MAPPED &&
 695		    map->m_flags & EXT4_MAP_NEW) {
 
 
 696			ret = ext4_issue_zeroout(inode, map->m_lblk,
 697						 map->m_pblk, map->m_len);
 698			if (ret) {
 699				retval = ret;
 700				goto out_sem;
 701			}
 702		}
 703
 704		/*
 705		 * If the extent has been zeroed out, we don't need to update
 706		 * extent status tree.
 707		 */
 708		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
 709		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
 710			if (ext4_es_is_written(&es))
 711				goto out_sem;
 712		}
 713		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 714				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 715		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 716		    !(status & EXTENT_STATUS_WRITTEN) &&
 717		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
 718				       map->m_lblk + map->m_len - 1))
 719			status |= EXTENT_STATUS_DELAYED;
 720		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
 721					    map->m_pblk, status);
 722		if (ret < 0) {
 723			retval = ret;
 724			goto out_sem;
 725		}
 726	}
 727
 728out_sem:
 729	up_write((&EXT4_I(inode)->i_data_sem));
 730	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 731		ret = check_block_validity(inode, map);
 732		if (ret != 0)
 733			return ret;
 734
 735		/*
 736		 * Inodes with freshly allocated blocks where contents will be
 737		 * visible after transaction commit must be on transaction's
 738		 * ordered data list.
 739		 */
 740		if (map->m_flags & EXT4_MAP_NEW &&
 741		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
 742		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
 743		    !ext4_is_quota_file(inode) &&
 744		    ext4_should_order_data(inode)) {
 745			loff_t start_byte =
 746				(loff_t)map->m_lblk << inode->i_blkbits;
 747			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
 748
 749			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
 750				ret = ext4_jbd2_inode_add_wait(handle, inode,
 751						start_byte, length);
 752			else
 753				ret = ext4_jbd2_inode_add_write(handle, inode,
 754						start_byte, length);
 755			if (ret)
 756				return ret;
 757		}
 758	}
 759	if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
 760				map->m_flags & EXT4_MAP_MAPPED))
 761		ext4_fc_track_range(handle, inode, map->m_lblk,
 762					map->m_lblk + map->m_len - 1);
 763	if (retval < 0)
 764		ext_debug(inode, "failed with err %d\n", retval);
 765	return retval;
 766}
 767
 768/*
 769 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
 770 * we have to be careful as someone else may be manipulating b_state as well.
 771 */
 772static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
 773{
 774	unsigned long old_state;
 775	unsigned long new_state;
 776
 777	flags &= EXT4_MAP_FLAGS;
 778
 779	/* Dummy buffer_head? Set non-atomically. */
 780	if (!bh->b_page) {
 781		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
 782		return;
 783	}
 784	/*
 785	 * Someone else may be modifying b_state. Be careful! This is ugly but
 786	 * once we get rid of using bh as a container for mapping information
 787	 * to pass to / from get_block functions, this can go away.
 788	 */
 789	do {
 790		old_state = READ_ONCE(bh->b_state);
 791		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
 792	} while (unlikely(
 793		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
 794}
 795
 796static int _ext4_get_block(struct inode *inode, sector_t iblock,
 797			   struct buffer_head *bh, int flags)
 798{
 799	struct ext4_map_blocks map;
 800	int ret = 0;
 801
 802	if (ext4_has_inline_data(inode))
 803		return -ERANGE;
 804
 805	map.m_lblk = iblock;
 806	map.m_len = bh->b_size >> inode->i_blkbits;
 807
 808	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
 809			      flags);
 810	if (ret > 0) {
 811		map_bh(bh, inode->i_sb, map.m_pblk);
 812		ext4_update_bh_state(bh, map.m_flags);
 813		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 814		ret = 0;
 815	} else if (ret == 0) {
 816		/* hole case, need to fill in bh->b_size */
 817		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 818	}
 819	return ret;
 820}
 821
 822int ext4_get_block(struct inode *inode, sector_t iblock,
 823		   struct buffer_head *bh, int create)
 824{
 825	return _ext4_get_block(inode, iblock, bh,
 826			       create ? EXT4_GET_BLOCKS_CREATE : 0);
 827}
 828
 829/*
 830 * Get block function used when preparing for buffered write if we require
 831 * creating an unwritten extent if blocks haven't been allocated.  The extent
 832 * will be converted to written after the IO is complete.
 833 */
 834int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
 835			     struct buffer_head *bh_result, int create)
 836{
 837	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
 838		   inode->i_ino, create);
 839	return _ext4_get_block(inode, iblock, bh_result,
 840			       EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
 841}
 842
 843/* Maximum number of blocks we map for direct IO at once. */
 844#define DIO_MAX_BLOCKS 4096
 845
 846/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 847 * `handle' can be NULL if create is zero
 848 */
 849struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
 850				ext4_lblk_t block, int map_flags)
 851{
 852	struct ext4_map_blocks map;
 853	struct buffer_head *bh;
 854	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
 855	bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
 856	int err;
 857
 858	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
 859		    || handle != NULL || create == 0);
 860	ASSERT(create == 0 || !nowait);
 861
 862	map.m_lblk = block;
 863	map.m_len = 1;
 864	err = ext4_map_blocks(handle, inode, &map, map_flags);
 865
 866	if (err == 0)
 867		return create ? ERR_PTR(-ENOSPC) : NULL;
 868	if (err < 0)
 869		return ERR_PTR(err);
 870
 871	if (nowait)
 872		return sb_find_get_block(inode->i_sb, map.m_pblk);
 873
 874	bh = sb_getblk(inode->i_sb, map.m_pblk);
 875	if (unlikely(!bh))
 876		return ERR_PTR(-ENOMEM);
 877	if (map.m_flags & EXT4_MAP_NEW) {
 878		ASSERT(create != 0);
 879		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
 880			    || (handle != NULL));
 881
 882		/*
 883		 * Now that we do not always journal data, we should
 884		 * keep in mind whether this should always journal the
 885		 * new buffer as metadata.  For now, regular file
 886		 * writes use ext4_get_block instead, so it's not a
 887		 * problem.
 888		 */
 889		lock_buffer(bh);
 890		BUFFER_TRACE(bh, "call get_create_access");
 891		err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
 892						     EXT4_JTR_NONE);
 893		if (unlikely(err)) {
 894			unlock_buffer(bh);
 895			goto errout;
 896		}
 897		if (!buffer_uptodate(bh)) {
 898			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
 899			set_buffer_uptodate(bh);
 900		}
 901		unlock_buffer(bh);
 902		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 903		err = ext4_handle_dirty_metadata(handle, inode, bh);
 904		if (unlikely(err))
 905			goto errout;
 906	} else
 907		BUFFER_TRACE(bh, "not a new buffer");
 908	return bh;
 909errout:
 910	brelse(bh);
 911	return ERR_PTR(err);
 912}
 913
 914struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
 915			       ext4_lblk_t block, int map_flags)
 916{
 917	struct buffer_head *bh;
 918	int ret;
 919
 920	bh = ext4_getblk(handle, inode, block, map_flags);
 921	if (IS_ERR(bh))
 922		return bh;
 923	if (!bh || ext4_buffer_uptodate(bh))
 
 
 
 
 924		return bh;
 925
 926	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
 927	if (ret) {
 928		put_bh(bh);
 929		return ERR_PTR(ret);
 930	}
 931	return bh;
 932}
 933
 934/* Read a contiguous batch of blocks. */
 935int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
 936		     bool wait, struct buffer_head **bhs)
 937{
 938	int i, err;
 939
 940	for (i = 0; i < bh_count; i++) {
 941		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
 942		if (IS_ERR(bhs[i])) {
 943			err = PTR_ERR(bhs[i]);
 944			bh_count = i;
 945			goto out_brelse;
 946		}
 947	}
 948
 949	for (i = 0; i < bh_count; i++)
 950		/* Note that NULL bhs[i] is valid because of holes. */
 951		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
 952			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
 
 953
 954	if (!wait)
 955		return 0;
 956
 957	for (i = 0; i < bh_count; i++)
 958		if (bhs[i])
 959			wait_on_buffer(bhs[i]);
 960
 961	for (i = 0; i < bh_count; i++) {
 962		if (bhs[i] && !buffer_uptodate(bhs[i])) {
 963			err = -EIO;
 964			goto out_brelse;
 965		}
 966	}
 967	return 0;
 968
 969out_brelse:
 970	for (i = 0; i < bh_count; i++) {
 971		brelse(bhs[i]);
 972		bhs[i] = NULL;
 973	}
 974	return err;
 975}
 976
 977int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
 978			   struct buffer_head *head,
 979			   unsigned from,
 980			   unsigned to,
 981			   int *partial,
 982			   int (*fn)(handle_t *handle, struct inode *inode,
 983				     struct buffer_head *bh))
 984{
 985	struct buffer_head *bh;
 986	unsigned block_start, block_end;
 987	unsigned blocksize = head->b_size;
 988	int err, ret = 0;
 989	struct buffer_head *next;
 990
 991	for (bh = head, block_start = 0;
 992	     ret == 0 && (bh != head || !block_start);
 993	     block_start = block_end, bh = next) {
 994		next = bh->b_this_page;
 995		block_end = block_start + blocksize;
 996		if (block_end <= from || block_start >= to) {
 997			if (partial && !buffer_uptodate(bh))
 998				*partial = 1;
 999			continue;
1000		}
1001		err = (*fn)(handle, inode, bh);
1002		if (!ret)
1003			ret = err;
1004	}
1005	return ret;
1006}
1007
1008/*
1009 * To preserve ordering, it is essential that the hole instantiation and
1010 * the data write be encapsulated in a single transaction.  We cannot
1011 * close off a transaction and start a new one between the ext4_get_block()
1012 * and the commit_write().  So doing the jbd2_journal_start at the start of
1013 * prepare_write() is the right place.
1014 *
1015 * Also, this function can nest inside ext4_writepage().  In that case, we
1016 * *know* that ext4_writepage() has generated enough buffer credits to do the
1017 * whole page.  So we won't block on the journal in that case, which is good,
1018 * because the caller may be PF_MEMALLOC.
1019 *
1020 * By accident, ext4 can be reentered when a transaction is open via
1021 * quota file writes.  If we were to commit the transaction while thus
1022 * reentered, there can be a deadlock - we would be holding a quota
1023 * lock, and the commit would never complete if another thread had a
1024 * transaction open and was blocking on the quota lock - a ranking
1025 * violation.
1026 *
1027 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1028 * will _not_ run commit under these circumstances because handle->h_ref
1029 * is elevated.  We'll still have enough credits for the tiny quotafile
1030 * write.
1031 */
1032int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1033				struct buffer_head *bh)
1034{
1035	int dirty = buffer_dirty(bh);
1036	int ret;
1037
1038	if (!buffer_mapped(bh) || buffer_freed(bh))
1039		return 0;
1040	/*
1041	 * __block_write_begin() could have dirtied some buffers. Clean
1042	 * the dirty bit as jbd2_journal_get_write_access() could complain
1043	 * otherwise about fs integrity issues. Setting of the dirty bit
1044	 * by __block_write_begin() isn't a real problem here as we clear
1045	 * the bit before releasing a page lock and thus writeback cannot
1046	 * ever write the buffer.
1047	 */
1048	if (dirty)
1049		clear_buffer_dirty(bh);
1050	BUFFER_TRACE(bh, "get write access");
1051	ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1052					    EXT4_JTR_NONE);
1053	if (!ret && dirty)
1054		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1055	return ret;
1056}
1057
1058#ifdef CONFIG_FS_ENCRYPTION
1059static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1060				  get_block_t *get_block)
1061{
1062	unsigned from = pos & (PAGE_SIZE - 1);
1063	unsigned to = from + len;
1064	struct inode *inode = page->mapping->host;
1065	unsigned block_start, block_end;
1066	sector_t block;
1067	int err = 0;
1068	unsigned blocksize = inode->i_sb->s_blocksize;
1069	unsigned bbits;
1070	struct buffer_head *bh, *head, *wait[2];
1071	int nr_wait = 0;
1072	int i;
1073
1074	BUG_ON(!PageLocked(page));
1075	BUG_ON(from > PAGE_SIZE);
1076	BUG_ON(to > PAGE_SIZE);
1077	BUG_ON(from > to);
1078
1079	if (!page_has_buffers(page))
1080		create_empty_buffers(page, blocksize, 0);
1081	head = page_buffers(page);
1082	bbits = ilog2(blocksize);
1083	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1084
1085	for (bh = head, block_start = 0; bh != head || !block_start;
1086	    block++, block_start = block_end, bh = bh->b_this_page) {
1087		block_end = block_start + blocksize;
1088		if (block_end <= from || block_start >= to) {
1089			if (PageUptodate(page)) {
1090				set_buffer_uptodate(bh);
 
1091			}
1092			continue;
1093		}
1094		if (buffer_new(bh))
1095			clear_buffer_new(bh);
1096		if (!buffer_mapped(bh)) {
1097			WARN_ON(bh->b_size != blocksize);
1098			err = get_block(inode, block, bh, 1);
1099			if (err)
1100				break;
1101			if (buffer_new(bh)) {
 
1102				if (PageUptodate(page)) {
1103					clear_buffer_new(bh);
1104					set_buffer_uptodate(bh);
1105					mark_buffer_dirty(bh);
1106					continue;
1107				}
1108				if (block_end > to || block_start < from)
1109					zero_user_segments(page, to, block_end,
1110							   block_start, from);
1111				continue;
1112			}
1113		}
1114		if (PageUptodate(page)) {
1115			set_buffer_uptodate(bh);
 
1116			continue;
1117		}
1118		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1119		    !buffer_unwritten(bh) &&
1120		    (block_start < from || block_end > to)) {
1121			ext4_read_bh_lock(bh, 0, false);
1122			wait[nr_wait++] = bh;
 
 
1123		}
1124	}
1125	/*
1126	 * If we issued read requests, let them complete.
1127	 */
1128	for (i = 0; i < nr_wait; i++) {
1129		wait_on_buffer(wait[i]);
1130		if (!buffer_uptodate(wait[i]))
1131			err = -EIO;
1132	}
1133	if (unlikely(err)) {
1134		page_zero_new_buffers(page, from, to);
1135	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1136		for (i = 0; i < nr_wait; i++) {
1137			int err2;
1138
1139			err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1140								bh_offset(wait[i]));
1141			if (err2) {
1142				clear_buffer_uptodate(wait[i]);
1143				err = err2;
1144			}
1145		}
1146	}
1147
1148	return err;
1149}
1150#endif
1151
1152static int ext4_write_begin(struct file *file, struct address_space *mapping,
1153			    loff_t pos, unsigned len,
1154			    struct page **pagep, void **fsdata)
1155{
1156	struct inode *inode = mapping->host;
1157	int ret, needed_blocks;
1158	handle_t *handle;
1159	int retries = 0;
1160	struct page *page;
1161	pgoff_t index;
1162	unsigned from, to;
1163
1164	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1165		return -EIO;
1166
1167	trace_ext4_write_begin(inode, pos, len);
1168	/*
1169	 * Reserve one block more for addition to orphan list in case
1170	 * we allocate blocks but write fails for some reason
1171	 */
1172	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1173	index = pos >> PAGE_SHIFT;
1174	from = pos & (PAGE_SIZE - 1);
1175	to = from + len;
1176
1177	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1178		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1179						    pagep);
1180		if (ret < 0)
1181			return ret;
1182		if (ret == 1)
1183			return 0;
1184	}
1185
1186	/*
1187	 * grab_cache_page_write_begin() can take a long time if the
1188	 * system is thrashing due to memory pressure, or if the page
1189	 * is being written back.  So grab it first before we start
1190	 * the transaction handle.  This also allows us to allocate
1191	 * the page (if needed) without using GFP_NOFS.
1192	 */
1193retry_grab:
1194	page = grab_cache_page_write_begin(mapping, index);
1195	if (!page)
1196		return -ENOMEM;
1197	/*
1198	 * The same as page allocation, we prealloc buffer heads before
1199	 * starting the handle.
1200	 */
1201	if (!page_has_buffers(page))
1202		create_empty_buffers(page, inode->i_sb->s_blocksize, 0);
1203
1204	unlock_page(page);
1205
1206retry_journal:
1207	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1208	if (IS_ERR(handle)) {
1209		put_page(page);
1210		return PTR_ERR(handle);
1211	}
1212
1213	lock_page(page);
1214	if (page->mapping != mapping) {
1215		/* The page got truncated from under us */
1216		unlock_page(page);
1217		put_page(page);
1218		ext4_journal_stop(handle);
1219		goto retry_grab;
1220	}
1221	/* In case writeback began while the page was unlocked */
1222	wait_for_stable_page(page);
1223
1224#ifdef CONFIG_FS_ENCRYPTION
1225	if (ext4_should_dioread_nolock(inode))
1226		ret = ext4_block_write_begin(page, pos, len,
1227					     ext4_get_block_unwritten);
1228	else
1229		ret = ext4_block_write_begin(page, pos, len,
1230					     ext4_get_block);
1231#else
1232	if (ext4_should_dioread_nolock(inode))
1233		ret = __block_write_begin(page, pos, len,
1234					  ext4_get_block_unwritten);
1235	else
1236		ret = __block_write_begin(page, pos, len, ext4_get_block);
1237#endif
1238	if (!ret && ext4_should_journal_data(inode)) {
1239		ret = ext4_walk_page_buffers(handle, inode,
1240					     page_buffers(page), from, to, NULL,
1241					     do_journal_get_write_access);
1242	}
1243
1244	if (ret) {
1245		bool extended = (pos + len > inode->i_size) &&
1246				!ext4_verity_in_progress(inode);
1247
1248		unlock_page(page);
1249		/*
1250		 * __block_write_begin may have instantiated a few blocks
1251		 * outside i_size.  Trim these off again. Don't need
1252		 * i_size_read because we hold i_rwsem.
1253		 *
1254		 * Add inode to orphan list in case we crash before
1255		 * truncate finishes
1256		 */
1257		if (extended && ext4_can_truncate(inode))
1258			ext4_orphan_add(handle, inode);
1259
1260		ext4_journal_stop(handle);
1261		if (extended) {
1262			ext4_truncate_failed_write(inode);
1263			/*
1264			 * If truncate failed early the inode might
1265			 * still be on the orphan list; we need to
1266			 * make sure the inode is removed from the
1267			 * orphan list in that case.
1268			 */
1269			if (inode->i_nlink)
1270				ext4_orphan_del(NULL, inode);
1271		}
1272
1273		if (ret == -ENOSPC &&
1274		    ext4_should_retry_alloc(inode->i_sb, &retries))
1275			goto retry_journal;
1276		put_page(page);
1277		return ret;
1278	}
1279	*pagep = page;
1280	return ret;
1281}
1282
1283/* For write_end() in data=journal mode */
1284static int write_end_fn(handle_t *handle, struct inode *inode,
1285			struct buffer_head *bh)
1286{
1287	int ret;
1288	if (!buffer_mapped(bh) || buffer_freed(bh))
1289		return 0;
1290	set_buffer_uptodate(bh);
1291	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1292	clear_buffer_meta(bh);
1293	clear_buffer_prio(bh);
1294	return ret;
1295}
1296
1297/*
1298 * We need to pick up the new inode size which generic_commit_write gave us
1299 * `file' can be NULL - eg, when called from page_symlink().
1300 *
1301 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1302 * buffers are managed internally.
1303 */
1304static int ext4_write_end(struct file *file,
1305			  struct address_space *mapping,
1306			  loff_t pos, unsigned len, unsigned copied,
1307			  struct page *page, void *fsdata)
1308{
1309	handle_t *handle = ext4_journal_current_handle();
1310	struct inode *inode = mapping->host;
1311	loff_t old_size = inode->i_size;
1312	int ret = 0, ret2;
1313	int i_size_changed = 0;
1314	bool verity = ext4_verity_in_progress(inode);
1315
1316	trace_ext4_write_end(inode, pos, len, copied);
1317
1318	if (ext4_has_inline_data(inode) &&
1319	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1320		return ext4_write_inline_data_end(inode, pos, len, copied, page);
1321
1322	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
 
 
 
 
 
 
1323	/*
1324	 * it's important to update i_size while still holding page lock:
1325	 * page writeout could otherwise come in and zero beyond i_size.
1326	 *
1327	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1328	 * blocks are being written past EOF, so skip the i_size update.
1329	 */
1330	if (!verity)
1331		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1332	unlock_page(page);
1333	put_page(page);
1334
1335	if (old_size < pos && !verity)
1336		pagecache_isize_extended(inode, old_size, pos);
1337	/*
1338	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1339	 * makes the holding time of page lock longer. Second, it forces lock
1340	 * ordering of page lock and transaction start for journaling
1341	 * filesystems.
1342	 */
1343	if (i_size_changed)
1344		ret = ext4_mark_inode_dirty(handle, inode);
1345
1346	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1347		/* if we have allocated more blocks and copied
1348		 * less. We will have blocks allocated outside
1349		 * inode->i_size. So truncate them
1350		 */
1351		ext4_orphan_add(handle, inode);
1352
1353	ret2 = ext4_journal_stop(handle);
1354	if (!ret)
1355		ret = ret2;
1356
1357	if (pos + len > inode->i_size && !verity) {
1358		ext4_truncate_failed_write(inode);
1359		/*
1360		 * If truncate failed early the inode might still be
1361		 * on the orphan list; we need to make sure the inode
1362		 * is removed from the orphan list in that case.
1363		 */
1364		if (inode->i_nlink)
1365			ext4_orphan_del(NULL, inode);
1366	}
1367
1368	return ret ? ret : copied;
1369}
1370
1371/*
1372 * This is a private version of page_zero_new_buffers() which doesn't
1373 * set the buffer to be dirty, since in data=journalled mode we need
1374 * to call ext4_handle_dirty_metadata() instead.
1375 */
1376static void ext4_journalled_zero_new_buffers(handle_t *handle,
1377					    struct inode *inode,
1378					    struct page *page,
1379					    unsigned from, unsigned to)
1380{
1381	unsigned int block_start = 0, block_end;
1382	struct buffer_head *head, *bh;
1383
1384	bh = head = page_buffers(page);
1385	do {
1386		block_end = block_start + bh->b_size;
1387		if (buffer_new(bh)) {
1388			if (block_end > from && block_start < to) {
1389				if (!PageUptodate(page)) {
1390					unsigned start, size;
1391
1392					start = max(from, block_start);
1393					size = min(to, block_end) - start;
1394
1395					zero_user(page, start, size);
1396					write_end_fn(handle, inode, bh);
1397				}
1398				clear_buffer_new(bh);
1399			}
1400		}
1401		block_start = block_end;
1402		bh = bh->b_this_page;
1403	} while (bh != head);
1404}
1405
1406static int ext4_journalled_write_end(struct file *file,
1407				     struct address_space *mapping,
1408				     loff_t pos, unsigned len, unsigned copied,
1409				     struct page *page, void *fsdata)
1410{
1411	handle_t *handle = ext4_journal_current_handle();
1412	struct inode *inode = mapping->host;
1413	loff_t old_size = inode->i_size;
1414	int ret = 0, ret2;
1415	int partial = 0;
1416	unsigned from, to;
1417	int size_changed = 0;
1418	bool verity = ext4_verity_in_progress(inode);
1419
1420	trace_ext4_journalled_write_end(inode, pos, len, copied);
1421	from = pos & (PAGE_SIZE - 1);
1422	to = from + len;
1423
1424	BUG_ON(!ext4_handle_valid(handle));
1425
1426	if (ext4_has_inline_data(inode))
1427		return ext4_write_inline_data_end(inode, pos, len, copied, page);
1428
1429	if (unlikely(copied < len) && !PageUptodate(page)) {
 
