Loading...
1/****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11/* Common definitions for all Efx net driver code */
12
13#ifndef EFX_NET_DRIVER_H
14#define EFX_NET_DRIVER_H
15
16#include <linux/netdevice.h>
17#include <linux/etherdevice.h>
18#include <linux/ethtool.h>
19#include <linux/if_vlan.h>
20#include <linux/timer.h>
21#include <linux/mdio.h>
22#include <linux/list.h>
23#include <linux/pci.h>
24#include <linux/device.h>
25#include <linux/highmem.h>
26#include <linux/workqueue.h>
27#include <linux/mutex.h>
28#include <linux/rwsem.h>
29#include <linux/vmalloc.h>
30#include <linux/i2c.h>
31#include <linux/mtd/mtd.h>
32#include <net/busy_poll.h>
33
34#include "enum.h"
35#include "bitfield.h"
36#include "filter.h"
37
38/**************************************************************************
39 *
40 * Build definitions
41 *
42 **************************************************************************/
43
44#define EFX_DRIVER_VERSION "4.1"
45
46#ifdef DEBUG
47#define EFX_WARN_ON_ONCE_PARANOID(x) WARN_ON_ONCE(x)
48#define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
49#else
50#define EFX_WARN_ON_ONCE_PARANOID(x) do {} while (0)
51#define EFX_WARN_ON_PARANOID(x) do {} while (0)
52#endif
53
54/**************************************************************************
55 *
56 * Efx data structures
57 *
58 **************************************************************************/
59
60#define EFX_MAX_CHANNELS 32U
61#define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
62#define EFX_EXTRA_CHANNEL_IOV 0
63#define EFX_EXTRA_CHANNEL_PTP 1
64#define EFX_MAX_EXTRA_CHANNELS 2U
65
66/* Checksum generation is a per-queue option in hardware, so each
67 * queue visible to the networking core is backed by two hardware TX
68 * queues. */
69#define EFX_MAX_TX_TC 2
70#define EFX_MAX_CORE_TX_QUEUES (EFX_MAX_TX_TC * EFX_MAX_CHANNELS)
71#define EFX_TXQ_TYPE_OFFLOAD 1 /* flag */
72#define EFX_TXQ_TYPE_HIGHPRI 2 /* flag */
73#define EFX_TXQ_TYPES 4
74#define EFX_MAX_TX_QUEUES (EFX_TXQ_TYPES * EFX_MAX_CHANNELS)
75
76/* Maximum possible MTU the driver supports */
77#define EFX_MAX_MTU (9 * 1024)
78
79/* Minimum MTU, from RFC791 (IP) */
80#define EFX_MIN_MTU 68
81
82/* Size of an RX scatter buffer. Small enough to pack 2 into a 4K page,
83 * and should be a multiple of the cache line size.
84 */
85#define EFX_RX_USR_BUF_SIZE (2048 - 256)
86
87/* If possible, we should ensure cache line alignment at start and end
88 * of every buffer. Otherwise, we just need to ensure 4-byte
89 * alignment of the network header.
90 */
91#if NET_IP_ALIGN == 0
92#define EFX_RX_BUF_ALIGNMENT L1_CACHE_BYTES
93#else
94#define EFX_RX_BUF_ALIGNMENT 4
95#endif
96
97/* Forward declare Precision Time Protocol (PTP) support structure. */
98struct efx_ptp_data;
99struct hwtstamp_config;
100
101struct efx_self_tests;
102
103/**
104 * struct efx_buffer - A general-purpose DMA buffer
105 * @addr: host base address of the buffer
106 * @dma_addr: DMA base address of the buffer
107 * @len: Buffer length, in bytes
108 *
109 * The NIC uses these buffers for its interrupt status registers and
110 * MAC stats dumps.
111 */
112struct efx_buffer {
113 void *addr;
114 dma_addr_t dma_addr;
115 unsigned int len;
116};
117
118/**
119 * struct efx_special_buffer - DMA buffer entered into buffer table
120 * @buf: Standard &struct efx_buffer
121 * @index: Buffer index within controller;s buffer table
122 * @entries: Number of buffer table entries
123 *
124 * The NIC has a buffer table that maps buffers of size %EFX_BUF_SIZE.
125 * Event and descriptor rings are addressed via one or more buffer
126 * table entries (and so can be physically non-contiguous, although we
127 * currently do not take advantage of that). On Falcon and Siena we
128 * have to take care of allocating and initialising the entries
129 * ourselves. On later hardware this is managed by the firmware and
130 * @index and @entries are left as 0.
131 */
132struct efx_special_buffer {
133 struct efx_buffer buf;
134 unsigned int index;
135 unsigned int entries;
136};
137
138/**
139 * struct efx_tx_buffer - buffer state for a TX descriptor
140 * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be
141 * freed when descriptor completes
142 * @option: When @flags & %EFX_TX_BUF_OPTION, a NIC-specific option descriptor.
143 * @dma_addr: DMA address of the fragment.
144 * @flags: Flags for allocation and DMA mapping type
145 * @len: Length of this fragment.
146 * This field is zero when the queue slot is empty.
147 * @unmap_len: Length of this fragment to unmap
148 * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping.
149 * Only valid if @unmap_len != 0.
150 */
151struct efx_tx_buffer {
152 const struct sk_buff *skb;
153 union {
154 efx_qword_t option;
155 dma_addr_t dma_addr;
156 };
157 unsigned short flags;
158 unsigned short len;
159 unsigned short unmap_len;
160 unsigned short dma_offset;
161};
162#define EFX_TX_BUF_CONT 1 /* not last descriptor of packet */
163#define EFX_TX_BUF_SKB 2 /* buffer is last part of skb */
164#define EFX_TX_BUF_MAP_SINGLE 8 /* buffer was mapped with dma_map_single() */
165#define EFX_TX_BUF_OPTION 0x10 /* empty buffer for option descriptor */
166
167/**
168 * struct efx_tx_queue - An Efx TX queue
169 *
170 * This is a ring buffer of TX fragments.
171 * Since the TX completion path always executes on the same
172 * CPU and the xmit path can operate on different CPUs,
173 * performance is increased by ensuring that the completion
174 * path and the xmit path operate on different cache lines.
175 * This is particularly important if the xmit path is always
176 * executing on one CPU which is different from the completion
177 * path. There is also a cache line for members which are
178 * read but not written on the fast path.
179 *
180 * @efx: The associated Efx NIC
181 * @queue: DMA queue number
182 * @tso_version: Version of TSO in use for this queue.
183 * @channel: The associated channel
184 * @core_txq: The networking core TX queue structure
185 * @buffer: The software buffer ring
186 * @cb_page: Array of pages of copy buffers. Carved up according to
187 * %EFX_TX_CB_ORDER into %EFX_TX_CB_SIZE-sized chunks.
188 * @txd: The hardware descriptor ring
189 * @ptr_mask: The size of the ring minus 1.
190 * @piobuf: PIO buffer region for this TX queue (shared with its partner).
191 * Size of the region is efx_piobuf_size.
192 * @piobuf_offset: Buffer offset to be specified in PIO descriptors
193 * @initialised: Has hardware queue been initialised?
194 * @timestamping: Is timestamping enabled for this channel?
195 * @handle_tso: TSO xmit preparation handler. Sets up the TSO metadata and
196 * may also map tx data, depending on the nature of the TSO implementation.
197 * @read_count: Current read pointer.
198 * This is the number of buffers that have been removed from both rings.
199 * @old_write_count: The value of @write_count when last checked.
200 * This is here for performance reasons. The xmit path will
201 * only get the up-to-date value of @write_count if this
202 * variable indicates that the queue is empty. This is to
203 * avoid cache-line ping-pong between the xmit path and the
204 * completion path.
205 * @merge_events: Number of TX merged completion events
206 * @completed_desc_ptr: Most recent completed pointer - only used with
207 * timestamping.
208 * @completed_timestamp_major: Top part of the most recent tx timestamp.
209 * @completed_timestamp_minor: Low part of the most recent tx timestamp.
210 * @insert_count: Current insert pointer
211 * This is the number of buffers that have been added to the
212 * software ring.
213 * @write_count: Current write pointer
214 * This is the number of buffers that have been added to the
215 * hardware ring.
216 * @packet_write_count: Completable write pointer
217 * This is the write pointer of the last packet written.
218 * Normally this will equal @write_count, but as option descriptors
219 * don't produce completion events, they won't update this.
220 * Filled in iff @efx->type->option_descriptors; only used for PIO.
221 * Thus, this is written and used on EF10, and neither on farch.
222 * @old_read_count: The value of read_count when last checked.
223 * This is here for performance reasons. The xmit path will
224 * only get the up-to-date value of read_count if this
225 * variable indicates that the queue is full. This is to
226 * avoid cache-line ping-pong between the xmit path and the
227 * completion path.
228 * @tso_bursts: Number of times TSO xmit invoked by kernel
229 * @tso_long_headers: Number of packets with headers too long for standard
230 * blocks
231 * @tso_packets: Number of packets via the TSO xmit path
232 * @tso_fallbacks: Number of times TSO fallback used
233 * @pushes: Number of times the TX push feature has been used
234 * @pio_packets: Number of times the TX PIO feature has been used
235 * @xmit_more_available: Are any packets waiting to be pushed to the NIC
236 * @cb_packets: Number of times the TX copybreak feature has been used
237 * @empty_read_count: If the completion path has seen the queue as empty
238 * and the transmission path has not yet checked this, the value of
239 * @read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
240 */
241struct efx_tx_queue {
242 /* Members which don't change on the fast path */
243 struct efx_nic *efx ____cacheline_aligned_in_smp;
244 unsigned queue;
245 unsigned int tso_version;
246 struct efx_channel *channel;
247 struct netdev_queue *core_txq;
248 struct efx_tx_buffer *buffer;
249 struct efx_buffer *cb_page;
250 struct efx_special_buffer txd;
251 unsigned int ptr_mask;
252 void __iomem *piobuf;
253 unsigned int piobuf_offset;
254 bool initialised;
255 bool timestamping;
256
257 /* Function pointers used in the fast path. */
258 int (*handle_tso)(struct efx_tx_queue*, struct sk_buff*, bool *);
259
260 /* Members used mainly on the completion path */
261 unsigned int read_count ____cacheline_aligned_in_smp;
262 unsigned int old_write_count;
263 unsigned int merge_events;
264 unsigned int bytes_compl;
265 unsigned int pkts_compl;
266 unsigned int completed_desc_ptr;
267 u32 completed_timestamp_major;
268 u32 completed_timestamp_minor;
269
270 /* Members used only on the xmit path */
271 unsigned int insert_count ____cacheline_aligned_in_smp;
272 unsigned int write_count;
273 unsigned int packet_write_count;
274 unsigned int old_read_count;
275 unsigned int tso_bursts;
276 unsigned int tso_long_headers;
277 unsigned int tso_packets;
278 unsigned int tso_fallbacks;
279 unsigned int pushes;
280 unsigned int pio_packets;
281 bool xmit_more_available;
282 unsigned int cb_packets;
283 /* Statistics to supplement MAC stats */
284 unsigned long tx_packets;
285
286 /* Members shared between paths and sometimes updated */
287 unsigned int empty_read_count ____cacheline_aligned_in_smp;
288#define EFX_EMPTY_COUNT_VALID 0x80000000
289 atomic_t flush_outstanding;
290};
291
292#define EFX_TX_CB_ORDER 7
293#define EFX_TX_CB_SIZE (1 << EFX_TX_CB_ORDER) - NET_IP_ALIGN
294
295/**
296 * struct efx_rx_buffer - An Efx RX data buffer
297 * @dma_addr: DMA base address of the buffer
298 * @page: The associated page buffer.
299 * Will be %NULL if the buffer slot is currently free.
300 * @page_offset: If pending: offset in @page of DMA base address.
301 * If completed: offset in @page of Ethernet header.
302 * @len: If pending: length for DMA descriptor.
303 * If completed: received length, excluding hash prefix.
304 * @flags: Flags for buffer and packet state. These are only set on the
305 * first buffer of a scattered packet.
306 */
307struct efx_rx_buffer {
308 dma_addr_t dma_addr;
309 struct page *page;
310 u16 page_offset;
311 u16 len;
312 u16 flags;
313};
314#define EFX_RX_BUF_LAST_IN_PAGE 0x0001
315#define EFX_RX_PKT_CSUMMED 0x0002
316#define EFX_RX_PKT_DISCARD 0x0004
317#define EFX_RX_PKT_TCP 0x0040
318#define EFX_RX_PKT_PREFIX_LEN 0x0080 /* length is in prefix only */
319#define EFX_RX_PKT_CSUM_LEVEL 0x0200
320
321/**
322 * struct efx_rx_page_state - Page-based rx buffer state
323 *
324 * Inserted at the start of every page allocated for receive buffers.
325 * Used to facilitate sharing dma mappings between recycled rx buffers
326 * and those passed up to the kernel.
327 *
328 * @dma_addr: The dma address of this page.
329 */
330struct efx_rx_page_state {
331 dma_addr_t dma_addr;
332
333 unsigned int __pad[0] ____cacheline_aligned;
334};
335
336/**
337 * struct efx_rx_queue - An Efx RX queue
338 * @efx: The associated Efx NIC
339 * @core_index: Index of network core RX queue. Will be >= 0 iff this
340 * is associated with a real RX queue.
341 * @buffer: The software buffer ring
342 * @rxd: The hardware descriptor ring
343 * @ptr_mask: The size of the ring minus 1.
344 * @refill_enabled: Enable refill whenever fill level is low
345 * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
346 * @rxq_flush_pending.
347 * @added_count: Number of buffers added to the receive queue.
348 * @notified_count: Number of buffers given to NIC (<= @added_count).
349 * @removed_count: Number of buffers removed from the receive queue.
350 * @scatter_n: Used by NIC specific receive code.
351 * @scatter_len: Used by NIC specific receive code.
352 * @page_ring: The ring to store DMA mapped pages for reuse.
353 * @page_add: Counter to calculate the write pointer for the recycle ring.
354 * @page_remove: Counter to calculate the read pointer for the recycle ring.
355 * @page_recycle_count: The number of pages that have been recycled.
356 * @page_recycle_failed: The number of pages that couldn't be recycled because
357 * the kernel still held a reference to them.
358 * @page_recycle_full: The number of pages that were released because the
359 * recycle ring was full.
360 * @page_ptr_mask: The number of pages in the RX recycle ring minus 1.
361 * @max_fill: RX descriptor maximum fill level (<= ring size)
362 * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
363 * (<= @max_fill)
364 * @min_fill: RX descriptor minimum non-zero fill level.
365 * This records the minimum fill level observed when a ring
366 * refill was triggered.
367 * @recycle_count: RX buffer recycle counter.
368 * @slow_fill: Timer used to defer efx_nic_generate_fill_event().
369 */
370struct efx_rx_queue {
371 struct efx_nic *efx;
372 int core_index;
373 struct efx_rx_buffer *buffer;
374 struct efx_special_buffer rxd;
375 unsigned int ptr_mask;
376 bool refill_enabled;
377 bool flush_pending;
378
379 unsigned int added_count;
380 unsigned int notified_count;
381 unsigned int removed_count;
382 unsigned int scatter_n;
383 unsigned int scatter_len;
384 struct page **page_ring;
385 unsigned int page_add;
386 unsigned int page_remove;
387 unsigned int page_recycle_count;
388 unsigned int page_recycle_failed;
389 unsigned int page_recycle_full;
390 unsigned int page_ptr_mask;
391 unsigned int max_fill;
392 unsigned int fast_fill_trigger;
393 unsigned int min_fill;
394 unsigned int min_overfill;
395 unsigned int recycle_count;
396 struct timer_list slow_fill;
397 unsigned int slow_fill_count;
398 /* Statistics to supplement MAC stats */
399 unsigned long rx_packets;
400};
401
402enum efx_sync_events_state {
403 SYNC_EVENTS_DISABLED = 0,
404 SYNC_EVENTS_QUIESCENT,
405 SYNC_EVENTS_REQUESTED,
406 SYNC_EVENTS_VALID,
407};
408
409/**
410 * struct efx_channel - An Efx channel
411 *
412 * A channel comprises an event queue, at least one TX queue, at least
413 * one RX queue, and an associated tasklet for processing the event
414 * queue.
415 *
416 * @efx: Associated Efx NIC
417 * @channel: Channel instance number
418 * @type: Channel type definition
419 * @eventq_init: Event queue initialised flag
420 * @enabled: Channel enabled indicator
421 * @irq: IRQ number (MSI and MSI-X only)
422 * @irq_moderation_us: IRQ moderation value (in microseconds)
423 * @napi_dev: Net device used with NAPI
424 * @napi_str: NAPI control structure
425 * @state: state for NAPI vs busy polling
426 * @state_lock: lock protecting @state
427 * @eventq: Event queue buffer
428 * @eventq_mask: Event queue pointer mask
429 * @eventq_read_ptr: Event queue read pointer
430 * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
431 * @irq_count: Number of IRQs since last adaptive moderation decision
432 * @irq_mod_score: IRQ moderation score
433 * @filter_work: Work item for efx_filter_rfs_expire()
434 * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS,
435 * indexed by filter ID
436 * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
437 * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
438 * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
439 * @n_rx_mcast_mismatch: Count of unmatched multicast frames
440 * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
441 * @n_rx_overlength: Count of RX_OVERLENGTH errors
442 * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
443 * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to
444 * lack of descriptors
445 * @n_rx_merge_events: Number of RX merged completion events
446 * @n_rx_merge_packets: Number of RX packets completed by merged events
447 * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by
448 * __efx_rx_packet(), or zero if there is none
449 * @rx_pkt_index: Ring index of first buffer for next packet to be delivered
450 * by __efx_rx_packet(), if @rx_pkt_n_frags != 0
451 * @rx_queue: RX queue for this channel
452 * @tx_queue: TX queues for this channel
453 * @sync_events_state: Current state of sync events on this channel
454 * @sync_timestamp_major: Major part of the last ptp sync event
455 * @sync_timestamp_minor: Minor part of the last ptp sync event
456 */
457struct efx_channel {
458 struct efx_nic *efx;
459 int channel;
460 const struct efx_channel_type *type;
461 bool eventq_init;
462 bool enabled;
463 int irq;
464 unsigned int irq_moderation_us;
465 struct net_device *napi_dev;
466 struct napi_struct napi_str;
467#ifdef CONFIG_NET_RX_BUSY_POLL
468 unsigned long busy_poll_state;
469#endif
470 struct efx_special_buffer eventq;
471 unsigned int eventq_mask;
472 unsigned int eventq_read_ptr;
473 int event_test_cpu;
474
475 unsigned int irq_count;
476 unsigned int irq_mod_score;
477#ifdef CONFIG_RFS_ACCEL
478 unsigned int rfs_filters_added;
479 struct work_struct filter_work;
480#define RPS_FLOW_ID_INVALID 0xFFFFFFFF
481 u32 *rps_flow_id;
482#endif
483
484 unsigned int n_rx_tobe_disc;
485 unsigned int n_rx_ip_hdr_chksum_err;
486 unsigned int n_rx_tcp_udp_chksum_err;
487 unsigned int n_rx_outer_ip_hdr_chksum_err;
488 unsigned int n_rx_outer_tcp_udp_chksum_err;
489 unsigned int n_rx_inner_ip_hdr_chksum_err;
490 unsigned int n_rx_inner_tcp_udp_chksum_err;
491 unsigned int n_rx_eth_crc_err;
492 unsigned int n_rx_mcast_mismatch;
493 unsigned int n_rx_frm_trunc;
494 unsigned int n_rx_overlength;
495 unsigned int n_skbuff_leaks;
496 unsigned int n_rx_nodesc_trunc;
497 unsigned int n_rx_merge_events;
498 unsigned int n_rx_merge_packets;
499
500 unsigned int rx_pkt_n_frags;
501 unsigned int rx_pkt_index;
502
503 struct efx_rx_queue rx_queue;
504 struct efx_tx_queue tx_queue[EFX_TXQ_TYPES];
505
506 enum efx_sync_events_state sync_events_state;
507 u32 sync_timestamp_major;
508 u32 sync_timestamp_minor;
509};
510
511/**
512 * struct efx_msi_context - Context for each MSI
513 * @efx: The associated NIC
514 * @index: Index of the channel/IRQ
515 * @name: Name of the channel/IRQ
516 *
517 * Unlike &struct efx_channel, this is never reallocated and is always
518 * safe for the IRQ handler to access.
