Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/ext4/inode.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
18 *
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20 */
21
22#include <linux/fs.h>
23#include <linux/time.h>
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/dax.h>
27#include <linux/quotaops.h>
28#include <linux/string.h>
29#include <linux/buffer_head.h>
30#include <linux/writeback.h>
31#include <linux/pagevec.h>
32#include <linux/mpage.h>
33#include <linux/namei.h>
34#include <linux/uio.h>
35#include <linux/bio.h>
36#include <linux/workqueue.h>
37#include <linux/kernel.h>
38#include <linux/printk.h>
39#include <linux/slab.h>
40#include <linux/bitops.h>
41#include <linux/iomap.h>
42#include <linux/iversion.h>
43
44#include "ext4_jbd2.h"
45#include "xattr.h"
46#include "acl.h"
47#include "truncate.h"
48
49#include <trace/events/ext4.h>
50
51#define MPAGE_DA_EXTENT_TAIL 0x01
52
53static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54 struct ext4_inode_info *ei)
55{
56 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57 __u32 csum;
58 __u16 dummy_csum = 0;
59 int offset = offsetof(struct ext4_inode, i_checksum_lo);
60 unsigned int csum_size = sizeof(dummy_csum);
61
62 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64 offset += csum_size;
65 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66 EXT4_GOOD_OLD_INODE_SIZE - offset);
67
68 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69 offset = offsetof(struct ext4_inode, i_checksum_hi);
70 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71 EXT4_GOOD_OLD_INODE_SIZE,
72 offset - EXT4_GOOD_OLD_INODE_SIZE);
73 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75 csum_size);
76 offset += csum_size;
77 }
78 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79 EXT4_INODE_SIZE(inode->i_sb) - offset);
80 }
81
82 return csum;
83}
84
85static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86 struct ext4_inode_info *ei)
87{
88 __u32 provided, calculated;
89
90 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91 cpu_to_le32(EXT4_OS_LINUX) ||
92 !ext4_has_metadata_csum(inode->i_sb))
93 return 1;
94
95 provided = le16_to_cpu(raw->i_checksum_lo);
96 calculated = ext4_inode_csum(inode, raw, ei);
97 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100 else
101 calculated &= 0xFFFF;
102
103 return provided == calculated;
104}
105
106static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107 struct ext4_inode_info *ei)
108{
109 __u32 csum;
110
111 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112 cpu_to_le32(EXT4_OS_LINUX) ||
113 !ext4_has_metadata_csum(inode->i_sb))
114 return;
115
116 csum = ext4_inode_csum(inode, raw, ei);
117 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121}
122
123static inline int ext4_begin_ordered_truncate(struct inode *inode,
124 loff_t new_size)
125{
126 trace_ext4_begin_ordered_truncate(inode, new_size);
127 /*
128 * If jinode is zero, then we never opened the file for
129 * writing, so there's no need to call
130 * jbd2_journal_begin_ordered_truncate() since there's no
131 * outstanding writes we need to flush.
132 */
133 if (!EXT4_I(inode)->jinode)
134 return 0;
135 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136 EXT4_I(inode)->jinode,
137 new_size);
138}
139
140static void ext4_invalidatepage(struct page *page, unsigned int offset,
141 unsigned int length);
142static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
144static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145 int pextents);
146
147/*
148 * Test whether an inode is a fast symlink.
149 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
150 */
151int ext4_inode_is_fast_symlink(struct inode *inode)
152{
153 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154 int ea_blocks = EXT4_I(inode)->i_file_acl ?
155 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156
157 if (ext4_has_inline_data(inode))
158 return 0;
159
160 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161 }
162 return S_ISLNK(inode->i_mode) && inode->i_size &&
163 (inode->i_size < EXT4_N_BLOCKS * 4);
164}
165
166/*
167 * Restart the transaction associated with *handle. This does a commit,
168 * so before we call here everything must be consistently dirtied against
169 * this transaction.
170 */
171int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
172 int nblocks)
173{
174 int ret;
175
176 /*
177 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
178 * moment, get_block can be called only for blocks inside i_size since
179 * page cache has been already dropped and writes are blocked by
180 * i_mutex. So we can safely drop the i_data_sem here.
181 */
182 BUG_ON(EXT4_JOURNAL(inode) == NULL);
183 jbd_debug(2, "restarting handle %p\n", handle);
184 up_write(&EXT4_I(inode)->i_data_sem);
185 ret = ext4_journal_restart(handle, nblocks);
186 down_write(&EXT4_I(inode)->i_data_sem);
187 ext4_discard_preallocations(inode);
188
189 return ret;
190}
191
192/*
193 * Called at the last iput() if i_nlink is zero.
194 */
195void ext4_evict_inode(struct inode *inode)
196{
197 handle_t *handle;
198 int err;
199 int extra_credits = 3;
200 struct ext4_xattr_inode_array *ea_inode_array = NULL;
201
202 trace_ext4_evict_inode(inode);
203
204 if (inode->i_nlink) {
205 /*
206 * When journalling data dirty buffers are tracked only in the
207 * journal. So although mm thinks everything is clean and
208 * ready for reaping the inode might still have some pages to
209 * write in the running transaction or waiting to be
210 * checkpointed. Thus calling jbd2_journal_invalidatepage()
211 * (via truncate_inode_pages()) to discard these buffers can
212 * cause data loss. Also even if we did not discard these
213 * buffers, we would have no way to find them after the inode
214 * is reaped and thus user could see stale data if he tries to
215 * read them before the transaction is checkpointed. So be
216 * careful and force everything to disk here... We use
217 * ei->i_datasync_tid to store the newest transaction
218 * containing inode's data.
219 *
220 * Note that directories do not have this problem because they
221 * don't use page cache.
222 */
223 if (inode->i_ino != EXT4_JOURNAL_INO &&
224 ext4_should_journal_data(inode) &&
225 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
226 inode->i_data.nrpages) {
227 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
228 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
229
230 jbd2_complete_transaction(journal, commit_tid);
231 filemap_write_and_wait(&inode->i_data);
232 }
233 truncate_inode_pages_final(&inode->i_data);
234
235 goto no_delete;
236 }
237
238 if (is_bad_inode(inode))
239 goto no_delete;
240 dquot_initialize(inode);
241
242 if (ext4_should_order_data(inode))
243 ext4_begin_ordered_truncate(inode, 0);
244 truncate_inode_pages_final(&inode->i_data);
245
246 /*
247 * Protect us against freezing - iput() caller didn't have to have any
248 * protection against it
249 */
250 sb_start_intwrite(inode->i_sb);
251
252 if (!IS_NOQUOTA(inode))
253 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
254
255 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
256 ext4_blocks_for_truncate(inode)+extra_credits);
257 if (IS_ERR(handle)) {
258 ext4_std_error(inode->i_sb, PTR_ERR(handle));
259 /*
260 * If we're going to skip the normal cleanup, we still need to
261 * make sure that the in-core orphan linked list is properly
262 * cleaned up.
263 */
264 ext4_orphan_del(NULL, inode);
265 sb_end_intwrite(inode->i_sb);
266 goto no_delete;
267 }
268
269 if (IS_SYNC(inode))
270 ext4_handle_sync(handle);
271
272 /*
273 * Set inode->i_size to 0 before calling ext4_truncate(). We need
274 * special handling of symlinks here because i_size is used to
275 * determine whether ext4_inode_info->i_data contains symlink data or
276 * block mappings. Setting i_size to 0 will remove its fast symlink
277 * status. Erase i_data so that it becomes a valid empty block map.
278 */
279 if (ext4_inode_is_fast_symlink(inode))
280 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
281 inode->i_size = 0;
282 err = ext4_mark_inode_dirty(handle, inode);
283 if (err) {
284 ext4_warning(inode->i_sb,
285 "couldn't mark inode dirty (err %d)", err);
286 goto stop_handle;
287 }
288 if (inode->i_blocks) {
289 err = ext4_truncate(inode);
290 if (err) {
291 ext4_error(inode->i_sb,
292 "couldn't truncate inode %lu (err %d)",
293 inode->i_ino, err);
294 goto stop_handle;
295 }
296 }
297
298 /* Remove xattr references. */
299 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
300 extra_credits);
301 if (err) {
302 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
303stop_handle:
304 ext4_journal_stop(handle);
305 ext4_orphan_del(NULL, inode);
306 sb_end_intwrite(inode->i_sb);
307 ext4_xattr_inode_array_free(ea_inode_array);
308 goto no_delete;
309 }
310
311 /*
312 * Kill off the orphan record which ext4_truncate created.
313 * AKPM: I think this can be inside the above `if'.
314 * Note that ext4_orphan_del() has to be able to cope with the
315 * deletion of a non-existent orphan - this is because we don't
316 * know if ext4_truncate() actually created an orphan record.
317 * (Well, we could do this if we need to, but heck - it works)
318 */
319 ext4_orphan_del(handle, inode);
320 EXT4_I(inode)->i_dtime = get_seconds();
321
322 /*
323 * One subtle ordering requirement: if anything has gone wrong
324 * (transaction abort, IO errors, whatever), then we can still
325 * do these next steps (the fs will already have been marked as
326 * having errors), but we can't free the inode if the mark_dirty
327 * fails.
328 */
329 if (ext4_mark_inode_dirty(handle, inode))
330 /* If that failed, just do the required in-core inode clear. */
331 ext4_clear_inode(inode);
332 else
333 ext4_free_inode(handle, inode);
334 ext4_journal_stop(handle);
335 sb_end_intwrite(inode->i_sb);
336 ext4_xattr_inode_array_free(ea_inode_array);
337 return;
338no_delete:
339 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
340}
341
342#ifdef CONFIG_QUOTA
343qsize_t *ext4_get_reserved_space(struct inode *inode)
344{
345 return &EXT4_I(inode)->i_reserved_quota;
346}
347#endif
348
349/*
350 * Called with i_data_sem down, which is important since we can call
351 * ext4_discard_preallocations() from here.
352 */
353void ext4_da_update_reserve_space(struct inode *inode,
354 int used, int quota_claim)
355{
356 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
357 struct ext4_inode_info *ei = EXT4_I(inode);
358
359 spin_lock(&ei->i_block_reservation_lock);
360 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
361 if (unlikely(used > ei->i_reserved_data_blocks)) {
362 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
363 "with only %d reserved data blocks",
364 __func__, inode->i_ino, used,
365 ei->i_reserved_data_blocks);
366 WARN_ON(1);
367 used = ei->i_reserved_data_blocks;
368 }
369
370 /* Update per-inode reservations */
371 ei->i_reserved_data_blocks -= used;
372 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
373
374 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
375
376 /* Update quota subsystem for data blocks */
377 if (quota_claim)
378 dquot_claim_block(inode, EXT4_C2B(sbi, used));
379 else {
380 /*
381 * We did fallocate with an offset that is already delayed
382 * allocated. So on delayed allocated writeback we should
383 * not re-claim the quota for fallocated blocks.
384 */
385 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
386 }
387
388 /*
389 * If we have done all the pending block allocations and if
390 * there aren't any writers on the inode, we can discard the
391 * inode's preallocations.
392 */
393 if ((ei->i_reserved_data_blocks == 0) &&
394 (atomic_read(&inode->i_writecount) == 0))
395 ext4_discard_preallocations(inode);
396}
397
398static int __check_block_validity(struct inode *inode, const char *func,
399 unsigned int line,
400 struct ext4_map_blocks *map)
401{
402 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
403 map->m_len)) {
404 ext4_error_inode(inode, func, line, map->m_pblk,
405 "lblock %lu mapped to illegal pblock "
406 "(length %d)", (unsigned long) map->m_lblk,
407 map->m_len);
408 return -EFSCORRUPTED;
409 }
410 return 0;
411}
412
413int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
414 ext4_lblk_t len)
415{
416 int ret;
417
418 if (ext4_encrypted_inode(inode))
419 return fscrypt_zeroout_range(inode, lblk, pblk, len);
420
421 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
422 if (ret > 0)
423 ret = 0;
424
425 return ret;
426}
427
428#define check_block_validity(inode, map) \
429 __check_block_validity((inode), __func__, __LINE__, (map))
430
431#ifdef ES_AGGRESSIVE_TEST
432static void ext4_map_blocks_es_recheck(handle_t *handle,
433 struct inode *inode,
434 struct ext4_map_blocks *es_map,
435 struct ext4_map_blocks *map,
436 int flags)
437{
438 int retval;
439
440 map->m_flags = 0;
441 /*
442 * There is a race window that the result is not the same.
443 * e.g. xfstests #223 when dioread_nolock enables. The reason
444 * is that we lookup a block mapping in extent status tree with
445 * out taking i_data_sem. So at the time the unwritten extent
446 * could be converted.
447 */
448 down_read(&EXT4_I(inode)->i_data_sem);
449 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
450 retval = ext4_ext_map_blocks(handle, inode, map, flags &
451 EXT4_GET_BLOCKS_KEEP_SIZE);
452 } else {
453 retval = ext4_ind_map_blocks(handle, inode, map, flags &
454 EXT4_GET_BLOCKS_KEEP_SIZE);
455 }
456 up_read((&EXT4_I(inode)->i_data_sem));
457
458 /*
459 * We don't check m_len because extent will be collpased in status
460 * tree. So the m_len might not equal.
461 */
462 if (es_map->m_lblk != map->m_lblk ||
463 es_map->m_flags != map->m_flags ||
464 es_map->m_pblk != map->m_pblk) {
465 printk("ES cache assertion failed for inode: %lu "
466 "es_cached ex [%d/%d/%llu/%x] != "
467 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
468 inode->i_ino, es_map->m_lblk, es_map->m_len,
469 es_map->m_pblk, es_map->m_flags, map->m_lblk,
470 map->m_len, map->m_pblk, map->m_flags,
471 retval, flags);
472 }
473}
474#endif /* ES_AGGRESSIVE_TEST */
475
476/*
477 * The ext4_map_blocks() function tries to look up the requested blocks,
478 * and returns if the blocks are already mapped.
479 *
480 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
481 * and store the allocated blocks in the result buffer head and mark it
482 * mapped.
483 *
484 * If file type is extents based, it will call ext4_ext_map_blocks(),
485 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
486 * based files
487 *
488 * On success, it returns the number of blocks being mapped or allocated. if
489 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
490 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
491 *
492 * It returns 0 if plain look up failed (blocks have not been allocated), in
493 * that case, @map is returned as unmapped but we still do fill map->m_len to
494 * indicate the length of a hole starting at map->m_lblk.
495 *
496 * It returns the error in case of allocation failure.
497 */
498int ext4_map_blocks(handle_t *handle, struct inode *inode,
499 struct ext4_map_blocks *map, int flags)
500{
501 struct extent_status es;
502 int retval;
503 int ret = 0;
504#ifdef ES_AGGRESSIVE_TEST
505 struct ext4_map_blocks orig_map;
506
507 memcpy(&orig_map, map, sizeof(*map));
508#endif
509
510 map->m_flags = 0;
511 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
512 "logical block %lu\n", inode->i_ino, flags, map->m_len,
513 (unsigned long) map->m_lblk);
514
515 /*
516 * ext4_map_blocks returns an int, and m_len is an unsigned int
517 */
518 if (unlikely(map->m_len > INT_MAX))
519 map->m_len = INT_MAX;
520
521 /* We can handle the block number less than EXT_MAX_BLOCKS */
522 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
523 return -EFSCORRUPTED;
524
525 /* Lookup extent status tree firstly */
526 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
527 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
528 map->m_pblk = ext4_es_pblock(&es) +
529 map->m_lblk - es.es_lblk;
530 map->m_flags |= ext4_es_is_written(&es) ?
531 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
532 retval = es.es_len - (map->m_lblk - es.es_lblk);
533 if (retval > map->m_len)
534 retval = map->m_len;
535 map->m_len = retval;
536 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
537 map->m_pblk = 0;
538 retval = es.es_len - (map->m_lblk - es.es_lblk);
539 if (retval > map->m_len)
540 retval = map->m_len;
541 map->m_len = retval;
542 retval = 0;
543 } else {
544 BUG_ON(1);
545 }
546#ifdef ES_AGGRESSIVE_TEST
547 ext4_map_blocks_es_recheck(handle, inode, map,
548 &orig_map, flags);
549#endif
550 goto found;
551 }
552
553 /*
554 * Try to see if we can get the block without requesting a new
555 * file system block.
556 */
557 down_read(&EXT4_I(inode)->i_data_sem);
558 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
559 retval = ext4_ext_map_blocks(handle, inode, map, flags &
560 EXT4_GET_BLOCKS_KEEP_SIZE);
561 } else {
562 retval = ext4_ind_map_blocks(handle, inode, map, flags &
563 EXT4_GET_BLOCKS_KEEP_SIZE);
564 }
565 if (retval > 0) {
566 unsigned int status;
567
568 if (unlikely(retval != map->m_len)) {
569 ext4_warning(inode->i_sb,
570 "ES len assertion failed for inode "
571 "%lu: retval %d != map->m_len %d",
572 inode->i_ino, retval, map->m_len);
573 WARN_ON(1);
574 }
575
576 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
577 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
578 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
579 !(status & EXTENT_STATUS_WRITTEN) &&
580 ext4_find_delalloc_range(inode, map->m_lblk,
581 map->m_lblk + map->m_len - 1))
582 status |= EXTENT_STATUS_DELAYED;
583 ret = ext4_es_insert_extent(inode, map->m_lblk,
584 map->m_len, map->m_pblk, status);
585 if (ret < 0)
586 retval = ret;
587 }
588 up_read((&EXT4_I(inode)->i_data_sem));
589
590found:
591 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
592 ret = check_block_validity(inode, map);
593 if (ret != 0)
594 return ret;
595 }
596
597 /* If it is only a block(s) look up */
598 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
599 return retval;
600
601 /*
602 * Returns if the blocks have already allocated
603 *
604 * Note that if blocks have been preallocated
605 * ext4_ext_get_block() returns the create = 0
606 * with buffer head unmapped.
607 */
608 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
609 /*
610 * If we need to convert extent to unwritten
611 * we continue and do the actual work in
612 * ext4_ext_map_blocks()
613 */
614 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
615 return retval;
616
617 /*
618 * Here we clear m_flags because after allocating an new extent,
619 * it will be set again.
620 */
621 map->m_flags &= ~EXT4_MAP_FLAGS;
622
623 /*
624 * New blocks allocate and/or writing to unwritten extent
625 * will possibly result in updating i_data, so we take
626 * the write lock of i_data_sem, and call get_block()
627 * with create == 1 flag.
628 */
629 down_write(&EXT4_I(inode)->i_data_sem);
630
631 /*
632 * We need to check for EXT4 here because migrate
633 * could have changed the inode type in between
634 */
635 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
636 retval = ext4_ext_map_blocks(handle, inode, map, flags);
637 } else {
638 retval = ext4_ind_map_blocks(handle, inode, map, flags);
639
640 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
641 /*
642 * We allocated new blocks which will result in
643 * i_data's format changing. Force the migrate
644 * to fail by clearing migrate flags
645 */
646 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
647 }
648
649 /*
650 * Update reserved blocks/metadata blocks after successful
651 * block allocation which had been deferred till now. We don't
652 * support fallocate for non extent files. So we can update
653 * reserve space here.
654 */
655 if ((retval > 0) &&
656 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
657 ext4_da_update_reserve_space(inode, retval, 1);
658 }
659
660 if (retval > 0) {
661 unsigned int status;
662
663 if (unlikely(retval != map->m_len)) {
664 ext4_warning(inode->i_sb,
665 "ES len assertion failed for inode "
666 "%lu: retval %d != map->m_len %d",
667 inode->i_ino, retval, map->m_len);
668 WARN_ON(1);
669 }
670
671 /*
672 * We have to zeroout blocks before inserting them into extent
673 * status tree. Otherwise someone could look them up there and
674 * use them before they are really zeroed. We also have to
675 * unmap metadata before zeroing as otherwise writeback can
676 * overwrite zeros with stale data from block device.
677 */
678 if (flags & EXT4_GET_BLOCKS_ZERO &&
679 map->m_flags & EXT4_MAP_MAPPED &&
680 map->m_flags & EXT4_MAP_NEW) {
681 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
682 map->m_len);
683 ret = ext4_issue_zeroout(inode, map->m_lblk,
684 map->m_pblk, map->m_len);
685 if (ret) {
686 retval = ret;
687 goto out_sem;
688 }
689 }
690
691 /*
692 * If the extent has been zeroed out, we don't need to update
693 * extent status tree.
694 */
695 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
696 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
697 if (ext4_es_is_written(&es))
698 goto out_sem;
699 }
700 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
701 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
702 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
703 !(status & EXTENT_STATUS_WRITTEN) &&
704 ext4_find_delalloc_range(inode, map->m_lblk,
705 map->m_lblk + map->m_len - 1))
706 status |= EXTENT_STATUS_DELAYED;
707 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
708 map->m_pblk, status);
709 if (ret < 0) {
710 retval = ret;
711 goto out_sem;
712 }
713 }
714
715out_sem:
716 up_write((&EXT4_I(inode)->i_data_sem));
717 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
718 ret = check_block_validity(inode, map);
719 if (ret != 0)
720 return ret;
721
722 /*
723 * Inodes with freshly allocated blocks where contents will be
724 * visible after transaction commit must be on transaction's
725 * ordered data list.
726 */
727 if (map->m_flags & EXT4_MAP_NEW &&
728 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
729 !(flags & EXT4_GET_BLOCKS_ZERO) &&
730 !ext4_is_quota_file(inode) &&
731 ext4_should_order_data(inode)) {
732 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
733 ret = ext4_jbd2_inode_add_wait(handle, inode);
734 else
735 ret = ext4_jbd2_inode_add_write(handle, inode);
736 if (ret)
737 return ret;
738 }
739 }
740 return retval;
741}
742
743/*
744 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
745 * we have to be careful as someone else may be manipulating b_state as well.
746 */
747static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
748{
749 unsigned long old_state;
750 unsigned long new_state;
751
752 flags &= EXT4_MAP_FLAGS;
753
754 /* Dummy buffer_head? Set non-atomically. */
755 if (!bh->b_page) {
756 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
757 return;
758 }
759 /*
760 * Someone else may be modifying b_state. Be careful! This is ugly but
761 * once we get rid of using bh as a container for mapping information
762 * to pass to / from get_block functions, this can go away.
763 */
764 do {
765 old_state = READ_ONCE(bh->b_state);
766 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
767 } while (unlikely(
768 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
769}
770
771static int _ext4_get_block(struct inode *inode, sector_t iblock,
772 struct buffer_head *bh, int flags)
773{
774 struct ext4_map_blocks map;
775 int ret = 0;
776
777 if (ext4_has_inline_data(inode))
778 return -ERANGE;
779
780 map.m_lblk = iblock;
781 map.m_len = bh->b_size >> inode->i_blkbits;
782
783 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
784 flags);
785 if (ret > 0) {
786 map_bh(bh, inode->i_sb, map.m_pblk);
787 ext4_update_bh_state(bh, map.m_flags);
788 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
789 ret = 0;
790 } else if (ret == 0) {
791 /* hole case, need to fill in bh->b_size */
792 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
793 }
794 return ret;
795}
796
797int ext4_get_block(struct inode *inode, sector_t iblock,
798 struct buffer_head *bh, int create)
799{
800 return _ext4_get_block(inode, iblock, bh,
801 create ? EXT4_GET_BLOCKS_CREATE : 0);
802}
803
804/*
805 * Get block function used when preparing for buffered write if we require
806 * creating an unwritten extent if blocks haven't been allocated. The extent
807 * will be converted to written after the IO is complete.
808 */
809int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
810 struct buffer_head *bh_result, int create)
811{
812 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
813 inode->i_ino, create);
814 return _ext4_get_block(inode, iblock, bh_result,
815 EXT4_GET_BLOCKS_IO_CREATE_EXT);
816}
817
818/* Maximum number of blocks we map for direct IO at once. */
819#define DIO_MAX_BLOCKS 4096
820
821/*
822 * Get blocks function for the cases that need to start a transaction -
823 * generally difference cases of direct IO and DAX IO. It also handles retries
824 * in case of ENOSPC.
825 */
826static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
827 struct buffer_head *bh_result, int flags)
828{
829 int dio_credits;
830 handle_t *handle;
831 int retries = 0;
832 int ret;
833
834 /* Trim mapping request to maximum we can map at once for DIO */
835 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
836 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
837 dio_credits = ext4_chunk_trans_blocks(inode,
838 bh_result->b_size >> inode->i_blkbits);
839retry:
840 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
841 if (IS_ERR(handle))
842 return PTR_ERR(handle);
843
844 ret = _ext4_get_block(inode, iblock, bh_result, flags);
845 ext4_journal_stop(handle);
846
847 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
848 goto retry;
849 return ret;
850}
851
852/* Get block function for DIO reads and writes to inodes without extents */
853int ext4_dio_get_block(struct inode *inode, sector_t iblock,
854 struct buffer_head *bh, int create)
855{
856 /* We don't expect handle for direct IO */
857 WARN_ON_ONCE(ext4_journal_current_handle());
858
859 if (!create)
860 return _ext4_get_block(inode, iblock, bh, 0);
861 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
862}
863
864/*
865 * Get block function for AIO DIO writes when we create unwritten extent if
866 * blocks are not allocated yet. The extent will be converted to written
867 * after IO is complete.
868 */
869static int ext4_dio_get_block_unwritten_async(struct inode *inode,
870 sector_t iblock, struct buffer_head *bh_result, int create)
871{
872 int ret;
873
874 /* We don't expect handle for direct IO */
875 WARN_ON_ONCE(ext4_journal_current_handle());
876
877 ret = ext4_get_block_trans(inode, iblock, bh_result,
878 EXT4_GET_BLOCKS_IO_CREATE_EXT);
879
880 /*
881 * When doing DIO using unwritten extents, we need io_end to convert
882 * unwritten extents to written on IO completion. We allocate io_end
883 * once we spot unwritten extent and store it in b_private. Generic
884 * DIO code keeps b_private set and furthermore passes the value to
885 * our completion callback in 'private' argument.
886 */
887 if (!ret && buffer_unwritten(bh_result)) {
888 if (!bh_result->b_private) {
889 ext4_io_end_t *io_end;
890
891 io_end = ext4_init_io_end(inode, GFP_KERNEL);
892 if (!io_end)
893 return -ENOMEM;
894 bh_result->b_private = io_end;
895 ext4_set_io_unwritten_flag(inode, io_end);
896 }
897 set_buffer_defer_completion(bh_result);
898 }
899
900 return ret;
901}
902
903/*
904 * Get block function for non-AIO DIO writes when we create unwritten extent if
905 * blocks are not allocated yet. The extent will be converted to written
906 * after IO is complete by ext4_direct_IO_write().
907 */
908static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
909 sector_t iblock, struct buffer_head *bh_result, int create)
910{
911 int ret;
912
913 /* We don't expect handle for direct IO */
914 WARN_ON_ONCE(ext4_journal_current_handle());
915
916 ret = ext4_get_block_trans(inode, iblock, bh_result,
917 EXT4_GET_BLOCKS_IO_CREATE_EXT);
918
919 /*
920 * Mark inode as having pending DIO writes to unwritten extents.
921 * ext4_direct_IO_write() checks this flag and converts extents to
922 * written.
923 */
924 if (!ret && buffer_unwritten(bh_result))
925 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
926
927 return ret;
928}
929
930static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
931 struct buffer_head *bh_result, int create)
932{
933 int ret;
934
935 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
936 inode->i_ino, create);
937 /* We don't expect handle for direct IO */
938 WARN_ON_ONCE(ext4_journal_current_handle());
939
940 ret = _ext4_get_block(inode, iblock, bh_result, 0);
941 /*
942 * Blocks should have been preallocated! ext4_file_write_iter() checks
943 * that.
944 */
945 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
946
947 return ret;
948}
949
950
951/*
952 * `handle' can be NULL if create is zero
953 */
954struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
955 ext4_lblk_t block, int map_flags)
956{
957 struct ext4_map_blocks map;
958 struct buffer_head *bh;
959 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
960 int err;
961
962 J_ASSERT(handle != NULL || create == 0);
963
964 map.m_lblk = block;
965 map.m_len = 1;
966 err = ext4_map_blocks(handle, inode, &map, map_flags);
967
968 if (err == 0)
969 return create ? ERR_PTR(-ENOSPC) : NULL;
970 if (err < 0)
971 return ERR_PTR(err);
972
973 bh = sb_getblk(inode->i_sb, map.m_pblk);
974 if (unlikely(!bh))
975 return ERR_PTR(-ENOMEM);
976 if (map.m_flags & EXT4_MAP_NEW) {
977 J_ASSERT(create != 0);
978 J_ASSERT(handle != NULL);
979
980 /*
981 * Now that we do not always journal data, we should
982 * keep in mind whether this should always journal the
983 * new buffer as metadata. For now, regular file
984 * writes use ext4_get_block instead, so it's not a
985 * problem.
986 */
987 lock_buffer(bh);
988 BUFFER_TRACE(bh, "call get_create_access");
989 err = ext4_journal_get_create_access(handle, bh);
990 if (unlikely(err)) {
991 unlock_buffer(bh);
992 goto errout;
993 }
994 if (!buffer_uptodate(bh)) {
995 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
996 set_buffer_uptodate(bh);
997 }
998 unlock_buffer(bh);
999 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1000 err = ext4_handle_dirty_metadata(handle, inode, bh);
1001 if (unlikely(err))
1002 goto errout;
1003 } else
1004 BUFFER_TRACE(bh, "not a new buffer");
1005 return bh;
1006errout:
1007 brelse(bh);
1008 return ERR_PTR(err);
1009}
1010
1011struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1012 ext4_lblk_t block, int map_flags)
1013{
1014 struct buffer_head *bh;
1015
1016 bh = ext4_getblk(handle, inode, block, map_flags);
1017 if (IS_ERR(bh))
1018 return bh;
1019 if (!bh || buffer_uptodate(bh))
1020 return bh;
1021 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1022 wait_on_buffer(bh);
1023 if (buffer_uptodate(bh))
1024 return bh;
1025 put_bh(bh);
1026 return ERR_PTR(-EIO);
1027}
1028
1029/* Read a contiguous batch of blocks. */
1030int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1031 bool wait, struct buffer_head **bhs)
1032{
1033 int i, err;
1034
1035 for (i = 0; i < bh_count; i++) {
1036 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1037 if (IS_ERR(bhs[i])) {
1038 err = PTR_ERR(bhs[i]);
1039 bh_count = i;
1040 goto out_brelse;
1041 }
1042 }
1043
1044 for (i = 0; i < bh_count; i++)
1045 /* Note that NULL bhs[i] is valid because of holes. */
1046 if (bhs[i] && !buffer_uptodate(bhs[i]))
1047 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1048 &bhs[i]);
1049
1050 if (!wait)
1051 return 0;
1052
1053 for (i = 0; i < bh_count; i++)
1054 if (bhs[i])
1055 wait_on_buffer(bhs[i]);
1056
1057 for (i = 0; i < bh_count; i++) {
1058 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1059 err = -EIO;
1060 goto out_brelse;
1061 }
1062 }
1063 return 0;
1064
1065out_brelse:
1066 for (i = 0; i < bh_count; i++) {
1067 brelse(bhs[i]);
1068 bhs[i] = NULL;
1069 }
1070 return err;
1071}
1072
1073int ext4_walk_page_buffers(handle_t *handle,
1074 struct buffer_head *head,
1075 unsigned from,
1076 unsigned to,
1077 int *partial,
1078 int (*fn)(handle_t *handle,
1079 struct buffer_head *bh))
1080{
1081 struct buffer_head *bh;
1082 unsigned block_start, block_end;
1083 unsigned blocksize = head->b_size;
1084 int err, ret = 0;
1085 struct buffer_head *next;
1086
1087 for (bh = head, block_start = 0;
1088 ret == 0 && (bh != head || !block_start);
1089 block_start = block_end, bh = next) {
1090 next = bh->b_this_page;
1091 block_end = block_start + blocksize;
1092 if (block_end <= from || block_start >= to) {
1093 if (partial && !buffer_uptodate(bh))
1094 *partial = 1;
1095 continue;
1096 }
1097 err = (*fn)(handle, bh);
1098 if (!ret)
1099 ret = err;
1100 }
1101 return ret;
1102}
1103
1104/*
1105 * To preserve ordering, it is essential that the hole instantiation and
1106 * the data write be encapsulated in a single transaction. We cannot
1107 * close off a transaction and start a new one between the ext4_get_block()
1108 * and the commit_write(). So doing the jbd2_journal_start at the start of
1109 * prepare_write() is the right place.
1110 *
1111 * Also, this function can nest inside ext4_writepage(). In that case, we
1112 * *know* that ext4_writepage() has generated enough buffer credits to do the
1113 * whole page. So we won't block on the journal in that case, which is good,
1114 * because the caller may be PF_MEMALLOC.
1115 *
1116 * By accident, ext4 can be reentered when a transaction is open via
1117 * quota file writes. If we were to commit the transaction while thus
1118 * reentered, there can be a deadlock - we would be holding a quota
1119 * lock, and the commit would never complete if another thread had a
1120 * transaction open and was blocking on the quota lock - a ranking
1121 * violation.
1122 *
1123 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1124 * will _not_ run commit under these circumstances because handle->h_ref
1125 * is elevated. We'll still have enough credits for the tiny quotafile
1126 * write.
1127 */
1128int do_journal_get_write_access(handle_t *handle,
1129 struct buffer_head *bh)
1130{
1131 int dirty = buffer_dirty(bh);
1132 int ret;
1133
1134 if (!buffer_mapped(bh) || buffer_freed(bh))
1135 return 0;
1136 /*
1137 * __block_write_begin() could have dirtied some buffers. Clean
1138 * the dirty bit as jbd2_journal_get_write_access() could complain
1139 * otherwise about fs integrity issues. Setting of the dirty bit
1140 * by __block_write_begin() isn't a real problem here as we clear
1141 * the bit before releasing a page lock and thus writeback cannot
1142 * ever write the buffer.
1143 */
1144 if (dirty)
1145 clear_buffer_dirty(bh);
1146 BUFFER_TRACE(bh, "get write access");
1147 ret = ext4_journal_get_write_access(handle, bh);
1148 if (!ret && dirty)
1149 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1150 return ret;
1151}
1152
1153#ifdef CONFIG_EXT4_FS_ENCRYPTION
1154static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1155 get_block_t *get_block)
1156{
1157 unsigned from = pos & (PAGE_SIZE - 1);
1158 unsigned to = from + len;
1159 struct inode *inode = page->mapping->host;
1160 unsigned block_start, block_end;
1161 sector_t block;
1162 int err = 0;
1163 unsigned blocksize = inode->i_sb->s_blocksize;
1164 unsigned bbits;
1165 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1166 bool decrypt = false;
1167
1168 BUG_ON(!PageLocked(page));
1169 BUG_ON(from > PAGE_SIZE);
1170 BUG_ON(to > PAGE_SIZE);
1171 BUG_ON(from > to);
1172
1173 if (!page_has_buffers(page))
1174 create_empty_buffers(page, blocksize, 0);
1175 head = page_buffers(page);
1176 bbits = ilog2(blocksize);
1177 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1178
1179 for (bh = head, block_start = 0; bh != head || !block_start;
1180 block++, block_start = block_end, bh = bh->b_this_page) {
1181 block_end = block_start + blocksize;
1182 if (block_end <= from || block_start >= to) {
1183 if (PageUptodate(page)) {
1184 if (!buffer_uptodate(bh))
1185 set_buffer_uptodate(bh);
1186 }
1187 continue;
1188 }
1189 if (buffer_new(bh))
1190 clear_buffer_new(bh);
1191 if (!buffer_mapped(bh)) {
1192 WARN_ON(bh->b_size != blocksize);
1193 err = get_block(inode, block, bh, 1);
1194 if (err)
1195 break;
1196 if (buffer_new(bh)) {
1197 clean_bdev_bh_alias(bh);
1198 if (PageUptodate(page)) {
1199 clear_buffer_new(bh);
1200 set_buffer_uptodate(bh);
1201 mark_buffer_dirty(bh);
1202 continue;
1203 }
1204 if (block_end > to || block_start < from)
1205 zero_user_segments(page, to, block_end,
1206 block_start, from);
1207 continue;
1208 }
1209 }
1210 if (PageUptodate(page)) {
1211 if (!buffer_uptodate(bh))
1212 set_buffer_uptodate(bh);
1213 continue;
1214 }
1215 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1216 !buffer_unwritten(bh) &&
1217 (block_start < from || block_end > to)) {
1218 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1219 *wait_bh++ = bh;
1220 decrypt = ext4_encrypted_inode(inode) &&
1221 S_ISREG(inode->i_mode);
1222 }
1223 }
1224 /*
1225 * If we issued read requests, let them complete.
1226 */
1227 while (wait_bh > wait) {
1228 wait_on_buffer(*--wait_bh);
1229 if (!buffer_uptodate(*wait_bh))
1230 err = -EIO;
1231 }
1232 if (unlikely(err))
1233 page_zero_new_buffers(page, from, to);
1234 else if (decrypt)
1235 err = fscrypt_decrypt_page(page->mapping->host, page,
1236 PAGE_SIZE, 0, page->index);
1237 return err;
1238}
1239#endif
1240
1241static int ext4_write_begin(struct file *file, struct address_space *mapping,
1242 loff_t pos, unsigned len, unsigned flags,
1243 struct page **pagep, void **fsdata)
1244{
1245 struct inode *inode = mapping->host;
1246 int ret, needed_blocks;
1247 handle_t *handle;
1248 int retries = 0;
1249 struct page *page;
1250 pgoff_t index;
1251 unsigned from, to;
1252
1253 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1254 return -EIO;
1255
1256 trace_ext4_write_begin(inode, pos, len, flags);
1257 /*
1258 * Reserve one block more for addition to orphan list in case
1259 * we allocate blocks but write fails for some reason
1260 */
1261 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1262 index = pos >> PAGE_SHIFT;
1263 from = pos & (PAGE_SIZE - 1);
1264 to = from + len;
1265
1266 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1267 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1268 flags, pagep);
1269 if (ret < 0)
1270 return ret;
1271 if (ret == 1)
1272 return 0;
1273 }
1274
1275 /*
1276 * grab_cache_page_write_begin() can take a long time if the
1277 * system is thrashing due to memory pressure, or if the page
1278 * is being written back. So grab it first before we start
1279 * the transaction handle. This also allows us to allocate
1280 * the page (if needed) without using GFP_NOFS.
1281 */
1282retry_grab:
1283 page = grab_cache_page_write_begin(mapping, index, flags);
1284 if (!page)
1285 return -ENOMEM;
1286 unlock_page(page);
1287
1288retry_journal:
1289 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1290 if (IS_ERR(handle)) {
1291 put_page(page);
1292 return PTR_ERR(handle);
1293 }
1294
1295 lock_page(page);
1296 if (page->mapping != mapping) {
1297 /* The page got truncated from under us */
1298 unlock_page(page);
1299 put_page(page);
1300 ext4_journal_stop(handle);
1301 goto retry_grab;
1302 }
1303 /* In case writeback began while the page was unlocked */
1304 wait_for_stable_page(page);
1305
1306#ifdef CONFIG_EXT4_FS_ENCRYPTION
1307 if (ext4_should_dioread_nolock(inode))
1308 ret = ext4_block_write_begin(page, pos, len,
1309 ext4_get_block_unwritten);
1310 else
1311 ret = ext4_block_write_begin(page, pos, len,
1312 ext4_get_block);
1313#else
1314 if (ext4_should_dioread_nolock(inode))
1315 ret = __block_write_begin(page, pos, len,
1316 ext4_get_block_unwritten);
1317 else
1318 ret = __block_write_begin(page, pos, len, ext4_get_block);
1319#endif
1320 if (!ret && ext4_should_journal_data(inode)) {
1321 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1322 from, to, NULL,
1323 do_journal_get_write_access);
1324 }
1325
1326 if (ret) {
1327 unlock_page(page);
1328 /*
1329 * __block_write_begin may have instantiated a few blocks
1330 * outside i_size. Trim these off again. Don't need
1331 * i_size_read because we hold i_mutex.
1332 *
1333 * Add inode to orphan list in case we crash before
1334 * truncate finishes
1335 */
1336 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1337 ext4_orphan_add(handle, inode);
1338
1339 ext4_journal_stop(handle);
1340 if (pos + len > inode->i_size) {
1341 ext4_truncate_failed_write(inode);
1342 /*
1343 * If truncate failed early the inode might
1344 * still be on the orphan list; we need to
1345 * make sure the inode is removed from the
1346 * orphan list in that case.
1347 */
1348 if (inode->i_nlink)
1349 ext4_orphan_del(NULL, inode);
1350 }
1351
1352 if (ret == -ENOSPC &&
1353 ext4_should_retry_alloc(inode->i_sb, &retries))
1354 goto retry_journal;
1355 put_page(page);
1356 return ret;
1357 }
1358 *pagep = page;
1359 return ret;
1360}
1361
1362/* For write_end() in data=journal mode */
1363static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1364{
1365 int ret;
1366 if (!buffer_mapped(bh) || buffer_freed(bh))
1367 return 0;
1368 set_buffer_uptodate(bh);
1369 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1370 clear_buffer_meta(bh);
1371 clear_buffer_prio(bh);
1372 return ret;
1373}
1374
1375/*
1376 * We need to pick up the new inode size which generic_commit_write gave us
1377 * `file' can be NULL - eg, when called from page_symlink().
1378 *
1379 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1380 * buffers are managed internally.
1381 */
1382static int ext4_write_end(struct file *file,
1383 struct address_space *mapping,
1384 loff_t pos, unsigned len, unsigned copied,
1385 struct page *page, void *fsdata)
1386{
1387 handle_t *handle = ext4_journal_current_handle();
1388 struct inode *inode = mapping->host;
1389 loff_t old_size = inode->i_size;
1390 int ret = 0, ret2;
1391 int i_size_changed = 0;
1392
1393 trace_ext4_write_end(inode, pos, len, copied);
1394 if (ext4_has_inline_data(inode)) {
1395 ret = ext4_write_inline_data_end(inode, pos, len,
1396 copied, page);
1397 if (ret < 0) {
1398 unlock_page(page);
1399 put_page(page);
1400 goto errout;
1401 }
1402 copied = ret;
1403 } else
1404 copied = block_write_end(file, mapping, pos,
1405 len, copied, page, fsdata);
1406 /*
1407 * it's important to update i_size while still holding page lock:
1408 * page writeout could otherwise come in and zero beyond i_size.
1409 */
1410 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1411 unlock_page(page);
1412 put_page(page);
1413
1414 if (old_size < pos)
1415 pagecache_isize_extended(inode, old_size, pos);
1416 /*
1417 * Don't mark the inode dirty under page lock. First, it unnecessarily
1418 * makes the holding time of page lock longer. Second, it forces lock
1419 * ordering of page lock and transaction start for journaling
1420 * filesystems.
1421 */
1422 if (i_size_changed)
1423 ext4_mark_inode_dirty(handle, inode);
1424
1425 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1426 /* if we have allocated more blocks and copied
1427 * less. We will have blocks allocated outside
1428 * inode->i_size. So truncate them
1429 */
1430 ext4_orphan_add(handle, inode);
1431errout:
1432 ret2 = ext4_journal_stop(handle);
1433 if (!ret)
1434 ret = ret2;
1435
1436 if (pos + len > inode->i_size) {
1437 ext4_truncate_failed_write(inode);
1438 /*
1439 * If truncate failed early the inode might still be
1440 * on the orphan list; we need to make sure the inode
1441 * is removed from the orphan list in that case.
1442 */
1443 if (inode->i_nlink)
1444 ext4_orphan_del(NULL, inode);
1445 }
1446
1447 return ret ? ret : copied;
1448}
1449
1450/*
1451 * This is a private version of page_zero_new_buffers() which doesn't
1452 * set the buffer to be dirty, since in data=journalled mode we need
1453 * to call ext4_handle_dirty_metadata() instead.
1454 */
1455static void ext4_journalled_zero_new_buffers(handle_t *handle,
1456 struct page *page,
1457 unsigned from, unsigned to)
1458{
1459 unsigned int block_start = 0, block_end;
1460 struct buffer_head *head, *bh;
1461
1462 bh = head = page_buffers(page);
1463 do {
1464 block_end = block_start + bh->b_size;
1465 if (buffer_new(bh)) {
1466 if (block_end > from && block_start < to) {
1467 if (!PageUptodate(page)) {
1468 unsigned start, size;
1469
1470 start = max(from, block_start);
1471 size = min(to, block_end) - start;
1472
1473 zero_user(page, start, size);
1474 write_end_fn(handle, bh);
1475 }
1476 clear_buffer_new(bh);
1477 }
1478 }
1479 block_start = block_end;
1480 bh = bh->b_this_page;
1481 } while (bh != head);
1482}
1483
1484static int ext4_journalled_write_end(struct file *file,
1485 struct address_space *mapping,
1486 loff_t pos, unsigned len, unsigned copied,
1487 struct page *page, void *fsdata)
1488{
1489 handle_t *handle = ext4_journal_current_handle();
1490 struct inode *inode = mapping->host;
1491 loff_t old_size = inode->i_size;
1492 int ret = 0, ret2;
1493 int partial = 0;
1494 unsigned from, to;
1495 int size_changed = 0;
1496
1497 trace_ext4_journalled_write_end(inode, pos, len, copied);
1498 from = pos & (PAGE_SIZE - 1);
1499 to = from + len;
1500
1501 BUG_ON(!ext4_handle_valid(handle));
1502
1503 if (ext4_has_inline_data(inode)) {
1504 ret = ext4_write_inline_data_end(inode, pos, len,
1505 copied, page);
1506 if (ret < 0) {
1507 unlock_page(page);
1508 put_page(page);
1509 goto errout;
1510 }
1511 copied = ret;
1512 } else if (unlikely(copied < len) && !PageUptodate(page)) {
1513 copied = 0;
1514 ext4_journalled_zero_new_buffers(handle, page, from, to);
1515 } else {
1516 if (unlikely(copied < len))
1517 ext4_journalled_zero_new_buffers(handle, page,
1518 from + copied, to);
1519 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1520 from + copied, &partial,
1521 write_end_fn);
1522 if (!partial)
1523 SetPageUptodate(page);
1524 }
1525 size_changed = ext4_update_inode_size(inode, pos + copied);
1526 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1527 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1528 unlock_page(page);
1529 put_page(page);
1530
1531 if (old_size < pos)
1532 pagecache_isize_extended(inode, old_size, pos);
1533
1534 if (size_changed) {
1535 ret2 = ext4_mark_inode_dirty(handle, inode);
1536 if (!ret)
1537 ret = ret2;
1538 }
1539
1540 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1541 /* if we have allocated more blocks and copied
1542 * less. We will have blocks allocated outside
1543 * inode->i_size. So truncate them
1544 */
1545 ext4_orphan_add(handle, inode);
1546
1547errout:
1548 ret2 = ext4_journal_stop(handle);
1549 if (!ret)
1550 ret = ret2;
1551 if (pos + len > inode->i_size) {
1552 ext4_truncate_failed_write(inode);
1553 /*
1554 * If truncate failed early the inode might still be
1555 * on the orphan list; we need to make sure the inode
1556 * is removed from the orphan list in that case.
1557 */
1558 if (inode->i_nlink)
1559 ext4_orphan_del(NULL, inode);
1560 }
1561
1562 return ret ? ret : copied;
1563}
1564
1565/*
1566 * Reserve space for a single cluster
1567 */
1568static int ext4_da_reserve_space(struct inode *inode)
1569{
1570 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1571 struct ext4_inode_info *ei = EXT4_I(inode);
1572 int ret;
1573
1574 /*
1575 * We will charge metadata quota at writeout time; this saves
1576 * us from metadata over-estimation, though we may go over by
1577 * a small amount in the end. Here we just reserve for data.
1578 */
1579 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1580 if (ret)
1581 return ret;
1582
1583 spin_lock(&ei->i_block_reservation_lock);
1584 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1585 spin_unlock(&ei->i_block_reservation_lock);
1586 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1587 return -ENOSPC;
1588 }
1589 ei->i_reserved_data_blocks++;
1590 trace_ext4_da_reserve_space(inode);
1591 spin_unlock(&ei->i_block_reservation_lock);
1592
1593 return 0; /* success */
1594}
1595
1596static void ext4_da_release_space(struct inode *inode, int to_free)
1597{
1598 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1599 struct ext4_inode_info *ei = EXT4_I(inode);
1600
1601 if (!to_free)
1602 return; /* Nothing to release, exit */
1603
1604 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1605
1606 trace_ext4_da_release_space(inode, to_free);
1607 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1608 /*
1609 * if there aren't enough reserved blocks, then the
1610 * counter is messed up somewhere. Since this
1611 * function is called from invalidate page, it's
1612 * harmless to return without any action.