 
 
 
 
 
1430		copied = 0;
1431		ext4_journalled_zero_new_buffers(handle, inode, page, from, to);
1432	} else {
1433		if (unlikely(copied < len))
1434			ext4_journalled_zero_new_buffers(handle, inode, page,
1435							 from + copied, to);
1436		ret = ext4_walk_page_buffers(handle, inode, page_buffers(page),
1437					     from, from + copied, &partial,
1438					     write_end_fn);
1439		if (!partial)
1440			SetPageUptodate(page);
1441	}
1442	if (!verity)
1443		size_changed = ext4_update_inode_size(inode, pos + copied);
1444	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1445	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1446	unlock_page(page);
1447	put_page(page);
1448
1449	if (old_size < pos && !verity)
1450		pagecache_isize_extended(inode, old_size, pos);
1451
1452	if (size_changed) {
1453		ret2 = ext4_mark_inode_dirty(handle, inode);
1454		if (!ret)
1455			ret = ret2;
1456	}
1457
1458	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1459		/* if we have allocated more blocks and copied
1460		 * less. We will have blocks allocated outside
1461		 * inode->i_size. So truncate them
1462		 */
1463		ext4_orphan_add(handle, inode);
1464
 
1465	ret2 = ext4_journal_stop(handle);
1466	if (!ret)
1467		ret = ret2;
1468	if (pos + len > inode->i_size && !verity) {
1469		ext4_truncate_failed_write(inode);
1470		/*
1471		 * If truncate failed early the inode might still be
1472		 * on the orphan list; we need to make sure the inode
1473		 * is removed from the orphan list in that case.
1474		 */
1475		if (inode->i_nlink)
1476			ext4_orphan_del(NULL, inode);
1477	}
1478
1479	return ret ? ret : copied;
1480}
1481
1482/*
1483 * Reserve space for a single cluster
1484 */
1485static int ext4_da_reserve_space(struct inode *inode)
1486{
1487	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1488	struct ext4_inode_info *ei = EXT4_I(inode);
1489	int ret;
1490
1491	/*
1492	 * We will charge metadata quota at writeout time; this saves
1493	 * us from metadata over-estimation, though we may go over by
1494	 * a small amount in the end.  Here we just reserve for data.
1495	 */
1496	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1497	if (ret)
1498		return ret;
1499
1500	spin_lock(&ei->i_block_reservation_lock);
1501	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1502		spin_unlock(&ei->i_block_reservation_lock);
1503		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1504		return -ENOSPC;
1505	}
1506	ei->i_reserved_data_blocks++;
1507	trace_ext4_da_reserve_space(inode);
1508	spin_unlock(&ei->i_block_reservation_lock);
1509
1510	return 0;       /* success */
1511}
1512
1513void ext4_da_release_space(struct inode *inode, int to_free)
1514{
1515	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1516	struct ext4_inode_info *ei = EXT4_I(inode);
1517
1518	if (!to_free)
1519		return;		/* Nothing to release, exit */
1520
1521	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1522
1523	trace_ext4_da_release_space(inode, to_free);
1524	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1525		/*
1526		 * if there aren't enough reserved blocks, then the
1527		 * counter is messed up somewhere.  Since this
1528		 * function is called from invalidate page, it's
1529		 * harmless to return without any action.
1530		 */
1531		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1532			 "ino %lu, to_free %d with only %d reserved "
1533			 "data blocks", inode->i_ino, to_free,
1534			 ei->i_reserved_data_blocks);
1535		WARN_ON(1);
1536		to_free = ei->i_reserved_data_blocks;
1537	}
1538	ei->i_reserved_data_blocks -= to_free;
1539
1540	/* update fs dirty data blocks counter */
1541	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1542
1543	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1544
1545	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1546}
1547
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1548/*
1549 * Delayed allocation stuff
1550 */
1551
1552struct mpage_da_data {
1553	/* These are input fields for ext4_do_writepages() */
1554	struct inode *inode;
1555	struct writeback_control *wbc;
1556	unsigned int can_map:1;	/* Can writepages call map blocks? */
1557
1558	/* These are internal state of ext4_do_writepages() */
1559	pgoff_t first_page;	/* The first page to write */
1560	pgoff_t next_page;	/* Current page to examine */
1561	pgoff_t last_page;	/* Last page to examine */
1562	/*
1563	 * Extent to map - this can be after first_page because that can be
1564	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1565	 * is delalloc or unwritten.
1566	 */
1567	struct ext4_map_blocks map;
1568	struct ext4_io_submit io_submit;	/* IO submission data */
1569	unsigned int do_map:1;
1570	unsigned int scanned_until_end:1;
1571};
1572
1573static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1574				       bool invalidate)
1575{
1576	unsigned nr, i;
1577	pgoff_t index, end;
1578	struct folio_batch fbatch;
1579	struct inode *inode = mpd->inode;
1580	struct address_space *mapping = inode->i_mapping;
1581
1582	/* This is necessary when next_page == 0. */
1583	if (mpd->first_page >= mpd->next_page)
1584		return;
1585
1586	mpd->scanned_until_end = 0;
1587	index = mpd->first_page;
1588	end   = mpd->next_page - 1;
1589	if (invalidate) {
1590		ext4_lblk_t start, last;
1591		start = index << (PAGE_SHIFT - inode->i_blkbits);
1592		last = end << (PAGE_SHIFT - inode->i_blkbits);
1593
1594		/*
1595		 * avoid racing with extent status tree scans made by
1596		 * ext4_insert_delayed_block()
1597		 */
1598		down_write(&EXT4_I(inode)->i_data_sem);
1599		ext4_es_remove_extent(inode, start, last - start + 1);
1600		up_write(&EXT4_I(inode)->i_data_sem);
1601	}
1602
1603	folio_batch_init(&fbatch);
1604	while (index <= end) {
1605		nr = filemap_get_folios(mapping, &index, end, &fbatch);
1606		if (nr == 0)
1607			break;
1608		for (i = 0; i < nr; i++) {
1609			struct folio *folio = fbatch.folios[i];
1610
1611			if (folio->index < mpd->first_page)
1612				continue;
1613			if (folio->index + folio_nr_pages(folio) - 1 > end)
1614				continue;
1615			BUG_ON(!folio_test_locked(folio));
1616			BUG_ON(folio_test_writeback(folio));
1617			if (invalidate) {
1618				if (folio_mapped(folio))
1619					folio_clear_dirty_for_io(folio);
1620				block_invalidate_folio(folio, 0,
1621						folio_size(folio));
1622				folio_clear_uptodate(folio);
1623			}
1624			folio_unlock(folio);
1625		}
1626		folio_batch_release(&fbatch);
1627	}
1628}
1629
1630static void ext4_print_free_blocks(struct inode *inode)
1631{
1632	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1633	struct super_block *sb = inode->i_sb;
1634	struct ext4_inode_info *ei = EXT4_I(inode);
1635
1636	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1637	       EXT4_C2B(EXT4_SB(inode->i_sb),
1638			ext4_count_free_clusters(sb)));
1639	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1640	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1641	       (long long) EXT4_C2B(EXT4_SB(sb),
1642		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1643	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1644	       (long long) EXT4_C2B(EXT4_SB(sb),
1645		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1646	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1647	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1648		 ei->i_reserved_data_blocks);
1649	return;
1650}
1651
1652static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode,
1653				      struct buffer_head *bh)
1654{
1655	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1656}
1657
1658/*
1659 * ext4_insert_delayed_block - adds a delayed block to the extents status
1660 *                             tree, incrementing the reserved cluster/block
1661 *                             count or making a pending reservation
1662 *                             where needed
1663 *
1664 * @inode - file containing the newly added block
1665 * @lblk - logical block to be added
1666 *
1667 * Returns 0 on success, negative error code on failure.
1668 */
1669static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1670{
1671	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1672	int ret;
1673	bool allocated = false;
1674	bool reserved = false;
1675
1676	/*
1677	 * If the cluster containing lblk is shared with a delayed,
1678	 * written, or unwritten extent in a bigalloc file system, it's
1679	 * already been accounted for and does not need to be reserved.
1680	 * A pending reservation must be made for the cluster if it's
1681	 * shared with a written or unwritten extent and doesn't already
1682	 * have one.  Written and unwritten extents can be purged from the
1683	 * extents status tree if the system is under memory pressure, so
1684	 * it's necessary to examine the extent tree if a search of the
1685	 * extents status tree doesn't get a match.
1686	 */
1687	if (sbi->s_cluster_ratio == 1) {
1688		ret = ext4_da_reserve_space(inode);
1689		if (ret != 0)   /* ENOSPC */
1690			goto errout;
1691		reserved = true;
1692	} else {   /* bigalloc */
1693		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1694			if (!ext4_es_scan_clu(inode,
1695					      &ext4_es_is_mapped, lblk)) {
1696				ret = ext4_clu_mapped(inode,
1697						      EXT4_B2C(sbi, lblk));
1698				if (ret < 0)
1699					goto errout;
1700				if (ret == 0) {
1701					ret = ext4_da_reserve_space(inode);
1702					if (ret != 0)   /* ENOSPC */
1703						goto errout;
1704					reserved = true;
1705				} else {
1706					allocated = true;
1707				}
1708			} else {
1709				allocated = true;
1710			}
1711		}
1712	}
1713
1714	ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1715	if (ret && reserved)
1716		ext4_da_release_space(inode, 1);
1717
1718errout:
1719	return ret;
1720}
1721
1722/*
1723 * This function is grabs code from the very beginning of
1724 * ext4_map_blocks, but assumes that the caller is from delayed write
1725 * time. This function looks up the requested blocks and sets the
1726 * buffer delay bit under the protection of i_data_sem.
1727 */
1728static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1729			      struct ext4_map_blocks *map,
1730			      struct buffer_head *bh)
1731{
1732	struct extent_status es;
1733	int retval;
1734	sector_t invalid_block = ~((sector_t) 0xffff);
1735#ifdef ES_AGGRESSIVE_TEST
1736	struct ext4_map_blocks orig_map;
1737
1738	memcpy(&orig_map, map, sizeof(*map));
1739#endif
1740
1741	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1742		invalid_block = ~0;
1743
1744	map->m_flags = 0;
1745	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
 
1746		  (unsigned long) map->m_lblk);
1747
1748	/* Lookup extent status tree firstly */
1749	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1750		if (ext4_es_is_hole(&es)) {
1751			retval = 0;
1752			down_read(&EXT4_I(inode)->i_data_sem);
1753			goto add_delayed;
1754		}
1755
1756		/*
1757		 * Delayed extent could be allocated by fallocate.
1758		 * So we need to check it.
1759		 */
1760		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1761			map_bh(bh, inode->i_sb, invalid_block);
1762			set_buffer_new(bh);
1763			set_buffer_delay(bh);
1764			return 0;
1765		}
1766
1767		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1768		retval = es.es_len - (iblock - es.es_lblk);
1769		if (retval > map->m_len)
1770			retval = map->m_len;
1771		map->m_len = retval;
1772		if (ext4_es_is_written(&es))
1773			map->m_flags |= EXT4_MAP_MAPPED;
1774		else if (ext4_es_is_unwritten(&es))
1775			map->m_flags |= EXT4_MAP_UNWRITTEN;
1776		else
1777			BUG();
1778
1779#ifdef ES_AGGRESSIVE_TEST
1780		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1781#endif
1782		return retval;
1783	}
1784
1785	/*
1786	 * Try to see if we can get the block without requesting a new
1787	 * file system block.
1788	 */
1789	down_read(&EXT4_I(inode)->i_data_sem);
1790	if (ext4_has_inline_data(inode))
1791		retval = 0;
1792	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1793		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1794	else
1795		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1796
1797add_delayed:
1798	if (retval == 0) {
1799		int ret;
1800
1801		/*
1802		 * XXX: __block_prepare_write() unmaps passed block,
1803		 * is it OK?
1804		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1805
1806		ret = ext4_insert_delayed_block(inode, map->m_lblk);
1807		if (ret != 0) {
 
1808			retval = ret;
1809			goto out_unlock;
1810		}
1811
1812		map_bh(bh, inode->i_sb, invalid_block);
1813		set_buffer_new(bh);
1814		set_buffer_delay(bh);
1815	} else if (retval > 0) {
1816		int ret;
1817		unsigned int status;
1818
1819		if (unlikely(retval != map->m_len)) {
1820			ext4_warning(inode->i_sb,
1821				     "ES len assertion failed for inode "
1822				     "%lu: retval %d != map->m_len %d",
1823				     inode->i_ino, retval, map->m_len);
1824			WARN_ON(1);
1825		}
1826
1827		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1828				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1829		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1830					    map->m_pblk, status);
1831		if (ret != 0)
1832			retval = ret;
1833	}
1834
1835out_unlock:
1836	up_read((&EXT4_I(inode)->i_data_sem));
1837
1838	return retval;
1839}
1840
1841/*
1842 * This is a special get_block_t callback which is used by
1843 * ext4_da_write_begin().  It will either return mapped block or
1844 * reserve space for a single block.
1845 *
1846 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1847 * We also have b_blocknr = -1 and b_bdev initialized properly
1848 *
1849 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1850 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1851 * initialized properly.
1852 */
1853int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1854			   struct buffer_head *bh, int create)
1855{
1856	struct ext4_map_blocks map;
1857	int ret = 0;
1858
1859	BUG_ON(create == 0);
1860	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1861
1862	map.m_lblk = iblock;
1863	map.m_len = 1;
1864
1865	/*
1866	 * first, we need to know whether the block is allocated already
1867	 * preallocated blocks are unmapped but should treated
1868	 * the same as allocated blocks.
1869	 */
1870	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1871	if (ret <= 0)
1872		return ret;
1873
1874	map_bh(bh, inode->i_sb, map.m_pblk);
1875	ext4_update_bh_state(bh, map.m_flags);
1876
1877	if (buffer_unwritten(bh)) {
1878		/* A delayed write to unwritten bh should be marked
1879		 * new and mapped.  Mapped ensures that we don't do
1880		 * get_block multiple times when we write to the same
1881		 * offset and new ensures that we do proper zero out
1882		 * for partial write.
1883		 */
1884		set_buffer_new(bh);
1885		set_buffer_mapped(bh);
1886	}
1887	return 0;
1888}
1889
 
 
 
 
 
 
 
 
 
 
 
 
1890static int __ext4_journalled_writepage(struct page *page,
1891				       unsigned int len)
1892{
1893	struct address_space *mapping = page->mapping;
1894	struct inode *inode = mapping->host;
 
1895	handle_t *handle = NULL;
1896	int ret = 0, err = 0;
1897	int inline_data = ext4_has_inline_data(inode);
1898	struct buffer_head *inode_bh = NULL;
1899	loff_t size;
1900
1901	ClearPageChecked(page);
1902
1903	if (inline_data) {
1904		BUG_ON(page->index != 0);
1905		BUG_ON(len > ext4_get_max_inline_size(inode));
1906		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1907		if (inode_bh == NULL)
1908			goto out;
 
 
 
 
 
 
 
 
1909	}
1910	/*
1911	 * We need to release the page lock before we start the
1912	 * journal, so grab a reference so the page won't disappear
1913	 * out from under us.
1914	 */
1915	get_page(page);
1916	unlock_page(page);
1917
1918	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1919				    ext4_writepage_trans_blocks(inode));
1920	if (IS_ERR(handle)) {
1921		ret = PTR_ERR(handle);
1922		put_page(page);
1923		goto out_no_pagelock;
1924	}
1925	BUG_ON(!ext4_handle_valid(handle));
1926
1927	lock_page(page);
1928	put_page(page);
1929	size = i_size_read(inode);
1930	if (page->mapping != mapping || page_offset(page) > size) {
1931		/* The page got truncated from under us */
1932		ext4_journal_stop(handle);
1933		ret = 0;
1934		goto out;
1935	}
1936
1937	if (inline_data) {
1938		ret = ext4_mark_inode_dirty(handle, inode);
1939	} else {
1940		struct buffer_head *page_bufs = page_buffers(page);
1941
1942		if (page->index == size >> PAGE_SHIFT)
1943			len = size & ~PAGE_MASK;
1944		else
1945			len = PAGE_SIZE;
1946
1947		ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1948					     NULL, do_journal_get_write_access);
 
1949
1950		err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1951					     NULL, write_end_fn);
1952	}
1953	if (ret == 0)
1954		ret = err;
1955	err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1956	if (ret == 0)
1957		ret = err;
1958	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1959	err = ext4_journal_stop(handle);
1960	if (!ret)
1961		ret = err;
1962
 
 
 
1963	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1964out:
1965	unlock_page(page);
1966out_no_pagelock:
1967	brelse(inode_bh);
1968	return ret;
1969}
1970
1971/*
1972 * Note that we don't need to start a transaction unless we're journaling data
1973 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1974 * need to file the inode to the transaction's list in ordered mode because if
1975 * we are writing back data added by write(), the inode is already there and if
1976 * we are writing back data modified via mmap(), no one guarantees in which
1977 * transaction the data will hit the disk. In case we are journaling data, we
1978 * cannot start transaction directly because transaction start ranks above page
1979 * lock so we have to do some magic.
1980 *
1981 * This function can get called via...
1982 *   - ext4_writepages after taking page lock (have journal handle)
1983 *   - journal_submit_inode_data_buffers (no journal handle)
1984 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1985 *   - grab_page_cache when doing write_begin (have journal handle)
1986 *
1987 * We don't do any block allocation in this function. If we have page with
1988 * multiple blocks we need to write those buffer_heads that are mapped. This
1989 * is important for mmaped based write. So if we do with blocksize 1K
1990 * truncate(f, 1024);
1991 * a = mmap(f, 0, 4096);
1992 * a[0] = 'a';
1993 * truncate(f, 4096);
1994 * we have in the page first buffer_head mapped via page_mkwrite call back
1995 * but other buffer_heads would be unmapped but dirty (dirty done via the
1996 * do_wp_page). So writepage should write the first block. If we modify
1997 * the mmap area beyond 1024 we will again get a page_fault and the
1998 * page_mkwrite callback will do the block allocation and mark the
1999 * buffer_heads mapped.
2000 *
2001 * We redirty the page if we have any buffer_heads that is either delay or
2002 * unwritten in the page.
2003 *
2004 * We can get recursively called as show below.
2005 *
2006 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2007 *		ext4_writepage()
2008 *
2009 * But since we don't do any block allocation we should not deadlock.
2010 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2011 */
2012static int ext4_writepage(struct page *page,
2013			  struct writeback_control *wbc)
2014{
2015	struct folio *folio = page_folio(page);
2016	int ret = 0;
2017	loff_t size;
2018	unsigned int len;
2019	struct buffer_head *page_bufs = NULL;
2020	struct inode *inode = page->mapping->host;
2021	struct ext4_io_submit io_submit;
 
2022
2023	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2024		folio_invalidate(folio, 0, folio_size(folio));
2025		folio_unlock(folio);
2026		return -EIO;
2027	}
2028
2029	trace_ext4_writepage(page);
2030	size = i_size_read(inode);
2031	if (page->index == size >> PAGE_SHIFT &&
2032	    !ext4_verity_in_progress(inode))
2033		len = size & ~PAGE_MASK;
2034	else
2035		len = PAGE_SIZE;
2036
2037	/* Should never happen but for bugs in other kernel subsystems */
2038	if (!page_has_buffers(page)) {
2039		ext4_warning_inode(inode,
2040		   "page %lu does not have buffers attached", page->index);
2041		ClearPageDirty(page);
2042		unlock_page(page);
2043		return 0;
2044	}
2045
2046	page_bufs = page_buffers(page);
2047	/*
2048	 * We cannot do block allocation or other extent handling in this
2049	 * function. If there are buffers needing that, we have to redirty
2050	 * the page. But we may reach here when we do a journal commit via
2051	 * journal_submit_inode_data_buffers() and in that case we must write
2052	 * allocated buffers to achieve data=ordered mode guarantees.
2053	 *
2054	 * Also, if there is only one buffer per page (the fs block
2055	 * size == the page size), if one buffer needs block
2056	 * allocation or needs to modify the extent tree to clear the
2057	 * unwritten flag, we know that the page can't be written at
2058	 * all, so we might as well refuse the write immediately.
2059	 * Unfortunately if the block size != page size, we can't as
2060	 * easily detect this case using ext4_walk_page_buffers(), but
2061	 * for the extremely common case, this is an optimization that
2062	 * skips a useless round trip through ext4_bio_write_page().
2063	 */
2064	if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL,
2065				   ext4_bh_delay_or_unwritten)) {
2066		redirty_page_for_writepage(wbc, page);
2067		if ((current->flags & PF_MEMALLOC) ||
2068		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2069			/*
2070			 * For memory cleaning there's no point in writing only
2071			 * some buffers. So just bail out. Warn if we came here
2072			 * from direct reclaim.
2073			 */
2074			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2075							== PF_MEMALLOC);
2076			unlock_page(page);
2077			return 0;
2078		}
 