519 */
520struct efx_msi_context {
521 struct efx_nic *efx;
522 unsigned int index;
523 char name[IFNAMSIZ + 6];
524};
525
526/**
527 * struct efx_channel_type - distinguishes traffic and extra channels
528 * @handle_no_channel: Handle failure to allocate an extra channel
529 * @pre_probe: Set up extra state prior to initialisation
530 * @post_remove: Tear down extra state after finalisation, if allocated.
531 * May be called on channels that have not been probed.
532 * @get_name: Generate the channel's name (used for its IRQ handler)
533 * @copy: Copy the channel state prior to reallocation. May be %NULL if
534 * reallocation is not supported.
535 * @receive_skb: Handle an skb ready to be passed to netif_receive_skb()
536 * @want_txqs: Determine whether this channel should have TX queues
537 * created. If %NULL, TX queues are not created.
538 * @keep_eventq: Flag for whether event queue should be kept initialised
539 * while the device is stopped
540 * @want_pio: Flag for whether PIO buffers should be linked to this
541 * channel's TX queues.
542 */
543struct efx_channel_type {
544 void (*handle_no_channel)(struct efx_nic *);
545 int (*pre_probe)(struct efx_channel *);
546 void (*post_remove)(struct efx_channel *);
547 void (*get_name)(struct efx_channel *, char *buf, size_t len);
548 struct efx_channel *(*copy)(const struct efx_channel *);
549 bool (*receive_skb)(struct efx_channel *, struct sk_buff *);
550 bool (*want_txqs)(struct efx_channel *);
551 bool keep_eventq;
552 bool want_pio;
553};
554
555enum efx_led_mode {
556 EFX_LED_OFF = 0,
557 EFX_LED_ON = 1,
558 EFX_LED_DEFAULT = 2
559};
560
561#define STRING_TABLE_LOOKUP(val, member) \
562 ((val) < member ## _max) ? member ## _names[val] : "(invalid)"
563
564extern const char *const efx_loopback_mode_names[];
565extern const unsigned int efx_loopback_mode_max;
566#define LOOPBACK_MODE(efx) \
567 STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode)
568
569extern const char *const efx_reset_type_names[];
570extern const unsigned int efx_reset_type_max;
571#define RESET_TYPE(type) \
572 STRING_TABLE_LOOKUP(type, efx_reset_type)
573
574void efx_get_udp_tunnel_type_name(u16 type, char *buf, size_t buflen);
575
576enum efx_int_mode {
577 /* Be careful if altering to correct macro below */
578 EFX_INT_MODE_MSIX = 0,
579 EFX_INT_MODE_MSI = 1,
580 EFX_INT_MODE_LEGACY = 2,
581 EFX_INT_MODE_MAX /* Insert any new items before this */
582};
583#define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
584
585enum nic_state {
586 STATE_UNINIT = 0, /* device being probed/removed or is frozen */
587 STATE_READY = 1, /* hardware ready and netdev registered */
588 STATE_DISABLED = 2, /* device disabled due to hardware errors */
589 STATE_RECOVERY = 3, /* device recovering from PCI error */
590};
591
592/* Forward declaration */
593struct efx_nic;
594
595/* Pseudo bit-mask flow control field */
596#define EFX_FC_RX FLOW_CTRL_RX
597#define EFX_FC_TX FLOW_CTRL_TX
598#define EFX_FC_AUTO 4
599
600/**
601 * struct efx_link_state - Current state of the link
602 * @up: Link is up
603 * @fd: Link is full-duplex
604 * @fc: Actual flow control flags
605 * @speed: Link speed (Mbps)
606 */
607struct efx_link_state {
608 bool up;
609 bool fd;
610 u8 fc;
611 unsigned int speed;
612};
613
614static inline bool efx_link_state_equal(const struct efx_link_state *left,
615 const struct efx_link_state *right)
616{
617 return left->up == right->up && left->fd == right->fd &&
618 left->fc == right->fc && left->speed == right->speed;
619}
620
621/**
622 * struct efx_phy_operations - Efx PHY operations table
623 * @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds,
624 * efx->loopback_modes.
625 * @init: Initialise PHY
626 * @fini: Shut down PHY
627 * @reconfigure: Reconfigure PHY (e.g. for new link parameters)
628 * @poll: Update @link_state and report whether it changed.
629 * Serialised by the mac_lock.
630 * @get_link_ksettings: Get ethtool settings. Serialised by the mac_lock.
631 * @set_link_ksettings: Set ethtool settings. Serialised by the mac_lock.
632 * @get_fecparam: Get Forward Error Correction settings. Serialised by mac_lock.
633 * @set_fecparam: Set Forward Error Correction settings. Serialised by mac_lock.
634 * @set_npage_adv: Set abilities advertised in (Extended) Next Page
635 * (only needed where AN bit is set in mmds)
636 * @test_alive: Test that PHY is 'alive' (online)
637 * @test_name: Get the name of a PHY-specific test/result
638 * @run_tests: Run tests and record results as appropriate (offline).
639 * Flags are the ethtool tests flags.
640 */
641struct efx_phy_operations {
642 int (*probe) (struct efx_nic *efx);
643 int (*init) (struct efx_nic *efx);
644 void (*fini) (struct efx_nic *efx);
645 void (*remove) (struct efx_nic *efx);
646 int (*reconfigure) (struct efx_nic *efx);
647 bool (*poll) (struct efx_nic *efx);
648 void (*get_link_ksettings)(struct efx_nic *efx,
649 struct ethtool_link_ksettings *cmd);
650 int (*set_link_ksettings)(struct efx_nic *efx,
651 const struct ethtool_link_ksettings *cmd);
652 int (*get_fecparam)(struct efx_nic *efx, struct ethtool_fecparam *fec);
653 int (*set_fecparam)(struct efx_nic *efx,
654 const struct ethtool_fecparam *fec);
655 void (*set_npage_adv) (struct efx_nic *efx, u32);
656 int (*test_alive) (struct efx_nic *efx);
657 const char *(*test_name) (struct efx_nic *efx, unsigned int index);
658 int (*run_tests) (struct efx_nic *efx, int *results, unsigned flags);
659 int (*get_module_eeprom) (struct efx_nic *efx,
660 struct ethtool_eeprom *ee,
661 u8 *data);
662 int (*get_module_info) (struct efx_nic *efx,
663 struct ethtool_modinfo *modinfo);
664};
665
666/**
667 * enum efx_phy_mode - PHY operating mode flags
668 * @PHY_MODE_NORMAL: on and should pass traffic
669 * @PHY_MODE_TX_DISABLED: on with TX disabled
670 * @PHY_MODE_LOW_POWER: set to low power through MDIO
671 * @PHY_MODE_OFF: switched off through external control
672 * @PHY_MODE_SPECIAL: on but will not pass traffic
673 */
674enum efx_phy_mode {
675 PHY_MODE_NORMAL = 0,
676 PHY_MODE_TX_DISABLED = 1,
677 PHY_MODE_LOW_POWER = 2,
678 PHY_MODE_OFF = 4,
679 PHY_MODE_SPECIAL = 8,
680};
681
682static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
683{
684 return !!(mode & ~PHY_MODE_TX_DISABLED);
685}
686
687/**
688 * struct efx_hw_stat_desc - Description of a hardware statistic
689 * @name: Name of the statistic as visible through ethtool, or %NULL if
690 * it should not be exposed
691 * @dma_width: Width in bits (0 for non-DMA statistics)
692 * @offset: Offset within stats (ignored for non-DMA statistics)
693 */
694struct efx_hw_stat_desc {
695 const char *name;
696 u16 dma_width;
697 u16 offset;
698};
699
700/* Number of bits used in a multicast filter hash address */
701#define EFX_MCAST_HASH_BITS 8
702
703/* Number of (single-bit) entries in a multicast filter hash */
704#define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS)
705
706/* An Efx multicast filter hash */
707union efx_multicast_hash {
708 u8 byte[EFX_MCAST_HASH_ENTRIES / 8];
709 efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8];
710};
711
712struct vfdi_status;
713
714/* The reserved RSS context value */
715#define EFX_EF10_RSS_CONTEXT_INVALID 0xffffffff
716/**
717 * struct efx_rss_context - A user-defined RSS context for filtering
718 * @list: node of linked list on which this struct is stored
719 * @context_id: the RSS_CONTEXT_ID returned by MC firmware, or
720 * %EFX_EF10_RSS_CONTEXT_INVALID if this context is not present on the NIC.
721 * For Siena, 0 if RSS is active, else %EFX_EF10_RSS_CONTEXT_INVALID.
722 * @user_id: the rss_context ID exposed to userspace over ethtool.
723 * @rx_hash_udp_4tuple: UDP 4-tuple hashing enabled
724 * @rx_hash_key: Toeplitz hash key for this RSS context
725 * @indir_table: Indirection table for this RSS context
726 */
727struct efx_rss_context {
728 struct list_head list;
729 u32 context_id;
730 u32 user_id;
731 bool rx_hash_udp_4tuple;
732 u8 rx_hash_key[40];
733 u32 rx_indir_table[128];
734};
735
736#ifdef CONFIG_RFS_ACCEL
737/* Order of these is important, since filter_id >= %EFX_ARFS_FILTER_ID_PENDING
738 * is used to test if filter does or will exist.
739 */
740#define EFX_ARFS_FILTER_ID_PENDING -1
741#define EFX_ARFS_FILTER_ID_ERROR -2
742#define EFX_ARFS_FILTER_ID_REMOVING -3
743/**
744 * struct efx_arfs_rule - record of an ARFS filter and its IDs
745 * @node: linkage into hash table
746 * @spec: details of the filter (used as key for hash table). Use efx->type to
747 * determine which member to use.
748 * @rxq_index: channel to which the filter will steer traffic.
749 * @arfs_id: filter ID which was returned to ARFS
750 * @filter_id: index in software filter table. May be
751 * %EFX_ARFS_FILTER_ID_PENDING if filter was not inserted yet,
752 * %EFX_ARFS_FILTER_ID_ERROR if filter insertion failed, or
753 * %EFX_ARFS_FILTER_ID_REMOVING if expiry is currently removing the filter.
754 */
755struct efx_arfs_rule {
756 struct hlist_node node;
757 struct efx_filter_spec spec;
758 u16 rxq_index;
759 u16 arfs_id;
760 s32 filter_id;
761};
762
763/* Size chosen so that the table is one page (4kB) */
764#define EFX_ARFS_HASH_TABLE_SIZE 512
765
766/**
767 * struct efx_async_filter_insertion - Request to asynchronously insert a filter
768 * @net_dev: Reference to the netdevice
769 * @spec: The filter to insert
770 * @work: Workitem for this request
771 * @rxq_index: Identifies the channel for which this request was made
772 * @flow_id: Identifies the kernel-side flow for which this request was made
773 */
774struct efx_async_filter_insertion {
775 struct net_device *net_dev;
776 struct efx_filter_spec spec;
777 struct work_struct work;
778 u16 rxq_index;
779 u32 flow_id;
780};
781
782/* Maximum number of ARFS workitems that may be in flight on an efx_nic */
783#define EFX_RPS_MAX_IN_FLIGHT 8
784#endif /* CONFIG_RFS_ACCEL */
785
786/**
787 * struct efx_nic - an Efx NIC
788 * @name: Device name (net device name or bus id before net device registered)
789 * @pci_dev: The PCI device
790 * @node: List node for maintaning primary/secondary function lists
791 * @primary: &struct efx_nic instance for the primary function of this
792 * controller. May be the same structure, and may be %NULL if no
793 * primary function is bound. Serialised by rtnl_lock.
794 * @secondary_list: List of &struct efx_nic instances for the secondary PCI
795 * functions of the controller, if this is for the primary function.
796 * Serialised by rtnl_lock.
797 * @type: Controller type attributes
798 * @legacy_irq: IRQ number
799 * @workqueue: Workqueue for port reconfigures and the HW monitor.
800 * Work items do not hold and must not acquire RTNL.
801 * @workqueue_name: Name of workqueue
802 * @reset_work: Scheduled reset workitem
803 * @membase_phys: Memory BAR value as physical address
804 * @membase: Memory BAR value
805 * @vi_stride: step between per-VI registers / memory regions
806 * @interrupt_mode: Interrupt mode
807 * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
808 * @timer_max_ns: Interrupt timer maximum value, in nanoseconds
809 * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
810 * @irq_rx_mod_step_us: Step size for IRQ moderation for RX event queues
811 * @irq_rx_moderation_us: IRQ moderation time for RX event queues
812 * @msg_enable: Log message enable flags
813 * @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
814 * @reset_pending: Bitmask for pending resets
815 * @tx_queue: TX DMA queues
816 * @rx_queue: RX DMA queues
817 * @channel: Channels
818 * @msi_context: Context for each MSI
819 * @extra_channel_types: Types of extra (non-traffic) channels that
820 * should be allocated for this NIC
821 * @rxq_entries: Size of receive queues requested by user.
822 * @txq_entries: Size of transmit queues requested by user.
823 * @txq_stop_thresh: TX queue fill level at or above which we stop it.
824 * @txq_wake_thresh: TX queue fill level at or below which we wake it.
825 * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
826 * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
827 * @sram_lim_qw: Qword address limit of SRAM
828 * @next_buffer_table: First available buffer table id
829 * @n_channels: Number of channels in use
830 * @n_rx_channels: Number of channels used for RX (= number of RX queues)
831 * @n_tx_channels: Number of channels used for TX
832 * @n_extra_tx_channels: Number of extra channels with TX queues
833 * @rx_ip_align: RX DMA address offset to have IP header aligned in
834 * in accordance with NET_IP_ALIGN
835 * @rx_dma_len: Current maximum RX DMA length
836 * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
837 * @rx_buffer_truesize: Amortised allocation size of an RX buffer,
838 * for use in sk_buff::truesize
839 * @rx_prefix_size: Size of RX prefix before packet data
840 * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data
841 * (valid only if @rx_prefix_size != 0; always negative)
842 * @rx_packet_len_offset: Offset of RX packet length from start of packet data
843 * (valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative)
844 * @rx_packet_ts_offset: Offset of timestamp from start of packet data
845 * (valid only if channel->sync_timestamps_enabled; always negative)
846 * @rx_scatter: Scatter mode enabled for receives
847 * @rss_context: Main RSS context. Its @list member is the head of the list of
848 * RSS contexts created by user requests
849 * @rss_lock: Protects custom RSS context software state in @rss_context.list
850 * @int_error_count: Number of internal errors seen recently
851 * @int_error_expire: Time at which error count will be expired
852 * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will
853 * acknowledge but do nothing else.
854 * @irq_status: Interrupt status buffer
855 * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
856 * @irq_level: IRQ level/index for IRQs not triggered by an event queue
857 * @selftest_work: Work item for asynchronous self-test
858 * @mtd_list: List of MTDs attached to the NIC
859 * @nic_data: Hardware dependent state
860 * @mcdi: Management-Controller-to-Driver Interface state
861 * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
862 * efx_monitor() and efx_reconfigure_port()
863 * @port_enabled: Port enabled indicator.
864 * Serialises efx_stop_all(), efx_start_all(), efx_monitor() and
865 * efx_mac_work() with kernel interfaces. Safe to read under any
866 * one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
867 * be held to modify it.
868 * @port_initialized: Port initialized?
869 * @net_dev: Operating system network device. Consider holding the rtnl lock
870 * @fixed_features: Features which cannot be turned off
871 * @num_mac_stats: Number of MAC stats reported by firmware (MAC_STATS_NUM_STATS
872 * field of %MC_CMD_GET_CAPABILITIES_V4 response, or %MC_CMD_MAC_NSTATS)
873 * @stats_buffer: DMA buffer for statistics
874 * @phy_type: PHY type
875 * @phy_op: PHY interface
876 * @phy_data: PHY private data (including PHY-specific stats)
877 * @mdio: PHY MDIO interface
878 * @mdio_bus: PHY MDIO bus ID (only used by Siena)
879 * @phy_mode: PHY operating mode. Serialised by @mac_lock.
880 * @link_advertising: Autonegotiation advertising flags
881 * @fec_config: Forward Error Correction configuration flags. For bit positions
882 * see &enum ethtool_fec_config_bits.
883 * @link_state: Current state of the link
884 * @n_link_state_changes: Number of times the link has changed state
885 * @unicast_filter: Flag for Falcon-arch simple unicast filter.
886 * Protected by @mac_lock.
887 * @multicast_hash: Multicast hash table for Falcon-arch.
888 * Protected by @mac_lock.
889 * @wanted_fc: Wanted flow control flags
890 * @fc_disable: When non-zero flow control is disabled. Typically used to
891 * ensure that network back pressure doesn't delay dma queue flushes.
892 * Serialised by the rtnl lock.