1613 */
1614 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1615 "ino %lu, to_free %d with only %d reserved "
1616 "data blocks", inode->i_ino, to_free,
1617 ei->i_reserved_data_blocks);
1618 WARN_ON(1);
1619 to_free = ei->i_reserved_data_blocks;
1620 }
1621 ei->i_reserved_data_blocks -= to_free;
1622
1623 /* update fs dirty data blocks counter */
1624 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1625
1626 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1627
1628 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1629}
1630
1631static void ext4_da_page_release_reservation(struct page *page,
1632 unsigned int offset,
1633 unsigned int length)
1634{
1635 int to_release = 0, contiguous_blks = 0;
1636 struct buffer_head *head, *bh;
1637 unsigned int curr_off = 0;
1638 struct inode *inode = page->mapping->host;
1639 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1640 unsigned int stop = offset + length;
1641 int num_clusters;
1642 ext4_fsblk_t lblk;
1643
1644 BUG_ON(stop > PAGE_SIZE || stop < length);
1645
1646 head = page_buffers(page);
1647 bh = head;
1648 do {
1649 unsigned int next_off = curr_off + bh->b_size;
1650
1651 if (next_off > stop)
1652 break;
1653
1654 if ((offset <= curr_off) && (buffer_delay(bh))) {
1655 to_release++;
1656 contiguous_blks++;
1657 clear_buffer_delay(bh);
1658 } else if (contiguous_blks) {
1659 lblk = page->index <<
1660 (PAGE_SHIFT - inode->i_blkbits);
1661 lblk += (curr_off >> inode->i_blkbits) -
1662 contiguous_blks;
1663 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1664 contiguous_blks = 0;
1665 }
1666 curr_off = next_off;
1667 } while ((bh = bh->b_this_page) != head);
1668
1669 if (contiguous_blks) {
1670 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1671 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1672 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1673 }
1674
1675 /* If we have released all the blocks belonging to a cluster, then we
1676 * need to release the reserved space for that cluster. */
1677 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1678 while (num_clusters > 0) {
1679 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1680 ((num_clusters - 1) << sbi->s_cluster_bits);
1681 if (sbi->s_cluster_ratio == 1 ||
1682 !ext4_find_delalloc_cluster(inode, lblk))
1683 ext4_da_release_space(inode, 1);
1684
1685 num_clusters--;
1686 }
1687}
1688
1689/*
1690 * Delayed allocation stuff
1691 */
1692
1693struct mpage_da_data {
1694 struct inode *inode;
1695 struct writeback_control *wbc;
1696
1697 pgoff_t first_page; /* The first page to write */
1698 pgoff_t next_page; /* Current page to examine */
1699 pgoff_t last_page; /* Last page to examine */
1700 /*
1701 * Extent to map - this can be after first_page because that can be
1702 * fully mapped. We somewhat abuse m_flags to store whether the extent
1703 * is delalloc or unwritten.
1704 */
1705 struct ext4_map_blocks map;
1706 struct ext4_io_submit io_submit; /* IO submission data */
1707 unsigned int do_map:1;
1708};
1709
1710static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1711 bool invalidate)
1712{
1713 int nr_pages, i;
1714 pgoff_t index, end;
1715 struct pagevec pvec;
1716 struct inode *inode = mpd->inode;
1717 struct address_space *mapping = inode->i_mapping;
1718
1719 /* This is necessary when next_page == 0. */
1720 if (mpd->first_page >= mpd->next_page)
1721 return;
1722
1723 index = mpd->first_page;
1724 end = mpd->next_page - 1;
1725 if (invalidate) {
1726 ext4_lblk_t start, last;
1727 start = index << (PAGE_SHIFT - inode->i_blkbits);
1728 last = end << (PAGE_SHIFT - inode->i_blkbits);
1729 ext4_es_remove_extent(inode, start, last - start + 1);
1730 }
1731
1732 pagevec_init(&pvec);
1733 while (index <= end) {
1734 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1735 if (nr_pages == 0)
1736 break;
1737 for (i = 0; i < nr_pages; i++) {
1738 struct page *page = pvec.pages[i];
1739
1740 BUG_ON(!PageLocked(page));
1741 BUG_ON(PageWriteback(page));
1742 if (invalidate) {
1743 if (page_mapped(page))
1744 clear_page_dirty_for_io(page);
1745 block_invalidatepage(page, 0, PAGE_SIZE);
1746 ClearPageUptodate(page);
1747 }
1748 unlock_page(page);
1749 }
1750 pagevec_release(&pvec);
1751 }
1752}
1753
1754static void ext4_print_free_blocks(struct inode *inode)
1755{
1756 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1757 struct super_block *sb = inode->i_sb;
1758 struct ext4_inode_info *ei = EXT4_I(inode);
1759
1760 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1761 EXT4_C2B(EXT4_SB(inode->i_sb),
1762 ext4_count_free_clusters(sb)));
1763 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1764 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1765 (long long) EXT4_C2B(EXT4_SB(sb),
1766 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1767 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1768 (long long) EXT4_C2B(EXT4_SB(sb),
1769 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1770 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1771 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1772 ei->i_reserved_data_blocks);
1773 return;
1774}
1775
1776static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1777{
1778 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1779}
1780
1781/*
1782 * This function is grabs code from the very beginning of
1783 * ext4_map_blocks, but assumes that the caller is from delayed write
1784 * time. This function looks up the requested blocks and sets the
1785 * buffer delay bit under the protection of i_data_sem.
1786 */
1787static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1788 struct ext4_map_blocks *map,
1789 struct buffer_head *bh)
1790{
1791 struct extent_status es;
1792 int retval;
1793 sector_t invalid_block = ~((sector_t) 0xffff);
1794#ifdef ES_AGGRESSIVE_TEST
1795 struct ext4_map_blocks orig_map;
1796
1797 memcpy(&orig_map, map, sizeof(*map));
1798#endif
1799
1800 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1801 invalid_block = ~0;
1802
1803 map->m_flags = 0;
1804 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1805 "logical block %lu\n", inode->i_ino, map->m_len,
1806 (unsigned long) map->m_lblk);
1807
1808 /* Lookup extent status tree firstly */
1809 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1810 if (ext4_es_is_hole(&es)) {
1811 retval = 0;
1812 down_read(&EXT4_I(inode)->i_data_sem);
1813 goto add_delayed;
1814 }
1815
1816 /*
1817 * Delayed extent could be allocated by fallocate.
1818 * So we need to check it.
1819 */
1820 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1821 map_bh(bh, inode->i_sb, invalid_block);
1822 set_buffer_new(bh);
1823 set_buffer_delay(bh);
1824 return 0;
1825 }
1826
1827 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1828 retval = es.es_len - (iblock - es.es_lblk);
1829 if (retval > map->m_len)
1830 retval = map->m_len;
1831 map->m_len = retval;
1832 if (ext4_es_is_written(&es))
1833 map->m_flags |= EXT4_MAP_MAPPED;
1834 else if (ext4_es_is_unwritten(&es))
1835 map->m_flags |= EXT4_MAP_UNWRITTEN;
1836 else
1837 BUG_ON(1);
1838
1839#ifdef ES_AGGRESSIVE_TEST
1840 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1841#endif
1842 return retval;
1843 }
1844
1845 /*
1846 * Try to see if we can get the block without requesting a new
1847 * file system block.
1848 */
1849 down_read(&EXT4_I(inode)->i_data_sem);
1850 if (ext4_has_inline_data(inode))
1851 retval = 0;
1852 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1853 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1854 else
1855 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1856
1857add_delayed:
1858 if (retval == 0) {
1859 int ret;
1860 /*
1861 * XXX: __block_prepare_write() unmaps passed block,
1862 * is it OK?
1863 */
1864 /*
1865 * If the block was allocated from previously allocated cluster,
1866 * then we don't need to reserve it again. However we still need
1867 * to reserve metadata for every block we're going to write.
1868 */
1869 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1870 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1871 ret = ext4_da_reserve_space(inode);
1872 if (ret) {
1873 /* not enough space to reserve */
1874 retval = ret;
1875 goto out_unlock;
1876 }
1877 }
1878
1879 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1880 ~0, EXTENT_STATUS_DELAYED);
1881 if (ret) {
1882 retval = ret;
1883 goto out_unlock;
1884 }
1885
1886 map_bh(bh, inode->i_sb, invalid_block);
1887 set_buffer_new(bh);
1888 set_buffer_delay(bh);
1889 } else if (retval > 0) {
1890 int ret;
1891 unsigned int status;
1892
1893 if (unlikely(retval != map->m_len)) {
1894 ext4_warning(inode->i_sb,
1895 "ES len assertion failed for inode "
1896 "%lu: retval %d != map->m_len %d",
1897 inode->i_ino, retval, map->m_len);
1898 WARN_ON(1);
1899 }
1900
1901 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1902 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1903 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1904 map->m_pblk, status);
1905 if (ret != 0)
1906 retval = ret;
1907 }
1908
1909out_unlock:
1910 up_read((&EXT4_I(inode)->i_data_sem));
1911
1912 return retval;
1913}
1914
1915/*
1916 * This is a special get_block_t callback which is used by
1917 * ext4_da_write_begin(). It will either return mapped block or
1918 * reserve space for a single block.
1919 *
1920 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1921 * We also have b_blocknr = -1 and b_bdev initialized properly
1922 *
1923 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1924 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1925 * initialized properly.
1926 */
1927int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1928 struct buffer_head *bh, int create)
1929{
1930 struct ext4_map_blocks map;
1931 int ret = 0;
1932
1933 BUG_ON(create == 0);
1934 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1935
1936 map.m_lblk = iblock;
1937 map.m_len = 1;
1938
1939 /*
1940 * first, we need to know whether the block is allocated already
1941 * preallocated blocks are unmapped but should treated
1942 * the same as allocated blocks.
1943 */
1944 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1945 if (ret <= 0)
1946 return ret;
1947
1948 map_bh(bh, inode->i_sb, map.m_pblk);
1949 ext4_update_bh_state(bh, map.m_flags);
1950
1951 if (buffer_unwritten(bh)) {
1952 /* A delayed write to unwritten bh should be marked
1953 * new and mapped. Mapped ensures that we don't do
1954 * get_block multiple times when we write to the same
1955 * offset and new ensures that we do proper zero out
1956 * for partial write.
1957 */
1958 set_buffer_new(bh);
1959 set_buffer_mapped(bh);
1960 }
1961 return 0;
1962}
1963
1964static int bget_one(handle_t *handle, struct buffer_head *bh)
1965{
1966 get_bh(bh);
1967 return 0;
1968}
1969
1970static int bput_one(handle_t *handle, struct buffer_head *bh)
1971{
1972 put_bh(bh);
1973 return 0;
1974}
1975
1976static int __ext4_journalled_writepage(struct page *page,
1977 unsigned int len)
1978{
1979 struct address_space *mapping = page->mapping;
1980 struct inode *inode = mapping->host;
1981 struct buffer_head *page_bufs = NULL;
1982 handle_t *handle = NULL;
1983 int ret = 0, err = 0;
1984 int inline_data = ext4_has_inline_data(inode);
1985 struct buffer_head *inode_bh = NULL;
1986
1987 ClearPageChecked(page);
1988
1989 if (inline_data) {
1990 BUG_ON(page->index != 0);
1991 BUG_ON(len > ext4_get_max_inline_size(inode));
1992 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1993 if (inode_bh == NULL)
1994 goto out;
1995 } else {
1996 page_bufs = page_buffers(page);
1997 if (!page_bufs) {
1998 BUG();
1999 goto out;
2000 }
2001 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2002 NULL, bget_one);
2003 }
2004 /*
2005 * We need to release the page lock before we start the
2006 * journal, so grab a reference so the page won't disappear
2007 * out from under us.
2008 */
2009 get_page(page);
2010 unlock_page(page);
2011
2012 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2013 ext4_writepage_trans_blocks(inode));
2014 if (IS_ERR(handle)) {
2015 ret = PTR_ERR(handle);
2016 put_page(page);
2017 goto out_no_pagelock;
2018 }
2019 BUG_ON(!ext4_handle_valid(handle));
2020
2021 lock_page(page);
2022 put_page(page);
2023 if (page->mapping != mapping) {
2024 /* The page got truncated from under us */
2025 ext4_journal_stop(handle);
2026 ret = 0;
2027 goto out;
2028 }
2029
2030 if (inline_data) {
2031 BUFFER_TRACE(inode_bh, "get write access");
2032 ret = ext4_journal_get_write_access(handle, inode_bh);
2033
2034 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2035
2036 } else {
2037 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2038 do_journal_get_write_access);
2039
2040 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2041 write_end_fn);
2042 }
2043 if (ret == 0)
2044 ret = err;
2045 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2046 err = ext4_journal_stop(handle);
2047 if (!ret)
2048 ret = err;
2049
2050 if (!ext4_has_inline_data(inode))
2051 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2052 NULL, bput_one);
2053 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2054out:
2055 unlock_page(page);
2056out_no_pagelock:
2057 brelse(inode_bh);
2058 return ret;
2059}
2060
2061/*
2062 * Note that we don't need to start a transaction unless we're journaling data
2063 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2064 * need to file the inode to the transaction's list in ordered mode because if
2065 * we are writing back data added by write(), the inode is already there and if
2066 * we are writing back data modified via mmap(), no one guarantees in which
2067 * transaction the data will hit the disk. In case we are journaling data, we
2068 * cannot start transaction directly because transaction start ranks above page
2069 * lock so we have to do some magic.
2070 *
2071 * This function can get called via...
2072 * - ext4_writepages after taking page lock (have journal handle)
2073 * - journal_submit_inode_data_buffers (no journal handle)
2074 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2075 * - grab_page_cache when doing write_begin (have journal handle)
2076 *
2077 * We don't do any block allocation in this function. If we have page with
2078 * multiple blocks we need to write those buffer_heads that are mapped. This
2079 * is important for mmaped based write. So if we do with blocksize 1K
2080 * truncate(f, 1024);
2081 * a = mmap(f, 0, 4096);
2082 * a[0] = 'a';
2083 * truncate(f, 4096);
2084 * we have in the page first buffer_head mapped via page_mkwrite call back
2085 * but other buffer_heads would be unmapped but dirty (dirty done via the
2086 * do_wp_page). So writepage should write the first block. If we modify
2087 * the mmap area beyond 1024 we will again get a page_fault and the
2088 * page_mkwrite callback will do the block allocation and mark the
2089 * buffer_heads mapped.
2090 *
2091 * We redirty the page if we have any buffer_heads that is either delay or
2092 * unwritten in the page.
2093 *
2094 * We can get recursively called as show below.
2095 *
2096 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2097 * ext4_writepage()
2098 *
2099 * But since we don't do any block allocation we should not deadlock.
2100 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2101 */
2102static int ext4_writepage(struct page *page,
2103 struct writeback_control *wbc)
2104{
2105 int ret = 0;
2106 loff_t size;
2107 unsigned int len;
2108 struct buffer_head *page_bufs = NULL;
2109 struct inode *inode = page->mapping->host;
2110 struct ext4_io_submit io_submit;
2111 bool keep_towrite = false;
2112
2113 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2114 ext4_invalidatepage(page, 0, PAGE_SIZE);
2115 unlock_page(page);
2116 return -EIO;
2117 }
2118
2119 trace_ext4_writepage(page);
2120 size = i_size_read(inode);
2121 if (page->index == size >> PAGE_SHIFT)
2122 len = size & ~PAGE_MASK;
2123 else
2124 len = PAGE_SIZE;
2125
2126 page_bufs = page_buffers(page);
2127 /*
2128 * We cannot do block allocation or other extent handling in this
2129 * function. If there are buffers needing that, we have to redirty
2130 * the page. But we may reach here when we do a journal commit via
2131 * journal_submit_inode_data_buffers() and in that case we must write
2132 * allocated buffers to achieve data=ordered mode guarantees.
2133 *
2134 * Also, if there is only one buffer per page (the fs block
2135 * size == the page size), if one buffer needs block
2136 * allocation or needs to modify the extent tree to clear the
2137 * unwritten flag, we know that the page can't be written at
2138 * all, so we might as well refuse the write immediately.
2139 * Unfortunately if the block size != page size, we can't as
2140 * easily detect this case using ext4_walk_page_buffers(), but
2141 * for the extremely common case, this is an optimization that
2142 * skips a useless round trip through ext4_bio_write_page().
2143 */
2144 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2145 ext4_bh_delay_or_unwritten)) {
2146 redirty_page_for_writepage(wbc, page);
2147 if ((current->flags & PF_MEMALLOC) ||
2148 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2149 /*
2150 * For memory cleaning there's no point in writing only
2151 * some buffers. So just bail out. Warn if we came here
2152 * from direct reclaim.
2153 */
2154 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2155 == PF_MEMALLOC);
2156 unlock_page(page);
2157 return 0;
2158 }
2159 keep_towrite = true;
2160 }
2161
2162 if (PageChecked(page) && ext4_should_journal_data(inode))
2163 /*
2164 * It's mmapped pagecache. Add buffers and journal it. There
2165 * doesn't seem much point in redirtying the page here.
2166 */
2167 return __ext4_journalled_writepage(page, len);
2168
2169 ext4_io_submit_init(&io_submit, wbc);
2170 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2171 if (!io_submit.io_end) {
2172 redirty_page_for_writepage(wbc, page);
2173 unlock_page(page);
2174 return -ENOMEM;
2175 }
2176 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2177 ext4_io_submit(&io_submit);
2178 /* Drop io_end reference we got from init */
2179 ext4_put_io_end_defer(io_submit.io_end);
2180 return ret;
2181}
2182
2183static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2184{
2185 int len;
2186 loff_t size;
2187 int err;
2188
2189 BUG_ON(page->index != mpd->first_page);
2190 clear_page_dirty_for_io(page);
2191 /*
2192 * We have to be very careful here! Nothing protects writeback path
2193 * against i_size changes and the page can be writeably mapped into
2194 * page tables. So an application can be growing i_size and writing
2195 * data through mmap while writeback runs. clear_page_dirty_for_io()
2196 * write-protects our page in page tables and the page cannot get
2197 * written to again until we release page lock. So only after
2198 * clear_page_dirty_for_io() we are safe to sample i_size for
2199 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2200 * on the barrier provided by TestClearPageDirty in
2201 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2202 * after page tables are updated.
2203 */
2204 size = i_size_read(mpd->inode);
2205 if (page->index == size >> PAGE_SHIFT)
2206 len = size & ~PAGE_MASK;
2207 else
2208 len = PAGE_SIZE;
2209 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2210 if (!err)
2211 mpd->wbc->nr_to_write--;
2212 mpd->first_page++;
2213
2214 return err;
2215}
2216
2217#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2218
2219/*
2220 * mballoc gives us at most this number of blocks...
2221 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2222 * The rest of mballoc seems to handle chunks up to full group size.
2223 */
2224#define MAX_WRITEPAGES_EXTENT_LEN 2048
2225
2226/*
2227 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2228 *
2229 * @mpd - extent of blocks
2230 * @lblk - logical number of the block in the file
2231 * @bh - buffer head we want to add to the extent
2232 *
2233 * The function is used to collect contig. blocks in the same state. If the
2234 * buffer doesn't require mapping for writeback and we haven't started the
2235 * extent of buffers to map yet, the function returns 'true' immediately - the
2236 * caller can write the buffer right away. Otherwise the function returns true
2237 * if the block has been added to the extent, false if the block couldn't be
2238 * added.
2239 */
2240static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2241 struct buffer_head *bh)
2242{
2243 struct ext4_map_blocks *map = &mpd->map;
2244
2245 /* Buffer that doesn't need mapping for writeback? */
2246 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2247 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2248 /* So far no extent to map => we write the buffer right away */
2249 if (map->m_len == 0)
2250 return true;
2251 return false;
2252 }
2253
2254 /* First block in the extent? */
2255 if (map->m_len == 0) {
2256 /* We cannot map unless handle is started... */
2257 if (!mpd->do_map)
2258 return false;
2259 map->m_lblk = lblk;
2260 map->m_len = 1;
2261 map->m_flags = bh->b_state & BH_FLAGS;
2262 return true;
2263 }
2264
2265 /* Don't go larger than mballoc is willing to allocate */
2266 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2267 return false;
2268
2269 /* Can we merge the block to our big extent? */
2270 if (lblk == map->m_lblk + map->m_len &&
2271 (bh->b_state & BH_FLAGS) == map->m_flags) {
2272 map->m_len++;
2273 return true;
2274 }
2275 return false;
2276}
2277
2278/*
2279 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2280 *
2281 * @mpd - extent of blocks for mapping
2282 * @head - the first buffer in the page
2283 * @bh - buffer we should start processing from
2284 * @lblk - logical number of the block in the file corresponding to @bh
2285 *
2286 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2287 * the page for IO if all buffers in this page were mapped and there's no
2288 * accumulated extent of buffers to map or add buffers in the page to the
2289 * extent of buffers to map. The function returns 1 if the caller can continue
2290 * by processing the next page, 0 if it should stop adding buffers to the
2291 * extent to map because we cannot extend it anymore. It can also return value
2292 * < 0 in case of error during IO submission.
2293 */
2294static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2295 struct buffer_head *head,
2296 struct buffer_head *bh,
2297 ext4_lblk_t lblk)
2298{
2299 struct inode *inode = mpd->inode;
2300 int err;
2301 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2302 >> inode->i_blkbits;
2303
2304 do {
2305 BUG_ON(buffer_locked(bh));
2306
2307 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2308 /* Found extent to map? */
2309 if (mpd->map.m_len)
2310 return 0;
2311 /* Buffer needs mapping and handle is not started? */
2312 if (!mpd->do_map)
2313 return 0;
2314 /* Everything mapped so far and we hit EOF */
2315 break;
2316 }
2317 } while (lblk++, (bh = bh->b_this_page) != head);
2318 /* So far everything mapped? Submit the page for IO. */
2319 if (mpd->map.m_len == 0) {
2320 err = mpage_submit_page(mpd, head->b_page);
2321 if (err < 0)
2322 return err;
2323 }
2324 return lblk < blocks;
2325}
2326
2327/*
2328 * mpage_map_buffers - update buffers corresponding to changed extent and
2329 * submit fully mapped pages for IO
2330 *
2331 * @mpd - description of extent to map, on return next extent to map
2332 *
2333 * Scan buffers corresponding to changed extent (we expect corresponding pages
2334 * to be already locked) and update buffer state according to new extent state.
2335 * We map delalloc buffers to their physical location, clear unwritten bits,
2336 * and mark buffers as uninit when we perform writes to unwritten extents
2337 * and do extent conversion after IO is finished. If the last page is not fully
2338 * mapped, we update @map to the next extent in the last page that needs
2339 * mapping. Otherwise we submit the page for IO.
2340 */
2341static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2342{
2343 struct pagevec pvec;
2344 int nr_pages, i;
2345 struct inode *inode = mpd->inode;
2346 struct buffer_head *head, *bh;
2347 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2348 pgoff_t start, end;
2349 ext4_lblk_t lblk;
2350 sector_t pblock;
2351 int err;
2352
2353 start = mpd->map.m_lblk >> bpp_bits;
2354 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2355 lblk = start << bpp_bits;
2356 pblock = mpd->map.m_pblk;
2357
2358 pagevec_init(&pvec);
2359 while (start <= end) {
2360 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2361 &start, end);
2362 if (nr_pages == 0)
2363 break;
2364 for (i = 0; i < nr_pages; i++) {
2365 struct page *page = pvec.pages[i];
2366
2367 bh = head = page_buffers(page);
2368 do {
2369 if (lblk < mpd->map.m_lblk)
2370 continue;
2371 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2372 /*
2373 * Buffer after end of mapped extent.
2374 * Find next buffer in the page to map.
2375 */
2376 mpd->map.m_len = 0;
2377 mpd->map.m_flags = 0;
2378 /*
2379 * FIXME: If dioread_nolock supports
2380 * blocksize < pagesize, we need to make
2381 * sure we add size mapped so far to
2382 * io_end->size as the following call
2383 * can submit the page for IO.
2384 */
2385 err = mpage_process_page_bufs(mpd, head,
2386 bh, lblk);
2387 pagevec_release(&pvec);
2388 if (err > 0)
2389 err = 0;
2390 return err;
2391 }
2392 if (buffer_delay(bh)) {
2393 clear_buffer_delay(bh);
2394 bh->b_blocknr = pblock++;
2395 }
2396 clear_buffer_unwritten(bh);
2397 } while (lblk++, (bh = bh->b_this_page) != head);
2398
2399 /*
2400 * FIXME: This is going to break if dioread_nolock
2401 * supports blocksize < pagesize as we will try to
2402 * convert potentially unmapped parts of inode.
2403 */
2404 mpd->io_submit.io_end->size += PAGE_SIZE;
2405 /* Page fully mapped - let IO run! */
2406 err = mpage_submit_page(mpd, page);
2407 if (err < 0) {
2408 pagevec_release(&pvec);
2409 return err;
2410 }
2411 }
2412 pagevec_release(&pvec);
2413 }
2414 /* Extent fully mapped and matches with page boundary. We are done. */
2415 mpd->map.m_len = 0;
2416 mpd->map.m_flags = 0;
2417 return 0;
2418}
2419
2420static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2421{
2422 struct inode *inode = mpd->inode;
2423 struct ext4_map_blocks *map = &mpd->map;
2424 int get_blocks_flags;
2425 int err, dioread_nolock;
2426
2427 trace_ext4_da_write_pages_extent(inode, map);
2428 /*
2429 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2430 * to convert an unwritten extent to be initialized (in the case
2431 * where we have written into one or more preallocated blocks). It is
2432 * possible that we're going to need more metadata blocks than
2433 * previously reserved. However we must not fail because we're in
2434 * writeback and there is nothing we can do about it so it might result
2435 * in data loss. So use reserved blocks to allocate metadata if
2436 * possible.
2437 *
2438 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2439 * the blocks in question are delalloc blocks. This indicates
2440 * that the blocks and quotas has already been checked when
2441 * the data was copied into the page cache.
2442 */
2443 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2444 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2445 EXT4_GET_BLOCKS_IO_SUBMIT;
2446 dioread_nolock = ext4_should_dioread_nolock(inode);
2447 if (dioread_nolock)
2448 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2449 if (map->m_flags & (1 << BH_Delay))
2450 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2451
2452 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2453 if (err < 0)
2454 return err;
2455 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2456 if (!mpd->io_submit.io_end->handle &&
2457 ext4_handle_valid(handle)) {
2458 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2459 handle->h_rsv_handle = NULL;
2460 }
2461 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2462 }
2463
2464 BUG_ON(map->m_len == 0);
2465 if (map->m_flags & EXT4_MAP_NEW) {
2466 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2467 map->m_len);
2468 }
2469 return 0;
2470}
2471
2472/*
2473 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2474 * mpd->len and submit pages underlying it for IO
2475 *
2476 * @handle - handle for journal operations
2477 * @mpd - extent to map
2478 * @give_up_on_write - we set this to true iff there is a fatal error and there
2479 * is no hope of writing the data. The caller should discard
2480 * dirty pages to avoid infinite loops.
2481 *
2482 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2483 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2484 * them to initialized or split the described range from larger unwritten
2485 * extent. Note that we need not map all the described range since allocation
2486 * can return less blocks or the range is covered by more unwritten extents. We
2487 * cannot map more because we are limited by reserved transaction credits. On
2488 * the other hand we always make sure that the last touched page is fully
2489 * mapped so that it can be written out (and thus forward progress is
2490 * guaranteed). After mapping we submit all mapped pages for IO.
2491 */
2492static int mpage_map_and_submit_extent(handle_t *handle,
2493 struct mpage_da_data *mpd,
2494 bool *give_up_on_write)
2495{
2496 struct inode *inode = mpd->inode;
2497 struct ext4_map_blocks *map = &mpd->map;
2498 int err;
2499 loff_t disksize;
2500 int progress = 0;
2501
2502 mpd->io_submit.io_end->offset =
2503 ((loff_t)map->m_lblk) << inode->i_blkbits;
2504 do {
2505 err = mpage_map_one_extent(handle, mpd);
2506 if (err < 0) {
2507 struct super_block *sb = inode->i_sb;
2508
2509 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2510 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2511 goto invalidate_dirty_pages;
2512 /*
2513 * Let the uper layers retry transient errors.
2514 * In the case of ENOSPC, if ext4_count_free_blocks()
2515 * is non-zero, a commit should free up blocks.
2516 */
2517 if ((err == -ENOMEM) ||
2518 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2519 if (progress)
2520 goto update_disksize;
2521 return err;
2522 }
2523 ext4_msg(sb, KERN_CRIT,
2524 "Delayed block allocation failed for "
2525 "inode %lu at logical offset %llu with"
2526 " max blocks %u with error %d",
2527 inode->i_ino,
2528 (unsigned long long)map->m_lblk,
2529 (unsigned)map->m_len, -err);
2530 ext4_msg(sb, KERN_CRIT,
2531 "This should not happen!! Data will "
2532 "be lost\n");
2533 if (err == -ENOSPC)
2534 ext4_print_free_blocks(inode);
2535 invalidate_dirty_pages:
2536 *give_up_on_write = true;
2537 return err;
2538 }
2539 progress = 1;
2540 /*
2541 * Update buffer state, submit mapped pages, and get us new
2542 * extent to map
2543 */
2544 err = mpage_map_and_submit_buffers(mpd);
2545 if (err < 0)
2546 goto update_disksize;
2547 } while (map->m_len);
2548
2549update_disksize:
2550 /*
2551 * Update on-disk size after IO is submitted. Races with
2552 * truncate are avoided by checking i_size under i_data_sem.
2553 */
2554 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2555 if (disksize > EXT4_I(inode)->i_disksize) {
2556 int err2;
2557 loff_t i_size;
2558
2559 down_write(&EXT4_I(inode)->i_data_sem);
2560 i_size = i_size_read(inode);
2561 if (disksize > i_size)
2562 disksize = i_size;
2563 if (disksize > EXT4_I(inode)->i_disksize)
2564 EXT4_I(inode)->i_disksize = disksize;
2565 up_write(&EXT4_I(inode)->i_data_sem);
2566 err2 = ext4_mark_inode_dirty(handle, inode);
2567 if (err2)
2568 ext4_error(inode->i_sb,
2569 "Failed to mark inode %lu dirty",
2570 inode->i_ino);
2571 if (!err)
2572 err = err2;
2573 }
2574 return err;
2575}
2576
2577/*
2578 * Calculate the total number of credits to reserve for one writepages
2579 * iteration. This is called from ext4_writepages(). We map an extent of
2580 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2581 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2582 * bpp - 1 blocks in bpp different extents.
2583 */
2584static int ext4_da_writepages_trans_blocks(struct inode *inode)
2585{
2586 int bpp = ext4_journal_blocks_per_page(inode);
2587
2588 return ext4_meta_trans_blocks(inode,
2589 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2590}
2591
2592/*
2593 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2594 * and underlying extent to map
2595 *
2596 * @mpd - where to look for pages
2597 *
2598 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2599 * IO immediately. When we find a page which isn't mapped we start accumulating
2600 * extent of buffers underlying these pages that needs mapping (formed by
2601 * either delayed or unwritten buffers). We also lock the pages containing
2602 * these buffers. The extent found is returned in @mpd structure (starting at
2603 * mpd->lblk with length mpd->len blocks).
2604 *
2605 * Note that this function can attach bios to one io_end structure which are
2606 * neither logically nor physically contiguous. Although it may seem as an
2607 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2608 * case as we need to track IO to all buffers underlying a page in one io_end.
2609 */
2610static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2611{
2612 struct address_space *mapping = mpd->inode->i_mapping;
2613 struct pagevec pvec;
2614 unsigned int nr_pages;
2615 long left = mpd->wbc->nr_to_write;
2616 pgoff_t index = mpd->first_page;
2617 pgoff_t end = mpd->last_page;
2618 int tag;
2619 int i, err = 0;
2620 int blkbits = mpd->inode->i_blkbits;
2621 ext4_lblk_t lblk;
2622 struct buffer_head *head;
2623
2624 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2625 tag = PAGECACHE_TAG_TOWRITE;
2626 else
2627 tag = PAGECACHE_TAG_DIRTY;
2628
2629 pagevec_init(&pvec);
2630 mpd->map.m_len = 0;
2631 mpd->next_page = index;
2632 while (index <= end) {
2633 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2634 tag);
2635 if (nr_pages == 0)
2636 goto out;
2637
2638 for (i = 0; i < nr_pages; i++) {
2639 struct page *page = pvec.pages[i];
2640
2641 /*
2642 * Accumulated enough dirty pages? This doesn't apply
2643 * to WB_SYNC_ALL mode. For integrity sync we have to
2644 * keep going because someone may be concurrently
2645 * dirtying pages, and we might have synced a lot of
2646 * newly appeared dirty pages, but have not synced all
2647 * of the old dirty pages.
2648 */
2649 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2650 goto out;
2651
2652 /* If we can't merge this page, we are done. */
2653 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2654 goto out;
2655
2656 lock_page(page);
2657 /*
2658 * If the page is no longer dirty, or its mapping no
2659 * longer corresponds to inode we are writing (which
2660 * means it has been truncated or invalidated), or the
2661 * page is already under writeback and we are not doing
2662 * a data integrity writeback, skip the page
2663 */
2664 if (!PageDirty(page) ||
2665 (PageWriteback(page) &&
2666 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2667 unlikely(page->mapping != mapping)) {
2668 unlock_page(page);
2669 continue;
2670 }
2671
2672 wait_on_page_writeback(page);
2673 BUG_ON(PageWriteback(page));
2674
2675 if (mpd->map.m_len == 0)
2676 mpd->first_page = page->index;
2677 mpd->next_page = page->index + 1;
2678 /* Add all dirty buffers to mpd */
2679 lblk = ((ext4_lblk_t)page->index) <<
2680 (PAGE_SHIFT - blkbits);
2681 head = page_buffers(page);
2682 err = mpage_process_page_bufs(mpd, head, head, lblk);
2683 if (err <= 0)
2684 goto out;
2685 err = 0;
2686 left--;
2687 }
2688 pagevec_release(&pvec);
2689 cond_resched();
2690 }
2691 return 0;
2692out:
2693 pagevec_release(&pvec);
2694 return err;
2695}
2696
2697static int ext4_writepages(struct address_space *mapping,
2698 struct writeback_control *wbc)
2699{
2700 pgoff_t writeback_index = 0;
2701 long nr_to_write = wbc->nr_to_write;
2702 int range_whole = 0;
2703 int cycled = 1;
2704 handle_t *handle = NULL;
2705 struct mpage_da_data mpd;
2706 struct inode *inode = mapping->host;
2707 int needed_blocks, rsv_blocks = 0, ret = 0;
2708 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2709 bool done;
2710 struct blk_plug plug;
2711 bool give_up_on_write = false;
2712
2713 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2714 return -EIO;
2715
2716 percpu_down_read(&sbi->s_journal_flag_rwsem);
2717 trace_ext4_writepages(inode, wbc);
2718
2719 /*
2720 * No pages to write? This is mainly a kludge to avoid starting
2721 * a transaction for special inodes like journal inode on last iput()
2722 * because that could violate lock ordering on umount
2723 */
2724 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2725 goto out_writepages;
2726
2727 if (ext4_should_journal_data(inode)) {
2728 ret = generic_writepages(mapping, wbc);
2729 goto out_writepages;
2730 }
2731
2732 /*
2733 * If the filesystem has aborted, it is read-only, so return
2734 * right away instead of dumping stack traces later on that
2735 * will obscure the real source of the problem. We test
2736 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2737 * the latter could be true if the filesystem is mounted
2738 * read-only, and in that case, ext4_writepages should
2739 * *never* be called, so if that ever happens, we would want
2740 * the stack trace.
2741 */
2742 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2743 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2744 ret = -EROFS;
2745 goto out_writepages;
2746 }
2747
2748 if (ext4_should_dioread_nolock(inode)) {
2749 /*
2750 * We may need to convert up to one extent per block in
2751 * the page and we may dirty the inode.
2752 */
2753 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2754 }
2755
2756 /*
2757 * If we have inline data and arrive here, it means that
2758 * we will soon create the block for the 1st page, so
2759 * we'd better clear the inline data here.
2760 */
2761 if (ext4_has_inline_data(inode)) {
2762 /* Just inode will be modified... */
2763 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2764 if (IS_ERR(handle)) {
2765 ret = PTR_ERR(handle);
2766 goto out_writepages;
2767 }
2768 BUG_ON(ext4_test_inode_state(inode,
2769 EXT4_STATE_MAY_INLINE_DATA));
2770 ext4_destroy_inline_data(handle, inode);
2771 ext4_journal_stop(handle);
2772 }
2773
2774 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2775 range_whole = 1;
2776
2777 if (wbc->range_cyclic) {
2778 writeback_index = mapping->writeback_index;
2779 if (writeback_index)
2780 cycled = 0;
2781 mpd.first_page = writeback_index;
2782 mpd.last_page = -1;
2783 } else {
2784 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2785 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2786 }
2787
2788 mpd.inode = inode;
2789 mpd.wbc = wbc;
2790 ext4_io_submit_init(&mpd.io_submit, wbc);
2791retry:
2792 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2793 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2794 done = false;
2795 blk_start_plug(&plug);
2796
2797 /*
2798 * First writeback pages that don't need mapping - we can avoid
2799 * starting a transaction unnecessarily and also avoid being blocked
2800 * in the block layer on device congestion while having transaction
2801 * started.
2802 */
2803 mpd.do_map = 0;
2804 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2805 if (!mpd.io_submit.io_end) {
2806 ret = -ENOMEM;
2807 goto unplug;
2808 }
2809 ret = mpage_prepare_extent_to_map(&mpd);
2810 /* Submit prepared bio */
2811 ext4_io_submit(&mpd.io_submit);
2812 ext4_put_io_end_defer(mpd.io_submit.io_end);
2813 mpd.io_submit.io_end = NULL;
2814 /* Unlock pages we didn't use */
2815 mpage_release_unused_pages(&mpd, false);
2816 if (ret < 0)
2817 goto unplug;
2818
2819 while (!done && mpd.first_page <= mpd.last_page) {
2820 /* For each extent of pages we use new io_end */
2821 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2822 if (!mpd.io_submit.io_end) {
2823 ret = -ENOMEM;
2824 break;
2825 }
2826
2827 /*
2828 * We have two constraints: We find one extent to map and we
2829 * must always write out whole page (makes a difference when
2830 * blocksize < pagesize) so that we don't block on IO when we
2831 * try to write out the rest of the page. Journalled mode is
2832 * not supported by delalloc.
2833 */
2834 BUG_ON(ext4_should_journal_data(inode));
2835 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2836
2837 /* start a new transaction */
2838 handle = ext4_journal_start_with_reserve(inode,
2839 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2840 if (IS_ERR(handle)) {
2841 ret = PTR_ERR(handle);
2842 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2843 "%ld pages, ino %lu; err %d", __func__,
2844 wbc->nr_to_write, inode->i_ino, ret);
2845 /* Release allocated io_end */
2846 ext4_put_io_end(mpd.io_submit.io_end);
2847 mpd.io_submit.io_end = NULL;
2848 break;
2849 }
2850 mpd.do_map = 1;
2851
2852 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2853 ret = mpage_prepare_extent_to_map(&mpd);
2854 if (!ret) {
2855 if (mpd.map.m_len)
2856 ret = mpage_map_and_submit_extent(handle, &mpd,
2857 &give_up_on_write);
2858 else {
2859 /*
2860 * We scanned the whole range (or exhausted
2861 * nr_to_write), submitted what was mapped and
2862 * didn't find anything needing mapping. We are
2863 * done.
2864 */
2865 done = true;
2866 }
2867 }
2868 /*
2869 * Caution: If the handle is synchronous,
2870 * ext4_journal_stop() can wait for transaction commit
2871 * to finish which may depend on writeback of pages to
2872 * complete or on page lock to be released. In that
2873 * case, we have to wait until after after we have
2874 * submitted all the IO, released page locks we hold,
2875 * and dropped io_end reference (for extent conversion
2876 * to be able to complete) before stopping the handle.
2877 */
2878 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2879 ext4_journal_stop(handle);
2880 handle = NULL;
2881 mpd.do_map = 0;
2882 }
2883 /* Submit prepared bio */
2884 ext4_io_submit(&mpd.io_submit);
2885 /* Unlock pages we didn't use */
2886 mpage_release_unused_pages(&mpd, give_up_on_write);
2887 /*
2888 * Drop our io_end reference we got from init. We have
2889 * to be careful and use deferred io_end finishing if
2890 * we are still holding the transaction as we can
2891 * release the last reference to io_end which may end
2892 * up doing unwritten extent conversion.
2893 */
2894 if (handle) {
2895 ext4_put_io_end_defer(mpd.io_submit.io_end);
2896 ext4_journal_stop(handle);
2897 } else
2898 ext4_put_io_end(mpd.io_submit.io_end);
2899 mpd.io_submit.io_end = NULL;
2900
2901 if (ret == -ENOSPC && sbi->s_journal) {
2902 /*
2903 * Commit the transaction which would
2904 * free blocks released in the transaction
2905 * and try again
2906 */
2907 jbd2_journal_force_commit_nested(sbi->s_journal);
2908 ret = 0;
2909 continue;
2910 }
2911 /* Fatal error - ENOMEM, EIO... */
2912 if (ret)
2913 break;
2914 }
2915unplug:
2916 blk_finish_plug(&plug);
2917 if (!ret && !cycled && wbc->nr_to_write > 0) {
2918 cycled = 1;
2919 mpd.last_page = writeback_index - 1;
2920 mpd.first_page = 0;
2921 goto retry;
2922 }
2923
2924 /* Update index */
2925 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2926 /*
2927 * Set the writeback_index so that range_cyclic
2928 * mode will write it back later
2929 */
2930 mapping->writeback_index = mpd.first_page;
2931
2932out_writepages:
2933 trace_ext4_writepages_result(inode, wbc, ret,
2934 nr_to_write - wbc->nr_to_write);
2935 percpu_up_read(&sbi->s_journal_flag_rwsem);
2936 return ret;
2937}
2938
2939static int ext4_dax_writepages(struct address_space *mapping,
2940 struct writeback_control *wbc)
2941{
2942 int ret;
2943 long nr_to_write = wbc->nr_to_write;
2944 struct inode *inode = mapping->host;
2945 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2946
2947 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2948 return -EIO;
2949
2950 percpu_down_read(&sbi->s_journal_flag_rwsem);
2951 trace_ext4_writepages(inode, wbc);
2952
2953 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
2954 trace_ext4_writepages_result(inode, wbc, ret,
2955 nr_to_write - wbc->nr_to_write);
2956 percpu_up_read(&sbi->s_journal_flag_rwsem);
2957 return ret;
2958}
2959
2960static int ext4_nonda_switch(struct super_block *sb)
2961{
2962 s64 free_clusters, dirty_clusters;
2963 struct ext4_sb_info *sbi = EXT4_SB(sb);
2964
2965 /*
2966 * switch to non delalloc mode if we are running low
2967 * on free block. The free block accounting via percpu
2968 * counters can get slightly wrong with percpu_counter_batch getting
2969 * accumulated on each CPU without updating global counters
2970 * Delalloc need an accurate free block accounting. So switch
2971 * to non delalloc when we are near to error range.
2972 */
2973 free_clusters =
2974 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2975 dirty_clusters =
2976 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2977 /*
2978 * Start pushing delalloc when 1/2 of free blocks are dirty.
2979 */
2980 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2981 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2982
2983 if (2 * free_clusters < 3 * dirty_clusters ||
2984 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2985 /*
2986 * free block count is less than 150% of dirty blocks
2987 * or free blocks is less than watermark
2988 */
2989 return 1;
2990 }
2991 return 0;
2992}
2993
2994/* We always reserve for an inode update; the superblock could be there too */
2995static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2996{
2997 if (likely(ext4_has_feature_large_file(inode->i_sb)))
2998 return 1;
2999
3000 if (pos + len <= 0x7fffffffULL)
3001 return 1;
3002
3003 /* We might need to update the superblock to set LARGE_FILE */
3004 return 2;
3005}
3006
3007static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3008 loff_t pos, unsigned len, unsigned flags,
3009 struct page **pagep, void **fsdata)
3010{
3011 int ret, retries = 0;
3012 struct page *page;
3013 pgoff_t index;
3014 struct inode *inode = mapping->host;
3015 handle_t *handle;
3016
3017 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3018 return -EIO;
3019
3020 index = pos >> PAGE_SHIFT;
3021
3022 if (ext4_nonda_switch(inode->i_sb) ||
3023 S_ISLNK(inode->i_mode)) {
3024 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3025 return ext4_write_begin(file, mapping, pos,
3026 len, flags, pagep, fsdata);
3027 }
3028 *fsdata = (void *)0;
3029 trace_ext4_da_write_begin(inode, pos, len, flags);
3030
3031 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3032 ret = ext4_da_write_inline_data_begin(mapping, inode,
3033 pos, len, flags,
3034 pagep, fsdata);
3035 if (ret < 0)
3036 return ret;
3037 if (ret == 1)
3038 return 0;
3039 }
3040
3041 /*
3042 * grab_cache_page_write_begin() can take a long time if the
3043 * system is thrashing due to memory pressure, or if the page
3044 * is being written back. So grab it first before we start
3045 * the transaction handle. This also allows us to allocate
3046 * the page (if needed) without using GFP_NOFS.
3047 */
3048retry_grab:
3049 page = grab_cache_page_write_begin(mapping, index, flags);
3050 if (!page)
3051 return -ENOMEM;
3052 unlock_page(page);
3053
3054 /*
3055 * With delayed allocation, we don't log the i_disksize update
3056 * if there is delayed block allocation. But we still need
3057 * to journalling the i_disksize update if writes to the end
3058 * of file which has an already mapped buffer.
3059 */
3060retry_journal:
3061 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3062 ext4_da_write_credits(inode, pos, len));
3063 if (IS_ERR(handle)) {
3064 put_page(page);
3065 return PTR_ERR(handle);
3066 }
3067
3068 lock_page(page);
3069 if (page->mapping != mapping) {
3070 /* The page got truncated from under us */
3071 unlock_page(page);
3072 put_page(page);
3073 ext4_journal_stop(handle);
3074 goto retry_grab;
3075 }
3076 /* In case writeback began while the page was unlocked */
3077 wait_for_stable_page(page);
3078
3079#ifdef CONFIG_EXT4_FS_ENCRYPTION
3080 ret = ext4_block_write_begin(page, pos, len,
3081 ext4_da_get_block_prep);
3082#else
3083 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3084#endif
3085 if (ret < 0) {
3086 unlock_page(page);
3087 ext4_journal_stop(handle);
3088 /*
3089 * block_write_begin may have instantiated a few blocks
3090 * outside i_size. Trim these off again. Don't need
3091 * i_size_read because we hold i_mutex.
3092 */
3093 if (pos + len > inode->i_size)
3094 ext4_truncate_failed_write(inode);
3095
3096 if (ret == -ENOSPC &&
3097 ext4_should_retry_alloc(inode->i_sb, &retries))
3098 goto retry_journal;
3099
3100 put_page(page);
3101 return ret;
3102 }
3103
3104 *pagep = page;
3105 return ret;
3106}
3107
3108/*
3109 * Check if we should update i_disksize
3110 * when write to the end of file but not require block allocation
3111 */
3112static int ext4_da_should_update_i_disksize(struct page *page,
3113 unsigned long offset)
3114{
3115 struct buffer_head *bh;
3116 struct inode *inode = page->mapping->host;
3117 unsigned int idx;
3118 int i;
3119
3120 bh = page_buffers(page);
3121 idx = offset >> inode->i_blkbits;
3122
3123 for (i = 0; i < idx; i++)
3124 bh = bh->b_this_page;
3125
3126 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3127 return 0;
3128 return 1;
3129}
3130
3131static int ext4_da_write_end(struct file *file,
3132 struct address_space *mapping,
3133 loff_t pos, unsigned len, unsigned copied,
3134 struct page *page, void *fsdata)
3135{
3136 struct inode *inode = mapping->host;
3137 int ret = 0, ret2;
3138 handle_t *handle = ext4_journal_current_handle();
3139 loff_t new_i_size;
3140 unsigned long start, end;
3141 int write_mode = (int)(unsigned long)fsdata;
3142
3143 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3144 return ext4_write_end(file, mapping, pos,
3145 len, copied, page, fsdata);
3146
3147 trace_ext4_da_write_end(inode, pos, len, copied);
3148 start = pos & (PAGE_SIZE - 1);
3149 end = start + copied - 1;
3150
3151 /*
3152 * generic_write_end() will run mark_inode_dirty() if i_size
3153 * changes. So let's piggyback the i_disksize mark_inode_dirty
3154 * into that.