2079	}
2080
2081	if (PageChecked(page) && ext4_should_journal_data(inode))
2082		/*
2083		 * It's mmapped pagecache.  Add buffers and journal it.  There
2084		 * doesn't seem much point in redirtying the page here.
2085		 */
2086		return __ext4_journalled_writepage(page, len);
2087
2088	ext4_io_submit_init(&io_submit, wbc);
2089	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2090	if (!io_submit.io_end) {
2091		redirty_page_for_writepage(wbc, page);
2092		unlock_page(page);
2093		return -ENOMEM;
2094	}
2095	ret = ext4_bio_write_page(&io_submit, page, len);
2096	ext4_io_submit(&io_submit);
2097	/* Drop io_end reference we got from init */
2098	ext4_put_io_end_defer(io_submit.io_end);
2099	return ret;
2100}
2101
2102static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2103{
2104	int len;
2105	loff_t size;
2106	int err;
2107
2108	BUG_ON(page->index != mpd->first_page);
2109	clear_page_dirty_for_io(page);
2110	/*
2111	 * We have to be very careful here!  Nothing protects writeback path
2112	 * against i_size changes and the page can be writeably mapped into
2113	 * page tables. So an application can be growing i_size and writing
2114	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2115	 * write-protects our page in page tables and the page cannot get
2116	 * written to again until we release page lock. So only after
2117	 * clear_page_dirty_for_io() we are safe to sample i_size for
2118	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2119	 * on the barrier provided by TestClearPageDirty in
2120	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2121	 * after page tables are updated.
2122	 */
2123	size = i_size_read(mpd->inode);
2124	if (page->index == size >> PAGE_SHIFT &&
2125	    !ext4_verity_in_progress(mpd->inode))
2126		len = size & ~PAGE_MASK;
2127	else
2128		len = PAGE_SIZE;
2129	err = ext4_bio_write_page(&mpd->io_submit, page, len);
2130	if (!err)
2131		mpd->wbc->nr_to_write--;
2132	mpd->first_page++;
2133
2134	return err;
2135}
2136
2137#define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2138
2139/*
2140 * mballoc gives us at most this number of blocks...
2141 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2142 * The rest of mballoc seems to handle chunks up to full group size.
2143 */
2144#define MAX_WRITEPAGES_EXTENT_LEN 2048
2145
2146/*
2147 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2148 *
2149 * @mpd - extent of blocks
2150 * @lblk - logical number of the block in the file
2151 * @bh - buffer head we want to add to the extent
2152 *
2153 * The function is used to collect contig. blocks in the same state. If the
2154 * buffer doesn't require mapping for writeback and we haven't started the
2155 * extent of buffers to map yet, the function returns 'true' immediately - the
2156 * caller can write the buffer right away. Otherwise the function returns true
2157 * if the block has been added to the extent, false if the block couldn't be
2158 * added.
2159 */
2160static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2161				   struct buffer_head *bh)
2162{
2163	struct ext4_map_blocks *map = &mpd->map;
2164
2165	/* Buffer that doesn't need mapping for writeback? */
2166	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2167	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2168		/* So far no extent to map => we write the buffer right away */
2169		if (map->m_len == 0)
2170			return true;
2171		return false;
2172	}
2173
2174	/* First block in the extent? */
2175	if (map->m_len == 0) {
2176		/* We cannot map unless handle is started... */
2177		if (!mpd->do_map)
2178			return false;
2179		map->m_lblk = lblk;
2180		map->m_len = 1;
2181		map->m_flags = bh->b_state & BH_FLAGS;
2182		return true;
2183	}
2184
2185	/* Don't go larger than mballoc is willing to allocate */
2186	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2187		return false;
2188
2189	/* Can we merge the block to our big extent? */
2190	if (lblk == map->m_lblk + map->m_len &&
2191	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2192		map->m_len++;
2193		return true;
2194	}
2195	return false;
2196}
2197
2198/*
2199 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2200 *
2201 * @mpd - extent of blocks for mapping
2202 * @head - the first buffer in the page
2203 * @bh - buffer we should start processing from
2204 * @lblk - logical number of the block in the file corresponding to @bh
2205 *
2206 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2207 * the page for IO if all buffers in this page were mapped and there's no
2208 * accumulated extent of buffers to map or add buffers in the page to the
2209 * extent of buffers to map. The function returns 1 if the caller can continue
2210 * by processing the next page, 0 if it should stop adding buffers to the
2211 * extent to map because we cannot extend it anymore. It can also return value
2212 * < 0 in case of error during IO submission.
2213 */
2214static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2215				   struct buffer_head *head,
2216				   struct buffer_head *bh,
2217				   ext4_lblk_t lblk)
2218{
2219	struct inode *inode = mpd->inode;
2220	int err;
2221	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2222							>> inode->i_blkbits;
2223
2224	if (ext4_verity_in_progress(inode))
2225		blocks = EXT_MAX_BLOCKS;
2226
2227	do {
2228		BUG_ON(buffer_locked(bh));
2229
2230		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2231			/* Found extent to map? */
2232			if (mpd->map.m_len)
2233				return 0;
2234			/* Buffer needs mapping and handle is not started? */
2235			if (!mpd->do_map)
2236				return 0;
2237			/* Everything mapped so far and we hit EOF */
2238			break;
2239		}
2240	} while (lblk++, (bh = bh->b_this_page) != head);
2241	/* So far everything mapped? Submit the page for IO. */
2242	if (mpd->map.m_len == 0) {
2243		err = mpage_submit_page(mpd, head->b_page);
2244		if (err < 0)
2245			return err;
2246	}
2247	if (lblk >= blocks) {
2248		mpd->scanned_until_end = 1;
2249		return 0;
2250	}
2251	return 1;
2252}
2253
2254/*
2255 * mpage_process_page - update page buffers corresponding to changed extent and
2256 *		       may submit fully mapped page for IO
2257 *
2258 * @mpd		- description of extent to map, on return next extent to map
2259 * @m_lblk	- logical block mapping.
2260 * @m_pblk	- corresponding physical mapping.
2261 * @map_bh	- determines on return whether this page requires any further
2262 *		  mapping or not.
2263 * Scan given page buffers corresponding to changed extent and update buffer
2264 * state according to new extent state.
2265 * We map delalloc buffers to their physical location, clear unwritten bits.
2266 * If the given page is not fully mapped, we update @map to the next extent in
2267 * the given page that needs mapping & return @map_bh as true.
2268 */
2269static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2270			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2271			      bool *map_bh)
2272{
2273	struct buffer_head *head, *bh;
2274	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2275	ext4_lblk_t lblk = *m_lblk;
2276	ext4_fsblk_t pblock = *m_pblk;
2277	int err = 0;
2278	int blkbits = mpd->inode->i_blkbits;
2279	ssize_t io_end_size = 0;
2280	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2281
2282	bh = head = page_buffers(page);
2283	do {
2284		if (lblk < mpd->map.m_lblk)
2285			continue;
2286		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2287			/*
2288			 * Buffer after end of mapped extent.
2289			 * Find next buffer in the page to map.
2290			 */
2291			mpd->map.m_len = 0;
2292			mpd->map.m_flags = 0;
2293			io_end_vec->size += io_end_size;
2294
2295			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2296			if (err > 0)
2297				err = 0;
2298			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2299				io_end_vec = ext4_alloc_io_end_vec(io_end);
2300				if (IS_ERR(io_end_vec)) {
2301					err = PTR_ERR(io_end_vec);
2302					goto out;
2303				}
2304				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2305			}
2306			*map_bh = true;
2307			goto out;
2308		}
2309		if (buffer_delay(bh)) {
2310			clear_buffer_delay(bh);
2311			bh->b_blocknr = pblock++;
2312		}
2313		clear_buffer_unwritten(bh);
2314		io_end_size += (1 << blkbits);
2315	} while (lblk++, (bh = bh->b_this_page) != head);
2316
2317	io_end_vec->size += io_end_size;
2318	*map_bh = false;
2319out:
2320	*m_lblk = lblk;
2321	*m_pblk = pblock;
2322	return err;
2323}
2324
2325/*
2326 * mpage_map_buffers - update buffers corresponding to changed extent and
2327 *		       submit fully mapped pages for IO
2328 *
2329 * @mpd - description of extent to map, on return next extent to map
2330 *
2331 * Scan buffers corresponding to changed extent (we expect corresponding pages
2332 * to be already locked) and update buffer state according to new extent state.
2333 * We map delalloc buffers to their physical location, clear unwritten bits,
2334 * and mark buffers as uninit when we perform writes to unwritten extents
2335 * and do extent conversion after IO is finished. If the last page is not fully
2336 * mapped, we update @map to the next extent in the last page that needs
2337 * mapping. Otherwise we submit the page for IO.
2338 */
2339static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2340{
2341	struct folio_batch fbatch;
2342	unsigned nr, i;
2343	struct inode *inode = mpd->inode;
 
2344	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2345	pgoff_t start, end;
2346	ext4_lblk_t lblk;
2347	ext4_fsblk_t pblock;
2348	int err;
2349	bool map_bh = false;
2350
2351	start = mpd->map.m_lblk >> bpp_bits;
2352	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2353	lblk = start << bpp_bits;
2354	pblock = mpd->map.m_pblk;
2355
2356	folio_batch_init(&fbatch);
2357	while (start <= end) {
2358		nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2359		if (nr == 0)
 
2360			break;
2361		for (i = 0; i < nr; i++) {
2362			struct page *page = &fbatch.folios[i]->page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2363
2364			err = mpage_process_page(mpd, page, &lblk, &pblock,
2365						 &map_bh);
2366			/*
2367			 * If map_bh is true, means page may require further bh
2368			 * mapping, or maybe the page was submitted for IO.
2369			 * So we return to call further extent mapping.
2370			 */
2371			if (err < 0 || map_bh)
2372				goto out;
2373			/* Page fully mapped - let IO run! */
2374			err = mpage_submit_page(mpd, page);
2375			if (err < 0)
2376				goto out;
 
 
2377		}
2378		folio_batch_release(&fbatch);
2379	}
2380	/* Extent fully mapped and matches with page boundary. We are done. */
2381	mpd->map.m_len = 0;
2382	mpd->map.m_flags = 0;
2383	return 0;
2384out:
2385	folio_batch_release(&fbatch);
2386	return err;
2387}
2388
2389static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2390{
2391	struct inode *inode = mpd->inode;
2392	struct ext4_map_blocks *map = &mpd->map;
2393	int get_blocks_flags;
2394	int err, dioread_nolock;
2395
2396	trace_ext4_da_write_pages_extent(inode, map);
2397	/*
2398	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2399	 * to convert an unwritten extent to be initialized (in the case
2400	 * where we have written into one or more preallocated blocks).  It is
2401	 * possible that we're going to need more metadata blocks than
2402	 * previously reserved. However we must not fail because we're in
2403	 * writeback and there is nothing we can do about it so it might result
2404	 * in data loss.  So use reserved blocks to allocate metadata if
2405	 * possible.
2406	 *
2407	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2408	 * the blocks in question are delalloc blocks.  This indicates
2409	 * that the blocks and quotas has already been checked when
2410	 * the data was copied into the page cache.
2411	 */
2412	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2413			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2414			   EXT4_GET_BLOCKS_IO_SUBMIT;
2415	dioread_nolock = ext4_should_dioread_nolock(inode);
2416	if (dioread_nolock)
2417		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2418	if (map->m_flags & BIT(BH_Delay))
2419		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2420
2421	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2422	if (err < 0)
2423		return err;
2424	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2425		if (!mpd->io_submit.io_end->handle &&
2426		    ext4_handle_valid(handle)) {
2427			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2428			handle->h_rsv_handle = NULL;
2429		}
2430		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2431	}
2432
2433	BUG_ON(map->m_len == 0);
 
 
 
 
2434	return 0;
2435}
2436
2437/*
2438 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2439 *				 mpd->len and submit pages underlying it for IO
2440 *
2441 * @handle - handle for journal operations
2442 * @mpd - extent to map
2443 * @give_up_on_write - we set this to true iff there is a fatal error and there
2444 *                     is no hope of writing the data. The caller should discard
2445 *                     dirty pages to avoid infinite loops.
2446 *
2447 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2448 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2449 * them to initialized or split the described range from larger unwritten
2450 * extent. Note that we need not map all the described range since allocation
2451 * can return less blocks or the range is covered by more unwritten extents. We
2452 * cannot map more because we are limited by reserved transaction credits. On
2453 * the other hand we always make sure that the last touched page is fully
2454 * mapped so that it can be written out (and thus forward progress is
2455 * guaranteed). After mapping we submit all mapped pages for IO.
2456 */
2457static int mpage_map_and_submit_extent(handle_t *handle,
2458				       struct mpage_da_data *mpd,
2459				       bool *give_up_on_write)
2460{
2461	struct inode *inode = mpd->inode;
2462	struct ext4_map_blocks *map = &mpd->map;
2463	int err;
2464	loff_t disksize;
2465	int progress = 0;
2466	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2467	struct ext4_io_end_vec *io_end_vec;
2468
2469	io_end_vec = ext4_alloc_io_end_vec(io_end);
2470	if (IS_ERR(io_end_vec))
2471		return PTR_ERR(io_end_vec);
2472	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2473	do {
2474		err = mpage_map_one_extent(handle, mpd);
2475		if (err < 0) {
2476			struct super_block *sb = inode->i_sb;
2477
2478			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2479			    ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2480				goto invalidate_dirty_pages;
2481			/*
2482			 * Let the uper layers retry transient errors.
2483			 * In the case of ENOSPC, if ext4_count_free_blocks()
2484			 * is non-zero, a commit should free up blocks.
2485			 */
2486			if ((err == -ENOMEM) ||
2487			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2488				if (progress)
2489					goto update_disksize;
2490				return err;
2491			}
2492			ext4_msg(sb, KERN_CRIT,
2493				 "Delayed block allocation failed for "
2494				 "inode %lu at logical offset %llu with"
2495				 " max blocks %u with error %d",
2496				 inode->i_ino,
2497				 (unsigned long long)map->m_lblk,
2498				 (unsigned)map->m_len, -err);
2499			ext4_msg(sb, KERN_CRIT,
2500				 "This should not happen!! Data will "
2501				 "be lost\n");
2502			if (err == -ENOSPC)
2503				ext4_print_free_blocks(inode);
2504		invalidate_dirty_pages:
2505			*give_up_on_write = true;
2506			return err;
2507		}
2508		progress = 1;
2509		/*
2510		 * Update buffer state, submit mapped pages, and get us new
2511		 * extent to map
2512		 */
2513		err = mpage_map_and_submit_buffers(mpd);
2514		if (err < 0)
2515			goto update_disksize;
2516	} while (map->m_len);
2517
2518update_disksize:
2519	/*
2520	 * Update on-disk size after IO is submitted.  Races with
2521	 * truncate are avoided by checking i_size under i_data_sem.
2522	 */
2523	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2524	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2525		int err2;
2526		loff_t i_size;
2527
2528		down_write(&EXT4_I(inode)->i_data_sem);
2529		i_size = i_size_read(inode);
2530		if (disksize > i_size)
2531			disksize = i_size;
2532		if (disksize > EXT4_I(inode)->i_disksize)
2533			EXT4_I(inode)->i_disksize = disksize;
2534		up_write(&EXT4_I(inode)->i_data_sem);
2535		err2 = ext4_mark_inode_dirty(handle, inode);
2536		if (err2) {
2537			ext4_error_err(inode->i_sb, -err2,
2538				       "Failed to mark inode %lu dirty",
2539				       inode->i_ino);
2540		}
2541		if (!err)
2542			err = err2;
2543	}
2544	return err;
2545}
2546
2547/*
2548 * Calculate the total number of credits to reserve for one writepages
2549 * iteration. This is called from ext4_writepages(). We map an extent of
2550 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2551 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2552 * bpp - 1 blocks in bpp different extents.
2553 */
2554static int ext4_da_writepages_trans_blocks(struct inode *inode)
2555{
2556	int bpp = ext4_journal_blocks_per_page(inode);
2557
2558	return ext4_meta_trans_blocks(inode,
2559				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2560}
2561
2562/* Return true if the page needs to be written as part of transaction commit */
2563static bool ext4_page_nomap_can_writeout(struct page *page)
2564{
2565	struct buffer_head *bh, *head;
2566
2567	bh = head = page_buffers(page);
2568	do {
2569		if (buffer_dirty(bh) && buffer_mapped(bh) && !buffer_delay(bh))
2570			return true;
2571	} while ((bh = bh->b_this_page) != head);
2572	return false;
2573}
2574
2575/*
2576 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2577 * 				 needing mapping, submit mapped pages
2578 *
2579 * @mpd - where to look for pages
2580 *
2581 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2582 * IO immediately. If we cannot map blocks, we submit just already mapped
2583 * buffers in the page for IO and keep page dirty. When we can map blocks and
2584 * we find a page which isn't mapped we start accumulating extent of buffers
2585 * underlying these pages that needs mapping (formed by either delayed or
2586 * unwritten buffers). We also lock the pages containing these buffers. The
2587 * extent found is returned in @mpd structure (starting at mpd->lblk with
2588 * length mpd->len blocks).
2589 *
2590 * Note that this function can attach bios to one io_end structure which are
2591 * neither logically nor physically contiguous. Although it may seem as an
2592 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2593 * case as we need to track IO to all buffers underlying a page in one io_end.
2594 */
2595static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2596{
2597	struct address_space *mapping = mpd->inode->i_mapping;
2598	struct pagevec pvec;
2599	unsigned int nr_pages;
2600	long left = mpd->wbc->nr_to_write;
2601	pgoff_t index = mpd->first_page;
2602	pgoff_t end = mpd->last_page;
2603	xa_mark_t tag;
2604	int i, err = 0;
2605	int blkbits = mpd->inode->i_blkbits;
2606	ext4_lblk_t lblk;
2607	struct buffer_head *head;
2608
2609	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2610		tag = PAGECACHE_TAG_TOWRITE;
2611	else
2612		tag = PAGECACHE_TAG_DIRTY;
2613
2614	pagevec_init(&pvec);
2615	mpd->map.m_len = 0;
2616	mpd->next_page = index;
2617	while (index <= end) {
2618		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2619				tag);
2620		if (nr_pages == 0)
2621			break;
2622
2623		for (i = 0; i < nr_pages; i++) {
2624			struct page *page = pvec.pages[i];
2625
2626			/*
2627			 * Accumulated enough dirty pages? This doesn't apply
2628			 * to WB_SYNC_ALL mode. For integrity sync we have to
2629			 * keep going because someone may be concurrently
2630			 * dirtying pages, and we might have synced a lot of
2631			 * newly appeared dirty pages, but have not synced all
2632			 * of the old dirty pages.
2633			 */
2634			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2635				goto out;
2636
2637			/* If we can't merge this page, we are done. */
2638			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2639				goto out;
2640
2641			lock_page(page);
2642			/*
2643			 * If the page is no longer dirty, or its mapping no
2644			 * longer corresponds to inode we are writing (which
2645			 * means it has been truncated or invalidated), or the
2646			 * page is already under writeback and we are not doing
2647			 * a data integrity writeback, skip the page
2648			 */
2649			if (!PageDirty(page) ||
2650			    (PageWriteback(page) &&
2651			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2652			    unlikely(page->mapping != mapping)) {
2653				unlock_page(page);
2654				continue;
2655			}
2656
2657			wait_on_page_writeback(page);
2658			BUG_ON(PageWriteback(page));
2659
2660			/*
2661			 * Should never happen but for buggy code in
2662			 * other subsystems that call
2663			 * set_page_dirty() without properly warning
2664			 * the file system first.  See [1] for more
2665			 * information.
2666			 *
2667			 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2668			 */
2669			if (!page_has_buffers(page)) {
2670				ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", page->index);
2671				ClearPageDirty(page);
2672				unlock_page(page);
2673				continue;
2674			}
2675
2676			if (mpd->map.m_len == 0)
2677				mpd->first_page = page->index;
2678			mpd->next_page = page->index + 1;
2679			/*
2680			 * Writeout for transaction commit where we cannot
2681			 * modify metadata is simple. Just submit the page.
2682			 */
2683			if (!mpd->can_map) {
2684				if (ext4_page_nomap_can_writeout(page)) {
2685					err = mpage_submit_page(mpd, page);
2686					if (err < 0)
2687						goto out;
2688				} else {
2689					unlock_page(page);
2690					mpd->first_page++;
2691				}
2692			} else {
2693				/* Add all dirty buffers to mpd */
2694				lblk = ((ext4_lblk_t)page->index) <<
2695					(PAGE_SHIFT - blkbits);
2696				head = page_buffers(page);
2697				err = mpage_process_page_bufs(mpd, head, head,
2698							      lblk);
2699				if (err <= 0)
2700					goto out;
2701				err = 0;
2702			}
2703			left--;
2704		}
2705		pagevec_release(&pvec);
2706		cond_resched();
2707	}
2708	mpd->scanned_until_end = 1;
2709	return 0;
2710out:
2711	pagevec_release(&pvec);
2712	return err;
2713}
2714
2715static int ext4_writepage_cb(struct page *page, struct writeback_control *wbc,
2716			     void *data)
2717{
2718	return ext4_writepage(page, wbc);
2719}
2720
2721static int ext4_do_writepages(struct mpage_da_data *mpd)
2722{
2723	struct writeback_control *wbc = mpd->wbc;
2724	pgoff_t	writeback_index = 0;
2725	long nr_to_write = wbc->nr_to_write;
2726	int range_whole = 0;
2727	int cycled = 1;
2728	handle_t *handle = NULL;
2729	struct inode *inode = mpd->inode;
2730	struct address_space *mapping = inode->i_mapping;
2731	int needed_blocks, rsv_blocks = 0, ret = 0;
2732	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
 
2733	struct blk_plug plug;
2734	bool give_up_on_write = false;
2735
 
 
 
 
2736	trace_ext4_writepages(inode, wbc);
2737
2738	/*
2739	 * No pages to write? This is mainly a kludge to avoid starting
2740	 * a transaction for special inodes like journal inode on last iput()
2741	 * because that could violate lock ordering on umount
2742	 */
2743	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2744		goto out_writepages;
2745
2746	if (ext4_should_journal_data(inode)) {
2747		blk_start_plug(&plug);
2748		ret = write_cache_pages(mapping, wbc, ext4_writepage_cb, NULL);
2749		blk_finish_plug(&plug);
2750		goto out_writepages;
2751	}
2752
2753	/*
2754	 * If the filesystem has aborted, it is read-only, so return
2755	 * right away instead of dumping stack traces later on that
2756	 * will obscure the real source of the problem.  We test
2757	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2758	 * the latter could be true if the filesystem is mounted
2759	 * read-only, and in that case, ext4_writepages should
2760	 * *never* be called, so if that ever happens, we would want
2761	 * the stack trace.
2762	 */
2763	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2764		     ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2765		ret = -EROFS;
2766		goto out_writepages;
2767	}
2768
 
 
 
 
 
 
 
 
2769	/*
2770	 * If we have inline data and arrive here, it means that
2771	 * we will soon create the block for the 1st page, so
2772	 * we'd better clear the inline data here.
2773	 */
2774	if (ext4_has_inline_data(inode)) {
2775		/* Just inode will be modified... */
2776		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2777		if (IS_ERR(handle)) {
2778			ret = PTR_ERR(handle);
2779			goto out_writepages;
2780		}
2781		BUG_ON(ext4_test_inode_state(inode,
2782				EXT4_STATE_MAY_INLINE_DATA));
2783		ext4_destroy_inline_data(handle, inode);
2784		ext4_journal_stop(handle);
2785	}
2786
2787	if (ext4_should_dioread_nolock(inode)) {
2788		/*
2789		 * We may need to convert up to one extent per block in
2790		 * the page and we may dirty the inode.
2791		 */
2792		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2793						PAGE_SIZE >> inode->i_blkbits);
2794	}
2795
2796	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2797		range_whole = 1;
2798
2799	if (wbc->range_cyclic) {
2800		writeback_index = mapping->writeback_index;
2801		if (writeback_index)
2802			cycled = 0;
2803		mpd->first_page = writeback_index;
2804		mpd->last_page = -1;
2805	} else {
2806		mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2807		mpd->last_page = wbc->range_end >> PAGE_SHIFT;
2808	}
2809
2810	ext4_io_submit_init(&mpd->io_submit, wbc);
 
 
2811retry:
2812	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2813		tag_pages_for_writeback(mapping, mpd->first_page,
2814					mpd->last_page);
2815	blk_start_plug(&plug);
2816
2817	/*
2818	 * First writeback pages that don't need mapping - we can avoid
2819	 * starting a transaction unnecessarily and also avoid being blocked
2820	 * in the block layer on device congestion while having transaction
2821	 * started.
2822	 */
2823	mpd->do_map = 0;
2824	mpd->scanned_until_end = 0;
2825	mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2826	if (!mpd->io_submit.io_end) {
2827		ret = -ENOMEM;
2828		goto unplug;
2829	}
2830	ret = mpage_prepare_extent_to_map(mpd);
 