893 * @mac_work: Work item for changing MAC promiscuity and multicast hash
894 * @loopback_mode: Loopback status
895 * @loopback_modes: Supported loopback mode bitmask
896 * @loopback_selftest: Offline self-test private state
897 * @filter_sem: Filter table rw_semaphore, protects existence of @filter_state
898 * @filter_state: Architecture-dependent filter table state
899 * @rps_mutex: Protects RPS state of all channels
900 * @rps_expire_channel: Next channel to check for expiry
901 * @rps_expire_index: Next index to check for expiry in
902 * @rps_expire_channel's @rps_flow_id
903 * @rps_slot_map: bitmap of in-flight entries in @rps_slot
904 * @rps_slot: array of ARFS insertion requests for efx_filter_rfs_work()
905 * @rps_hash_lock: Protects ARFS filter mapping state (@rps_hash_table and
906 * @rps_next_id).
907 * @rps_hash_table: Mapping between ARFS filters and their various IDs
908 * @rps_next_id: next arfs_id for an ARFS filter
909 * @active_queues: Count of RX and TX queues that haven't been flushed and drained.
910 * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
911 * Decremented when the efx_flush_rx_queue() is called.
912 * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
913 * completed (either success or failure). Not used when MCDI is used to
914 * flush receive queues.
915 * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions.
916 * @vf_count: Number of VFs intended to be enabled.
917 * @vf_init_count: Number of VFs that have been fully initialised.
918 * @vi_scale: log2 number of vnics per VF.
919 * @ptp_data: PTP state data
920 * @ptp_warned: has this NIC seen and warned about unexpected PTP events?
921 * @vpd_sn: Serial number read from VPD
922 * @monitor_work: Hardware monitor workitem
923 * @biu_lock: BIU (bus interface unit) lock
924 * @last_irq_cpu: Last CPU to handle a possible test interrupt. This
925 * field is used by efx_test_interrupts() to verify that an
926 * interrupt has occurred.
927 * @stats_lock: Statistics update lock. Must be held when calling
928 * efx_nic_type::{update,start,stop}_stats.
929 * @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb
930 *
931 * This is stored in the private area of the &struct net_device.
932 */
933struct efx_nic {
934 /* The following fields should be written very rarely */
935
936 char name[IFNAMSIZ];
937 struct list_head node;
938 struct efx_nic *primary;
939 struct list_head secondary_list;
940 struct pci_dev *pci_dev;
941 unsigned int port_num;
942 const struct efx_nic_type *type;
943 int legacy_irq;
944 bool eeh_disabled_legacy_irq;
945 struct workqueue_struct *workqueue;
946 char workqueue_name[16];
947 struct work_struct reset_work;
948 resource_size_t membase_phys;
949 void __iomem *membase;
950
951 unsigned int vi_stride;
952
953 enum efx_int_mode interrupt_mode;
954 unsigned int timer_quantum_ns;
955 unsigned int timer_max_ns;
956 bool irq_rx_adaptive;
957 unsigned int irq_mod_step_us;
958 unsigned int irq_rx_moderation_us;
959 u32 msg_enable;
960
961 enum nic_state state;
962 unsigned long reset_pending;
963
964 struct efx_channel *channel[EFX_MAX_CHANNELS];
965 struct efx_msi_context msi_context[EFX_MAX_CHANNELS];
966 const struct efx_channel_type *
967 extra_channel_type[EFX_MAX_EXTRA_CHANNELS];
968
969 unsigned rxq_entries;
970 unsigned txq_entries;
971 unsigned int txq_stop_thresh;
972 unsigned int txq_wake_thresh;
973
974 unsigned tx_dc_base;
975 unsigned rx_dc_base;
976 unsigned sram_lim_qw;
977 unsigned next_buffer_table;
978
979 unsigned int max_channels;
980 unsigned int max_tx_channels;
981 unsigned n_channels;
982 unsigned n_rx_channels;
983 unsigned rss_spread;
984 unsigned tx_channel_offset;
985 unsigned n_tx_channels;
986 unsigned n_extra_tx_channels;
987 unsigned int rx_ip_align;
988 unsigned int rx_dma_len;
989 unsigned int rx_buffer_order;
990 unsigned int rx_buffer_truesize;
991 unsigned int rx_page_buf_step;
992 unsigned int rx_bufs_per_page;
993 unsigned int rx_pages_per_batch;
994 unsigned int rx_prefix_size;
995 int rx_packet_hash_offset;
996 int rx_packet_len_offset;
997 int rx_packet_ts_offset;
998 bool rx_scatter;
999 struct efx_rss_context rss_context;
1000 struct mutex rss_lock;
1001
1002 unsigned int_error_count;
1003 unsigned long int_error_expire;
1004
1005 bool irq_soft_enabled;
1006 struct efx_buffer irq_status;
1007 unsigned irq_zero_count;
1008 unsigned irq_level;
1009 struct delayed_work selftest_work;
1010
1011#ifdef CONFIG_SFC_MTD
1012 struct list_head mtd_list;
1013#endif
1014
1015 void *nic_data;
1016 struct efx_mcdi_data *mcdi;
1017
1018 struct mutex mac_lock;
1019 struct work_struct mac_work;
1020 bool port_enabled;
1021
1022 bool mc_bist_for_other_fn;
1023 bool port_initialized;
1024 struct net_device *net_dev;
1025
1026 netdev_features_t fixed_features;
1027
1028 u16 num_mac_stats;
1029 struct efx_buffer stats_buffer;
1030 u64 rx_nodesc_drops_total;
1031 u64 rx_nodesc_drops_while_down;
1032 bool rx_nodesc_drops_prev_state;
1033
1034 unsigned int phy_type;
1035 const struct efx_phy_operations *phy_op;
1036 void *phy_data;
1037 struct mdio_if_info mdio;
1038 unsigned int mdio_bus;
1039 enum efx_phy_mode phy_mode;
1040
1041 __ETHTOOL_DECLARE_LINK_MODE_MASK(link_advertising);
1042 u32 fec_config;
1043 struct efx_link_state link_state;
1044 unsigned int n_link_state_changes;
1045
1046 bool unicast_filter;
1047 union efx_multicast_hash multicast_hash;
1048 u8 wanted_fc;
1049 unsigned fc_disable;
1050
1051 atomic_t rx_reset;
1052 enum efx_loopback_mode loopback_mode;
1053 u64 loopback_modes;
1054
1055 void *loopback_selftest;
1056
1057 struct rw_semaphore filter_sem;
1058 void *filter_state;
1059#ifdef CONFIG_RFS_ACCEL
1060 struct mutex rps_mutex;
1061 unsigned int rps_expire_channel;
1062 unsigned int rps_expire_index;
1063 unsigned long rps_slot_map;
1064 struct efx_async_filter_insertion rps_slot[EFX_RPS_MAX_IN_FLIGHT];
1065 spinlock_t rps_hash_lock;
1066 struct hlist_head *rps_hash_table;
1067 u32 rps_next_id;
1068#endif
1069
1070 atomic_t active_queues;
1071 atomic_t rxq_flush_pending;
1072 atomic_t rxq_flush_outstanding;
1073 wait_queue_head_t flush_wq;
1074
1075#ifdef CONFIG_SFC_SRIOV
1076 unsigned vf_count;
1077 unsigned vf_init_count;
1078 unsigned vi_scale;
1079#endif
1080
1081 struct efx_ptp_data *ptp_data;
1082 bool ptp_warned;
1083
1084 char *vpd_sn;
1085
1086 /* The following fields may be written more often */
1087
1088 struct delayed_work monitor_work ____cacheline_aligned_in_smp;
1089 spinlock_t biu_lock;
1090 int last_irq_cpu;
1091 spinlock_t stats_lock;
1092 atomic_t n_rx_noskb_drops;
1093};
1094
1095static inline int efx_dev_registered(struct efx_nic *efx)
1096{
1097 return efx->net_dev->reg_state == NETREG_REGISTERED;
1098}
1099
1100static inline unsigned int efx_port_num(struct efx_nic *efx)
1101{
1102 return efx->port_num;
1103}
1104
1105struct efx_mtd_partition {
1106 struct list_head node;
1107 struct mtd_info mtd;
1108 const char *dev_type_name;
1109 const char *type_name;
1110 char name[IFNAMSIZ + 20];
1111};
1112
1113struct efx_udp_tunnel {
1114 u16 type; /* TUNNEL_ENCAP_UDP_PORT_ENTRY_foo, see mcdi_pcol.h */
1115 __be16 port;
1116 /* Count of repeated adds of the same port. Used only inside the list,
1117 * not in request arguments.
1118 */
1119 u16 count;
1120};
1121
1122/**
1123 * struct efx_nic_type - Efx device type definition
1124 * @mem_bar: Get the memory BAR
1125 * @mem_map_size: Get memory BAR mapped size
1126 * @probe: Probe the controller
1127 * @remove: Free resources allocated by probe()
1128 * @init: Initialise the controller
1129 * @dimension_resources: Dimension controller resources (buffer table,
1130 * and VIs once the available interrupt resources are clear)
1131 * @fini: Shut down the controller
1132 * @monitor: Periodic function for polling link state and hardware monitor
1133 * @map_reset_reason: Map ethtool reset reason to a reset method
1134 * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
1135 * @reset: Reset the controller hardware and possibly the PHY. This will
1136 * be called while the controller is uninitialised.
1137 * @probe_port: Probe the MAC and PHY
1138 * @remove_port: Free resources allocated by probe_port()
1139 * @handle_global_event: Handle a "global" event (may be %NULL)
1140 * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues)
1141 * @prepare_flush: Prepare the hardware for flushing the DMA queues
1142 * (for Falcon architecture)
1143 * @finish_flush: Clean up after flushing the DMA queues (for Falcon
1144 * architecture)
1145 * @prepare_flr: Prepare for an FLR
1146 * @finish_flr: Clean up after an FLR
1147 * @describe_stats: Describe statistics for ethtool
1148 * @update_stats: Update statistics not provided by event handling.
1149 * Either argument may be %NULL.
1150 * @start_stats: Start the regular fetching of statistics
1151 * @pull_stats: Pull stats from the NIC and wait until they arrive.
1152 * @stop_stats: Stop the regular fetching of statistics
1153 * @set_id_led: Set state of identifying LED or revert to automatic function
1154 * @push_irq_moderation: Apply interrupt moderation value
1155 * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
1156 * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL)
1157 * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
1158 * to the hardware. Serialised by the mac_lock.
1159 * @check_mac_fault: Check MAC fault state. True if fault present.
1160 * @get_wol: Get WoL configuration from driver state
1161 * @set_wol: Push WoL configuration to the NIC
1162 * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
1163 * @test_chip: Test registers. May use efx_farch_test_registers(), and is
1164 * expected to reset the NIC.
1165 * @test_nvram: Test validity of NVRAM contents
1166 * @mcdi_request: Send an MCDI request with the given header and SDU.
1167 * The SDU length may be any value from 0 up to the protocol-
1168 * defined maximum, but its buffer will be padded to a multiple
1169 * of 4 bytes.
1170 * @mcdi_poll_response: Test whether an MCDI response is available.
1171 * @mcdi_read_response: Read the MCDI response PDU. The offset will
1172 * be a multiple of 4. The length may not be, but the buffer
1173 * will be padded so it is safe to round up.
1174 * @mcdi_poll_reboot: Test whether the MCDI has rebooted. If so,
1175 * return an appropriate error code for aborting any current
1176 * request; otherwise return 0.
1177 * @irq_enable_master: Enable IRQs on the NIC. Each event queue must
1178 * be separately enabled after this.
1179 * @irq_test_generate: Generate a test IRQ
1180 * @irq_disable_non_ev: Disable non-event IRQs on the NIC. Each event
1181 * queue must be separately disabled before this.
1182 * @irq_handle_msi: Handle MSI for a channel. The @dev_id argument is
1183 * a pointer to the &struct efx_msi_context for the channel.
1184 * @irq_handle_legacy: Handle legacy interrupt. The @dev_id argument
1185 * is a pointer to the &struct efx_nic.
1186 * @tx_probe: Allocate resources for TX queue
1187 * @tx_init: Initialise TX queue on the NIC
1188 * @tx_remove: Free resources for TX queue
1189 * @tx_write: Write TX descriptors and doorbell
1190 * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC
1191 * @rx_pull_rss_config: Read RSS hash key and indirection table back from the NIC
1192 * @rx_push_rss_context_config: Write RSS hash key and indirection table for
1193 * user RSS context to the NIC
1194 * @rx_pull_rss_context_config: Read RSS hash key and indirection table for user
1195 * RSS context back from the NIC
1196 * @rx_probe: Allocate resources for RX queue
1197 * @rx_init: Initialise RX queue on the NIC
1198 * @rx_remove: Free resources for RX queue
1199 * @rx_write: Write RX descriptors and doorbell
1200 * @rx_defer_refill: Generate a refill reminder event
1201 * @ev_probe: Allocate resources for event queue
1202 * @ev_init: Initialise event queue on the NIC
1203 * @ev_fini: Deinitialise event queue on the NIC
1204 * @ev_remove: Free resources for event queue
1205 * @ev_process: Process events for a queue, up to the given NAPI quota
1206 * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ
1207 * @ev_test_generate: Generate a test event
1208 * @filter_table_probe: Probe filter capabilities and set up filter software state
1209 * @filter_table_restore: Restore filters removed from hardware
1210 * @filter_table_remove: Remove filters from hardware and tear down software state
1211 * @filter_update_rx_scatter: Update filters after change to rx scatter setting
1212 * @filter_insert: add or replace a filter
1213 * @filter_remove_safe: remove a filter by ID, carefully
1214 * @filter_get_safe: retrieve a filter by ID, carefully
1215 * @filter_clear_rx: Remove all RX filters whose priority is less than or
1216 * equal to the given priority and is not %EFX_FILTER_PRI_AUTO
1217 * @filter_count_rx_used: Get the number of filters in use at a given priority
1218 * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1
1219 * @filter_get_rx_ids: Get list of RX filters at a given priority
1220 * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS.
1221 * This must check whether the specified table entry is used by RFS
1222 * and that rps_may_expire_flow() returns true for it.
1223 * @mtd_probe: Probe and add MTD partitions associated with this net device,
1224 * using efx_mtd_add()
1225 * @mtd_rename: Set an MTD partition name using the net device name
1226 * @mtd_read: Read from an MTD partition
1227 * @mtd_erase: Erase part of an MTD partition
1228 * @mtd_write: Write to an MTD partition
1229 * @mtd_sync: Wait for write-back to complete on MTD partition. This
1230 * also notifies the driver that a writer has finished using this
1231 * partition.
1232 * @ptp_write_host_time: Send host time to MC as part of sync protocol
1233 * @ptp_set_ts_sync_events: Enable or disable sync events for inline RX
1234 * timestamping, possibly only temporarily for the purposes of a reset.
1235 * @ptp_set_ts_config: Set hardware timestamp configuration. The flags
1236 * and tx_type will already have been validated but this operation
1237 * must validate and update rx_filter.
1238 * @get_phys_port_id: Get the underlying physical port id.
1239 * @set_mac_address: Set the MAC address of the device
1240 * @tso_versions: Returns mask of firmware-assisted TSO versions supported.
1241 * If %NULL, then device does not support any TSO version.
1242 * @udp_tnl_push_ports: Push the list of UDP tunnel ports to the NIC if required.
1243 * @udp_tnl_add_port: Add a UDP tunnel port
1244 * @udp_tnl_has_port: Check if a port has been added as UDP tunnel
1245 * @udp_tnl_del_port: Remove a UDP tunnel port
1246 * @revision: Hardware architecture revision
1247 * @txd_ptr_tbl_base: TX descriptor ring base address
1248 * @rxd_ptr_tbl_base: RX descriptor ring base address
1249 * @buf_tbl_base: Buffer table base address
1250 * @evq_ptr_tbl_base: Event queue pointer table base address
1251 * @evq_rptr_tbl_base: Event queue read-pointer table base address
1252 * @max_dma_mask: Maximum possible DMA mask
1253 * @rx_prefix_size: Size of RX prefix before packet data
1254 * @rx_hash_offset: Offset of RX flow hash within prefix
1255 * @rx_ts_offset: Offset of timestamp within prefix
1256 * @rx_buffer_padding: Size of padding at end of RX packet
1257 * @can_rx_scatter: NIC is able to scatter packets to multiple buffers
1258 * @always_rx_scatter: NIC will always scatter packets to multiple buffers
1259 * @option_descriptors: NIC supports TX option descriptors
1260 * @min_interrupt_mode: Lowest capability interrupt mode supported
1261 * from &enum efx_int_mode.
1262 * @max_interrupt_mode: Highest capability interrupt mode supported
1263 * from &enum efx_int_mode.