3155 */
3156 new_i_size = pos + copied;
3157 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3158 if (ext4_has_inline_data(inode) ||
3159 ext4_da_should_update_i_disksize(page, end)) {
3160 ext4_update_i_disksize(inode, new_i_size);
3161 /* We need to mark inode dirty even if
3162 * new_i_size is less that inode->i_size
3163 * bu greater than i_disksize.(hint delalloc)
3164 */
3165 ext4_mark_inode_dirty(handle, inode);
3166 }
3167 }
3168
3169 if (write_mode != CONVERT_INLINE_DATA &&
3170 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3171 ext4_has_inline_data(inode))
3172 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3173 page);
3174 else
3175 ret2 = generic_write_end(file, mapping, pos, len, copied,
3176 page, fsdata);
3177
3178 copied = ret2;
3179 if (ret2 < 0)
3180 ret = ret2;
3181 ret2 = ext4_journal_stop(handle);
3182 if (!ret)
3183 ret = ret2;
3184
3185 return ret ? ret : copied;
3186}
3187
3188static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3189 unsigned int length)
3190{
3191 /*
3192 * Drop reserved blocks
3193 */
3194 BUG_ON(!PageLocked(page));
3195 if (!page_has_buffers(page))
3196 goto out;
3197
3198 ext4_da_page_release_reservation(page, offset, length);
3199
3200out:
3201 ext4_invalidatepage(page, offset, length);
3202
3203 return;
3204}
3205
3206/*
3207 * Force all delayed allocation blocks to be allocated for a given inode.
3208 */
3209int ext4_alloc_da_blocks(struct inode *inode)
3210{
3211 trace_ext4_alloc_da_blocks(inode);
3212
3213 if (!EXT4_I(inode)->i_reserved_data_blocks)
3214 return 0;
3215
3216 /*
3217 * We do something simple for now. The filemap_flush() will
3218 * also start triggering a write of the data blocks, which is
3219 * not strictly speaking necessary (and for users of
3220 * laptop_mode, not even desirable). However, to do otherwise
3221 * would require replicating code paths in:
3222 *
3223 * ext4_writepages() ->
3224 * write_cache_pages() ---> (via passed in callback function)
3225 * __mpage_da_writepage() -->
3226 * mpage_add_bh_to_extent()
3227 * mpage_da_map_blocks()
3228 *
3229 * The problem is that write_cache_pages(), located in
3230 * mm/page-writeback.c, marks pages clean in preparation for
3231 * doing I/O, which is not desirable if we're not planning on
3232 * doing I/O at all.
3233 *
3234 * We could call write_cache_pages(), and then redirty all of
3235 * the pages by calling redirty_page_for_writepage() but that
3236 * would be ugly in the extreme. So instead we would need to
3237 * replicate parts of the code in the above functions,
3238 * simplifying them because we wouldn't actually intend to
3239 * write out the pages, but rather only collect contiguous
3240 * logical block extents, call the multi-block allocator, and
3241 * then update the buffer heads with the block allocations.
3242 *
3243 * For now, though, we'll cheat by calling filemap_flush(),
3244 * which will map the blocks, and start the I/O, but not
3245 * actually wait for the I/O to complete.
3246 */
3247 return filemap_flush(inode->i_mapping);
3248}
3249
3250/*
3251 * bmap() is special. It gets used by applications such as lilo and by
3252 * the swapper to find the on-disk block of a specific piece of data.
3253 *
3254 * Naturally, this is dangerous if the block concerned is still in the
3255 * journal. If somebody makes a swapfile on an ext4 data-journaling
3256 * filesystem and enables swap, then they may get a nasty shock when the
3257 * data getting swapped to that swapfile suddenly gets overwritten by
3258 * the original zero's written out previously to the journal and
3259 * awaiting writeback in the kernel's buffer cache.
3260 *
3261 * So, if we see any bmap calls here on a modified, data-journaled file,
3262 * take extra steps to flush any blocks which might be in the cache.
3263 */
3264static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3265{
3266 struct inode *inode = mapping->host;
3267 journal_t *journal;
3268 int err;
3269
3270 /*
3271 * We can get here for an inline file via the FIBMAP ioctl
3272 */
3273 if (ext4_has_inline_data(inode))
3274 return 0;
3275
3276 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3277 test_opt(inode->i_sb, DELALLOC)) {
3278 /*
3279 * With delalloc we want to sync the file
3280 * so that we can make sure we allocate
3281 * blocks for file
3282 */
3283 filemap_write_and_wait(mapping);
3284 }
3285
3286 if (EXT4_JOURNAL(inode) &&
3287 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3288 /*
3289 * This is a REALLY heavyweight approach, but the use of
3290 * bmap on dirty files is expected to be extremely rare:
3291 * only if we run lilo or swapon on a freshly made file
3292 * do we expect this to happen.
3293 *
3294 * (bmap requires CAP_SYS_RAWIO so this does not
3295 * represent an unprivileged user DOS attack --- we'd be
3296 * in trouble if mortal users could trigger this path at
3297 * will.)
3298 *
3299 * NB. EXT4_STATE_JDATA is not set on files other than
3300 * regular files. If somebody wants to bmap a directory
3301 * or symlink and gets confused because the buffer
3302 * hasn't yet been flushed to disk, they deserve
3303 * everything they get.
3304 */
3305
3306 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3307 journal = EXT4_JOURNAL(inode);
3308 jbd2_journal_lock_updates(journal);
3309 err = jbd2_journal_flush(journal);
3310 jbd2_journal_unlock_updates(journal);
3311
3312 if (err)
3313 return 0;
3314 }
3315
3316 return generic_block_bmap(mapping, block, ext4_get_block);
3317}
3318
3319static int ext4_readpage(struct file *file, struct page *page)
3320{
3321 int ret = -EAGAIN;
3322 struct inode *inode = page->mapping->host;
3323
3324 trace_ext4_readpage(page);
3325
3326 if (ext4_has_inline_data(inode))
3327 ret = ext4_readpage_inline(inode, page);
3328
3329 if (ret == -EAGAIN)
3330 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3331
3332 return ret;
3333}
3334
3335static int
3336ext4_readpages(struct file *file, struct address_space *mapping,
3337 struct list_head *pages, unsigned nr_pages)
3338{
3339 struct inode *inode = mapping->host;
3340
3341 /* If the file has inline data, no need to do readpages. */
3342 if (ext4_has_inline_data(inode))
3343 return 0;
3344
3345 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3346}
3347
3348static void ext4_invalidatepage(struct page *page, unsigned int offset,
3349 unsigned int length)
3350{
3351 trace_ext4_invalidatepage(page, offset, length);
3352
3353 /* No journalling happens on data buffers when this function is used */
3354 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3355
3356 block_invalidatepage(page, offset, length);
3357}
3358
3359static int __ext4_journalled_invalidatepage(struct page *page,
3360 unsigned int offset,
3361 unsigned int length)
3362{
3363 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3364
3365 trace_ext4_journalled_invalidatepage(page, offset, length);
3366
3367 /*
3368 * If it's a full truncate we just forget about the pending dirtying
3369 */
3370 if (offset == 0 && length == PAGE_SIZE)
3371 ClearPageChecked(page);
3372
3373 return jbd2_journal_invalidatepage(journal, page, offset, length);
3374}
3375
3376/* Wrapper for aops... */
3377static void ext4_journalled_invalidatepage(struct page *page,
3378 unsigned int offset,
3379 unsigned int length)
3380{
3381 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3382}
3383
3384static int ext4_releasepage(struct page *page, gfp_t wait)
3385{
3386 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3387
3388 trace_ext4_releasepage(page);
3389
3390 /* Page has dirty journalled data -> cannot release */
3391 if (PageChecked(page))
3392 return 0;
3393 if (journal)
3394 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3395 else
3396 return try_to_free_buffers(page);
3397}
3398
3399static bool ext4_inode_datasync_dirty(struct inode *inode)
3400{
3401 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3402
3403 if (journal)
3404 return !jbd2_transaction_committed(journal,
3405 EXT4_I(inode)->i_datasync_tid);
3406 /* Any metadata buffers to write? */
3407 if (!list_empty(&inode->i_mapping->private_list))
3408 return true;
3409 return inode->i_state & I_DIRTY_DATASYNC;
3410}
3411
3412static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3413 unsigned flags, struct iomap *iomap)
3414{
3415 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3416 unsigned int blkbits = inode->i_blkbits;
3417 unsigned long first_block = offset >> blkbits;
3418 unsigned long last_block = (offset + length - 1) >> blkbits;
3419 struct ext4_map_blocks map;
3420 bool delalloc = false;
3421 int ret;
3422
3423
3424 if (flags & IOMAP_REPORT) {
3425 if (ext4_has_inline_data(inode)) {
3426 ret = ext4_inline_data_iomap(inode, iomap);
3427 if (ret != -EAGAIN) {
3428 if (ret == 0 && offset >= iomap->length)
3429 ret = -ENOENT;
3430 return ret;
3431 }
3432 }
3433 } else {
3434 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3435 return -ERANGE;
3436 }
3437
3438 map.m_lblk = first_block;
3439 map.m_len = last_block - first_block + 1;
3440
3441 if (flags & IOMAP_REPORT) {
3442 ret = ext4_map_blocks(NULL, inode, &map, 0);
3443 if (ret < 0)
3444 return ret;
3445
3446 if (ret == 0) {
3447 ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3448 struct extent_status es;
3449
3450 ext4_es_find_delayed_extent_range(inode, map.m_lblk, end, &es);
3451
3452 if (!es.es_len || es.es_lblk > end) {
3453 /* entire range is a hole */
3454 } else if (es.es_lblk > map.m_lblk) {
3455 /* range starts with a hole */
3456 map.m_len = es.es_lblk - map.m_lblk;
3457 } else {
3458 ext4_lblk_t offs = 0;
3459
3460 if (es.es_lblk < map.m_lblk)
3461 offs = map.m_lblk - es.es_lblk;
3462 map.m_lblk = es.es_lblk + offs;
3463 map.m_len = es.es_len - offs;
3464 delalloc = true;
3465 }
3466 }
3467 } else if (flags & IOMAP_WRITE) {
3468 int dio_credits;
3469 handle_t *handle;
3470 int retries = 0;
3471
3472 /* Trim mapping request to maximum we can map at once for DIO */
3473 if (map.m_len > DIO_MAX_BLOCKS)
3474 map.m_len = DIO_MAX_BLOCKS;
3475 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3476retry:
3477 /*
3478 * Either we allocate blocks and then we don't get unwritten
3479 * extent so we have reserved enough credits, or the blocks
3480 * are already allocated and unwritten and in that case
3481 * extent conversion fits in the credits as well.
3482 */
3483 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3484 dio_credits);
3485 if (IS_ERR(handle))
3486 return PTR_ERR(handle);
3487
3488 ret = ext4_map_blocks(handle, inode, &map,
3489 EXT4_GET_BLOCKS_CREATE_ZERO);
3490 if (ret < 0) {
3491 ext4_journal_stop(handle);
3492 if (ret == -ENOSPC &&
3493 ext4_should_retry_alloc(inode->i_sb, &retries))
3494 goto retry;
3495 return ret;
3496 }
3497
3498 /*
3499 * If we added blocks beyond i_size, we need to make sure they
3500 * will get truncated if we crash before updating i_size in
3501 * ext4_iomap_end(). For faults we don't need to do that (and
3502 * even cannot because for orphan list operations inode_lock is
3503 * required) - if we happen to instantiate block beyond i_size,
3504 * it is because we race with truncate which has already added
3505 * the inode to the orphan list.
3506 */
3507 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3508 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3509 int err;
3510
3511 err = ext4_orphan_add(handle, inode);
3512 if (err < 0) {
3513 ext4_journal_stop(handle);
3514 return err;
3515 }
3516 }
3517 ext4_journal_stop(handle);
3518 } else {
3519 ret = ext4_map_blocks(NULL, inode, &map, 0);
3520 if (ret < 0)
3521 return ret;
3522 }
3523
3524 iomap->flags = 0;
3525 if (ext4_inode_datasync_dirty(inode))
3526 iomap->flags |= IOMAP_F_DIRTY;
3527 iomap->bdev = inode->i_sb->s_bdev;
3528 iomap->dax_dev = sbi->s_daxdev;
3529 iomap->offset = (u64)first_block << blkbits;
3530 iomap->length = (u64)map.m_len << blkbits;
3531
3532 if (ret == 0) {
3533 iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
3534 iomap->addr = IOMAP_NULL_ADDR;
3535 } else {
3536 if (map.m_flags & EXT4_MAP_MAPPED) {
3537 iomap->type = IOMAP_MAPPED;
3538 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3539 iomap->type = IOMAP_UNWRITTEN;
3540 } else {
3541 WARN_ON_ONCE(1);
3542 return -EIO;
3543 }
3544 iomap->addr = (u64)map.m_pblk << blkbits;
3545 }
3546
3547 if (map.m_flags & EXT4_MAP_NEW)
3548 iomap->flags |= IOMAP_F_NEW;
3549
3550 return 0;
3551}
3552
3553static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3554 ssize_t written, unsigned flags, struct iomap *iomap)
3555{
3556 int ret = 0;
3557 handle_t *handle;
3558 int blkbits = inode->i_blkbits;
3559 bool truncate = false;
3560
3561 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3562 return 0;
3563
3564 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3565 if (IS_ERR(handle)) {
3566 ret = PTR_ERR(handle);
3567 goto orphan_del;
3568 }
3569 if (ext4_update_inode_size(inode, offset + written))
3570 ext4_mark_inode_dirty(handle, inode);
3571 /*
3572 * We may need to truncate allocated but not written blocks beyond EOF.
3573 */
3574 if (iomap->offset + iomap->length >
3575 ALIGN(inode->i_size, 1 << blkbits)) {
3576 ext4_lblk_t written_blk, end_blk;
3577
3578 written_blk = (offset + written) >> blkbits;
3579 end_blk = (offset + length) >> blkbits;
3580 if (written_blk < end_blk && ext4_can_truncate(inode))
3581 truncate = true;
3582 }
3583 /*
3584 * Remove inode from orphan list if we were extending a inode and
3585 * everything went fine.
3586 */
3587 if (!truncate && inode->i_nlink &&
3588 !list_empty(&EXT4_I(inode)->i_orphan))
3589 ext4_orphan_del(handle, inode);
3590 ext4_journal_stop(handle);
3591 if (truncate) {
3592 ext4_truncate_failed_write(inode);
3593orphan_del:
3594 /*
3595 * If truncate failed early the inode might still be on the
3596 * orphan list; we need to make sure the inode is removed from
3597 * the orphan list in that case.
3598 */
3599 if (inode->i_nlink)
3600 ext4_orphan_del(NULL, inode);
3601 }
3602 return ret;
3603}
3604
3605const struct iomap_ops ext4_iomap_ops = {
3606 .iomap_begin = ext4_iomap_begin,
3607 .iomap_end = ext4_iomap_end,
3608};
3609
3610static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3611 ssize_t size, void *private)
3612{
3613 ext4_io_end_t *io_end = private;
3614
3615 /* if not async direct IO just return */
3616 if (!io_end)
3617 return 0;
3618
3619 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3620 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3621 io_end, io_end->inode->i_ino, iocb, offset, size);
3622
3623 /*
3624 * Error during AIO DIO. We cannot convert unwritten extents as the
3625 * data was not written. Just clear the unwritten flag and drop io_end.
3626 */
3627 if (size <= 0) {
3628 ext4_clear_io_unwritten_flag(io_end);
3629 size = 0;
3630 }
3631 io_end->offset = offset;
3632 io_end->size = size;
3633 ext4_put_io_end(io_end);
3634
3635 return 0;
3636}
3637
3638/*
3639 * Handling of direct IO writes.
3640 *
3641 * For ext4 extent files, ext4 will do direct-io write even to holes,
3642 * preallocated extents, and those write extend the file, no need to
3643 * fall back to buffered IO.
3644 *
3645 * For holes, we fallocate those blocks, mark them as unwritten
3646 * If those blocks were preallocated, we mark sure they are split, but
3647 * still keep the range to write as unwritten.
3648 *
3649 * The unwritten extents will be converted to written when DIO is completed.
3650 * For async direct IO, since the IO may still pending when return, we
3651 * set up an end_io call back function, which will do the conversion
3652 * when async direct IO completed.
3653 *
3654 * If the O_DIRECT write will extend the file then add this inode to the
3655 * orphan list. So recovery will truncate it back to the original size
3656 * if the machine crashes during the write.
3657 *
3658 */
3659static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3660{
3661 struct file *file = iocb->ki_filp;
3662 struct inode *inode = file->f_mapping->host;
3663 struct ext4_inode_info *ei = EXT4_I(inode);
3664 ssize_t ret;
3665 loff_t offset = iocb->ki_pos;
3666 size_t count = iov_iter_count(iter);
3667 int overwrite = 0;
3668 get_block_t *get_block_func = NULL;
3669 int dio_flags = 0;
3670 loff_t final_size = offset + count;
3671 int orphan = 0;
3672 handle_t *handle;
3673
3674 if (final_size > inode->i_size || final_size > ei->i_disksize) {
3675 /* Credits for sb + inode write */
3676 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3677 if (IS_ERR(handle)) {
3678 ret = PTR_ERR(handle);
3679 goto out;
3680 }
3681 ret = ext4_orphan_add(handle, inode);
3682 if (ret) {
3683 ext4_journal_stop(handle);
3684 goto out;
3685 }
3686 orphan = 1;
3687 ext4_update_i_disksize(inode, inode->i_size);
3688 ext4_journal_stop(handle);
3689 }
3690
3691 BUG_ON(iocb->private == NULL);
3692
3693 /*
3694 * Make all waiters for direct IO properly wait also for extent
3695 * conversion. This also disallows race between truncate() and
3696 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3697 */
3698 inode_dio_begin(inode);
3699
3700 /* If we do a overwrite dio, i_mutex locking can be released */
3701 overwrite = *((int *)iocb->private);
3702
3703 if (overwrite)
3704 inode_unlock(inode);
3705
3706 /*
3707 * For extent mapped files we could direct write to holes and fallocate.
3708 *
3709 * Allocated blocks to fill the hole are marked as unwritten to prevent
3710 * parallel buffered read to expose the stale data before DIO complete
3711 * the data IO.
3712 *
3713 * As to previously fallocated extents, ext4 get_block will just simply
3714 * mark the buffer mapped but still keep the extents unwritten.
3715 *
3716 * For non AIO case, we will convert those unwritten extents to written
3717 * after return back from blockdev_direct_IO. That way we save us from
3718 * allocating io_end structure and also the overhead of offloading
3719 * the extent convertion to a workqueue.
3720 *
3721 * For async DIO, the conversion needs to be deferred when the
3722 * IO is completed. The ext4 end_io callback function will be
3723 * called to take care of the conversion work. Here for async
3724 * case, we allocate an io_end structure to hook to the iocb.
3725 */
3726 iocb->private = NULL;
3727 if (overwrite)
3728 get_block_func = ext4_dio_get_block_overwrite;
3729 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3730 round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3731 get_block_func = ext4_dio_get_block;
3732 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3733 } else if (is_sync_kiocb(iocb)) {
3734 get_block_func = ext4_dio_get_block_unwritten_sync;
3735 dio_flags = DIO_LOCKING;
3736 } else {
3737 get_block_func = ext4_dio_get_block_unwritten_async;
3738 dio_flags = DIO_LOCKING;
3739 }
3740 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3741 get_block_func, ext4_end_io_dio, NULL,
3742 dio_flags);
3743
3744 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3745 EXT4_STATE_DIO_UNWRITTEN)) {
3746 int err;
3747 /*
3748 * for non AIO case, since the IO is already
3749 * completed, we could do the conversion right here
3750 */
3751 err = ext4_convert_unwritten_extents(NULL, inode,
3752 offset, ret);
3753 if (err < 0)
3754 ret = err;
3755 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3756 }
3757
3758 inode_dio_end(inode);
3759 /* take i_mutex locking again if we do a ovewrite dio */
3760 if (overwrite)
3761 inode_lock(inode);
3762
3763 if (ret < 0 && final_size > inode->i_size)
3764 ext4_truncate_failed_write(inode);
3765
3766 /* Handle extending of i_size after direct IO write */
3767 if (orphan) {
3768 int err;
3769
3770 /* Credits for sb + inode write */
3771 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3772 if (IS_ERR(handle)) {
3773 /*
3774 * We wrote the data but cannot extend
3775 * i_size. Bail out. In async io case, we do
3776 * not return error here because we have
3777 * already submmitted the corresponding
3778 * bio. Returning error here makes the caller
3779 * think that this IO is done and failed
3780 * resulting in race with bio's completion
3781 * handler.
3782 */
3783 if (!ret)
3784 ret = PTR_ERR(handle);
3785 if (inode->i_nlink)
3786 ext4_orphan_del(NULL, inode);
3787
3788 goto out;
3789 }
3790 if (inode->i_nlink)
3791 ext4_orphan_del(handle, inode);
3792 if (ret > 0) {
3793 loff_t end = offset + ret;
3794 if (end > inode->i_size || end > ei->i_disksize) {
3795 ext4_update_i_disksize(inode, end);
3796 if (end > inode->i_size)
3797 i_size_write(inode, end);
3798 /*
3799 * We're going to return a positive `ret'
3800 * here due to non-zero-length I/O, so there's
3801 * no way of reporting error returns from
3802 * ext4_mark_inode_dirty() to userspace. So
3803 * ignore it.
3804 */
3805 ext4_mark_inode_dirty(handle, inode);
3806 }
3807 }
3808 err = ext4_journal_stop(handle);
3809 if (ret == 0)
3810 ret = err;
3811 }
3812out:
3813 return ret;
3814}
3815
3816static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3817{
3818 struct address_space *mapping = iocb->ki_filp->f_mapping;
3819 struct inode *inode = mapping->host;
3820 size_t count = iov_iter_count(iter);
3821 ssize_t ret;
3822
3823 /*
3824 * Shared inode_lock is enough for us - it protects against concurrent
3825 * writes & truncates and since we take care of writing back page cache,
3826 * we are protected against page writeback as well.
3827 */
3828 inode_lock_shared(inode);
3829 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3830 iocb->ki_pos + count - 1);
3831 if (ret)
3832 goto out_unlock;
3833 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3834 iter, ext4_dio_get_block, NULL, NULL, 0);
3835out_unlock:
3836 inode_unlock_shared(inode);
3837 return ret;
3838}
3839
3840static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3841{
3842 struct file *file = iocb->ki_filp;
3843 struct inode *inode = file->f_mapping->host;
3844 size_t count = iov_iter_count(iter);
3845 loff_t offset = iocb->ki_pos;
3846 ssize_t ret;
3847
3848#ifdef CONFIG_EXT4_FS_ENCRYPTION
3849 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3850 return 0;
3851#endif
3852
3853 /*
3854 * If we are doing data journalling we don't support O_DIRECT
3855 */
3856 if (ext4_should_journal_data(inode))
3857 return 0;
3858
3859 /* Let buffer I/O handle the inline data case. */
3860 if (ext4_has_inline_data(inode))
3861 return 0;
3862
3863 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3864 if (iov_iter_rw(iter) == READ)
3865 ret = ext4_direct_IO_read(iocb, iter);
3866 else
3867 ret = ext4_direct_IO_write(iocb, iter);
3868 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3869 return ret;
3870}
3871
3872/*
3873 * Pages can be marked dirty completely asynchronously from ext4's journalling
3874 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3875 * much here because ->set_page_dirty is called under VFS locks. The page is
3876 * not necessarily locked.
3877 *
3878 * We cannot just dirty the page and leave attached buffers clean, because the
3879 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3880 * or jbddirty because all the journalling code will explode.
3881 *
3882 * So what we do is to mark the page "pending dirty" and next time writepage
3883 * is called, propagate that into the buffers appropriately.
3884 */
3885static int ext4_journalled_set_page_dirty(struct page *page)
3886{
3887 SetPageChecked(page);
3888 return __set_page_dirty_nobuffers(page);
3889}
3890
3891static int ext4_set_page_dirty(struct page *page)
3892{
3893 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3894 WARN_ON_ONCE(!page_has_buffers(page));
3895 return __set_page_dirty_buffers(page);
3896}
3897
3898static const struct address_space_operations ext4_aops = {
3899 .readpage = ext4_readpage,
3900 .readpages = ext4_readpages,
3901 .writepage = ext4_writepage,
3902 .writepages = ext4_writepages,
3903 .write_begin = ext4_write_begin,
3904 .write_end = ext4_write_end,
3905 .set_page_dirty = ext4_set_page_dirty,
3906 .bmap = ext4_bmap,
3907 .invalidatepage = ext4_invalidatepage,
3908 .releasepage = ext4_releasepage,
3909 .direct_IO = ext4_direct_IO,
3910 .migratepage = buffer_migrate_page,
3911 .is_partially_uptodate = block_is_partially_uptodate,
3912 .error_remove_page = generic_error_remove_page,
3913};
3914
3915static const struct address_space_operations ext4_journalled_aops = {
3916 .readpage = ext4_readpage,
3917 .readpages = ext4_readpages,
3918 .writepage = ext4_writepage,
3919 .writepages = ext4_writepages,
3920 .write_begin = ext4_write_begin,
3921 .write_end = ext4_journalled_write_end,
3922 .set_page_dirty = ext4_journalled_set_page_dirty,
3923 .bmap = ext4_bmap,
3924 .invalidatepage = ext4_journalled_invalidatepage,
3925 .releasepage = ext4_releasepage,
3926 .direct_IO = ext4_direct_IO,
3927 .is_partially_uptodate = block_is_partially_uptodate,
3928 .error_remove_page = generic_error_remove_page,
3929};
3930
3931static const struct address_space_operations ext4_da_aops = {
3932 .readpage = ext4_readpage,
3933 .readpages = ext4_readpages,
3934 .writepage = ext4_writepage,
3935 .writepages = ext4_writepages,
3936 .write_begin = ext4_da_write_begin,
3937 .write_end = ext4_da_write_end,
3938 .set_page_dirty = ext4_set_page_dirty,
3939 .bmap = ext4_bmap,
3940 .invalidatepage = ext4_da_invalidatepage,
3941 .releasepage = ext4_releasepage,
3942 .direct_IO = ext4_direct_IO,
3943 .migratepage = buffer_migrate_page,
3944 .is_partially_uptodate = block_is_partially_uptodate,
3945 .error_remove_page = generic_error_remove_page,
3946};
3947
3948static const struct address_space_operations ext4_dax_aops = {
3949 .writepages = ext4_dax_writepages,
3950 .direct_IO = noop_direct_IO,
3951 .set_page_dirty = noop_set_page_dirty,
3952 .invalidatepage = noop_invalidatepage,
3953};
3954
3955void ext4_set_aops(struct inode *inode)
3956{
3957 switch (ext4_inode_journal_mode(inode)) {
3958 case EXT4_INODE_ORDERED_DATA_MODE:
3959 case EXT4_INODE_WRITEBACK_DATA_MODE:
3960 break;
3961 case EXT4_INODE_JOURNAL_DATA_MODE:
3962 inode->i_mapping->a_ops = &ext4_journalled_aops;
3963 return;
3964 default:
3965 BUG();
3966 }
3967 if (IS_DAX(inode))
3968 inode->i_mapping->a_ops = &ext4_dax_aops;
3969 else if (test_opt(inode->i_sb, DELALLOC))
3970 inode->i_mapping->a_ops = &ext4_da_aops;
3971 else
3972 inode->i_mapping->a_ops = &ext4_aops;
3973}
3974
3975static int __ext4_block_zero_page_range(handle_t *handle,
3976 struct address_space *mapping, loff_t from, loff_t length)
3977{
3978 ext4_fsblk_t index = from >> PAGE_SHIFT;
3979 unsigned offset = from & (PAGE_SIZE-1);
3980 unsigned blocksize, pos;
3981 ext4_lblk_t iblock;
3982 struct inode *inode = mapping->host;
3983 struct buffer_head *bh;
3984 struct page *page;
3985 int err = 0;
3986
3987 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3988 mapping_gfp_constraint(mapping, ~__GFP_FS));
3989 if (!page)
3990 return -ENOMEM;
3991
3992 blocksize = inode->i_sb->s_blocksize;
3993
3994 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3995
3996 if (!page_has_buffers(page))
3997 create_empty_buffers(page, blocksize, 0);
3998
3999 /* Find the buffer that contains "offset" */
4000 bh = page_buffers(page);
4001 pos = blocksize;
4002 while (offset >= pos) {
4003 bh = bh->b_this_page;
4004 iblock++;
4005 pos += blocksize;
4006 }
4007 if (buffer_freed(bh)) {
4008 BUFFER_TRACE(bh, "freed: skip");
4009 goto unlock;
4010 }
4011 if (!buffer_mapped(bh)) {
4012 BUFFER_TRACE(bh, "unmapped");
4013 ext4_get_block(inode, iblock, bh, 0);
4014 /* unmapped? It's a hole - nothing to do */
4015 if (!buffer_mapped(bh)) {
4016 BUFFER_TRACE(bh, "still unmapped");
4017 goto unlock;
4018 }
4019 }
4020
4021 /* Ok, it's mapped. Make sure it's up-to-date */
4022 if (PageUptodate(page))
4023 set_buffer_uptodate(bh);
4024
4025 if (!buffer_uptodate(bh)) {
4026 err = -EIO;
4027 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4028 wait_on_buffer(bh);
4029 /* Uhhuh. Read error. Complain and punt. */
4030 if (!buffer_uptodate(bh))
4031 goto unlock;
4032 if (S_ISREG(inode->i_mode) &&
4033 ext4_encrypted_inode(inode)) {
4034 /* We expect the key to be set. */
4035 BUG_ON(!fscrypt_has_encryption_key(inode));
4036 BUG_ON(blocksize != PAGE_SIZE);
4037 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
4038 page, PAGE_SIZE, 0, page->index));
4039 }
4040 }
4041 if (ext4_should_journal_data(inode)) {
4042 BUFFER_TRACE(bh, "get write access");
4043 err = ext4_journal_get_write_access(handle, bh);
4044 if (err)
4045 goto unlock;
4046 }
4047 zero_user(page, offset, length);
4048 BUFFER_TRACE(bh, "zeroed end of block");
4049
4050 if (ext4_should_journal_data(inode)) {
4051 err = ext4_handle_dirty_metadata(handle, inode, bh);
4052 } else {
4053 err = 0;
4054 mark_buffer_dirty(bh);
4055 if (ext4_should_order_data(inode))
4056 err = ext4_jbd2_inode_add_write(handle, inode);
4057 }
4058
4059unlock:
4060 unlock_page(page);
4061 put_page(page);
4062 return err;
4063}
4064
4065/*
4066 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4067 * starting from file offset 'from'. The range to be zero'd must
4068 * be contained with in one block. If the specified range exceeds
4069 * the end of the block it will be shortened to end of the block
4070 * that cooresponds to 'from'
4071 */
4072static int ext4_block_zero_page_range(handle_t *handle,
4073 struct address_space *mapping, loff_t from, loff_t length)
4074{
4075 struct inode *inode = mapping->host;
4076 unsigned offset = from & (PAGE_SIZE-1);
4077 unsigned blocksize = inode->i_sb->s_blocksize;
4078 unsigned max = blocksize - (offset & (blocksize - 1));
4079
4080 /*
4081 * correct length if it does not fall between
4082 * 'from' and the end of the block
4083 */
4084 if (length > max || length < 0)
4085 length = max;
4086
4087 if (IS_DAX(inode)) {
4088 return iomap_zero_range(inode, from, length, NULL,
4089 &ext4_iomap_ops);
4090 }
4091 return __ext4_block_zero_page_range(handle, mapping, from, length);
4092}
4093
4094/*
4095 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4096 * up to the end of the block which corresponds to `from'.
4097 * This required during truncate. We need to physically zero the tail end
4098 * of that block so it doesn't yield old data if the file is later grown.
4099 */
4100static int ext4_block_truncate_page(handle_t *handle,
4101 struct address_space *mapping, loff_t from)
4102{
4103 unsigned offset = from & (PAGE_SIZE-1);
4104 unsigned length;
4105 unsigned blocksize;
4106 struct inode *inode = mapping->host;
4107
4108 /* If we are processing an encrypted inode during orphan list handling */
4109 if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4110 return 0;
4111
4112 blocksize = inode->i_sb->s_blocksize;
4113 length = blocksize - (offset & (blocksize - 1));
4114
4115 return ext4_block_zero_page_range(handle, mapping, from, length);
4116}
4117
4118int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4119 loff_t lstart, loff_t length)
4120{
4121 struct super_block *sb = inode->i_sb;
4122 struct address_space *mapping = inode->i_mapping;
4123 unsigned partial_start, partial_end;
4124 ext4_fsblk_t start, end;
4125 loff_t byte_end = (lstart + length - 1);
4126 int err = 0;
4127
4128 partial_start = lstart & (sb->s_blocksize - 1);
4129 partial_end = byte_end & (sb->s_blocksize - 1);
4130
4131 start = lstart >> sb->s_blocksize_bits;
4132 end = byte_end >> sb->s_blocksize_bits;
4133
4134 /* Handle partial zero within the single block */
4135 if (start == end &&
4136 (partial_start || (partial_end != sb->s_blocksize - 1))) {
4137 err = ext4_block_zero_page_range(handle, mapping,
4138 lstart, length);
4139 return err;
4140 }
4141 /* Handle partial zero out on the start of the range */
4142 if (partial_start) {
4143 err = ext4_block_zero_page_range(handle, mapping,
4144 lstart, sb->s_blocksize);
4145 if (err)
4146 return err;
4147 }
4148 /* Handle partial zero out on the end of the range */
4149 if (partial_end != sb->s_blocksize - 1)
4150 err = ext4_block_zero_page_range(handle, mapping,
4151 byte_end - partial_end,
4152 partial_end + 1);
4153 return err;
4154}
4155
4156int ext4_can_truncate(struct inode *inode)
4157{
4158 if (S_ISREG(inode->i_mode))
4159 return 1;
4160 if (S_ISDIR(inode->i_mode))
4161 return 1;
4162 if (S_ISLNK(inode->i_mode))
4163 return !ext4_inode_is_fast_symlink(inode);
4164 return 0;
4165}
4166
4167/*
4168 * We have to make sure i_disksize gets properly updated before we truncate
4169 * page cache due to hole punching or zero range. Otherwise i_disksize update
4170 * can get lost as it may have been postponed to submission of writeback but
4171 * that will never happen after we truncate page cache.
4172 */
4173int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4174 loff_t len)
4175{
4176 handle_t *handle;
4177 loff_t size = i_size_read(inode);
4178
4179 WARN_ON(!inode_is_locked(inode));
4180 if (offset > size || offset + len < size)
4181 return 0;
4182
4183 if (EXT4_I(inode)->i_disksize >= size)
4184 return 0;
4185
4186 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4187 if (IS_ERR(handle))
4188 return PTR_ERR(handle);
4189 ext4_update_i_disksize(inode, size);
4190 ext4_mark_inode_dirty(handle, inode);
4191 ext4_journal_stop(handle);
4192
4193 return 0;
4194}
4195
4196/*
4197 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4198 * associated with the given offset and length
4199 *
4200 * @inode: File inode
4201 * @offset: The offset where the hole will begin
4202 * @len: The length of the hole
4203 *
4204 * Returns: 0 on success or negative on failure
4205 */
4206
4207int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4208{
4209 struct super_block *sb = inode->i_sb;
4210 ext4_lblk_t first_block, stop_block;
4211 struct address_space *mapping = inode->i_mapping;
4212 loff_t first_block_offset, last_block_offset;
4213 handle_t *handle;
4214 unsigned int credits;
4215 int ret = 0;
4216
4217 if (!S_ISREG(inode->i_mode))
4218 return -EOPNOTSUPP;
4219
4220 trace_ext4_punch_hole(inode, offset, length, 0);
4221
4222 /*
4223 * Write out all dirty pages to avoid race conditions
4224 * Then release them.
4225 */
4226 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4227 ret = filemap_write_and_wait_range(mapping, offset,
4228 offset + length - 1);
4229 if (ret)
4230 return ret;
4231 }
4232
4233 inode_lock(inode);
4234
4235 /* No need to punch hole beyond i_size */
4236 if (offset >= inode->i_size)
4237 goto out_mutex;
4238
4239 /*
4240 * If the hole extends beyond i_size, set the hole
4241 * to end after the page that contains i_size
4242 */
4243 if (offset + length > inode->i_size) {
4244 length = inode->i_size +
4245 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4246 offset;
4247 }
4248
4249 if (offset & (sb->s_blocksize - 1) ||
4250 (offset + length) & (sb->s_blocksize - 1)) {
4251 /*
4252 * Attach jinode to inode for jbd2 if we do any zeroing of
4253 * partial block
4254 */
4255 ret = ext4_inode_attach_jinode(inode);
4256 if (ret < 0)
4257 goto out_mutex;
4258
4259 }
4260
4261 /* Wait all existing dio workers, newcomers will block on i_mutex */
4262 inode_dio_wait(inode);
4263
4264 /*
4265 * Prevent page faults from reinstantiating pages we have released from
4266 * page cache.
4267 */
4268 down_write(&EXT4_I(inode)->i_mmap_sem);
4269 first_block_offset = round_up(offset, sb->s_blocksize);
4270 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4271
4272 /* Now release the pages and zero block aligned part of pages*/
4273 if (last_block_offset > first_block_offset) {
4274 ret = ext4_update_disksize_before_punch(inode, offset, length);
4275 if (ret)
4276 goto out_dio;
4277 truncate_pagecache_range(inode, first_block_offset,
4278 last_block_offset);
4279 }
4280
4281 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4282 credits = ext4_writepage_trans_blocks(inode);
4283 else
4284 credits = ext4_blocks_for_truncate(inode);
4285 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4286 if (IS_ERR(handle)) {
4287 ret = PTR_ERR(handle);
4288 ext4_std_error(sb, ret);
4289 goto out_dio;
4290 }
4291
4292 ret = ext4_zero_partial_blocks(handle, inode, offset,
4293 length);
4294 if (ret)
4295 goto out_stop;
4296
4297 first_block = (offset + sb->s_blocksize - 1) >>
4298 EXT4_BLOCK_SIZE_BITS(sb);
4299 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4300
4301 /* If there are no blocks to remove, return now */
4302 if (first_block >= stop_block)
4303 goto out_stop;
4304
4305 down_write(&EXT4_I(inode)->i_data_sem);
4306 ext4_discard_preallocations(inode);
4307
4308 ret = ext4_es_remove_extent(inode, first_block,
4309 stop_block - first_block);
4310 if (ret) {
4311 up_write(&EXT4_I(inode)->i_data_sem);
4312 goto out_stop;
4313 }
4314
4315 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4316 ret = ext4_ext_remove_space(inode, first_block,
4317 stop_block - 1);
4318 else
4319 ret = ext4_ind_remove_space(handle, inode, first_block,
4320 stop_block);
4321
4322 up_write(&EXT4_I(inode)->i_data_sem);
4323 if (IS_SYNC(inode))
4324 ext4_handle_sync(handle);
4325
4326 inode->i_mtime = inode->i_ctime = current_time(inode);
4327 ext4_mark_inode_dirty(handle, inode);
4328 if (ret >= 0)
4329 ext4_update_inode_fsync_trans(handle, inode, 1);
4330out_stop:
4331 ext4_journal_stop(handle);
4332out_dio:
4333 up_write(&EXT4_I(inode)->i_mmap_sem);
4334out_mutex:
4335 inode_unlock(inode);
4336 return ret;
4337}
4338
4339int ext4_inode_attach_jinode(struct inode *inode)
4340{
4341 struct ext4_inode_info *ei = EXT4_I(inode);
4342 struct jbd2_inode *jinode;
4343
4344 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4345 return 0;
4346
4347 jinode = jbd2_alloc_inode(GFP_KERNEL);
4348 spin_lock(&inode->i_lock);
4349 if (!ei->jinode) {
4350 if (!jinode) {
4351 spin_unlock(&inode->i_lock);
4352 return -ENOMEM;
4353 }
4354 ei->jinode = jinode;
4355 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4356 jinode = NULL;
4357 }
4358 spin_unlock(&inode->i_lock);
4359 if (unlikely(jinode != NULL))
4360 jbd2_free_inode(jinode);
4361 return 0;
4362}
4363
4364/*
4365 * ext4_truncate()
4366 *
4367 * We block out ext4_get_block() block instantiations across the entire
4368 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4369 * simultaneously on behalf of the same inode.
4370 *
4371 * As we work through the truncate and commit bits of it to the journal there
4372 * is one core, guiding principle: the file's tree must always be consistent on
4373 * disk. We must be able to restart the truncate after a crash.
4374 *
4375 * The file's tree may be transiently inconsistent in memory (although it
4376 * probably isn't), but whenever we close off and commit a journal transaction,
4377 * the contents of (the filesystem + the journal) must be consistent and
4378 * restartable. It's pretty simple, really: bottom up, right to left (although
4379 * left-to-right works OK too).
4380 *
4381 * Note that at recovery time, journal replay occurs *before* the restart of
4382 * truncate against the orphan inode list.
4383 *
4384 * The committed inode has the new, desired i_size (which is the same as
4385 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4386 * that this inode's truncate did not complete and it will again call
4387 * ext4_truncate() to have another go. So there will be instantiated blocks
4388 * to the right of the truncation point in a crashed ext4 filesystem. But
4389 * that's fine - as long as they are linked from the inode, the post-crash
4390 * ext4_truncate() run will find them and release them.
4391 */
4392int ext4_truncate(struct inode *inode)
4393{
4394 struct ext4_inode_info *ei = EXT4_I(inode);
4395 unsigned int credits;
4396 int err = 0;
4397 handle_t *handle;
4398 struct address_space *mapping = inode->i_mapping;
4399
4400 /*
4401 * There is a possibility that we're either freeing the inode
4402 * or it's a completely new inode. In those cases we might not
4403 * have i_mutex locked because it's not necessary.
4404 */
4405 if (!(inode->i_state & (I_NEW|I_FREEING)))
4406 WARN_ON(!inode_is_locked(inode));
4407 trace_ext4_truncate_enter(inode);
4408
4409 if (!ext4_can_truncate(inode))
4410 return 0;
4411
4412 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4413
4414 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4415 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4416
4417 if (ext4_has_inline_data(inode)) {
4418 int has_inline = 1;
4419
4420 err = ext4_inline_data_truncate(inode, &has_inline);
4421 if (err)
4422 return err;
4423 if (has_inline)
4424 return 0;
4425 }
4426
4427 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4428 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4429 if (ext4_inode_attach_jinode(inode) < 0)
4430 return 0;
4431 }
4432
4433 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4434 credits = ext4_writepage_trans_blocks(inode);
4435 else
4436 credits = ext4_blocks_for_truncate(inode);
4437
4438 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4439 if (IS_ERR(handle))
4440 return PTR_ERR(handle);
4441
4442 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4443 ext4_block_truncate_page(handle, mapping, inode->i_size);
4444
4445 /*
4446 * We add the inode to the orphan list, so that if this
4447 * truncate spans multiple transactions, and we crash, we will
4448 * resume the truncate when the filesystem recovers. It also
4449 * marks the inode dirty, to catch the new size.
4450 *
4451 * Implication: the file must always be in a sane, consistent
4452 * truncatable state while each transaction commits.
4453 */
4454 err = ext4_orphan_add(handle, inode);
4455 if (err)
4456 goto out_stop;
4457
4458 down_write(&EXT4_I(inode)->i_data_sem);
4459
4460 ext4_discard_preallocations(inode);
4461
4462 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4463 err = ext4_ext_truncate(handle, inode);
4464 else
4465 ext4_ind_truncate(handle, inode);
4466
4467 up_write(&ei->i_data_sem);
4468 if (err)
4469 goto out_stop;
4470
4471 if (IS_SYNC(inode))
4472 ext4_handle_sync(handle);
4473
4474out_stop:
4475 /*
4476 * If this was a simple ftruncate() and the file will remain alive,
4477 * then we need to clear up the orphan record which we created above.
4478 * However, if this was a real unlink then we were called by
4479 * ext4_evict_inode(), and we allow that function to clean up the
4480 * orphan info for us.
4481 */
4482 if (inode->i_nlink)
4483 ext4_orphan_del(handle, inode);
4484
4485 inode->i_mtime = inode->i_ctime = current_time(inode);
4486 ext4_mark_inode_dirty(handle, inode);
4487 ext4_journal_stop(handle);
4488
4489 trace_ext4_truncate_exit(inode);
4490 return err;
4491}
4492
4493/*
4494 * ext4_get_inode_loc returns with an extra refcount against the inode's
4495 * underlying buffer_head on success. If 'in_mem' is true, we have all
4496 * data in memory that is needed to recreate the on-disk version of this
4497 * inode.
4498 */
4499static int __ext4_get_inode_loc(struct inode *inode,
4500 struct ext4_iloc *iloc, int in_mem)
4501{
4502 struct ext4_group_desc *gdp;
4503 struct buffer_head *bh;
4504 struct super_block *sb = inode->i_sb;
4505 ext4_fsblk_t block;
4506 int inodes_per_block, inode_offset;
4507
4508 iloc->bh = NULL;
4509 if (!ext4_valid_inum(sb, inode->i_ino))
4510 return -EFSCORRUPTED;
4511
4512 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4513 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4514 if (!gdp)
4515 return -EIO;
4516
4517 /*
4518 * Figure out the offset within the block group inode table
4519 */
4520 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4521 inode_offset = ((inode->i_ino - 1) %
4522 EXT4_INODES_PER_GROUP(sb));
4523 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4524 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4525
4526 bh = sb_getblk(sb, block);
4527 if (unlikely(!bh))
4528 return -ENOMEM;
4529 if (!buffer_uptodate(bh)) {
4530 lock_buffer(bh);
4531
4532 /*
4533 * If the buffer has the write error flag, we have failed
4534 * to write out another inode in the same block. In this
4535 * case, we don't have to read the block because we may
4536 * read the old inode data successfully.
4537 */
4538 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4539 set_buffer_uptodate(bh);
4540
4541 if (buffer_uptodate(bh)) {
4542 /* someone brought it uptodate while we waited */
4543 unlock_buffer(bh);
4544 goto has_buffer;
4545 }
4546
4547 /*
4548 * If we have all information of the inode in memory and this
4549 * is the only valid inode in the block, we need not read the
4550 * block.
4551 */
4552 if (in_mem) {
4553 struct buffer_head *bitmap_bh;
4554 int i, start;
4555
4556 start = inode_offset & ~(inodes_per_block - 1);
4557
4558 /* Is the inode bitmap in cache? */
4559 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4560 if (unlikely(!bitmap_bh))
4561 goto make_io;
4562
4563 /*
4564 * If the inode bitmap isn't in cache then the
4565 * optimisation may end up performing two reads instead
4566 * of one, so skip it.
4567 */
4568 if (!buffer_uptodate(bitmap_bh)) {
4569 brelse(bitmap_bh);
4570 goto make_io;
4571 }
4572 for (i = start; i < start + inodes_per_block; i++) {
4573 if (i == inode_offset)
4574 continue;
4575 if (ext4_test_bit(i, bitmap_bh->b_data))
4576 break;
4577 }
4578 brelse(bitmap_bh);
4579 if (i == start + inodes_per_block) {
4580 /* all other inodes are free, so skip I/O */
4581 memset(bh->b_data, 0, bh->b_size);
4582 set_buffer_uptodate(bh);
4583 unlock_buffer(bh);
4584 goto has_buffer;
4585 }
4586 }
4587
4588make_io:
4589 /*
4590 * If we need to do any I/O, try to pre-readahead extra
4591 * blocks from the inode table.
4592 */
4593 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4594 ext4_fsblk_t b, end, table;
4595 unsigned num;
4596 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4597
4598 table = ext4_inode_table(sb, gdp);
4599 /* s_inode_readahead_blks is always a power of 2 */
4600 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4601 if (table > b)
4602 b = table;
4603 end = b + ra_blks;
4604 num = EXT4_INODES_PER_GROUP(sb);
4605 if (ext4_has_group_desc_csum(sb))
4606 num -= ext4_itable_unused_count(sb, gdp);
4607 table += num / inodes_per_block;
4608 if (end > table)
4609 end = table;
4610 while (b <= end)
4611 sb_breadahead(sb, b++);
4612 }
4613
4614 /*
4615 * There are other valid inodes in the buffer, this inode
4616 * has in-inode xattrs, or we don't have this inode in memory.
4617 * Read the block from disk.
