Linux Audio

Check our new training course

Loading...
v4.17
   1/****************************************************************************
   2 * Driver for Solarflare network controllers and boards
   3 * Copyright 2005-2006 Fen Systems Ltd.
   4 * Copyright 2005-2013 Solarflare Communications Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation, incorporated herein by reference.
   9 */
  10
  11/* Common definitions for all Efx net driver code */
  12
  13#ifndef EFX_NET_DRIVER_H
  14#define EFX_NET_DRIVER_H
  15
  16#include <linux/netdevice.h>
  17#include <linux/etherdevice.h>
  18#include <linux/ethtool.h>
  19#include <linux/if_vlan.h>
  20#include <linux/timer.h>
  21#include <linux/mdio.h>
  22#include <linux/list.h>
  23#include <linux/pci.h>
  24#include <linux/device.h>
  25#include <linux/highmem.h>
  26#include <linux/workqueue.h>
  27#include <linux/mutex.h>
  28#include <linux/rwsem.h>
  29#include <linux/vmalloc.h>
  30#include <linux/i2c.h>
  31#include <linux/mtd/mtd.h>
  32#include <net/busy_poll.h>
  33
  34#include "enum.h"
  35#include "bitfield.h"
  36#include "filter.h"
  37
  38/**************************************************************************
  39 *
  40 * Build definitions
  41 *
  42 **************************************************************************/
  43
  44#define EFX_DRIVER_VERSION	"4.1"
  45
  46#ifdef DEBUG
  47#define EFX_WARN_ON_ONCE_PARANOID(x) WARN_ON_ONCE(x)
  48#define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
  49#else
  50#define EFX_WARN_ON_ONCE_PARANOID(x) do {} while (0)
  51#define EFX_WARN_ON_PARANOID(x) do {} while (0)
  52#endif
  53
  54/**************************************************************************
  55 *
  56 * Efx data structures
  57 *
  58 **************************************************************************/
  59
  60#define EFX_MAX_CHANNELS 32U
  61#define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
  62#define EFX_EXTRA_CHANNEL_IOV	0
  63#define EFX_EXTRA_CHANNEL_PTP	1
  64#define EFX_MAX_EXTRA_CHANNELS	2U
  65
  66/* Checksum generation is a per-queue option in hardware, so each
  67 * queue visible to the networking core is backed by two hardware TX
  68 * queues. */
  69#define EFX_MAX_TX_TC		2
  70#define EFX_MAX_CORE_TX_QUEUES	(EFX_MAX_TX_TC * EFX_MAX_CHANNELS)
  71#define EFX_TXQ_TYPE_OFFLOAD	1	/* flag */
  72#define EFX_TXQ_TYPE_HIGHPRI	2	/* flag */
  73#define EFX_TXQ_TYPES		4
  74#define EFX_MAX_TX_QUEUES	(EFX_TXQ_TYPES * EFX_MAX_CHANNELS)
  75
  76/* Maximum possible MTU the driver supports */
  77#define EFX_MAX_MTU (9 * 1024)
  78
  79/* Minimum MTU, from RFC791 (IP) */
  80#define EFX_MIN_MTU 68
  81
  82/* Size of an RX scatter buffer.  Small enough to pack 2 into a 4K page,
  83 * and should be a multiple of the cache line size.
  84 */
  85#define EFX_RX_USR_BUF_SIZE	(2048 - 256)
  86
  87/* If possible, we should ensure cache line alignment at start and end
  88 * of every buffer.  Otherwise, we just need to ensure 4-byte
  89 * alignment of the network header.
  90 */
  91#if NET_IP_ALIGN == 0
  92#define EFX_RX_BUF_ALIGNMENT	L1_CACHE_BYTES
  93#else
  94#define EFX_RX_BUF_ALIGNMENT	4
  95#endif
  96
  97/* Forward declare Precision Time Protocol (PTP) support structure. */
  98struct efx_ptp_data;
  99struct hwtstamp_config;
 100
 101struct efx_self_tests;
 102
 103/**
 104 * struct efx_buffer - A general-purpose DMA buffer
 105 * @addr: host base address of the buffer
 106 * @dma_addr: DMA base address of the buffer
 107 * @len: Buffer length, in bytes
 108 *
 109 * The NIC uses these buffers for its interrupt status registers and
 110 * MAC stats dumps.
 111 */
 112struct efx_buffer {
 113	void *addr;
 114	dma_addr_t dma_addr;
 115	unsigned int len;
 116};
 117
 118/**
 119 * struct efx_special_buffer - DMA buffer entered into buffer table
 120 * @buf: Standard &struct efx_buffer
 121 * @index: Buffer index within controller;s buffer table
 122 * @entries: Number of buffer table entries
 123 *
 124 * The NIC has a buffer table that maps buffers of size %EFX_BUF_SIZE.
 125 * Event and descriptor rings are addressed via one or more buffer
 126 * table entries (and so can be physically non-contiguous, although we
 127 * currently do not take advantage of that).  On Falcon and Siena we
 128 * have to take care of allocating and initialising the entries
 129 * ourselves.  On later hardware this is managed by the firmware and
 130 * @index and @entries are left as 0.
 131 */
 132struct efx_special_buffer {
 133	struct efx_buffer buf;
 134	unsigned int index;
 135	unsigned int entries;
 136};
 137
 138/**
 139 * struct efx_tx_buffer - buffer state for a TX descriptor
 140 * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be
 141 *	freed when descriptor completes
 