1264 * @timer_period_max: Maximum period of interrupt timer (in ticks)
1265 * @offload_features: net_device feature flags for protocol offload
1266 * features implemented in hardware
1267 * @mcdi_max_ver: Maximum MCDI version supported
1268 * @hwtstamp_filters: Mask of hardware timestamp filter types supported
1269 */
1270struct efx_nic_type {
1271 bool is_vf;
1272 unsigned int (*mem_bar)(struct efx_nic *efx);
1273 unsigned int (*mem_map_size)(struct efx_nic *efx);
1274 int (*probe)(struct efx_nic *efx);
1275 void (*remove)(struct efx_nic *efx);
1276 int (*init)(struct efx_nic *efx);
1277 int (*dimension_resources)(struct efx_nic *efx);
1278 void (*fini)(struct efx_nic *efx);
1279 void (*monitor)(struct efx_nic *efx);
1280 enum reset_type (*map_reset_reason)(enum reset_type reason);
1281 int (*map_reset_flags)(u32 *flags);
1282 int (*reset)(struct efx_nic *efx, enum reset_type method);
1283 int (*probe_port)(struct efx_nic *efx);
1284 void (*remove_port)(struct efx_nic *efx);
1285 bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *);
1286 int (*fini_dmaq)(struct efx_nic *efx);
1287 void (*prepare_flush)(struct efx_nic *efx);
1288 void (*finish_flush)(struct efx_nic *efx);
1289 void (*prepare_flr)(struct efx_nic *efx);
1290 void (*finish_flr)(struct efx_nic *efx);
1291 size_t (*describe_stats)(struct efx_nic *efx, u8 *names);
1292 size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats,
1293 struct rtnl_link_stats64 *core_stats);
1294 void (*start_stats)(struct efx_nic *efx);
1295 void (*pull_stats)(struct efx_nic *efx);
1296 void (*stop_stats)(struct efx_nic *efx);
1297 void (*set_id_led)(struct efx_nic *efx, enum efx_led_mode mode);
1298 void (*push_irq_moderation)(struct efx_channel *channel);
1299 int (*reconfigure_port)(struct efx_nic *efx);
1300 void (*prepare_enable_fc_tx)(struct efx_nic *efx);
1301 int (*reconfigure_mac)(struct efx_nic *efx);
1302 bool (*check_mac_fault)(struct efx_nic *efx);
1303 void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
1304 int (*set_wol)(struct efx_nic *efx, u32 type);
1305 void (*resume_wol)(struct efx_nic *efx);
1306 int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests);
1307 int (*test_nvram)(struct efx_nic *efx);
1308 void (*mcdi_request)(struct efx_nic *efx,
1309 const efx_dword_t *hdr, size_t hdr_len,
1310 const efx_dword_t *sdu, size_t sdu_len);
1311 bool (*mcdi_poll_response)(struct efx_nic *efx);
1312 void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu,
1313 size_t pdu_offset, size_t pdu_len);
1314 int (*mcdi_poll_reboot)(struct efx_nic *efx);
1315 void (*mcdi_reboot_detected)(struct efx_nic *efx);
1316 void (*irq_enable_master)(struct efx_nic *efx);
1317 int (*irq_test_generate)(struct efx_nic *efx);
1318 void (*irq_disable_non_ev)(struct efx_nic *efx);
1319 irqreturn_t (*irq_handle_msi)(int irq, void *dev_id);
1320 irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id);
1321 int (*tx_probe)(struct efx_tx_queue *tx_queue);
1322 void (*tx_init)(struct efx_tx_queue *tx_queue);
1323 void (*tx_remove)(struct efx_tx_queue *tx_queue);
1324 void (*tx_write)(struct efx_tx_queue *tx_queue);
1325 unsigned int (*tx_limit_len)(struct efx_tx_queue *tx_queue,
1326 dma_addr_t dma_addr, unsigned int len);
1327 int (*rx_push_rss_config)(struct efx_nic *efx, bool user,
1328 const u32 *rx_indir_table, const u8 *key);
1329 int (*rx_pull_rss_config)(struct efx_nic *efx);
1330 int (*rx_push_rss_context_config)(struct efx_nic *efx,
1331 struct efx_rss_context *ctx,
1332 const u32 *rx_indir_table,
1333 const u8 *key);
1334 int (*rx_pull_rss_context_config)(struct efx_nic *efx,
1335 struct efx_rss_context *ctx);
1336 void (*rx_restore_rss_contexts)(struct efx_nic *efx);
1337 int (*rx_probe)(struct efx_rx_queue *rx_queue);
1338 void (*rx_init)(struct efx_rx_queue *rx_queue);
1339 void (*rx_remove)(struct efx_rx_queue *rx_queue);
1340 void (*rx_write)(struct efx_rx_queue *rx_queue);
1341 void (*rx_defer_refill)(struct efx_rx_queue *rx_queue);
1342 int (*ev_probe)(struct efx_channel *channel);
1343 int (*ev_init)(struct efx_channel *channel);
1344 void (*ev_fini)(struct efx_channel *channel);
1345 void (*ev_remove)(struct efx_channel *channel);
1346 int (*ev_process)(struct efx_channel *channel, int quota);
1347 void (*ev_read_ack)(struct efx_channel *channel);
1348 void (*ev_test_generate)(struct efx_channel *channel);
1349 int (*filter_table_probe)(struct efx_nic *efx);
1350 void (*filter_table_restore)(struct efx_nic *efx);
1351 void (*filter_table_remove)(struct efx_nic *efx);
1352 void (*filter_update_rx_scatter)(struct efx_nic *efx);
1353 s32 (*filter_insert)(struct efx_nic *efx,
1354 struct efx_filter_spec *spec, bool replace);
1355 int (*filter_remove_safe)(struct efx_nic *efx,
1356 enum efx_filter_priority priority,
1357 u32 filter_id);
1358 int (*filter_get_safe)(struct efx_nic *efx,
1359 enum efx_filter_priority priority,
1360 u32 filter_id, struct efx_filter_spec *);
1361 int (*filter_clear_rx)(struct efx_nic *efx,
1362 enum efx_filter_priority priority);
1363 u32 (*filter_count_rx_used)(struct efx_nic *efx,
1364 enum efx_filter_priority priority);
1365 u32 (*filter_get_rx_id_limit)(struct efx_nic *efx);
1366 s32 (*filter_get_rx_ids)(struct efx_nic *efx,
1367 enum efx_filter_priority priority,
1368 u32 *buf, u32 size);
1369#ifdef CONFIG_RFS_ACCEL
1370 bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id,
1371 unsigned int index);
1372#endif
1373#ifdef CONFIG_SFC_MTD
1374 int (*mtd_probe)(struct efx_nic *efx);
1375 void (*mtd_rename)(struct efx_mtd_partition *part);
1376 int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len,
1377 size_t *retlen, u8 *buffer);
1378 int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len);
1379 int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len,
1380 size_t *retlen, const u8 *buffer);
1381 int (*mtd_sync)(struct mtd_info *mtd);
1382#endif
1383 void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time);
1384 int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp);
1385 int (*ptp_set_ts_config)(struct efx_nic *efx,
1386 struct hwtstamp_config *init);
1387 int (*sriov_configure)(struct efx_nic *efx, int num_vfs);
1388 int (*vlan_rx_add_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1389 int (*vlan_rx_kill_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1390 int (*get_phys_port_id)(struct efx_nic *efx,
1391 struct netdev_phys_item_id *ppid);
1392 int (*sriov_init)(struct efx_nic *efx);
1393 void (*sriov_fini)(struct efx_nic *efx);
1394 bool (*sriov_wanted)(struct efx_nic *efx);
1395 void (*sriov_reset)(struct efx_nic *efx);
1396 void (*sriov_flr)(struct efx_nic *efx, unsigned vf_i);
1397 int (*sriov_set_vf_mac)(struct efx_nic *efx, int vf_i, u8 *mac);
1398 int (*sriov_set_vf_vlan)(struct efx_nic *efx, int vf_i, u16 vlan,
1399 u8 qos);
1400 int (*sriov_set_vf_spoofchk)(struct efx_nic *efx, int vf_i,
1401 bool spoofchk);
1402 int (*sriov_get_vf_config)(struct efx_nic *efx, int vf_i,
1403 struct ifla_vf_info *ivi);
1404 int (*sriov_set_vf_link_state)(struct efx_nic *efx, int vf_i,
1405 int link_state);
1406 int (*vswitching_probe)(struct efx_nic *efx);
1407 int (*vswitching_restore)(struct efx_nic *efx);
1408 void (*vswitching_remove)(struct efx_nic *efx);
1409 int (*get_mac_address)(struct efx_nic *efx, unsigned char *perm_addr);
1410 int (*set_mac_address)(struct efx_nic *efx);
1411 u32 (*tso_versions)(struct efx_nic *efx);
1412 int (*udp_tnl_push_ports)(struct efx_nic *efx);
1413 int (*udp_tnl_add_port)(struct efx_nic *efx, struct efx_udp_tunnel tnl);
1414 bool (*udp_tnl_has_port)(struct efx_nic *efx, __be16 port);
1415 int (*udp_tnl_del_port)(struct efx_nic *efx, struct efx_udp_tunnel tnl);
1416
1417 int revision;
1418 unsigned int txd_ptr_tbl_base;
1419 unsigned int rxd_ptr_tbl_base;
1420 unsigned int buf_tbl_base;
1421 unsigned int evq_ptr_tbl_base;
1422 unsigned int evq_rptr_tbl_base;
1423 u64 max_dma_mask;
1424 unsigned int rx_prefix_size;
1425 unsigned int rx_hash_offset;
1426 unsigned int rx_ts_offset;
1427 unsigned int rx_buffer_padding;
1428 bool can_rx_scatter;
1429 bool always_rx_scatter;
1430 bool option_descriptors;
1431 unsigned int min_interrupt_mode;
1432 unsigned int max_interrupt_mode;
1433 unsigned int timer_period_max;
1434 netdev_features_t offload_features;
1435 int mcdi_max_ver;
1436 unsigned int max_rx_ip_filters;
1437 u32 hwtstamp_filters;
1438 unsigned int rx_hash_key_size;
1439};
1440
1441/**************************************************************************
1442 *
1443 * Prototypes and inline functions
1444 *
1445 *************************************************************************/
1446
1447static inline struct efx_channel *
1448efx_get_channel(struct efx_nic *efx, unsigned index)
1449{
1450 EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_channels);
1451 return efx->channel[index];
1452}
1453
1454/* Iterate over all used channels */
1455#define efx_for_each_channel(_channel, _efx) \
1456 for (_channel = (_efx)->channel[0]; \
1457 _channel; \
1458 _channel = (_channel->channel + 1 < (_efx)->n_channels) ? \
1459 (_efx)->channel[_channel->channel + 1] : NULL)
1460
1461/* Iterate over all used channels in reverse */
1462#define efx_for_each_channel_rev(_channel, _efx) \
1463 for (_channel = (_efx)->channel[(_efx)->n_channels - 1]; \
1464 _channel; \
1465 _channel = _channel->channel ? \
1466 (_efx)->channel[_channel->channel - 1] : NULL)
1467
1468static inline struct efx_tx_queue *
1469efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type)
1470{
1471 EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_tx_channels ||
1472 type >= EFX_TXQ_TYPES);
1473 return &efx->channel[efx->tx_channel_offset + index]->tx_queue[type];
1474}
1475
1476static inline bool efx_channel_has_tx_queues(struct efx_channel *channel)
1477{
1478 return channel->type && channel->type->want_txqs &&
1479 channel->type->want_txqs(channel);
1480}
1481
1482static inline struct efx_tx_queue *
1483efx_channel_get_tx_queue(struct efx_channel *channel, unsigned type)
1484{
1485 EFX_WARN_ON_ONCE_PARANOID(!efx_channel_has_tx_queues(channel) ||
1486 type >= EFX_TXQ_TYPES);
1487 return &channel->tx_queue[type];
1488}
1489
1490static inline bool efx_tx_queue_used(struct efx_tx_queue *tx_queue)
1491{
1492 return !(tx_queue->efx->net_dev->num_tc < 2 &&
1493 tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI);
1494}
1495
1496/* Iterate over all TX queues belonging to a channel */
1497#define efx_for_each_channel_tx_queue(_tx_queue, _channel) \
1498 if (!efx_channel_has_tx_queues(_channel)) \
1499 ; \
1500 else \
1501 for (_tx_queue = (_channel)->tx_queue; \
1502 _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES && \
1503 efx_tx_queue_used(_tx_queue); \
1504 _tx_queue++)
1505
1506/* Iterate over all possible TX queues belonging to a channel */
1507#define efx_for_each_possible_channel_tx_queue(_tx_queue, _channel) \
1508 if (!efx_channel_has_tx_queues(_channel)) \
1509 ; \
1510 else \
1511 for (_tx_queue = (_channel)->tx_queue; \
1512 _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES; \
1513 _tx_queue++)
1514
1515static inline bool efx_channel_has_rx_queue(struct efx_channel *channel)
1516{
1517 return channel->rx_queue.core_index >= 0;
1518}
1519
1520static inline struct efx_rx_queue *
1521efx_channel_get_rx_queue(struct efx_channel *channel)
1522{
1523 EFX_WARN_ON_ONCE_PARANOID(!efx_channel_has_rx_queue(channel));
1524 return &channel->rx_queue;
1525}
1526
1527/* Iterate over all RX queues belonging to a channel */
1528#define efx_for_each_channel_rx_queue(_rx_queue, _channel) \
1529 if (!efx_channel_has_rx_queue(_channel)) \
1530 ; \
1531 else \
1532 for (_rx_queue = &(_channel)->rx_queue; \
1533 _rx_queue; \
1534 _rx_queue = NULL)
1535
1536static inline struct efx_channel *
1537efx_rx_queue_channel(struct efx_rx_queue *rx_queue)
1538{
1539 return container_of(rx_queue, struct efx_channel, rx_queue);
1540}
1541
1542static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue)
1543{
1544 return efx_rx_queue_channel(rx_queue)->channel;
1545}
1546
1547/* Returns a pointer to the specified receive buffer in the RX
1548 * descriptor queue.
1549 */
1550static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
1551 unsigned int index)
1552{
1553 return &rx_queue->buffer[index];
1554}
1555
1556/**
1557 * EFX_MAX_FRAME_LEN - calculate maximum frame length
1558 *
1559 * This calculates the maximum frame length that will be used for a
1560 * given MTU. The frame length will be equal to the MTU plus a
1561 * constant amount of header space and padding. This is the quantity
1562 * that the net driver will program into the MAC as the maximum frame
1563 * length.
1564 *
1565 * The 10G MAC requires 8-byte alignment on the frame
1566 * length, so we round up to the nearest 8.
1567 *
1568 * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
1569 * XGMII cycle). If the frame length reaches the maximum value in the
1570 * same cycle, the XMAC can miss the IPG altogether. We work around
1571 * this by adding a further 16 bytes.
1572 */
1573#define EFX_FRAME_PAD 16
1574#define EFX_MAX_FRAME_LEN(mtu) \
1575 (ALIGN(((mtu) + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN + EFX_FRAME_PAD), 8))
1576
1577static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb)
1578{
1579 return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP;
1580}
1581static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb)
1582{
1583 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1584}
1585
1586/* Get all supported features.
1587 * If a feature is not fixed, it is present in hw_features.
1588 * If a feature is fixed, it does not present in hw_features, but
1589 * always in features.
1590 */
1591static inline netdev_features_t efx_supported_features(const struct efx_nic *efx)
1592{
1593 const struct net_device *net_dev = efx->net_dev;
1594
1595 return net_dev->features | net_dev->hw_features;
1596}
1597
1598/* Get the current TX queue insert index. */
1599static inline unsigned int
1600efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
1601{
1602 return tx_queue->insert_count & tx_queue->ptr_mask;
1603}
1604
1605/* Get a TX buffer. */
1606static inline struct efx_tx_buffer *
1607__efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
1608{
1609 return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
1610}
1611
1612/* Get a TX buffer, checking it's not currently in use. */
1613static inline struct efx_tx_buffer *
1614efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
1615{
1616 struct efx_tx_buffer *buffer =
1617 __efx_tx_queue_get_insert_buffer(tx_queue);
1618
1619 EFX_WARN_ON_ONCE_PARANOID(buffer->len);
1620 EFX_WARN_ON_ONCE_PARANOID(buffer->flags);
1621 EFX_WARN_ON_ONCE_PARANOID(buffer->unmap_len);
1622
1623 return buffer;
1624}
1625
1626#endif /* EFX_NET_DRIVER_H */
1/* SPDX-License-Identifier: GPL-2.0-only */
2/****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2005-2013 Solarflare Communications Inc.
6 */
7
8/* Common definitions for all Efx net driver code */
9
10#ifndef EFX_NET_DRIVER_H
11#define EFX_NET_DRIVER_H
12
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/ethtool.h>
16#include <linux/if_vlan.h>
17#include <linux/timer.h>
18#include <linux/mdio.h>
19#include <linux/list.h>
20#include <linux/pci.h>
21#include <linux/device.h>
22#include <linux/highmem.h>
23#include <linux/workqueue.h>
24#include <linux/mutex.h>
25#include <linux/rwsem.h>
26#include <linux/vmalloc.h>
27#include <linux/mtd/mtd.h>
28#include <net/busy_poll.h>
29#include <net/xdp.h>
30
31#include "enum.h"
32#include "bitfield.h"
33#include "filter.h"
34
35/**************************************************************************
36 *
37 * Build definitions
38 *
39 **************************************************************************/
40
41#ifdef DEBUG
42#define EFX_WARN_ON_ONCE_PARANOID(x) WARN_ON_ONCE(x)
43#define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
44#else
45#define EFX_WARN_ON_ONCE_PARANOID(x) do {} while (0)
46#define EFX_WARN_ON_PARANOID(x) do {} while (0)
47#endif
48
49/**************************************************************************
50 *
51 * Efx data structures
52 *
53 **************************************************************************/
54
55#define EFX_MAX_CHANNELS 32U
56#define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
57#define EFX_EXTRA_CHANNEL_IOV 0
58#define EFX_EXTRA_CHANNEL_PTP 1
59#define EFX_EXTRA_CHANNEL_TC 2
60#define EFX_MAX_EXTRA_CHANNELS 3U
61
62/* Checksum generation is a per-queue option in hardware, so each
63 * queue visible to the networking core is backed by two hardware TX
64 * queues. */
65#define EFX_MAX_TX_TC 2
66#define EFX_MAX_CORE_TX_QUEUES (EFX_MAX_TX_TC * EFX_MAX_CHANNELS)
67#define EFX_TXQ_TYPE_OUTER_CSUM 1 /* Outer checksum offload */
68#define EFX_TXQ_TYPE_INNER_CSUM 2 /* Inner checksum offload */
69#define EFX_TXQ_TYPE_HIGHPRI 4 /* High-priority (for TC) */
70#define EFX_TXQ_TYPES 8
71/* HIGHPRI is Siena-only, and INNER_CSUM is EF10, so no need for both */
72#define EFX_MAX_TXQ_PER_CHANNEL 4
73#define EFX_MAX_TX_QUEUES (EFX_MAX_TXQ_PER_CHANNEL * EFX_MAX_CHANNELS)
74
75/* Maximum possible MTU the driver supports */
76#define EFX_MAX_MTU (9 * 1024)
77
78/* Minimum MTU, from RFC791 (IP) */
79#define EFX_MIN_MTU 68
80
81/* Maximum total header length for TSOv2 */
82#define EFX_TSO2_MAX_HDRLEN 208
83
84/* Size of an RX scatter buffer. Small enough to pack 2 into a 4K page,
85 * and should be a multiple of the cache line size.
86 */
87#define EFX_RX_USR_BUF_SIZE (2048 - 256)
88
89/* If possible, we should ensure cache line alignment at start and end
90 * of every buffer. Otherwise, we just need to ensure 4-byte
91 * alignment of the network header.
92 */
93#if NET_IP_ALIGN == 0
94#define EFX_RX_BUF_ALIGNMENT L1_CACHE_BYTES
95#else
96#define EFX_RX_BUF_ALIGNMENT 4
97#endif
98
99/* Non-standard XDP_PACKET_HEADROOM and tailroom to satisfy XDP_REDIRECT and
100 * still fit two standard MTU size packets into a single 4K page.