4618 */
4619 trace_ext4_load_inode(inode);
4620 get_bh(bh);
4621 bh->b_end_io = end_buffer_read_sync;
4622 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4623 wait_on_buffer(bh);
4624 if (!buffer_uptodate(bh)) {
4625 EXT4_ERROR_INODE_BLOCK(inode, block,
4626 "unable to read itable block");
4627 brelse(bh);
4628 return -EIO;
4629 }
4630 }
4631has_buffer:
4632 iloc->bh = bh;
4633 return 0;
4634}
4635
4636int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4637{
4638 /* We have all inode data except xattrs in memory here. */
4639 return __ext4_get_inode_loc(inode, iloc,
4640 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4641}
4642
4643static bool ext4_should_use_dax(struct inode *inode)
4644{
4645 if (!test_opt(inode->i_sb, DAX))
4646 return false;
4647 if (!S_ISREG(inode->i_mode))
4648 return false;
4649 if (ext4_should_journal_data(inode))
4650 return false;
4651 if (ext4_has_inline_data(inode))
4652 return false;
4653 if (ext4_encrypted_inode(inode))
4654 return false;
4655 return true;
4656}
4657
4658void ext4_set_inode_flags(struct inode *inode)
4659{
4660 unsigned int flags = EXT4_I(inode)->i_flags;
4661 unsigned int new_fl = 0;
4662
4663 if (flags & EXT4_SYNC_FL)
4664 new_fl |= S_SYNC;
4665 if (flags & EXT4_APPEND_FL)
4666 new_fl |= S_APPEND;
4667 if (flags & EXT4_IMMUTABLE_FL)
4668 new_fl |= S_IMMUTABLE;
4669 if (flags & EXT4_NOATIME_FL)
4670 new_fl |= S_NOATIME;
4671 if (flags & EXT4_DIRSYNC_FL)
4672 new_fl |= S_DIRSYNC;
4673 if (ext4_should_use_dax(inode))
4674 new_fl |= S_DAX;
4675 if (flags & EXT4_ENCRYPT_FL)
4676 new_fl |= S_ENCRYPTED;
4677 inode_set_flags(inode, new_fl,
4678 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4679 S_ENCRYPTED);
4680}
4681
4682static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4683 struct ext4_inode_info *ei)
4684{
4685 blkcnt_t i_blocks ;
4686 struct inode *inode = &(ei->vfs_inode);
4687 struct super_block *sb = inode->i_sb;
4688
4689 if (ext4_has_feature_huge_file(sb)) {
4690 /* we are using combined 48 bit field */
4691 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4692 le32_to_cpu(raw_inode->i_blocks_lo);
4693 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4694 /* i_blocks represent file system block size */
4695 return i_blocks << (inode->i_blkbits - 9);
4696 } else {
4697 return i_blocks;
4698 }
4699 } else {
4700 return le32_to_cpu(raw_inode->i_blocks_lo);
4701 }
4702}
4703
4704static inline void ext4_iget_extra_inode(struct inode *inode,
4705 struct ext4_inode *raw_inode,
4706 struct ext4_inode_info *ei)
4707{
4708 __le32 *magic = (void *)raw_inode +
4709 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4710 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4711 EXT4_INODE_SIZE(inode->i_sb) &&
4712 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4713 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4714 ext4_find_inline_data_nolock(inode);
4715 } else
4716 EXT4_I(inode)->i_inline_off = 0;
4717}
4718
4719int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4720{
4721 if (!ext4_has_feature_project(inode->i_sb))
4722 return -EOPNOTSUPP;
4723 *projid = EXT4_I(inode)->i_projid;
4724 return 0;
4725}
4726
4727struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4728{
4729 struct ext4_iloc iloc;
4730 struct ext4_inode *raw_inode;
4731 struct ext4_inode_info *ei;
4732 struct inode *inode;
4733 journal_t *journal = EXT4_SB(sb)->s_journal;
4734 long ret;
4735 loff_t size;
4736 int block;
4737 uid_t i_uid;
4738 gid_t i_gid;
4739 projid_t i_projid;
4740
4741 inode = iget_locked(sb, ino);
4742 if (!inode)
4743 return ERR_PTR(-ENOMEM);
4744 if (!(inode->i_state & I_NEW))
4745 return inode;
4746
4747 ei = EXT4_I(inode);
4748 iloc.bh = NULL;
4749
4750 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4751 if (ret < 0)
4752 goto bad_inode;
4753 raw_inode = ext4_raw_inode(&iloc);
4754
4755 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4756 EXT4_ERROR_INODE(inode, "root inode unallocated");
4757 ret = -EFSCORRUPTED;
4758 goto bad_inode;
4759 }
4760
4761 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4762 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4763 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4764 EXT4_INODE_SIZE(inode->i_sb) ||
4765 (ei->i_extra_isize & 3)) {
4766 EXT4_ERROR_INODE(inode,
4767 "bad extra_isize %u (inode size %u)",
4768 ei->i_extra_isize,
4769 EXT4_INODE_SIZE(inode->i_sb));
4770 ret = -EFSCORRUPTED;
4771 goto bad_inode;
4772 }
4773 } else
4774 ei->i_extra_isize = 0;
4775
4776 /* Precompute checksum seed for inode metadata */
4777 if (ext4_has_metadata_csum(sb)) {
4778 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4779 __u32 csum;
4780 __le32 inum = cpu_to_le32(inode->i_ino);
4781 __le32 gen = raw_inode->i_generation;
4782 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4783 sizeof(inum));
4784 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4785 sizeof(gen));
4786 }
4787
4788 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4789 EXT4_ERROR_INODE(inode, "checksum invalid");
4790 ret = -EFSBADCRC;
4791 goto bad_inode;
4792 }
4793
4794 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4795 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4796 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4797 if (ext4_has_feature_project(sb) &&
4798 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4799 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4800 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4801 else
4802 i_projid = EXT4_DEF_PROJID;
4803
4804 if (!(test_opt(inode->i_sb, NO_UID32))) {
4805 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4806 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4807 }
4808 i_uid_write(inode, i_uid);
4809 i_gid_write(inode, i_gid);
4810 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4811 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4812
4813 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4814 ei->i_inline_off = 0;
4815 ei->i_dir_start_lookup = 0;
4816 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4817 /* We now have enough fields to check if the inode was active or not.
4818 * This is needed because nfsd might try to access dead inodes
4819 * the test is that same one that e2fsck uses
4820 * NeilBrown 1999oct15
4821 */
4822 if (inode->i_nlink == 0) {
4823 if ((inode->i_mode == 0 ||
4824 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4825 ino != EXT4_BOOT_LOADER_INO) {
4826 /* this inode is deleted */
4827 ret = -ESTALE;
4828 goto bad_inode;
4829 }
4830 /* The only unlinked inodes we let through here have
4831 * valid i_mode and are being read by the orphan
4832 * recovery code: that's fine, we're about to complete
4833 * the process of deleting those.
4834 * OR it is the EXT4_BOOT_LOADER_INO which is
4835 * not initialized on a new filesystem. */
4836 }
4837 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4838 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4839 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4840 if (ext4_has_feature_64bit(sb))
4841 ei->i_file_acl |=
4842 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4843 inode->i_size = ext4_isize(sb, raw_inode);
4844 if ((size = i_size_read(inode)) < 0) {
4845 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4846 ret = -EFSCORRUPTED;
4847 goto bad_inode;
4848 }
4849 ei->i_disksize = inode->i_size;
4850#ifdef CONFIG_QUOTA
4851 ei->i_reserved_quota = 0;
4852#endif
4853 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4854 ei->i_block_group = iloc.block_group;
4855 ei->i_last_alloc_group = ~0;
4856 /*
4857 * NOTE! The in-memory inode i_data array is in little-endian order
4858 * even on big-endian machines: we do NOT byteswap the block numbers!
4859 */
4860 for (block = 0; block < EXT4_N_BLOCKS; block++)
4861 ei->i_data[block] = raw_inode->i_block[block];
4862 INIT_LIST_HEAD(&ei->i_orphan);
4863
4864 /*
4865 * Set transaction id's of transactions that have to be committed
4866 * to finish f[data]sync. We set them to currently running transaction
4867 * as we cannot be sure that the inode or some of its metadata isn't
4868 * part of the transaction - the inode could have been reclaimed and
4869 * now it is reread from disk.
4870 */
4871 if (journal) {
4872 transaction_t *transaction;
4873 tid_t tid;
4874
4875 read_lock(&journal->j_state_lock);
4876 if (journal->j_running_transaction)
4877 transaction = journal->j_running_transaction;
4878 else
4879 transaction = journal->j_committing_transaction;
4880 if (transaction)
4881 tid = transaction->t_tid;
4882 else
4883 tid = journal->j_commit_sequence;
4884 read_unlock(&journal->j_state_lock);
4885 ei->i_sync_tid = tid;
4886 ei->i_datasync_tid = tid;
4887 }
4888
4889 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4890 if (ei->i_extra_isize == 0) {
4891 /* The extra space is currently unused. Use it. */
4892 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4893 ei->i_extra_isize = sizeof(struct ext4_inode) -
4894 EXT4_GOOD_OLD_INODE_SIZE;
4895 } else {
4896 ext4_iget_extra_inode(inode, raw_inode, ei);
4897 }
4898 }
4899
4900 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4901 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4902 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4903 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4904
4905 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4906 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4907
4908 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4909 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4910 ivers |=
4911 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4912 }
4913 inode_set_iversion_queried(inode, ivers);
4914 }
4915
4916 ret = 0;
4917 if (ei->i_file_acl &&
4918 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4919 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4920 ei->i_file_acl);
4921 ret = -EFSCORRUPTED;
4922 goto bad_inode;
4923 } else if (!ext4_has_inline_data(inode)) {
4924 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4925 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4926 (S_ISLNK(inode->i_mode) &&
4927 !ext4_inode_is_fast_symlink(inode))))
4928 /* Validate extent which is part of inode */
4929 ret = ext4_ext_check_inode(inode);
4930 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4931 (S_ISLNK(inode->i_mode) &&
4932 !ext4_inode_is_fast_symlink(inode))) {
4933 /* Validate block references which are part of inode */
4934 ret = ext4_ind_check_inode(inode);
4935 }
4936 }
4937 if (ret)
4938 goto bad_inode;
4939
4940 if (S_ISREG(inode->i_mode)) {
4941 inode->i_op = &ext4_file_inode_operations;
4942 inode->i_fop = &ext4_file_operations;
4943 ext4_set_aops(inode);
4944 } else if (S_ISDIR(inode->i_mode)) {
4945 inode->i_op = &ext4_dir_inode_operations;
4946 inode->i_fop = &ext4_dir_operations;
4947 } else if (S_ISLNK(inode->i_mode)) {
4948 if (ext4_encrypted_inode(inode)) {
4949 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4950 ext4_set_aops(inode);
4951 } else if (ext4_inode_is_fast_symlink(inode)) {
4952 inode->i_link = (char *)ei->i_data;
4953 inode->i_op = &ext4_fast_symlink_inode_operations;
4954 nd_terminate_link(ei->i_data, inode->i_size,
4955 sizeof(ei->i_data) - 1);
4956 } else {
4957 inode->i_op = &ext4_symlink_inode_operations;
4958 ext4_set_aops(inode);
4959 }
4960 inode_nohighmem(inode);
4961 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4962 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4963 inode->i_op = &ext4_special_inode_operations;
4964 if (raw_inode->i_block[0])
4965 init_special_inode(inode, inode->i_mode,
4966 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4967 else
4968 init_special_inode(inode, inode->i_mode,
4969 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4970 } else if (ino == EXT4_BOOT_LOADER_INO) {
4971 make_bad_inode(inode);
4972 } else {
4973 ret = -EFSCORRUPTED;
4974 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4975 goto bad_inode;
4976 }
4977 brelse(iloc.bh);
4978 ext4_set_inode_flags(inode);
4979
4980 unlock_new_inode(inode);
4981 return inode;
4982
4983bad_inode:
4984 brelse(iloc.bh);
4985 iget_failed(inode);
4986 return ERR_PTR(ret);
4987}
4988
4989struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4990{
4991 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4992 return ERR_PTR(-EFSCORRUPTED);
4993 return ext4_iget(sb, ino);
4994}
4995
4996static int ext4_inode_blocks_set(handle_t *handle,
4997 struct ext4_inode *raw_inode,
4998 struct ext4_inode_info *ei)
4999{
5000 struct inode *inode = &(ei->vfs_inode);
5001 u64 i_blocks = inode->i_blocks;
5002 struct super_block *sb = inode->i_sb;
5003
5004 if (i_blocks <= ~0U) {
5005 /*
5006 * i_blocks can be represented in a 32 bit variable
5007 * as multiple of 512 bytes
5008 */
5009 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5010 raw_inode->i_blocks_high = 0;
5011 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5012 return 0;
5013 }
5014 if (!ext4_has_feature_huge_file(sb))
5015 return -EFBIG;
5016
5017 if (i_blocks <= 0xffffffffffffULL) {
5018 /*
5019 * i_blocks can be represented in a 48 bit variable
5020 * as multiple of 512 bytes
5021 */
5022 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5023 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5024 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5025 } else {
5026 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5027 /* i_block is stored in file system block size */
5028 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5029 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5030 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5031 }
5032 return 0;
5033}
5034
5035struct other_inode {
5036 unsigned long orig_ino;
5037 struct ext4_inode *raw_inode;
5038};
5039
5040static int other_inode_match(struct inode * inode, unsigned long ino,
5041 void *data)
5042{
5043 struct other_inode *oi = (struct other_inode *) data;
5044
5045 if ((inode->i_ino != ino) ||
5046 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5047 I_DIRTY_INODE)) ||
5048 ((inode->i_state & I_DIRTY_TIME) == 0))
5049 return 0;
5050 spin_lock(&inode->i_lock);
5051 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5052 I_DIRTY_INODE)) == 0) &&
5053 (inode->i_state & I_DIRTY_TIME)) {
5054 struct ext4_inode_info *ei = EXT4_I(inode);
5055
5056 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5057 spin_unlock(&inode->i_lock);
5058
5059 spin_lock(&ei->i_raw_lock);
5060 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5061 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5062 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5063 ext4_inode_csum_set(inode, oi->raw_inode, ei);
5064 spin_unlock(&ei->i_raw_lock);
5065 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5066 return -1;
5067 }
5068 spin_unlock(&inode->i_lock);
5069 return -1;
5070}
5071
5072/*
5073 * Opportunistically update the other time fields for other inodes in
5074 * the same inode table block.
5075 */
5076static void ext4_update_other_inodes_time(struct super_block *sb,
5077 unsigned long orig_ino, char *buf)
5078{
5079 struct other_inode oi;
5080 unsigned long ino;
5081 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5082 int inode_size = EXT4_INODE_SIZE(sb);
5083
5084 oi.orig_ino = orig_ino;
5085 /*
5086 * Calculate the first inode in the inode table block. Inode
5087 * numbers are one-based. That is, the first inode in a block
5088 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5089 */
5090 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5091 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5092 if (ino == orig_ino)
5093 continue;
5094 oi.raw_inode = (struct ext4_inode *) buf;
5095 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5096 }
5097}
5098
5099/*
5100 * Post the struct inode info into an on-disk inode location in the
5101 * buffer-cache. This gobbles the caller's reference to the
5102 * buffer_head in the inode location struct.
5103 *
5104 * The caller must have write access to iloc->bh.
5105 */
5106static int ext4_do_update_inode(handle_t *handle,
5107 struct inode *inode,
5108 struct ext4_iloc *iloc)
5109{
5110 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5111 struct ext4_inode_info *ei = EXT4_I(inode);
5112 struct buffer_head *bh = iloc->bh;
5113 struct super_block *sb = inode->i_sb;
5114 int err = 0, rc, block;
5115 int need_datasync = 0, set_large_file = 0;
5116 uid_t i_uid;
5117 gid_t i_gid;
5118 projid_t i_projid;
5119
5120 spin_lock(&ei->i_raw_lock);
5121
5122 /* For fields not tracked in the in-memory inode,
5123 * initialise them to zero for new inodes. */
5124 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5125 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5126
5127 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5128 i_uid = i_uid_read(inode);
5129 i_gid = i_gid_read(inode);
5130 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5131 if (!(test_opt(inode->i_sb, NO_UID32))) {
5132 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5133 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5134/*
5135 * Fix up interoperability with old kernels. Otherwise, old inodes get
5136 * re-used with the upper 16 bits of the uid/gid intact
5137 */
5138 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5139 raw_inode->i_uid_high = 0;
5140 raw_inode->i_gid_high = 0;
5141 } else {
5142 raw_inode->i_uid_high =
5143 cpu_to_le16(high_16_bits(i_uid));
5144 raw_inode->i_gid_high =
5145 cpu_to_le16(high_16_bits(i_gid));
5146 }
5147 } else {
5148 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5149 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5150 raw_inode->i_uid_high = 0;
5151 raw_inode->i_gid_high = 0;
5152 }
5153 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5154
5155 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5156 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5157 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5158 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5159
5160 err = ext4_inode_blocks_set(handle, raw_inode, ei);
5161 if (err) {
5162 spin_unlock(&ei->i_raw_lock);
5163 goto out_brelse;
5164 }
5165 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5166 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5167 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5168 raw_inode->i_file_acl_high =
5169 cpu_to_le16(ei->i_file_acl >> 32);
5170 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5171 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5172 ext4_isize_set(raw_inode, ei->i_disksize);
5173 need_datasync = 1;
5174 }
5175 if (ei->i_disksize > 0x7fffffffULL) {
5176 if (!ext4_has_feature_large_file(sb) ||
5177 EXT4_SB(sb)->s_es->s_rev_level ==
5178 cpu_to_le32(EXT4_GOOD_OLD_REV))
5179 set_large_file = 1;
5180 }
5181 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5182 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5183 if (old_valid_dev(inode->i_rdev)) {
5184 raw_inode->i_block[0] =
5185 cpu_to_le32(old_encode_dev(inode->i_rdev));
5186 raw_inode->i_block[1] = 0;
5187 } else {
5188 raw_inode->i_block[0] = 0;
5189 raw_inode->i_block[1] =
5190 cpu_to_le32(new_encode_dev(inode->i_rdev));
5191 raw_inode->i_block[2] = 0;
5192 }
5193 } else if (!ext4_has_inline_data(inode)) {
5194 for (block = 0; block < EXT4_N_BLOCKS; block++)
5195 raw_inode->i_block[block] = ei->i_data[block];
5196 }
5197
5198 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5199 u64 ivers = inode_peek_iversion(inode);
5200
5201 raw_inode->i_disk_version = cpu_to_le32(ivers);
5202 if (ei->i_extra_isize) {
5203 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5204 raw_inode->i_version_hi =
5205 cpu_to_le32(ivers >> 32);
5206 raw_inode->i_extra_isize =
5207 cpu_to_le16(ei->i_extra_isize);
5208 }
5209 }
5210
5211 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5212 i_projid != EXT4_DEF_PROJID);
5213
5214 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5215 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5216 raw_inode->i_projid = cpu_to_le32(i_projid);
5217
5218 ext4_inode_csum_set(inode, raw_inode, ei);
5219 spin_unlock(&ei->i_raw_lock);
5220 if (inode->i_sb->s_flags & SB_LAZYTIME)
5221 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5222 bh->b_data);
5223
5224 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5225 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5226 if (!err)
5227 err = rc;
5228 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5229 if (set_large_file) {
5230 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5231 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5232 if (err)
5233 goto out_brelse;
5234 ext4_update_dynamic_rev(sb);
5235 ext4_set_feature_large_file(sb);
5236 ext4_handle_sync(handle);
5237 err = ext4_handle_dirty_super(handle, sb);
5238 }
5239 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5240out_brelse:
5241 brelse(bh);
5242 ext4_std_error(inode->i_sb, err);
5243 return err;
5244}
5245
5246/*
5247 * ext4_write_inode()
5248 *
5249 * We are called from a few places:
5250 *
5251 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5252 * Here, there will be no transaction running. We wait for any running
5253 * transaction to commit.
5254 *
5255 * - Within flush work (sys_sync(), kupdate and such).
5256 * We wait on commit, if told to.
5257 *
5258 * - Within iput_final() -> write_inode_now()
5259 * We wait on commit, if told to.
5260 *
5261 * In all cases it is actually safe for us to return without doing anything,
5262 * because the inode has been copied into a raw inode buffer in
5263 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5264 * writeback.
5265 *
5266 * Note that we are absolutely dependent upon all inode dirtiers doing the
5267 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5268 * which we are interested.
5269 *
5270 * It would be a bug for them to not do this. The code:
5271 *
5272 * mark_inode_dirty(inode)
5273 * stuff();
5274 * inode->i_size = expr;
5275 *
5276 * is in error because write_inode() could occur while `stuff()' is running,
5277 * and the new i_size will be lost. Plus the inode will no longer be on the
5278 * superblock's dirty inode list.
5279 */
5280int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5281{
5282 int err;
5283
5284 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5285 return 0;
5286
5287 if (EXT4_SB(inode->i_sb)->s_journal) {
5288 if (ext4_journal_current_handle()) {
5289 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5290 dump_stack();
5291 return -EIO;
5292 }
5293
5294 /*
5295 * No need to force transaction in WB_SYNC_NONE mode. Also
5296 * ext4_sync_fs() will force the commit after everything is
5297 * written.
5298 */
5299 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5300 return 0;
5301
5302 err = ext4_force_commit(inode->i_sb);
5303 } else {
5304 struct ext4_iloc iloc;
5305
5306 err = __ext4_get_inode_loc(inode, &iloc, 0);
5307 if (err)
5308 return err;
5309 /*
5310 * sync(2) will flush the whole buffer cache. No need to do
5311 * it here separately for each inode.
5312 */
5313 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5314 sync_dirty_buffer(iloc.bh);
5315 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5316 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5317 "IO error syncing inode");
5318 err = -EIO;
5319 }
5320 brelse(iloc.bh);
5321 }
5322 return err;
5323}
5324
5325/*
5326 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5327 * buffers that are attached to a page stradding i_size and are undergoing
5328 * commit. In that case we have to wait for commit to finish and try again.
5329 */
5330static void ext4_wait_for_tail_page_commit(struct inode *inode)
5331{
5332 struct page *page;
5333 unsigned offset;
5334 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5335 tid_t commit_tid = 0;
5336 int ret;
5337
5338 offset = inode->i_size & (PAGE_SIZE - 1);
5339 /*
5340 * All buffers in the last page remain valid? Then there's nothing to
5341 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5342 * blocksize case
5343 */
5344 if (offset > PAGE_SIZE - i_blocksize(inode))
5345 return;
5346 while (1) {
5347 page = find_lock_page(inode->i_mapping,
5348 inode->i_size >> PAGE_SHIFT);
5349 if (!page)
5350 return;
5351 ret = __ext4_journalled_invalidatepage(page, offset,
5352 PAGE_SIZE - offset);
5353 unlock_page(page);
5354 put_page(page);
5355 if (ret != -EBUSY)
5356 return;
5357 commit_tid = 0;
5358 read_lock(&journal->j_state_lock);
5359 if (journal->j_committing_transaction)
5360 commit_tid = journal->j_committing_transaction->t_tid;
5361 read_unlock(&journal->j_state_lock);
5362 if (commit_tid)
5363 jbd2_log_wait_commit(journal, commit_tid);
5364 }
5365}
5366
5367/*
5368 * ext4_setattr()
5369 *
5370 * Called from notify_change.
5371 *
5372 * We want to trap VFS attempts to truncate the file as soon as
5373 * possible. In particular, we want to make sure that when the VFS
5374 * shrinks i_size, we put the inode on the orphan list and modify
5375 * i_disksize immediately, so that during the subsequent flushing of
5376 * dirty pages and freeing of disk blocks, we can guarantee that any
5377 * commit will leave the blocks being flushed in an unused state on
5378 * disk. (On recovery, the inode will get truncated and the blocks will
5379 * be freed, so we have a strong guarantee that no future commit will
5380 * leave these blocks visible to the user.)
5381 *
5382 * Another thing we have to assure is that if we are in ordered mode
5383 * and inode is still attached to the committing transaction, we must
5384 * we start writeout of all the dirty pages which are being truncated.
5385 * This way we are sure that all the data written in the previous
5386 * transaction are already on disk (truncate waits for pages under
5387 * writeback).
5388 *
5389 * Called with inode->i_mutex down.
5390 */
5391int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5392{
5393 struct inode *inode = d_inode(dentry);
5394 int error, rc = 0;
5395 int orphan = 0;
5396 const unsigned int ia_valid = attr->ia_valid;
5397
5398 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5399 return -EIO;
5400
5401 error = setattr_prepare(dentry, attr);
5402 if (error)
5403 return error;
5404
5405 error = fscrypt_prepare_setattr(dentry, attr);
5406 if (error)
5407 return error;
5408
5409 if (is_quota_modification(inode, attr)) {
5410 error = dquot_initialize(inode);
5411 if (error)
5412 return error;
5413 }
5414 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5415 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5416 handle_t *handle;
5417
5418 /* (user+group)*(old+new) structure, inode write (sb,
5419 * inode block, ? - but truncate inode update has it) */
5420 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5421 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5422 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5423 if (IS_ERR(handle)) {
5424 error = PTR_ERR(handle);
5425 goto err_out;
5426 }
5427
5428 /* dquot_transfer() calls back ext4_get_inode_usage() which
5429 * counts xattr inode references.
5430 */
5431 down_read(&EXT4_I(inode)->xattr_sem);
5432 error = dquot_transfer(inode, attr);
5433 up_read(&EXT4_I(inode)->xattr_sem);
5434
5435 if (error) {
5436 ext4_journal_stop(handle);
5437 return error;
5438 }
5439 /* Update corresponding info in inode so that everything is in
5440 * one transaction */
5441 if (attr->ia_valid & ATTR_UID)
5442 inode->i_uid = attr->ia_uid;
5443 if (attr->ia_valid & ATTR_GID)
5444 inode->i_gid = attr->ia_gid;
5445 error = ext4_mark_inode_dirty(handle, inode);
5446 ext4_journal_stop(handle);
5447 }
5448
5449 if (attr->ia_valid & ATTR_SIZE) {
5450 handle_t *handle;
5451 loff_t oldsize = inode->i_size;
5452 int shrink = (attr->ia_size <= inode->i_size);
5453
5454 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5455 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5456
5457 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5458 return -EFBIG;
5459 }
5460 if (!S_ISREG(inode->i_mode))
5461 return -EINVAL;
5462
5463 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5464 inode_inc_iversion(inode);
5465
5466 if (ext4_should_order_data(inode) &&
5467 (attr->ia_size < inode->i_size)) {
5468 error = ext4_begin_ordered_truncate(inode,
5469 attr->ia_size);
5470 if (error)
5471 goto err_out;
5472 }
5473 if (attr->ia_size != inode->i_size) {
5474 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5475 if (IS_ERR(handle)) {
5476 error = PTR_ERR(handle);
5477 goto err_out;
5478 }
5479 if (ext4_handle_valid(handle) && shrink) {
5480 error = ext4_orphan_add(handle, inode);
5481 orphan = 1;
5482 }
5483 /*
5484 * Update c/mtime on truncate up, ext4_truncate() will
5485 * update c/mtime in shrink case below
5486 */
5487 if (!shrink) {
5488 inode->i_mtime = current_time(inode);
5489 inode->i_ctime = inode->i_mtime;
5490 }
5491 down_write(&EXT4_I(inode)->i_data_sem);
5492 EXT4_I(inode)->i_disksize = attr->ia_size;
5493 rc = ext4_mark_inode_dirty(handle, inode);
5494 if (!error)
5495 error = rc;
5496 /*
5497 * We have to update i_size under i_data_sem together
5498 * with i_disksize to avoid races with writeback code
5499 * running ext4_wb_update_i_disksize().
5500 */
5501 if (!error)
5502 i_size_write(inode, attr->ia_size);
5503 up_write(&EXT4_I(inode)->i_data_sem);
5504 ext4_journal_stop(handle);
5505 if (error) {
5506 if (orphan)
5507 ext4_orphan_del(NULL, inode);
5508 goto err_out;
5509 }
5510 }
5511 if (!shrink)
5512 pagecache_isize_extended(inode, oldsize, inode->i_size);
5513
5514 /*
5515 * Blocks are going to be removed from the inode. Wait
5516 * for dio in flight. Temporarily disable
5517 * dioread_nolock to prevent livelock.
5518 */
5519 if (orphan) {
5520 if (!ext4_should_journal_data(inode)) {
5521 inode_dio_wait(inode);
5522 } else
5523 ext4_wait_for_tail_page_commit(inode);
5524 }
5525 down_write(&EXT4_I(inode)->i_mmap_sem);
5526 /*
5527 * Truncate pagecache after we've waited for commit
5528 * in data=journal mode to make pages freeable.
5529 */
5530 truncate_pagecache(inode, inode->i_size);
5531 if (shrink) {
5532 rc = ext4_truncate(inode);
5533 if (rc)
5534 error = rc;
5535 }
5536 up_write(&EXT4_I(inode)->i_mmap_sem);
5537 }
5538
5539 if (!error) {
5540 setattr_copy(inode, attr);
5541 mark_inode_dirty(inode);
5542 }
5543
5544 /*
5545 * If the call to ext4_truncate failed to get a transaction handle at
5546 * all, we need to clean up the in-core orphan list manually.
5547 */
5548 if (orphan && inode->i_nlink)
5549 ext4_orphan_del(NULL, inode);
5550
5551 if (!error && (ia_valid & ATTR_MODE))
5552 rc = posix_acl_chmod(inode, inode->i_mode);
5553
5554err_out:
5555 ext4_std_error(inode->i_sb, error);
5556 if (!error)
5557 error = rc;
5558 return error;
5559}
5560
5561int ext4_getattr(const struct path *path, struct kstat *stat,
5562 u32 request_mask, unsigned int query_flags)
5563{
5564 struct inode *inode = d_inode(path->dentry);
5565 struct ext4_inode *raw_inode;
5566 struct ext4_inode_info *ei = EXT4_I(inode);
5567 unsigned int flags;
5568
5569 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5570 stat->result_mask |= STATX_BTIME;
5571 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5572 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5573 }
5574
5575 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5576 if (flags & EXT4_APPEND_FL)
5577 stat->attributes |= STATX_ATTR_APPEND;
5578 if (flags & EXT4_COMPR_FL)
5579 stat->attributes |= STATX_ATTR_COMPRESSED;
5580 if (flags & EXT4_ENCRYPT_FL)
5581 stat->attributes |= STATX_ATTR_ENCRYPTED;
5582 if (flags & EXT4_IMMUTABLE_FL)
5583 stat->attributes |= STATX_ATTR_IMMUTABLE;
5584 if (flags & EXT4_NODUMP_FL)
5585 stat->attributes |= STATX_ATTR_NODUMP;
5586
5587 stat->attributes_mask |= (STATX_ATTR_APPEND |
5588 STATX_ATTR_COMPRESSED |
5589 STATX_ATTR_ENCRYPTED |
5590 STATX_ATTR_IMMUTABLE |
5591 STATX_ATTR_NODUMP);
5592
5593 generic_fillattr(inode, stat);
5594 return 0;
5595}
5596
5597int ext4_file_getattr(const struct path *path, struct kstat *stat,
5598 u32 request_mask, unsigned int query_flags)
5599{
5600 struct inode *inode = d_inode(path->dentry);
5601 u64 delalloc_blocks;
5602
5603 ext4_getattr(path, stat, request_mask, query_flags);
5604
5605 /*
5606 * If there is inline data in the inode, the inode will normally not
5607 * have data blocks allocated (it may have an external xattr block).
5608 * Report at least one sector for such files, so tools like tar, rsync,
5609 * others don't incorrectly think the file is completely sparse.
5610 */
5611 if (unlikely(ext4_has_inline_data(inode)))
5612 stat->blocks += (stat->size + 511) >> 9;
5613
5614 /*
5615 * We can't update i_blocks if the block allocation is delayed
5616 * otherwise in the case of system crash before the real block
5617 * allocation is done, we will have i_blocks inconsistent with
5618 * on-disk file blocks.
5619 * We always keep i_blocks updated together with real
5620 * allocation. But to not confuse with user, stat
5621 * will return the blocks that include the delayed allocation
5622 * blocks for this file.
5623 */
5624 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5625 EXT4_I(inode)->i_reserved_data_blocks);
5626 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5627 return 0;
5628}
5629
5630static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5631 int pextents)
5632{
5633 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5634 return ext4_ind_trans_blocks(inode, lblocks);
5635 return ext4_ext_index_trans_blocks(inode, pextents);
5636}
5637
5638/*
5639 * Account for index blocks, block groups bitmaps and block group
5640 * descriptor blocks if modify datablocks and index blocks
5641 * worse case, the indexs blocks spread over different block groups
5642 *
5643 * If datablocks are discontiguous, they are possible to spread over
5644 * different block groups too. If they are contiguous, with flexbg,
5645 * they could still across block group boundary.
5646 *
5647 * Also account for superblock, inode, quota and xattr blocks
5648 */
5649static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5650 int pextents)
5651{
5652 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5653 int gdpblocks;
5654 int idxblocks;
5655 int ret = 0;
5656
5657 /*
5658 * How many index blocks need to touch to map @lblocks logical blocks
5659 * to @pextents physical extents?
5660 */
5661 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5662
5663 ret = idxblocks;
5664
5665 /*
5666 * Now let's see how many group bitmaps and group descriptors need
5667 * to account
5668 */
5669 groups = idxblocks + pextents;
5670 gdpblocks = groups;
5671 if (groups > ngroups)
5672 groups = ngroups;
5673 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5674 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5675
5676 /* bitmaps and block group descriptor blocks */
5677 ret += groups + gdpblocks;
5678
5679 /* Blocks for super block, inode, quota and xattr blocks */
5680 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5681
5682 return ret;
5683}
5684
5685/*
5686 * Calculate the total number of credits to reserve to fit
5687 * the modification of a single pages into a single transaction,
5688 * which may include multiple chunks of block allocations.
5689 *
5690 * This could be called via ext4_write_begin()
5691 *
5692 * We need to consider the worse case, when
5693 * one new block per extent.
5694 */
5695int ext4_writepage_trans_blocks(struct inode *inode)
5696{
5697 int bpp = ext4_journal_blocks_per_page(inode);
5698 int ret;
5699
5700 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5701
5702 /* Account for data blocks for journalled mode */
5703 if (ext4_should_journal_data(inode))
5704 ret += bpp;
5705 return ret;
5706}
5707
5708/*
5709 * Calculate the journal credits for a chunk of data modification.
5710 *
5711 * This is called from DIO, fallocate or whoever calling
5712 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5713 *
5714 * journal buffers for data blocks are not included here, as DIO
5715 * and fallocate do no need to journal data buffers.
5716 */
5717int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5718{
5719 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5720}
5721
5722/*
5723 * The caller must have previously called ext4_reserve_inode_write().
5724 * Give this, we know that the caller already has write access to iloc->bh.
5725 */
5726int ext4_mark_iloc_dirty(handle_t *handle,
5727 struct inode *inode, struct ext4_iloc *iloc)
5728{
5729 int err = 0;
5730
5731 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5732 return -EIO;
5733
5734 if (IS_I_VERSION(inode))
5735 inode_inc_iversion(inode);
5736
5737 /* the do_update_inode consumes one bh->b_count */
5738 get_bh(iloc->bh);
5739
5740 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5741 err = ext4_do_update_inode(handle, inode, iloc);
5742 put_bh(iloc->bh);
5743 return err;
5744}
5745
5746/*
5747 * On success, We end up with an outstanding reference count against
5748 * iloc->bh. This _must_ be cleaned up later.
5749 */
5750
5751int
5752ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5753 struct ext4_iloc *iloc)
5754{
5755 int err;
5756
5757 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5758 return -EIO;
5759
5760 err = ext4_get_inode_loc(inode, iloc);
5761 if (!err) {
5762 BUFFER_TRACE(iloc->bh, "get_write_access");
5763 err = ext4_journal_get_write_access(handle, iloc->bh);
5764 if (err) {
5765 brelse(iloc->bh);
5766 iloc->bh = NULL;
5767 }
5768 }
5769 ext4_std_error(inode->i_sb, err);
5770 return err;
5771}
5772
5773static int __ext4_expand_extra_isize(struct inode *inode,
5774 unsigned int new_extra_isize,
5775 struct ext4_iloc *iloc,
5776 handle_t *handle, int *no_expand)
5777{
5778 struct ext4_inode *raw_inode;
5779 struct ext4_xattr_ibody_header *header;
5780 int error;
5781
5782 raw_inode = ext4_raw_inode(iloc);
5783
5784 header = IHDR(inode, raw_inode);
5785
5786 /* No extended attributes present */
5787 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5788 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5789 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5790 EXT4_I(inode)->i_extra_isize, 0,
5791 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5792 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5793 return 0;
5794 }
5795
5796 /* try to expand with EAs present */
5797 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5798 raw_inode, handle);
5799 if (error) {
5800 /*
5801 * Inode size expansion failed; don't try again
5802 */
5803 *no_expand = 1;
5804 }
5805
5806 return error;
5807}
5808
5809/*
5810 * Expand an inode by new_extra_isize bytes.
5811 * Returns 0 on success or negative error number on failure.
5812 */
5813static int ext4_try_to_expand_extra_isize(struct inode *inode,
5814 unsigned int new_extra_isize,
5815 struct ext4_iloc iloc,
5816 handle_t *handle)
5817{
5818 int no_expand;
5819 int error;
5820
5821 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5822 return -EOVERFLOW;
5823
5824 /*
5825 * In nojournal mode, we can immediately attempt to expand
5826 * the inode. When journaled, we first need to obtain extra
5827 * buffer credits since we may write into the EA block
5828 * with this same handle. If journal_extend fails, then it will
5829 * only result in a minor loss of functionality for that inode.
5830 * If this is felt to be critical, then e2fsck should be run to
5831 * force a large enough s_min_extra_isize.
5832 */
5833 if (ext4_handle_valid(handle) &&
5834 jbd2_journal_extend(handle,
5835 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5836 return -ENOSPC;
5837
5838 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5839 return -EBUSY;
5840
5841 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5842 handle, &no_expand);
5843 ext4_write_unlock_xattr(inode, &no_expand);
5844
5845 return error;
5846}
5847
5848int ext4_expand_extra_isize(struct inode *inode,
5849 unsigned int new_extra_isize,
5850 struct ext4_iloc *iloc)
5851{
5852 handle_t *handle;
5853 int no_expand;
5854 int error, rc;
5855
5856 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5857 brelse(iloc->bh);
5858 return -EOVERFLOW;
5859 }
5860
5861 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5862 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5863 if (IS_ERR(handle)) {
5864 error = PTR_ERR(handle);
5865 brelse(iloc->bh);
5866 return error;
5867 }
5868
5869 ext4_write_lock_xattr(inode, &no_expand);
5870
5871 BUFFER_TRACE(iloc.bh, "get_write_access");
5872 error = ext4_journal_get_write_access(handle, iloc->bh);
5873 if (error) {
5874 brelse(iloc->bh);
5875 goto out_stop;
5876 }
5877
5878 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5879 handle, &no_expand);
5880
5881 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5882 if (!error)
5883 error = rc;
5884
5885 ext4_write_unlock_xattr(inode, &no_expand);
5886out_stop:
5887 ext4_journal_stop(handle);
5888 return error;
5889}
5890
5891/*
5892 * What we do here is to mark the in-core inode as clean with respect to inode
5893 * dirtiness (it may still be data-dirty).
5894 * This means that the in-core inode may be reaped by prune_icache
5895 * without having to perform any I/O. This is a very good thing,
5896 * because *any* task may call prune_icache - even ones which
5897 * have a transaction open against a different journal.
5898 *
5899 * Is this cheating? Not really. Sure, we haven't written the
5900 * inode out, but prune_icache isn't a user-visible syncing function.
5901 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5902 * we start and wait on commits.
5903 */
5904int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5905{
5906 struct ext4_iloc iloc;
5907 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5908 int err;
5909
5910 might_sleep();
5911 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5912 err = ext4_reserve_inode_write(handle, inode, &iloc);
5913 if (err)
5914 return err;
5915
5916 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5917 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5918 iloc, handle);
5919
5920 return ext4_mark_iloc_dirty(handle, inode, &iloc);
5921}
5922
5923/*
5924 * ext4_dirty_inode() is called from __mark_inode_dirty()
5925 *
5926 * We're really interested in the case where a file is being extended.
5927 * i_size has been changed by generic_commit_write() and we thus need
5928 * to include the updated inode in the current transaction.
5929 *
5930 * Also, dquot_alloc_block() will always dirty the inode when blocks
5931 * are allocated to the file.
5932 *
5933 * If the inode is marked synchronous, we don't honour that here - doing
5934 * so would cause a commit on atime updates, which we don't bother doing.
5935 * We handle synchronous inodes at the highest possible level.
5936 *
5937 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5938 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5939 * to copy into the on-disk inode structure are the timestamp files.
5940 */
5941void ext4_dirty_inode(struct inode *inode, int flags)
5942{
5943 handle_t *handle;
5944
5945 if (flags == I_DIRTY_TIME)
5946 return;
5947 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5948 if (IS_ERR(handle))
5949 goto out;
5950
5951 ext4_mark_inode_dirty(handle, inode);
5952
5953 ext4_journal_stop(handle);
5954out:
5955 return;
5956}
5957
5958#if 0
5959/*
5960 * Bind an inode's backing buffer_head into this transaction, to prevent
5961 * it from being flushed to disk early. Unlike
5962 * ext4_reserve_inode_write, this leaves behind no bh reference and
5963 * returns no iloc structure, so the caller needs to repeat the iloc
5964 * lookup to mark the inode dirty later.
5965 */
5966static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5967{
5968 struct ext4_iloc iloc;
5969
5970 int err = 0;
5971 if (handle) {
5972 err = ext4_get_inode_loc(inode, &iloc);
5973 if (!err) {
5974 BUFFER_TRACE(iloc.bh, "get_write_access");
5975 err = jbd2_journal_get_write_access(handle, iloc.bh);
5976 if (!err)
5977 err = ext4_handle_dirty_metadata(handle,
5978 NULL,
5979 iloc.bh);
5980 brelse(iloc.bh);
5981 }
5982 }
5983 ext4_std_error(inode->i_sb, err);
5984 return err;
5985}
5986#endif
5987
5988int ext4_change_inode_journal_flag(struct inode *inode, int val)
5989{
5990 journal_t *journal;
5991 handle_t *handle;
5992 int err;
5993 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5994
5995 /*
5996 * We have to be very careful here: changing a data block's
5997 * journaling status dynamically is dangerous. If we write a
5998 * data block to the journal, change the status and then delete
5999 * that block, we risk forgetting to revoke the old log record
6000 * from the journal and so a subsequent replay can corrupt data.
6001 * So, first we make sure that the journal is empty and that
6002 * nobody is changing anything.
6003 */
6004
6005 journal = EXT4_JOURNAL(inode);
6006 if (!journal)
6007 return 0;
6008 if (is_journal_aborted(journal))
6009 return -EROFS;
6010
6011 /* Wait for all existing dio workers */
6012 inode_dio_wait(inode);
6013
6014 /*
6015 * Before flushing the journal and switching inode's aops, we have
6016 * to flush all dirty data the inode has. There can be outstanding
6017 * delayed allocations, there can be unwritten extents created by
6018 * fallocate or buffered writes in dioread_nolock mode covered by
6019 * dirty data which can be converted only after flushing the dirty
6020 * data (and journalled aops don't know how to handle these cases).
6021 */
6022 if (val) {
6023 down_write(&EXT4_I(inode)->i_mmap_sem);
6024 err = filemap_write_and_wait(inode->i_mapping);
6025 if (err < 0) {
6026 up_write(&EXT4_I(inode)->i_mmap_sem);
6027 return err;
6028 }
6029 }
6030
6031 percpu_down_write(&sbi->s_journal_flag_rwsem);
6032 jbd2_journal_lock_updates(journal);
6033
6034 /*
6035 * OK, there are no updates running now, and all cached data is
6036 * synced to disk. We are now in a completely consistent state
6037 * which doesn't have anything in the journal, and we know that
6038 * no filesystem updates are running, so it is safe to modify
6039 * the inode's in-core data-journaling state flag now.
6040 */
6041
6042 if (val)
6043 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6044 else {
6045 err = jbd2_journal_flush(journal);
6046 if (err < 0) {
6047 jbd2_journal_unlock_updates(journal);
6048 percpu_up_write(&sbi->s_journal_flag_rwsem);
6049 return err;
6050 }
6051 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6052 }
6053 ext4_set_aops(inode);
6054
6055 jbd2_journal_unlock_updates(journal);
6056 percpu_up_write(&sbi->s_journal_flag_rwsem);
6057
6058 if (val)
6059 up_write(&EXT4_I(inode)->i_mmap_sem);
6060
6061 /* Finally we can mark the inode as dirty. */
6062
6063 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6064 if (IS_ERR(handle))
6065 return PTR_ERR(handle);
6066
6067 err = ext4_mark_inode_dirty(handle, inode);
6068 ext4_handle_sync(handle);
6069 ext4_journal_stop(handle);
6070 ext4_std_error(inode->i_sb, err);
6071
6072 return err;
6073}
6074
6075static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6076{
6077 return !buffer_mapped(bh);
6078}
6079
6080int ext4_page_mkwrite(struct vm_fault *vmf)
6081{
6082 struct vm_area_struct *vma = vmf->vma;
6083 struct page *page = vmf->page;
6084 loff_t size;
6085 unsigned long len;
6086 int ret;
6087 struct file *file = vma->vm_file;
6088 struct inode *inode = file_inode(file);
6089 struct address_space *mapping = inode->i_mapping;
6090 handle_t *handle;
6091 get_block_t *get_block;
6092 int retries = 0;
6093
6094 sb_start_pagefault(inode->i_sb);
6095 file_update_time(vma->vm_file);
6096
6097 down_read(&EXT4_I(inode)->i_mmap_sem);
6098
6099 ret = ext4_convert_inline_data(inode);
6100 if (ret)
6101 goto out_ret;
6102
6103 /* Delalloc case is easy... */
6104 if (test_opt(inode->i_sb, DELALLOC) &&
6105 !ext4_should_journal_data(inode) &&
6106 !ext4_nonda_switch(inode->i_sb)) {
6107 do {
6108 ret = block_page_mkwrite(vma, vmf,
6109 ext4_da_get_block_prep);
6110 } while (ret == -ENOSPC &&
6111 ext4_should_retry_alloc(inode->i_sb, &retries));
6112 goto out_ret;
6113 }
6114
6115 lock_page(page);
6116 size = i_size_read(inode);
6117 /* Page got truncated from under us? */
6118 if (page->mapping != mapping || page_offset(page) > size) {
6119 unlock_page(page);
6120 ret = VM_FAULT_NOPAGE;
6121 goto out;
6122 }
6123
6124 if (page->index == size >> PAGE_SHIFT)
6125 len = size & ~PAGE_MASK;
6126 else
6127 len = PAGE_SIZE;
6128 /*
6129 * Return if we have all the buffers mapped. This avoids the need to do
6130 * journal_start/journal_stop which can block and take a long time
6131 */
6132 if (page_has_buffers(page)) {
6133 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6134 0, len, NULL,
6135 ext4_bh_unmapped)) {
6136 /* Wait so that we don't change page under IO */
6137 wait_for_stable_page(page);
6138 ret = VM_FAULT_LOCKED;
6139 goto out;
6140 }
6141 }
6142 unlock_page(page);
6143 /* OK, we need to fill the hole... */
6144 if (ext4_should_dioread_nolock(inode))
6145 get_block = ext4_get_block_unwritten;
6146 else
6147 get_block = ext4_get_block;
6148retry_alloc:
6149 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6150 ext4_writepage_trans_blocks(inode));
6151 if (IS_ERR(handle)) {
6152 ret = VM_FAULT_SIGBUS;
6153 goto out;
6154 }
6155 ret = block_page_mkwrite(vma, vmf, get_block);
6156 if (!ret && ext4_should_journal_data(inode)) {
6157 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6158 PAGE_SIZE, NULL, do_journal_get_write_access)) {
6159 unlock_page(page);
6160 ret = VM_FAULT_SIGBUS;
6161 ext4_journal_stop(handle);
6162 goto out;
6163 }
6164 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6165 }
6166 ext4_journal_stop(handle);
6167 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6168 goto retry_alloc;
6169out_ret:
6170 ret = block_page_mkwrite_return(ret);
6171out:
6172 up_read(&EXT4_I(inode)->i_mmap_sem);
6173 sb_end_pagefault(inode->i_sb);
6174 return ret;
6175}
6176
6177int ext4_filemap_fault(struct vm_fault *vmf)
6178{
6179 struct inode *inode = file_inode(vmf->vma->vm_file);
6180 int err;
6181
6182 down_read(&EXT4_I(inode)->i_mmap_sem);
6183 err = filemap_fault(vmf);
6184 up_read(&EXT4_I(inode)->i_mmap_sem);
6185
6186 return err;
6187}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/ext4/inode.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
18 *
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20 */
21
22#include <linux/fs.h>
23#include <linux/mount.h>
24#include <linux/time.h>
25#include <linux/highuid.h>
26#include <linux/pagemap.h>
27#include <linux/dax.h>
28#include <linux/quotaops.h>
29#include <linux/string.h>
30#include <linux/buffer_head.h>
31#include <linux/writeback.h>
32#include <linux/pagevec.h>
33#include <linux/mpage.h>
34#include <linux/namei.h>
35#include <linux/uio.h>
36#include <linux/bio.h>
37#include <linux/workqueue.h>
38#include <linux/kernel.h>
39#include <linux/printk.h>
40#include <linux/slab.h>
41#include <linux/bitops.h>
42#include <linux/iomap.h>
43#include <linux/iversion.h>
44
45#include "ext4_jbd2.h"
46#include "xattr.h"
47#include "acl.h"
48#include "truncate.h"
49
50#include <trace/events/ext4.h>
51
52static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 struct ext4_inode_info *ei)
54{
55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 __u32 csum;
57 __u16 dummy_csum = 0;
58 int offset = offsetof(struct ext4_inode, i_checksum_lo);
59 unsigned int csum_size = sizeof(dummy_csum);
60
61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63 offset += csum_size;
64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65 EXT4_GOOD_OLD_INODE_SIZE - offset);
66
67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68 offset = offsetof(struct ext4_inode, i_checksum_hi);
69 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70 EXT4_GOOD_OLD_INODE_SIZE,
71 offset - EXT4_GOOD_OLD_INODE_SIZE);
72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74 csum_size);
75 offset += csum_size;
76 }
77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78 EXT4_INODE_SIZE(inode->i_sb) - offset);
79 }
80
81 return csum;
82}
83
84static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85 struct ext4_inode_info *ei)
86{
87 __u32 provided, calculated;
88
89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90 cpu_to_le32(EXT4_OS_LINUX) ||
91 !ext4_has_metadata_csum(inode->i_sb))
92 return 1;
93
94 provided = le16_to_cpu(raw->i_checksum_lo);
95 calculated = ext4_inode_csum(inode, raw, ei);
96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99 else
100 calculated &= 0xFFFF;
101
102 return provided == calculated;
103}
104
105void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106 struct ext4_inode_info *ei)
107{
108 __u32 csum;
109
110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111 cpu_to_le32(EXT4_OS_LINUX) ||
112 !ext4_has_metadata_csum(inode->i_sb))
113 return;
114
115 csum = ext4_inode_csum(inode, raw, ei);
116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120}
121
122static inline int ext4_begin_ordered_truncate(struct inode *inode,
123 loff_t new_size)
124{
125 trace_ext4_begin_ordered_truncate(inode, new_size);
126 /*
127 * If jinode is zero, then we never opened the file for
128 * writing, so there's no need to call
129 * jbd2_journal_begin_ordered_truncate() since there's no
130 * outstanding writes we need to flush.