 
 
 
2831	/* Unlock pages we didn't use */
2832	mpage_release_unused_pages(mpd, false);
2833	/* Submit prepared bio */
2834	ext4_io_submit(&mpd->io_submit);
2835	ext4_put_io_end_defer(mpd->io_submit.io_end);
2836	mpd->io_submit.io_end = NULL;
2837	if (ret < 0)
2838		goto unplug;
2839
2840	while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2841		/* For each extent of pages we use new io_end */
2842		mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2843		if (!mpd->io_submit.io_end) {
2844			ret = -ENOMEM;
2845			break;
2846		}
2847
2848		WARN_ON_ONCE(!mpd->can_map);
2849		/*
2850		 * We have two constraints: We find one extent to map and we
2851		 * must always write out whole page (makes a difference when
2852		 * blocksize < pagesize) so that we don't block on IO when we
2853		 * try to write out the rest of the page. Journalled mode is
2854		 * not supported by delalloc.
2855		 */
2856		BUG_ON(ext4_should_journal_data(inode));
2857		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2858
2859		/* start a new transaction */
2860		handle = ext4_journal_start_with_reserve(inode,
2861				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2862		if (IS_ERR(handle)) {
2863			ret = PTR_ERR(handle);
2864			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2865			       "%ld pages, ino %lu; err %d", __func__,
2866				wbc->nr_to_write, inode->i_ino, ret);
2867			/* Release allocated io_end */
2868			ext4_put_io_end(mpd->io_submit.io_end);
2869			mpd->io_submit.io_end = NULL;
2870			break;
2871		}
2872		mpd->do_map = 1;
2873
2874		trace_ext4_da_write_pages(inode, mpd->first_page, wbc);
2875		ret = mpage_prepare_extent_to_map(mpd);
2876		if (!ret && mpd->map.m_len)
2877			ret = mpage_map_and_submit_extent(handle, mpd,
 
2878					&give_up_on_write);
 
 
 
 
 
 
 
 
 
 
2879		/*
2880		 * Caution: If the handle is synchronous,
2881		 * ext4_journal_stop() can wait for transaction commit
2882		 * to finish which may depend on writeback of pages to
2883		 * complete or on page lock to be released.  In that
2884		 * case, we have to wait until after we have
2885		 * submitted all the IO, released page locks we hold,
2886		 * and dropped io_end reference (for extent conversion
2887		 * to be able to complete) before stopping the handle.
2888		 */
2889		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2890			ext4_journal_stop(handle);
2891			handle = NULL;
2892			mpd->do_map = 0;
2893		}
 
 
2894		/* Unlock pages we didn't use */
2895		mpage_release_unused_pages(mpd, give_up_on_write);
2896		/* Submit prepared bio */
2897		ext4_io_submit(&mpd->io_submit);
2898
2899		/*
2900		 * Drop our io_end reference we got from init. We have
2901		 * to be careful and use deferred io_end finishing if
2902		 * we are still holding the transaction as we can
2903		 * release the last reference to io_end which may end
2904		 * up doing unwritten extent conversion.
2905		 */
2906		if (handle) {
2907			ext4_put_io_end_defer(mpd->io_submit.io_end);
2908			ext4_journal_stop(handle);
2909		} else
2910			ext4_put_io_end(mpd->io_submit.io_end);
2911		mpd->io_submit.io_end = NULL;
2912
2913		if (ret == -ENOSPC && sbi->s_journal) {
2914			/*
2915			 * Commit the transaction which would
2916			 * free blocks released in the transaction
2917			 * and try again
2918			 */
2919			jbd2_journal_force_commit_nested(sbi->s_journal);
2920			ret = 0;
2921			continue;
2922		}
2923		/* Fatal error - ENOMEM, EIO... */
2924		if (ret)
2925			break;
2926	}
2927unplug:
2928	blk_finish_plug(&plug);
2929	if (!ret && !cycled && wbc->nr_to_write > 0) {
2930		cycled = 1;
2931		mpd->last_page = writeback_index - 1;
2932		mpd->first_page = 0;
2933		goto retry;
2934	}
2935
2936	/* Update index */
2937	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2938		/*
2939		 * Set the writeback_index so that range_cyclic
2940		 * mode will write it back later
2941		 */
2942		mapping->writeback_index = mpd->first_page;
2943
2944out_writepages:
2945	trace_ext4_writepages_result(inode, wbc, ret,
2946				     nr_to_write - wbc->nr_to_write);
 
2947	return ret;
2948}
2949
2950static int ext4_writepages(struct address_space *mapping,
2951			   struct writeback_control *wbc)
2952{
2953	struct super_block *sb = mapping->host->i_sb;
2954	struct mpage_da_data mpd = {
2955		.inode = mapping->host,
2956		.wbc = wbc,
2957		.can_map = 1,
2958	};
2959	int ret;
2960
2961	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
2962		return -EIO;
2963
2964	percpu_down_read(&EXT4_SB(sb)->s_writepages_rwsem);
2965	ret = ext4_do_writepages(&mpd);
2966	percpu_up_read(&EXT4_SB(sb)->s_writepages_rwsem);
2967
2968	return ret;
2969}
2970
2971int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2972{
2973	struct writeback_control wbc = {
2974		.sync_mode = WB_SYNC_ALL,
2975		.nr_to_write = LONG_MAX,
2976		.range_start = jinode->i_dirty_start,
2977		.range_end = jinode->i_dirty_end,
2978	};
2979	struct mpage_da_data mpd = {
2980		.inode = jinode->i_vfs_inode,
2981		.wbc = &wbc,
2982		.can_map = 0,
2983	};
2984	return ext4_do_writepages(&mpd);
2985}
2986
2987static int ext4_dax_writepages(struct address_space *mapping,
2988			       struct writeback_control *wbc)
2989{
2990	int ret;
2991	long nr_to_write = wbc->nr_to_write;
2992	struct inode *inode = mapping->host;
2993	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2994
2995	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2996		return -EIO;
2997
2998	percpu_down_read(&sbi->s_writepages_rwsem);
2999	trace_ext4_writepages(inode, wbc);
3000
3001	ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
3002	trace_ext4_writepages_result(inode, wbc, ret,
3003				     nr_to_write - wbc->nr_to_write);
3004	percpu_up_read(&sbi->s_writepages_rwsem);
3005	return ret;
3006}
3007
3008static int ext4_nonda_switch(struct super_block *sb)
3009{
3010	s64 free_clusters, dirty_clusters;
3011	struct ext4_sb_info *sbi = EXT4_SB(sb);
3012
3013	/*
3014	 * switch to non delalloc mode if we are running low
3015	 * on free block. The free block accounting via percpu
3016	 * counters can get slightly wrong with percpu_counter_batch getting
3017	 * accumulated on each CPU without updating global counters
3018	 * Delalloc need an accurate free block accounting. So switch
3019	 * to non delalloc when we are near to error range.
3020	 */
3021	free_clusters =
3022		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
3023	dirty_clusters =
3024		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
3025	/*
3026	 * Start pushing delalloc when 1/2 of free blocks are dirty.
3027	 */
3028	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
3029		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
3030
3031	if (2 * free_clusters < 3 * dirty_clusters ||
3032	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
3033		/*
3034		 * free block count is less than 150% of dirty blocks
3035		 * or free blocks is less than watermark
3036		 */
3037		return 1;
3038	}
3039	return 0;
3040}
3041
 
 
 
 
 
 
 
 
 
 
 
 
 
3042static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3043			       loff_t pos, unsigned len,
3044			       struct page **pagep, void **fsdata)
3045{
3046	int ret, retries = 0;
3047	struct page *page;
3048	pgoff_t index;
3049	struct inode *inode = mapping->host;
 
3050
3051	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3052		return -EIO;
3053
3054	index = pos >> PAGE_SHIFT;
3055
3056	if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
 
3057		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3058		return ext4_write_begin(file, mapping, pos,
3059					len, pagep, fsdata);
3060	}
3061	*fsdata = (void *)0;
3062	trace_ext4_da_write_begin(inode, pos, len);
3063
3064	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3065		ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
 
3066						      pagep, fsdata);
3067		if (ret < 0)
3068			return ret;
3069		if (ret == 1)
3070			return 0;
3071	}
3072
3073retry:
3074	page = grab_cache_page_write_begin(mapping, index);
 
 
 
 
 
 
 
3075	if (!page)
3076		return -ENOMEM;
 
3077
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3078	/* In case writeback began while the page was unlocked */
3079	wait_for_stable_page(page);
3080
3081#ifdef CONFIG_FS_ENCRYPTION
3082	ret = ext4_block_write_begin(page, pos, len,
3083				     ext4_da_get_block_prep);
3084#else
3085	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3086#endif
3087	if (ret < 0) {
3088		unlock_page(page);
3089		put_page(page);
3090		/*
3091		 * block_write_begin may have instantiated a few blocks
3092		 * outside i_size.  Trim these off again. Don't need
3093		 * i_size_read because we hold inode lock.
3094		 */
3095		if (pos + len > inode->i_size)
3096			ext4_truncate_failed_write(inode);
3097
3098		if (ret == -ENOSPC &&
3099		    ext4_should_retry_alloc(inode->i_sb, &retries))
3100			goto retry;
 
 
3101		return ret;
3102	}
3103
3104	*pagep = page;
3105	return ret;
3106}
3107
3108/*
3109 * Check if we should update i_disksize
3110 * when write to the end of file but not require block allocation
3111 */
3112static int ext4_da_should_update_i_disksize(struct page *page,
3113					    unsigned long offset)
3114{
3115	struct buffer_head *bh;
3116	struct inode *inode = page->mapping->host;
3117	unsigned int idx;
3118	int i;
3119
3120	bh = page_buffers(page);
3121	idx = offset >> inode->i_blkbits;
3122
3123	for (i = 0; i < idx; i++)
3124		bh = bh->b_this_page;
3125
3126	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3127		return 0;
3128	return 1;
3129}
3130
3131static int ext4_da_write_end(struct file *file,
3132			     struct address_space *mapping,
3133			     loff_t pos, unsigned len, unsigned copied,
3134			     struct page *page, void *fsdata)
3135{
3136	struct inode *inode = mapping->host;
 
 
3137	loff_t new_i_size;
3138	unsigned long start, end;
3139	int write_mode = (int)(unsigned long)fsdata;
3140
3141	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3142		return ext4_write_end(file, mapping, pos,
3143				      len, copied, page, fsdata);
3144
3145	trace_ext4_da_write_end(inode, pos, len, copied);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3146
3147	if (write_mode != CONVERT_INLINE_DATA &&
3148	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3149	    ext4_has_inline_data(inode))
3150		return ext4_write_inline_data_end(inode, pos, len, copied, page);
 
 
 
 
3151
3152	start = pos & (PAGE_SIZE - 1);
3153	end = start + copied - 1;
 
 
 
 
 
 
 
3154
 
 
 
3155	/*
3156	 * Since we are holding inode lock, we are sure i_disksize <=
3157	 * i_size. We also know that if i_disksize < i_size, there are
3158	 * delalloc writes pending in the range upto i_size. If the end of
3159	 * the current write is <= i_size, there's no need to touch
3160	 * i_disksize since writeback will push i_disksize upto i_size
3161	 * eventually. If the end of the current write is > i_size and
3162	 * inside an allocated block (ext4_da_should_update_i_disksize()
3163	 * check), we need to update i_disksize here as neither
3164	 * ext4_writepage() nor certain ext4_writepages() paths not
3165	 * allocating blocks update i_disksize.
3166	 *
3167	 * Note that we defer inode dirtying to generic_write_end() /
3168	 * ext4_da_write_inline_data_end().
3169	 */
3170	new_i_size = pos + copied;
3171	if (copied && new_i_size > inode->i_size &&
3172	    ext4_da_should_update_i_disksize(page, end))
3173		ext4_update_i_disksize(inode, new_i_size);
 
 
 
 
3174
3175	return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
3176}
3177
3178/*
3179 * Force all delayed allocation blocks to be allocated for a given inode.
3180 */
3181int ext4_alloc_da_blocks(struct inode *inode)
3182{
3183	trace_ext4_alloc_da_blocks(inode);
3184
3185	if (!EXT4_I(inode)->i_reserved_data_blocks)
3186		return 0;
3187
3188	/*
3189	 * We do something simple for now.  The filemap_flush() will
3190	 * also start triggering a write of the data blocks, which is
3191	 * not strictly speaking necessary (and for users of
3192	 * laptop_mode, not even desirable).  However, to do otherwise
3193	 * would require replicating code paths in:
3194	 *
3195	 * ext4_writepages() ->
3196	 *    write_cache_pages() ---> (via passed in callback function)
3197	 *        __mpage_da_writepage() -->
3198	 *           mpage_add_bh_to_extent()
3199	 *           mpage_da_map_blocks()
3200	 *
3201	 * The problem is that write_cache_pages(), located in
3202	 * mm/page-writeback.c, marks pages clean in preparation for
3203	 * doing I/O, which is not desirable if we're not planning on
3204	 * doing I/O at all.
3205	 *
3206	 * We could call write_cache_pages(), and then redirty all of
3207	 * the pages by calling redirty_page_for_writepage() but that
3208	 * would be ugly in the extreme.  So instead we would need to
3209	 * replicate parts of the code in the above functions,
3210	 * simplifying them because we wouldn't actually intend to
3211	 * write out the pages, but rather only collect contiguous
3212	 * logical block extents, call the multi-block allocator, and
3213	 * then update the buffer heads with the block allocations.
3214	 *
3215	 * For now, though, we'll cheat by calling filemap_flush(),
3216	 * which will map the blocks, and start the I/O, but not
3217	 * actually wait for the I/O to complete.
3218	 */
3219	return filemap_flush(inode->i_mapping);
3220}
3221
3222/*
3223 * bmap() is special.  It gets used by applications such as lilo and by
3224 * the swapper to find the on-disk block of a specific piece of data.
3225 *
3226 * Naturally, this is dangerous if the block concerned is still in the
3227 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3228 * filesystem and enables swap, then they may get a nasty shock when the
3229 * data getting swapped to that swapfile suddenly gets overwritten by
3230 * the original zero's written out previously to the journal and
3231 * awaiting writeback in the kernel's buffer cache.
3232 *
3233 * So, if we see any bmap calls here on a modified, data-journaled file,
3234 * take extra steps to flush any blocks which might be in the cache.
3235 */
3236static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3237{
3238	struct inode *inode = mapping->host;
3239	journal_t *journal;
3240	sector_t ret = 0;
3241	int err;
3242
3243	inode_lock_shared(inode);
3244	/*
3245	 * We can get here for an inline file via the FIBMAP ioctl
3246	 */
3247	if (ext4_has_inline_data(inode))
3248		goto out;
3249
3250	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3251			test_opt(inode->i_sb, DELALLOC)) {
3252		/*
3253		 * With delalloc we want to sync the file
3254		 * so that we can make sure we allocate
3255		 * blocks for file
3256		 */
3257		filemap_write_and_wait(mapping);
3258	}
3259
3260	if (EXT4_JOURNAL(inode) &&
3261	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3262		/*
3263		 * This is a REALLY heavyweight approach, but the use of
3264		 * bmap on dirty files is expected to be extremely rare:
3265		 * only if we run lilo or swapon on a freshly made file
3266		 * do we expect this to happen.
3267		 *
3268		 * (bmap requires CAP_SYS_RAWIO so this does not
3269		 * represent an unprivileged user DOS attack --- we'd be
3270		 * in trouble if mortal users could trigger this path at
3271		 * will.)
3272		 *
3273		 * NB. EXT4_STATE_JDATA is not set on files other than
3274		 * regular files.  If somebody wants to bmap a directory
3275		 * or symlink and gets confused because the buffer
3276		 * hasn't yet been flushed to disk, they deserve
3277		 * everything they get.
3278		 */
3279
3280		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3281		journal = EXT4_JOURNAL(inode);
3282		jbd2_journal_lock_updates(journal);
3283		err = jbd2_journal_flush(journal, 0);
3284		jbd2_journal_unlock_updates(journal);
3285
3286		if (err)
3287			goto out;
3288	}
3289
3290	ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3291
3292out:
3293	inode_unlock_shared(inode);
3294	return ret;
3295}
3296
3297static int ext4_read_folio(struct file *file, struct folio *folio)
3298{
3299	struct page *page = &folio->page;
3300	int ret = -EAGAIN;
3301	struct inode *inode = page->mapping->host;
3302
3303	trace_ext4_readpage(page);
3304
3305	if (ext4_has_inline_data(inode))
3306		ret = ext4_readpage_inline(inode, page);
3307
3308	if (ret == -EAGAIN)
3309		return ext4_mpage_readpages(inode, NULL, page);
3310
3311	return ret;
3312}
3313
3314static void ext4_readahead(struct readahead_control *rac)
 
 
3315{
3316	struct inode *inode = rac->mapping->host;
3317
3318	/* If the file has inline data, no need to do readahead. */
3319	if (ext4_has_inline_data(inode))
3320		return;
3321
3322	ext4_mpage_readpages(inode, rac, NULL);
3323}
3324
3325static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3326				size_t length)
3327{
3328	trace_ext4_invalidate_folio(folio, offset, length);
3329
3330	/* No journalling happens on data buffers when this function is used */
3331	WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3332
3333	block_invalidate_folio(folio, offset, length);
3334}
3335
3336static int __ext4_journalled_invalidate_folio(struct folio *folio,
3337					    size_t offset, size_t length)
 
3338{
3339	journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3340
3341	trace_ext4_journalled_invalidate_folio(folio, offset, length);
3342
3343	/*
3344	 * If it's a full truncate we just forget about the pending dirtying
3345	 */
3346	if (offset == 0 && length == folio_size(folio))
3347		folio_clear_checked(folio);
3348
3349	return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3350}
3351
3352/* Wrapper for aops... */
3353static void ext4_journalled_invalidate_folio(struct folio *folio,
3354					   size_t offset,
3355					   size_t length)
3356{
3357	WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3358}
3359
3360static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3361{
3362	journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3363
3364	trace_ext4_releasepage(&folio->page);
3365
3366	/* Page has dirty journalled data -> cannot release */
3367	if (folio_test_checked(folio))
3368		return false;
3369	if (journal)
3370		return jbd2_journal_try_to_free_buffers(journal, folio);
3371	else
3372		return try_to_free_buffers(folio);
3373}
3374
3375static bool ext4_inode_datasync_dirty(struct inode *inode)
3376{
3377	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3378
3379	if (journal) {
3380		if (jbd2_transaction_committed(journal,
3381			EXT4_I(inode)->i_datasync_tid))
3382			return false;
3383		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3384			return !list_empty(&EXT4_I(inode)->i_fc_list);
3385		return true;
3386	}
3387
3388	/* Any metadata buffers to write? */
3389	if (!list_empty(&inode->i_mapping->private_list))
3390		return true;
3391	return inode->i_state & I_DIRTY_DATASYNC;
3392}
3393
3394static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3395			   struct ext4_map_blocks *map, loff_t offset,
3396			   loff_t length, unsigned int flags)
3397{
3398	u8 blkbits = inode->i_blkbits;
 
 
 
 
 
 
3399
3400	/*
3401	 * Writes that span EOF might trigger an I/O size update on completion,
3402	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3403	 * there is no other metadata changes being made or are pending.
3404	 */
3405	iomap->flags = 0;
3406	if (ext4_inode_datasync_dirty(inode) ||
3407	    offset + length > i_size_read(inode))
3408		iomap->flags |= IOMAP_F_DIRTY;
3409
3410	if (map->m_flags & EXT4_MAP_NEW)
3411		iomap->flags |= IOMAP_F_NEW;
3412
3413	if (flags & IOMAP_DAX)
3414		iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3415	else
3416		iomap->bdev = inode->i_sb->s_bdev;
3417	iomap->offset = (u64) map->m_lblk << blkbits;
3418	iomap->length = (u64) map->m_len << blkbits;
3419
3420	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3421	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3422		iomap->flags |= IOMAP_F_MERGED;
3423
3424	/*
3425	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3426	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3427	 * set. In order for any allocated unwritten extents to be converted
3428	 * into written extents correctly within the ->end_io() handler, we
3429	 * need to ensure that the iomap->type is set appropriately. Hence, the
3430	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3431	 * been set first.
3432	 */
3433	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3434		iomap->type = IOMAP_UNWRITTEN;
3435		iomap->addr = (u64) map->m_pblk << blkbits;
3436		if (flags & IOMAP_DAX)
3437			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3438	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3439		iomap->type = IOMAP_MAPPED;
3440		iomap->addr = (u64) map->m_pblk << blkbits;
3441		if (flags & IOMAP_DAX)
3442			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3443	} else {
3444		iomap->type = IOMAP_HOLE;
3445		iomap->addr = IOMAP_NULL_ADDR;
3446	}
3447}
3448
3449static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3450			    unsigned int flags)
3451{
3452	handle_t *handle;
3453	u8 blkbits = inode->i_blkbits;
3454	int ret, dio_credits, m_flags = 0, retries = 0;
3455
3456	/*
3457	 * Trim the mapping request to the maximum value that we can map at
3458	 * once for direct I/O.
3459	 */
3460	if (map->m_len > DIO_MAX_BLOCKS)
3461		map->m_len = DIO_MAX_BLOCKS;
3462	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3463
3464retry:
3465	/*
3466	 * Either we allocate blocks and then don't get an unwritten extent, so
3467	 * in that case we have reserved enough credits. Or, the blocks are
3468	 * already allocated and unwritten. In that case, the extent conversion
3469	 * fits into the credits as well.
3470	 */
3471	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3472	if (IS_ERR(handle))
3473		return PTR_ERR(handle);
 
 
 
3474
3475	/*
3476	 * DAX and direct I/O are the only two operations that are currently
3477	 * supported with IOMAP_WRITE.
3478	 */
3479	WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3480	if (flags & IOMAP_DAX)
3481		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3482	/*
3483	 * We use i_size instead of i_disksize here because delalloc writeback
3484	 * can complete at any point during the I/O and subsequently push the
3485	 * i_disksize out to i_size. This could be beyond where direct I/O is
3486	 * happening and thus expose allocated blocks to direct I/O reads.
3487	 */
3488	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3489		m_flags = EXT4_GET_BLOCKS_CREATE;
3490	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3491		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3492
3493	ret = ext4_map_blocks(handle, inode, map, m_flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3494
3495	/*
3496	 * We cannot fill holes in indirect tree based inodes as that could
3497	 * expose stale data in the case of a crash. Use the magic error code
3498	 * to fallback to buffered I/O.
3499	 */
3500	if (!m_flags && !ret)
3501		ret = -ENOTBLK;
 