101 */
102#define EFX_XDP_HEADROOM 128
103#define EFX_XDP_TAILROOM SKB_DATA_ALIGN(sizeof(struct skb_shared_info))
104
105/* Forward declare Precision Time Protocol (PTP) support structure. */
106struct efx_ptp_data;
107struct hwtstamp_config;
108
109struct efx_self_tests;
110
111/**
112 * struct efx_buffer - A general-purpose DMA buffer
113 * @addr: host base address of the buffer
114 * @dma_addr: DMA base address of the buffer
115 * @len: Buffer length, in bytes
116 *
117 * The NIC uses these buffers for its interrupt status registers and
118 * MAC stats dumps.
119 */
120struct efx_buffer {
121 void *addr;
122 dma_addr_t dma_addr;
123 unsigned int len;
124};
125
126/**
127 * struct efx_special_buffer - DMA buffer entered into buffer table
128 * @buf: Standard &struct efx_buffer
129 * @index: Buffer index within controller;s buffer table
130 * @entries: Number of buffer table entries
131 *
132 * The NIC has a buffer table that maps buffers of size %EFX_BUF_SIZE.
133 * Event and descriptor rings are addressed via one or more buffer
134 * table entries (and so can be physically non-contiguous, although we
135 * currently do not take advantage of that). On Falcon and Siena we
136 * have to take care of allocating and initialising the entries
137 * ourselves. On later hardware this is managed by the firmware and
138 * @index and @entries are left as 0.
139 */
140struct efx_special_buffer {
141 struct efx_buffer buf;
142 unsigned int index;
143 unsigned int entries;
144};
145
146/**
147 * struct efx_tx_buffer - buffer state for a TX descriptor
148 * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be
149 * freed when descriptor completes
150 * @xdpf: When @flags & %EFX_TX_BUF_XDP, the XDP frame information; its @data
151 * member is the associated buffer to drop a page reference on.
152 * @option: When @flags & %EFX_TX_BUF_OPTION, an EF10-specific option
153 * descriptor.
154 * @dma_addr: DMA address of the fragment.
155 * @flags: Flags for allocation and DMA mapping type
156 * @len: Length of this fragment.
157 * This field is zero when the queue slot is empty.
158 * @unmap_len: Length of this fragment to unmap
159 * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping.
160 * Only valid if @unmap_len != 0.
161 */
162struct efx_tx_buffer {
163 union {
164 const struct sk_buff *skb;
165 struct xdp_frame *xdpf;
166 };
167 union {
168 efx_qword_t option; /* EF10 */
169 dma_addr_t dma_addr;
170 };
171 unsigned short flags;
172 unsigned short len;
173 unsigned short unmap_len;
174 unsigned short dma_offset;
175};
176#define EFX_TX_BUF_CONT 1 /* not last descriptor of packet */
177#define EFX_TX_BUF_SKB 2 /* buffer is last part of skb */
178#define EFX_TX_BUF_MAP_SINGLE 8 /* buffer was mapped with dma_map_single() */
179#define EFX_TX_BUF_OPTION 0x10 /* empty buffer for option descriptor */
180#define EFX_TX_BUF_XDP 0x20 /* buffer was sent with XDP */
181#define EFX_TX_BUF_TSO_V3 0x40 /* empty buffer for a TSO_V3 descriptor */
182#define EFX_TX_BUF_EFV 0x100 /* buffer was sent from representor */
183
184/**
185 * struct efx_tx_queue - An Efx TX queue
186 *
187 * This is a ring buffer of TX fragments.
188 * Since the TX completion path always executes on the same
189 * CPU and the xmit path can operate on different CPUs,
190 * performance is increased by ensuring that the completion
191 * path and the xmit path operate on different cache lines.
192 * This is particularly important if the xmit path is always
193 * executing on one CPU which is different from the completion
194 * path. There is also a cache line for members which are
195 * read but not written on the fast path.
196 *
197 * @efx: The associated Efx NIC
198 * @queue: DMA queue number
199 * @label: Label for TX completion events.
200 * Is our index within @channel->tx_queue array.
201 * @type: configuration type of this TX queue. A bitmask of %EFX_TXQ_TYPE_* flags.
202 * @tso_version: Version of TSO in use for this queue.
203 * @tso_encap: Is encapsulated TSO supported? Supported in TSOv2 on 8000 series.
204 * @channel: The associated channel
205 * @core_txq: The networking core TX queue structure
206 * @buffer: The software buffer ring
207 * @cb_page: Array of pages of copy buffers. Carved up according to
208 * %EFX_TX_CB_ORDER into %EFX_TX_CB_SIZE-sized chunks.
209 * @txd: The hardware descriptor ring
210 * @ptr_mask: The size of the ring minus 1.
211 * @piobuf: PIO buffer region for this TX queue (shared with its partner).
212 * Size of the region is efx_piobuf_size.
213 * @piobuf_offset: Buffer offset to be specified in PIO descriptors
214 * @initialised: Has hardware queue been initialised?
215 * @timestamping: Is timestamping enabled for this channel?
216 * @xdp_tx: Is this an XDP tx queue?
217 * @read_count: Current read pointer.
218 * This is the number of buffers that have been removed from both rings.
219 * @old_write_count: The value of @write_count when last checked.
220 * This is here for performance reasons. The xmit path will
221 * only get the up-to-date value of @write_count if this
222 * variable indicates that the queue is empty. This is to
223 * avoid cache-line ping-pong between the xmit path and the
224 * completion path.
225 * @merge_events: Number of TX merged completion events
226 * @completed_timestamp_major: Top part of the most recent tx timestamp.
227 * @completed_timestamp_minor: Low part of the most recent tx timestamp.
228 * @insert_count: Current insert pointer
229 * This is the number of buffers that have been added to the
230 * software ring.
231 * @write_count: Current write pointer
232 * This is the number of buffers that have been added to the
233 * hardware ring.
234 * @packet_write_count: Completable write pointer
235 * This is the write pointer of the last packet written.
236 * Normally this will equal @write_count, but as option descriptors
237 * don't produce completion events, they won't update this.
238 * Filled in iff @efx->type->option_descriptors; only used for PIO.
239 * Thus, this is written and used on EF10, and neither on farch.
240 * @old_read_count: The value of read_count when last checked.
241 * This is here for performance reasons. The xmit path will
242 * only get the up-to-date value of read_count if this
243 * variable indicates that the queue is full. This is to
244 * avoid cache-line ping-pong between the xmit path and the
245 * completion path.
246 * @tso_bursts: Number of times TSO xmit invoked by kernel
247 * @tso_long_headers: Number of packets with headers too long for standard
248 * blocks
249 * @tso_packets: Number of packets via the TSO xmit path
250 * @tso_fallbacks: Number of times TSO fallback used
251 * @pushes: Number of times the TX push feature has been used
252 * @pio_packets: Number of times the TX PIO feature has been used
253 * @xmit_pending: Are any packets waiting to be pushed to the NIC
254 * @cb_packets: Number of times the TX copybreak feature has been used
255 * @notify_count: Count of notified descriptors to the NIC
256 * @empty_read_count: If the completion path has seen the queue as empty
257 * and the transmission path has not yet checked this, the value of
258 * @read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
259 */
260struct efx_tx_queue {
261 /* Members which don't change on the fast path */
262 struct efx_nic *efx ____cacheline_aligned_in_smp;
263 unsigned int queue;
264 unsigned int label;
265 unsigned int type;
266 unsigned int tso_version;
267 bool tso_encap;
268 struct efx_channel *channel;
269 struct netdev_queue *core_txq;
270 struct efx_tx_buffer *buffer;
271 struct efx_buffer *cb_page;
272 struct efx_special_buffer txd;
273 unsigned int ptr_mask;
274 void __iomem *piobuf;
275 unsigned int piobuf_offset;
276 bool initialised;
277 bool timestamping;
278 bool xdp_tx;
279
280 /* Members used mainly on the completion path */
281 unsigned int read_count ____cacheline_aligned_in_smp;
282 unsigned int old_write_count;
283 unsigned int merge_events;
284 unsigned int bytes_compl;
285 unsigned int pkts_compl;
286 u32 completed_timestamp_major;
287 u32 completed_timestamp_minor;
288
289 /* Members used only on the xmit path */
290 unsigned int insert_count ____cacheline_aligned_in_smp;
291 unsigned int write_count;
292 unsigned int packet_write_count;
293 unsigned int old_read_count;
294 unsigned int tso_bursts;
295 unsigned int tso_long_headers;
296 unsigned int tso_packets;
297 unsigned int tso_fallbacks;
298 unsigned int pushes;
299 unsigned int pio_packets;
300 bool xmit_pending;
301 unsigned int cb_packets;
302 unsigned int notify_count;
303 /* Statistics to supplement MAC stats */
304 unsigned long tx_packets;
305
306 /* Members shared between paths and sometimes updated */
307 unsigned int empty_read_count ____cacheline_aligned_in_smp;
308#define EFX_EMPTY_COUNT_VALID 0x80000000
309 atomic_t flush_outstanding;
310};
311
312#define EFX_TX_CB_ORDER 7
313#define EFX_TX_CB_SIZE (1 << EFX_TX_CB_ORDER) - NET_IP_ALIGN
314
315/**
316 * struct efx_rx_buffer - An Efx RX data buffer
317 * @dma_addr: DMA base address of the buffer
318 * @page: The associated page buffer.
319 * Will be %NULL if the buffer slot is currently free.
320 * @page_offset: If pending: offset in @page of DMA base address.
321 * If completed: offset in @page of Ethernet header.
322 * @len: If pending: length for DMA descriptor.
323 * If completed: received length, excluding hash prefix.
324 * @flags: Flags for buffer and packet state. These are only set on the
325 * first buffer of a scattered packet.
326 */
327struct efx_rx_buffer {
328 dma_addr_t dma_addr;
329 struct page *page;
330 u16 page_offset;
331 u16 len;
332 u16 flags;
333};
334#define EFX_RX_BUF_LAST_IN_PAGE 0x0001
335#define EFX_RX_PKT_CSUMMED 0x0002
336#define EFX_RX_PKT_DISCARD 0x0004
337#define EFX_RX_PKT_TCP 0x0040
338#define EFX_RX_PKT_PREFIX_LEN 0x0080 /* length is in prefix only */
339#define EFX_RX_PKT_CSUM_LEVEL 0x0200
340
341/**
342 * struct efx_rx_page_state - Page-based rx buffer state
343 *
344 * Inserted at the start of every page allocated for receive buffers.
345 * Used to facilitate sharing dma mappings between recycled rx buffers
346 * and those passed up to the kernel.
347 *
348 * @dma_addr: The dma address of this page.
349 */
350struct efx_rx_page_state {
351 dma_addr_t dma_addr;
352
353 unsigned int __pad[] ____cacheline_aligned;
354};
355
356/**
357 * struct efx_rx_queue - An Efx RX queue
358 * @efx: The associated Efx NIC
359 * @core_index: Index of network core RX queue. Will be >= 0 iff this
360 * is associated with a real RX queue.
361 * @buffer: The software buffer ring
362 * @rxd: The hardware descriptor ring
363 * @ptr_mask: The size of the ring minus 1.
364 * @refill_enabled: Enable refill whenever fill level is low
365 * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
366 * @rxq_flush_pending.
367 * @grant_credits: Posted RX descriptors need to be granted to the MAE with
368 * %MC_CMD_MAE_COUNTERS_STREAM_GIVE_CREDITS. For %EFX_EXTRA_CHANNEL_TC,
369 * and only supported on EF100.
370 * @added_count: Number of buffers added to the receive queue.
371 * @notified_count: Number of buffers given to NIC (<= @added_count).
372 * @granted_count: Number of buffers granted to the MAE (<= @notified_count).
373 * @removed_count: Number of buffers removed from the receive queue.
374 * @scatter_n: Used by NIC specific receive code.
375 * @scatter_len: Used by NIC specific receive code.
376 * @page_ring: The ring to store DMA mapped pages for reuse.
377 * @page_add: Counter to calculate the write pointer for the recycle ring.
378 * @page_remove: Counter to calculate the read pointer for the recycle ring.
379 * @page_recycle_count: The number of pages that have been recycled.
380 * @page_recycle_failed: The number of pages that couldn't be recycled because
381 * the kernel still held a reference to them.
382 * @page_recycle_full: The number of pages that were released because the
383 * recycle ring was full.
384 * @page_ptr_mask: The number of pages in the RX recycle ring minus 1.
385 * @max_fill: RX descriptor maximum fill level (<= ring size)
386 * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
387 * (<= @max_fill)
388 * @min_fill: RX descriptor minimum non-zero fill level.
389 * This records the minimum fill level observed when a ring
390 * refill was triggered.
391 * @recycle_count: RX buffer recycle counter.
392 * @slow_fill: Timer used to defer efx_nic_generate_fill_event().
393 * @grant_work: workitem used to grant credits to the MAE if @grant_credits
394 * @xdp_rxq_info: XDP specific RX queue information.
395 * @xdp_rxq_info_valid: Is xdp_rxq_info valid data?.
396 */
397struct efx_rx_queue {
398 struct efx_nic *efx;
399 int core_index;
400 struct efx_rx_buffer *buffer;
401 struct efx_special_buffer rxd;
402 unsigned int ptr_mask;
403 bool refill_enabled;
404 bool flush_pending;
405 bool grant_credits;
406
407 unsigned int added_count;
408 unsigned int notified_count;
409 unsigned int granted_count;
410 unsigned int removed_count;
411 unsigned int scatter_n;
412 unsigned int scatter_len;
413 struct page **page_ring;
414 unsigned int page_add;
415 unsigned int page_remove;
416 unsigned int page_recycle_count;
417 unsigned int page_recycle_failed;
418 unsigned int page_recycle_full;
419 unsigned int page_ptr_mask;
420 unsigned int max_fill;
421 unsigned int fast_fill_trigger;
422 unsigned int min_fill;
423 unsigned int min_overfill;
424 unsigned int recycle_count;
425 struct timer_list slow_fill;
426 unsigned int slow_fill_count;
427 struct work_struct grant_work;
428 /* Statistics to supplement MAC stats */
429 unsigned long rx_packets;
430 struct xdp_rxq_info xdp_rxq_info;
431 bool xdp_rxq_info_valid;
432};
433
434enum efx_sync_events_state {
435 SYNC_EVENTS_DISABLED = 0,
436 SYNC_EVENTS_QUIESCENT,
437 SYNC_EVENTS_REQUESTED,
438 SYNC_EVENTS_VALID,
439};
440
441/**
442 * struct efx_channel - An Efx channel
443 *
444 * A channel comprises an event queue, at least one TX queue, at least
445 * one RX queue, and an associated tasklet for processing the event
446 * queue.
447 *
448 * @efx: Associated Efx NIC
449 * @channel: Channel instance number
450 * @type: Channel type definition
451 * @eventq_init: Event queue initialised flag
452 * @enabled: Channel enabled indicator
453 * @irq: IRQ number (MSI and MSI-X only)
454 * @irq_moderation_us: IRQ moderation value (in microseconds)
455 * @napi_dev: Net device used with NAPI
456 * @napi_str: NAPI control structure
457 * @state: state for NAPI vs busy polling
458 * @state_lock: lock protecting @state
459 * @eventq: Event queue buffer
460 * @eventq_mask: Event queue pointer mask
461 * @eventq_read_ptr: Event queue read pointer
462 * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
463 * @irq_count: Number of IRQs since last adaptive moderation decision
464 * @irq_mod_score: IRQ moderation score
465 * @rfs_filter_count: number of accelerated RFS filters currently in place;
466 * equals the count of @rps_flow_id slots filled
467 * @rfs_last_expiry: value of jiffies last time some accelerated RFS filters
468 * were checked for expiry
469 * @rfs_expire_index: next accelerated RFS filter ID to check for expiry
470 * @n_rfs_succeeded: number of successful accelerated RFS filter insertions
471 * @n_rfs_failed: number of failed accelerated RFS filter insertions
472 * @filter_work: Work item for efx_filter_rfs_expire()
473 * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS,
474 * indexed by filter ID
475 * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
476 * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
477 * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
478 * @n_rx_mcast_mismatch: Count of unmatched multicast frames
479 * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
480 * @n_rx_overlength: Count of RX_OVERLENGTH errors
481 * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
482 * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to
483 * lack of descriptors
484 * @n_rx_merge_events: Number of RX merged completion events
485 * @n_rx_merge_packets: Number of RX packets completed by merged events
486 * @n_rx_xdp_drops: Count of RX packets intentionally dropped due to XDP
487 * @n_rx_xdp_bad_drops: Count of RX packets dropped due to XDP errors
488 * @n_rx_xdp_tx: Count of RX packets retransmitted due to XDP
489 * @n_rx_xdp_redirect: Count of RX packets redirected to a different NIC by XDP
490 * @n_rx_mport_bad: Count of RX packets dropped because their ingress mport was
491 * not recognised
492 * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by
493 * __efx_rx_packet(), or zero if there is none
494 * @rx_pkt_index: Ring index of first buffer for next packet to be delivered
495 * by __efx_rx_packet(), if @rx_pkt_n_frags != 0
496 * @rx_list: list of SKBs from current RX, awaiting processing
497 * @rx_queue: RX queue for this channel
498 * @tx_queue: TX queues for this channel
499 * @tx_queue_by_type: pointers into @tx_queue, or %NULL, indexed by txq type
500 * @sync_events_state: Current state of sync events on this channel
501 * @sync_timestamp_major: Major part of the last ptp sync event
502 * @sync_timestamp_minor: Minor part of the last ptp sync event
503 */
504struct efx_channel {
505 struct efx_nic *efx;
506 int channel;
507 const struct efx_channel_type *type;
508 bool eventq_init;
509 bool enabled;
510 int irq;
511 unsigned int irq_moderation_us;
512 struct net_device *napi_dev;
513 struct napi_struct napi_str;
514#ifdef CONFIG_NET_RX_BUSY_POLL
515 unsigned long busy_poll_state;
516#endif
517 struct efx_special_buffer eventq;
518 unsigned int eventq_mask;
519 unsigned int eventq_read_ptr;
520 int event_test_cpu;
521
522 unsigned int irq_count;
523 unsigned int irq_mod_score;
524#ifdef CONFIG_RFS_ACCEL
525 unsigned int rfs_filter_count;
526 unsigned int rfs_last_expiry;
527 unsigned int rfs_expire_index;
528 unsigned int n_rfs_succeeded;
529 unsigned int n_rfs_failed;
530 struct delayed_work filter_work;
531#define RPS_FLOW_ID_INVALID 0xFFFFFFFF
532 u32 *rps_flow_id;
533#endif
534
535 unsigned int n_rx_tobe_disc;
536 unsigned int n_rx_ip_hdr_chksum_err;
537 unsigned int n_rx_tcp_udp_chksum_err;
538 unsigned int n_rx_outer_ip_hdr_chksum_err;
539 unsigned int n_rx_outer_tcp_udp_chksum_err;
540 unsigned int n_rx_inner_ip_hdr_chksum_err;
541 unsigned int n_rx_inner_tcp_udp_chksum_err;
542 unsigned int n_rx_eth_crc_err;
543 unsigned int n_rx_mcast_mismatch;
544 unsigned int n_rx_frm_trunc;
545 unsigned int n_rx_overlength;
546 unsigned int n_skbuff_leaks;
547 unsigned int n_rx_nodesc_trunc;
548 unsigned int n_rx_merge_events;
549 unsigned int n_rx_merge_packets;
550 unsigned int n_rx_xdp_drops;
551 unsigned int n_rx_xdp_bad_drops;
552 unsigned int n_rx_xdp_tx;
553 unsigned int n_rx_xdp_redirect;
554 unsigned int n_rx_mport_bad;
555
556 unsigned int rx_pkt_n_frags;
557 unsigned int rx_pkt_index;
558
559 struct list_head *rx_list;
560
561 struct efx_rx_queue rx_queue;
562 struct efx_tx_queue tx_queue[EFX_MAX_TXQ_PER_CHANNEL];
563 struct efx_tx_queue *tx_queue_by_type[EFX_TXQ_TYPES];
564
565 enum efx_sync_events_state sync_events_state;
566 u32 sync_timestamp_major;
567 u32 sync_timestamp_minor;
568};
569
570/**
571 * struct efx_msi_context - Context for each MSI
572 * @efx: The associated NIC
573 * @index: Index of the channel/IRQ
574 * @name: Name of the channel/IRQ
575 *
576 * Unlike &struct efx_channel, this is never reallocated and is always
577 * safe for the IRQ handler to access.