131 */
132 if (!EXT4_I(inode)->jinode)
133 return 0;
134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135 EXT4_I(inode)->jinode,
136 new_size);
137}
138
139static void ext4_invalidatepage(struct page *page, unsigned int offset,
140 unsigned int length);
141static int __ext4_journalled_writepage(struct page *page, unsigned int len);
142static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
143static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
144 int pextents);
145
146/*
147 * Test whether an inode is a fast symlink.
148 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
149 */
150int ext4_inode_is_fast_symlink(struct inode *inode)
151{
152 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
153 int ea_blocks = EXT4_I(inode)->i_file_acl ?
154 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
155
156 if (ext4_has_inline_data(inode))
157 return 0;
158
159 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
160 }
161 return S_ISLNK(inode->i_mode) && inode->i_size &&
162 (inode->i_size < EXT4_N_BLOCKS * 4);
163}
164
165/*
166 * Called at the last iput() if i_nlink is zero.
167 */
168void ext4_evict_inode(struct inode *inode)
169{
170 handle_t *handle;
171 int err;
172 /*
173 * Credits for final inode cleanup and freeing:
174 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
175 * (xattr block freeing), bitmap, group descriptor (inode freeing)
176 */
177 int extra_credits = 6;
178 struct ext4_xattr_inode_array *ea_inode_array = NULL;
179 bool freeze_protected = false;
180
181 trace_ext4_evict_inode(inode);
182
183 if (inode->i_nlink) {
184 /*
185 * When journalling data dirty buffers are tracked only in the
186 * journal. So although mm thinks everything is clean and
187 * ready for reaping the inode might still have some pages to
188 * write in the running transaction or waiting to be
189 * checkpointed. Thus calling jbd2_journal_invalidatepage()
190 * (via truncate_inode_pages()) to discard these buffers can
191 * cause data loss. Also even if we did not discard these
192 * buffers, we would have no way to find them after the inode
193 * is reaped and thus user could see stale data if he tries to
194 * read them before the transaction is checkpointed. So be
195 * careful and force everything to disk here... We use
196 * ei->i_datasync_tid to store the newest transaction
197 * containing inode's data.
198 *
199 * Note that directories do not have this problem because they
200 * don't use page cache.
201 */
202 if (inode->i_ino != EXT4_JOURNAL_INO &&
203 ext4_should_journal_data(inode) &&
204 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
205 inode->i_data.nrpages) {
206 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
207 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
208
209 jbd2_complete_transaction(journal, commit_tid);
210 filemap_write_and_wait(&inode->i_data);
211 }
212 truncate_inode_pages_final(&inode->i_data);
213
214 goto no_delete;
215 }
216
217 if (is_bad_inode(inode))
218 goto no_delete;
219 dquot_initialize(inode);
220
221 if (ext4_should_order_data(inode))
222 ext4_begin_ordered_truncate(inode, 0);
223 truncate_inode_pages_final(&inode->i_data);
224
225 /*
226 * For inodes with journalled data, transaction commit could have
227 * dirtied the inode. Flush worker is ignoring it because of I_FREEING
228 * flag but we still need to remove the inode from the writeback lists.
229 */
230 if (!list_empty_careful(&inode->i_io_list)) {
231 WARN_ON_ONCE(!ext4_should_journal_data(inode));
232 inode_io_list_del(inode);
233 }
234
235 /*
236 * Protect us against freezing - iput() caller didn't have to have any
237 * protection against it. When we are in a running transaction though,
238 * we are already protected against freezing and we cannot grab further
239 * protection due to lock ordering constraints.
240 */
241 if (!ext4_journal_current_handle()) {
242 sb_start_intwrite(inode->i_sb);
243 freeze_protected = true;
244 }
245
246 if (!IS_NOQUOTA(inode))
247 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
248
249 /*
250 * Block bitmap, group descriptor, and inode are accounted in both
251 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
252 */
253 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
254 ext4_blocks_for_truncate(inode) + extra_credits - 3);
255 if (IS_ERR(handle)) {
256 ext4_std_error(inode->i_sb, PTR_ERR(handle));
257 /*
258 * If we're going to skip the normal cleanup, we still need to
259 * make sure that the in-core orphan linked list is properly
260 * cleaned up.
261 */
262 ext4_orphan_del(NULL, inode);
263 if (freeze_protected)
264 sb_end_intwrite(inode->i_sb);
265 goto no_delete;
266 }
267
268 if (IS_SYNC(inode))
269 ext4_handle_sync(handle);
270
271 /*
272 * Set inode->i_size to 0 before calling ext4_truncate(). We need
273 * special handling of symlinks here because i_size is used to
274 * determine whether ext4_inode_info->i_data contains symlink data or
275 * block mappings. Setting i_size to 0 will remove its fast symlink
276 * status. Erase i_data so that it becomes a valid empty block map.
277 */
278 if (ext4_inode_is_fast_symlink(inode))
279 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
280 inode->i_size = 0;
281 err = ext4_mark_inode_dirty(handle, inode);
282 if (err) {
283 ext4_warning(inode->i_sb,
284 "couldn't mark inode dirty (err %d)", err);
285 goto stop_handle;
286 }
287 if (inode->i_blocks) {
288 err = ext4_truncate(inode);
289 if (err) {
290 ext4_error_err(inode->i_sb, -err,
291 "couldn't truncate inode %lu (err %d)",
292 inode->i_ino, err);
293 goto stop_handle;
294 }
295 }
296
297 /* Remove xattr references. */
298 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
299 extra_credits);
300 if (err) {
301 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
302stop_handle:
303 ext4_journal_stop(handle);
304 ext4_orphan_del(NULL, inode);
305 if (freeze_protected)
306 sb_end_intwrite(inode->i_sb);
307 ext4_xattr_inode_array_free(ea_inode_array);
308 goto no_delete;
309 }
310
311 /*
312 * Kill off the orphan record which ext4_truncate created.
313 * AKPM: I think this can be inside the above `if'.
314 * Note that ext4_orphan_del() has to be able to cope with the
315 * deletion of a non-existent orphan - this is because we don't
316 * know if ext4_truncate() actually created an orphan record.
317 * (Well, we could do this if we need to, but heck - it works)
318 */
319 ext4_orphan_del(handle, inode);
320 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
321
322 /*
323 * One subtle ordering requirement: if anything has gone wrong
324 * (transaction abort, IO errors, whatever), then we can still
325 * do these next steps (the fs will already have been marked as
326 * having errors), but we can't free the inode if the mark_dirty
327 * fails.
328 */
329 if (ext4_mark_inode_dirty(handle, inode))
330 /* If that failed, just do the required in-core inode clear. */
331 ext4_clear_inode(inode);
332 else
333 ext4_free_inode(handle, inode);
334 ext4_journal_stop(handle);
335 if (freeze_protected)
336 sb_end_intwrite(inode->i_sb);
337 ext4_xattr_inode_array_free(ea_inode_array);
338 return;
339no_delete:
340 if (!list_empty(&EXT4_I(inode)->i_fc_list))
341 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM);
342 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
343}
344
345#ifdef CONFIG_QUOTA
346qsize_t *ext4_get_reserved_space(struct inode *inode)
347{
348 return &EXT4_I(inode)->i_reserved_quota;
349}
350#endif
351
352/*
353 * Called with i_data_sem down, which is important since we can call
354 * ext4_discard_preallocations() from here.
355 */
356void ext4_da_update_reserve_space(struct inode *inode,
357 int used, int quota_claim)
358{
359 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
360 struct ext4_inode_info *ei = EXT4_I(inode);
361
362 spin_lock(&ei->i_block_reservation_lock);
363 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
364 if (unlikely(used > ei->i_reserved_data_blocks)) {
365 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
366 "with only %d reserved data blocks",
367 __func__, inode->i_ino, used,
368 ei->i_reserved_data_blocks);
369 WARN_ON(1);
370 used = ei->i_reserved_data_blocks;
371 }
372
373 /* Update per-inode reservations */
374 ei->i_reserved_data_blocks -= used;
375 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
376
377 spin_unlock(&ei->i_block_reservation_lock);
378
379 /* Update quota subsystem for data blocks */
380 if (quota_claim)
381 dquot_claim_block(inode, EXT4_C2B(sbi, used));
382 else {
383 /*
384 * We did fallocate with an offset that is already delayed
385 * allocated. So on delayed allocated writeback we should
386 * not re-claim the quota for fallocated blocks.
387 */
388 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
389 }
390
391 /*
392 * If we have done all the pending block allocations and if
393 * there aren't any writers on the inode, we can discard the
394 * inode's preallocations.
395 */
396 if ((ei->i_reserved_data_blocks == 0) &&
397 !inode_is_open_for_write(inode))
398 ext4_discard_preallocations(inode, 0);
399}
400
401static int __check_block_validity(struct inode *inode, const char *func,
402 unsigned int line,
403 struct ext4_map_blocks *map)
404{
405 if (ext4_has_feature_journal(inode->i_sb) &&
406 (inode->i_ino ==
407 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
408 return 0;
409 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
410 ext4_error_inode(inode, func, line, map->m_pblk,
411 "lblock %lu mapped to illegal pblock %llu "
412 "(length %d)", (unsigned long) map->m_lblk,
413 map->m_pblk, map->m_len);
414 return -EFSCORRUPTED;
415 }
416 return 0;
417}
418
419int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
420 ext4_lblk_t len)
421{
422 int ret;
423
424 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
425 return fscrypt_zeroout_range(inode, lblk, pblk, len);
426
427 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
428 if (ret > 0)
429 ret = 0;
430
431 return ret;
432}
433
434#define check_block_validity(inode, map) \
435 __check_block_validity((inode), __func__, __LINE__, (map))
436
437#ifdef ES_AGGRESSIVE_TEST
438static void ext4_map_blocks_es_recheck(handle_t *handle,
439 struct inode *inode,
440 struct ext4_map_blocks *es_map,
441 struct ext4_map_blocks *map,
442 int flags)
443{
444 int retval;
445
446 map->m_flags = 0;
447 /*
448 * There is a race window that the result is not the same.
449 * e.g. xfstests #223 when dioread_nolock enables. The reason
450 * is that we lookup a block mapping in extent status tree with
451 * out taking i_data_sem. So at the time the unwritten extent
452 * could be converted.
453 */
454 down_read(&EXT4_I(inode)->i_data_sem);
455 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
456 retval = ext4_ext_map_blocks(handle, inode, map, 0);
457 } else {
458 retval = ext4_ind_map_blocks(handle, inode, map, 0);
459 }
460 up_read((&EXT4_I(inode)->i_data_sem));
461
462 /*
463 * We don't check m_len because extent will be collpased in status
464 * tree. So the m_len might not equal.
465 */
466 if (es_map->m_lblk != map->m_lblk ||
467 es_map->m_flags != map->m_flags ||
468 es_map->m_pblk != map->m_pblk) {
469 printk("ES cache assertion failed for inode: %lu "
470 "es_cached ex [%d/%d/%llu/%x] != "
471 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
472 inode->i_ino, es_map->m_lblk, es_map->m_len,
473 es_map->m_pblk, es_map->m_flags, map->m_lblk,
474 map->m_len, map->m_pblk, map->m_flags,
475 retval, flags);
476 }
477}
478#endif /* ES_AGGRESSIVE_TEST */
479
480/*
481 * The ext4_map_blocks() function tries to look up the requested blocks,
482 * and returns if the blocks are already mapped.
483 *
484 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
485 * and store the allocated blocks in the result buffer head and mark it
486 * mapped.
487 *
488 * If file type is extents based, it will call ext4_ext_map_blocks(),
489 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
490 * based files
491 *
492 * On success, it returns the number of blocks being mapped or allocated. if
493 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
494 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
495 *
496 * It returns 0 if plain look up failed (blocks have not been allocated), in
497 * that case, @map is returned as unmapped but we still do fill map->m_len to
498 * indicate the length of a hole starting at map->m_lblk.
499 *
500 * It returns the error in case of allocation failure.
501 */
502int ext4_map_blocks(handle_t *handle, struct inode *inode,
503 struct ext4_map_blocks *map, int flags)
504{
505 struct extent_status es;
506 int retval;
507 int ret = 0;
508#ifdef ES_AGGRESSIVE_TEST
509 struct ext4_map_blocks orig_map;
510
511 memcpy(&orig_map, map, sizeof(*map));
512#endif
513
514 map->m_flags = 0;
515 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
516 flags, map->m_len, (unsigned long) map->m_lblk);
517
518 /*
519 * ext4_map_blocks returns an int, and m_len is an unsigned int
520 */
521 if (unlikely(map->m_len > INT_MAX))
522 map->m_len = INT_MAX;
523
524 /* We can handle the block number less than EXT_MAX_BLOCKS */
525 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
526 return -EFSCORRUPTED;
527
528 /* Lookup extent status tree firstly */
529 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
530 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
531 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
532 map->m_pblk = ext4_es_pblock(&es) +
533 map->m_lblk - es.es_lblk;
534 map->m_flags |= ext4_es_is_written(&es) ?
535 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
536 retval = es.es_len - (map->m_lblk - es.es_lblk);
537 if (retval > map->m_len)
538 retval = map->m_len;
539 map->m_len = retval;
540 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
541 map->m_pblk = 0;
542 retval = es.es_len - (map->m_lblk - es.es_lblk);
543 if (retval > map->m_len)
544 retval = map->m_len;
545 map->m_len = retval;
546 retval = 0;
547 } else {
548 BUG();
549 }
550#ifdef ES_AGGRESSIVE_TEST
551 ext4_map_blocks_es_recheck(handle, inode, map,
552 &orig_map, flags);
553#endif
554 goto found;
555 }
556
557 /*
558 * Try to see if we can get the block without requesting a new
559 * file system block.
560 */
561 down_read(&EXT4_I(inode)->i_data_sem);
562 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
563 retval = ext4_ext_map_blocks(handle, inode, map, 0);
564 } else {
565 retval = ext4_ind_map_blocks(handle, inode, map, 0);
566 }
567 if (retval > 0) {
568 unsigned int status;
569
570 if (unlikely(retval != map->m_len)) {
571 ext4_warning(inode->i_sb,
572 "ES len assertion failed for inode "
573 "%lu: retval %d != map->m_len %d",
574 inode->i_ino, retval, map->m_len);
575 WARN_ON(1);
576 }
577
578 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
579 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
580 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
581 !(status & EXTENT_STATUS_WRITTEN) &&
582 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
583 map->m_lblk + map->m_len - 1))
584 status |= EXTENT_STATUS_DELAYED;
585 ret = ext4_es_insert_extent(inode, map->m_lblk,
586 map->m_len, map->m_pblk, status);
587 if (ret < 0)
588 retval = ret;
589 }
590 up_read((&EXT4_I(inode)->i_data_sem));
591
592found:
593 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
594 ret = check_block_validity(inode, map);
595 if (ret != 0)
596 return ret;
597 }
598
599 /* If it is only a block(s) look up */
600 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
601 return retval;
602
603 /*
604 * Returns if the blocks have already allocated
605 *
606 * Note that if blocks have been preallocated
607 * ext4_ext_get_block() returns the create = 0
608 * with buffer head unmapped.
609 */
610 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
611 /*
612 * If we need to convert extent to unwritten
613 * we continue and do the actual work in
614 * ext4_ext_map_blocks()
615 */
616 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
617 return retval;
618
619 /*
620 * Here we clear m_flags because after allocating an new extent,
621 * it will be set again.
622 */
623 map->m_flags &= ~EXT4_MAP_FLAGS;
624
625 /*
626 * New blocks allocate and/or writing to unwritten extent
627 * will possibly result in updating i_data, so we take
628 * the write lock of i_data_sem, and call get_block()
629 * with create == 1 flag.
630 */
631 down_write(&EXT4_I(inode)->i_data_sem);
632
633 /*
634 * We need to check for EXT4 here because migrate
635 * could have changed the inode type in between
636 */
637 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
638 retval = ext4_ext_map_blocks(handle, inode, map, flags);
639 } else {
640 retval = ext4_ind_map_blocks(handle, inode, map, flags);
641
642 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
643 /*
644 * We allocated new blocks which will result in
645 * i_data's format changing. Force the migrate
646 * to fail by clearing migrate flags
647 */
648 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
649 }
650
651 /*
652 * Update reserved blocks/metadata blocks after successful
653 * block allocation which had been deferred till now. We don't
654 * support fallocate for non extent files. So we can update
655 * reserve space here.
656 */
657 if ((retval > 0) &&
658 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
659 ext4_da_update_reserve_space(inode, retval, 1);
660 }
661
662 if (retval > 0) {
663 unsigned int status;
664
665 if (unlikely(retval != map->m_len)) {
666 ext4_warning(inode->i_sb,
667 "ES len assertion failed for inode "
668 "%lu: retval %d != map->m_len %d",
669 inode->i_ino, retval, map->m_len);
670 WARN_ON(1);
671 }
672
673 /*
674 * We have to zeroout blocks before inserting them into extent
675 * status tree. Otherwise someone could look them up there and
676 * use them before they are really zeroed. We also have to
677 * unmap metadata before zeroing as otherwise writeback can
678 * overwrite zeros with stale data from block device.
679 */
680 if (flags & EXT4_GET_BLOCKS_ZERO &&
681 map->m_flags & EXT4_MAP_MAPPED &&
682 map->m_flags & EXT4_MAP_NEW) {
683 ret = ext4_issue_zeroout(inode, map->m_lblk,
684 map->m_pblk, map->m_len);
685 if (ret) {
686 retval = ret;
687 goto out_sem;
688 }
689 }
690
691 /*
692 * If the extent has been zeroed out, we don't need to update
693 * extent status tree.
694 */
695 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
696 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
697 if (ext4_es_is_written(&es))
698 goto out_sem;
699 }
700 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
701 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
702 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
703 !(status & EXTENT_STATUS_WRITTEN) &&
704 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
705 map->m_lblk + map->m_len - 1))
706 status |= EXTENT_STATUS_DELAYED;
707 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
708 map->m_pblk, status);
709 if (ret < 0) {
710 retval = ret;
711 goto out_sem;
712 }
713 }
714
715out_sem:
716 up_write((&EXT4_I(inode)->i_data_sem));
717 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
718 ret = check_block_validity(inode, map);
719 if (ret != 0)
720 return ret;
721
722 /*
723 * Inodes with freshly allocated blocks where contents will be
724 * visible after transaction commit must be on transaction's
725 * ordered data list.
726 */
727 if (map->m_flags & EXT4_MAP_NEW &&
728 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
729 !(flags & EXT4_GET_BLOCKS_ZERO) &&
730 !ext4_is_quota_file(inode) &&
731 ext4_should_order_data(inode)) {
732 loff_t start_byte =
733 (loff_t)map->m_lblk << inode->i_blkbits;
734 loff_t length = (loff_t)map->m_len << inode->i_blkbits;
735
736 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
737 ret = ext4_jbd2_inode_add_wait(handle, inode,
738 start_byte, length);
739 else
740 ret = ext4_jbd2_inode_add_write(handle, inode,
741 start_byte, length);
742 if (ret)
743 return ret;
744 }
745 ext4_fc_track_range(handle, inode, map->m_lblk,
746 map->m_lblk + map->m_len - 1);
747 }
748
749 if (retval < 0)
750 ext_debug(inode, "failed with err %d\n", retval);
751 return retval;
752}
753
754/*
755 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
756 * we have to be careful as someone else may be manipulating b_state as well.
757 */
758static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
759{
760 unsigned long old_state;
761 unsigned long new_state;
762
763 flags &= EXT4_MAP_FLAGS;
764
765 /* Dummy buffer_head? Set non-atomically. */
766 if (!bh->b_page) {
767 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
768 return;
769 }
770 /*
771 * Someone else may be modifying b_state. Be careful! This is ugly but
772 * once we get rid of using bh as a container for mapping information
773 * to pass to / from get_block functions, this can go away.
774 */
775 do {
776 old_state = READ_ONCE(bh->b_state);
777 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
778 } while (unlikely(
779 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
780}
781
782static int _ext4_get_block(struct inode *inode, sector_t iblock,
783 struct buffer_head *bh, int flags)
784{
785 struct ext4_map_blocks map;
786 int ret = 0;
787
788 if (ext4_has_inline_data(inode))
789 return -ERANGE;
790
791 map.m_lblk = iblock;
792 map.m_len = bh->b_size >> inode->i_blkbits;
793
794 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
795 flags);
796 if (ret > 0) {
797 map_bh(bh, inode->i_sb, map.m_pblk);
798 ext4_update_bh_state(bh, map.m_flags);
799 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
800 ret = 0;
801 } else if (ret == 0) {
802 /* hole case, need to fill in bh->b_size */
803 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
804 }
805 return ret;
806}
807
808int ext4_get_block(struct inode *inode, sector_t iblock,
809 struct buffer_head *bh, int create)
810{
811 return _ext4_get_block(inode, iblock, bh,
812 create ? EXT4_GET_BLOCKS_CREATE : 0);
813}
814
815/*
816 * Get block function used when preparing for buffered write if we require
817 * creating an unwritten extent if blocks haven't been allocated. The extent
818 * will be converted to written after the IO is complete.
819 */
820int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
821 struct buffer_head *bh_result, int create)
822{
823 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
824 inode->i_ino, create);
825 return _ext4_get_block(inode, iblock, bh_result,
826 EXT4_GET_BLOCKS_IO_CREATE_EXT);
827}
828
829/* Maximum number of blocks we map for direct IO at once. */
830#define DIO_MAX_BLOCKS 4096
831
832/*
833 * `handle' can be NULL if create is zero
834 */
835struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
836 ext4_lblk_t block, int map_flags)
837{
838 struct ext4_map_blocks map;
839 struct buffer_head *bh;
840 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
841 int err;
842
843 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
844 || handle != NULL || create == 0);
845
846 map.m_lblk = block;
847 map.m_len = 1;
848 err = ext4_map_blocks(handle, inode, &map, map_flags);
849
850 if (err == 0)
851 return create ? ERR_PTR(-ENOSPC) : NULL;
852 if (err < 0)
853 return ERR_PTR(err);
854
855 bh = sb_getblk(inode->i_sb, map.m_pblk);
856 if (unlikely(!bh))
857 return ERR_PTR(-ENOMEM);
858 if (map.m_flags & EXT4_MAP_NEW) {
859 ASSERT(create != 0);
860 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
861 || (handle != NULL));
862
863 /*
864 * Now that we do not always journal data, we should
865 * keep in mind whether this should always journal the
866 * new buffer as metadata. For now, regular file
867 * writes use ext4_get_block instead, so it's not a
868 * problem.
869 */
870 lock_buffer(bh);
871 BUFFER_TRACE(bh, "call get_create_access");
872 err = ext4_journal_get_create_access(handle, bh);
873 if (unlikely(err)) {
874 unlock_buffer(bh);
875 goto errout;
876 }
877 if (!buffer_uptodate(bh)) {
878 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
879 set_buffer_uptodate(bh);
880 }
881 unlock_buffer(bh);
882 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
883 err = ext4_handle_dirty_metadata(handle, inode, bh);
884 if (unlikely(err))
885 goto errout;
886 } else
887 BUFFER_TRACE(bh, "not a new buffer");
888 return bh;
889errout:
890 brelse(bh);
891 return ERR_PTR(err);
892}
893
894struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
895 ext4_lblk_t block, int map_flags)
896{
897 struct buffer_head *bh;
898 int ret;
899
900 bh = ext4_getblk(handle, inode, block, map_flags);
901 if (IS_ERR(bh))
902 return bh;
903 if (!bh || ext4_buffer_uptodate(bh))
904 return bh;
905
906 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
907 if (ret) {
908 put_bh(bh);
909 return ERR_PTR(ret);
910 }
911 return bh;
912}
913
914/* Read a contiguous batch of blocks. */
915int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
916 bool wait, struct buffer_head **bhs)
917{
918 int i, err;
919
920 for (i = 0; i < bh_count; i++) {
921 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
922 if (IS_ERR(bhs[i])) {
923 err = PTR_ERR(bhs[i]);
924 bh_count = i;
925 goto out_brelse;
926 }
927 }
928
929 for (i = 0; i < bh_count; i++)
930 /* Note that NULL bhs[i] is valid because of holes. */
931 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
932 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
933
934 if (!wait)
935 return 0;
936
937 for (i = 0; i < bh_count; i++)
938 if (bhs[i])
939 wait_on_buffer(bhs[i]);
940
941 for (i = 0; i < bh_count; i++) {
942 if (bhs[i] && !buffer_uptodate(bhs[i])) {
943 err = -EIO;
944 goto out_brelse;
945 }
946 }
947 return 0;
948
949out_brelse:
950 for (i = 0; i < bh_count; i++) {
951 brelse(bhs[i]);
952 bhs[i] = NULL;
953 }
954 return err;
955}
956
957int ext4_walk_page_buffers(handle_t *handle,
958 struct buffer_head *head,
959 unsigned from,
960 unsigned to,
961 int *partial,
962 int (*fn)(handle_t *handle,
963 struct buffer_head *bh))
964{
965 struct buffer_head *bh;
966 unsigned block_start, block_end;
967 unsigned blocksize = head->b_size;
968 int err, ret = 0;
969 struct buffer_head *next;
970
971 for (bh = head, block_start = 0;
972 ret == 0 && (bh != head || !block_start);
973 block_start = block_end, bh = next) {
974 next = bh->b_this_page;
975 block_end = block_start + blocksize;
976 if (block_end <= from || block_start >= to) {
977 if (partial && !buffer_uptodate(bh))
978 *partial = 1;
979 continue;
980 }
981 err = (*fn)(handle, bh);
982 if (!ret)
983 ret = err;
984 }
985 return ret;
986}
987
988/*
989 * To preserve ordering, it is essential that the hole instantiation and
990 * the data write be encapsulated in a single transaction. We cannot
991 * close off a transaction and start a new one between the ext4_get_block()
992 * and the commit_write(). So doing the jbd2_journal_start at the start of
993 * prepare_write() is the right place.
994 *
995 * Also, this function can nest inside ext4_writepage(). In that case, we
996 * *know* that ext4_writepage() has generated enough buffer credits to do the
997 * whole page. So we won't block on the journal in that case, which is good,
998 * because the caller may be PF_MEMALLOC.
999 *
1000 * By accident, ext4 can be reentered when a transaction is open via
1001 * quota file writes. If we were to commit the transaction while thus
1002 * reentered, there can be a deadlock - we would be holding a quota
1003 * lock, and the commit would never complete if another thread had a
1004 * transaction open and was blocking on the quota lock - a ranking
1005 * violation.
1006 *
1007 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1008 * will _not_ run commit under these circumstances because handle->h_ref
1009 * is elevated. We'll still have enough credits for the tiny quotafile
1010 * write.
1011 */
1012int do_journal_get_write_access(handle_t *handle,
1013 struct buffer_head *bh)
1014{
1015 int dirty = buffer_dirty(bh);
1016 int ret;
1017
1018 if (!buffer_mapped(bh) || buffer_freed(bh))
1019 return 0;
1020 /*
1021 * __block_write_begin() could have dirtied some buffers. Clean
1022 * the dirty bit as jbd2_journal_get_write_access() could complain
1023 * otherwise about fs integrity issues. Setting of the dirty bit
1024 * by __block_write_begin() isn't a real problem here as we clear
1025 * the bit before releasing a page lock and thus writeback cannot
1026 * ever write the buffer.
1027 */
1028 if (dirty)
1029 clear_buffer_dirty(bh);
1030 BUFFER_TRACE(bh, "get write access");
1031 ret = ext4_journal_get_write_access(handle, bh);
1032 if (!ret && dirty)
1033 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1034 return ret;
1035}
1036
1037#ifdef CONFIG_FS_ENCRYPTION
1038static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1039 get_block_t *get_block)
1040{
1041 unsigned from = pos & (PAGE_SIZE - 1);
1042 unsigned to = from + len;
1043 struct inode *inode = page->mapping->host;
1044 unsigned block_start, block_end;
1045 sector_t block;
1046 int err = 0;
1047 unsigned blocksize = inode->i_sb->s_blocksize;
1048 unsigned bbits;
1049 struct buffer_head *bh, *head, *wait[2];
1050 int nr_wait = 0;
1051 int i;
1052
1053 BUG_ON(!PageLocked(page));
1054 BUG_ON(from > PAGE_SIZE);
1055 BUG_ON(to > PAGE_SIZE);
1056 BUG_ON(from > to);
1057
1058 if (!page_has_buffers(page))
1059 create_empty_buffers(page, blocksize, 0);
1060 head = page_buffers(page);
1061 bbits = ilog2(blocksize);
1062 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1063
1064 for (bh = head, block_start = 0; bh != head || !block_start;
1065 block++, block_start = block_end, bh = bh->b_this_page) {
1066 block_end = block_start + blocksize;
1067 if (block_end <= from || block_start >= to) {
1068 if (PageUptodate(page)) {
1069 set_buffer_uptodate(bh);
1070 }
1071 continue;
1072 }
1073 if (buffer_new(bh))
1074 clear_buffer_new(bh);
1075 if (!buffer_mapped(bh)) {
1076 WARN_ON(bh->b_size != blocksize);
1077 err = get_block(inode, block, bh, 1);
1078 if (err)
1079 break;
1080 if (buffer_new(bh)) {
1081 if (PageUptodate(page)) {
1082 clear_buffer_new(bh);
1083 set_buffer_uptodate(bh);
1084 mark_buffer_dirty(bh);
1085 continue;
1086 }
1087 if (block_end > to || block_start < from)
1088 zero_user_segments(page, to, block_end,
1089 block_start, from);
1090 continue;
1091 }
1092 }
1093 if (PageUptodate(page)) {
1094 set_buffer_uptodate(bh);
1095 continue;
1096 }
1097 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1098 !buffer_unwritten(bh) &&
1099 (block_start < from || block_end > to)) {
1100 ext4_read_bh_lock(bh, 0, false);
1101 wait[nr_wait++] = bh;
1102 }
1103 }
1104 /*
1105 * If we issued read requests, let them complete.
1106 */
1107 for (i = 0; i < nr_wait; i++) {
1108 wait_on_buffer(wait[i]);
1109 if (!buffer_uptodate(wait[i]))
1110 err = -EIO;
1111 }
1112 if (unlikely(err)) {
1113 page_zero_new_buffers(page, from, to);
1114 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1115 for (i = 0; i < nr_wait; i++) {
1116 int err2;
1117
1118 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1119 bh_offset(wait[i]));
1120 if (err2) {
1121 clear_buffer_uptodate(wait[i]);
1122 err = err2;
1123 }
1124 }
1125 }
1126
1127 return err;
1128}
1129#endif
1130
1131static int ext4_write_begin(struct file *file, struct address_space *mapping,
1132 loff_t pos, unsigned len, unsigned flags,
1133 struct page **pagep, void **fsdata)
1134{
1135 struct inode *inode = mapping->host;
1136 int ret, needed_blocks;
1137 handle_t *handle;
1138 int retries = 0;
1139 struct page *page;
1140 pgoff_t index;
1141 unsigned from, to;
1142
1143 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1144 return -EIO;
1145
1146 trace_ext4_write_begin(inode, pos, len, flags);
1147 /*
1148 * Reserve one block more for addition to orphan list in case
1149 * we allocate blocks but write fails for some reason
1150 */
1151 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1152 index = pos >> PAGE_SHIFT;
1153 from = pos & (PAGE_SIZE - 1);
1154 to = from + len;
1155
1156 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1157 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1158 flags, pagep);
1159 if (ret < 0)
1160 return ret;
1161 if (ret == 1)
1162 return 0;
1163 }
1164
1165 /*
1166 * grab_cache_page_write_begin() can take a long time if the
1167 * system is thrashing due to memory pressure, or if the page
1168 * is being written back. So grab it first before we start
1169 * the transaction handle. This also allows us to allocate
1170 * the page (if needed) without using GFP_NOFS.
1171 */
1172retry_grab:
1173 page = grab_cache_page_write_begin(mapping, index, flags);
1174 if (!page)
1175 return -ENOMEM;
1176 unlock_page(page);
1177
1178retry_journal:
1179 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1180 if (IS_ERR(handle)) {
1181 put_page(page);
1182 return PTR_ERR(handle);
1183 }
1184
1185 lock_page(page);
1186 if (page->mapping != mapping) {
1187 /* The page got truncated from under us */
1188 unlock_page(page);
1189 put_page(page);
1190 ext4_journal_stop(handle);
1191 goto retry_grab;
1192 }
1193 /* In case writeback began while the page was unlocked */
1194 wait_for_stable_page(page);
1195
1196#ifdef CONFIG_FS_ENCRYPTION
1197 if (ext4_should_dioread_nolock(inode))
1198 ret = ext4_block_write_begin(page, pos, len,
1199 ext4_get_block_unwritten);
1200 else
1201 ret = ext4_block_write_begin(page, pos, len,
1202 ext4_get_block);
1203#else
1204 if (ext4_should_dioread_nolock(inode))
1205 ret = __block_write_begin(page, pos, len,
1206 ext4_get_block_unwritten);
1207 else
1208 ret = __block_write_begin(page, pos, len, ext4_get_block);
1209#endif
1210 if (!ret && ext4_should_journal_data(inode)) {
1211 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1212 from, to, NULL,
1213 do_journal_get_write_access);
1214 }
1215
1216 if (ret) {
1217 bool extended = (pos + len > inode->i_size) &&
1218 !ext4_verity_in_progress(inode);
1219
1220 unlock_page(page);
1221 /*
1222 * __block_write_begin may have instantiated a few blocks
1223 * outside i_size. Trim these off again. Don't need
1224 * i_size_read because we hold i_mutex.
1225 *
1226 * Add inode to orphan list in case we crash before
1227 * truncate finishes
1228 */
1229 if (extended && ext4_can_truncate(inode))
1230 ext4_orphan_add(handle, inode);
1231
1232 ext4_journal_stop(handle);
1233 if (extended) {
1234 ext4_truncate_failed_write(inode);
1235 /*
1236 * If truncate failed early the inode might
1237 * still be on the orphan list; we need to
1238 * make sure the inode is removed from the
1239 * orphan list in that case.
1240 */
1241 if (inode->i_nlink)
1242 ext4_orphan_del(NULL, inode);
1243 }
1244
1245 if (ret == -ENOSPC &&
1246 ext4_should_retry_alloc(inode->i_sb, &retries))
1247 goto retry_journal;
1248 put_page(page);
1249 return ret;
1250 }
1251 *pagep = page;
1252 return ret;
1253}
1254
1255/* For write_end() in data=journal mode */
1256static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1257{
1258 int ret;
1259 if (!buffer_mapped(bh) || buffer_freed(bh))
1260 return 0;
1261 set_buffer_uptodate(bh);
1262 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1263 clear_buffer_meta(bh);
1264 clear_buffer_prio(bh);
1265 return ret;
1266}
1267
1268/*
1269 * We need to pick up the new inode size which generic_commit_write gave us
1270 * `file' can be NULL - eg, when called from page_symlink().
1271 *
1272 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1273 * buffers are managed internally.
1274 */
1275static int ext4_write_end(struct file *file,
1276 struct address_space *mapping,
1277 loff_t pos, unsigned len, unsigned copied,
1278 struct page *page, void *fsdata)
1279{
1280 handle_t *handle = ext4_journal_current_handle();
1281 struct inode *inode = mapping->host;
1282 loff_t old_size = inode->i_size;
1283 int ret = 0, ret2;
1284 int i_size_changed = 0;
1285 int inline_data = ext4_has_inline_data(inode);
1286 bool verity = ext4_verity_in_progress(inode);
1287
1288 trace_ext4_write_end(inode, pos, len, copied);
1289 if (inline_data) {
1290 ret = ext4_write_inline_data_end(inode, pos, len,
1291 copied, page);
1292 if (ret < 0) {
1293 unlock_page(page);
1294 put_page(page);
1295 goto errout;
1296 }
1297 copied = ret;
1298 ret = 0;
1299 } else
1300 copied = block_write_end(file, mapping, pos,
1301 len, copied, page, fsdata);
1302 /*
1303 * it's important to update i_size while still holding page lock:
1304 * page writeout could otherwise come in and zero beyond i_size.
1305 *
1306 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1307 * blocks are being written past EOF, so skip the i_size update.
1308 */
1309 if (!verity)
1310 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1311 unlock_page(page);
1312 put_page(page);
1313
1314 if (old_size < pos && !verity)
1315 pagecache_isize_extended(inode, old_size, pos);
1316 /*
1317 * Don't mark the inode dirty under page lock. First, it unnecessarily
1318 * makes the holding time of page lock longer. Second, it forces lock
1319 * ordering of page lock and transaction start for journaling
1320 * filesystems.
1321 */
1322 if (i_size_changed || inline_data)
1323 ret = ext4_mark_inode_dirty(handle, inode);
1324
1325errout:
1326 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1327 /* if we have allocated more blocks and copied
1328 * less. We will have blocks allocated outside
1329 * inode->i_size. So truncate them
1330 */
1331 ext4_orphan_add(handle, inode);
1332
1333 ret2 = ext4_journal_stop(handle);
1334 if (!ret)
1335 ret = ret2;
1336
1337 if (pos + len > inode->i_size && !verity) {
1338 ext4_truncate_failed_write(inode);
1339 /*
1340 * If truncate failed early the inode might still be
1341 * on the orphan list; we need to make sure the inode
1342 * is removed from the orphan list in that case.
1343 */
1344 if (inode->i_nlink)
1345 ext4_orphan_del(NULL, inode);
1346 }
1347
1348 return ret ? ret : copied;
1349}
1350
1351/*
1352 * This is a private version of page_zero_new_buffers() which doesn't
1353 * set the buffer to be dirty, since in data=journalled mode we need
1354 * to call ext4_handle_dirty_metadata() instead.
1355 */
1356static void ext4_journalled_zero_new_buffers(handle_t *handle,
1357 struct page *page,
1358 unsigned from, unsigned to)
1359{
1360 unsigned int block_start = 0, block_end;
1361 struct buffer_head *head, *bh;
1362
1363 bh = head = page_buffers(page);
1364 do {
1365 block_end = block_start + bh->b_size;
1366 if (buffer_new(bh)) {
1367 if (block_end > from && block_start < to) {
1368 if (!PageUptodate(page)) {
1369 unsigned start, size;
1370
1371 start = max(from, block_start);
1372 size = min(to, block_end) - start;
1373
1374 zero_user(page, start, size);
1375 write_end_fn(handle, bh);
1376 }
1377 clear_buffer_new(bh);
1378 }
1379 }
1380 block_start = block_end;
1381 bh = bh->b_this_page;
1382 } while (bh != head);
1383}
1384
1385static int ext4_journalled_write_end(struct file *file,
1386 struct address_space *mapping,
1387 loff_t pos, unsigned len, unsigned copied,
1388 struct page *page, void *fsdata)
1389{
1390 handle_t *handle = ext4_journal_current_handle();
1391 struct inode *inode = mapping->host;
1392 loff_t old_size = inode->i_size;
1393 int ret = 0, ret2;
1394 int partial = 0;
1395 unsigned from, to;
1396 int size_changed = 0;
1397 int inline_data = ext4_has_inline_data(inode);
1398 bool verity = ext4_verity_in_progress(inode);
1399
1400 trace_ext4_journalled_write_end(inode, pos, len, copied);
1401 from = pos & (PAGE_SIZE - 1);
1402 to = from + len;
1403
1404 BUG_ON(!ext4_handle_valid(handle));
1405
1406 if (inline_data) {
1407 ret = ext4_write_inline_data_end(inode, pos, len,
1408 copied, page);
1409 if (ret < 0) {
1410 unlock_page(page);
1411 put_page(page);
1412 goto errout;
1413 }
1414 copied = ret;
1415 ret = 0;
1416 } else if (unlikely(copied < len) && !PageUptodate(page)) {
1417 copied = 0;
1418 ext4_journalled_zero_new_buffers(handle, page, from, to);
1419 } else {
1420 if (unlikely(copied < len))
1421 ext4_journalled_zero_new_buffers(handle, page,
1422 from + copied, to);
1423 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1424 from + copied, &partial,
1425 write_end_fn);
1426 if (!partial)
1427 SetPageUptodate(page);
1428 }
1429 if (!verity)
1430 size_changed = ext4_update_inode_size(inode, pos + copied);
1431 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1432 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1433 unlock_page(page);
1434 put_page(page);
1435
1436 if (old_size < pos && !verity)
1437 pagecache_isize_extended(inode, old_size, pos);
1438
1439 if (size_changed || inline_data) {
1440 ret2 = ext4_mark_inode_dirty(handle, inode);
1441 if (!ret)
1442 ret = ret2;
1443 }
1444
1445errout:
1446 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1447 /* if we have allocated more blocks and copied
1448 * less. We will have blocks allocated outside
1449 * inode->i_size. So truncate them
1450 */
1451 ext4_orphan_add(handle, inode);
1452
1453 ret2 = ext4_journal_stop(handle);
1454 if (!ret)
1455 ret = ret2;
1456 if (pos + len > inode->i_size && !verity) {
1457 ext4_truncate_failed_write(inode);
1458 /*
1459 * If truncate failed early the inode might still be
1460 * on the orphan list; we need to make sure the inode
1461 * is removed from the orphan list in that case.
1462 */
1463 if (inode->i_nlink)
1464 ext4_orphan_del(NULL, inode);
1465 }
1466
1467 return ret ? ret : copied;
1468}
1469
1470/*
1471 * Reserve space for a single cluster
1472 */
1473static int ext4_da_reserve_space(struct inode *inode)
1474{
1475 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1476 struct ext4_inode_info *ei = EXT4_I(inode);
1477 int ret;
1478
1479 /*
1480 * We will charge metadata quota at writeout time; this saves
1481 * us from metadata over-estimation, though we may go over by
1482 * a small amount in the end. Here we just reserve for data.
1483 */
1484 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1485 if (ret)
1486 return ret;
1487
1488 spin_lock(&ei->i_block_reservation_lock);
1489 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1490 spin_unlock(&ei->i_block_reservation_lock);
1491 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1492 return -ENOSPC;
1493 }
1494 ei->i_reserved_data_blocks++;
1495 trace_ext4_da_reserve_space(inode);
1496 spin_unlock(&ei->i_block_reservation_lock);
1497
1498 return 0; /* success */
1499}
1500
1501void ext4_da_release_space(struct inode *inode, int to_free)
1502{
1503 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1504 struct ext4_inode_info *ei = EXT4_I(inode);
1505
1506 if (!to_free)
1507 return; /* Nothing to release, exit */
1508
1509 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1510
1511 trace_ext4_da_release_space(inode, to_free);
1512 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1513 /*
1514 * if there aren't enough reserved blocks, then the
1515 * counter is messed up somewhere. Since this
1516 * function is called from invalidate page, it's
1517 * harmless to return without any action.
1518 */
1519 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1520 "ino %lu, to_free %d with only %d reserved "
1521 "data blocks", inode->i_ino, to_free,
1522 ei->i_reserved_data_blocks);
1523 WARN_ON(1);
1524 to_free = ei->i_reserved_data_blocks;
1525 }
1526 ei->i_reserved_data_blocks -= to_free;
1527
1528 /* update fs dirty data blocks counter */
1529 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1530
1531 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1532
1533 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1534}
1535
1536/*
1537 * Delayed allocation stuff
1538 */
1539
1540struct mpage_da_data {
1541 struct inode *inode;
1542 struct writeback_control *wbc;
1543
1544 pgoff_t first_page; /* The first page to write */
1545 pgoff_t next_page; /* Current page to examine */
1546 pgoff_t last_page; /* Last page to examine */
1547 /*
1548 * Extent to map - this can be after first_page because that can be
1549 * fully mapped. We somewhat abuse m_flags to store whether the extent
1550 * is delalloc or unwritten.
1551 */
1552 struct ext4_map_blocks map;
1553 struct ext4_io_submit io_submit; /* IO submission data */
1554 unsigned int do_map:1;
1555 unsigned int scanned_until_end:1;
1556};
1557
1558static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1559 bool invalidate)
1560{
1561 int nr_pages, i;
1562 pgoff_t index, end;
1563 struct pagevec pvec;
1564 struct inode *inode = mpd->inode;
1565 struct address_space *mapping = inode->i_mapping;
1566
1567 /* This is necessary when next_page == 0. */
1568 if (mpd->first_page >= mpd->next_page)
1569 return;
1570
1571 mpd->scanned_until_end = 0;
1572 index = mpd->first_page;
1573 end = mpd->next_page - 1;
1574 if (invalidate) {
1575 ext4_lblk_t start, last;
1576 start = index << (PAGE_SHIFT - inode->i_blkbits);
1577 last = end << (PAGE_SHIFT - inode->i_blkbits);
1578 ext4_es_remove_extent(inode, start, last - start + 1);
1579 }
1580
1581 pagevec_init(&pvec);
1582 while (index <= end) {
1583 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1584 if (nr_pages == 0)
1585 break;
1586 for (i = 0; i < nr_pages; i++) {
1587 struct page *page = pvec.pages[i];
1588
1589 BUG_ON(!PageLocked(page));
1590 BUG_ON(PageWriteback(page));
1591 if (invalidate) {
1592 if (page_mapped(page))
1593 clear_page_dirty_for_io(page);
1594 block_invalidatepage(page, 0, PAGE_SIZE);
1595 ClearPageUptodate(page);
1596 }
1597 unlock_page(page);
1598 }
1599 pagevec_release(&pvec);
1600 }
1601}
1602
1603static void ext4_print_free_blocks(struct inode *inode)
1604{
1605 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1606 struct super_block *sb = inode->i_sb;
1607 struct ext4_inode_info *ei = EXT4_I(inode);
1608
1609 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1610 EXT4_C2B(EXT4_SB(inode->i_sb),
1611 ext4_count_free_clusters(sb)));
1612 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1613 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1614 (long long) EXT4_C2B(EXT4_SB(sb),
1615 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1616 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1617 (long long) EXT4_C2B(EXT4_SB(sb),
1618 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1619 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1620 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1621 ei->i_reserved_data_blocks);
1622 return;
1623}
1624
1625static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1626{
1627 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1628}
1629
1630/*
1631 * ext4_insert_delayed_block - adds a delayed block to the extents status
1632 * tree, incrementing the reserved cluster/block
1633 * count or making a pending reservation
1634 * where needed
1635 *
1636 * @inode - file containing the newly added block
1637 * @lblk - logical block to be added
1638 *
1639 * Returns 0 on success, negative error code on failure.