 
3502
3503	ext4_journal_stop(handle);
3504	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3505		goto retry;
3506
3507	return ret;
3508}
3509
3510
3511static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3512		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3513{
3514	int ret;
3515	struct ext4_map_blocks map;
3516	u8 blkbits = inode->i_blkbits;
3517
3518	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3519		return -EINVAL;
3520
3521	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3522		return -ERANGE;
3523
3524	/*
3525	 * Calculate the first and last logical blocks respectively.
3526	 */
3527	map.m_lblk = offset >> blkbits;
3528	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3529			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3530
3531	if (flags & IOMAP_WRITE) {
3532		/*
3533		 * We check here if the blocks are already allocated, then we
3534		 * don't need to start a journal txn and we can directly return
3535		 * the mapping information. This could boost performance
3536		 * especially in multi-threaded overwrite requests.
3537		 */
3538		if (offset + length <= i_size_read(inode)) {
3539			ret = ext4_map_blocks(NULL, inode, &map, 0);
3540			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3541				goto out;
3542		}
3543		ret = ext4_iomap_alloc(inode, &map, flags);
3544	} else {
3545		ret = ext4_map_blocks(NULL, inode, &map, 0);
 
 
3546	}
3547
3548	if (ret < 0)
3549		return ret;
3550out:
3551	/*
3552	 * When inline encryption is enabled, sometimes I/O to an encrypted file
3553	 * has to be broken up to guarantee DUN contiguity.  Handle this by
3554	 * limiting the length of the mapping returned.
3555	 */
3556	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
 
 
 
 
 
 
 
 
 
 
 
 
 
3557
3558	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
 
3559
3560	return 0;
3561}
3562
3563static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3564		loff_t length, unsigned flags, struct iomap *iomap,
3565		struct iomap *srcmap)
3566{
3567	int ret;
 
 
 
 
 
 
3568
 
 
 
 
 
 
 
3569	/*
3570	 * Even for writes we don't need to allocate blocks, so just pretend
3571	 * we are reading to save overhead of starting a transaction.
3572	 */
3573	flags &= ~IOMAP_WRITE;
3574	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3575	WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3576	return ret;
3577}
3578
3579static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3580			  ssize_t written, unsigned flags, struct iomap *iomap)
3581{
 
 
3582	/*
3583	 * Check to see whether an error occurred while writing out the data to
3584	 * the allocated blocks. If so, return the magic error code so that we
3585	 * fallback to buffered I/O and attempt to complete the remainder of
3586	 * the I/O. Any blocks that may have been allocated in preparation for
3587	 * the direct I/O will be reused during buffered I/O.
3588	 */
3589	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3590		return -ENOTBLK;
3591
3592	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
3593}
3594
3595const struct iomap_ops ext4_iomap_ops = {
3596	.iomap_begin		= ext4_iomap_begin,
3597	.iomap_end		= ext4_iomap_end,
3598};
3599
3600const struct iomap_ops ext4_iomap_overwrite_ops = {
3601	.iomap_begin		= ext4_iomap_overwrite_begin,
3602	.iomap_end		= ext4_iomap_end,
3603};
3604
3605static bool ext4_iomap_is_delalloc(struct inode *inode,
3606				   struct ext4_map_blocks *map)
3607{
3608	struct extent_status es;
3609	ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3610
3611	ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3612				  map->m_lblk, end, &es);
 
3613
3614	if (!es.es_len || es.es_lblk > end)
3615		return false;
 
3616
3617	if (es.es_lblk > map->m_lblk) {
3618		map->m_len = es.es_lblk - map->m_lblk;
3619		return false;
 
 
 
 
3620	}
 
 
 
3621
3622	offset = map->m_lblk - es.es_lblk;
3623	map->m_len = es.es_len - offset;
3624
3625	return true;
3626}
3627
3628static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3629				   loff_t length, unsigned int flags,
3630				   struct iomap *iomap, struct iomap *srcmap)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3631{
3632	int ret;
3633	bool delalloc = false;
3634	struct ext4_map_blocks map;
3635	u8 blkbits = inode->i_blkbits;
 
 
 
 
 
 
 
 
3636
3637	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3638		return -EINVAL;
3639
3640	if (ext4_has_inline_data(inode)) {
3641		ret = ext4_inline_data_iomap(inode, iomap);
3642		if (ret != -EAGAIN) {
3643			if (ret == 0 && offset >= iomap->length)
3644				ret = -ENOENT;
3645			return ret;
 
 
3646		}
 
 
 
3647	}
3648
 
 
3649	/*
3650	 * Calculate the first and last logical block respectively.
 
 
3651	 */
3652	map.m_lblk = offset >> blkbits;
3653	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3654			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
 
 
 
 
3655
3656	/*
3657	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3658	 * So handle it here itself instead of querying ext4_map_blocks().
3659	 * Since ext4_map_blocks() will warn about it and will return
3660	 * -EIO error.
3661	 */
3662	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3663		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3664
3665		if (offset >= sbi->s_bitmap_maxbytes) {
3666			map.m_flags = 0;
3667			goto set_iomap;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3668		}
 
 
 
3669	}
 
 
 
3670
3671	ret = ext4_map_blocks(NULL, inode, &map, 0);
3672	if (ret < 0)
3673		return ret;
3674	if (ret == 0)
3675		delalloc = ext4_iomap_is_delalloc(inode, &map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3676
3677set_iomap:
3678	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3679	if (delalloc && iomap->type == IOMAP_HOLE)
3680		iomap->type = IOMAP_DELALLOC;
3681
3682	return 0;
 
 
 
 
 
 
3683}
3684
3685const struct iomap_ops ext4_iomap_report_ops = {
3686	.iomap_begin = ext4_iomap_begin_report,
3687};
3688
3689/*
3690 * Whenever the folio is being dirtied, corresponding buffers should already
3691 * be attached to the transaction (we take care of this in ext4_page_mkwrite()
3692 * and ext4_write_begin()). However we cannot move buffers to dirty transaction
3693 * lists here because ->dirty_folio is called under VFS locks and the folio
3694 * is not necessarily locked.
3695 *
3696 * We cannot just dirty the folio and leave attached buffers clean, because the
3697 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3698 * or jbddirty because all the journalling code will explode.
3699 *
3700 * So what we do is to mark the folio "pending dirty" and next time writepage
3701 * is called, propagate that into the buffers appropriately.
3702 */
3703static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3704		struct folio *folio)
3705{
3706	WARN_ON_ONCE(!folio_buffers(folio));
3707	folio_set_checked(folio);
3708	return filemap_dirty_folio(mapping, folio);
3709}
3710
3711static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3712{
3713	WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3714	WARN_ON_ONCE(!folio_buffers(folio));
3715	return block_dirty_folio(mapping, folio);
3716}
3717
3718static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3719				    struct file *file, sector_t *span)
3720{
3721	return iomap_swapfile_activate(sis, file, span,
3722				       &ext4_iomap_report_ops);
 
3723}
3724
3725static const struct address_space_operations ext4_aops = {
3726	.read_folio		= ext4_read_folio,
3727	.readahead		= ext4_readahead,
 
3728	.writepages		= ext4_writepages,
3729	.write_begin		= ext4_write_begin,
3730	.write_end		= ext4_write_end,
3731	.dirty_folio		= ext4_dirty_folio,
3732	.bmap			= ext4_bmap,
3733	.invalidate_folio	= ext4_invalidate_folio,
3734	.release_folio		= ext4_release_folio,
3735	.direct_IO		= noop_direct_IO,
3736	.migrate_folio		= buffer_migrate_folio,
3737	.is_partially_uptodate  = block_is_partially_uptodate,
3738	.error_remove_page	= generic_error_remove_page,
3739	.swap_activate		= ext4_iomap_swap_activate,
3740};
3741
3742static const struct address_space_operations ext4_journalled_aops = {
3743	.read_folio		= ext4_read_folio,
3744	.readahead		= ext4_readahead,
 
3745	.writepages		= ext4_writepages,
3746	.write_begin		= ext4_write_begin,
3747	.write_end		= ext4_journalled_write_end,
3748	.dirty_folio		= ext4_journalled_dirty_folio,
3749	.bmap			= ext4_bmap,
3750	.invalidate_folio	= ext4_journalled_invalidate_folio,
3751	.release_folio		= ext4_release_folio,
3752	.direct_IO		= noop_direct_IO,
3753	.migrate_folio		= buffer_migrate_folio_norefs,
3754	.is_partially_uptodate  = block_is_partially_uptodate,
3755	.error_remove_page	= generic_error_remove_page,
3756	.swap_activate		= ext4_iomap_swap_activate,
3757};
3758
3759static const struct address_space_operations ext4_da_aops = {
3760	.read_folio		= ext4_read_folio,
3761	.readahead		= ext4_readahead,
 
3762	.writepages		= ext4_writepages,
3763	.write_begin		= ext4_da_write_begin,
3764	.write_end		= ext4_da_write_end,
3765	.dirty_folio		= ext4_dirty_folio,
3766	.bmap			= ext4_bmap,
3767	.invalidate_folio	= ext4_invalidate_folio,
3768	.release_folio		= ext4_release_folio,
3769	.direct_IO		= noop_direct_IO,
3770	.migrate_folio		= buffer_migrate_folio,
3771	.is_partially_uptodate  = block_is_partially_uptodate,
3772	.error_remove_page	= generic_error_remove_page,
3773	.swap_activate		= ext4_iomap_swap_activate,
3774};
3775
3776static const struct address_space_operations ext4_dax_aops = {
3777	.writepages		= ext4_dax_writepages,
3778	.direct_IO		= noop_direct_IO,
3779	.dirty_folio		= noop_dirty_folio,
3780	.bmap			= ext4_bmap,
3781	.swap_activate		= ext4_iomap_swap_activate,
3782};
3783
3784void ext4_set_aops(struct inode *inode)
3785{
3786	switch (ext4_inode_journal_mode(inode)) {
3787	case EXT4_INODE_ORDERED_DATA_MODE:
3788	case EXT4_INODE_WRITEBACK_DATA_MODE:
3789		break;
3790	case EXT4_INODE_JOURNAL_DATA_MODE:
3791		inode->i_mapping->a_ops = &ext4_journalled_aops;
3792		return;
3793	default:
3794		BUG();
3795	}
3796	if (IS_DAX(inode))
3797		inode->i_mapping->a_ops = &ext4_dax_aops;
3798	else if (test_opt(inode->i_sb, DELALLOC))
3799		inode->i_mapping->a_ops = &ext4_da_aops;
3800	else
3801		inode->i_mapping->a_ops = &ext4_aops;
3802}
3803
3804static int __ext4_block_zero_page_range(handle_t *handle,
3805		struct address_space *mapping, loff_t from, loff_t length)
3806{
3807	ext4_fsblk_t index = from >> PAGE_SHIFT;
3808	unsigned offset = from & (PAGE_SIZE-1);
3809	unsigned blocksize, pos;
3810	ext4_lblk_t iblock;
3811	struct inode *inode = mapping->host;
3812	struct buffer_head *bh;
3813	struct page *page;
3814	int err = 0;
3815
3816	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3817				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3818	if (!page)
3819		return -ENOMEM;
3820
3821	blocksize = inode->i_sb->s_blocksize;
3822
3823	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3824
3825	if (!page_has_buffers(page))
3826		create_empty_buffers(page, blocksize, 0);
3827
3828	/* Find the buffer that contains "offset" */
3829	bh = page_buffers(page);
3830	pos = blocksize;
3831	while (offset >= pos) {
3832		bh = bh->b_this_page;
3833		iblock++;
3834		pos += blocksize;
3835	}
3836	if (buffer_freed(bh)) {
3837		BUFFER_TRACE(bh, "freed: skip");
3838		goto unlock;
3839	}
3840	if (!buffer_mapped(bh)) {
3841		BUFFER_TRACE(bh, "unmapped");
3842		ext4_get_block(inode, iblock, bh, 0);
3843		/* unmapped? It's a hole - nothing to do */
3844		if (!buffer_mapped(bh)) {
3845			BUFFER_TRACE(bh, "still unmapped");
3846			goto unlock;
3847		}
3848	}
3849
3850	/* Ok, it's mapped. Make sure it's up-to-date */
3851	if (PageUptodate(page))
3852		set_buffer_uptodate(bh);
3853
3854	if (!buffer_uptodate(bh)) {
3855		err = ext4_read_bh_lock(bh, 0, true);
3856		if (err)
 
 
 
3857			goto unlock;
3858		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
 
3859			/* We expect the key to be set. */
3860			BUG_ON(!fscrypt_has_encryption_key(inode));
3861			err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3862							       bh_offset(bh));
3863			if (err) {
3864				clear_buffer_uptodate(bh);
3865				goto unlock;
3866			}
3867		}
3868	}
3869	if (ext4_should_journal_data(inode)) {
3870		BUFFER_TRACE(bh, "get write access");
3871		err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3872						    EXT4_JTR_NONE);
3873		if (err)
3874			goto unlock;
3875	}
3876	zero_user(page, offset, length);
3877	BUFFER_TRACE(bh, "zeroed end of block");
3878
3879	if (ext4_should_journal_data(inode)) {
3880		err = ext4_handle_dirty_metadata(handle, inode, bh);
3881	} else {
3882		err = 0;
3883		mark_buffer_dirty(bh);
3884		if (ext4_should_order_data(inode))
3885			err = ext4_jbd2_inode_add_write(handle, inode, from,
3886					length);
3887	}
3888
3889unlock:
3890	unlock_page(page);
3891	put_page(page);
3892	return err;
3893}
3894
3895/*
3896 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3897 * starting from file offset 'from'.  The range to be zero'd must
3898 * be contained with in one block.  If the specified range exceeds
3899 * the end of the block it will be shortened to end of the block
3900 * that corresponds to 'from'
3901 */
3902static int ext4_block_zero_page_range(handle_t *handle,
3903		struct address_space *mapping, loff_t from, loff_t length)
3904{
3905	struct inode *inode = mapping->host;
3906	unsigned offset = from & (PAGE_SIZE-1);
3907	unsigned blocksize = inode->i_sb->s_blocksize;
3908	unsigned max = blocksize - (offset & (blocksize - 1));
3909
3910	/*
3911	 * correct length if it does not fall between
3912	 * 'from' and the end of the block
3913	 */
3914	if (length > max || length < 0)
3915		length = max;
3916
3917	if (IS_DAX(inode)) {
3918		return dax_zero_range(inode, from, length, NULL,
3919				      &ext4_iomap_ops);
3920	}
3921	return __ext4_block_zero_page_range(handle, mapping, from, length);
3922}
3923
3924/*
3925 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3926 * up to the end of the block which corresponds to `from'.
3927 * This required during truncate. We need to physically zero the tail end
3928 * of that block so it doesn't yield old data if the file is later grown.
3929 */
3930static int ext4_block_truncate_page(handle_t *handle,
3931		struct address_space *mapping, loff_t from)
3932{
3933	unsigned offset = from & (PAGE_SIZE-1);
3934	unsigned length;
3935	unsigned blocksize;
3936	struct inode *inode = mapping->host;
3937
3938	/* If we are processing an encrypted inode during orphan list handling */
3939	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3940		return 0;
3941
3942	blocksize = inode->i_sb->s_blocksize;
3943	length = blocksize - (offset & (blocksize - 1));
3944
3945	return ext4_block_zero_page_range(handle, mapping, from, length);
3946}
3947
3948int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3949			     loff_t lstart, loff_t length)
3950{
3951	struct super_block *sb = inode->i_sb;
3952	struct address_space *mapping = inode->i_mapping;
3953	unsigned partial_start, partial_end;
3954	ext4_fsblk_t start, end;
3955	loff_t byte_end = (lstart + length - 1);
3956	int err = 0;
3957
3958	partial_start = lstart & (sb->s_blocksize - 1);
3959	partial_end = byte_end & (sb->s_blocksize - 1);
3960
3961	start = lstart >> sb->s_blocksize_bits;
3962	end = byte_end >> sb->s_blocksize_bits;
3963
3964	/* Handle partial zero within the single block */
3965	if (start == end &&
3966	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3967		err = ext4_block_zero_page_range(handle, mapping,
3968						 lstart, length);
3969		return err;
3970	}
3971	/* Handle partial zero out on the start of the range */
3972	if (partial_start) {
3973		err = ext4_block_zero_page_range(handle, mapping,
3974						 lstart, sb->s_blocksize);
3975		if (err)
3976			return err;
3977	}
3978	/* Handle partial zero out on the end of the range */
3979	if (partial_end != sb->s_blocksize - 1)
3980		err = ext4_block_zero_page_range(handle, mapping,
3981						 byte_end - partial_end,
3982						 partial_end + 1);
3983	return err;
3984}
3985
3986int ext4_can_truncate(struct inode *inode)
3987{
3988	if (S_ISREG(inode->i_mode))
3989		return 1;
3990	if (S_ISDIR(inode->i_mode))
3991		return 1;
3992	if (S_ISLNK(inode->i_mode))
3993		return !ext4_inode_is_fast_symlink(inode);
3994	return 0;
3995}
3996
3997/*
3998 * We have to make sure i_disksize gets properly updated before we truncate
3999 * page cache due to hole punching or zero range. Otherwise i_disksize update
4000 * can get lost as it may have been postponed to submission of writeback but
4001 * that will never happen after we truncate page cache.
4002 */
4003int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4004				      loff_t len)
4005{
4006	handle_t *handle;
4007	int ret;
4008
4009	loff_t size = i_size_read(inode);
4010
4011	WARN_ON(!inode_is_locked(inode));
4012	if (offset > size || offset + len < size)
4013		return 0;
4014
4015	if (EXT4_I(inode)->i_disksize >= size)
4016		return 0;
4017
4018	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4019	if (IS_ERR(handle))
4020		return PTR_ERR(handle);
4021	ext4_update_i_disksize(inode, size);
4022	ret = ext4_mark_inode_dirty(handle, inode);
4023	ext4_journal_stop(handle);
4024
4025	return ret;
4026}
4027
4028static void ext4_wait_dax_page(struct inode *inode)
4029{
4030	filemap_invalidate_unlock(inode->i_mapping);
4031	schedule();
4032	filemap_invalidate_lock(inode->i_mapping);
4033}
4034
4035int ext4_break_layouts(struct inode *inode)
4036{
4037	struct page *page;
4038	int error;
4039
4040	if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
4041		return -EINVAL;
4042
4043	do {
4044		page = dax_layout_busy_page(inode->i_mapping);
4045		if (!page)
4046			return 0;
4047
4048		error = ___wait_var_event(&page->_refcount,
4049				atomic_read(&page->_refcount) == 1,
4050				TASK_INTERRUPTIBLE, 0, 0,
4051				ext4_wait_dax_page(inode));
4052	} while (error == 0);
4053
4054	return error;
4055}
4056
4057/*
4058 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4059 * associated with the given offset and length
4060 *
4061 * @inode:  File inode
4062 * @offset: The offset where the hole will begin
4063 * @len:    The length of the hole
4064 *
4065 * Returns: 0 on success or negative on failure
4066 */
4067
4068int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
4069{
4070	struct inode *inode = file_inode(file);
4071	struct super_block *sb = inode->i_sb;
4072	ext4_lblk_t first_block, stop_block;
4073	struct address_space *mapping = inode->i_mapping;
4074	loff_t first_block_offset, last_block_offset, max_length;
4075	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4076	handle_t *handle;
4077	unsigned int credits;
4078	int ret = 0, ret2 = 0;
 
 
 
4079
4080	trace_ext4_punch_hole(inode, offset, length, 0);
4081
4082	/*
4083	 * Write out all dirty pages to avoid race conditions
4084	 * Then release them.
4085	 */
4086	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4087		ret = filemap_write_and_wait_range(mapping, offset,
4088						   offset + length - 1);
4089		if (ret)
4090			return ret;
4091	}
4092
4093	inode_lock(inode);
4094
4095	/* No need to punch hole beyond i_size */
4096	if (offset >= inode->i_size)
4097		goto out_mutex;
4098
4099	/*
4100	 * If the hole extends beyond i_size, set the hole
4101	 * to end after the page that contains i_size
4102	 */
4103	if (offset + length > inode->i_size) {
4104		length = inode->i_size +
4105		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4106		   offset;
4107	}
4108
4109	/*
4110	 * For punch hole the length + offset needs to be within one block
4111	 * before last range. Adjust the length if it goes beyond that limit.
4112	 */
4113	max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
4114	if (offset + length > max_length)
4115		length = max_length - offset;
4116
4117	if (offset & (sb->s_blocksize - 1) ||
4118	    (offset + length) & (sb->s_blocksize - 1)) {
4119		/*
4120		 * Attach jinode to inode for jbd2 if we do any zeroing of
4121		 * partial block
4122		 */
4123		ret = ext4_inode_attach_jinode(inode);
4124		if (ret < 0)
4125			goto out_mutex;
4126
4127	}
4128
4129	/* Wait all existing dio workers, newcomers will block on i_rwsem */
4130	inode_dio_wait(inode);
4131
4132	ret = file_modified(file);
4133	if (ret)
4134		goto out_mutex;
4135
4136	/*
4137	 * Prevent page faults from reinstantiating pages we have released from
4138	 * page cache.
4139	 */
4140	filemap_invalidate_lock(mapping);
4141
4142	ret = ext4_break_layouts(inode);
4143	if (ret)
4144		goto out_dio;
4145
4146	first_block_offset = round_up(offset, sb->s_blocksize);
4147	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4148
4149	/* Now release the pages and zero block aligned part of pages*/
4150	if (last_block_offset > first_block_offset) {
4151		ret = ext4_update_disksize_before_punch(inode, offset, length);
4152		if (ret)
4153			goto out_dio;
4154		truncate_pagecache_range(inode, first_block_offset,
4155					 last_block_offset);
4156	}
4157
4158	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4159		credits = ext4_writepage_trans_blocks(inode);
4160	else
4161		credits = ext4_blocks_for_truncate(inode);
4162	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4163	if (IS_ERR(handle)) {
4164		ret = PTR_ERR(handle);
4165		ext4_std_error(sb, ret);
4166		goto out_dio;
4167	}
4168
4169	ret = ext4_zero_partial_blocks(handle, inode, offset,
4170				       length);
4171	if (ret)
4172		goto out_stop;
4173
4174	first_block = (offset + sb->s_blocksize - 1) >>
4175		EXT4_BLOCK_SIZE_BITS(sb);
4176	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4177
4178	/* If there are blocks to remove, do it */
4179	if (stop_block > first_block) {
 