 
 142 * @option: When @flags & %EFX_TX_BUF_OPTION, a NIC-specific option descriptor.
 143 * @dma_addr: DMA address of the fragment.
 144 * @flags: Flags for allocation and DMA mapping type
 145 * @len: Length of this fragment.
 146 *	This field is zero when the queue slot is empty.
 147 * @unmap_len: Length of this fragment to unmap
 148 * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping.
 149 * Only valid if @unmap_len != 0.
 150 */
 151struct efx_tx_buffer {
 152	const struct sk_buff *skb;
 
 
 
 153	union {
 154		efx_qword_t option;
 155		dma_addr_t dma_addr;
 156	};
 157	unsigned short flags;
 158	unsigned short len;
 159	unsigned short unmap_len;
 160	unsigned short dma_offset;
 161};
 162#define EFX_TX_BUF_CONT		1	/* not last descriptor of packet */
 163#define EFX_TX_BUF_SKB		2	/* buffer is last part of skb */
 
 164#define EFX_TX_BUF_MAP_SINGLE	8	/* buffer was mapped with dma_map_single() */
 165#define EFX_TX_BUF_OPTION	0x10	/* empty buffer for option descriptor */
 166
 167/**
 168 * struct efx_tx_queue - An Efx TX queue
 169 *
 170 * This is a ring buffer of TX fragments.
 171 * Since the TX completion path always executes on the same
 172 * CPU and the xmit path can operate on different CPUs,
 173 * performance is increased by ensuring that the completion
 174 * path and the xmit path operate on different cache lines.
 175 * This is particularly important if the xmit path is always
 176 * executing on one CPU which is different from the completion
 177 * path.  There is also a cache line for members which are
 178 * read but not written on the fast path.
 179 *
 180 * @efx: The associated Efx NIC
 181 * @queue: DMA queue number
 182 * @tso_version: Version of TSO in use for this queue.
 183 * @channel: The associated channel
 184 * @core_txq: The networking core TX queue structure
 185 * @buffer: The software buffer ring
 186 * @cb_page: Array of pages of copy buffers.  Carved up according to
 187 *	%EFX_TX_CB_ORDER into %EFX_TX_CB_SIZE-sized chunks.
 188 * @txd: The hardware descriptor ring
 189 * @ptr_mask: The size of the ring minus 1.
 190 * @piobuf: PIO buffer region for this TX queue (shared with its partner).
 191 *	Size of the region is efx_piobuf_size.
 192 * @piobuf_offset: Buffer offset to be specified in PIO descriptors
 193 * @initialised: Has hardware queue been initialised?
 194 * @timestamping: Is timestamping enabled for this channel?
 195 * @handle_tso: TSO xmit preparation handler.  Sets up the TSO metadata and
 196 *	may also map tx data, depending on the nature of the TSO implementation.
 197 * @read_count: Current read pointer.
 198 *	This is the number of buffers that have been removed from both rings.
 199 * @old_write_count: The value of @write_count when last checked.
 200 *	This is here for performance reasons.  The xmit path will
 201 *	only get the up-to-date value of @write_count if this
 202 *	variable indicates that the queue is empty.  This is to
 203 *	avoid cache-line ping-pong between the xmit path and the
 204 *	completion path.
 205 * @merge_events: Number of TX merged completion events
 206 * @completed_desc_ptr: Most recent completed pointer - only used with
 207 *      timestamping.
 208 * @completed_timestamp_major: Top part of the most recent tx timestamp.
 209 * @completed_timestamp_minor: Low part of the most recent tx timestamp.
 210 * @insert_count: Current insert pointer
 211 *	This is the number of buffers that have been added to the
 212 *	software ring.
 213 * @write_count: Current write pointer
 214 *	This is the number of buffers that have been added to the
 215 *	hardware ring.
 216 * @packet_write_count: Completable write pointer
 217 *	This is the write pointer of the last packet written.
 218 *	Normally this will equal @write_count, but as option descriptors
 219 *	don't produce completion events, they won't update this.
 220 *	Filled in iff @efx->type->option_descriptors; only used for PIO.
 221 *	Thus, this is written and used on EF10, and neither on farch.
 222 * @old_read_count: The value of read_count when last checked.
 223 *	This is here for performance reasons.  The xmit path will
 224 *	only get the up-to-date value of read_count if this
 225 *	variable indicates that the queue is full.  This is to
 226 *	avoid cache-line ping-pong between the xmit path and the
 227 *	completion path.
 228 * @tso_bursts: Number of times TSO xmit invoked by kernel
 229 * @tso_long_headers: Number of packets with headers too long for standard
 230 *	blocks