1640 */
1641static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1642{
1643 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1644 int ret;
1645 bool allocated = false;
1646 bool reserved = false;
1647
1648 /*
1649 * If the cluster containing lblk is shared with a delayed,
1650 * written, or unwritten extent in a bigalloc file system, it's
1651 * already been accounted for and does not need to be reserved.
1652 * A pending reservation must be made for the cluster if it's
1653 * shared with a written or unwritten extent and doesn't already
1654 * have one. Written and unwritten extents can be purged from the
1655 * extents status tree if the system is under memory pressure, so
1656 * it's necessary to examine the extent tree if a search of the
1657 * extents status tree doesn't get a match.
1658 */
1659 if (sbi->s_cluster_ratio == 1) {
1660 ret = ext4_da_reserve_space(inode);
1661 if (ret != 0) /* ENOSPC */
1662 goto errout;
1663 reserved = true;
1664 } else { /* bigalloc */
1665 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1666 if (!ext4_es_scan_clu(inode,
1667 &ext4_es_is_mapped, lblk)) {
1668 ret = ext4_clu_mapped(inode,
1669 EXT4_B2C(sbi, lblk));
1670 if (ret < 0)
1671 goto errout;
1672 if (ret == 0) {
1673 ret = ext4_da_reserve_space(inode);
1674 if (ret != 0) /* ENOSPC */
1675 goto errout;
1676 reserved = true;
1677 } else {
1678 allocated = true;
1679 }
1680 } else {
1681 allocated = true;
1682 }
1683 }
1684 }
1685
1686 ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1687 if (ret && reserved)
1688 ext4_da_release_space(inode, 1);
1689
1690errout:
1691 return ret;
1692}
1693
1694/*
1695 * This function is grabs code from the very beginning of
1696 * ext4_map_blocks, but assumes that the caller is from delayed write
1697 * time. This function looks up the requested blocks and sets the
1698 * buffer delay bit under the protection of i_data_sem.
1699 */
1700static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1701 struct ext4_map_blocks *map,
1702 struct buffer_head *bh)
1703{
1704 struct extent_status es;
1705 int retval;
1706 sector_t invalid_block = ~((sector_t) 0xffff);
1707#ifdef ES_AGGRESSIVE_TEST
1708 struct ext4_map_blocks orig_map;
1709
1710 memcpy(&orig_map, map, sizeof(*map));
1711#endif
1712
1713 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1714 invalid_block = ~0;
1715
1716 map->m_flags = 0;
1717 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1718 (unsigned long) map->m_lblk);
1719
1720 /* Lookup extent status tree firstly */
1721 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1722 if (ext4_es_is_hole(&es)) {
1723 retval = 0;
1724 down_read(&EXT4_I(inode)->i_data_sem);
1725 goto add_delayed;
1726 }
1727
1728 /*
1729 * Delayed extent could be allocated by fallocate.
1730 * So we need to check it.
1731 */
1732 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1733 map_bh(bh, inode->i_sb, invalid_block);
1734 set_buffer_new(bh);
1735 set_buffer_delay(bh);
1736 return 0;
1737 }
1738
1739 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1740 retval = es.es_len - (iblock - es.es_lblk);
1741 if (retval > map->m_len)
1742 retval = map->m_len;
1743 map->m_len = retval;
1744 if (ext4_es_is_written(&es))
1745 map->m_flags |= EXT4_MAP_MAPPED;
1746 else if (ext4_es_is_unwritten(&es))
1747 map->m_flags |= EXT4_MAP_UNWRITTEN;
1748 else
1749 BUG();
1750
1751#ifdef ES_AGGRESSIVE_TEST
1752 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1753#endif
1754 return retval;
1755 }
1756
1757 /*
1758 * Try to see if we can get the block without requesting a new
1759 * file system block.
1760 */
1761 down_read(&EXT4_I(inode)->i_data_sem);
1762 if (ext4_has_inline_data(inode))
1763 retval = 0;
1764 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1765 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1766 else
1767 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1768
1769add_delayed:
1770 if (retval == 0) {
1771 int ret;
1772
1773 /*
1774 * XXX: __block_prepare_write() unmaps passed block,
1775 * is it OK?
1776 */
1777
1778 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1779 if (ret != 0) {
1780 retval = ret;
1781 goto out_unlock;
1782 }
1783
1784 map_bh(bh, inode->i_sb, invalid_block);
1785 set_buffer_new(bh);
1786 set_buffer_delay(bh);
1787 } else if (retval > 0) {
1788 int ret;
1789 unsigned int status;
1790
1791 if (unlikely(retval != map->m_len)) {
1792 ext4_warning(inode->i_sb,
1793 "ES len assertion failed for inode "
1794 "%lu: retval %d != map->m_len %d",
1795 inode->i_ino, retval, map->m_len);
1796 WARN_ON(1);
1797 }
1798
1799 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1800 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1801 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1802 map->m_pblk, status);
1803 if (ret != 0)
1804 retval = ret;
1805 }
1806
1807out_unlock:
1808 up_read((&EXT4_I(inode)->i_data_sem));
1809
1810 return retval;
1811}
1812
1813/*
1814 * This is a special get_block_t callback which is used by
1815 * ext4_da_write_begin(). It will either return mapped block or
1816 * reserve space for a single block.
1817 *
1818 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1819 * We also have b_blocknr = -1 and b_bdev initialized properly
1820 *
1821 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1822 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1823 * initialized properly.
1824 */
1825int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1826 struct buffer_head *bh, int create)
1827{
1828 struct ext4_map_blocks map;
1829 int ret = 0;
1830
1831 BUG_ON(create == 0);
1832 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1833
1834 map.m_lblk = iblock;
1835 map.m_len = 1;
1836
1837 /*
1838 * first, we need to know whether the block is allocated already
1839 * preallocated blocks are unmapped but should treated
1840 * the same as allocated blocks.
1841 */
1842 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1843 if (ret <= 0)
1844 return ret;
1845
1846 map_bh(bh, inode->i_sb, map.m_pblk);
1847 ext4_update_bh_state(bh, map.m_flags);
1848
1849 if (buffer_unwritten(bh)) {
1850 /* A delayed write to unwritten bh should be marked
1851 * new and mapped. Mapped ensures that we don't do
1852 * get_block multiple times when we write to the same
1853 * offset and new ensures that we do proper zero out
1854 * for partial write.
1855 */
1856 set_buffer_new(bh);
1857 set_buffer_mapped(bh);
1858 }
1859 return 0;
1860}
1861
1862static int bget_one(handle_t *handle, struct buffer_head *bh)
1863{
1864 get_bh(bh);
1865 return 0;
1866}
1867
1868static int bput_one(handle_t *handle, struct buffer_head *bh)
1869{
1870 put_bh(bh);
1871 return 0;
1872}
1873
1874static int __ext4_journalled_writepage(struct page *page,
1875 unsigned int len)
1876{
1877 struct address_space *mapping = page->mapping;
1878 struct inode *inode = mapping->host;
1879 struct buffer_head *page_bufs = NULL;
1880 handle_t *handle = NULL;
1881 int ret = 0, err = 0;
1882 int inline_data = ext4_has_inline_data(inode);
1883 struct buffer_head *inode_bh = NULL;
1884
1885 ClearPageChecked(page);
1886
1887 if (inline_data) {
1888 BUG_ON(page->index != 0);
1889 BUG_ON(len > ext4_get_max_inline_size(inode));
1890 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1891 if (inode_bh == NULL)
1892 goto out;
1893 } else {
1894 page_bufs = page_buffers(page);
1895 if (!page_bufs) {
1896 BUG();
1897 goto out;
1898 }
1899 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1900 NULL, bget_one);
1901 }
1902 /*
1903 * We need to release the page lock before we start the
1904 * journal, so grab a reference so the page won't disappear
1905 * out from under us.
1906 */
1907 get_page(page);
1908 unlock_page(page);
1909
1910 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1911 ext4_writepage_trans_blocks(inode));
1912 if (IS_ERR(handle)) {
1913 ret = PTR_ERR(handle);
1914 put_page(page);
1915 goto out_no_pagelock;
1916 }
1917 BUG_ON(!ext4_handle_valid(handle));
1918
1919 lock_page(page);
1920 put_page(page);
1921 if (page->mapping != mapping) {
1922 /* The page got truncated from under us */
1923 ext4_journal_stop(handle);
1924 ret = 0;
1925 goto out;
1926 }
1927
1928 if (inline_data) {
1929 ret = ext4_mark_inode_dirty(handle, inode);
1930 } else {
1931 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1932 do_journal_get_write_access);
1933
1934 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1935 write_end_fn);
1936 }
1937 if (ret == 0)
1938 ret = err;
1939 err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1940 if (ret == 0)
1941 ret = err;
1942 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1943 err = ext4_journal_stop(handle);
1944 if (!ret)
1945 ret = err;
1946
1947 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1948out:
1949 unlock_page(page);
1950out_no_pagelock:
1951 if (!inline_data && page_bufs)
1952 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1953 NULL, bput_one);
1954 brelse(inode_bh);
1955 return ret;
1956}
1957
1958/*
1959 * Note that we don't need to start a transaction unless we're journaling data
1960 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1961 * need to file the inode to the transaction's list in ordered mode because if
1962 * we are writing back data added by write(), the inode is already there and if
1963 * we are writing back data modified via mmap(), no one guarantees in which
1964 * transaction the data will hit the disk. In case we are journaling data, we
1965 * cannot start transaction directly because transaction start ranks above page
1966 * lock so we have to do some magic.
1967 *
1968 * This function can get called via...
1969 * - ext4_writepages after taking page lock (have journal handle)
1970 * - journal_submit_inode_data_buffers (no journal handle)
1971 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1972 * - grab_page_cache when doing write_begin (have journal handle)
1973 *
1974 * We don't do any block allocation in this function. If we have page with
1975 * multiple blocks we need to write those buffer_heads that are mapped. This
1976 * is important for mmaped based write. So if we do with blocksize 1K
1977 * truncate(f, 1024);
1978 * a = mmap(f, 0, 4096);
1979 * a[0] = 'a';
1980 * truncate(f, 4096);
1981 * we have in the page first buffer_head mapped via page_mkwrite call back
1982 * but other buffer_heads would be unmapped but dirty (dirty done via the
1983 * do_wp_page). So writepage should write the first block. If we modify
1984 * the mmap area beyond 1024 we will again get a page_fault and the
1985 * page_mkwrite callback will do the block allocation and mark the
1986 * buffer_heads mapped.
1987 *
1988 * We redirty the page if we have any buffer_heads that is either delay or
1989 * unwritten in the page.
1990 *
1991 * We can get recursively called as show below.
1992 *
1993 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1994 * ext4_writepage()
1995 *
1996 * But since we don't do any block allocation we should not deadlock.
1997 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1998 */
1999static int ext4_writepage(struct page *page,
2000 struct writeback_control *wbc)
2001{
2002 int ret = 0;
2003 loff_t size;
2004 unsigned int len;
2005 struct buffer_head *page_bufs = NULL;
2006 struct inode *inode = page->mapping->host;
2007 struct ext4_io_submit io_submit;
2008 bool keep_towrite = false;
2009
2010 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2011 inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
2012 unlock_page(page);
2013 return -EIO;
2014 }
2015
2016 trace_ext4_writepage(page);
2017 size = i_size_read(inode);
2018 if (page->index == size >> PAGE_SHIFT &&
2019 !ext4_verity_in_progress(inode))
2020 len = size & ~PAGE_MASK;
2021 else
2022 len = PAGE_SIZE;
2023
2024 page_bufs = page_buffers(page);
2025 /*
2026 * We cannot do block allocation or other extent handling in this
2027 * function. If there are buffers needing that, we have to redirty
2028 * the page. But we may reach here when we do a journal commit via
2029 * journal_submit_inode_data_buffers() and in that case we must write
2030 * allocated buffers to achieve data=ordered mode guarantees.
2031 *
2032 * Also, if there is only one buffer per page (the fs block
2033 * size == the page size), if one buffer needs block
2034 * allocation or needs to modify the extent tree to clear the
2035 * unwritten flag, we know that the page can't be written at
2036 * all, so we might as well refuse the write immediately.
2037 * Unfortunately if the block size != page size, we can't as
2038 * easily detect this case using ext4_walk_page_buffers(), but
2039 * for the extremely common case, this is an optimization that
2040 * skips a useless round trip through ext4_bio_write_page().
2041 */
2042 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2043 ext4_bh_delay_or_unwritten)) {
2044 redirty_page_for_writepage(wbc, page);
2045 if ((current->flags & PF_MEMALLOC) ||
2046 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2047 /*
2048 * For memory cleaning there's no point in writing only
2049 * some buffers. So just bail out. Warn if we came here
2050 * from direct reclaim.
2051 */
2052 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2053 == PF_MEMALLOC);
2054 unlock_page(page);
2055 return 0;
2056 }
2057 keep_towrite = true;
2058 }
2059
2060 if (PageChecked(page) && ext4_should_journal_data(inode))
2061 /*
2062 * It's mmapped pagecache. Add buffers and journal it. There
2063 * doesn't seem much point in redirtying the page here.
2064 */
2065 return __ext4_journalled_writepage(page, len);
2066
2067 ext4_io_submit_init(&io_submit, wbc);
2068 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2069 if (!io_submit.io_end) {
2070 redirty_page_for_writepage(wbc, page);
2071 unlock_page(page);
2072 return -ENOMEM;
2073 }
2074 ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
2075 ext4_io_submit(&io_submit);
2076 /* Drop io_end reference we got from init */
2077 ext4_put_io_end_defer(io_submit.io_end);
2078 return ret;
2079}
2080
2081static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2082{
2083 int len;
2084 loff_t size;
2085 int err;
2086
2087 BUG_ON(page->index != mpd->first_page);
2088 clear_page_dirty_for_io(page);
2089 /*
2090 * We have to be very careful here! Nothing protects writeback path
2091 * against i_size changes and the page can be writeably mapped into
2092 * page tables. So an application can be growing i_size and writing
2093 * data through mmap while writeback runs. clear_page_dirty_for_io()
2094 * write-protects our page in page tables and the page cannot get
2095 * written to again until we release page lock. So only after
2096 * clear_page_dirty_for_io() we are safe to sample i_size for
2097 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2098 * on the barrier provided by TestClearPageDirty in
2099 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2100 * after page tables are updated.
2101 */
2102 size = i_size_read(mpd->inode);
2103 if (page->index == size >> PAGE_SHIFT &&
2104 !ext4_verity_in_progress(mpd->inode))
2105 len = size & ~PAGE_MASK;
2106 else
2107 len = PAGE_SIZE;
2108 err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
2109 if (!err)
2110 mpd->wbc->nr_to_write--;
2111 mpd->first_page++;
2112
2113 return err;
2114}
2115
2116#define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2117
2118/*
2119 * mballoc gives us at most this number of blocks...
2120 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2121 * The rest of mballoc seems to handle chunks up to full group size.
2122 */
2123#define MAX_WRITEPAGES_EXTENT_LEN 2048
2124
2125/*
2126 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2127 *
2128 * @mpd - extent of blocks
2129 * @lblk - logical number of the block in the file
2130 * @bh - buffer head we want to add to the extent
2131 *
2132 * The function is used to collect contig. blocks in the same state. If the
2133 * buffer doesn't require mapping for writeback and we haven't started the
2134 * extent of buffers to map yet, the function returns 'true' immediately - the
2135 * caller can write the buffer right away. Otherwise the function returns true
2136 * if the block has been added to the extent, false if the block couldn't be
2137 * added.
2138 */
2139static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2140 struct buffer_head *bh)
2141{
2142 struct ext4_map_blocks *map = &mpd->map;
2143
2144 /* Buffer that doesn't need mapping for writeback? */
2145 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2146 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2147 /* So far no extent to map => we write the buffer right away */
2148 if (map->m_len == 0)
2149 return true;
2150 return false;
2151 }
2152
2153 /* First block in the extent? */
2154 if (map->m_len == 0) {
2155 /* We cannot map unless handle is started... */
2156 if (!mpd->do_map)
2157 return false;
2158 map->m_lblk = lblk;
2159 map->m_len = 1;
2160 map->m_flags = bh->b_state & BH_FLAGS;
2161 return true;
2162 }
2163
2164 /* Don't go larger than mballoc is willing to allocate */
2165 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2166 return false;
2167
2168 /* Can we merge the block to our big extent? */
2169 if (lblk == map->m_lblk + map->m_len &&
2170 (bh->b_state & BH_FLAGS) == map->m_flags) {
2171 map->m_len++;
2172 return true;
2173 }
2174 return false;
2175}
2176
2177/*
2178 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2179 *
2180 * @mpd - extent of blocks for mapping
2181 * @head - the first buffer in the page
2182 * @bh - buffer we should start processing from
2183 * @lblk - logical number of the block in the file corresponding to @bh
2184 *
2185 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2186 * the page for IO if all buffers in this page were mapped and there's no
2187 * accumulated extent of buffers to map or add buffers in the page to the
2188 * extent of buffers to map. The function returns 1 if the caller can continue
2189 * by processing the next page, 0 if it should stop adding buffers to the
2190 * extent to map because we cannot extend it anymore. It can also return value
2191 * < 0 in case of error during IO submission.
2192 */
2193static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2194 struct buffer_head *head,
2195 struct buffer_head *bh,
2196 ext4_lblk_t lblk)
2197{
2198 struct inode *inode = mpd->inode;
2199 int err;
2200 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2201 >> inode->i_blkbits;
2202
2203 if (ext4_verity_in_progress(inode))
2204 blocks = EXT_MAX_BLOCKS;
2205
2206 do {
2207 BUG_ON(buffer_locked(bh));
2208
2209 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2210 /* Found extent to map? */
2211 if (mpd->map.m_len)
2212 return 0;
2213 /* Buffer needs mapping and handle is not started? */
2214 if (!mpd->do_map)
2215 return 0;
2216 /* Everything mapped so far and we hit EOF */
2217 break;
2218 }
2219 } while (lblk++, (bh = bh->b_this_page) != head);
2220 /* So far everything mapped? Submit the page for IO. */
2221 if (mpd->map.m_len == 0) {
2222 err = mpage_submit_page(mpd, head->b_page);
2223 if (err < 0)
2224 return err;
2225 }
2226 if (lblk >= blocks) {
2227 mpd->scanned_until_end = 1;
2228 return 0;
2229 }
2230 return 1;
2231}
2232
2233/*
2234 * mpage_process_page - update page buffers corresponding to changed extent and
2235 * may submit fully mapped page for IO
2236 *
2237 * @mpd - description of extent to map, on return next extent to map
2238 * @m_lblk - logical block mapping.
2239 * @m_pblk - corresponding physical mapping.
2240 * @map_bh - determines on return whether this page requires any further
2241 * mapping or not.
2242 * Scan given page buffers corresponding to changed extent and update buffer
2243 * state according to new extent state.
2244 * We map delalloc buffers to their physical location, clear unwritten bits.
2245 * If the given page is not fully mapped, we update @map to the next extent in
2246 * the given page that needs mapping & return @map_bh as true.
2247 */
2248static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2249 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2250 bool *map_bh)
2251{
2252 struct buffer_head *head, *bh;
2253 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2254 ext4_lblk_t lblk = *m_lblk;
2255 ext4_fsblk_t pblock = *m_pblk;
2256 int err = 0;
2257 int blkbits = mpd->inode->i_blkbits;
2258 ssize_t io_end_size = 0;
2259 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2260
2261 bh = head = page_buffers(page);
2262 do {
2263 if (lblk < mpd->map.m_lblk)
2264 continue;
2265 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2266 /*
2267 * Buffer after end of mapped extent.
2268 * Find next buffer in the page to map.
2269 */
2270 mpd->map.m_len = 0;
2271 mpd->map.m_flags = 0;
2272 io_end_vec->size += io_end_size;
2273 io_end_size = 0;
2274
2275 err = mpage_process_page_bufs(mpd, head, bh, lblk);
2276 if (err > 0)
2277 err = 0;
2278 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2279 io_end_vec = ext4_alloc_io_end_vec(io_end);
2280 if (IS_ERR(io_end_vec)) {
2281 err = PTR_ERR(io_end_vec);
2282 goto out;
2283 }
2284 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2285 }
2286 *map_bh = true;
2287 goto out;
2288 }
2289 if (buffer_delay(bh)) {
2290 clear_buffer_delay(bh);
2291 bh->b_blocknr = pblock++;
2292 }
2293 clear_buffer_unwritten(bh);
2294 io_end_size += (1 << blkbits);
2295 } while (lblk++, (bh = bh->b_this_page) != head);
2296
2297 io_end_vec->size += io_end_size;
2298 io_end_size = 0;
2299 *map_bh = false;
2300out:
2301 *m_lblk = lblk;
2302 *m_pblk = pblock;
2303 return err;
2304}
2305
2306/*
2307 * mpage_map_buffers - update buffers corresponding to changed extent and
2308 * submit fully mapped pages for IO
2309 *
2310 * @mpd - description of extent to map, on return next extent to map
2311 *
2312 * Scan buffers corresponding to changed extent (we expect corresponding pages
2313 * to be already locked) and update buffer state according to new extent state.
2314 * We map delalloc buffers to their physical location, clear unwritten bits,
2315 * and mark buffers as uninit when we perform writes to unwritten extents
2316 * and do extent conversion after IO is finished. If the last page is not fully
2317 * mapped, we update @map to the next extent in the last page that needs
2318 * mapping. Otherwise we submit the page for IO.
2319 */
2320static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2321{
2322 struct pagevec pvec;
2323 int nr_pages, i;
2324 struct inode *inode = mpd->inode;
2325 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2326 pgoff_t start, end;
2327 ext4_lblk_t lblk;
2328 ext4_fsblk_t pblock;
2329 int err;
2330 bool map_bh = false;
2331
2332 start = mpd->map.m_lblk >> bpp_bits;
2333 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2334 lblk = start << bpp_bits;
2335 pblock = mpd->map.m_pblk;
2336
2337 pagevec_init(&pvec);
2338 while (start <= end) {
2339 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2340 &start, end);
2341 if (nr_pages == 0)
2342 break;
2343 for (i = 0; i < nr_pages; i++) {
2344 struct page *page = pvec.pages[i];
2345
2346 err = mpage_process_page(mpd, page, &lblk, &pblock,
2347 &map_bh);
2348 /*
2349 * If map_bh is true, means page may require further bh
2350 * mapping, or maybe the page was submitted for IO.
2351 * So we return to call further extent mapping.
2352 */
2353 if (err < 0 || map_bh)
2354 goto out;
2355 /* Page fully mapped - let IO run! */
2356 err = mpage_submit_page(mpd, page);
2357 if (err < 0)
2358 goto out;
2359 }
2360 pagevec_release(&pvec);
2361 }
2362 /* Extent fully mapped and matches with page boundary. We are done. */
2363 mpd->map.m_len = 0;
2364 mpd->map.m_flags = 0;
2365 return 0;
2366out:
2367 pagevec_release(&pvec);
2368 return err;
2369}
2370
2371static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2372{
2373 struct inode *inode = mpd->inode;
2374 struct ext4_map_blocks *map = &mpd->map;
2375 int get_blocks_flags;
2376 int err, dioread_nolock;
2377
2378 trace_ext4_da_write_pages_extent(inode, map);
2379 /*
2380 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2381 * to convert an unwritten extent to be initialized (in the case
2382 * where we have written into one or more preallocated blocks). It is
2383 * possible that we're going to need more metadata blocks than
2384 * previously reserved. However we must not fail because we're in
2385 * writeback and there is nothing we can do about it so it might result
2386 * in data loss. So use reserved blocks to allocate metadata if
2387 * possible.
2388 *
2389 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2390 * the blocks in question are delalloc blocks. This indicates
2391 * that the blocks and quotas has already been checked when
2392 * the data was copied into the page cache.
2393 */
2394 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2395 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2396 EXT4_GET_BLOCKS_IO_SUBMIT;
2397 dioread_nolock = ext4_should_dioread_nolock(inode);
2398 if (dioread_nolock)
2399 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2400 if (map->m_flags & BIT(BH_Delay))
2401 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2402
2403 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2404 if (err < 0)
2405 return err;
2406 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2407 if (!mpd->io_submit.io_end->handle &&
2408 ext4_handle_valid(handle)) {
2409 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2410 handle->h_rsv_handle = NULL;
2411 }
2412 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2413 }
2414
2415 BUG_ON(map->m_len == 0);
2416 return 0;
2417}
2418
2419/*
2420 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2421 * mpd->len and submit pages underlying it for IO
2422 *
2423 * @handle - handle for journal operations
2424 * @mpd - extent to map
2425 * @give_up_on_write - we set this to true iff there is a fatal error and there
2426 * is no hope of writing the data. The caller should discard
2427 * dirty pages to avoid infinite loops.
2428 *
2429 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2430 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2431 * them to initialized or split the described range from larger unwritten
2432 * extent. Note that we need not map all the described range since allocation
2433 * can return less blocks or the range is covered by more unwritten extents. We
2434 * cannot map more because we are limited by reserved transaction credits. On
2435 * the other hand we always make sure that the last touched page is fully
2436 * mapped so that it can be written out (and thus forward progress is
2437 * guaranteed). After mapping we submit all mapped pages for IO.
2438 */
2439static int mpage_map_and_submit_extent(handle_t *handle,
2440 struct mpage_da_data *mpd,
2441 bool *give_up_on_write)
2442{
2443 struct inode *inode = mpd->inode;
2444 struct ext4_map_blocks *map = &mpd->map;
2445 int err;
2446 loff_t disksize;
2447 int progress = 0;
2448 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2449 struct ext4_io_end_vec *io_end_vec;
2450
2451 io_end_vec = ext4_alloc_io_end_vec(io_end);
2452 if (IS_ERR(io_end_vec))
2453 return PTR_ERR(io_end_vec);
2454 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2455 do {
2456 err = mpage_map_one_extent(handle, mpd);
2457 if (err < 0) {
2458 struct super_block *sb = inode->i_sb;
2459
2460 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2461 ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2462 goto invalidate_dirty_pages;
2463 /*
2464 * Let the uper layers retry transient errors.
2465 * In the case of ENOSPC, if ext4_count_free_blocks()
2466 * is non-zero, a commit should free up blocks.
2467 */
2468 if ((err == -ENOMEM) ||
2469 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2470 if (progress)
2471 goto update_disksize;
2472 return err;
2473 }
2474 ext4_msg(sb, KERN_CRIT,
2475 "Delayed block allocation failed for "
2476 "inode %lu at logical offset %llu with"
2477 " max blocks %u with error %d",
2478 inode->i_ino,
2479 (unsigned long long)map->m_lblk,
2480 (unsigned)map->m_len, -err);
2481 ext4_msg(sb, KERN_CRIT,
2482 "This should not happen!! Data will "
2483 "be lost\n");
2484 if (err == -ENOSPC)
2485 ext4_print_free_blocks(inode);
2486 invalidate_dirty_pages:
2487 *give_up_on_write = true;
2488 return err;
2489 }
2490 progress = 1;
2491 /*
2492 * Update buffer state, submit mapped pages, and get us new
2493 * extent to map
2494 */
2495 err = mpage_map_and_submit_buffers(mpd);
2496 if (err < 0)
2497 goto update_disksize;
2498 } while (map->m_len);
2499
2500update_disksize:
2501 /*
2502 * Update on-disk size after IO is submitted. Races with
2503 * truncate are avoided by checking i_size under i_data_sem.
2504 */
2505 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2506 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2507 int err2;
2508 loff_t i_size;
2509
2510 down_write(&EXT4_I(inode)->i_data_sem);
2511 i_size = i_size_read(inode);
2512 if (disksize > i_size)
2513 disksize = i_size;
2514 if (disksize > EXT4_I(inode)->i_disksize)
2515 EXT4_I(inode)->i_disksize = disksize;
2516 up_write(&EXT4_I(inode)->i_data_sem);
2517 err2 = ext4_mark_inode_dirty(handle, inode);
2518 if (err2) {
2519 ext4_error_err(inode->i_sb, -err2,
2520 "Failed to mark inode %lu dirty",
2521 inode->i_ino);
2522 }
2523 if (!err)
2524 err = err2;
2525 }
2526 return err;
2527}
2528
2529/*
2530 * Calculate the total number of credits to reserve for one writepages
2531 * iteration. This is called from ext4_writepages(). We map an extent of
2532 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2533 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2534 * bpp - 1 blocks in bpp different extents.
2535 */
2536static int ext4_da_writepages_trans_blocks(struct inode *inode)
2537{
2538 int bpp = ext4_journal_blocks_per_page(inode);
2539
2540 return ext4_meta_trans_blocks(inode,
2541 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2542}
2543
2544/*
2545 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2546 * and underlying extent to map
2547 *
2548 * @mpd - where to look for pages
2549 *
2550 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2551 * IO immediately. When we find a page which isn't mapped we start accumulating
2552 * extent of buffers underlying these pages that needs mapping (formed by
2553 * either delayed or unwritten buffers). We also lock the pages containing
2554 * these buffers. The extent found is returned in @mpd structure (starting at
2555 * mpd->lblk with length mpd->len blocks).
2556 *
2557 * Note that this function can attach bios to one io_end structure which are
2558 * neither logically nor physically contiguous. Although it may seem as an
2559 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2560 * case as we need to track IO to all buffers underlying a page in one io_end.
2561 */
2562static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2563{
2564 struct address_space *mapping = mpd->inode->i_mapping;
2565 struct pagevec pvec;
2566 unsigned int nr_pages;
2567 long left = mpd->wbc->nr_to_write;
2568 pgoff_t index = mpd->first_page;
2569 pgoff_t end = mpd->last_page;
2570 xa_mark_t tag;
2571 int i, err = 0;
2572 int blkbits = mpd->inode->i_blkbits;
2573 ext4_lblk_t lblk;
2574 struct buffer_head *head;
2575
2576 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2577 tag = PAGECACHE_TAG_TOWRITE;
2578 else
2579 tag = PAGECACHE_TAG_DIRTY;
2580
2581 pagevec_init(&pvec);
2582 mpd->map.m_len = 0;
2583 mpd->next_page = index;
2584 while (index <= end) {
2585 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2586 tag);
2587 if (nr_pages == 0)
2588 break;
2589
2590 for (i = 0; i < nr_pages; i++) {
2591 struct page *page = pvec.pages[i];
2592
2593 /*
2594 * Accumulated enough dirty pages? This doesn't apply
2595 * to WB_SYNC_ALL mode. For integrity sync we have to
2596 * keep going because someone may be concurrently
2597 * dirtying pages, and we might have synced a lot of
2598 * newly appeared dirty pages, but have not synced all
2599 * of the old dirty pages.
2600 */
2601 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2602 goto out;
2603
2604 /* If we can't merge this page, we are done. */
2605 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2606 goto out;
2607
2608 lock_page(page);
2609 /*
2610 * If the page is no longer dirty, or its mapping no
2611 * longer corresponds to inode we are writing (which
2612 * means it has been truncated or invalidated), or the
2613 * page is already under writeback and we are not doing
2614 * a data integrity writeback, skip the page
2615 */
2616 if (!PageDirty(page) ||
2617 (PageWriteback(page) &&
2618 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2619 unlikely(page->mapping != mapping)) {
2620 unlock_page(page);
2621 continue;
2622 }
2623
2624 wait_on_page_writeback(page);
2625 BUG_ON(PageWriteback(page));
2626
2627 if (mpd->map.m_len == 0)
2628 mpd->first_page = page->index;
2629 mpd->next_page = page->index + 1;
2630 /* Add all dirty buffers to mpd */
2631 lblk = ((ext4_lblk_t)page->index) <<
2632 (PAGE_SHIFT - blkbits);
2633 head = page_buffers(page);
2634 err = mpage_process_page_bufs(mpd, head, head, lblk);
2635 if (err <= 0)
2636 goto out;
2637 err = 0;
2638 left--;
2639 }
2640 pagevec_release(&pvec);
2641 cond_resched();
2642 }
2643 mpd->scanned_until_end = 1;
2644 return 0;
2645out:
2646 pagevec_release(&pvec);
2647 return err;
2648}
2649
2650static int ext4_writepages(struct address_space *mapping,
2651 struct writeback_control *wbc)
2652{
2653 pgoff_t writeback_index = 0;
2654 long nr_to_write = wbc->nr_to_write;
2655 int range_whole = 0;
2656 int cycled = 1;
2657 handle_t *handle = NULL;
2658 struct mpage_da_data mpd;
2659 struct inode *inode = mapping->host;
2660 int needed_blocks, rsv_blocks = 0, ret = 0;
2661 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2662 struct blk_plug plug;
2663 bool give_up_on_write = false;
2664
2665 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2666 return -EIO;
2667
2668 percpu_down_read(&sbi->s_writepages_rwsem);
2669 trace_ext4_writepages(inode, wbc);
2670
2671 /*
2672 * No pages to write? This is mainly a kludge to avoid starting
2673 * a transaction for special inodes like journal inode on last iput()
2674 * because that could violate lock ordering on umount
2675 */
2676 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2677 goto out_writepages;
2678
2679 if (ext4_should_journal_data(inode)) {
2680 ret = generic_writepages(mapping, wbc);
2681 goto out_writepages;
2682 }
2683
2684 /*
2685 * If the filesystem has aborted, it is read-only, so return
2686 * right away instead of dumping stack traces later on that
2687 * will obscure the real source of the problem. We test
2688 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2689 * the latter could be true if the filesystem is mounted
2690 * read-only, and in that case, ext4_writepages should
2691 * *never* be called, so if that ever happens, we would want
2692 * the stack trace.
2693 */
2694 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2695 ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2696 ret = -EROFS;
2697 goto out_writepages;
2698 }
2699
2700 /*
2701 * If we have inline data and arrive here, it means that
2702 * we will soon create the block for the 1st page, so
2703 * we'd better clear the inline data here.
2704 */
2705 if (ext4_has_inline_data(inode)) {
2706 /* Just inode will be modified... */
2707 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2708 if (IS_ERR(handle)) {
2709 ret = PTR_ERR(handle);
2710 goto out_writepages;
2711 }
2712 BUG_ON(ext4_test_inode_state(inode,
2713 EXT4_STATE_MAY_INLINE_DATA));
2714 ext4_destroy_inline_data(handle, inode);
2715 ext4_journal_stop(handle);
2716 }
2717
2718 if (ext4_should_dioread_nolock(inode)) {
2719 /*
2720 * We may need to convert up to one extent per block in
2721 * the page and we may dirty the inode.
2722 */
2723 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2724 PAGE_SIZE >> inode->i_blkbits);
2725 }
2726
2727 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2728 range_whole = 1;
2729
2730 if (wbc->range_cyclic) {
2731 writeback_index = mapping->writeback_index;
2732 if (writeback_index)
2733 cycled = 0;
2734 mpd.first_page = writeback_index;
2735 mpd.last_page = -1;
2736 } else {
2737 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2738 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2739 }
2740
2741 mpd.inode = inode;
2742 mpd.wbc = wbc;
2743 ext4_io_submit_init(&mpd.io_submit, wbc);
2744retry:
2745 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2746 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2747 blk_start_plug(&plug);
2748
2749 /*
2750 * First writeback pages that don't need mapping - we can avoid
2751 * starting a transaction unnecessarily and also avoid being blocked
2752 * in the block layer on device congestion while having transaction
2753 * started.
2754 */
2755 mpd.do_map = 0;
2756 mpd.scanned_until_end = 0;
2757 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2758 if (!mpd.io_submit.io_end) {
2759 ret = -ENOMEM;
2760 goto unplug;
2761 }
2762 ret = mpage_prepare_extent_to_map(&mpd);
2763 /* Unlock pages we didn't use */
2764 mpage_release_unused_pages(&mpd, false);
2765 /* Submit prepared bio */
2766 ext4_io_submit(&mpd.io_submit);
2767 ext4_put_io_end_defer(mpd.io_submit.io_end);
2768 mpd.io_submit.io_end = NULL;
2769 if (ret < 0)
2770 goto unplug;
2771
2772 while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2773 /* For each extent of pages we use new io_end */
2774 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2775 if (!mpd.io_submit.io_end) {
2776 ret = -ENOMEM;
2777 break;
2778 }
2779
2780 /*
2781 * We have two constraints: We find one extent to map and we
2782 * must always write out whole page (makes a difference when
2783 * blocksize < pagesize) so that we don't block on IO when we
2784 * try to write out the rest of the page. Journalled mode is
2785 * not supported by delalloc.
2786 */
2787 BUG_ON(ext4_should_journal_data(inode));
2788 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2789
2790 /* start a new transaction */
2791 handle = ext4_journal_start_with_reserve(inode,
2792 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2793 if (IS_ERR(handle)) {
2794 ret = PTR_ERR(handle);
2795 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2796 "%ld pages, ino %lu; err %d", __func__,
2797 wbc->nr_to_write, inode->i_ino, ret);
2798 /* Release allocated io_end */
2799 ext4_put_io_end(mpd.io_submit.io_end);
2800 mpd.io_submit.io_end = NULL;
2801 break;
2802 }
2803 mpd.do_map = 1;
2804
2805 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2806 ret = mpage_prepare_extent_to_map(&mpd);
2807 if (!ret && mpd.map.m_len)
2808 ret = mpage_map_and_submit_extent(handle, &mpd,
2809 &give_up_on_write);
2810 /*
2811 * Caution: If the handle is synchronous,
2812 * ext4_journal_stop() can wait for transaction commit
2813 * to finish which may depend on writeback of pages to
2814 * complete or on page lock to be released. In that
2815 * case, we have to wait until after we have
2816 * submitted all the IO, released page locks we hold,
2817 * and dropped io_end reference (for extent conversion
2818 * to be able to complete) before stopping the handle.
2819 */
2820 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2821 ext4_journal_stop(handle);
2822 handle = NULL;
2823 mpd.do_map = 0;
2824 }
2825 /* Unlock pages we didn't use */
2826 mpage_release_unused_pages(&mpd, give_up_on_write);
2827 /* Submit prepared bio */
2828 ext4_io_submit(&mpd.io_submit);
2829
2830 /*
2831 * Drop our io_end reference we got from init. We have
2832 * to be careful and use deferred io_end finishing if
2833 * we are still holding the transaction as we can
2834 * release the last reference to io_end which may end
2835 * up doing unwritten extent conversion.
2836 */
2837 if (handle) {
2838 ext4_put_io_end_defer(mpd.io_submit.io_end);
2839 ext4_journal_stop(handle);
2840 } else
2841 ext4_put_io_end(mpd.io_submit.io_end);
2842 mpd.io_submit.io_end = NULL;
2843
2844 if (ret == -ENOSPC && sbi->s_journal) {
2845 /*
2846 * Commit the transaction which would
2847 * free blocks released in the transaction
2848 * and try again
2849 */
2850 jbd2_journal_force_commit_nested(sbi->s_journal);
2851 ret = 0;
2852 continue;
2853 }
2854 /* Fatal error - ENOMEM, EIO... */
2855 if (ret)
2856 break;
2857 }
2858unplug:
2859 blk_finish_plug(&plug);
2860 if (!ret && !cycled && wbc->nr_to_write > 0) {
2861 cycled = 1;
2862 mpd.last_page = writeback_index - 1;
2863 mpd.first_page = 0;
2864 goto retry;
2865 }
2866
2867 /* Update index */
2868 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2869 /*
2870 * Set the writeback_index so that range_cyclic
2871 * mode will write it back later
2872 */
2873 mapping->writeback_index = mpd.first_page;
2874
2875out_writepages:
2876 trace_ext4_writepages_result(inode, wbc, ret,
2877 nr_to_write - wbc->nr_to_write);
2878 percpu_up_read(&sbi->s_writepages_rwsem);
2879 return ret;
2880}
2881
2882static int ext4_dax_writepages(struct address_space *mapping,
2883 struct writeback_control *wbc)
2884{
2885 int ret;
2886 long nr_to_write = wbc->nr_to_write;
2887 struct inode *inode = mapping->host;
2888 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2889
2890 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2891 return -EIO;
2892
2893 percpu_down_read(&sbi->s_writepages_rwsem);
2894 trace_ext4_writepages(inode, wbc);
2895
2896 ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2897 trace_ext4_writepages_result(inode, wbc, ret,
2898 nr_to_write - wbc->nr_to_write);
2899 percpu_up_read(&sbi->s_writepages_rwsem);
2900 return ret;
2901}
2902
2903static int ext4_nonda_switch(struct super_block *sb)
2904{
2905 s64 free_clusters, dirty_clusters;
2906 struct ext4_sb_info *sbi = EXT4_SB(sb);
2907
2908 /*
2909 * switch to non delalloc mode if we are running low
2910 * on free block. The free block accounting via percpu
2911 * counters can get slightly wrong with percpu_counter_batch getting
2912 * accumulated on each CPU without updating global counters
2913 * Delalloc need an accurate free block accounting. So switch
2914 * to non delalloc when we are near to error range.
2915 */
2916 free_clusters =
2917 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2918 dirty_clusters =
2919 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2920 /*
2921 * Start pushing delalloc when 1/2 of free blocks are dirty.
2922 */
2923 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2924 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2925
2926 if (2 * free_clusters < 3 * dirty_clusters ||
2927 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2928 /*
2929 * free block count is less than 150% of dirty blocks
2930 * or free blocks is less than watermark
2931 */
2932 return 1;
2933 }
2934 return 0;
2935}
2936
2937/* We always reserve for an inode update; the superblock could be there too */
2938static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2939{
2940 if (likely(ext4_has_feature_large_file(inode->i_sb)))
2941 return 1;
2942
2943 if (pos + len <= 0x7fffffffULL)
2944 return 1;
2945
2946 /* We might need to update the superblock to set LARGE_FILE */
2947 return 2;
2948}
2949
2950static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2951 loff_t pos, unsigned len, unsigned flags,
2952 struct page **pagep, void **fsdata)
2953{
2954 int ret, retries = 0;
2955 struct page *page;
2956 pgoff_t index;
2957 struct inode *inode = mapping->host;
2958 handle_t *handle;
2959
2960 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2961 return -EIO;
2962
2963 index = pos >> PAGE_SHIFT;
2964
2965 if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2966 ext4_verity_in_progress(inode)) {
2967 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2968 return ext4_write_begin(file, mapping, pos,
2969 len, flags, pagep, fsdata);
2970 }
2971 *fsdata = (void *)0;
2972 trace_ext4_da_write_begin(inode, pos, len, flags);
2973
2974 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2975 ret = ext4_da_write_inline_data_begin(mapping, inode,
2976 pos, len, flags,
2977 pagep, fsdata);
2978 if (ret < 0)
2979 return ret;
2980 if (ret == 1)
2981 return 0;
2982 }
2983
2984 /*
2985 * grab_cache_page_write_begin() can take a long time if the
2986 * system is thrashing due to memory pressure, or if the page
2987 * is being written back. So grab it first before we start
2988 * the transaction handle. This also allows us to allocate
2989 * the page (if needed) without using GFP_NOFS.
2990 */
2991retry_grab:
2992 page = grab_cache_page_write_begin(mapping, index, flags);
2993 if (!page)
2994 return -ENOMEM;
2995 unlock_page(page);
2996
2997 /*
2998 * With delayed allocation, we don't log the i_disksize update
2999 * if there is delayed block allocation. But we still need
3000 * to journalling the i_disksize update if writes to the end
3001 * of file which has an already mapped buffer.
3002 */
3003retry_journal:
3004 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3005 ext4_da_write_credits(inode, pos, len));
3006 if (IS_ERR(handle)) {
3007 put_page(page);
3008 return PTR_ERR(handle);
3009 }
3010
3011 lock_page(page);
3012 if (page->mapping != mapping) {
3013 /* The page got truncated from under us */
3014 unlock_page(page);
3015 put_page(page);
3016 ext4_journal_stop(handle);
3017 goto retry_grab;
3018 }
3019 /* In case writeback began while the page was unlocked */
3020 wait_for_stable_page(page);
3021
3022#ifdef CONFIG_FS_ENCRYPTION
3023 ret = ext4_block_write_begin(page, pos, len,
3024 ext4_da_get_block_prep);
3025#else
3026 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3027#endif
3028 if (ret < 0) {
3029 unlock_page(page);
3030 ext4_journal_stop(handle);
3031 /*
3032 * block_write_begin may have instantiated a few blocks
3033 * outside i_size. Trim these off again. Don't need
3034 * i_size_read because we hold i_mutex.
3035 */
3036 if (pos + len > inode->i_size)
3037 ext4_truncate_failed_write(inode);
3038
3039 if (ret == -ENOSPC &&
3040 ext4_should_retry_alloc(inode->i_sb, &retries))
3041 goto retry_journal;
3042
3043 put_page(page);
3044 return ret;
3045 }
3046
3047 *pagep = page;
3048 return ret;
3049}
3050
3051/*
3052 * Check if we should update i_disksize
3053 * when write to the end of file but not require block allocation
3054 */
3055static int ext4_da_should_update_i_disksize(struct page *page,
3056 unsigned long offset)
3057{
3058 struct buffer_head *bh;
3059 struct inode *inode = page->mapping->host;
3060 unsigned int idx;
3061 int i;
3062
3063 bh = page_buffers(page);
3064 idx = offset >> inode->i_blkbits;
3065
3066 for (i = 0; i < idx; i++)
3067 bh = bh->b_this_page;
3068
3069 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3070 return 0;
3071 return 1;
3072}
3073
3074static int ext4_da_write_end(struct file *file,
3075 struct address_space *mapping,
3076 loff_t pos, unsigned len, unsigned copied,
3077 struct page *page, void *fsdata)
3078{
3079 struct inode *inode = mapping->host;
3080 int ret = 0, ret2;
3081 handle_t *handle = ext4_journal_current_handle();
3082 loff_t new_i_size;
3083 unsigned long start, end;
3084 int write_mode = (int)(unsigned long)fsdata;
3085
3086 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3087 return ext4_write_end(file, mapping, pos,
3088 len, copied, page, fsdata);
3089
3090 trace_ext4_da_write_end(inode, pos, len, copied);
3091 start = pos & (PAGE_SIZE - 1);
3092 end = start + copied - 1;
3093
3094 /*
3095 * Since we are holding inode lock, we are sure i_disksize <=
3096 * i_size. We also know that if i_disksize < i_size, there are
3097 * delalloc writes pending in the range upto i_size. If the end of
3098 * the current write is <= i_size, there's no need to touch
3099 * i_disksize since writeback will push i_disksize upto i_size
3100 * eventually. If the end of the current write is > i_size and
3101 * inside an allocated block (ext4_da_should_update_i_disksize()
3102 * check), we need to update i_disksize here as neither
3103 * ext4_writepage() nor certain ext4_writepages() paths not
3104 * allocating blocks update i_disksize.
3105 *
3106 * Note that we defer inode dirtying to generic_write_end() /
3107 * ext4_da_write_inline_data_end().
3108 */
3109 new_i_size = pos + copied;
3110 if (copied && new_i_size > inode->i_size) {
3111 if (ext4_has_inline_data(inode) ||
3112 ext4_da_should_update_i_disksize(page, end))
3113 ext4_update_i_disksize(inode, new_i_size);
3114 }
3115
3116 if (write_mode != CONVERT_INLINE_DATA &&
3117 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3118 ext4_has_inline_data(inode))
3119 ret = ext4_da_write_inline_data_end(inode, pos, len, copied,
3120 page);
3121 else
3122 ret = generic_write_end(file, mapping, pos, len, copied,
3123 page, fsdata);
3124
3125 copied = ret;
3126 ret2 = ext4_journal_stop(handle);
3127 if (unlikely(ret2 && !ret))
3128 ret = ret2;
3129
3130 return ret ? ret : copied;
3131}
3132
3133/*
3134 * Force all delayed allocation blocks to be allocated for a given inode.
3135 */
3136int ext4_alloc_da_blocks(struct inode *inode)
3137{
3138 trace_ext4_alloc_da_blocks(inode);
3139
3140 if (!EXT4_I(inode)->i_reserved_data_blocks)
3141 return 0;
3142
3143 /*
3144 * We do something simple for now. The filemap_flush() will
3145 * also start triggering a write of the data blocks, which is
3146 * not strictly speaking necessary (and for users of
3147 * laptop_mode, not even desirable). However, to do otherwise
3148 * would require replicating code paths in:
3149 *
3150 * ext4_writepages() ->
3151 * write_cache_pages() ---> (via passed in callback function)
3152 * __mpage_da_writepage() -->
3153 * mpage_add_bh_to_extent()
3154 * mpage_da_map_blocks()
3155 *
3156 * The problem is that write_cache_pages(), located in
3157 * mm/page-writeback.c, marks pages clean in preparation for
3158 * doing I/O, which is not desirable if we're not planning on
3159 * doing I/O at all.