578 */
579struct efx_msi_context {
580 struct efx_nic *efx;
581 unsigned int index;
582 char name[IFNAMSIZ + 6];
583};
584
585/**
586 * struct efx_channel_type - distinguishes traffic and extra channels
587 * @handle_no_channel: Handle failure to allocate an extra channel
588 * @pre_probe: Set up extra state prior to initialisation
589 * @start: called early in efx_start_channels()
590 * @stop: called early in efx_stop_channels()
591 * @post_remove: Tear down extra state after finalisation, if allocated.
592 * May be called on channels that have not been probed.
593 * @get_name: Generate the channel's name (used for its IRQ handler)
594 * @copy: Copy the channel state prior to reallocation. May be %NULL if
595 * reallocation is not supported.
596 * @receive_skb: Handle an skb ready to be passed to netif_receive_skb()
597 * @receive_raw: Handle an RX buffer ready to be passed to __efx_rx_packet()
598 * @want_txqs: Determine whether this channel should have TX queues
599 * created. If %NULL, TX queues are not created.
600 * @keep_eventq: Flag for whether event queue should be kept initialised
601 * while the device is stopped
602 * @want_pio: Flag for whether PIO buffers should be linked to this
603 * channel's TX queues.
604 */
605struct efx_channel_type {
606 void (*handle_no_channel)(struct efx_nic *);
607 int (*pre_probe)(struct efx_channel *);
608 int (*start)(struct efx_channel *);
609 void (*stop)(struct efx_channel *);
610 void (*post_remove)(struct efx_channel *);
611 void (*get_name)(struct efx_channel *, char *buf, size_t len);
612 struct efx_channel *(*copy)(const struct efx_channel *);
613 bool (*receive_skb)(struct efx_channel *, struct sk_buff *);
614 bool (*receive_raw)(struct efx_rx_queue *, u32);
615 bool (*want_txqs)(struct efx_channel *);
616 bool keep_eventq;
617 bool want_pio;
618};
619
620enum efx_led_mode {
621 EFX_LED_OFF = 0,
622 EFX_LED_ON = 1,
623 EFX_LED_DEFAULT = 2
624};
625
626#define STRING_TABLE_LOOKUP(val, member) \
627 ((val) < member ## _max) ? member ## _names[val] : "(invalid)"
628
629extern const char *const efx_loopback_mode_names[];
630extern const unsigned int efx_loopback_mode_max;
631#define LOOPBACK_MODE(efx) \
632 STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode)
633
634enum efx_int_mode {
635 /* Be careful if altering to correct macro below */
636 EFX_INT_MODE_MSIX = 0,
637 EFX_INT_MODE_MSI = 1,
638 EFX_INT_MODE_LEGACY = 2,
639 EFX_INT_MODE_MAX /* Insert any new items before this */
640};
641#define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
642
643enum nic_state {
644 STATE_UNINIT = 0, /* device being probed/removed */
645 STATE_PROBED, /* hardware probed */
646 STATE_NET_DOWN, /* netdev registered */
647 STATE_NET_UP, /* ready for traffic */
648 STATE_DISABLED, /* device disabled due to hardware errors */
649
650 STATE_RECOVERY = 0x100,/* recovering from PCI error */
651 STATE_FROZEN = 0x200, /* frozen by power management */
652};
653
654static inline bool efx_net_active(enum nic_state state)
655{
656 return state == STATE_NET_DOWN || state == STATE_NET_UP;
657}
658
659static inline bool efx_frozen(enum nic_state state)
660{
661 return state & STATE_FROZEN;
662}
663
664static inline bool efx_recovering(enum nic_state state)
665{
666 return state & STATE_RECOVERY;
667}
668
669static inline enum nic_state efx_freeze(enum nic_state state)
670{
671 WARN_ON(!efx_net_active(state));
672 return state | STATE_FROZEN;
673}
674
675static inline enum nic_state efx_thaw(enum nic_state state)
676{
677 WARN_ON(!efx_frozen(state));
678 return state & ~STATE_FROZEN;
679}
680
681static inline enum nic_state efx_recover(enum nic_state state)
682{
683 WARN_ON(!efx_net_active(state));
684 return state | STATE_RECOVERY;
685}
686
687static inline enum nic_state efx_recovered(enum nic_state state)
688{
689 WARN_ON(!efx_recovering(state));
690 return state & ~STATE_RECOVERY;
691}
692
693/* Forward declaration */
694struct efx_nic;
695
696/* Pseudo bit-mask flow control field */
697#define EFX_FC_RX FLOW_CTRL_RX
698#define EFX_FC_TX FLOW_CTRL_TX
699#define EFX_FC_AUTO 4
700
701/**
702 * struct efx_link_state - Current state of the link
703 * @up: Link is up
704 * @fd: Link is full-duplex
705 * @fc: Actual flow control flags
706 * @speed: Link speed (Mbps)
707 */
708struct efx_link_state {
709 bool up;
710 bool fd;
711 u8 fc;
712 unsigned int speed;
713};
714
715static inline bool efx_link_state_equal(const struct efx_link_state *left,
716 const struct efx_link_state *right)
717{
718 return left->up == right->up && left->fd == right->fd &&
719 left->fc == right->fc && left->speed == right->speed;
720}
721
722/**
723 * enum efx_phy_mode - PHY operating mode flags
724 * @PHY_MODE_NORMAL: on and should pass traffic
725 * @PHY_MODE_TX_DISABLED: on with TX disabled
726 * @PHY_MODE_LOW_POWER: set to low power through MDIO
727 * @PHY_MODE_OFF: switched off through external control
728 * @PHY_MODE_SPECIAL: on but will not pass traffic
729 */
730enum efx_phy_mode {
731 PHY_MODE_NORMAL = 0,
732 PHY_MODE_TX_DISABLED = 1,
733 PHY_MODE_LOW_POWER = 2,
734 PHY_MODE_OFF = 4,
735 PHY_MODE_SPECIAL = 8,
736};
737
738static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
739{
740 return !!(mode & ~PHY_MODE_TX_DISABLED);
741}
742
743/**
744 * struct efx_hw_stat_desc - Description of a hardware statistic
745 * @name: Name of the statistic as visible through ethtool, or %NULL if
746 * it should not be exposed
747 * @dma_width: Width in bits (0 for non-DMA statistics)
748 * @offset: Offset within stats (ignored for non-DMA statistics)
749 */
750struct efx_hw_stat_desc {
751 const char *name;
752 u16 dma_width;
753 u16 offset;
754};
755
756/* Number of bits used in a multicast filter hash address */
757#define EFX_MCAST_HASH_BITS 8
758
759/* Number of (single-bit) entries in a multicast filter hash */
760#define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS)
761
762/* An Efx multicast filter hash */
763union efx_multicast_hash {
764 u8 byte[EFX_MCAST_HASH_ENTRIES / 8];
765 efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8];
766};
767
768struct vfdi_status;
769
770/* The reserved RSS context value */
771#define EFX_MCDI_RSS_CONTEXT_INVALID 0xffffffff
772/**
773 * struct efx_rss_context - A user-defined RSS context for filtering
774 * @list: node of linked list on which this struct is stored
775 * @context_id: the RSS_CONTEXT_ID returned by MC firmware, or
776 * %EFX_MCDI_RSS_CONTEXT_INVALID if this context is not present on the NIC.
777 * For Siena, 0 if RSS is active, else %EFX_MCDI_RSS_CONTEXT_INVALID.
778 * @user_id: the rss_context ID exposed to userspace over ethtool.
779 * @rx_hash_udp_4tuple: UDP 4-tuple hashing enabled
780 * @rx_hash_key: Toeplitz hash key for this RSS context
781 * @indir_table: Indirection table for this RSS context
782 */
783struct efx_rss_context {
784 struct list_head list;
785 u32 context_id;
786 u32 user_id;
787 bool rx_hash_udp_4tuple;
788 u8 rx_hash_key[40];
789 u32 rx_indir_table[128];
790};
791
792#ifdef CONFIG_RFS_ACCEL
793/* Order of these is important, since filter_id >= %EFX_ARFS_FILTER_ID_PENDING
794 * is used to test if filter does or will exist.
795 */
796#define EFX_ARFS_FILTER_ID_PENDING -1
797#define EFX_ARFS_FILTER_ID_ERROR -2
798#define EFX_ARFS_FILTER_ID_REMOVING -3
799/**
800 * struct efx_arfs_rule - record of an ARFS filter and its IDs
801 * @node: linkage into hash table
802 * @spec: details of the filter (used as key for hash table). Use efx->type to
803 * determine which member to use.
804 * @rxq_index: channel to which the filter will steer traffic.
805 * @arfs_id: filter ID which was returned to ARFS
806 * @filter_id: index in software filter table. May be
807 * %EFX_ARFS_FILTER_ID_PENDING if filter was not inserted yet,
808 * %EFX_ARFS_FILTER_ID_ERROR if filter insertion failed, or
809 * %EFX_ARFS_FILTER_ID_REMOVING if expiry is currently removing the filter.
810 */
811struct efx_arfs_rule {
812 struct hlist_node node;
813 struct efx_filter_spec spec;
814 u16 rxq_index;
815 u16 arfs_id;
816 s32 filter_id;
817};
818
819/* Size chosen so that the table is one page (4kB) */
820#define EFX_ARFS_HASH_TABLE_SIZE 512
821
822/**
823 * struct efx_async_filter_insertion - Request to asynchronously insert a filter
824 * @net_dev: Reference to the netdevice
825 * @spec: The filter to insert
826 * @work: Workitem for this request
827 * @rxq_index: Identifies the channel for which this request was made
828 * @flow_id: Identifies the kernel-side flow for which this request was made
829 */
830struct efx_async_filter_insertion {
831 struct net_device *net_dev;
832 struct efx_filter_spec spec;
833 struct work_struct work;
834 u16 rxq_index;
835 u32 flow_id;
836};
837
838/* Maximum number of ARFS workitems that may be in flight on an efx_nic */
839#define EFX_RPS_MAX_IN_FLIGHT 8
840#endif /* CONFIG_RFS_ACCEL */
841
842enum efx_xdp_tx_queues_mode {
843 EFX_XDP_TX_QUEUES_DEDICATED, /* one queue per core, locking not needed */
844 EFX_XDP_TX_QUEUES_SHARED, /* each queue used by more than 1 core */
845 EFX_XDP_TX_QUEUES_BORROWED /* queues borrowed from net stack */
846};
847
848/**
849 * struct efx_nic - an Efx NIC
850 * @name: Device name (net device name or bus id before net device registered)
851 * @pci_dev: The PCI device
852 * @node: List node for maintaning primary/secondary function lists
853 * @primary: &struct efx_nic instance for the primary function of this
854 * controller. May be the same structure, and may be %NULL if no
855 * primary function is bound. Serialised by rtnl_lock.
856 * @secondary_list: List of &struct efx_nic instances for the secondary PCI
857 * functions of the controller, if this is for the primary function.
858 * Serialised by rtnl_lock.
859 * @type: Controller type attributes
860 * @legacy_irq: IRQ number
861 * @workqueue: Workqueue for port reconfigures and the HW monitor.
862 * Work items do not hold and must not acquire RTNL.
863 * @workqueue_name: Name of workqueue
864 * @reset_work: Scheduled reset workitem
865 * @membase_phys: Memory BAR value as physical address
866 * @membase: Memory BAR value
867 * @vi_stride: step between per-VI registers / memory regions
868 * @interrupt_mode: Interrupt mode
869 * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
870 * @timer_max_ns: Interrupt timer maximum value, in nanoseconds
871 * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
872 * @irqs_hooked: Channel interrupts are hooked
873 * @irq_rx_mod_step_us: Step size for IRQ moderation for RX event queues
874 * @irq_rx_moderation_us: IRQ moderation time for RX event queues
875 * @msg_enable: Log message enable flags
876 * @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
877 * @reset_pending: Bitmask for pending resets
878 * @tx_queue: TX DMA queues
879 * @rx_queue: RX DMA queues
880 * @channel: Channels
881 * @msi_context: Context for each MSI
882 * @extra_channel_types: Types of extra (non-traffic) channels that
883 * should be allocated for this NIC
884 * @xdp_tx_queue_count: Number of entries in %xdp_tx_queues.
885 * @xdp_tx_queues: Array of pointers to tx queues used for XDP transmit.
886 * @xdp_txq_queues_mode: XDP TX queues sharing strategy.
887 * @rxq_entries: Size of receive queues requested by user.
888 * @txq_entries: Size of transmit queues requested by user.
889 * @txq_stop_thresh: TX queue fill level at or above which we stop it.
890 * @txq_wake_thresh: TX queue fill level at or below which we wake it.
891 * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
892 * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
893 * @sram_lim_qw: Qword address limit of SRAM
894 * @next_buffer_table: First available buffer table id
895 * @n_channels: Number of channels in use
896 * @n_rx_channels: Number of channels used for RX (= number of RX queues)
897 * @n_tx_channels: Number of channels used for TX
898 * @n_extra_tx_channels: Number of extra channels with TX queues
899 * @tx_queues_per_channel: number of TX queues probed on each channel
900 * @n_xdp_channels: Number of channels used for XDP TX
901 * @xdp_channel_offset: Offset of zeroth channel used for XPD TX.
902 * @xdp_tx_per_channel: Max number of TX queues on an XDP TX channel.
903 * @rx_ip_align: RX DMA address offset to have IP header aligned in
904 * in accordance with NET_IP_ALIGN
905 * @rx_dma_len: Current maximum RX DMA length
906 * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
907 * @rx_buffer_truesize: Amortised allocation size of an RX buffer,
908 * for use in sk_buff::truesize
909 * @rx_prefix_size: Size of RX prefix before packet data
910 * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data
911 * (valid only if @rx_prefix_size != 0; always negative)
912 * @rx_packet_len_offset: Offset of RX packet length from start of packet data
913 * (valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative)
914 * @rx_packet_ts_offset: Offset of timestamp from start of packet data
915 * (valid only if channel->sync_timestamps_enabled; always negative)
916 * @rx_scatter: Scatter mode enabled for receives
917 * @rss_context: Main RSS context. Its @list member is the head of the list of
918 * RSS contexts created by user requests
919 * @rss_lock: Protects custom RSS context software state in @rss_context.list
920 * @vport_id: The function's vport ID, only relevant for PFs
921 * @int_error_count: Number of internal errors seen recently
922 * @int_error_expire: Time at which error count will be expired
923 * @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot
924 * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will
925 * acknowledge but do nothing else.
926 * @irq_status: Interrupt status buffer
927 * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
928 * @irq_level: IRQ level/index for IRQs not triggered by an event queue
929 * @selftest_work: Work item for asynchronous self-test
930 * @mtd_list: List of MTDs attached to the NIC
931 * @nic_data: Hardware dependent state
932 * @mcdi: Management-Controller-to-Driver Interface state
933 * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
934 * efx_monitor() and efx_reconfigure_port()
935 * @port_enabled: Port enabled indicator.
936 * Serialises efx_stop_all(), efx_start_all(), efx_monitor() and
937 * efx_mac_work() with kernel interfaces. Safe to read under any
938 * one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
939 * be held to modify it.
940 * @port_initialized: Port initialized?
941 * @net_dev: Operating system network device. Consider holding the rtnl lock
942 * @fixed_features: Features which cannot be turned off
943 * @num_mac_stats: Number of MAC stats reported by firmware (MAC_STATS_NUM_STATS
944 * field of %MC_CMD_GET_CAPABILITIES_V4 response, or %MC_CMD_MAC_NSTATS)
945 * @stats_buffer: DMA buffer for statistics
946 * @phy_type: PHY type
947 * @phy_data: PHY private data (including PHY-specific stats)
948 * @mdio: PHY MDIO interface
949 * @mdio_bus: PHY MDIO bus ID (only used by Siena)
950 * @phy_mode: PHY operating mode. Serialised by @mac_lock.
951 * @link_advertising: Autonegotiation advertising flags
952 * @fec_config: Forward Error Correction configuration flags. For bit positions
953 * see &enum ethtool_fec_config_bits.
954 * @link_state: Current state of the link
955 * @n_link_state_changes: Number of times the link has changed state
956 * @unicast_filter: Flag for Falcon-arch simple unicast filter.
957 * Protected by @mac_lock.
958 * @multicast_hash: Multicast hash table for Falcon-arch.
959 * Protected by @mac_lock.
960 * @wanted_fc: Wanted flow control flags
961 * @fc_disable: When non-zero flow control is disabled. Typically used to
962 * ensure that network back pressure doesn't delay dma queue flushes.
963 * Serialised by the rtnl lock.
964 * @mac_work: Work item for changing MAC promiscuity and multicast hash
965 * @loopback_mode: Loopback status
966 * @loopback_modes: Supported loopback mode bitmask
967 * @loopback_selftest: Offline self-test private state
968 * @xdp_prog: Current XDP programme for this interface
969 * @filter_sem: Filter table rw_semaphore, protects existence of @filter_state
970 * @filter_state: Architecture-dependent filter table state
971 * @rps_mutex: Protects RPS state of all channels
972 * @rps_slot_map: bitmap of in-flight entries in @rps_slot
973 * @rps_slot: array of ARFS insertion requests for efx_filter_rfs_work()
974 * @rps_hash_lock: Protects ARFS filter mapping state (@rps_hash_table and
975 * @rps_next_id).