4180
4181		down_write(&EXT4_I(inode)->i_data_sem);
4182		ext4_discard_preallocations(inode, 0);
4183
4184		ret = ext4_es_remove_extent(inode, first_block,
4185					    stop_block - first_block);
4186		if (ret) {
4187			up_write(&EXT4_I(inode)->i_data_sem);
4188			goto out_stop;
4189		}
4190
4191		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4192			ret = ext4_ext_remove_space(inode, first_block,
4193						    stop_block - 1);
4194		else
4195			ret = ext4_ind_remove_space(handle, inode, first_block,
4196						    stop_block);
4197
4198		up_write(&EXT4_I(inode)->i_data_sem);
4199	}
4200	ext4_fc_track_range(handle, inode, first_block, stop_block);
4201	if (IS_SYNC(inode))
4202		ext4_handle_sync(handle);
4203
4204	inode->i_mtime = inode->i_ctime = current_time(inode);
4205	ret2 = ext4_mark_inode_dirty(handle, inode);
4206	if (unlikely(ret2))
4207		ret = ret2;
4208	if (ret >= 0)
4209		ext4_update_inode_fsync_trans(handle, inode, 1);
4210out_stop:
4211	ext4_journal_stop(handle);
4212out_dio:
4213	filemap_invalidate_unlock(mapping);
4214out_mutex:
4215	inode_unlock(inode);
4216	return ret;
4217}
4218
4219int ext4_inode_attach_jinode(struct inode *inode)
4220{
4221	struct ext4_inode_info *ei = EXT4_I(inode);
4222	struct jbd2_inode *jinode;
4223
4224	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4225		return 0;
4226
4227	jinode = jbd2_alloc_inode(GFP_KERNEL);
4228	spin_lock(&inode->i_lock);
4229	if (!ei->jinode) {
4230		if (!jinode) {
4231			spin_unlock(&inode->i_lock);
4232			return -ENOMEM;
4233		}
4234		ei->jinode = jinode;
4235		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4236		jinode = NULL;
4237	}
4238	spin_unlock(&inode->i_lock);
4239	if (unlikely(jinode != NULL))
4240		jbd2_free_inode(jinode);
4241	return 0;
4242}
4243
4244/*
4245 * ext4_truncate()
4246 *
4247 * We block out ext4_get_block() block instantiations across the entire
4248 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4249 * simultaneously on behalf of the same inode.
4250 *
4251 * As we work through the truncate and commit bits of it to the journal there
4252 * is one core, guiding principle: the file's tree must always be consistent on
4253 * disk.  We must be able to restart the truncate after a crash.
4254 *
4255 * The file's tree may be transiently inconsistent in memory (although it
4256 * probably isn't), but whenever we close off and commit a journal transaction,
4257 * the contents of (the filesystem + the journal) must be consistent and
4258 * restartable.  It's pretty simple, really: bottom up, right to left (although
4259 * left-to-right works OK too).
4260 *
4261 * Note that at recovery time, journal replay occurs *before* the restart of
4262 * truncate against the orphan inode list.
4263 *
4264 * The committed inode has the new, desired i_size (which is the same as
4265 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4266 * that this inode's truncate did not complete and it will again call
4267 * ext4_truncate() to have another go.  So there will be instantiated blocks
4268 * to the right of the truncation point in a crashed ext4 filesystem.  But
4269 * that's fine - as long as they are linked from the inode, the post-crash
4270 * ext4_truncate() run will find them and release them.
4271 */
4272int ext4_truncate(struct inode *inode)
4273{
4274	struct ext4_inode_info *ei = EXT4_I(inode);
4275	unsigned int credits;
4276	int err = 0, err2;
4277	handle_t *handle;
4278	struct address_space *mapping = inode->i_mapping;
4279
4280	/*
4281	 * There is a possibility that we're either freeing the inode
4282	 * or it's a completely new inode. In those cases we might not
4283	 * have i_rwsem locked because it's not necessary.
4284	 */
4285	if (!(inode->i_state & (I_NEW|I_FREEING)))
4286		WARN_ON(!inode_is_locked(inode));
4287	trace_ext4_truncate_enter(inode);
4288
4289	if (!ext4_can_truncate(inode))
4290		goto out_trace;
 
 
4291
4292	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4293		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4294
4295	if (ext4_has_inline_data(inode)) {
4296		int has_inline = 1;
4297
4298		err = ext4_inline_data_truncate(inode, &has_inline);
4299		if (err || has_inline)
4300			goto out_trace;
 
 
4301	}
4302
4303	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4304	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4305		err = ext4_inode_attach_jinode(inode);
4306		if (err)
4307			goto out_trace;
4308	}
4309
4310	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4311		credits = ext4_writepage_trans_blocks(inode);
4312	else
4313		credits = ext4_blocks_for_truncate(inode);
4314
4315	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4316	if (IS_ERR(handle)) {
4317		err = PTR_ERR(handle);
4318		goto out_trace;
4319	}
4320
4321	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4322		ext4_block_truncate_page(handle, mapping, inode->i_size);
4323
4324	/*
4325	 * We add the inode to the orphan list, so that if this
4326	 * truncate spans multiple transactions, and we crash, we will
4327	 * resume the truncate when the filesystem recovers.  It also
4328	 * marks the inode dirty, to catch the new size.
4329	 *
4330	 * Implication: the file must always be in a sane, consistent
4331	 * truncatable state while each transaction commits.
4332	 */
4333	err = ext4_orphan_add(handle, inode);
4334	if (err)
4335		goto out_stop;
4336
4337	down_write(&EXT4_I(inode)->i_data_sem);
4338
4339	ext4_discard_preallocations(inode, 0);
4340
4341	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4342		err = ext4_ext_truncate(handle, inode);
4343	else
4344		ext4_ind_truncate(handle, inode);
4345
4346	up_write(&ei->i_data_sem);
4347	if (err)
4348		goto out_stop;
4349
4350	if (IS_SYNC(inode))
4351		ext4_handle_sync(handle);
4352
4353out_stop:
4354	/*
4355	 * If this was a simple ftruncate() and the file will remain alive,
4356	 * then we need to clear up the orphan record which we created above.
4357	 * However, if this was a real unlink then we were called by
4358	 * ext4_evict_inode(), and we allow that function to clean up the
4359	 * orphan info for us.
4360	 */
4361	if (inode->i_nlink)
4362		ext4_orphan_del(handle, inode);
4363
4364	inode->i_mtime = inode->i_ctime = current_time(inode);
4365	err2 = ext4_mark_inode_dirty(handle, inode);
4366	if (unlikely(err2 && !err))
4367		err = err2;
4368	ext4_journal_stop(handle);
4369
4370out_trace:
4371	trace_ext4_truncate_exit(inode);
4372	return err;
4373}
4374
4375static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4376{
4377	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4378		return inode_peek_iversion_raw(inode);
4379	else
4380		return inode_peek_iversion(inode);
4381}
4382
4383static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4384				 struct ext4_inode_info *ei)
4385{
4386	struct inode *inode = &(ei->vfs_inode);
4387	u64 i_blocks = READ_ONCE(inode->i_blocks);
4388	struct super_block *sb = inode->i_sb;
4389
4390	if (i_blocks <= ~0U) {
4391		/*
4392		 * i_blocks can be represented in a 32 bit variable
4393		 * as multiple of 512 bytes
4394		 */
4395		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4396		raw_inode->i_blocks_high = 0;
4397		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4398		return 0;
4399	}
4400
4401	/*
4402	 * This should never happen since sb->s_maxbytes should not have
4403	 * allowed this, sb->s_maxbytes was set according to the huge_file
4404	 * feature in ext4_fill_super().
4405	 */
4406	if (!ext4_has_feature_huge_file(sb))
4407		return -EFSCORRUPTED;
4408
4409	if (i_blocks <= 0xffffffffffffULL) {
4410		/*
4411		 * i_blocks can be represented in a 48 bit variable
4412		 * as multiple of 512 bytes
4413		 */
4414		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4415		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4416		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4417	} else {
4418		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4419		/* i_block is stored in file system block size */
4420		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4421		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4422		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4423	}
4424	return 0;
4425}
4426
4427static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4428{
4429	struct ext4_inode_info *ei = EXT4_I(inode);
4430	uid_t i_uid;
4431	gid_t i_gid;
4432	projid_t i_projid;
4433	int block;
4434	int err;
4435
4436	err = ext4_inode_blocks_set(raw_inode, ei);
4437
4438	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4439	i_uid = i_uid_read(inode);
4440	i_gid = i_gid_read(inode);
4441	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4442	if (!(test_opt(inode->i_sb, NO_UID32))) {
4443		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4444		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4445		/*
4446		 * Fix up interoperability with old kernels. Otherwise,
4447		 * old inodes get re-used with the upper 16 bits of the
4448		 * uid/gid intact.
4449		 */
4450		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4451			raw_inode->i_uid_high = 0;
4452			raw_inode->i_gid_high = 0;
4453		} else {
4454			raw_inode->i_uid_high =
4455				cpu_to_le16(high_16_bits(i_uid));
4456			raw_inode->i_gid_high =
4457				cpu_to_le16(high_16_bits(i_gid));
4458		}
4459	} else {
4460		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4461		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4462		raw_inode->i_uid_high = 0;
4463		raw_inode->i_gid_high = 0;
4464	}
4465	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4466
4467	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4468	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4469	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4470	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4471
4472	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4473	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4474	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4475		raw_inode->i_file_acl_high =
4476			cpu_to_le16(ei->i_file_acl >> 32);
4477	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4478	ext4_isize_set(raw_inode, ei->i_disksize);
4479
4480	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4481	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4482		if (old_valid_dev(inode->i_rdev)) {
4483			raw_inode->i_block[0] =
4484				cpu_to_le32(old_encode_dev(inode->i_rdev));
4485			raw_inode->i_block[1] = 0;
4486		} else {
4487			raw_inode->i_block[0] = 0;
4488			raw_inode->i_block[1] =
4489				cpu_to_le32(new_encode_dev(inode->i_rdev));
4490			raw_inode->i_block[2] = 0;
4491		}
4492	} else if (!ext4_has_inline_data(inode)) {
4493		for (block = 0; block < EXT4_N_BLOCKS; block++)
4494			raw_inode->i_block[block] = ei->i_data[block];
4495	}
4496
4497	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4498		u64 ivers = ext4_inode_peek_iversion(inode);
4499
4500		raw_inode->i_disk_version = cpu_to_le32(ivers);
4501		if (ei->i_extra_isize) {
4502			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4503				raw_inode->i_version_hi =
4504					cpu_to_le32(ivers >> 32);
4505			raw_inode->i_extra_isize =
4506				cpu_to_le16(ei->i_extra_isize);
4507		}
4508	}
4509
4510	if (i_projid != EXT4_DEF_PROJID &&
4511	    !ext4_has_feature_project(inode->i_sb))
4512		err = err ?: -EFSCORRUPTED;
4513
4514	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4515	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4516		raw_inode->i_projid = cpu_to_le32(i_projid);
4517
4518	ext4_inode_csum_set(inode, raw_inode, ei);
4519	return err;
4520}
4521
4522/*
4523 * ext4_get_inode_loc returns with an extra refcount against the inode's
4524 * underlying buffer_head on success. If we pass 'inode' and it does not
4525 * have in-inode xattr, we have all inode data in memory that is needed
4526 * to recreate the on-disk version of this inode.
4527 */
4528static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4529				struct inode *inode, struct ext4_iloc *iloc,
4530				ext4_fsblk_t *ret_block)
4531{
4532	struct ext4_group_desc	*gdp;
4533	struct buffer_head	*bh;
 
4534	ext4_fsblk_t		block;
4535	struct blk_plug		plug;
4536	int			inodes_per_block, inode_offset;
4537
4538	iloc->bh = NULL;
4539	if (ino < EXT4_ROOT_INO ||
4540	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4541		return -EFSCORRUPTED;
4542
4543	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4544	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4545	if (!gdp)
4546		return -EIO;
4547
4548	/*
4549	 * Figure out the offset within the block group inode table
4550	 */
4551	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4552	inode_offset = ((ino - 1) %
4553			EXT4_INODES_PER_GROUP(sb));
 
4554	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4555
4556	block = ext4_inode_table(sb, gdp);
4557	if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4558	    (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4559		ext4_error(sb, "Invalid inode table block %llu in "
4560			   "block_group %u", block, iloc->block_group);
4561		return -EFSCORRUPTED;
4562	}
4563	block += (inode_offset / inodes_per_block);
4564
4565	bh = sb_getblk(sb, block);
4566	if (unlikely(!bh))
4567		return -ENOMEM;
4568	if (ext4_buffer_uptodate(bh))
4569		goto has_buffer;
4570
4571	lock_buffer(bh);
4572	if (ext4_buffer_uptodate(bh)) {
4573		/* Someone brought it uptodate while we waited */
4574		unlock_buffer(bh);
4575		goto has_buffer;
4576	}
4577
4578	/*
4579	 * If we have all information of the inode in memory and this
4580	 * is the only valid inode in the block, we need not read the
4581	 * block.
4582	 */
4583	if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4584		struct buffer_head *bitmap_bh;
4585		int i, start;
4586
4587		start = inode_offset & ~(inodes_per_block - 1);
4588
4589		/* Is the inode bitmap in cache? */
4590		bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4591		if (unlikely(!bitmap_bh))
4592			goto make_io;
4593
4594		/*
4595		 * If the inode bitmap isn't in cache then the
4596		 * optimisation may end up performing two reads instead
4597		 * of one, so skip it.
 
4598		 */
4599		if (!buffer_uptodate(bitmap_bh)) {
4600			brelse(bitmap_bh);
4601			goto make_io;
4602		}
4603		for (i = start; i < start + inodes_per_block; i++) {
4604			if (i == inode_offset)
4605				continue;
4606			if (ext4_test_bit(i, bitmap_bh->b_data))
4607				break;
4608		}
4609		brelse(bitmap_bh);
4610		if (i == start + inodes_per_block) {
4611			struct ext4_inode *raw_inode =
4612				(struct ext4_inode *) (bh->b_data + iloc->offset);
4613
4614			/* all other inodes are free, so skip I/O */
4615			memset(bh->b_data, 0, bh->b_size);
4616			if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4617				ext4_fill_raw_inode(inode, raw_inode);
4618			set_buffer_uptodate(bh);
 
 
 
4619			unlock_buffer(bh);
4620			goto has_buffer;
4621		}
4622	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4623
4624make_io:
4625	/*
4626	 * If we need to do any I/O, try to pre-readahead extra
4627	 * blocks from the inode table.
4628	 */
4629	blk_start_plug(&plug);
4630	if (EXT4_SB(sb)->s_inode_readahead_blks) {
4631		ext4_fsblk_t b, end, table;
4632		unsigned num;
4633		__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4634
4635		table = ext4_inode_table(sb, gdp);
4636		/* s_inode_readahead_blks is always a power of 2 */
4637		b = block & ~((ext4_fsblk_t) ra_blks - 1);
4638		if (table > b)
4639			b = table;
4640		end = b + ra_blks;
4641		num = EXT4_INODES_PER_GROUP(sb);
4642		if (ext4_has_group_desc_csum(sb))
4643			num -= ext4_itable_unused_count(sb, gdp);
4644		table += num / inodes_per_block;
4645		if (end > table)
4646			end = table;
4647		while (b <= end)
4648			ext4_sb_breadahead_unmovable(sb, b++);
4649	}
4650
4651	/*
4652	 * There are other valid inodes in the buffer, this inode
4653	 * has in-inode xattrs, or we don't have this inode in memory.
4654	 * Read the block from disk.
4655	 */
4656	trace_ext4_load_inode(sb, ino);
4657	ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4658	blk_finish_plug(&plug);
4659	wait_on_buffer(bh);
4660	ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4661	if (!buffer_uptodate(bh)) {
4662		if (ret_block)
4663			*ret_block = block;
4664		brelse(bh);
4665		return -EIO;
 
4666	}
4667has_buffer:
4668	iloc->bh = bh;
4669	return 0;
4670}
4671
4672static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4673					struct ext4_iloc *iloc)
4674{
4675	ext4_fsblk_t err_blk = 0;
4676	int ret;
4677
4678	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4679					&err_blk);
4680
4681	if (ret == -EIO)
4682		ext4_error_inode_block(inode, err_blk, EIO,
4683					"unable to read itable block");
4684
4685	return ret;
4686}
4687
4688int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4689{
4690	ext4_fsblk_t err_blk = 0;
4691	int ret;
4692
4693	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4694					&err_blk);
4695
4696	if (ret == -EIO)
4697		ext4_error_inode_block(inode, err_blk, EIO,
4698					"unable to read itable block");
4699
4700	return ret;
4701}
4702
4703
4704int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4705			  struct ext4_iloc *iloc)
4706{
4707	return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4708}
4709
4710static bool ext4_should_enable_dax(struct inode *inode)
4711{
4712	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4713
4714	if (test_opt2(inode->i_sb, DAX_NEVER))
4715		return false;
4716	if (!S_ISREG(inode->i_mode))
4717		return false;
4718	if (ext4_should_journal_data(inode))
4719		return false;
4720	if (ext4_has_inline_data(inode))
4721		return false;
4722	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4723		return false;
4724	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4725		return false;
4726	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4727		return false;
4728	if (test_opt(inode->i_sb, DAX_ALWAYS))
4729		return true;
4730
4731	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4732}
4733
4734void ext4_set_inode_flags(struct inode *inode, bool init)
4735{
4736	unsigned int flags = EXT4_I(inode)->i_flags;
4737	unsigned int new_fl = 0;
4738
4739	WARN_ON_ONCE(IS_DAX(inode) && init);
4740
4741	if (flags & EXT4_SYNC_FL)
4742		new_fl |= S_SYNC;
4743	if (flags & EXT4_APPEND_FL)
4744		new_fl |= S_APPEND;
4745	if (flags & EXT4_IMMUTABLE_FL)
4746		new_fl |= S_IMMUTABLE;
4747	if (flags & EXT4_NOATIME_FL)
4748		new_fl |= S_NOATIME;
4749	if (flags & EXT4_DIRSYNC_FL)
4750		new_fl |= S_DIRSYNC;
4751
4752	/* Because of the way inode_set_flags() works we must preserve S_DAX
4753	 * here if already set. */
4754	new_fl |= (inode->i_flags & S_DAX);
4755	if (init && ext4_should_enable_dax(inode))
4756		new_fl |= S_DAX;
4757
4758	if (flags & EXT4_ENCRYPT_FL)
4759		new_fl |= S_ENCRYPTED;
4760	if (flags & EXT4_CASEFOLD_FL)
4761		new_fl |= S_CASEFOLD;
4762	if (flags & EXT4_VERITY_FL)
4763		new_fl |= S_VERITY;
4764	inode_set_flags(inode, new_fl,
4765			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4766			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4767}
4768
4769static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4770				  struct ext4_inode_info *ei)
4771{
4772	blkcnt_t i_blocks ;
4773	struct inode *inode = &(ei->vfs_inode);
4774	struct super_block *sb = inode->i_sb;
4775
4776	if (ext4_has_feature_huge_file(sb)) {
4777		/* we are using combined 48 bit field */
4778		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4779					le32_to_cpu(raw_inode->i_blocks_lo);
4780		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4781			/* i_blocks represent file system block size */
4782			return i_blocks  << (inode->i_blkbits - 9);
4783		} else {
4784			return i_blocks;
4785		}
4786	} else {
4787		return le32_to_cpu(raw_inode->i_blocks_lo);
4788	}
4789}
4790
4791static inline int ext4_iget_extra_inode(struct inode *inode,
4792					 struct ext4_inode *raw_inode,
4793					 struct ext4_inode_info *ei)
4794{
4795	__le32 *magic = (void *)raw_inode +
4796			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4797
4798	if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4799	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4800		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4801		return ext4_find_inline_data_nolock(inode);
4802	} else
4803		EXT4_I(inode)->i_inline_off = 0;
4804	return 0;
4805}
4806
4807int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4808{
4809	if (!ext4_has_feature_project(inode->i_sb))
4810		return -EOPNOTSUPP;
4811	*projid = EXT4_I(inode)->i_projid;
4812	return 0;
4813}
4814
4815/*
4816 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4817 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4818 * set.
4819 */
4820static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4821{
4822	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4823		inode_set_iversion_raw(inode, val);
4824	else
4825		inode_set_iversion_queried(inode, val);
4826}
4827
4828struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4829			  ext4_iget_flags flags, const char *function,
4830			  unsigned int line)
4831{
4832	struct ext4_iloc iloc;
4833	struct ext4_inode *raw_inode;
4834	struct ext4_inode_info *ei;
4835	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4836	struct inode *inode;
4837	journal_t *journal = EXT4_SB(sb)->s_journal;
4838	long ret;
4839	loff_t size;
4840	int block;
4841	uid_t i_uid;
4842	gid_t i_gid;
4843	projid_t i_projid;
4844
4845	if ((!(flags & EXT4_IGET_SPECIAL) &&
4846	     ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4847	      ino == le32_to_cpu(es->s_usr_quota_inum) ||
4848	      ino == le32_to_cpu(es->s_grp_quota_inum) ||
4849	      ino == le32_to_cpu(es->s_prj_quota_inum) ||
4850	      ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4851	    (ino < EXT4_ROOT_INO) ||
4852	    (ino > le32_to_cpu(es->s_inodes_count))) {
4853		if (flags & EXT4_IGET_HANDLE)
4854			return ERR_PTR(-ESTALE);
4855		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4856			     "inode #%lu: comm %s: iget: illegal inode #",
4857			     ino, current->comm);
4858		return ERR_PTR(-EFSCORRUPTED);
4859	}
4860
4861	inode = iget_locked(sb, ino);
4862	if (!inode)
4863		return ERR_PTR(-ENOMEM);
4864	if (!(inode->i_state & I_NEW))
4865		return inode;
4866
4867	ei = EXT4_I(inode);
4868	iloc.bh = NULL;
4869
4870	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4871	if (ret < 0)
4872		goto bad_inode;
4873	raw_inode = ext4_raw_inode(&iloc);
4874
4875	if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4876		ext4_error_inode(inode, function, line, 0,
4877				 "iget: root inode unallocated");
4878		ret = -EFSCORRUPTED;
4879		goto bad_inode;
4880	}
4881
4882	if ((flags & EXT4_IGET_HANDLE) &&
4883	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4884		ret = -ESTALE;
4885		goto bad_inode;
4886	}
4887
4888	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4889		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4890		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4891			EXT4_INODE_SIZE(inode->i_sb) ||
4892		    (ei->i_extra_isize & 3)) {
4893			ext4_error_inode(inode, function, line, 0,
4894					 "iget: bad extra_isize %u "
4895					 "(inode size %u)",
4896					 ei->i_extra_isize,
4897					 EXT4_INODE_SIZE(inode->i_sb));
4898			ret = -EFSCORRUPTED;
4899			goto bad_inode;
4900		}
4901	} else
4902		ei->i_extra_isize = 0;
4903
4904	/* Precompute checksum seed for inode metadata */
4905	if (ext4_has_metadata_csum(sb)) {
4906		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4907		__u32 csum;
4908		__le32 inum = cpu_to_le32(inode->i_ino);
4909		__le32 gen = raw_inode->i_generation;
4910		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4911				   sizeof(inum));
4912		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4913					      sizeof(gen));
4914	}
4915
4916	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4917	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4918	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4919		ext4_error_inode_err(inode, function, line, 0,
4920				EFSBADCRC, "iget: checksum invalid");
4921		ret = -EFSBADCRC;
4922		goto bad_inode;
4923	}
4924
4925	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4926	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4927	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4928	if (ext4_has_feature_project(sb) &&
4929	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4930	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4931		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4932	else
4933		i_projid = EXT4_DEF_PROJID;
4934
4935	if (!(test_opt(inode->i_sb, NO_UID32))) {
4936		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4937		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4938	}
4939	i_uid_write(inode, i_uid);
4940	i_gid_write(inode, i_gid);
4941	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4942	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4943
4944	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4945	ei->i_inline_off = 0;
4946	ei->i_dir_start_lookup = 0;
4947	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4948	/* We now have enough fields to check if the inode was active or not.
4949	 * This is needed because nfsd might try to access dead inodes
4950	 * the test is that same one that e2fsck uses
4951	 * NeilBrown 1999oct15
4952	 */
4953	if (inode->i_nlink == 0) {
4954		if ((inode->i_mode == 0 ||
4955		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4956		    ino != EXT4_BOOT_LOADER_INO) {
4957			/* this inode is deleted */
4958			ret = -ESTALE;
4959			goto bad_inode;
4960		}
4961		/* The only unlinked inodes we let through here have
4962		 * valid i_mode and are being read by the orphan
4963		 * recovery code: that's fine, we're about to complete
4964		 * the process of deleting those.
4965		 * OR it is the EXT4_BOOT_LOADER_INO which is
4966		 * not initialized on a new filesystem. */
4967	}
4968	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4969	ext4_set_inode_flags(inode, true);
4970	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4971	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4972	if (ext4_has_feature_64bit(sb))
4973		ei->i_file_acl |=
4974			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4975	inode->i_size = ext4_isize(sb, raw_inode);
4976	if ((size = i_size_read(inode)) < 0) {
4977		ext4_error_inode(inode, function, line, 0,
4978				 "iget: bad i_size value: %lld", size);
4979		ret = -EFSCORRUPTED;
4980		goto bad_inode;
4981	}
4982	/*
4983	 * If dir_index is not enabled but there's dir with INDEX flag set,
4984	 * we'd normally treat htree data as empty space. But with metadata
4985	 * checksumming that corrupts checksums so forbid that.
4986	 */
4987	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4988	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4989		ext4_error_inode(inode, function, line, 0,
4990			 "iget: Dir with htree data on filesystem without dir_index feature.");
4991		ret = -EFSCORRUPTED;
4992		goto bad_inode;
4993	}
4994	ei->i_disksize = inode->i_size;
4995#ifdef CONFIG_QUOTA
4996	ei->i_reserved_quota = 0;
4997#endif
4998	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4999	ei->i_block_group = iloc.block_group;
5000	ei->i_last_alloc_group = ~0;
5001	/*
5002	 * NOTE! The in-memory inode i_data array is in little-endian order
5003	 * even on big-endian machines: we do NOT byteswap the block numbers!
5004	 */
5005	for (block = 0; block < EXT4_N_BLOCKS; block++)
5006		ei->i_data[block] = raw_inode->i_block[block];
5007	INIT_LIST_HEAD(&ei->i_orphan);
5008	ext4_fc_init_inode(&ei->vfs_inode);
5009
5010	/*
5011	 * Set transaction id's of transactions that have to be committed
5012	 * to finish f[data]sync. We set them to currently running transaction
5013	 * as we cannot be sure that the inode or some of its metadata isn't
5014	 * part of the transaction - the inode could have been reclaimed and
5015	 * now it is reread from disk.
5016	 */
5017	if (journal) {
5018		transaction_t *transaction;
5019		tid_t tid;
5020
5021		read_lock(&journal->j_state_lock);
5022		if (journal->j_running_transaction)
5023			transaction = journal->j_running_transaction;
5024		else
5025			transaction = journal->j_committing_transaction;
5026		if (transaction)
5027			tid = transaction->t_tid;
5028		else
5029			tid = journal->j_commit_sequence;
5030		read_unlock(&journal->j_state_lock);
5031		ei->i_sync_tid = tid;
5032		ei->i_datasync_tid = tid;
5033	}
5034
5035	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5036		if (ei->i_extra_isize == 0) {
5037			/* The extra space is currently unused. Use it. */
5038			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
5039			ei->i_extra_isize = sizeof(struct ext4_inode) -
5040					    EXT4_GOOD_OLD_INODE_SIZE;
5041		} else {
5042			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
5043			if (ret)
5044				goto bad_inode;
5045		}
5046	}
5047
5048	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5049	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5050	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5051	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5052
5053	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5054		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5055
5056		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5057			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5058				ivers |=
5059		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5060		}
5061		ext4_inode_set_iversion_queried(inode, ivers);
5062	}
5063
5064	ret = 0;
5065	if (ei->i_file_acl &&
5066	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
5067		ext4_error_inode(inode, function, line, 0,
5068				 "iget: bad extended attribute block %llu",
5069				 ei->i_file_acl);
5070		ret = -EFSCORRUPTED;
5071		goto bad_inode;
5072	} else if (!ext4_has_inline_data(inode)) {
5073		/* validate the block references in the inode */
5074		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
5075			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5076			(S_ISLNK(inode->i_mode) &&
5077			!ext4_inode_is_fast_symlink(inode)))) {
5078			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5079				ret = ext4_ext_check_inode(inode);
5080			else
5081				ret = ext4_ind_check_inode(inode);
 