3160 *
3161 * We could call write_cache_pages(), and then redirty all of
3162 * the pages by calling redirty_page_for_writepage() but that
3163 * would be ugly in the extreme. So instead we would need to
3164 * replicate parts of the code in the above functions,
3165 * simplifying them because we wouldn't actually intend to
3166 * write out the pages, but rather only collect contiguous
3167 * logical block extents, call the multi-block allocator, and
3168 * then update the buffer heads with the block allocations.
3169 *
3170 * For now, though, we'll cheat by calling filemap_flush(),
3171 * which will map the blocks, and start the I/O, but not
3172 * actually wait for the I/O to complete.
3173 */
3174 return filemap_flush(inode->i_mapping);
3175}
3176
3177/*
3178 * bmap() is special. It gets used by applications such as lilo and by
3179 * the swapper to find the on-disk block of a specific piece of data.
3180 *
3181 * Naturally, this is dangerous if the block concerned is still in the
3182 * journal. If somebody makes a swapfile on an ext4 data-journaling
3183 * filesystem and enables swap, then they may get a nasty shock when the
3184 * data getting swapped to that swapfile suddenly gets overwritten by
3185 * the original zero's written out previously to the journal and
3186 * awaiting writeback in the kernel's buffer cache.
3187 *
3188 * So, if we see any bmap calls here on a modified, data-journaled file,
3189 * take extra steps to flush any blocks which might be in the cache.
3190 */
3191static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3192{
3193 struct inode *inode = mapping->host;
3194 journal_t *journal;
3195 int err;
3196
3197 /*
3198 * We can get here for an inline file via the FIBMAP ioctl
3199 */
3200 if (ext4_has_inline_data(inode))
3201 return 0;
3202
3203 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3204 test_opt(inode->i_sb, DELALLOC)) {
3205 /*
3206 * With delalloc we want to sync the file
3207 * so that we can make sure we allocate
3208 * blocks for file
3209 */
3210 filemap_write_and_wait(mapping);
3211 }
3212
3213 if (EXT4_JOURNAL(inode) &&
3214 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3215 /*
3216 * This is a REALLY heavyweight approach, but the use of
3217 * bmap on dirty files is expected to be extremely rare:
3218 * only if we run lilo or swapon on a freshly made file
3219 * do we expect this to happen.
3220 *
3221 * (bmap requires CAP_SYS_RAWIO so this does not
3222 * represent an unprivileged user DOS attack --- we'd be
3223 * in trouble if mortal users could trigger this path at
3224 * will.)
3225 *
3226 * NB. EXT4_STATE_JDATA is not set on files other than
3227 * regular files. If somebody wants to bmap a directory
3228 * or symlink and gets confused because the buffer
3229 * hasn't yet been flushed to disk, they deserve
3230 * everything they get.
3231 */
3232
3233 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3234 journal = EXT4_JOURNAL(inode);
3235 jbd2_journal_lock_updates(journal);
3236 err = jbd2_journal_flush(journal, 0);
3237 jbd2_journal_unlock_updates(journal);
3238
3239 if (err)
3240 return 0;
3241 }
3242
3243 return iomap_bmap(mapping, block, &ext4_iomap_ops);
3244}
3245
3246static int ext4_readpage(struct file *file, struct page *page)
3247{
3248 int ret = -EAGAIN;
3249 struct inode *inode = page->mapping->host;
3250
3251 trace_ext4_readpage(page);
3252
3253 if (ext4_has_inline_data(inode))
3254 ret = ext4_readpage_inline(inode, page);
3255
3256 if (ret == -EAGAIN)
3257 return ext4_mpage_readpages(inode, NULL, page);
3258
3259 return ret;
3260}
3261
3262static void ext4_readahead(struct readahead_control *rac)
3263{
3264 struct inode *inode = rac->mapping->host;
3265
3266 /* If the file has inline data, no need to do readahead. */
3267 if (ext4_has_inline_data(inode))
3268 return;
3269
3270 ext4_mpage_readpages(inode, rac, NULL);
3271}
3272
3273static void ext4_invalidatepage(struct page *page, unsigned int offset,
3274 unsigned int length)
3275{
3276 trace_ext4_invalidatepage(page, offset, length);
3277
3278 /* No journalling happens on data buffers when this function is used */
3279 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3280
3281 block_invalidatepage(page, offset, length);
3282}
3283
3284static int __ext4_journalled_invalidatepage(struct page *page,
3285 unsigned int offset,
3286 unsigned int length)
3287{
3288 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3289
3290 trace_ext4_journalled_invalidatepage(page, offset, length);
3291
3292 /*
3293 * If it's a full truncate we just forget about the pending dirtying
3294 */
3295 if (offset == 0 && length == PAGE_SIZE)
3296 ClearPageChecked(page);
3297
3298 return jbd2_journal_invalidatepage(journal, page, offset, length);
3299}
3300
3301/* Wrapper for aops... */
3302static void ext4_journalled_invalidatepage(struct page *page,
3303 unsigned int offset,
3304 unsigned int length)
3305{
3306 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3307}
3308
3309static int ext4_releasepage(struct page *page, gfp_t wait)
3310{
3311 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3312
3313 trace_ext4_releasepage(page);
3314
3315 /* Page has dirty journalled data -> cannot release */
3316 if (PageChecked(page))
3317 return 0;
3318 if (journal)
3319 return jbd2_journal_try_to_free_buffers(journal, page);
3320 else
3321 return try_to_free_buffers(page);
3322}
3323
3324static bool ext4_inode_datasync_dirty(struct inode *inode)
3325{
3326 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3327
3328 if (journal) {
3329 if (jbd2_transaction_committed(journal,
3330 EXT4_I(inode)->i_datasync_tid))
3331 return false;
3332 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3333 return !list_empty(&EXT4_I(inode)->i_fc_list);
3334 return true;
3335 }
3336
3337 /* Any metadata buffers to write? */
3338 if (!list_empty(&inode->i_mapping->private_list))
3339 return true;
3340 return inode->i_state & I_DIRTY_DATASYNC;
3341}
3342
3343static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3344 struct ext4_map_blocks *map, loff_t offset,
3345 loff_t length)
3346{
3347 u8 blkbits = inode->i_blkbits;
3348
3349 /*
3350 * Writes that span EOF might trigger an I/O size update on completion,
3351 * so consider them to be dirty for the purpose of O_DSYNC, even if
3352 * there is no other metadata changes being made or are pending.
3353 */
3354 iomap->flags = 0;
3355 if (ext4_inode_datasync_dirty(inode) ||
3356 offset + length > i_size_read(inode))
3357 iomap->flags |= IOMAP_F_DIRTY;
3358
3359 if (map->m_flags & EXT4_MAP_NEW)
3360 iomap->flags |= IOMAP_F_NEW;
3361
3362 iomap->bdev = inode->i_sb->s_bdev;
3363 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3364 iomap->offset = (u64) map->m_lblk << blkbits;
3365 iomap->length = (u64) map->m_len << blkbits;
3366
3367 if ((map->m_flags & EXT4_MAP_MAPPED) &&
3368 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3369 iomap->flags |= IOMAP_F_MERGED;
3370
3371 /*
3372 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3373 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3374 * set. In order for any allocated unwritten extents to be converted
3375 * into written extents correctly within the ->end_io() handler, we
3376 * need to ensure that the iomap->type is set appropriately. Hence, the
3377 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3378 * been set first.
3379 */
3380 if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3381 iomap->type = IOMAP_UNWRITTEN;
3382 iomap->addr = (u64) map->m_pblk << blkbits;
3383 } else if (map->m_flags & EXT4_MAP_MAPPED) {
3384 iomap->type = IOMAP_MAPPED;
3385 iomap->addr = (u64) map->m_pblk << blkbits;
3386 } else {
3387 iomap->type = IOMAP_HOLE;
3388 iomap->addr = IOMAP_NULL_ADDR;
3389 }
3390}
3391
3392static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3393 unsigned int flags)
3394{
3395 handle_t *handle;
3396 u8 blkbits = inode->i_blkbits;
3397 int ret, dio_credits, m_flags = 0, retries = 0;
3398
3399 /*
3400 * Trim the mapping request to the maximum value that we can map at
3401 * once for direct I/O.
3402 */
3403 if (map->m_len > DIO_MAX_BLOCKS)
3404 map->m_len = DIO_MAX_BLOCKS;
3405 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3406
3407retry:
3408 /*
3409 * Either we allocate blocks and then don't get an unwritten extent, so
3410 * in that case we have reserved enough credits. Or, the blocks are
3411 * already allocated and unwritten. In that case, the extent conversion
3412 * fits into the credits as well.
3413 */
3414 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3415 if (IS_ERR(handle))
3416 return PTR_ERR(handle);
3417
3418 /*
3419 * DAX and direct I/O are the only two operations that are currently
3420 * supported with IOMAP_WRITE.
3421 */
3422 WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3423 if (IS_DAX(inode))
3424 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3425 /*
3426 * We use i_size instead of i_disksize here because delalloc writeback
3427 * can complete at any point during the I/O and subsequently push the
3428 * i_disksize out to i_size. This could be beyond where direct I/O is
3429 * happening and thus expose allocated blocks to direct I/O reads.
3430 */
3431 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3432 m_flags = EXT4_GET_BLOCKS_CREATE;
3433 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3434 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3435
3436 ret = ext4_map_blocks(handle, inode, map, m_flags);
3437
3438 /*
3439 * We cannot fill holes in indirect tree based inodes as that could
3440 * expose stale data in the case of a crash. Use the magic error code
3441 * to fallback to buffered I/O.
3442 */
3443 if (!m_flags && !ret)
3444 ret = -ENOTBLK;
3445
3446 ext4_journal_stop(handle);
3447 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3448 goto retry;
3449
3450 return ret;
3451}
3452
3453
3454static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3455 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3456{
3457 int ret;
3458 struct ext4_map_blocks map;
3459 u8 blkbits = inode->i_blkbits;
3460
3461 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3462 return -EINVAL;
3463
3464 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3465 return -ERANGE;
3466
3467 /*
3468 * Calculate the first and last logical blocks respectively.
3469 */
3470 map.m_lblk = offset >> blkbits;
3471 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3472 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3473
3474 if (flags & IOMAP_WRITE) {
3475 /*
3476 * We check here if the blocks are already allocated, then we
3477 * don't need to start a journal txn and we can directly return
3478 * the mapping information. This could boost performance
3479 * especially in multi-threaded overwrite requests.
3480 */
3481 if (offset + length <= i_size_read(inode)) {
3482 ret = ext4_map_blocks(NULL, inode, &map, 0);
3483 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3484 goto out;
3485 }
3486 ret = ext4_iomap_alloc(inode, &map, flags);
3487 } else {
3488 ret = ext4_map_blocks(NULL, inode, &map, 0);
3489 }
3490
3491 if (ret < 0)
3492 return ret;
3493out:
3494 ext4_set_iomap(inode, iomap, &map, offset, length);
3495
3496 return 0;
3497}
3498
3499static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3500 loff_t length, unsigned flags, struct iomap *iomap,
3501 struct iomap *srcmap)
3502{
3503 int ret;
3504
3505 /*
3506 * Even for writes we don't need to allocate blocks, so just pretend
3507 * we are reading to save overhead of starting a transaction.
3508 */
3509 flags &= ~IOMAP_WRITE;
3510 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3511 WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3512 return ret;
3513}
3514
3515static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3516 ssize_t written, unsigned flags, struct iomap *iomap)
3517{
3518 /*
3519 * Check to see whether an error occurred while writing out the data to
3520 * the allocated blocks. If so, return the magic error code so that we
3521 * fallback to buffered I/O and attempt to complete the remainder of
3522 * the I/O. Any blocks that may have been allocated in preparation for
3523 * the direct I/O will be reused during buffered I/O.
3524 */
3525 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3526 return -ENOTBLK;
3527
3528 return 0;
3529}
3530
3531const struct iomap_ops ext4_iomap_ops = {
3532 .iomap_begin = ext4_iomap_begin,
3533 .iomap_end = ext4_iomap_end,
3534};
3535
3536const struct iomap_ops ext4_iomap_overwrite_ops = {
3537 .iomap_begin = ext4_iomap_overwrite_begin,
3538 .iomap_end = ext4_iomap_end,
3539};
3540
3541static bool ext4_iomap_is_delalloc(struct inode *inode,
3542 struct ext4_map_blocks *map)
3543{
3544 struct extent_status es;
3545 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3546
3547 ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3548 map->m_lblk, end, &es);
3549
3550 if (!es.es_len || es.es_lblk > end)
3551 return false;
3552
3553 if (es.es_lblk > map->m_lblk) {
3554 map->m_len = es.es_lblk - map->m_lblk;
3555 return false;
3556 }
3557
3558 offset = map->m_lblk - es.es_lblk;
3559 map->m_len = es.es_len - offset;
3560
3561 return true;
3562}
3563
3564static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3565 loff_t length, unsigned int flags,
3566 struct iomap *iomap, struct iomap *srcmap)
3567{
3568 int ret;
3569 bool delalloc = false;
3570 struct ext4_map_blocks map;
3571 u8 blkbits = inode->i_blkbits;
3572
3573 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3574 return -EINVAL;
3575
3576 if (ext4_has_inline_data(inode)) {
3577 ret = ext4_inline_data_iomap(inode, iomap);
3578 if (ret != -EAGAIN) {
3579 if (ret == 0 && offset >= iomap->length)
3580 ret = -ENOENT;
3581 return ret;
3582 }
3583 }
3584
3585 /*
3586 * Calculate the first and last logical block respectively.
3587 */
3588 map.m_lblk = offset >> blkbits;
3589 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3590 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3591
3592 /*
3593 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3594 * So handle it here itself instead of querying ext4_map_blocks().
3595 * Since ext4_map_blocks() will warn about it and will return
3596 * -EIO error.
3597 */
3598 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3599 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3600
3601 if (offset >= sbi->s_bitmap_maxbytes) {
3602 map.m_flags = 0;
3603 goto set_iomap;
3604 }
3605 }
3606
3607 ret = ext4_map_blocks(NULL, inode, &map, 0);
3608 if (ret < 0)
3609 return ret;
3610 if (ret == 0)
3611 delalloc = ext4_iomap_is_delalloc(inode, &map);
3612
3613set_iomap:
3614 ext4_set_iomap(inode, iomap, &map, offset, length);
3615 if (delalloc && iomap->type == IOMAP_HOLE)
3616 iomap->type = IOMAP_DELALLOC;
3617
3618 return 0;
3619}
3620
3621const struct iomap_ops ext4_iomap_report_ops = {
3622 .iomap_begin = ext4_iomap_begin_report,
3623};
3624
3625/*
3626 * Pages can be marked dirty completely asynchronously from ext4's journalling
3627 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3628 * much here because ->set_page_dirty is called under VFS locks. The page is
3629 * not necessarily locked.
3630 *
3631 * We cannot just dirty the page and leave attached buffers clean, because the
3632 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3633 * or jbddirty because all the journalling code will explode.
3634 *
3635 * So what we do is to mark the page "pending dirty" and next time writepage
3636 * is called, propagate that into the buffers appropriately.
3637 */
3638static int ext4_journalled_set_page_dirty(struct page *page)
3639{
3640 SetPageChecked(page);
3641 return __set_page_dirty_nobuffers(page);
3642}
3643
3644static int ext4_set_page_dirty(struct page *page)
3645{
3646 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3647 WARN_ON_ONCE(!page_has_buffers(page));
3648 return __set_page_dirty_buffers(page);
3649}
3650
3651static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3652 struct file *file, sector_t *span)
3653{
3654 return iomap_swapfile_activate(sis, file, span,
3655 &ext4_iomap_report_ops);
3656}
3657
3658static const struct address_space_operations ext4_aops = {
3659 .readpage = ext4_readpage,
3660 .readahead = ext4_readahead,
3661 .writepage = ext4_writepage,
3662 .writepages = ext4_writepages,
3663 .write_begin = ext4_write_begin,
3664 .write_end = ext4_write_end,
3665 .set_page_dirty = ext4_set_page_dirty,
3666 .bmap = ext4_bmap,
3667 .invalidatepage = ext4_invalidatepage,
3668 .releasepage = ext4_releasepage,
3669 .direct_IO = noop_direct_IO,
3670 .migratepage = buffer_migrate_page,
3671 .is_partially_uptodate = block_is_partially_uptodate,
3672 .error_remove_page = generic_error_remove_page,
3673 .swap_activate = ext4_iomap_swap_activate,
3674};
3675
3676static const struct address_space_operations ext4_journalled_aops = {
3677 .readpage = ext4_readpage,
3678 .readahead = ext4_readahead,
3679 .writepage = ext4_writepage,
3680 .writepages = ext4_writepages,
3681 .write_begin = ext4_write_begin,
3682 .write_end = ext4_journalled_write_end,
3683 .set_page_dirty = ext4_journalled_set_page_dirty,
3684 .bmap = ext4_bmap,
3685 .invalidatepage = ext4_journalled_invalidatepage,
3686 .releasepage = ext4_releasepage,
3687 .direct_IO = noop_direct_IO,
3688 .is_partially_uptodate = block_is_partially_uptodate,
3689 .error_remove_page = generic_error_remove_page,
3690 .swap_activate = ext4_iomap_swap_activate,
3691};
3692
3693static const struct address_space_operations ext4_da_aops = {
3694 .readpage = ext4_readpage,
3695 .readahead = ext4_readahead,
3696 .writepage = ext4_writepage,
3697 .writepages = ext4_writepages,
3698 .write_begin = ext4_da_write_begin,
3699 .write_end = ext4_da_write_end,
3700 .set_page_dirty = ext4_set_page_dirty,
3701 .bmap = ext4_bmap,
3702 .invalidatepage = ext4_invalidatepage,
3703 .releasepage = ext4_releasepage,
3704 .direct_IO = noop_direct_IO,
3705 .migratepage = buffer_migrate_page,
3706 .is_partially_uptodate = block_is_partially_uptodate,
3707 .error_remove_page = generic_error_remove_page,
3708 .swap_activate = ext4_iomap_swap_activate,
3709};
3710
3711static const struct address_space_operations ext4_dax_aops = {
3712 .writepages = ext4_dax_writepages,
3713 .direct_IO = noop_direct_IO,
3714 .set_page_dirty = __set_page_dirty_no_writeback,
3715 .bmap = ext4_bmap,
3716 .invalidatepage = noop_invalidatepage,
3717 .swap_activate = ext4_iomap_swap_activate,
3718};
3719
3720void ext4_set_aops(struct inode *inode)
3721{
3722 switch (ext4_inode_journal_mode(inode)) {
3723 case EXT4_INODE_ORDERED_DATA_MODE:
3724 case EXT4_INODE_WRITEBACK_DATA_MODE:
3725 break;
3726 case EXT4_INODE_JOURNAL_DATA_MODE:
3727 inode->i_mapping->a_ops = &ext4_journalled_aops;
3728 return;
3729 default:
3730 BUG();
3731 }
3732 if (IS_DAX(inode))
3733 inode->i_mapping->a_ops = &ext4_dax_aops;
3734 else if (test_opt(inode->i_sb, DELALLOC))
3735 inode->i_mapping->a_ops = &ext4_da_aops;
3736 else
3737 inode->i_mapping->a_ops = &ext4_aops;
3738}
3739
3740static int __ext4_block_zero_page_range(handle_t *handle,
3741 struct address_space *mapping, loff_t from, loff_t length)
3742{
3743 ext4_fsblk_t index = from >> PAGE_SHIFT;
3744 unsigned offset = from & (PAGE_SIZE-1);
3745 unsigned blocksize, pos;
3746 ext4_lblk_t iblock;
3747 struct inode *inode = mapping->host;
3748 struct buffer_head *bh;
3749 struct page *page;
3750 int err = 0;
3751
3752 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3753 mapping_gfp_constraint(mapping, ~__GFP_FS));
3754 if (!page)
3755 return -ENOMEM;
3756
3757 blocksize = inode->i_sb->s_blocksize;
3758
3759 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3760
3761 if (!page_has_buffers(page))
3762 create_empty_buffers(page, blocksize, 0);
3763
3764 /* Find the buffer that contains "offset" */
3765 bh = page_buffers(page);
3766 pos = blocksize;
3767 while (offset >= pos) {
3768 bh = bh->b_this_page;
3769 iblock++;
3770 pos += blocksize;
3771 }
3772 if (buffer_freed(bh)) {
3773 BUFFER_TRACE(bh, "freed: skip");
3774 goto unlock;
3775 }
3776 if (!buffer_mapped(bh)) {
3777 BUFFER_TRACE(bh, "unmapped");
3778 ext4_get_block(inode, iblock, bh, 0);
3779 /* unmapped? It's a hole - nothing to do */
3780 if (!buffer_mapped(bh)) {
3781 BUFFER_TRACE(bh, "still unmapped");
3782 goto unlock;
3783 }
3784 }
3785
3786 /* Ok, it's mapped. Make sure it's up-to-date */
3787 if (PageUptodate(page))
3788 set_buffer_uptodate(bh);
3789
3790 if (!buffer_uptodate(bh)) {
3791 err = ext4_read_bh_lock(bh, 0, true);
3792 if (err)
3793 goto unlock;
3794 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3795 /* We expect the key to be set. */
3796 BUG_ON(!fscrypt_has_encryption_key(inode));
3797 err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3798 bh_offset(bh));
3799 if (err) {
3800 clear_buffer_uptodate(bh);
3801 goto unlock;
3802 }
3803 }
3804 }
3805 if (ext4_should_journal_data(inode)) {
3806 BUFFER_TRACE(bh, "get write access");
3807 err = ext4_journal_get_write_access(handle, bh);
3808 if (err)
3809 goto unlock;
3810 }
3811 zero_user(page, offset, length);
3812 BUFFER_TRACE(bh, "zeroed end of block");
3813
3814 if (ext4_should_journal_data(inode)) {
3815 err = ext4_handle_dirty_metadata(handle, inode, bh);
3816 } else {
3817 err = 0;
3818 mark_buffer_dirty(bh);
3819 if (ext4_should_order_data(inode))
3820 err = ext4_jbd2_inode_add_write(handle, inode, from,
3821 length);
3822 }
3823
3824unlock:
3825 unlock_page(page);
3826 put_page(page);
3827 return err;
3828}
3829
3830/*
3831 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3832 * starting from file offset 'from'. The range to be zero'd must
3833 * be contained with in one block. If the specified range exceeds
3834 * the end of the block it will be shortened to end of the block
3835 * that corresponds to 'from'
3836 */
3837static int ext4_block_zero_page_range(handle_t *handle,
3838 struct address_space *mapping, loff_t from, loff_t length)
3839{
3840 struct inode *inode = mapping->host;
3841 unsigned offset = from & (PAGE_SIZE-1);
3842 unsigned blocksize = inode->i_sb->s_blocksize;
3843 unsigned max = blocksize - (offset & (blocksize - 1));
3844
3845 /*
3846 * correct length if it does not fall between
3847 * 'from' and the end of the block
3848 */
3849 if (length > max || length < 0)
3850 length = max;
3851
3852 if (IS_DAX(inode)) {
3853 return iomap_zero_range(inode, from, length, NULL,
3854 &ext4_iomap_ops);
3855 }
3856 return __ext4_block_zero_page_range(handle, mapping, from, length);
3857}
3858
3859/*
3860 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3861 * up to the end of the block which corresponds to `from'.
3862 * This required during truncate. We need to physically zero the tail end
3863 * of that block so it doesn't yield old data if the file is later grown.
3864 */
3865static int ext4_block_truncate_page(handle_t *handle,
3866 struct address_space *mapping, loff_t from)
3867{
3868 unsigned offset = from & (PAGE_SIZE-1);
3869 unsigned length;
3870 unsigned blocksize;
3871 struct inode *inode = mapping->host;
3872
3873 /* If we are processing an encrypted inode during orphan list handling */
3874 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3875 return 0;
3876
3877 blocksize = inode->i_sb->s_blocksize;
3878 length = blocksize - (offset & (blocksize - 1));
3879
3880 return ext4_block_zero_page_range(handle, mapping, from, length);
3881}
3882
3883int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3884 loff_t lstart, loff_t length)
3885{
3886 struct super_block *sb = inode->i_sb;
3887 struct address_space *mapping = inode->i_mapping;
3888 unsigned partial_start, partial_end;
3889 ext4_fsblk_t start, end;
3890 loff_t byte_end = (lstart + length - 1);
3891 int err = 0;
3892
3893 partial_start = lstart & (sb->s_blocksize - 1);
3894 partial_end = byte_end & (sb->s_blocksize - 1);
3895
3896 start = lstart >> sb->s_blocksize_bits;
3897 end = byte_end >> sb->s_blocksize_bits;
3898
3899 /* Handle partial zero within the single block */
3900 if (start == end &&
3901 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3902 err = ext4_block_zero_page_range(handle, mapping,
3903 lstart, length);
3904 return err;
3905 }
3906 /* Handle partial zero out on the start of the range */
3907 if (partial_start) {
3908 err = ext4_block_zero_page_range(handle, mapping,
3909 lstart, sb->s_blocksize);
3910 if (err)
3911 return err;
3912 }
3913 /* Handle partial zero out on the end of the range */
3914 if (partial_end != sb->s_blocksize - 1)
3915 err = ext4_block_zero_page_range(handle, mapping,
3916 byte_end - partial_end,
3917 partial_end + 1);
3918 return err;
3919}
3920
3921int ext4_can_truncate(struct inode *inode)
3922{
3923 if (S_ISREG(inode->i_mode))
3924 return 1;
3925 if (S_ISDIR(inode->i_mode))
3926 return 1;
3927 if (S_ISLNK(inode->i_mode))
3928 return !ext4_inode_is_fast_symlink(inode);
3929 return 0;
3930}
3931
3932/*
3933 * We have to make sure i_disksize gets properly updated before we truncate
3934 * page cache due to hole punching or zero range. Otherwise i_disksize update
3935 * can get lost as it may have been postponed to submission of writeback but
3936 * that will never happen after we truncate page cache.
3937 */
3938int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3939 loff_t len)
3940{
3941 handle_t *handle;
3942 int ret;
3943
3944 loff_t size = i_size_read(inode);
3945
3946 WARN_ON(!inode_is_locked(inode));
3947 if (offset > size || offset + len < size)
3948 return 0;
3949
3950 if (EXT4_I(inode)->i_disksize >= size)
3951 return 0;
3952
3953 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3954 if (IS_ERR(handle))
3955 return PTR_ERR(handle);
3956 ext4_update_i_disksize(inode, size);
3957 ret = ext4_mark_inode_dirty(handle, inode);
3958 ext4_journal_stop(handle);
3959
3960 return ret;
3961}
3962
3963static void ext4_wait_dax_page(struct ext4_inode_info *ei)
3964{
3965 up_write(&ei->i_mmap_sem);
3966 schedule();
3967 down_write(&ei->i_mmap_sem);
3968}
3969
3970int ext4_break_layouts(struct inode *inode)
3971{
3972 struct ext4_inode_info *ei = EXT4_I(inode);
3973 struct page *page;
3974 int error;
3975
3976 if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
3977 return -EINVAL;
3978
3979 do {
3980 page = dax_layout_busy_page(inode->i_mapping);
3981 if (!page)
3982 return 0;
3983
3984 error = ___wait_var_event(&page->_refcount,
3985 atomic_read(&page->_refcount) == 1,
3986 TASK_INTERRUPTIBLE, 0, 0,
3987 ext4_wait_dax_page(ei));
3988 } while (error == 0);
3989
3990 return error;
3991}
3992
3993/*
3994 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3995 * associated with the given offset and length
3996 *
3997 * @inode: File inode
3998 * @offset: The offset where the hole will begin
3999 * @len: The length of the hole
4000 *
4001 * Returns: 0 on success or negative on failure
4002 */
4003
4004int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4005{
4006 struct super_block *sb = inode->i_sb;
4007 ext4_lblk_t first_block, stop_block;
4008 struct address_space *mapping = inode->i_mapping;
4009 loff_t first_block_offset, last_block_offset;
4010 handle_t *handle;
4011 unsigned int credits;
4012 int ret = 0, ret2 = 0;
4013
4014 trace_ext4_punch_hole(inode, offset, length, 0);
4015
4016 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4017 if (ext4_has_inline_data(inode)) {
4018 down_write(&EXT4_I(inode)->i_mmap_sem);
4019 ret = ext4_convert_inline_data(inode);
4020 up_write(&EXT4_I(inode)->i_mmap_sem);
4021 if (ret)
4022 return ret;
4023 }
4024
4025 /*
4026 * Write out all dirty pages to avoid race conditions
4027 * Then release them.
4028 */
4029 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4030 ret = filemap_write_and_wait_range(mapping, offset,
4031 offset + length - 1);
4032 if (ret)
4033 return ret;
4034 }
4035
4036 inode_lock(inode);
4037
4038 /* No need to punch hole beyond i_size */
4039 if (offset >= inode->i_size)
4040 goto out_mutex;
4041
4042 /*
4043 * If the hole extends beyond i_size, set the hole
4044 * to end after the page that contains i_size
4045 */
4046 if (offset + length > inode->i_size) {
4047 length = inode->i_size +
4048 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4049 offset;
4050 }
4051
4052 if (offset & (sb->s_blocksize - 1) ||
4053 (offset + length) & (sb->s_blocksize - 1)) {
4054 /*
4055 * Attach jinode to inode for jbd2 if we do any zeroing of
4056 * partial block
4057 */
4058 ret = ext4_inode_attach_jinode(inode);
4059 if (ret < 0)
4060 goto out_mutex;
4061
4062 }
4063
4064 /* Wait all existing dio workers, newcomers will block on i_mutex */
4065 inode_dio_wait(inode);
4066
4067 /*
4068 * Prevent page faults from reinstantiating pages we have released from
4069 * page cache.
4070 */
4071 down_write(&EXT4_I(inode)->i_mmap_sem);
4072
4073 ret = ext4_break_layouts(inode);
4074 if (ret)
4075 goto out_dio;
4076
4077 first_block_offset = round_up(offset, sb->s_blocksize);
4078 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4079
4080 /* Now release the pages and zero block aligned part of pages*/
4081 if (last_block_offset > first_block_offset) {
4082 ret = ext4_update_disksize_before_punch(inode, offset, length);
4083 if (ret)
4084 goto out_dio;
4085 truncate_pagecache_range(inode, first_block_offset,
4086 last_block_offset);
4087 }
4088
4089 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4090 credits = ext4_writepage_trans_blocks(inode);
4091 else
4092 credits = ext4_blocks_for_truncate(inode);
4093 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4094 if (IS_ERR(handle)) {
4095 ret = PTR_ERR(handle);
4096 ext4_std_error(sb, ret);
4097 goto out_dio;
4098 }
4099
4100 ret = ext4_zero_partial_blocks(handle, inode, offset,
4101 length);
4102 if (ret)
4103 goto out_stop;
4104
4105 first_block = (offset + sb->s_blocksize - 1) >>
4106 EXT4_BLOCK_SIZE_BITS(sb);
4107 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4108
4109 /* If there are blocks to remove, do it */
4110 if (stop_block > first_block) {
4111
4112 down_write(&EXT4_I(inode)->i_data_sem);
4113 ext4_discard_preallocations(inode, 0);
4114
4115 ret = ext4_es_remove_extent(inode, first_block,
4116 stop_block - first_block);
4117 if (ret) {
4118 up_write(&EXT4_I(inode)->i_data_sem);
4119 goto out_stop;
4120 }
4121
4122 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4123 ret = ext4_ext_remove_space(inode, first_block,
4124 stop_block - 1);
4125 else
4126 ret = ext4_ind_remove_space(handle, inode, first_block,
4127 stop_block);
4128
4129 up_write(&EXT4_I(inode)->i_data_sem);
4130 }
4131 ext4_fc_track_range(handle, inode, first_block, stop_block);
4132 if (IS_SYNC(inode))
4133 ext4_handle_sync(handle);
4134
4135 inode->i_mtime = inode->i_ctime = current_time(inode);
4136 ret2 = ext4_mark_inode_dirty(handle, inode);
4137 if (unlikely(ret2))
4138 ret = ret2;
4139 if (ret >= 0)
4140 ext4_update_inode_fsync_trans(handle, inode, 1);
4141out_stop:
4142 ext4_journal_stop(handle);
4143out_dio:
4144 up_write(&EXT4_I(inode)->i_mmap_sem);
4145out_mutex:
4146 inode_unlock(inode);
4147 return ret;
4148}
4149
4150int ext4_inode_attach_jinode(struct inode *inode)
4151{
4152 struct ext4_inode_info *ei = EXT4_I(inode);
4153 struct jbd2_inode *jinode;
4154
4155 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4156 return 0;
4157
4158 jinode = jbd2_alloc_inode(GFP_KERNEL);
4159 spin_lock(&inode->i_lock);
4160 if (!ei->jinode) {
4161 if (!jinode) {
4162 spin_unlock(&inode->i_lock);
4163 return -ENOMEM;
4164 }
4165 ei->jinode = jinode;
4166 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4167 jinode = NULL;
4168 }
4169 spin_unlock(&inode->i_lock);
4170 if (unlikely(jinode != NULL))
4171 jbd2_free_inode(jinode);
4172 return 0;
4173}
4174
4175/*
4176 * ext4_truncate()
4177 *
4178 * We block out ext4_get_block() block instantiations across the entire
4179 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4180 * simultaneously on behalf of the same inode.
4181 *
4182 * As we work through the truncate and commit bits of it to the journal there
4183 * is one core, guiding principle: the file's tree must always be consistent on
4184 * disk. We must be able to restart the truncate after a crash.
4185 *
4186 * The file's tree may be transiently inconsistent in memory (although it
4187 * probably isn't), but whenever we close off and commit a journal transaction,
4188 * the contents of (the filesystem + the journal) must be consistent and
4189 * restartable. It's pretty simple, really: bottom up, right to left (although
4190 * left-to-right works OK too).
4191 *
4192 * Note that at recovery time, journal replay occurs *before* the restart of
4193 * truncate against the orphan inode list.
4194 *
4195 * The committed inode has the new, desired i_size (which is the same as
4196 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4197 * that this inode's truncate did not complete and it will again call
4198 * ext4_truncate() to have another go. So there will be instantiated blocks
4199 * to the right of the truncation point in a crashed ext4 filesystem. But
4200 * that's fine - as long as they are linked from the inode, the post-crash
4201 * ext4_truncate() run will find them and release them.
4202 */
4203int ext4_truncate(struct inode *inode)
4204{
4205 struct ext4_inode_info *ei = EXT4_I(inode);
4206 unsigned int credits;
4207 int err = 0, err2;
4208 handle_t *handle;
4209 struct address_space *mapping = inode->i_mapping;
4210
4211 /*
4212 * There is a possibility that we're either freeing the inode
4213 * or it's a completely new inode. In those cases we might not
4214 * have i_mutex locked because it's not necessary.
4215 */
4216 if (!(inode->i_state & (I_NEW|I_FREEING)))
4217 WARN_ON(!inode_is_locked(inode));
4218 trace_ext4_truncate_enter(inode);
4219
4220 if (!ext4_can_truncate(inode))
4221 goto out_trace;
4222
4223 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4224 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4225
4226 if (ext4_has_inline_data(inode)) {
4227 int has_inline = 1;
4228
4229 err = ext4_inline_data_truncate(inode, &has_inline);
4230 if (err || has_inline)
4231 goto out_trace;
4232 }
4233
4234 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4235 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4236 if (ext4_inode_attach_jinode(inode) < 0)
4237 goto out_trace;
4238 }
4239
4240 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4241 credits = ext4_writepage_trans_blocks(inode);
4242 else
4243 credits = ext4_blocks_for_truncate(inode);
4244
4245 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4246 if (IS_ERR(handle)) {
4247 err = PTR_ERR(handle);
4248 goto out_trace;
4249 }
4250
4251 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4252 ext4_block_truncate_page(handle, mapping, inode->i_size);
4253
4254 /*
4255 * We add the inode to the orphan list, so that if this
4256 * truncate spans multiple transactions, and we crash, we will
4257 * resume the truncate when the filesystem recovers. It also
4258 * marks the inode dirty, to catch the new size.
4259 *
4260 * Implication: the file must always be in a sane, consistent
4261 * truncatable state while each transaction commits.
4262 */
4263 err = ext4_orphan_add(handle, inode);
4264 if (err)
4265 goto out_stop;
4266
4267 down_write(&EXT4_I(inode)->i_data_sem);
4268
4269 ext4_discard_preallocations(inode, 0);
4270
4271 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4272 err = ext4_ext_truncate(handle, inode);
4273 else
4274 ext4_ind_truncate(handle, inode);
4275
4276 up_write(&ei->i_data_sem);
4277 if (err)
4278 goto out_stop;
4279
4280 if (IS_SYNC(inode))
4281 ext4_handle_sync(handle);
4282
4283out_stop:
4284 /*
4285 * If this was a simple ftruncate() and the file will remain alive,
4286 * then we need to clear up the orphan record which we created above.
4287 * However, if this was a real unlink then we were called by
4288 * ext4_evict_inode(), and we allow that function to clean up the
4289 * orphan info for us.
4290 */
4291 if (inode->i_nlink)
4292 ext4_orphan_del(handle, inode);
4293
4294 inode->i_mtime = inode->i_ctime = current_time(inode);
4295 err2 = ext4_mark_inode_dirty(handle, inode);
4296 if (unlikely(err2 && !err))
4297 err = err2;
4298 ext4_journal_stop(handle);
4299
4300out_trace:
4301 trace_ext4_truncate_exit(inode);
4302 return err;
4303}
4304
4305/*
4306 * ext4_get_inode_loc returns with an extra refcount against the inode's
4307 * underlying buffer_head on success. If 'in_mem' is true, we have all
4308 * data in memory that is needed to recreate the on-disk version of this
4309 * inode.
4310 */
4311static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4312 struct ext4_iloc *iloc, int in_mem,
4313 ext4_fsblk_t *ret_block)
4314{
4315 struct ext4_group_desc *gdp;
4316 struct buffer_head *bh;
4317 ext4_fsblk_t block;
4318 struct blk_plug plug;
4319 int inodes_per_block, inode_offset;
4320
4321 iloc->bh = NULL;
4322 if (ino < EXT4_ROOT_INO ||
4323 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4324 return -EFSCORRUPTED;
4325
4326 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4327 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4328 if (!gdp)
4329 return -EIO;
4330
4331 /*
4332 * Figure out the offset within the block group inode table
4333 */
4334 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4335 inode_offset = ((ino - 1) %
4336 EXT4_INODES_PER_GROUP(sb));
4337 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4338 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4339
4340 bh = sb_getblk(sb, block);
4341 if (unlikely(!bh))
4342 return -ENOMEM;
4343 if (ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO))
4344 goto simulate_eio;
4345 if (!buffer_uptodate(bh)) {
4346 lock_buffer(bh);
4347
4348 if (ext4_buffer_uptodate(bh)) {
4349 /* someone brought it uptodate while we waited */
4350 unlock_buffer(bh);
4351 goto has_buffer;
4352 }
4353
4354 /*
4355 * If we have all information of the inode in memory and this
4356 * is the only valid inode in the block, we need not read the
4357 * block.
4358 */
4359 if (in_mem) {
4360 struct buffer_head *bitmap_bh;
4361 int i, start;
4362
4363 start = inode_offset & ~(inodes_per_block - 1);
4364
4365 /* Is the inode bitmap in cache? */
4366 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4367 if (unlikely(!bitmap_bh))
4368 goto make_io;
4369
4370 /*
4371 * If the inode bitmap isn't in cache then the
4372 * optimisation may end up performing two reads instead
4373 * of one, so skip it.
4374 */
4375 if (!buffer_uptodate(bitmap_bh)) {
4376 brelse(bitmap_bh);
4377 goto make_io;
4378 }
4379 for (i = start; i < start + inodes_per_block; i++) {
4380 if (i == inode_offset)
4381 continue;
4382 if (ext4_test_bit(i, bitmap_bh->b_data))
4383 break;
4384 }
4385 brelse(bitmap_bh);
4386 if (i == start + inodes_per_block) {
4387 /* all other inodes are free, so skip I/O */
4388 memset(bh->b_data, 0, bh->b_size);
4389 set_buffer_uptodate(bh);
4390 unlock_buffer(bh);
4391 goto has_buffer;
4392 }
4393 }
4394
4395make_io:
4396 /*
4397 * If we need to do any I/O, try to pre-readahead extra
4398 * blocks from the inode table.
4399 */
4400 blk_start_plug(&plug);
4401 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4402 ext4_fsblk_t b, end, table;
4403 unsigned num;
4404 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4405
4406 table = ext4_inode_table(sb, gdp);
4407 /* s_inode_readahead_blks is always a power of 2 */
4408 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4409 if (table > b)
4410 b = table;
4411 end = b + ra_blks;
4412 num = EXT4_INODES_PER_GROUP(sb);
4413 if (ext4_has_group_desc_csum(sb))
4414 num -= ext4_itable_unused_count(sb, gdp);
4415 table += num / inodes_per_block;
4416 if (end > table)
4417 end = table;
4418 while (b <= end)
4419 ext4_sb_breadahead_unmovable(sb, b++);
4420 }
4421
4422 /*
4423 * There are other valid inodes in the buffer, this inode
4424 * has in-inode xattrs, or we don't have this inode in memory.
4425 * Read the block from disk.
4426 */
4427 trace_ext4_load_inode(sb, ino);
4428 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4429 blk_finish_plug(&plug);
4430 wait_on_buffer(bh);
4431 if (!buffer_uptodate(bh)) {
4432 simulate_eio:
4433 if (ret_block)
4434 *ret_block = block;
4435 brelse(bh);
4436 return -EIO;
4437 }
4438 }
4439has_buffer:
4440 iloc->bh = bh;
4441 return 0;
4442}
4443
4444static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4445 struct ext4_iloc *iloc)
4446{
4447 ext4_fsblk_t err_blk;
4448 int ret;
4449
4450 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc, 0,
4451 &err_blk);
4452
4453 if (ret == -EIO)
4454 ext4_error_inode_block(inode, err_blk, EIO,
4455 "unable to read itable block");
4456
4457 return ret;
4458}
4459
4460int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4461{
4462 ext4_fsblk_t err_blk;
4463 int ret;
4464
4465 /* We have all inode data except xattrs in memory here. */
4466 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc,
4467 !ext4_test_inode_state(inode, EXT4_STATE_XATTR), &err_blk);
4468
4469 if (ret == -EIO)
4470 ext4_error_inode_block(inode, err_blk, EIO,
4471 "unable to read itable block");
4472
4473 return ret;
4474}
4475
4476
4477int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4478 struct ext4_iloc *iloc)
4479{
4480 return __ext4_get_inode_loc(sb, ino, iloc, 0, NULL);
4481}
4482
4483static bool ext4_should_enable_dax(struct inode *inode)
4484{
4485 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4486
4487 if (test_opt2(inode->i_sb, DAX_NEVER))
4488 return false;
4489 if (!S_ISREG(inode->i_mode))
4490 return false;
4491 if (ext4_should_journal_data(inode))
4492 return false;
4493 if (ext4_has_inline_data(inode))
4494 return false;
4495 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4496 return false;
4497 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4498 return false;
4499 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4500 return false;
4501 if (test_opt(inode->i_sb, DAX_ALWAYS))
4502 return true;
4503
4504 return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4505}
4506
4507void ext4_set_inode_flags(struct inode *inode, bool init)
4508{
4509 unsigned int flags = EXT4_I(inode)->i_flags;
4510 unsigned int new_fl = 0;
4511
4512 WARN_ON_ONCE(IS_DAX(inode) && init);
4513
4514 if (flags & EXT4_SYNC_FL)
4515 new_fl |= S_SYNC;
4516 if (flags & EXT4_APPEND_FL)
4517 new_fl |= S_APPEND;
4518 if (flags & EXT4_IMMUTABLE_FL)
4519 new_fl |= S_IMMUTABLE;
4520 if (flags & EXT4_NOATIME_FL)
4521 new_fl |= S_NOATIME;
4522 if (flags & EXT4_DIRSYNC_FL)
4523 new_fl |= S_DIRSYNC;
4524
4525 /* Because of the way inode_set_flags() works we must preserve S_DAX
4526 * here if already set. */
4527 new_fl |= (inode->i_flags & S_DAX);
4528 if (init && ext4_should_enable_dax(inode))
4529 new_fl |= S_DAX;
4530
4531 if (flags & EXT4_ENCRYPT_FL)
4532 new_fl |= S_ENCRYPTED;
4533 if (flags & EXT4_CASEFOLD_FL)
4534 new_fl |= S_CASEFOLD;
4535 if (flags & EXT4_VERITY_FL)
4536 new_fl |= S_VERITY;
4537 inode_set_flags(inode, new_fl,
4538 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4539 S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4540}
4541
4542static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4543 struct ext4_inode_info *ei)
4544{
4545 blkcnt_t i_blocks ;
4546 struct inode *inode = &(ei->vfs_inode);
4547 struct super_block *sb = inode->i_sb;
4548
4549 if (ext4_has_feature_huge_file(sb)) {
4550 /* we are using combined 48 bit field */
4551 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4552 le32_to_cpu(raw_inode->i_blocks_lo);
4553 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4554 /* i_blocks represent file system block size */
4555 return i_blocks << (inode->i_blkbits - 9);
4556 } else {
4557 return i_blocks;
4558 }
4559 } else {
4560 return le32_to_cpu(raw_inode->i_blocks_lo);
4561 }
4562}
4563
4564static inline int ext4_iget_extra_inode(struct inode *inode,
4565 struct ext4_inode *raw_inode,
4566 struct ext4_inode_info *ei)
4567{
4568 __le32 *magic = (void *)raw_inode +
4569 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4570
4571 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4572 EXT4_INODE_SIZE(inode->i_sb) &&
4573 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4574 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4575 return ext4_find_inline_data_nolock(inode);
4576 } else
4577 EXT4_I(inode)->i_inline_off = 0;
4578 return 0;
4579}
4580
4581int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4582{
4583 if (!ext4_has_feature_project(inode->i_sb))
4584 return -EOPNOTSUPP;
4585 *projid = EXT4_I(inode)->i_projid;
4586 return 0;
4587}
4588
4589/*
4590 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4591 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4592 * set.
4593 */
4594static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4595{
4596 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4597 inode_set_iversion_raw(inode, val);
4598 else
4599 inode_set_iversion_queried(inode, val);
4600}
4601static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4602{
4603 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4604 return inode_peek_iversion_raw(inode);
4605 else
4606 return inode_peek_iversion(inode);
4607}
4608
4609struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4610 ext4_iget_flags flags, const char *function,
4611 unsigned int line)
4612{
4613 struct ext4_iloc iloc;
4614 struct ext4_inode *raw_inode;
4615 struct ext4_inode_info *ei;
4616 struct inode *inode;
4617 journal_t *journal = EXT4_SB(sb)->s_journal;
4618 long ret;
4619 loff_t size;
4620 int block;
4621 uid_t i_uid;
4622 gid_t i_gid;
4623 projid_t i_projid;
4624
4625 if ((!(flags & EXT4_IGET_SPECIAL) &&
4626 (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4627 (ino < EXT4_ROOT_INO) ||
4628 (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4629 if (flags & EXT4_IGET_HANDLE)
4630 return ERR_PTR(-ESTALE);
4631 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4632 "inode #%lu: comm %s: iget: illegal inode #",
4633 ino, current->comm);
4634 return ERR_PTR(-EFSCORRUPTED);
4635 }
4636
4637 inode = iget_locked(sb, ino);
4638 if (!inode)
4639 return ERR_PTR(-ENOMEM);
4640 if (!(inode->i_state & I_NEW))
4641 return inode;
4642
4643 ei = EXT4_I(inode);
4644 iloc.bh = NULL;
4645
4646 ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4647 if (ret < 0)
4648 goto bad_inode;
4649 raw_inode = ext4_raw_inode(&iloc);
4650
4651 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4652 ext4_error_inode(inode, function, line, 0,
4653 "iget: root inode unallocated");
4654 ret = -EFSCORRUPTED;
4655 goto bad_inode;
4656 }
4657
4658 if ((flags & EXT4_IGET_HANDLE) &&
4659 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4660 ret = -ESTALE;
4661 goto bad_inode;
4662 }
4663
4664 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4665 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4666 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4667 EXT4_INODE_SIZE(inode->i_sb) ||
4668 (ei->i_extra_isize & 3)) {
4669 ext4_error_inode(inode, function, line, 0,
4670 "iget: bad extra_isize %u "
4671 "(inode size %u)",
4672 ei->i_extra_isize,
4673 EXT4_INODE_SIZE(inode->i_sb));
4674 ret = -EFSCORRUPTED;
4675 goto bad_inode;
4676 }
4677 } else
4678 ei->i_extra_isize = 0;
4679
4680 /* Precompute checksum seed for inode metadata */
4681 if (ext4_has_metadata_csum(sb)) {
4682 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4683 __u32 csum;
4684 __le32 inum = cpu_to_le32(inode->i_ino);
4685 __le32 gen = raw_inode->i_generation;
4686 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4687 sizeof(inum));
4688 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4689 sizeof(gen));
4690 }
4691
4692 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4693 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4694 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4695 ext4_error_inode_err(inode, function, line, 0,
4696 EFSBADCRC, "iget: checksum invalid");
4697 ret = -EFSBADCRC;
4698 goto bad_inode;
4699 }
4700
4701 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4702 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4703 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4704 if (ext4_has_feature_project(sb) &&
4705 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4706 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4707 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4708 else
4709 i_projid = EXT4_DEF_PROJID;
4710
4711 if (!(test_opt(inode->i_sb, NO_UID32))) {
4712 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4713 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4714 }
4715 i_uid_write(inode, i_uid);
4716 i_gid_write(inode, i_gid);
4717 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4718 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4719
4720 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4721 ei->i_inline_off = 0;
4722 ei->i_dir_start_lookup = 0;
4723 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4724 /* We now have enough fields to check if the inode was active or not.