976 * @rps_hash_table: Mapping between ARFS filters and their various IDs
977 * @rps_next_id: next arfs_id for an ARFS filter
978 * @active_queues: Count of RX and TX queues that haven't been flushed and drained.
979 * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
980 * Decremented when the efx_flush_rx_queue() is called.
981 * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
982 * completed (either success or failure). Not used when MCDI is used to
983 * flush receive queues.
984 * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions.
985 * @vf_count: Number of VFs intended to be enabled.
986 * @vf_init_count: Number of VFs that have been fully initialised.
987 * @vi_scale: log2 number of vnics per VF.
988 * @vf_reps_lock: Protects vf_reps list
989 * @vf_reps: local VF reps
990 * @ptp_data: PTP state data
991 * @ptp_warned: has this NIC seen and warned about unexpected PTP events?
992 * @vpd_sn: Serial number read from VPD
993 * @xdp_rxq_info_failed: Have any of the rx queues failed to initialise their
994 * xdp_rxq_info structures?
995 * @netdev_notifier: Netdevice notifier.
996 * @tc: state for TC offload (EF100).
997 * @mem_bar: The BAR that is mapped into membase.
998 * @reg_base: Offset from the start of the bar to the function control window.
999 * @monitor_work: Hardware monitor workitem
1000 * @biu_lock: BIU (bus interface unit) lock
1001 * @last_irq_cpu: Last CPU to handle a possible test interrupt. This
1002 * field is used by efx_test_interrupts() to verify that an
1003 * interrupt has occurred.
1004 * @stats_lock: Statistics update lock. Must be held when calling
1005 * efx_nic_type::{update,start,stop}_stats.
1006 * @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb
1007 *
1008 * This is stored in the private area of the &struct net_device.
1009 */
1010struct efx_nic {
1011 /* The following fields should be written very rarely */
1012
1013 char name[IFNAMSIZ];
1014 struct list_head node;
1015 struct efx_nic *primary;
1016 struct list_head secondary_list;
1017 struct pci_dev *pci_dev;
1018 unsigned int port_num;
1019 const struct efx_nic_type *type;
1020 int legacy_irq;
1021 bool eeh_disabled_legacy_irq;
1022 struct workqueue_struct *workqueue;
1023 char workqueue_name[16];
1024 struct work_struct reset_work;
1025 resource_size_t membase_phys;
1026 void __iomem *membase;
1027
1028 unsigned int vi_stride;
1029
1030 enum efx_int_mode interrupt_mode;
1031 unsigned int timer_quantum_ns;
1032 unsigned int timer_max_ns;
1033 bool irq_rx_adaptive;
1034 bool irqs_hooked;
1035 unsigned int irq_mod_step_us;
1036 unsigned int irq_rx_moderation_us;
1037 u32 msg_enable;
1038
1039 enum nic_state state;
1040 unsigned long reset_pending;
1041
1042 struct efx_channel *channel[EFX_MAX_CHANNELS];
1043 struct efx_msi_context msi_context[EFX_MAX_CHANNELS];
1044 const struct efx_channel_type *
1045 extra_channel_type[EFX_MAX_EXTRA_CHANNELS];
1046
1047 unsigned int xdp_tx_queue_count;
1048 struct efx_tx_queue **xdp_tx_queues;
1049 enum efx_xdp_tx_queues_mode xdp_txq_queues_mode;
1050
1051 unsigned rxq_entries;
1052 unsigned txq_entries;
1053 unsigned int txq_stop_thresh;
1054 unsigned int txq_wake_thresh;
1055
1056 unsigned tx_dc_base;
1057 unsigned rx_dc_base;
1058 unsigned sram_lim_qw;
1059 unsigned next_buffer_table;
1060
1061 unsigned int max_channels;
1062 unsigned int max_vis;
1063 unsigned int max_tx_channels;
1064 unsigned n_channels;
1065 unsigned n_rx_channels;
1066 unsigned rss_spread;
1067 unsigned tx_channel_offset;
1068 unsigned n_tx_channels;
1069 unsigned n_extra_tx_channels;
1070 unsigned int tx_queues_per_channel;
1071 unsigned int n_xdp_channels;
1072 unsigned int xdp_channel_offset;
1073 unsigned int xdp_tx_per_channel;
1074 unsigned int rx_ip_align;
1075 unsigned int rx_dma_len;
1076 unsigned int rx_buffer_order;
1077 unsigned int rx_buffer_truesize;
1078 unsigned int rx_page_buf_step;
1079 unsigned int rx_bufs_per_page;
1080 unsigned int rx_pages_per_batch;
1081 unsigned int rx_prefix_size;
1082 int rx_packet_hash_offset;
1083 int rx_packet_len_offset;
1084 int rx_packet_ts_offset;
1085 bool rx_scatter;
1086 struct efx_rss_context rss_context;
1087 struct mutex rss_lock;
1088 u32 vport_id;
1089
1090 unsigned int_error_count;
1091 unsigned long int_error_expire;
1092
1093 bool must_realloc_vis;
1094 bool irq_soft_enabled;
1095 struct efx_buffer irq_status;
1096 unsigned irq_zero_count;
1097 unsigned irq_level;
1098 struct delayed_work selftest_work;
1099
1100#ifdef CONFIG_SFC_MTD
1101 struct list_head mtd_list;
1102#endif
1103
1104 void *nic_data;
1105 struct efx_mcdi_data *mcdi;
1106
1107 struct mutex mac_lock;
1108 struct work_struct mac_work;
1109 bool port_enabled;
1110
1111 bool mc_bist_for_other_fn;
1112 bool port_initialized;
1113 struct net_device *net_dev;
1114
1115 netdev_features_t fixed_features;
1116
1117 u16 num_mac_stats;
1118 struct efx_buffer stats_buffer;
1119 u64 rx_nodesc_drops_total;
1120 u64 rx_nodesc_drops_while_down;
1121 bool rx_nodesc_drops_prev_state;
1122
1123 unsigned int phy_type;
1124 void *phy_data;
1125 struct mdio_if_info mdio;
1126 unsigned int mdio_bus;
1127 enum efx_phy_mode phy_mode;
1128
1129 __ETHTOOL_DECLARE_LINK_MODE_MASK(link_advertising);
1130 u32 fec_config;
1131 struct efx_link_state link_state;
1132 unsigned int n_link_state_changes;
1133
1134 bool unicast_filter;
1135 union efx_multicast_hash multicast_hash;
1136 u8 wanted_fc;
1137 unsigned fc_disable;
1138
1139 atomic_t rx_reset;
1140 enum efx_loopback_mode loopback_mode;
1141 u64 loopback_modes;
1142
1143 void *loopback_selftest;
1144 /* We access loopback_selftest immediately before running XDP,
1145 * so we want them next to each other.
1146 */
1147 struct bpf_prog __rcu *xdp_prog;
1148
1149 struct rw_semaphore filter_sem;
1150 void *filter_state;
1151#ifdef CONFIG_RFS_ACCEL
1152 struct mutex rps_mutex;
1153 unsigned long rps_slot_map;
1154 struct efx_async_filter_insertion rps_slot[EFX_RPS_MAX_IN_FLIGHT];
1155 spinlock_t rps_hash_lock;
1156 struct hlist_head *rps_hash_table;
1157 u32 rps_next_id;
1158#endif
1159
1160 atomic_t active_queues;
1161 atomic_t rxq_flush_pending;
1162 atomic_t rxq_flush_outstanding;
1163 wait_queue_head_t flush_wq;
1164
1165#ifdef CONFIG_SFC_SRIOV
1166 unsigned vf_count;
1167 unsigned vf_init_count;
1168 unsigned vi_scale;
1169#endif
1170 spinlock_t vf_reps_lock;
1171 struct list_head vf_reps;
1172
1173 struct efx_ptp_data *ptp_data;
1174 bool ptp_warned;
1175
1176 char *vpd_sn;
1177 bool xdp_rxq_info_failed;
1178
1179 struct notifier_block netdev_notifier;
1180 struct efx_tc_state *tc;
1181
1182 unsigned int mem_bar;
1183 u32 reg_base;
1184
1185 /* The following fields may be written more often */
1186
1187 struct delayed_work monitor_work ____cacheline_aligned_in_smp;
1188 spinlock_t biu_lock;
1189 int last_irq_cpu;
1190 spinlock_t stats_lock;
1191 atomic_t n_rx_noskb_drops;
1192};
1193
1194/**
1195 * struct efx_probe_data - State after hardware probe
1196 * @pci_dev: The PCI device
1197 * @efx: Efx NIC details
1198 */
1199struct efx_probe_data {
1200 struct pci_dev *pci_dev;
1201 struct efx_nic efx;
1202};
1203
1204static inline struct efx_nic *efx_netdev_priv(struct net_device *dev)
1205{
1206 struct efx_probe_data **probe_ptr = netdev_priv(dev);
1207 struct efx_probe_data *probe_data = *probe_ptr;
1208
1209 return &probe_data->efx;
1210}
1211
1212static inline int efx_dev_registered(struct efx_nic *efx)
1213{
1214 return efx->net_dev->reg_state == NETREG_REGISTERED;
1215}
1216
1217static inline unsigned int efx_port_num(struct efx_nic *efx)
1218{
1219 return efx->port_num;
1220}
1221
1222struct efx_mtd_partition {
1223 struct list_head node;
1224 struct mtd_info mtd;
1225 const char *dev_type_name;
1226 const char *type_name;
1227 char name[IFNAMSIZ + 20];
1228};
1229
1230struct efx_udp_tunnel {
1231#define TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID 0xffff
1232 u16 type; /* TUNNEL_ENCAP_UDP_PORT_ENTRY_foo, see mcdi_pcol.h */
1233 __be16 port;
1234};
1235
1236/**
1237 * struct efx_nic_type - Efx device type definition
1238 * @mem_bar: Get the memory BAR
1239 * @mem_map_size: Get memory BAR mapped size
1240 * @probe: Probe the controller
1241 * @remove: Free resources allocated by probe()
1242 * @init: Initialise the controller
1243 * @dimension_resources: Dimension controller resources (buffer table,
1244 * and VIs once the available interrupt resources are clear)
1245 * @fini: Shut down the controller
1246 * @monitor: Periodic function for polling link state and hardware monitor
1247 * @map_reset_reason: Map ethtool reset reason to a reset method
1248 * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
1249 * @reset: Reset the controller hardware and possibly the PHY. This will
1250 * be called while the controller is uninitialised.
1251 * @probe_port: Probe the MAC and PHY
1252 * @remove_port: Free resources allocated by probe_port()
1253 * @handle_global_event: Handle a "global" event (may be %NULL)
1254 * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues)
1255 * @prepare_flush: Prepare the hardware for flushing the DMA queues
1256 * (for Falcon architecture)
1257 * @finish_flush: Clean up after flushing the DMA queues (for Falcon
1258 * architecture)
1259 * @prepare_flr: Prepare for an FLR
1260 * @finish_flr: Clean up after an FLR
1261 * @describe_stats: Describe statistics for ethtool
1262 * @update_stats: Update statistics not provided by event handling.
1263 * Either argument may be %NULL.
1264 * @update_stats_atomic: Update statistics while in atomic context, if that
1265 * is more limiting than @update_stats. Otherwise, leave %NULL and
1266 * driver core will call @update_stats.
1267 * @start_stats: Start the regular fetching of statistics
1268 * @pull_stats: Pull stats from the NIC and wait until they arrive.
1269 * @stop_stats: Stop the regular fetching of statistics
1270 * @push_irq_moderation: Apply interrupt moderation value
1271 * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
1272 * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL)
1273 * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
1274 * to the hardware. Serialised by the mac_lock.
1275 * @check_mac_fault: Check MAC fault state. True if fault present.
1276 * @get_wol: Get WoL configuration from driver state
1277 * @set_wol: Push WoL configuration to the NIC
1278 * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
1279 * @get_fec_stats: Get standard FEC statistics.
1280 * @test_chip: Test registers. May use efx_farch_test_registers(), and is
1281 * expected to reset the NIC.
1282 * @test_nvram: Test validity of NVRAM contents
1283 * @mcdi_request: Send an MCDI request with the given header and SDU.
1284 * The SDU length may be any value from 0 up to the protocol-
1285 * defined maximum, but its buffer will be padded to a multiple
1286 * of 4 bytes.
1287 * @mcdi_poll_response: Test whether an MCDI response is available.
1288 * @mcdi_read_response: Read the MCDI response PDU. The offset will
1289 * be a multiple of 4. The length may not be, but the buffer
1290 * will be padded so it is safe to round up.
1291 * @mcdi_poll_reboot: Test whether the MCDI has rebooted. If so,
1292 * return an appropriate error code for aborting any current
1293 * request; otherwise return 0.
1294 * @irq_enable_master: Enable IRQs on the NIC. Each event queue must
1295 * be separately enabled after this.
1296 * @irq_test_generate: Generate a test IRQ
1297 * @irq_disable_non_ev: Disable non-event IRQs on the NIC. Each event
1298 * queue must be separately disabled before this.
1299 * @irq_handle_msi: Handle MSI for a channel. The @dev_id argument is
1300 * a pointer to the &struct efx_msi_context for the channel.
1301 * @irq_handle_legacy: Handle legacy interrupt. The @dev_id argument
1302 * is a pointer to the &struct efx_nic.
1303 * @tx_probe: Allocate resources for TX queue (and select TXQ type)
1304 * @tx_init: Initialise TX queue on the NIC
1305 * @tx_remove: Free resources for TX queue
1306 * @tx_write: Write TX descriptors and doorbell
1307 * @tx_enqueue: Add an SKB to TX queue
1308 * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC
1309 * @rx_pull_rss_config: Read RSS hash key and indirection table back from the NIC
1310 * @rx_push_rss_context_config: Write RSS hash key and indirection table for
1311 * user RSS context to the NIC
1312 * @rx_pull_rss_context_config: Read RSS hash key and indirection table for user
1313 * RSS context back from the NIC
1314 * @rx_probe: Allocate resources for RX queue
1315 * @rx_init: Initialise RX queue on the NIC
1316 * @rx_remove: Free resources for RX queue
1317 * @rx_write: Write RX descriptors and doorbell
1318 * @rx_defer_refill: Generate a refill reminder event
1319 * @rx_packet: Receive the queued RX buffer on a channel
1320 * @rx_buf_hash_valid: Determine whether the RX prefix contains a valid hash
1321 * @ev_probe: Allocate resources for event queue
1322 * @ev_init: Initialise event queue on the NIC
1323 * @ev_fini: Deinitialise event queue on the NIC
1324 * @ev_remove: Free resources for event queue
1325 * @ev_process: Process events for a queue, up to the given NAPI quota
1326 * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ
1327 * @ev_test_generate: Generate a test event
1328 * @filter_table_probe: Probe filter capabilities and set up filter software state
1329 * @filter_table_restore: Restore filters removed from hardware
1330 * @filter_table_remove: Remove filters from hardware and tear down software state
1331 * @filter_update_rx_scatter: Update filters after change to rx scatter setting
1332 * @filter_insert: add or replace a filter
1333 * @filter_remove_safe: remove a filter by ID, carefully
1334 * @filter_get_safe: retrieve a filter by ID, carefully
1335 * @filter_clear_rx: Remove all RX filters whose priority is less than or
1336 * equal to the given priority and is not %EFX_FILTER_PRI_AUTO
1337 * @filter_count_rx_used: Get the number of filters in use at a given priority
1338 * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1
1339 * @filter_get_rx_ids: Get list of RX filters at a given priority
1340 * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS.
1341 * This must check whether the specified table entry is used by RFS
1342 * and that rps_may_expire_flow() returns true for it.
1343 * @mtd_probe: Probe and add MTD partitions associated with this net device,
1344 * using efx_mtd_add()
1345 * @mtd_rename: Set an MTD partition name using the net device name
1346 * @mtd_read: Read from an MTD partition
1347 * @mtd_erase: Erase part of an MTD partition
1348 * @mtd_write: Write to an MTD partition
1349 * @mtd_sync: Wait for write-back to complete on MTD partition. This
1350 * also notifies the driver that a writer has finished using this
1351 * partition.
1352 * @ptp_write_host_time: Send host time to MC as part of sync protocol
1353 * @ptp_set_ts_sync_events: Enable or disable sync events for inline RX
1354 * timestamping, possibly only temporarily for the purposes of a reset.
1355 * @ptp_set_ts_config: Set hardware timestamp configuration. The flags
1356 * and tx_type will already have been validated but this operation
1357 * must validate and update rx_filter.
1358 * @get_phys_port_id: Get the underlying physical port id.
1359 * @set_mac_address: Set the MAC address of the device
1360 * @tso_versions: Returns mask of firmware-assisted TSO versions supported.
1361 * If %NULL, then device does not support any TSO version.
1362 * @udp_tnl_push_ports: Push the list of UDP tunnel ports to the NIC if required.
1363 * @udp_tnl_has_port: Check if a port has been added as UDP tunnel
1364 * @print_additional_fwver: Dump NIC-specific additional FW version info
1365 * @sensor_event: Handle a sensor event from MCDI
1366 * @rx_recycle_ring_size: Size of the RX recycle ring
1367 * @revision: Hardware architecture revision
1368 * @txd_ptr_tbl_base: TX descriptor ring base address
1369 * @rxd_ptr_tbl_base: RX descriptor ring base address
1370 * @buf_tbl_base: Buffer table base address
1371 * @evq_ptr_tbl_base: Event queue pointer table base address
1372 * @evq_rptr_tbl_base: Event queue read-pointer table base address
1373 * @max_dma_mask: Maximum possible DMA mask
1374 * @rx_prefix_size: Size of RX prefix before packet data
1375 * @rx_hash_offset: Offset of RX flow hash within prefix
1376 * @rx_ts_offset: Offset of timestamp within prefix
1377 * @rx_buffer_padding: Size of padding at end of RX packet
1378 * @can_rx_scatter: NIC is able to scatter packets to multiple buffers
1379 * @always_rx_scatter: NIC will always scatter packets to multiple buffers
1380 * @option_descriptors: NIC supports TX option descriptors
1381 * @min_interrupt_mode: Lowest capability interrupt mode supported
1382 * from &enum efx_int_mode.