 
 
5082		}
5083	}
5084	if (ret)
5085		goto bad_inode;
5086
5087	if (S_ISREG(inode->i_mode)) {
5088		inode->i_op = &ext4_file_inode_operations;
5089		inode->i_fop = &ext4_file_operations;
5090		ext4_set_aops(inode);
5091	} else if (S_ISDIR(inode->i_mode)) {
5092		inode->i_op = &ext4_dir_inode_operations;
5093		inode->i_fop = &ext4_dir_operations;
5094	} else if (S_ISLNK(inode->i_mode)) {
5095		/* VFS does not allow setting these so must be corruption */
5096		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5097			ext4_error_inode(inode, function, line, 0,
5098					 "iget: immutable or append flags "
5099					 "not allowed on symlinks");
5100			ret = -EFSCORRUPTED;
5101			goto bad_inode;
5102		}
5103		if (IS_ENCRYPTED(inode)) {
5104			inode->i_op = &ext4_encrypted_symlink_inode_operations;
 
5105		} else if (ext4_inode_is_fast_symlink(inode)) {
5106			inode->i_link = (char *)ei->i_data;
5107			inode->i_op = &ext4_fast_symlink_inode_operations;
5108			nd_terminate_link(ei->i_data, inode->i_size,
5109				sizeof(ei->i_data) - 1);
5110		} else {
5111			inode->i_op = &ext4_symlink_inode_operations;
 
5112		}
 
5113	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5114	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5115		inode->i_op = &ext4_special_inode_operations;
5116		if (raw_inode->i_block[0])
5117			init_special_inode(inode, inode->i_mode,
5118			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5119		else
5120			init_special_inode(inode, inode->i_mode,
5121			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5122	} else if (ino == EXT4_BOOT_LOADER_INO) {
5123		make_bad_inode(inode);
5124	} else {
5125		ret = -EFSCORRUPTED;
5126		ext4_error_inode(inode, function, line, 0,
5127				 "iget: bogus i_mode (%o)", inode->i_mode);
5128		goto bad_inode;
5129	}
5130	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
5131		ext4_error_inode(inode, function, line, 0,
5132				 "casefold flag without casefold feature");
5133	if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) {
5134		ext4_error_inode(inode, function, line, 0,
5135				 "bad inode without EXT4_IGET_BAD flag");
5136		ret = -EUCLEAN;
5137		goto bad_inode;
5138	}
 
 
5139
5140	brelse(iloc.bh);
5141	unlock_new_inode(inode);
5142	return inode;
5143
5144bad_inode:
5145	brelse(iloc.bh);
5146	iget_failed(inode);
5147	return ERR_PTR(ret);
5148}
5149
5150static void __ext4_update_other_inode_time(struct super_block *sb,
5151					   unsigned long orig_ino,
5152					   unsigned long ino,
5153					   struct ext4_inode *raw_inode)
 
 
 
 
 
 
5154{
5155	struct inode *inode;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5156
5157	inode = find_inode_by_ino_rcu(sb, ino);
5158	if (!inode)
5159		return;
 
5160
5161	if (!inode_is_dirtytime_only(inode))
5162		return;
 
 
5163
 
 
 
 
 
5164	spin_lock(&inode->i_lock);
5165	if (inode_is_dirtytime_only(inode)) {
 
 
5166		struct ext4_inode_info	*ei = EXT4_I(inode);
5167
5168		inode->i_state &= ~I_DIRTY_TIME;
5169		spin_unlock(&inode->i_lock);
5170
5171		spin_lock(&ei->i_raw_lock);
5172		EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5173		EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5174		EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5175		ext4_inode_csum_set(inode, raw_inode, ei);
5176		spin_unlock(&ei->i_raw_lock);
5177		trace_ext4_other_inode_update_time(inode, orig_ino);
5178		return;
5179	}
5180	spin_unlock(&inode->i_lock);
 
5181}
5182
5183/*
5184 * Opportunistically update the other time fields for other inodes in
5185 * the same inode table block.
5186 */
5187static void ext4_update_other_inodes_time(struct super_block *sb,
5188					  unsigned long orig_ino, char *buf)
5189{
 
5190	unsigned long ino;
5191	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5192	int inode_size = EXT4_INODE_SIZE(sb);
5193
 
5194	/*
5195	 * Calculate the first inode in the inode table block.  Inode
5196	 * numbers are one-based.  That is, the first inode in a block
5197	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5198	 */
5199	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5200	rcu_read_lock();
5201	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5202		if (ino == orig_ino)
5203			continue;
5204		__ext4_update_other_inode_time(sb, orig_ino, ino,
5205					       (struct ext4_inode *)buf);
5206	}
5207	rcu_read_unlock();
5208}
5209
5210/*
5211 * Post the struct inode info into an on-disk inode location in the
5212 * buffer-cache.  This gobbles the caller's reference to the
5213 * buffer_head in the inode location struct.
5214 *
5215 * The caller must have write access to iloc->bh.
5216 */
5217static int ext4_do_update_inode(handle_t *handle,
5218				struct inode *inode,
5219				struct ext4_iloc *iloc)
5220{
5221	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5222	struct ext4_inode_info *ei = EXT4_I(inode);
5223	struct buffer_head *bh = iloc->bh;
5224	struct super_block *sb = inode->i_sb;
5225	int err;
5226	int need_datasync = 0, set_large_file = 0;
 
 
 
5227
5228	spin_lock(&ei->i_raw_lock);
5229
5230	/*
5231	 * For fields not tracked in the in-memory inode, initialise them
5232	 * to zero for new inodes.
5233	 */
5234	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5235		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5236
5237	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5238		need_datasync = 1;
 
5239	if (ei->i_disksize > 0x7fffffffULL) {
5240		if (!ext4_has_feature_large_file(sb) ||
5241		    EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
 
5242			set_large_file = 1;
5243	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5244
5245	err = ext4_fill_raw_inode(inode, raw_inode);
5246	spin_unlock(&ei->i_raw_lock);
5247	if (err) {
5248		EXT4_ERROR_INODE(inode, "corrupted inode contents");
5249		goto out_brelse;
 
 
 
 
 
 
5250	}
5251
 
 
 
 
 
 
 
 
 
5252	if (inode->i_sb->s_flags & SB_LAZYTIME)
5253		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5254					      bh->b_data);
5255
5256	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5257	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5258	if (err)
5259		goto out_error;
5260	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5261	if (set_large_file) {
5262		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5263		err = ext4_journal_get_write_access(handle, sb,
5264						    EXT4_SB(sb)->s_sbh,
5265						    EXT4_JTR_NONE);
5266		if (err)
5267			goto out_error;
5268		lock_buffer(EXT4_SB(sb)->s_sbh);
5269		ext4_set_feature_large_file(sb);
5270		ext4_superblock_csum_set(sb);
5271		unlock_buffer(EXT4_SB(sb)->s_sbh);
5272		ext4_handle_sync(handle);
5273		err = ext4_handle_dirty_metadata(handle, NULL,
5274						 EXT4_SB(sb)->s_sbh);
5275	}
5276	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5277out_error:
5278	ext4_std_error(inode->i_sb, err);
5279out_brelse:
5280	brelse(bh);
 
5281	return err;
5282}
5283
5284/*
5285 * ext4_write_inode()
5286 *
5287 * We are called from a few places:
5288 *
5289 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5290 *   Here, there will be no transaction running. We wait for any running
5291 *   transaction to commit.
5292 *
5293 * - Within flush work (sys_sync(), kupdate and such).
5294 *   We wait on commit, if told to.
5295 *
5296 * - Within iput_final() -> write_inode_now()
5297 *   We wait on commit, if told to.
5298 *
5299 * In all cases it is actually safe for us to return without doing anything,
5300 * because the inode has been copied into a raw inode buffer in
5301 * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5302 * writeback.
5303 *
5304 * Note that we are absolutely dependent upon all inode dirtiers doing the
5305 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5306 * which we are interested.
5307 *
5308 * It would be a bug for them to not do this.  The code:
5309 *
5310 *	mark_inode_dirty(inode)
5311 *	stuff();
5312 *	inode->i_size = expr;
5313 *
5314 * is in error because write_inode() could occur while `stuff()' is running,
5315 * and the new i_size will be lost.  Plus the inode will no longer be on the
5316 * superblock's dirty inode list.
5317 */
5318int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5319{
5320	int err;
5321
5322	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5323	    sb_rdonly(inode->i_sb))
5324		return 0;
5325
5326	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5327		return -EIO;
5328
5329	if (EXT4_SB(inode->i_sb)->s_journal) {
5330		if (ext4_journal_current_handle()) {
5331			ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5332			dump_stack();
5333			return -EIO;
5334		}
5335
5336		/*
5337		 * No need to force transaction in WB_SYNC_NONE mode. Also
5338		 * ext4_sync_fs() will force the commit after everything is
5339		 * written.
5340		 */
5341		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5342			return 0;
5343
5344		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5345						EXT4_I(inode)->i_sync_tid);
5346	} else {
5347		struct ext4_iloc iloc;
5348
5349		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5350		if (err)
5351			return err;
5352		/*
5353		 * sync(2) will flush the whole buffer cache. No need to do
5354		 * it here separately for each inode.
5355		 */
5356		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5357			sync_dirty_buffer(iloc.bh);
5358		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5359			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5360					       "IO error syncing inode");
5361			err = -EIO;
5362		}
5363		brelse(iloc.bh);
5364	}
5365	return err;
5366}
5367
5368/*
5369 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5370 * buffers that are attached to a folio straddling i_size and are undergoing
5371 * commit. In that case we have to wait for commit to finish and try again.
5372 */
5373static void ext4_wait_for_tail_page_commit(struct inode *inode)
5374{
 
5375	unsigned offset;
5376	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5377	tid_t commit_tid = 0;
5378	int ret;
5379
5380	offset = inode->i_size & (PAGE_SIZE - 1);
5381	/*
5382	 * If the folio is fully truncated, we don't need to wait for any commit
5383	 * (and we even should not as __ext4_journalled_invalidate_folio() may
5384	 * strip all buffers from the folio but keep the folio dirty which can then
5385	 * confuse e.g. concurrent ext4_writepage() seeing dirty folio without
5386	 * buffers). Also we don't need to wait for any commit if all buffers in
5387	 * the folio remain valid. This is most beneficial for the common case of
5388	 * blocksize == PAGESIZE.
5389	 */
5390	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5391		return;
5392	while (1) {
5393		struct folio *folio = filemap_lock_folio(inode->i_mapping,
5394				      inode->i_size >> PAGE_SHIFT);
5395		if (!folio)
5396			return;
5397		ret = __ext4_journalled_invalidate_folio(folio, offset,
5398						folio_size(folio) - offset);
5399		folio_unlock(folio);
5400		folio_put(folio);
5401		if (ret != -EBUSY)
5402			return;
5403		commit_tid = 0;
5404		read_lock(&journal->j_state_lock);
5405		if (journal->j_committing_transaction)
5406			commit_tid = journal->j_committing_transaction->t_tid;
5407		read_unlock(&journal->j_state_lock);
5408		if (commit_tid)
5409			jbd2_log_wait_commit(journal, commit_tid);
5410	}
5411}
5412
5413/*
5414 * ext4_setattr()
5415 *
5416 * Called from notify_change.
5417 *
5418 * We want to trap VFS attempts to truncate the file as soon as
5419 * possible.  In particular, we want to make sure that when the VFS
5420 * shrinks i_size, we put the inode on the orphan list and modify
5421 * i_disksize immediately, so that during the subsequent flushing of
5422 * dirty pages and freeing of disk blocks, we can guarantee that any
5423 * commit will leave the blocks being flushed in an unused state on
5424 * disk.  (On recovery, the inode will get truncated and the blocks will
5425 * be freed, so we have a strong guarantee that no future commit will
5426 * leave these blocks visible to the user.)
5427 *
5428 * Another thing we have to assure is that if we are in ordered mode
5429 * and inode is still attached to the committing transaction, we must
5430 * we start writeout of all the dirty pages which are being truncated.
5431 * This way we are sure that all the data written in the previous
5432 * transaction are already on disk (truncate waits for pages under
5433 * writeback).
5434 *
5435 * Called with inode->i_rwsem down.
5436 */
5437int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5438		 struct iattr *attr)
5439{
5440	struct inode *inode = d_inode(dentry);
5441	int error, rc = 0;
5442	int orphan = 0;
5443	const unsigned int ia_valid = attr->ia_valid;
5444	bool inc_ivers = true;
5445
5446	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5447		return -EIO;
5448
5449	if (unlikely(IS_IMMUTABLE(inode)))
5450		return -EPERM;
5451
5452	if (unlikely(IS_APPEND(inode) &&
5453		     (ia_valid & (ATTR_MODE | ATTR_UID |
5454				  ATTR_GID | ATTR_TIMES_SET))))
5455		return -EPERM;
5456
5457	error = setattr_prepare(mnt_userns, dentry, attr);
5458	if (error)
5459		return error;
5460
5461	error = fscrypt_prepare_setattr(dentry, attr);
5462	if (error)
5463		return error;
5464
5465	error = fsverity_prepare_setattr(dentry, attr);
5466	if (error)
5467		return error;
5468
5469	if (is_quota_modification(mnt_userns, inode, attr)) {
5470		error = dquot_initialize(inode);
5471		if (error)
5472			return error;
5473	}
5474
5475	if (i_uid_needs_update(mnt_userns, attr, inode) ||
5476	    i_gid_needs_update(mnt_userns, attr, inode)) {
5477		handle_t *handle;
5478
5479		/* (user+group)*(old+new) structure, inode write (sb,
5480		 * inode block, ? - but truncate inode update has it) */
5481		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5482			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5483			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5484		if (IS_ERR(handle)) {
5485			error = PTR_ERR(handle);
5486			goto err_out;
5487		}
5488
5489		/* dquot_transfer() calls back ext4_get_inode_usage() which
5490		 * counts xattr inode references.
5491		 */
5492		down_read(&EXT4_I(inode)->xattr_sem);
5493		error = dquot_transfer(mnt_userns, inode, attr);
5494		up_read(&EXT4_I(inode)->xattr_sem);
5495
5496		if (error) {
5497			ext4_journal_stop(handle);
5498			return error;
5499		}
5500		/* Update corresponding info in inode so that everything is in
5501		 * one transaction */
5502		i_uid_update(mnt_userns, attr, inode);
5503		i_gid_update(mnt_userns, attr, inode);
 
 
5504		error = ext4_mark_inode_dirty(handle, inode);
5505		ext4_journal_stop(handle);
5506		if (unlikely(error)) {
5507			return error;
5508		}
5509	}
5510
5511	if (attr->ia_valid & ATTR_SIZE) {
5512		handle_t *handle;
5513		loff_t oldsize = inode->i_size;
5514		loff_t old_disksize;
5515		int shrink = (attr->ia_size < inode->i_size);
5516
5517		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5518			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5519
5520			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5521				return -EFBIG;
5522			}
5523		}
5524		if (!S_ISREG(inode->i_mode)) {
5525			return -EINVAL;
5526		}
5527
5528		if (attr->ia_size == inode->i_size)
5529			inc_ivers = false;
5530
5531		if (shrink) {
5532			if (ext4_should_order_data(inode)) {
5533				error = ext4_begin_ordered_truncate(inode,
5534							    attr->ia_size);
5535				if (error)
5536					goto err_out;
5537			}
5538			/*
5539			 * Blocks are going to be removed from the inode. Wait
5540			 * for dio in flight.
5541			 */
5542			inode_dio_wait(inode);
5543		}
5544
5545		filemap_invalidate_lock(inode->i_mapping);
5546
5547		rc = ext4_break_layouts(inode);
5548		if (rc) {
5549			filemap_invalidate_unlock(inode->i_mapping);
5550			goto err_out;
5551		}
5552
5553		if (attr->ia_size != inode->i_size) {
5554			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5555			if (IS_ERR(handle)) {
5556				error = PTR_ERR(handle);
5557				goto out_mmap_sem;
5558			}
5559			if (ext4_handle_valid(handle) && shrink) {
5560				error = ext4_orphan_add(handle, inode);
5561				orphan = 1;
5562			}
5563			/*
5564			 * Update c/mtime on truncate up, ext4_truncate() will
5565			 * update c/mtime in shrink case below
5566			 */
5567			if (!shrink) {
5568				inode->i_mtime = current_time(inode);
5569				inode->i_ctime = inode->i_mtime;
5570			}
5571
5572			if (shrink)
5573				ext4_fc_track_range(handle, inode,
5574					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5575					inode->i_sb->s_blocksize_bits,
5576					EXT_MAX_BLOCKS - 1);
5577			else
5578				ext4_fc_track_range(
5579					handle, inode,
5580					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5581					inode->i_sb->s_blocksize_bits,
5582					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5583					inode->i_sb->s_blocksize_bits);
5584
5585			down_write(&EXT4_I(inode)->i_data_sem);
5586			old_disksize = EXT4_I(inode)->i_disksize;
5587			EXT4_I(inode)->i_disksize = attr->ia_size;
5588			rc = ext4_mark_inode_dirty(handle, inode);
5589			if (!error)
5590				error = rc;
5591			/*
5592			 * We have to update i_size under i_data_sem together
5593			 * with i_disksize to avoid races with writeback code
5594			 * running ext4_wb_update_i_disksize().
5595			 */
5596			if (!error)
5597				i_size_write(inode, attr->ia_size);
5598			else
5599				EXT4_I(inode)->i_disksize = old_disksize;
5600			up_write(&EXT4_I(inode)->i_data_sem);
5601			ext4_journal_stop(handle);
5602			if (error)
5603				goto out_mmap_sem;
5604			if (!shrink) {
5605				pagecache_isize_extended(inode, oldsize,
5606							 inode->i_size);
5607			} else if (ext4_should_journal_data(inode)) {
5608				ext4_wait_for_tail_page_commit(inode);
5609			}
5610		}
 
 
5611
5612		/*
 
 
 
 
 
 
 
 
 
 
 