4725 * This is needed because nfsd might try to access dead inodes
4726 * the test is that same one that e2fsck uses
4727 * NeilBrown 1999oct15
4728 */
4729 if (inode->i_nlink == 0) {
4730 if ((inode->i_mode == 0 ||
4731 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4732 ino != EXT4_BOOT_LOADER_INO) {
4733 /* this inode is deleted */
4734 ret = -ESTALE;
4735 goto bad_inode;
4736 }
4737 /* The only unlinked inodes we let through here have
4738 * valid i_mode and are being read by the orphan
4739 * recovery code: that's fine, we're about to complete
4740 * the process of deleting those.
4741 * OR it is the EXT4_BOOT_LOADER_INO which is
4742 * not initialized on a new filesystem. */
4743 }
4744 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4745 ext4_set_inode_flags(inode, true);
4746 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4747 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4748 if (ext4_has_feature_64bit(sb))
4749 ei->i_file_acl |=
4750 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4751 inode->i_size = ext4_isize(sb, raw_inode);
4752 if ((size = i_size_read(inode)) < 0) {
4753 ext4_error_inode(inode, function, line, 0,
4754 "iget: bad i_size value: %lld", size);
4755 ret = -EFSCORRUPTED;
4756 goto bad_inode;
4757 }
4758 /*
4759 * If dir_index is not enabled but there's dir with INDEX flag set,
4760 * we'd normally treat htree data as empty space. But with metadata
4761 * checksumming that corrupts checksums so forbid that.
4762 */
4763 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4764 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4765 ext4_error_inode(inode, function, line, 0,
4766 "iget: Dir with htree data on filesystem without dir_index feature.");
4767 ret = -EFSCORRUPTED;
4768 goto bad_inode;
4769 }
4770 ei->i_disksize = inode->i_size;
4771#ifdef CONFIG_QUOTA
4772 ei->i_reserved_quota = 0;
4773#endif
4774 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4775 ei->i_block_group = iloc.block_group;
4776 ei->i_last_alloc_group = ~0;
4777 /*
4778 * NOTE! The in-memory inode i_data array is in little-endian order
4779 * even on big-endian machines: we do NOT byteswap the block numbers!
4780 */
4781 for (block = 0; block < EXT4_N_BLOCKS; block++)
4782 ei->i_data[block] = raw_inode->i_block[block];
4783 INIT_LIST_HEAD(&ei->i_orphan);
4784 ext4_fc_init_inode(&ei->vfs_inode);
4785
4786 /*
4787 * Set transaction id's of transactions that have to be committed
4788 * to finish f[data]sync. We set them to currently running transaction
4789 * as we cannot be sure that the inode or some of its metadata isn't
4790 * part of the transaction - the inode could have been reclaimed and
4791 * now it is reread from disk.
4792 */
4793 if (journal) {
4794 transaction_t *transaction;
4795 tid_t tid;
4796
4797 read_lock(&journal->j_state_lock);
4798 if (journal->j_running_transaction)
4799 transaction = journal->j_running_transaction;
4800 else
4801 transaction = journal->j_committing_transaction;
4802 if (transaction)
4803 tid = transaction->t_tid;
4804 else
4805 tid = journal->j_commit_sequence;
4806 read_unlock(&journal->j_state_lock);
4807 ei->i_sync_tid = tid;
4808 ei->i_datasync_tid = tid;
4809 }
4810
4811 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4812 if (ei->i_extra_isize == 0) {
4813 /* The extra space is currently unused. Use it. */
4814 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4815 ei->i_extra_isize = sizeof(struct ext4_inode) -
4816 EXT4_GOOD_OLD_INODE_SIZE;
4817 } else {
4818 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4819 if (ret)
4820 goto bad_inode;
4821 }
4822 }
4823
4824 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4825 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4826 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4827 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4828
4829 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4830 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4831
4832 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4833 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4834 ivers |=
4835 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4836 }
4837 ext4_inode_set_iversion_queried(inode, ivers);
4838 }
4839
4840 ret = 0;
4841 if (ei->i_file_acl &&
4842 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4843 ext4_error_inode(inode, function, line, 0,
4844 "iget: bad extended attribute block %llu",
4845 ei->i_file_acl);
4846 ret = -EFSCORRUPTED;
4847 goto bad_inode;
4848 } else if (!ext4_has_inline_data(inode)) {
4849 /* validate the block references in the inode */
4850 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4851 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4852 (S_ISLNK(inode->i_mode) &&
4853 !ext4_inode_is_fast_symlink(inode)))) {
4854 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4855 ret = ext4_ext_check_inode(inode);
4856 else
4857 ret = ext4_ind_check_inode(inode);
4858 }
4859 }
4860 if (ret)
4861 goto bad_inode;
4862
4863 if (S_ISREG(inode->i_mode)) {
4864 inode->i_op = &ext4_file_inode_operations;
4865 inode->i_fop = &ext4_file_operations;
4866 ext4_set_aops(inode);
4867 } else if (S_ISDIR(inode->i_mode)) {
4868 inode->i_op = &ext4_dir_inode_operations;
4869 inode->i_fop = &ext4_dir_operations;
4870 } else if (S_ISLNK(inode->i_mode)) {
4871 /* VFS does not allow setting these so must be corruption */
4872 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4873 ext4_error_inode(inode, function, line, 0,
4874 "iget: immutable or append flags "
4875 "not allowed on symlinks");
4876 ret = -EFSCORRUPTED;
4877 goto bad_inode;
4878 }
4879 if (IS_ENCRYPTED(inode)) {
4880 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4881 ext4_set_aops(inode);
4882 } else if (ext4_inode_is_fast_symlink(inode)) {
4883 inode->i_link = (char *)ei->i_data;
4884 inode->i_op = &ext4_fast_symlink_inode_operations;
4885 nd_terminate_link(ei->i_data, inode->i_size,
4886 sizeof(ei->i_data) - 1);
4887 } else {
4888 inode->i_op = &ext4_symlink_inode_operations;
4889 ext4_set_aops(inode);
4890 }
4891 inode_nohighmem(inode);
4892 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4893 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4894 inode->i_op = &ext4_special_inode_operations;
4895 if (raw_inode->i_block[0])
4896 init_special_inode(inode, inode->i_mode,
4897 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4898 else
4899 init_special_inode(inode, inode->i_mode,
4900 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4901 } else if (ino == EXT4_BOOT_LOADER_INO) {
4902 make_bad_inode(inode);
4903 } else {
4904 ret = -EFSCORRUPTED;
4905 ext4_error_inode(inode, function, line, 0,
4906 "iget: bogus i_mode (%o)", inode->i_mode);
4907 goto bad_inode;
4908 }
4909 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4910 ext4_error_inode(inode, function, line, 0,
4911 "casefold flag without casefold feature");
4912 brelse(iloc.bh);
4913
4914 unlock_new_inode(inode);
4915 return inode;
4916
4917bad_inode:
4918 brelse(iloc.bh);
4919 iget_failed(inode);
4920 return ERR_PTR(ret);
4921}
4922
4923static int ext4_inode_blocks_set(handle_t *handle,
4924 struct ext4_inode *raw_inode,
4925 struct ext4_inode_info *ei)
4926{
4927 struct inode *inode = &(ei->vfs_inode);
4928 u64 i_blocks = READ_ONCE(inode->i_blocks);
4929 struct super_block *sb = inode->i_sb;
4930
4931 if (i_blocks <= ~0U) {
4932 /*
4933 * i_blocks can be represented in a 32 bit variable
4934 * as multiple of 512 bytes
4935 */
4936 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4937 raw_inode->i_blocks_high = 0;
4938 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4939 return 0;
4940 }
4941 if (!ext4_has_feature_huge_file(sb))
4942 return -EFBIG;
4943
4944 if (i_blocks <= 0xffffffffffffULL) {
4945 /*
4946 * i_blocks can be represented in a 48 bit variable
4947 * as multiple of 512 bytes
4948 */
4949 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4950 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4951 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4952 } else {
4953 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4954 /* i_block is stored in file system block size */
4955 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4956 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4957 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4958 }
4959 return 0;
4960}
4961
4962static void __ext4_update_other_inode_time(struct super_block *sb,
4963 unsigned long orig_ino,
4964 unsigned long ino,
4965 struct ext4_inode *raw_inode)
4966{
4967 struct inode *inode;
4968
4969 inode = find_inode_by_ino_rcu(sb, ino);
4970 if (!inode)
4971 return;
4972
4973 if (!inode_is_dirtytime_only(inode))
4974 return;
4975
4976 spin_lock(&inode->i_lock);
4977 if (inode_is_dirtytime_only(inode)) {
4978 struct ext4_inode_info *ei = EXT4_I(inode);
4979
4980 inode->i_state &= ~I_DIRTY_TIME;
4981 spin_unlock(&inode->i_lock);
4982
4983 spin_lock(&ei->i_raw_lock);
4984 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4985 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4986 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4987 ext4_inode_csum_set(inode, raw_inode, ei);
4988 spin_unlock(&ei->i_raw_lock);
4989 trace_ext4_other_inode_update_time(inode, orig_ino);
4990 return;
4991 }
4992 spin_unlock(&inode->i_lock);
4993}
4994
4995/*
4996 * Opportunistically update the other time fields for other inodes in
4997 * the same inode table block.
4998 */
4999static void ext4_update_other_inodes_time(struct super_block *sb,
5000 unsigned long orig_ino, char *buf)
5001{
5002 unsigned long ino;
5003 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5004 int inode_size = EXT4_INODE_SIZE(sb);
5005
5006 /*
5007 * Calculate the first inode in the inode table block. Inode
5008 * numbers are one-based. That is, the first inode in a block
5009 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5010 */
5011 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5012 rcu_read_lock();
5013 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5014 if (ino == orig_ino)
5015 continue;
5016 __ext4_update_other_inode_time(sb, orig_ino, ino,
5017 (struct ext4_inode *)buf);
5018 }
5019 rcu_read_unlock();
5020}
5021
5022/*
5023 * Post the struct inode info into an on-disk inode location in the
5024 * buffer-cache. This gobbles the caller's reference to the
5025 * buffer_head in the inode location struct.
5026 *
5027 * The caller must have write access to iloc->bh.
5028 */
5029static int ext4_do_update_inode(handle_t *handle,
5030 struct inode *inode,
5031 struct ext4_iloc *iloc)
5032{
5033 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5034 struct ext4_inode_info *ei = EXT4_I(inode);
5035 struct buffer_head *bh = iloc->bh;
5036 struct super_block *sb = inode->i_sb;
5037 int err = 0, block;
5038 int need_datasync = 0, set_large_file = 0;
5039 uid_t i_uid;
5040 gid_t i_gid;
5041 projid_t i_projid;
5042
5043 spin_lock(&ei->i_raw_lock);
5044
5045 /* For fields not tracked in the in-memory inode,
5046 * initialise them to zero for new inodes. */
5047 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5048 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5049
5050 err = ext4_inode_blocks_set(handle, raw_inode, ei);
5051 if (err) {
5052 spin_unlock(&ei->i_raw_lock);
5053 goto out_brelse;
5054 }
5055
5056 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5057 i_uid = i_uid_read(inode);
5058 i_gid = i_gid_read(inode);
5059 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5060 if (!(test_opt(inode->i_sb, NO_UID32))) {
5061 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5062 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5063/*
5064 * Fix up interoperability with old kernels. Otherwise, old inodes get
5065 * re-used with the upper 16 bits of the uid/gid intact
5066 */
5067 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5068 raw_inode->i_uid_high = 0;
5069 raw_inode->i_gid_high = 0;
5070 } else {
5071 raw_inode->i_uid_high =
5072 cpu_to_le16(high_16_bits(i_uid));
5073 raw_inode->i_gid_high =
5074 cpu_to_le16(high_16_bits(i_gid));
5075 }
5076 } else {
5077 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5078 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5079 raw_inode->i_uid_high = 0;
5080 raw_inode->i_gid_high = 0;
5081 }
5082 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5083
5084 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5085 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5086 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5087 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5088
5089 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5090 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5091 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5092 raw_inode->i_file_acl_high =
5093 cpu_to_le16(ei->i_file_acl >> 32);
5094 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5095 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
5096 ext4_isize_set(raw_inode, ei->i_disksize);
5097 need_datasync = 1;
5098 }
5099 if (ei->i_disksize > 0x7fffffffULL) {
5100 if (!ext4_has_feature_large_file(sb) ||
5101 EXT4_SB(sb)->s_es->s_rev_level ==
5102 cpu_to_le32(EXT4_GOOD_OLD_REV))
5103 set_large_file = 1;
5104 }
5105 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5106 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5107 if (old_valid_dev(inode->i_rdev)) {
5108 raw_inode->i_block[0] =
5109 cpu_to_le32(old_encode_dev(inode->i_rdev));
5110 raw_inode->i_block[1] = 0;
5111 } else {
5112 raw_inode->i_block[0] = 0;
5113 raw_inode->i_block[1] =
5114 cpu_to_le32(new_encode_dev(inode->i_rdev));
5115 raw_inode->i_block[2] = 0;
5116 }
5117 } else if (!ext4_has_inline_data(inode)) {
5118 for (block = 0; block < EXT4_N_BLOCKS; block++)
5119 raw_inode->i_block[block] = ei->i_data[block];
5120 }
5121
5122 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5123 u64 ivers = ext4_inode_peek_iversion(inode);
5124
5125 raw_inode->i_disk_version = cpu_to_le32(ivers);
5126 if (ei->i_extra_isize) {
5127 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5128 raw_inode->i_version_hi =
5129 cpu_to_le32(ivers >> 32);
5130 raw_inode->i_extra_isize =
5131 cpu_to_le16(ei->i_extra_isize);
5132 }
5133 }
5134
5135 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5136 i_projid != EXT4_DEF_PROJID);
5137
5138 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5139 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5140 raw_inode->i_projid = cpu_to_le32(i_projid);
5141
5142 ext4_inode_csum_set(inode, raw_inode, ei);
5143 spin_unlock(&ei->i_raw_lock);
5144 if (inode->i_sb->s_flags & SB_LAZYTIME)
5145 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5146 bh->b_data);
5147
5148 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5149 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5150 if (err)
5151 goto out_brelse;
5152 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5153 if (set_large_file) {
5154 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5155 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5156 if (err)
5157 goto out_brelse;
5158 lock_buffer(EXT4_SB(sb)->s_sbh);
5159 ext4_set_feature_large_file(sb);
5160 ext4_superblock_csum_set(sb);
5161 unlock_buffer(EXT4_SB(sb)->s_sbh);
5162 ext4_handle_sync(handle);
5163 err = ext4_handle_dirty_metadata(handle, NULL,
5164 EXT4_SB(sb)->s_sbh);
5165 }
5166 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5167out_brelse:
5168 brelse(bh);
5169 ext4_std_error(inode->i_sb, err);
5170 return err;
5171}
5172
5173/*
5174 * ext4_write_inode()
5175 *
5176 * We are called from a few places:
5177 *
5178 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5179 * Here, there will be no transaction running. We wait for any running
5180 * transaction to commit.
5181 *
5182 * - Within flush work (sys_sync(), kupdate and such).
5183 * We wait on commit, if told to.
5184 *
5185 * - Within iput_final() -> write_inode_now()
5186 * We wait on commit, if told to.
5187 *
5188 * In all cases it is actually safe for us to return without doing anything,
5189 * because the inode has been copied into a raw inode buffer in
5190 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5191 * writeback.
5192 *
5193 * Note that we are absolutely dependent upon all inode dirtiers doing the
5194 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5195 * which we are interested.
5196 *
5197 * It would be a bug for them to not do this. The code:
5198 *
5199 * mark_inode_dirty(inode)
5200 * stuff();
5201 * inode->i_size = expr;
5202 *
5203 * is in error because write_inode() could occur while `stuff()' is running,
5204 * and the new i_size will be lost. Plus the inode will no longer be on the
5205 * superblock's dirty inode list.
5206 */
5207int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5208{
5209 int err;
5210
5211 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5212 sb_rdonly(inode->i_sb))
5213 return 0;
5214
5215 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5216 return -EIO;
5217
5218 if (EXT4_SB(inode->i_sb)->s_journal) {
5219 if (ext4_journal_current_handle()) {
5220 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5221 dump_stack();
5222 return -EIO;
5223 }
5224
5225 /*
5226 * No need to force transaction in WB_SYNC_NONE mode. Also
5227 * ext4_sync_fs() will force the commit after everything is
5228 * written.
5229 */
5230 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5231 return 0;
5232
5233 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5234 EXT4_I(inode)->i_sync_tid);
5235 } else {
5236 struct ext4_iloc iloc;
5237
5238 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5239 if (err)
5240 return err;
5241 /*
5242 * sync(2) will flush the whole buffer cache. No need to do
5243 * it here separately for each inode.
5244 */
5245 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5246 sync_dirty_buffer(iloc.bh);
5247 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5248 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5249 "IO error syncing inode");
5250 err = -EIO;
5251 }
5252 brelse(iloc.bh);
5253 }
5254 return err;
5255}
5256
5257/*
5258 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5259 * buffers that are attached to a page stradding i_size and are undergoing
5260 * commit. In that case we have to wait for commit to finish and try again.
5261 */
5262static void ext4_wait_for_tail_page_commit(struct inode *inode)
5263{
5264 struct page *page;
5265 unsigned offset;
5266 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5267 tid_t commit_tid = 0;
5268 int ret;
5269
5270 offset = inode->i_size & (PAGE_SIZE - 1);
5271 /*
5272 * If the page is fully truncated, we don't need to wait for any commit
5273 * (and we even should not as __ext4_journalled_invalidatepage() may
5274 * strip all buffers from the page but keep the page dirty which can then
5275 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5276 * buffers). Also we don't need to wait for any commit if all buffers in
5277 * the page remain valid. This is most beneficial for the common case of
5278 * blocksize == PAGESIZE.
5279 */
5280 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5281 return;
5282 while (1) {
5283 page = find_lock_page(inode->i_mapping,
5284 inode->i_size >> PAGE_SHIFT);
5285 if (!page)
5286 return;
5287 ret = __ext4_journalled_invalidatepage(page, offset,
5288 PAGE_SIZE - offset);
5289 unlock_page(page);
5290 put_page(page);
5291 if (ret != -EBUSY)
5292 return;
5293 commit_tid = 0;
5294 read_lock(&journal->j_state_lock);
5295 if (journal->j_committing_transaction)
5296 commit_tid = journal->j_committing_transaction->t_tid;
5297 read_unlock(&journal->j_state_lock);
5298 if (commit_tid)
5299 jbd2_log_wait_commit(journal, commit_tid);
5300 }
5301}
5302
5303/*
5304 * ext4_setattr()
5305 *
5306 * Called from notify_change.
5307 *
5308 * We want to trap VFS attempts to truncate the file as soon as
5309 * possible. In particular, we want to make sure that when the VFS
5310 * shrinks i_size, we put the inode on the orphan list and modify
5311 * i_disksize immediately, so that during the subsequent flushing of
5312 * dirty pages and freeing of disk blocks, we can guarantee that any
5313 * commit will leave the blocks being flushed in an unused state on
5314 * disk. (On recovery, the inode will get truncated and the blocks will
5315 * be freed, so we have a strong guarantee that no future commit will
5316 * leave these blocks visible to the user.)
5317 *
5318 * Another thing we have to assure is that if we are in ordered mode
5319 * and inode is still attached to the committing transaction, we must
5320 * we start writeout of all the dirty pages which are being truncated.
5321 * This way we are sure that all the data written in the previous
5322 * transaction are already on disk (truncate waits for pages under
5323 * writeback).
5324 *
5325 * Called with inode->i_mutex down.
5326 */
5327int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5328 struct iattr *attr)
5329{
5330 struct inode *inode = d_inode(dentry);
5331 int error, rc = 0;
5332 int orphan = 0;
5333 const unsigned int ia_valid = attr->ia_valid;
5334
5335 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5336 return -EIO;
5337
5338 if (unlikely(IS_IMMUTABLE(inode)))
5339 return -EPERM;
5340
5341 if (unlikely(IS_APPEND(inode) &&
5342 (ia_valid & (ATTR_MODE | ATTR_UID |
5343 ATTR_GID | ATTR_TIMES_SET))))
5344 return -EPERM;
5345
5346 error = setattr_prepare(mnt_userns, dentry, attr);
5347 if (error)
5348 return error;
5349
5350 error = fscrypt_prepare_setattr(dentry, attr);
5351 if (error)
5352 return error;
5353
5354 error = fsverity_prepare_setattr(dentry, attr);
5355 if (error)
5356 return error;
5357
5358 if (is_quota_modification(inode, attr)) {
5359 error = dquot_initialize(inode);
5360 if (error)
5361 return error;
5362 }
5363 ext4_fc_start_update(inode);
5364 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5365 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5366 handle_t *handle;
5367
5368 /* (user+group)*(old+new) structure, inode write (sb,
5369 * inode block, ? - but truncate inode update has it) */
5370 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5371 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5372 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5373 if (IS_ERR(handle)) {
5374 error = PTR_ERR(handle);
5375 goto err_out;
5376 }
5377
5378 /* dquot_transfer() calls back ext4_get_inode_usage() which
5379 * counts xattr inode references.
5380 */
5381 down_read(&EXT4_I(inode)->xattr_sem);
5382 error = dquot_transfer(inode, attr);
5383 up_read(&EXT4_I(inode)->xattr_sem);
5384
5385 if (error) {
5386 ext4_journal_stop(handle);
5387 ext4_fc_stop_update(inode);
5388 return error;
5389 }
5390 /* Update corresponding info in inode so that everything is in
5391 * one transaction */
5392 if (attr->ia_valid & ATTR_UID)
5393 inode->i_uid = attr->ia_uid;
5394 if (attr->ia_valid & ATTR_GID)
5395 inode->i_gid = attr->ia_gid;
5396 error = ext4_mark_inode_dirty(handle, inode);
5397 ext4_journal_stop(handle);
5398 if (unlikely(error)) {
5399 ext4_fc_stop_update(inode);
5400 return error;
5401 }
5402 }
5403
5404 if (attr->ia_valid & ATTR_SIZE) {
5405 handle_t *handle;
5406 loff_t oldsize = inode->i_size;
5407 int shrink = (attr->ia_size < inode->i_size);
5408
5409 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5410 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5411
5412 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5413 ext4_fc_stop_update(inode);
5414 return -EFBIG;
5415 }
5416 }
5417 if (!S_ISREG(inode->i_mode)) {
5418 ext4_fc_stop_update(inode);
5419 return -EINVAL;
5420 }
5421
5422 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5423 inode_inc_iversion(inode);
5424
5425 if (shrink) {
5426 if (ext4_should_order_data(inode)) {
5427 error = ext4_begin_ordered_truncate(inode,
5428 attr->ia_size);
5429 if (error)
5430 goto err_out;
5431 }
5432 /*
5433 * Blocks are going to be removed from the inode. Wait
5434 * for dio in flight.
5435 */
5436 inode_dio_wait(inode);
5437 }
5438
5439 down_write(&EXT4_I(inode)->i_mmap_sem);
5440
5441 rc = ext4_break_layouts(inode);
5442 if (rc) {
5443 up_write(&EXT4_I(inode)->i_mmap_sem);
5444 goto err_out;
5445 }
5446
5447 if (attr->ia_size != inode->i_size) {
5448 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5449 if (IS_ERR(handle)) {
5450 error = PTR_ERR(handle);
5451 goto out_mmap_sem;
5452 }
5453 if (ext4_handle_valid(handle) && shrink) {
5454 error = ext4_orphan_add(handle, inode);
5455 orphan = 1;
5456 }
5457 /*
5458 * Update c/mtime on truncate up, ext4_truncate() will
5459 * update c/mtime in shrink case below
5460 */
5461 if (!shrink) {
5462 inode->i_mtime = current_time(inode);
5463 inode->i_ctime = inode->i_mtime;
5464 }
5465
5466 if (shrink)
5467 ext4_fc_track_range(handle, inode,
5468 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5469 inode->i_sb->s_blocksize_bits,
5470 (oldsize > 0 ? oldsize - 1 : 0) >>
5471 inode->i_sb->s_blocksize_bits);
5472 else
5473 ext4_fc_track_range(
5474 handle, inode,
5475 (oldsize > 0 ? oldsize - 1 : oldsize) >>
5476 inode->i_sb->s_blocksize_bits,
5477 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5478 inode->i_sb->s_blocksize_bits);
5479
5480 down_write(&EXT4_I(inode)->i_data_sem);
5481 EXT4_I(inode)->i_disksize = attr->ia_size;
5482 rc = ext4_mark_inode_dirty(handle, inode);
5483 if (!error)
5484 error = rc;
5485 /*
5486 * We have to update i_size under i_data_sem together
5487 * with i_disksize to avoid races with writeback code
5488 * running ext4_wb_update_i_disksize().
5489 */
5490 if (!error)
5491 i_size_write(inode, attr->ia_size);
5492 up_write(&EXT4_I(inode)->i_data_sem);
5493 ext4_journal_stop(handle);
5494 if (error)
5495 goto out_mmap_sem;
5496 if (!shrink) {
5497 pagecache_isize_extended(inode, oldsize,
5498 inode->i_size);
5499 } else if (ext4_should_journal_data(inode)) {
5500 ext4_wait_for_tail_page_commit(inode);
5501 }
5502 }
5503
5504 /*
5505 * Truncate pagecache after we've waited for commit
5506 * in data=journal mode to make pages freeable.
5507 */
5508 truncate_pagecache(inode, inode->i_size);
5509 /*
5510 * Call ext4_truncate() even if i_size didn't change to
5511 * truncate possible preallocated blocks.
5512 */
5513 if (attr->ia_size <= oldsize) {
5514 rc = ext4_truncate(inode);
5515 if (rc)
5516 error = rc;
5517 }
5518out_mmap_sem:
5519 up_write(&EXT4_I(inode)->i_mmap_sem);
5520 }
5521
5522 if (!error) {
5523 setattr_copy(mnt_userns, inode, attr);
5524 mark_inode_dirty(inode);
5525 }
5526
5527 /*
5528 * If the call to ext4_truncate failed to get a transaction handle at
5529 * all, we need to clean up the in-core orphan list manually.
5530 */
5531 if (orphan && inode->i_nlink)
5532 ext4_orphan_del(NULL, inode);
5533
5534 if (!error && (ia_valid & ATTR_MODE))
5535 rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5536
5537err_out:
5538 if (error)
5539 ext4_std_error(inode->i_sb, error);
5540 if (!error)
5541 error = rc;
5542 ext4_fc_stop_update(inode);
5543 return error;
5544}
5545
5546int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5547 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5548{
5549 struct inode *inode = d_inode(path->dentry);
5550 struct ext4_inode *raw_inode;
5551 struct ext4_inode_info *ei = EXT4_I(inode);
5552 unsigned int flags;
5553
5554 if ((request_mask & STATX_BTIME) &&
5555 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5556 stat->result_mask |= STATX_BTIME;
5557 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5558 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5559 }
5560
5561 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5562 if (flags & EXT4_APPEND_FL)
5563 stat->attributes |= STATX_ATTR_APPEND;
5564 if (flags & EXT4_COMPR_FL)
5565 stat->attributes |= STATX_ATTR_COMPRESSED;
5566 if (flags & EXT4_ENCRYPT_FL)
5567 stat->attributes |= STATX_ATTR_ENCRYPTED;
5568 if (flags & EXT4_IMMUTABLE_FL)
5569 stat->attributes |= STATX_ATTR_IMMUTABLE;
5570 if (flags & EXT4_NODUMP_FL)
5571 stat->attributes |= STATX_ATTR_NODUMP;
5572 if (flags & EXT4_VERITY_FL)
5573 stat->attributes |= STATX_ATTR_VERITY;
5574
5575 stat->attributes_mask |= (STATX_ATTR_APPEND |
5576 STATX_ATTR_COMPRESSED |
5577 STATX_ATTR_ENCRYPTED |
5578 STATX_ATTR_IMMUTABLE |
5579 STATX_ATTR_NODUMP |
5580 STATX_ATTR_VERITY);
5581
5582 generic_fillattr(mnt_userns, inode, stat);
5583 return 0;
5584}
5585
5586int ext4_file_getattr(struct user_namespace *mnt_userns,
5587 const struct path *path, struct kstat *stat,
5588 u32 request_mask, unsigned int query_flags)
5589{
5590 struct inode *inode = d_inode(path->dentry);
5591 u64 delalloc_blocks;
5592
5593 ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
5594
5595 /*
5596 * If there is inline data in the inode, the inode will normally not
5597 * have data blocks allocated (it may have an external xattr block).
5598 * Report at least one sector for such files, so tools like tar, rsync,
5599 * others don't incorrectly think the file is completely sparse.
5600 */
5601 if (unlikely(ext4_has_inline_data(inode)))
5602 stat->blocks += (stat->size + 511) >> 9;
5603
5604 /*
5605 * We can't update i_blocks if the block allocation is delayed
5606 * otherwise in the case of system crash before the real block
5607 * allocation is done, we will have i_blocks inconsistent with
5608 * on-disk file blocks.
5609 * We always keep i_blocks updated together with real
5610 * allocation. But to not confuse with user, stat
5611 * will return the blocks that include the delayed allocation
5612 * blocks for this file.
5613 */
5614 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5615 EXT4_I(inode)->i_reserved_data_blocks);
5616 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5617 return 0;
5618}
5619
5620static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5621 int pextents)
5622{
5623 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5624 return ext4_ind_trans_blocks(inode, lblocks);
5625 return ext4_ext_index_trans_blocks(inode, pextents);
5626}
5627
5628/*
5629 * Account for index blocks, block groups bitmaps and block group
5630 * descriptor blocks if modify datablocks and index blocks
5631 * worse case, the indexs blocks spread over different block groups
5632 *
5633 * If datablocks are discontiguous, they are possible to spread over
5634 * different block groups too. If they are contiguous, with flexbg,
5635 * they could still across block group boundary.
5636 *
5637 * Also account for superblock, inode, quota and xattr blocks
5638 */
5639static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5640 int pextents)
5641{
5642 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5643 int gdpblocks;
5644 int idxblocks;
5645 int ret = 0;
5646
5647 /*
5648 * How many index blocks need to touch to map @lblocks logical blocks
5649 * to @pextents physical extents?
5650 */
5651 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5652
5653 ret = idxblocks;
5654
5655 /*
5656 * Now let's see how many group bitmaps and group descriptors need
5657 * to account
5658 */
5659 groups = idxblocks + pextents;
5660 gdpblocks = groups;
5661 if (groups > ngroups)
5662 groups = ngroups;
5663 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5664 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5665
5666 /* bitmaps and block group descriptor blocks */
5667 ret += groups + gdpblocks;
5668
5669 /* Blocks for super block, inode, quota and xattr blocks */
5670 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5671
5672 return ret;
5673}
5674
5675/*
5676 * Calculate the total number of credits to reserve to fit
5677 * the modification of a single pages into a single transaction,
5678 * which may include multiple chunks of block allocations.
5679 *
5680 * This could be called via ext4_write_begin()
5681 *
5682 * We need to consider the worse case, when
5683 * one new block per extent.
5684 */
5685int ext4_writepage_trans_blocks(struct inode *inode)
5686{
5687 int bpp = ext4_journal_blocks_per_page(inode);
5688 int ret;
5689
5690 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5691
5692 /* Account for data blocks for journalled mode */
5693 if (ext4_should_journal_data(inode))
5694 ret += bpp;
5695 return ret;
5696}
5697
5698/*
5699 * Calculate the journal credits for a chunk of data modification.
5700 *
5701 * This is called from DIO, fallocate or whoever calling
5702 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5703 *
5704 * journal buffers for data blocks are not included here, as DIO
5705 * and fallocate do no need to journal data buffers.
5706 */
5707int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5708{
5709 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5710}
5711
5712/*
5713 * The caller must have previously called ext4_reserve_inode_write().
5714 * Give this, we know that the caller already has write access to iloc->bh.
5715 */
5716int ext4_mark_iloc_dirty(handle_t *handle,
5717 struct inode *inode, struct ext4_iloc *iloc)
5718{
5719 int err = 0;
5720
5721 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5722 put_bh(iloc->bh);
5723 return -EIO;
5724 }
5725 ext4_fc_track_inode(handle, inode);
5726
5727 if (IS_I_VERSION(inode))
5728 inode_inc_iversion(inode);
5729
5730 /* the do_update_inode consumes one bh->b_count */
5731 get_bh(iloc->bh);
5732
5733 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5734 err = ext4_do_update_inode(handle, inode, iloc);
5735 put_bh(iloc->bh);
5736 return err;
5737}
5738
5739/*
5740 * On success, We end up with an outstanding reference count against
5741 * iloc->bh. This _must_ be cleaned up later.
5742 */
5743
5744int
5745ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5746 struct ext4_iloc *iloc)
5747{
5748 int err;
5749
5750 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5751 return -EIO;
5752
5753 err = ext4_get_inode_loc(inode, iloc);
5754 if (!err) {
5755 BUFFER_TRACE(iloc->bh, "get_write_access");
5756 err = ext4_journal_get_write_access(handle, iloc->bh);
5757 if (err) {
5758 brelse(iloc->bh);
5759 iloc->bh = NULL;
5760 }
5761 }
5762 ext4_std_error(inode->i_sb, err);
5763 return err;
5764}
5765
5766static int __ext4_expand_extra_isize(struct inode *inode,
5767 unsigned int new_extra_isize,
5768 struct ext4_iloc *iloc,
5769 handle_t *handle, int *no_expand)
5770{
5771 struct ext4_inode *raw_inode;
5772 struct ext4_xattr_ibody_header *header;
5773 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5774 struct ext4_inode_info *ei = EXT4_I(inode);
5775 int error;
5776
5777 /* this was checked at iget time, but double check for good measure */
5778 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5779 (ei->i_extra_isize & 3)) {
5780 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5781 ei->i_extra_isize,
5782 EXT4_INODE_SIZE(inode->i_sb));
5783 return -EFSCORRUPTED;
5784 }
5785 if ((new_extra_isize < ei->i_extra_isize) ||
5786 (new_extra_isize < 4) ||
5787 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5788 return -EINVAL; /* Should never happen */
5789
5790 raw_inode = ext4_raw_inode(iloc);
5791
5792 header = IHDR(inode, raw_inode);
5793
5794 /* No extended attributes present */
5795 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5796 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5797 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5798 EXT4_I(inode)->i_extra_isize, 0,
5799 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5800 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5801 return 0;
5802 }
5803
5804 /* try to expand with EAs present */
5805 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5806 raw_inode, handle);
5807 if (error) {
5808 /*
5809 * Inode size expansion failed; don't try again
5810 */
5811 *no_expand = 1;
5812 }
5813
5814 return error;
5815}
5816
5817/*
5818 * Expand an inode by new_extra_isize bytes.
5819 * Returns 0 on success or negative error number on failure.
5820 */
5821static int ext4_try_to_expand_extra_isize(struct inode *inode,
5822 unsigned int new_extra_isize,
5823 struct ext4_iloc iloc,
5824 handle_t *handle)
5825{
5826 int no_expand;
5827 int error;
5828
5829 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5830 return -EOVERFLOW;
5831
5832 /*
5833 * In nojournal mode, we can immediately attempt to expand
5834 * the inode. When journaled, we first need to obtain extra
5835 * buffer credits since we may write into the EA block
5836 * with this same handle. If journal_extend fails, then it will
5837 * only result in a minor loss of functionality for that inode.
5838 * If this is felt to be critical, then e2fsck should be run to
5839 * force a large enough s_min_extra_isize.
5840 */
5841 if (ext4_journal_extend(handle,
5842 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5843 return -ENOSPC;
5844
5845 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5846 return -EBUSY;
5847
5848 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5849 handle, &no_expand);
5850 ext4_write_unlock_xattr(inode, &no_expand);
5851
5852 return error;
5853}
5854
5855int ext4_expand_extra_isize(struct inode *inode,
5856 unsigned int new_extra_isize,
5857 struct ext4_iloc *iloc)
5858{
5859 handle_t *handle;
5860 int no_expand;
5861 int error, rc;
5862
5863 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5864 brelse(iloc->bh);
5865 return -EOVERFLOW;
5866 }
5867
5868 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5869 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5870 if (IS_ERR(handle)) {
5871 error = PTR_ERR(handle);
5872 brelse(iloc->bh);
5873 return error;
5874 }
5875
5876 ext4_write_lock_xattr(inode, &no_expand);
5877
5878 BUFFER_TRACE(iloc->bh, "get_write_access");
5879 error = ext4_journal_get_write_access(handle, iloc->bh);
5880 if (error) {
5881 brelse(iloc->bh);
5882 goto out_unlock;
5883 }
5884
5885 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5886 handle, &no_expand);
5887
5888 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5889 if (!error)
5890 error = rc;
5891
5892out_unlock:
5893 ext4_write_unlock_xattr(inode, &no_expand);
5894 ext4_journal_stop(handle);
5895 return error;
5896}
5897
5898/*
5899 * What we do here is to mark the in-core inode as clean with respect to inode
5900 * dirtiness (it may still be data-dirty).
5901 * This means that the in-core inode may be reaped by prune_icache
5902 * without having to perform any I/O. This is a very good thing,
5903 * because *any* task may call prune_icache - even ones which
5904 * have a transaction open against a different journal.
5905 *
5906 * Is this cheating? Not really. Sure, we haven't written the
5907 * inode out, but prune_icache isn't a user-visible syncing function.
5908 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5909 * we start and wait on commits.
5910 */
5911int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5912 const char *func, unsigned int line)
5913{
5914 struct ext4_iloc iloc;
5915 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5916 int err;
5917
5918 might_sleep();
5919 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5920 err = ext4_reserve_inode_write(handle, inode, &iloc);
5921 if (err)
5922 goto out;
5923
5924 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5925 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5926 iloc, handle);
5927
5928 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5929out:
5930 if (unlikely(err))
5931 ext4_error_inode_err(inode, func, line, 0, err,
5932 "mark_inode_dirty error");
5933 return err;
5934}
5935
5936/*
5937 * ext4_dirty_inode() is called from __mark_inode_dirty()
5938 *
5939 * We're really interested in the case where a file is being extended.
5940 * i_size has been changed by generic_commit_write() and we thus need
5941 * to include the updated inode in the current transaction.
5942 *
5943 * Also, dquot_alloc_block() will always dirty the inode when blocks
5944 * are allocated to the file.
5945 *
5946 * If the inode is marked synchronous, we don't honour that here - doing
5947 * so would cause a commit on atime updates, which we don't bother doing.
5948 * We handle synchronous inodes at the highest possible level.
5949 */
5950void ext4_dirty_inode(struct inode *inode, int flags)
5951{
5952 handle_t *handle;
5953
5954 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5955 if (IS_ERR(handle))
5956 return;
5957 ext4_mark_inode_dirty(handle, inode);
5958 ext4_journal_stop(handle);
5959}
5960
5961int ext4_change_inode_journal_flag(struct inode *inode, int val)
5962{
5963 journal_t *journal;
5964 handle_t *handle;
5965 int err;
5966 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5967
5968 /*
5969 * We have to be very careful here: changing a data block's
5970 * journaling status dynamically is dangerous. If we write a
5971 * data block to the journal, change the status and then delete
5972 * that block, we risk forgetting to revoke the old log record
5973 * from the journal and so a subsequent replay can corrupt data.
5974 * So, first we make sure that the journal is empty and that
5975 * nobody is changing anything.
5976 */
5977
5978 journal = EXT4_JOURNAL(inode);
5979 if (!journal)
5980 return 0;
5981 if (is_journal_aborted(journal))
5982 return -EROFS;
5983
5984 /* Wait for all existing dio workers */
5985 inode_dio_wait(inode);
5986
5987 /*
5988 * Before flushing the journal and switching inode's aops, we have
5989 * to flush all dirty data the inode has. There can be outstanding
5990 * delayed allocations, there can be unwritten extents created by
5991 * fallocate or buffered writes in dioread_nolock mode covered by
5992 * dirty data which can be converted only after flushing the dirty
5993 * data (and journalled aops don't know how to handle these cases).
5994 */
5995 if (val) {
5996 down_write(&EXT4_I(inode)->i_mmap_sem);
5997 err = filemap_write_and_wait(inode->i_mapping);
5998 if (err < 0) {
5999 up_write(&EXT4_I(inode)->i_mmap_sem);
6000 return err;
6001 }
6002 }
6003
6004 percpu_down_write(&sbi->s_writepages_rwsem);
6005 jbd2_journal_lock_updates(journal);
6006
6007 /*
6008 * OK, there are no updates running now, and all cached data is
6009 * synced to disk. We are now in a completely consistent state
6010 * which doesn't have anything in the journal, and we know that
6011 * no filesystem updates are running, so it is safe to modify
6012 * the inode's in-core data-journaling state flag now.
6013 */
6014
6015 if (val)
6016 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6017 else {
6018 err = jbd2_journal_flush(journal, 0);
6019 if (err < 0) {
6020 jbd2_journal_unlock_updates(journal);
6021 percpu_up_write(&sbi->s_writepages_rwsem);
6022 return err;
6023 }
6024 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6025 }
6026 ext4_set_aops(inode);
6027
6028 jbd2_journal_unlock_updates(journal);
6029 percpu_up_write(&sbi->s_writepages_rwsem);
6030
6031 if (val)
6032 up_write(&EXT4_I(inode)->i_mmap_sem);
6033
6034 /* Finally we can mark the inode as dirty. */
6035
6036 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6037 if (IS_ERR(handle))
6038 return PTR_ERR(handle);
6039
6040 ext4_fc_mark_ineligible(inode->i_sb,
6041 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE);
6042 err = ext4_mark_inode_dirty(handle, inode);
6043 ext4_handle_sync(handle);
6044 ext4_journal_stop(handle);
6045 ext4_std_error(inode->i_sb, err);
6046
6047 return err;
6048}
6049
6050static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6051{
6052 return !buffer_mapped(bh);
6053}
6054
6055vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6056{
6057 struct vm_area_struct *vma = vmf->vma;
6058 struct page *page = vmf->page;
6059 loff_t size;
6060 unsigned long len;
6061 int err;
6062 vm_fault_t ret;
6063 struct file *file = vma->vm_file;
6064 struct inode *inode = file_inode(file);
6065 struct address_space *mapping = inode->i_mapping;
6066 handle_t *handle;
6067 get_block_t *get_block;
6068 int retries = 0;
6069
6070 if (unlikely(IS_IMMUTABLE(inode)))
6071 return VM_FAULT_SIGBUS;
6072
6073 sb_start_pagefault(inode->i_sb);
6074 file_update_time(vma->vm_file);
6075
6076 down_read(&EXT4_I(inode)->i_mmap_sem);
6077
6078 err = ext4_convert_inline_data(inode);
6079 if (err)
6080 goto out_ret;
6081
6082 /*
6083 * On data journalling we skip straight to the transaction handle:
6084 * there's no delalloc; page truncated will be checked later; the
6085 * early return w/ all buffers mapped (calculates size/len) can't
6086 * be used; and there's no dioread_nolock, so only ext4_get_block.
6087 */
6088 if (ext4_should_journal_data(inode))
6089 goto retry_alloc;
6090
6091 /* Delalloc case is easy... */
6092 if (test_opt(inode->i_sb, DELALLOC) &&
6093 !ext4_nonda_switch(inode->i_sb)) {
6094 do {
6095 err = block_page_mkwrite(vma, vmf,
6096 ext4_da_get_block_prep);
6097 } while (err == -ENOSPC &&
6098 ext4_should_retry_alloc(inode->i_sb, &retries));
6099 goto out_ret;
6100 }
6101
6102 lock_page(page);
6103 size = i_size_read(inode);
6104 /* Page got truncated from under us? */
6105 if (page->mapping != mapping || page_offset(page) > size) {
6106 unlock_page(page);
6107 ret = VM_FAULT_NOPAGE;
6108 goto out;
6109 }
6110
6111 if (page->index == size >> PAGE_SHIFT)
6112 len = size & ~PAGE_MASK;
6113 else
6114 len = PAGE_SIZE;
6115 /*
6116 * Return if we have all the buffers mapped. This avoids the need to do
6117 * journal_start/journal_stop which can block and take a long time
6118 *
6119 * This cannot be done for data journalling, as we have to add the
6120 * inode to the transaction's list to writeprotect pages on commit.
6121 */
6122 if (page_has_buffers(page)) {
6123 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6124 0, len, NULL,
6125 ext4_bh_unmapped)) {
6126 /* Wait so that we don't change page under IO */
6127 wait_for_stable_page(page);
6128 ret = VM_FAULT_LOCKED;
6129 goto out;
6130 }
6131 }
6132 unlock_page(page);
6133 /* OK, we need to fill the hole... */
6134 if (ext4_should_dioread_nolock(inode))
6135 get_block = ext4_get_block_unwritten;
6136 else
6137 get_block = ext4_get_block;
6138retry_alloc:
6139 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6140 ext4_writepage_trans_blocks(inode));
6141 if (IS_ERR(handle)) {
6142 ret = VM_FAULT_SIGBUS;
6143 goto out;
6144 }
6145 /*
6146 * Data journalling can't use block_page_mkwrite() because it
6147 * will set_buffer_dirty() before do_journal_get_write_access()
6148 * thus might hit warning messages for dirty metadata buffers.
6149 */
6150 if (!ext4_should_journal_data(inode)) {
6151 err = block_page_mkwrite(vma, vmf, get_block);
6152 } else {
6153 lock_page(page);
6154 size = i_size_read(inode);
6155 /* Page got truncated from under us? */
6156 if (page->mapping != mapping || page_offset(page) > size) {
6157 ret = VM_FAULT_NOPAGE;
6158 goto out_error;
6159 }
6160
6161 if (page->index == size >> PAGE_SHIFT)
6162 len = size & ~PAGE_MASK;
6163 else
6164 len = PAGE_SIZE;
6165
6166 err = __block_write_begin(page, 0, len, ext4_get_block);
6167 if (!err) {
6168 ret = VM_FAULT_SIGBUS;
6169 if (ext4_walk_page_buffers(handle, page_buffers(page),
6170 0, len, NULL, do_journal_get_write_access))
6171 goto out_error;
6172 if (ext4_walk_page_buffers(handle, page_buffers(page),
6173 0, len, NULL, write_end_fn))
6174 goto out_error;
6175 if (ext4_jbd2_inode_add_write(handle, inode,
6176 page_offset(page), len))
6177 goto out_error;
6178 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6179 } else {
6180 unlock_page(page);
6181 }
6182 }
6183 ext4_journal_stop(handle);
6184 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6185 goto retry_alloc;
6186out_ret:
6187 ret = block_page_mkwrite_return(err);
6188out:
6189 up_read(&EXT4_I(inode)->i_mmap_sem);
6190 sb_end_pagefault(inode->i_sb);
6191 return ret;
6192out_error:
6193 unlock_page(page);
6194 ext4_journal_stop(handle);
6195 goto out;
6196}
6197
6198vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6199{
6200 struct inode *inode = file_inode(vmf->vma->vm_file);
6201 vm_fault_t ret;
6202
6203 down_read(&EXT4_I(inode)->i_mmap_sem);
6204 ret = filemap_fault(vmf);
6205 up_read(&EXT4_I(inode)->i_mmap_sem);
6206
6207 return ret;
6208}