1383 * @timer_period_max: Maximum period of interrupt timer (in ticks)
1384 * @offload_features: net_device feature flags for protocol offload
1385 * features implemented in hardware
1386 * @mcdi_max_ver: Maximum MCDI version supported
1387 * @hwtstamp_filters: Mask of hardware timestamp filter types supported
1388 */
1389struct efx_nic_type {
1390 bool is_vf;
1391 unsigned int (*mem_bar)(struct efx_nic *efx);
1392 unsigned int (*mem_map_size)(struct efx_nic *efx);
1393 int (*probe)(struct efx_nic *efx);
1394 void (*remove)(struct efx_nic *efx);
1395 int (*init)(struct efx_nic *efx);
1396 int (*dimension_resources)(struct efx_nic *efx);
1397 void (*fini)(struct efx_nic *efx);
1398 void (*monitor)(struct efx_nic *efx);
1399 enum reset_type (*map_reset_reason)(enum reset_type reason);
1400 int (*map_reset_flags)(u32 *flags);
1401 int (*reset)(struct efx_nic *efx, enum reset_type method);
1402 int (*probe_port)(struct efx_nic *efx);
1403 void (*remove_port)(struct efx_nic *efx);
1404 bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *);
1405 int (*fini_dmaq)(struct efx_nic *efx);
1406 void (*prepare_flush)(struct efx_nic *efx);
1407 void (*finish_flush)(struct efx_nic *efx);
1408 void (*prepare_flr)(struct efx_nic *efx);
1409 void (*finish_flr)(struct efx_nic *efx);
1410 size_t (*describe_stats)(struct efx_nic *efx, u8 *names);
1411 size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats,
1412 struct rtnl_link_stats64 *core_stats);
1413 size_t (*update_stats_atomic)(struct efx_nic *efx, u64 *full_stats,
1414 struct rtnl_link_stats64 *core_stats);
1415 void (*start_stats)(struct efx_nic *efx);
1416 void (*pull_stats)(struct efx_nic *efx);
1417 void (*stop_stats)(struct efx_nic *efx);
1418 void (*push_irq_moderation)(struct efx_channel *channel);
1419 int (*reconfigure_port)(struct efx_nic *efx);
1420 void (*prepare_enable_fc_tx)(struct efx_nic *efx);
1421 int (*reconfigure_mac)(struct efx_nic *efx, bool mtu_only);
1422 bool (*check_mac_fault)(struct efx_nic *efx);
1423 void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
1424 int (*set_wol)(struct efx_nic *efx, u32 type);
1425 void (*resume_wol)(struct efx_nic *efx);
1426 void (*get_fec_stats)(struct efx_nic *efx,
1427 struct ethtool_fec_stats *fec_stats);
1428 unsigned int (*check_caps)(const struct efx_nic *efx,
1429 u8 flag,
1430 u32 offset);
1431 int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests);
1432 int (*test_nvram)(struct efx_nic *efx);
1433 void (*mcdi_request)(struct efx_nic *efx,
1434 const efx_dword_t *hdr, size_t hdr_len,
1435 const efx_dword_t *sdu, size_t sdu_len);
1436 bool (*mcdi_poll_response)(struct efx_nic *efx);
1437 void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu,
1438 size_t pdu_offset, size_t pdu_len);
1439 int (*mcdi_poll_reboot)(struct efx_nic *efx);
1440 void (*mcdi_reboot_detected)(struct efx_nic *efx);
1441 void (*irq_enable_master)(struct efx_nic *efx);
1442 int (*irq_test_generate)(struct efx_nic *efx);
1443 void (*irq_disable_non_ev)(struct efx_nic *efx);
1444 irqreturn_t (*irq_handle_msi)(int irq, void *dev_id);
1445 irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id);
1446 int (*tx_probe)(struct efx_tx_queue *tx_queue);
1447 void (*tx_init)(struct efx_tx_queue *tx_queue);
1448 void (*tx_remove)(struct efx_tx_queue *tx_queue);
1449 void (*tx_write)(struct efx_tx_queue *tx_queue);
1450 netdev_tx_t (*tx_enqueue)(struct efx_tx_queue *tx_queue, struct sk_buff *skb);
1451 unsigned int (*tx_limit_len)(struct efx_tx_queue *tx_queue,
1452 dma_addr_t dma_addr, unsigned int len);
1453 int (*rx_push_rss_config)(struct efx_nic *efx, bool user,
1454 const u32 *rx_indir_table, const u8 *key);
1455 int (*rx_pull_rss_config)(struct efx_nic *efx);
1456 int (*rx_push_rss_context_config)(struct efx_nic *efx,
1457 struct efx_rss_context *ctx,
1458 const u32 *rx_indir_table,
1459 const u8 *key);
1460 int (*rx_pull_rss_context_config)(struct efx_nic *efx,
1461 struct efx_rss_context *ctx);
1462 void (*rx_restore_rss_contexts)(struct efx_nic *efx);
1463 int (*rx_probe)(struct efx_rx_queue *rx_queue);
1464 void (*rx_init)(struct efx_rx_queue *rx_queue);
1465 void (*rx_remove)(struct efx_rx_queue *rx_queue);
1466 void (*rx_write)(struct efx_rx_queue *rx_queue);
1467 void (*rx_defer_refill)(struct efx_rx_queue *rx_queue);
1468 void (*rx_packet)(struct efx_channel *channel);
1469 bool (*rx_buf_hash_valid)(const u8 *prefix);
1470 int (*ev_probe)(struct efx_channel *channel);
1471 int (*ev_init)(struct efx_channel *channel);
1472 void (*ev_fini)(struct efx_channel *channel);
1473 void (*ev_remove)(struct efx_channel *channel);
1474 int (*ev_process)(struct efx_channel *channel, int quota);
1475 void (*ev_read_ack)(struct efx_channel *channel);
1476 void (*ev_test_generate)(struct efx_channel *channel);
1477 int (*filter_table_probe)(struct efx_nic *efx);
1478 void (*filter_table_restore)(struct efx_nic *efx);
1479 void (*filter_table_remove)(struct efx_nic *efx);
1480 void (*filter_update_rx_scatter)(struct efx_nic *efx);
1481 s32 (*filter_insert)(struct efx_nic *efx,
1482 struct efx_filter_spec *spec, bool replace);
1483 int (*filter_remove_safe)(struct efx_nic *efx,
1484 enum efx_filter_priority priority,
1485 u32 filter_id);
1486 int (*filter_get_safe)(struct efx_nic *efx,
1487 enum efx_filter_priority priority,
1488 u32 filter_id, struct efx_filter_spec *);
1489 int (*filter_clear_rx)(struct efx_nic *efx,
1490 enum efx_filter_priority priority);
1491 u32 (*filter_count_rx_used)(struct efx_nic *efx,
1492 enum efx_filter_priority priority);
1493 u32 (*filter_get_rx_id_limit)(struct efx_nic *efx);
1494 s32 (*filter_get_rx_ids)(struct efx_nic *efx,
1495 enum efx_filter_priority priority,
1496 u32 *buf, u32 size);
1497#ifdef CONFIG_RFS_ACCEL
1498 bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id,
1499 unsigned int index);
1500#endif
1501#ifdef CONFIG_SFC_MTD
1502 int (*mtd_probe)(struct efx_nic *efx);
1503 void (*mtd_rename)(struct efx_mtd_partition *part);
1504 int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len,
1505 size_t *retlen, u8 *buffer);
1506 int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len);
1507 int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len,
1508 size_t *retlen, const u8 *buffer);
1509 int (*mtd_sync)(struct mtd_info *mtd);
1510#endif
1511 void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time);
1512 int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp);
1513 int (*ptp_set_ts_config)(struct efx_nic *efx,
1514 struct hwtstamp_config *init);
1515 int (*sriov_configure)(struct efx_nic *efx, int num_vfs);
1516 int (*vlan_rx_add_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1517 int (*vlan_rx_kill_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1518 int (*get_phys_port_id)(struct efx_nic *efx,
1519 struct netdev_phys_item_id *ppid);
1520 int (*sriov_init)(struct efx_nic *efx);
1521 void (*sriov_fini)(struct efx_nic *efx);
1522 bool (*sriov_wanted)(struct efx_nic *efx);
1523 void (*sriov_reset)(struct efx_nic *efx);
1524 void (*sriov_flr)(struct efx_nic *efx, unsigned vf_i);
1525 int (*sriov_set_vf_mac)(struct efx_nic *efx, int vf_i, const u8 *mac);
1526 int (*sriov_set_vf_vlan)(struct efx_nic *efx, int vf_i, u16 vlan,
1527 u8 qos);
1528 int (*sriov_set_vf_spoofchk)(struct efx_nic *efx, int vf_i,
1529 bool spoofchk);
1530 int (*sriov_get_vf_config)(struct efx_nic *efx, int vf_i,
1531 struct ifla_vf_info *ivi);
1532 int (*sriov_set_vf_link_state)(struct efx_nic *efx, int vf_i,
1533 int link_state);
1534 int (*vswitching_probe)(struct efx_nic *efx);
1535 int (*vswitching_restore)(struct efx_nic *efx);
1536 void (*vswitching_remove)(struct efx_nic *efx);
1537 int (*get_mac_address)(struct efx_nic *efx, unsigned char *perm_addr);
1538 int (*set_mac_address)(struct efx_nic *efx);
1539 u32 (*tso_versions)(struct efx_nic *efx);
1540 int (*udp_tnl_push_ports)(struct efx_nic *efx);
1541 bool (*udp_tnl_has_port)(struct efx_nic *efx, __be16 port);
1542 size_t (*print_additional_fwver)(struct efx_nic *efx, char *buf,
1543 size_t len);
1544 void (*sensor_event)(struct efx_nic *efx, efx_qword_t *ev);
1545 unsigned int (*rx_recycle_ring_size)(const struct efx_nic *efx);
1546
1547 int revision;
1548 unsigned int txd_ptr_tbl_base;
1549 unsigned int rxd_ptr_tbl_base;
1550 unsigned int buf_tbl_base;
1551 unsigned int evq_ptr_tbl_base;
1552 unsigned int evq_rptr_tbl_base;
1553 u64 max_dma_mask;
1554 unsigned int rx_prefix_size;
1555 unsigned int rx_hash_offset;
1556 unsigned int rx_ts_offset;
1557 unsigned int rx_buffer_padding;
1558 bool can_rx_scatter;
1559 bool always_rx_scatter;
1560 bool option_descriptors;
1561 unsigned int min_interrupt_mode;
1562 unsigned int timer_period_max;
1563 netdev_features_t offload_features;
1564 int mcdi_max_ver;
1565 unsigned int max_rx_ip_filters;
1566 u32 hwtstamp_filters;
1567 unsigned int rx_hash_key_size;
1568};
1569
1570/**************************************************************************
1571 *
1572 * Prototypes and inline functions
1573 *
1574 *************************************************************************/
1575
1576static inline struct efx_channel *
1577efx_get_channel(struct efx_nic *efx, unsigned index)
1578{
1579 EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_channels);
1580 return efx->channel[index];
1581}
1582
1583/* Iterate over all used channels */
1584#define efx_for_each_channel(_channel, _efx) \
1585 for (_channel = (_efx)->channel[0]; \
1586 _channel; \
1587 _channel = (_channel->channel + 1 < (_efx)->n_channels) ? \
1588 (_efx)->channel[_channel->channel + 1] : NULL)
1589
1590/* Iterate over all used channels in reverse */
1591#define efx_for_each_channel_rev(_channel, _efx) \
1592 for (_channel = (_efx)->channel[(_efx)->n_channels - 1]; \
1593 _channel; \
1594 _channel = _channel->channel ? \
1595 (_efx)->channel[_channel->channel - 1] : NULL)
1596
1597static inline struct efx_channel *
1598efx_get_tx_channel(struct efx_nic *efx, unsigned int index)
1599{
1600 EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_tx_channels);
1601 return efx->channel[efx->tx_channel_offset + index];
1602}
1603
1604static inline struct efx_channel *
1605efx_get_xdp_channel(struct efx_nic *efx, unsigned int index)
1606{
1607 EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_xdp_channels);
1608 return efx->channel[efx->xdp_channel_offset + index];
1609}
1610
1611static inline bool efx_channel_is_xdp_tx(struct efx_channel *channel)
1612{
1613 return channel->channel - channel->efx->xdp_channel_offset <
1614 channel->efx->n_xdp_channels;
1615}
1616
1617static inline bool efx_channel_has_tx_queues(struct efx_channel *channel)
1618{
1619 return channel && channel->channel >= channel->efx->tx_channel_offset;
1620}
1621
1622static inline unsigned int efx_channel_num_tx_queues(struct efx_channel *channel)
1623{
1624 if (efx_channel_is_xdp_tx(channel))
1625 return channel->efx->xdp_tx_per_channel;
1626 return channel->efx->tx_queues_per_channel;
1627}
1628
1629static inline struct efx_tx_queue *
1630efx_channel_get_tx_queue(struct efx_channel *channel, unsigned int type)
1631{
1632 EFX_WARN_ON_ONCE_PARANOID(type >= EFX_TXQ_TYPES);
1633 return channel->tx_queue_by_type[type];
1634}
1635
1636static inline struct efx_tx_queue *
1637efx_get_tx_queue(struct efx_nic *efx, unsigned int index, unsigned int type)
1638{
1639 struct efx_channel *channel = efx_get_tx_channel(efx, index);
1640
1641 return efx_channel_get_tx_queue(channel, type);
1642}
1643
1644/* Iterate over all TX queues belonging to a channel */
1645#define efx_for_each_channel_tx_queue(_tx_queue, _channel) \
1646 if (!efx_channel_has_tx_queues(_channel)) \
1647 ; \
1648 else \
1649 for (_tx_queue = (_channel)->tx_queue; \
1650 _tx_queue < (_channel)->tx_queue + \
1651 efx_channel_num_tx_queues(_channel); \
1652 _tx_queue++)
1653
1654static inline bool efx_channel_has_rx_queue(struct efx_channel *channel)
1655{
1656 return channel->rx_queue.core_index >= 0;
1657}
1658
1659static inline struct efx_rx_queue *
1660efx_channel_get_rx_queue(struct efx_channel *channel)
1661{
1662 EFX_WARN_ON_ONCE_PARANOID(!efx_channel_has_rx_queue(channel));
1663 return &channel->rx_queue;
1664}
1665
1666/* Iterate over all RX queues belonging to a channel */
1667#define efx_for_each_channel_rx_queue(_rx_queue, _channel) \
1668 if (!efx_channel_has_rx_queue(_channel)) \
1669 ; \
1670 else \
1671 for (_rx_queue = &(_channel)->rx_queue; \
1672 _rx_queue; \
1673 _rx_queue = NULL)
1674
1675static inline struct efx_channel *
1676efx_rx_queue_channel(struct efx_rx_queue *rx_queue)
1677{
1678 return container_of(rx_queue, struct efx_channel, rx_queue);
1679}
1680
1681static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue)
1682{
1683 return efx_rx_queue_channel(rx_queue)->channel;
1684}
1685
1686/* Returns a pointer to the specified receive buffer in the RX
1687 * descriptor queue.
1688 */
1689static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
1690 unsigned int index)
1691{
1692 return &rx_queue->buffer[index];
1693}
1694
1695static inline struct efx_rx_buffer *
1696efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf)
1697{
1698 if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask)))
1699 return efx_rx_buffer(rx_queue, 0);
1700 else
1701 return rx_buf + 1;
1702}
1703
1704/**
1705 * EFX_MAX_FRAME_LEN - calculate maximum frame length
1706 *
1707 * This calculates the maximum frame length that will be used for a
1708 * given MTU. The frame length will be equal to the MTU plus a
1709 * constant amount of header space and padding. This is the quantity
1710 * that the net driver will program into the MAC as the maximum frame
1711 * length.
1712 *
1713 * The 10G MAC requires 8-byte alignment on the frame
1714 * length, so we round up to the nearest 8.
1715 *
1716 * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
1717 * XGMII cycle). If the frame length reaches the maximum value in the
1718 * same cycle, the XMAC can miss the IPG altogether. We work around
1719 * this by adding a further 16 bytes.
1720 */
1721#define EFX_FRAME_PAD 16
1722#define EFX_MAX_FRAME_LEN(mtu) \
1723 (ALIGN(((mtu) + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN + EFX_FRAME_PAD), 8))
1724
1725static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb)
1726{
1727 return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP;
1728}
1729static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb)
1730{
1731 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1732}
1733
1734/* Get the max fill level of the TX queues on this channel */
1735static inline unsigned int
1736efx_channel_tx_fill_level(struct efx_channel *channel)
1737{
1738 struct efx_tx_queue *tx_queue;
1739 unsigned int fill_level = 0;
1740
1741 efx_for_each_channel_tx_queue(tx_queue, channel)
1742 fill_level = max(fill_level,
1743 tx_queue->insert_count - tx_queue->read_count);
1744
1745 return fill_level;
1746}
1747
1748/* Conservative approximation of efx_channel_tx_fill_level using cached value */
1749static inline unsigned int
1750efx_channel_tx_old_fill_level(struct efx_channel *channel)
1751{
1752 struct efx_tx_queue *tx_queue;
1753 unsigned int fill_level = 0;
1754
1755 efx_for_each_channel_tx_queue(tx_queue, channel)
1756 fill_level = max(fill_level,
1757 tx_queue->insert_count - tx_queue->old_read_count);
1758
1759 return fill_level;
1760}
1761
1762/* Get all supported features.
1763 * If a feature is not fixed, it is present in hw_features.
1764 * If a feature is fixed, it does not present in hw_features, but
1765 * always in features.
1766 */
1767static inline netdev_features_t efx_supported_features(const struct efx_nic *efx)
1768{
1769 const struct net_device *net_dev = efx->net_dev;
1770
1771 return net_dev->features | net_dev->hw_features;
1772}
1773
1774/* Get the current TX queue insert index. */
1775static inline unsigned int
1776efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
1777{
1778 return tx_queue->insert_count & tx_queue->ptr_mask;
1779}
1780
1781/* Get a TX buffer. */
1782static inline struct efx_tx_buffer *
1783__efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
1784{
1785 return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
1786}
1787
1788/* Get a TX buffer, checking it's not currently in use. */
1789static inline struct efx_tx_buffer *
1790efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
1791{
1792 struct efx_tx_buffer *buffer =
1793 __efx_tx_queue_get_insert_buffer(tx_queue);
1794
1795 EFX_WARN_ON_ONCE_PARANOID(buffer->len);
1796 EFX_WARN_ON_ONCE_PARANOID(buffer->flags);
1797 EFX_WARN_ON_ONCE_PARANOID(buffer->unmap_len);
1798
1799 return buffer;
1800}
1801
1802#endif /* EFX_NET_DRIVER_H */