 
5613		 * Truncate pagecache after we've waited for commit
5614		 * in data=journal mode to make pages freeable.
5615		 */
5616		truncate_pagecache(inode, inode->i_size);
5617		/*
5618		 * Call ext4_truncate() even if i_size didn't change to
5619		 * truncate possible preallocated blocks.
5620		 */
5621		if (attr->ia_size <= oldsize) {
5622			rc = ext4_truncate(inode);
5623			if (rc)
5624				error = rc;
5625		}
5626out_mmap_sem:
5627		filemap_invalidate_unlock(inode->i_mapping);
5628	}
5629
5630	if (!error) {
5631		if (inc_ivers)
5632			inode_inc_iversion(inode);
5633		setattr_copy(mnt_userns, inode, attr);
5634		mark_inode_dirty(inode);
5635	}
5636
5637	/*
5638	 * If the call to ext4_truncate failed to get a transaction handle at
5639	 * all, we need to clean up the in-core orphan list manually.
5640	 */
5641	if (orphan && inode->i_nlink)
5642		ext4_orphan_del(NULL, inode);
5643
5644	if (!error && (ia_valid & ATTR_MODE))
5645		rc = posix_acl_chmod(mnt_userns, dentry, inode->i_mode);
5646
5647err_out:
5648	if  (error)
5649		ext4_std_error(inode->i_sb, error);
5650	if (!error)
5651		error = rc;
5652	return error;
5653}
5654
5655u32 ext4_dio_alignment(struct inode *inode)
5656{
5657	if (fsverity_active(inode))
5658		return 0;
5659	if (ext4_should_journal_data(inode))
5660		return 0;
5661	if (ext4_has_inline_data(inode))
5662		return 0;
5663	if (IS_ENCRYPTED(inode)) {
5664		if (!fscrypt_dio_supported(inode))
5665			return 0;
5666		return i_blocksize(inode);
5667	}
5668	return 1; /* use the iomap defaults */
5669}
5670
5671int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5672		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5673{
5674	struct inode *inode = d_inode(path->dentry);
5675	struct ext4_inode *raw_inode;
5676	struct ext4_inode_info *ei = EXT4_I(inode);
5677	unsigned int flags;
5678
5679	if ((request_mask & STATX_BTIME) &&
5680	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5681		stat->result_mask |= STATX_BTIME;
5682		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5683		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5684	}
5685
5686	/*
5687	 * Return the DIO alignment restrictions if requested.  We only return
5688	 * this information when requested, since on encrypted files it might
5689	 * take a fair bit of work to get if the file wasn't opened recently.
5690	 */
5691	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5692		u32 dio_align = ext4_dio_alignment(inode);
5693
5694		stat->result_mask |= STATX_DIOALIGN;
5695		if (dio_align == 1) {
5696			struct block_device *bdev = inode->i_sb->s_bdev;
5697
5698			/* iomap defaults */
5699			stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5700			stat->dio_offset_align = bdev_logical_block_size(bdev);
5701		} else {
5702			stat->dio_mem_align = dio_align;
5703			stat->dio_offset_align = dio_align;
5704		}
5705	}
5706
5707	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5708	if (flags & EXT4_APPEND_FL)
5709		stat->attributes |= STATX_ATTR_APPEND;
5710	if (flags & EXT4_COMPR_FL)
5711		stat->attributes |= STATX_ATTR_COMPRESSED;
5712	if (flags & EXT4_ENCRYPT_FL)
5713		stat->attributes |= STATX_ATTR_ENCRYPTED;
5714	if (flags & EXT4_IMMUTABLE_FL)
5715		stat->attributes |= STATX_ATTR_IMMUTABLE;
5716	if (flags & EXT4_NODUMP_FL)
5717		stat->attributes |= STATX_ATTR_NODUMP;
5718	if (flags & EXT4_VERITY_FL)
5719		stat->attributes |= STATX_ATTR_VERITY;
5720
5721	stat->attributes_mask |= (STATX_ATTR_APPEND |
5722				  STATX_ATTR_COMPRESSED |
5723				  STATX_ATTR_ENCRYPTED |
5724				  STATX_ATTR_IMMUTABLE |
5725				  STATX_ATTR_NODUMP |
5726				  STATX_ATTR_VERITY);
5727
5728	generic_fillattr(mnt_userns, inode, stat);
5729	return 0;
5730}
5731
5732int ext4_file_getattr(struct user_namespace *mnt_userns,
5733		      const struct path *path, struct kstat *stat,
5734		      u32 request_mask, unsigned int query_flags)
5735{
5736	struct inode *inode = d_inode(path->dentry);
5737	u64 delalloc_blocks;
5738
5739	ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
5740
5741	/*
5742	 * If there is inline data in the inode, the inode will normally not
5743	 * have data blocks allocated (it may have an external xattr block).
5744	 * Report at least one sector for such files, so tools like tar, rsync,
5745	 * others don't incorrectly think the file is completely sparse.
5746	 */
5747	if (unlikely(ext4_has_inline_data(inode)))
5748		stat->blocks += (stat->size + 511) >> 9;
5749
5750	/*
5751	 * We can't update i_blocks if the block allocation is delayed
5752	 * otherwise in the case of system crash before the real block
5753	 * allocation is done, we will have i_blocks inconsistent with
5754	 * on-disk file blocks.
5755	 * We always keep i_blocks updated together with real
5756	 * allocation. But to not confuse with user, stat
5757	 * will return the blocks that include the delayed allocation
5758	 * blocks for this file.
5759	 */
5760	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5761				   EXT4_I(inode)->i_reserved_data_blocks);
5762	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5763	return 0;
5764}
5765
5766static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5767				   int pextents)
5768{
5769	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5770		return ext4_ind_trans_blocks(inode, lblocks);
5771	return ext4_ext_index_trans_blocks(inode, pextents);
5772}
5773
5774/*
5775 * Account for index blocks, block groups bitmaps and block group
5776 * descriptor blocks if modify datablocks and index blocks
5777 * worse case, the indexs blocks spread over different block groups
5778 *
5779 * If datablocks are discontiguous, they are possible to spread over
5780 * different block groups too. If they are contiguous, with flexbg,
5781 * they could still across block group boundary.
5782 *
5783 * Also account for superblock, inode, quota and xattr blocks
5784 */
5785static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5786				  int pextents)
5787{
5788	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5789	int gdpblocks;
5790	int idxblocks;
5791	int ret = 0;
5792
5793	/*
5794	 * How many index blocks need to touch to map @lblocks logical blocks
5795	 * to @pextents physical extents?
5796	 */
5797	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5798
5799	ret = idxblocks;
5800
5801	/*
5802	 * Now let's see how many group bitmaps and group descriptors need
5803	 * to account
5804	 */
5805	groups = idxblocks + pextents;
5806	gdpblocks = groups;
5807	if (groups > ngroups)
5808		groups = ngroups;
5809	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5810		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5811
5812	/* bitmaps and block group descriptor blocks */
5813	ret += groups + gdpblocks;
5814
5815	/* Blocks for super block, inode, quota and xattr blocks */
5816	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5817
5818	return ret;
5819}
5820
5821/*
5822 * Calculate the total number of credits to reserve to fit
5823 * the modification of a single pages into a single transaction,
5824 * which may include multiple chunks of block allocations.
5825 *
5826 * This could be called via ext4_write_begin()
5827 *
5828 * We need to consider the worse case, when
5829 * one new block per extent.
5830 */
5831int ext4_writepage_trans_blocks(struct inode *inode)
5832{
5833	int bpp = ext4_journal_blocks_per_page(inode);
5834	int ret;
5835
5836	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5837
5838	/* Account for data blocks for journalled mode */
5839	if (ext4_should_journal_data(inode))
5840		ret += bpp;
5841	return ret;
5842}
5843
5844/*
5845 * Calculate the journal credits for a chunk of data modification.
5846 *
5847 * This is called from DIO, fallocate or whoever calling
5848 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5849 *
5850 * journal buffers for data blocks are not included here, as DIO
5851 * and fallocate do no need to journal data buffers.
5852 */
5853int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5854{
5855	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5856}
5857
5858/*
5859 * The caller must have previously called ext4_reserve_inode_write().
5860 * Give this, we know that the caller already has write access to iloc->bh.
5861 */
5862int ext4_mark_iloc_dirty(handle_t *handle,
5863			 struct inode *inode, struct ext4_iloc *iloc)
5864{
5865	int err = 0;
5866
5867	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5868		put_bh(iloc->bh);
5869		return -EIO;
5870	}
5871	ext4_fc_track_inode(handle, inode);
 
5872
5873	/* the do_update_inode consumes one bh->b_count */
5874	get_bh(iloc->bh);
5875
5876	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5877	err = ext4_do_update_inode(handle, inode, iloc);
5878	put_bh(iloc->bh);
5879	return err;
5880}
5881
5882/*
5883 * On success, We end up with an outstanding reference count against
5884 * iloc->bh.  This _must_ be cleaned up later.
5885 */
5886
5887int
5888ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5889			 struct ext4_iloc *iloc)
5890{
5891	int err;
5892
5893	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5894		return -EIO;
5895
5896	err = ext4_get_inode_loc(inode, iloc);
5897	if (!err) {
5898		BUFFER_TRACE(iloc->bh, "get_write_access");
5899		err = ext4_journal_get_write_access(handle, inode->i_sb,
5900						    iloc->bh, EXT4_JTR_NONE);
5901		if (err) {
5902			brelse(iloc->bh);
5903			iloc->bh = NULL;
5904		}
5905	}
5906	ext4_std_error(inode->i_sb, err);
5907	return err;
5908}
5909
5910static int __ext4_expand_extra_isize(struct inode *inode,
5911				     unsigned int new_extra_isize,
5912				     struct ext4_iloc *iloc,
5913				     handle_t *handle, int *no_expand)
5914{
5915	struct ext4_inode *raw_inode;
5916	struct ext4_xattr_ibody_header *header;
5917	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5918	struct ext4_inode_info *ei = EXT4_I(inode);
5919	int error;
5920
5921	/* this was checked at iget time, but double check for good measure */
5922	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5923	    (ei->i_extra_isize & 3)) {
5924		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5925				 ei->i_extra_isize,
5926				 EXT4_INODE_SIZE(inode->i_sb));
5927		return -EFSCORRUPTED;
5928	}
5929	if ((new_extra_isize < ei->i_extra_isize) ||
5930	    (new_extra_isize < 4) ||
5931	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5932		return -EINVAL;	/* Should never happen */
5933
5934	raw_inode = ext4_raw_inode(iloc);
5935
5936	header = IHDR(inode, raw_inode);
5937
5938	/* No extended attributes present */
5939	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5940	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5941		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5942		       EXT4_I(inode)->i_extra_isize, 0,
5943		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5944		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5945		return 0;
5946	}
5947
5948	/*
5949	 * We may need to allocate external xattr block so we need quotas
5950	 * initialized. Here we can be called with various locks held so we
5951	 * cannot affort to initialize quotas ourselves. So just bail.
5952	 */
5953	if (dquot_initialize_needed(inode))
5954		return -EAGAIN;
5955
5956	/* try to expand with EAs present */
5957	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5958					   raw_inode, handle);
5959	if (error) {
5960		/*
5961		 * Inode size expansion failed; don't try again
5962		 */
5963		*no_expand = 1;
5964	}
5965
5966	return error;
5967}
5968
5969/*
5970 * Expand an inode by new_extra_isize bytes.
5971 * Returns 0 on success or negative error number on failure.
5972 */
5973static int ext4_try_to_expand_extra_isize(struct inode *inode,
5974					  unsigned int new_extra_isize,
5975					  struct ext4_iloc iloc,
5976					  handle_t *handle)
5977{
5978	int no_expand;
5979	int error;
5980
5981	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5982		return -EOVERFLOW;
5983
5984	/*
5985	 * In nojournal mode, we can immediately attempt to expand
5986	 * the inode.  When journaled, we first need to obtain extra
5987	 * buffer credits since we may write into the EA block
5988	 * with this same handle. If journal_extend fails, then it will
5989	 * only result in a minor loss of functionality for that inode.
5990	 * If this is felt to be critical, then e2fsck should be run to
5991	 * force a large enough s_min_extra_isize.
5992	 */
5993	if (ext4_journal_extend(handle,
5994				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
 
5995		return -ENOSPC;
5996
5997	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5998		return -EBUSY;
5999
6000	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
6001					  handle, &no_expand);
6002	ext4_write_unlock_xattr(inode, &no_expand);
6003
6004	return error;
6005}
6006
6007int ext4_expand_extra_isize(struct inode *inode,
6008			    unsigned int new_extra_isize,
6009			    struct ext4_iloc *iloc)
6010{
6011	handle_t *handle;
6012	int no_expand;
6013	int error, rc;
6014
6015	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6016		brelse(iloc->bh);
6017		return -EOVERFLOW;
6018	}
6019
6020	handle = ext4_journal_start(inode, EXT4_HT_INODE,
6021				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
6022	if (IS_ERR(handle)) {
6023		error = PTR_ERR(handle);
6024		brelse(iloc->bh);
6025		return error;
6026	}
6027
6028	ext4_write_lock_xattr(inode, &no_expand);
6029
6030	BUFFER_TRACE(iloc->bh, "get_write_access");
6031	error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
6032					      EXT4_JTR_NONE);
6033	if (error) {
6034		brelse(iloc->bh);
6035		goto out_unlock;
6036	}
6037
6038	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6039					  handle, &no_expand);
6040
6041	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6042	if (!error)
6043		error = rc;
6044
6045out_unlock:
6046	ext4_write_unlock_xattr(inode, &no_expand);
 
6047	ext4_journal_stop(handle);
6048	return error;
6049}
6050
6051/*
6052 * What we do here is to mark the in-core inode as clean with respect to inode
6053 * dirtiness (it may still be data-dirty).
6054 * This means that the in-core inode may be reaped by prune_icache
6055 * without having to perform any I/O.  This is a very good thing,
6056 * because *any* task may call prune_icache - even ones which
6057 * have a transaction open against a different journal.
6058 *
6059 * Is this cheating?  Not really.  Sure, we haven't written the
6060 * inode out, but prune_icache isn't a user-visible syncing function.
6061 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6062 * we start and wait on commits.
6063 */
6064int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
6065				const char *func, unsigned int line)
6066{
6067	struct ext4_iloc iloc;
6068	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6069	int err;
6070
6071	might_sleep();
6072	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6073	err = ext4_reserve_inode_write(handle, inode, &iloc);
6074	if (err)
6075		goto out;
6076
6077	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6078		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6079					       iloc, handle);
6080
6081	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
6082out:
6083	if (unlikely(err))
6084		ext4_error_inode_err(inode, func, line, 0, err,
6085					"mark_inode_dirty error");
6086	return err;
6087}
6088
6089/*
6090 * ext4_dirty_inode() is called from __mark_inode_dirty()
6091 *
6092 * We're really interested in the case where a file is being extended.
6093 * i_size has been changed by generic_commit_write() and we thus need
6094 * to include the updated inode in the current transaction.
6095 *
6096 * Also, dquot_alloc_block() will always dirty the inode when blocks
6097 * are allocated to the file.
6098 *
6099 * If the inode is marked synchronous, we don't honour that here - doing
6100 * so would cause a commit on atime updates, which we don't bother doing.
6101 * We handle synchronous inodes at the highest possible level.
 
 
 
 
6102 */
6103void ext4_dirty_inode(struct inode *inode, int flags)
6104{
6105	handle_t *handle;
6106
 
 
6107	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6108	if (IS_ERR(handle))
6109		return;
 
6110	ext4_mark_inode_dirty(handle, inode);
 
6111	ext4_journal_stop(handle);
 
 
6112}
6113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6114int ext4_change_inode_journal_flag(struct inode *inode, int val)
6115{
6116	journal_t *journal;
6117	handle_t *handle;
6118	int err;
6119	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6120
6121	/*
6122	 * We have to be very careful here: changing a data block's
6123	 * journaling status dynamically is dangerous.  If we write a
6124	 * data block to the journal, change the status and then delete
6125	 * that block, we risk forgetting to revoke the old log record
6126	 * from the journal and so a subsequent replay can corrupt data.
6127	 * So, first we make sure that the journal is empty and that
6128	 * nobody is changing anything.
6129	 */
6130
6131	journal = EXT4_JOURNAL(inode);
6132	if (!journal)
6133		return 0;
6134	if (is_journal_aborted(journal))
6135		return -EROFS;
6136
6137	/* Wait for all existing dio workers */
6138	inode_dio_wait(inode);
6139
6140	/*
6141	 * Before flushing the journal and switching inode's aops, we have
6142	 * to flush all dirty data the inode has. There can be outstanding
6143	 * delayed allocations, there can be unwritten extents created by
6144	 * fallocate or buffered writes in dioread_nolock mode covered by
6145	 * dirty data which can be converted only after flushing the dirty
6146	 * data (and journalled aops don't know how to handle these cases).
6147	 */
6148	if (val) {
6149		filemap_invalidate_lock(inode->i_mapping);
6150		err = filemap_write_and_wait(inode->i_mapping);
6151		if (err < 0) {
6152			filemap_invalidate_unlock(inode->i_mapping);
6153			return err;
6154		}
6155	}
6156
6157	percpu_down_write(&sbi->s_writepages_rwsem);
6158	jbd2_journal_lock_updates(journal);
6159
6160	/*
6161	 * OK, there are no updates running now, and all cached data is
6162	 * synced to disk.  We are now in a completely consistent state
6163	 * which doesn't have anything in the journal, and we know that
6164	 * no filesystem updates are running, so it is safe to modify
6165	 * the inode's in-core data-journaling state flag now.
6166	 */
6167
6168	if (val)
6169		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6170	else {
6171		err = jbd2_journal_flush(journal, 0);
6172		if (err < 0) {
6173			jbd2_journal_unlock_updates(journal);
6174			percpu_up_write(&sbi->s_writepages_rwsem);
6175			return err;
6176		}
6177		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6178	}
6179	ext4_set_aops(inode);
6180
6181	jbd2_journal_unlock_updates(journal);
6182	percpu_up_write(&sbi->s_writepages_rwsem);
6183
6184	if (val)
6185		filemap_invalidate_unlock(inode->i_mapping);
6186
6187	/* Finally we can mark the inode as dirty. */
6188
6189	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6190	if (IS_ERR(handle))
6191		return PTR_ERR(handle);
6192
6193	ext4_fc_mark_ineligible(inode->i_sb,
6194		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6195	err = ext4_mark_inode_dirty(handle, inode);
6196	ext4_handle_sync(handle);
6197	ext4_journal_stop(handle);
6198	ext4_std_error(inode->i_sb, err);
6199
6200	return err;
6201}
6202
6203static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6204			    struct buffer_head *bh)
6205{
6206	return !buffer_mapped(bh);
6207}
6208
6209vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6210{
6211	struct vm_area_struct *vma = vmf->vma;
6212	struct page *page = vmf->page;
6213	loff_t size;
6214	unsigned long len;
6215	int err;
6216	vm_fault_t ret;
6217	struct file *file = vma->vm_file;
6218	struct inode *inode = file_inode(file);
6219	struct address_space *mapping = inode->i_mapping;
6220	handle_t *handle;
6221	get_block_t *get_block;
6222	int retries = 0;
6223
6224	if (unlikely(IS_IMMUTABLE(inode)))
6225		return VM_FAULT_SIGBUS;
6226
6227	sb_start_pagefault(inode->i_sb);
6228	file_update_time(vma->vm_file);
6229
6230	filemap_invalidate_lock_shared(mapping);
6231
6232	err = ext4_convert_inline_data(inode);
6233	if (err)
6234		goto out_ret;
6235
6236	/*
6237	 * On data journalling we skip straight to the transaction handle:
6238	 * there's no delalloc; page truncated will be checked later; the
6239	 * early return w/ all buffers mapped (calculates size/len) can't
6240	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6241	 */
6242	if (ext4_should_journal_data(inode))
6243		goto retry_alloc;
6244
6245	/* Delalloc case is easy... */
6246	if (test_opt(inode->i_sb, DELALLOC) &&
 
6247	    !ext4_nonda_switch(inode->i_sb)) {
6248		do {
6249			err = block_page_mkwrite(vma, vmf,
6250						   ext4_da_get_block_prep);
6251		} while (err == -ENOSPC &&
6252		       ext4_should_retry_alloc(inode->i_sb, &retries));
6253		goto out_ret;
6254	}
6255
6256	lock_page(page);
6257	size = i_size_read(inode);
6258	/* Page got truncated from under us? */
6259	if (page->mapping != mapping || page_offset(page) > size) {
6260		unlock_page(page);
6261		ret = VM_FAULT_NOPAGE;
6262		goto out;
6263	}
6264
6265	if (page->index == size >> PAGE_SHIFT)
6266		len = size & ~PAGE_MASK;
6267	else
6268		len = PAGE_SIZE;
6269	/*
6270	 * Return if we have all the buffers mapped. This avoids the need to do
6271	 * journal_start/journal_stop which can block and take a long time
6272	 *
6273	 * This cannot be done for data journalling, as we have to add the
6274	 * inode to the transaction's list to writeprotect pages on commit.
6275	 */
6276	if (page_has_buffers(page)) {
6277		if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page),
6278					    0, len, NULL,
6279					    ext4_bh_unmapped)) {
6280			/* Wait so that we don't change page under IO */
6281			wait_for_stable_page(page);
6282			ret = VM_FAULT_LOCKED;
6283			goto out;
6284		}
6285	}
6286	unlock_page(page);
6287	/* OK, we need to fill the hole... */
6288	if (ext4_should_dioread_nolock(inode))
6289		get_block = ext4_get_block_unwritten;
6290	else
6291		get_block = ext4_get_block;
6292retry_alloc:
6293	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6294				    ext4_writepage_trans_blocks(inode));
6295	if (IS_ERR(handle)) {
6296		ret = VM_FAULT_SIGBUS;
6297		goto out;
6298	}
6299	/*
6300	 * Data journalling can't use block_page_mkwrite() because it
6301	 * will set_buffer_dirty() before do_journal_get_write_access()
6302	 * thus might hit warning messages for dirty metadata buffers.
6303	 */
6304	if (!ext4_should_journal_data(inode)) {
6305		err = block_page_mkwrite(vma, vmf, get_block);
6306	} else {
6307		lock_page(page);
6308		size = i_size_read(inode);
6309		/* Page got truncated from under us? */
6310		if (page->mapping != mapping || page_offset(page) > size) {
6311			ret = VM_FAULT_NOPAGE;
6312			goto out_error;
6313		}
6314
6315		if (page->index == size >> PAGE_SHIFT)
6316			len = size & ~PAGE_MASK;
6317		else
6318			len = PAGE_SIZE;
6319
6320		err = __block_write_begin(page, 0, len, ext4_get_block);
6321		if (!err) {
6322			ret = VM_FAULT_SIGBUS;
6323			if (ext4_walk_page_buffers(handle, inode,
6324					page_buffers(page), 0, len, NULL,
6325					do_journal_get_write_access))
6326				goto out_error;
6327			if (ext4_walk_page_buffers(handle, inode,
6328					page_buffers(page), 0, len, NULL,
6329					write_end_fn))
6330				goto out_error;
6331			if (ext4_jbd2_inode_add_write(handle, inode,
6332						      page_offset(page), len))
6333				goto out_error;
6334			ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6335		} else {
6336			unlock_page(page);
6337		}
 
6338	}
6339	ext4_journal_stop(handle);
6340	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6341		goto retry_alloc;
6342out_ret:
6343	ret = block_page_mkwrite_return(err);
6344out:
6345	filemap_invalidate_unlock_shared(mapping);
6346	sb_end_pagefault(inode->i_sb);
6347	return ret;
6348out_error:
6349	unlock_page(page);
6350	ext4_journal_stop(handle);
6351	goto out;
 
 
 
 
 
 
 
 
6352}