 231 * @tso_packets: Number of packets via the TSO xmit path
 232 * @tso_fallbacks: Number of times TSO fallback used
 233 * @pushes: Number of times the TX push feature has been used
 234 * @pio_packets: Number of times the TX PIO feature has been used
 235 * @xmit_more_available: Are any packets waiting to be pushed to the NIC
 236 * @cb_packets: Number of times the TX copybreak feature has been used
 237 * @empty_read_count: If the completion path has seen the queue as empty
 238 *	and the transmission path has not yet checked this, the value of
 239 *	@read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
 240 */
 241struct efx_tx_queue {
 242	/* Members which don't change on the fast path */
 243	struct efx_nic *efx ____cacheline_aligned_in_smp;
 244	unsigned queue;
 245	unsigned int tso_version;
 246	struct efx_channel *channel;
 247	struct netdev_queue *core_txq;
 248	struct efx_tx_buffer *buffer;
 249	struct efx_buffer *cb_page;
 250	struct efx_special_buffer txd;
 251	unsigned int ptr_mask;
 252	void __iomem *piobuf;
 253	unsigned int piobuf_offset;
 254	bool initialised;
 255	bool timestamping;
 256
 257	/* Function pointers used in the fast path. */
 258	int (*handle_tso)(struct efx_tx_queue*, struct sk_buff*, bool *);
 259
 260	/* Members used mainly on the completion path */
 261	unsigned int read_count ____cacheline_aligned_in_smp;
 262	unsigned int old_write_count;
 263	unsigned int merge_events;
 264	unsigned int bytes_compl;
 265	unsigned int pkts_compl;
 266	unsigned int completed_desc_ptr;
 267	u32 completed_timestamp_major;
 268	u32 completed_timestamp_minor;
 269
 270	/* Members used only on the xmit path */
 271	unsigned int insert_count ____cacheline_aligned_in_smp;
 272	unsigned int write_count;
 273	unsigned int packet_write_count;
 274	unsigned int old_read_count;
 275	unsigned int tso_bursts;
 276	unsigned int tso_long_headers;
 277	unsigned int tso_packets;
 278	unsigned int tso_fallbacks;
 279	unsigned int pushes;
 280	unsigned int pio_packets;
 281	bool xmit_more_available;
 282	unsigned int cb_packets;
 283	/* Statistics to supplement MAC stats */
 284	unsigned long tx_packets;
 285
 286	/* Members shared between paths and sometimes updated */
 287	unsigned int empty_read_count ____cacheline_aligned_in_smp;
 288#define EFX_EMPTY_COUNT_VALID 0x80000000
 289	atomic_t flush_outstanding;
 290};
 291
 292#define EFX_TX_CB_ORDER	7
 293#define EFX_TX_CB_SIZE	(1 << EFX_TX_CB_ORDER) - NET_IP_ALIGN
 294
 295/**
 296 * struct efx_rx_buffer - An Efx RX data buffer
 297 * @dma_addr: DMA base address of the buffer
 298 * @page: The associated page buffer.
 299 *	Will be %NULL if the buffer slot is currently free.
 300 * @page_offset: If pending: offset in @page of DMA base address.
 301 *	If completed: offset in @page of Ethernet header.
 302 * @len: If pending: length for DMA descriptor.
 303 *	If completed: received length, excluding hash prefix.
 304 * @flags: Flags for buffer and packet state.  These are only set on the
 305 *	first buffer of a scattered packet.
 306 */
 307struct efx_rx_buffer {
 308	dma_addr_t dma_addr;
 309	struct page *page;
 310	u16 page_offset;
 311	u16 len;
 312	u16 flags;
 313};
 314#define EFX_RX_BUF_LAST_IN_PAGE	0x0001
 315#define EFX_RX_PKT_CSUMMED	0x0002
 316#define EFX_RX_PKT_DISCARD	0x0004
 317#define EFX_RX_PKT_TCP		0x0040
 318#define EFX_RX_PKT_PREFIX_LEN	0x0080	/* length is in prefix only */
 319#define EFX_RX_PKT_CSUM_LEVEL	0x0200
 320
 321/**
 322 * struct efx_rx_page_state - Page-based rx buffer state
 323 *
 324 * Inserted at the start of every page allocated for receive buffers.
 325 * Used to facilitate sharing dma mappings between recycled rx buffers
 326 * and those passed up to the kernel.
 327 *
 328 * @dma_addr: The dma address of this page.
 329 */
 330struct efx_rx_page_state {
 331	dma_addr_t dma_addr;
 332
 333	unsigned int __pad[0] ____cacheline_aligned;
 334};
 335
 336/**
 337 * struct efx_rx_queue - An Efx RX queue
 338 * @efx: The associated Efx NIC
 339 * @core_index:  Index of network core RX queue.  Will be >= 0 iff this
 340 *	is associated with a real RX queue.
 341 * @buffer: The software buffer ring
 342 * @rxd: The hardware descriptor ring
 343 * @ptr_mask: The size of the ring minus 1.
 344 * @refill_enabled: Enable refill whenever fill level is low
 345 * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
 346 *	@rxq_flush_pending.
 347 * @added_count: Number of buffers added to the receive queue.
 348 * @notified_count: Number of buffers given to NIC (<= @added_count).
 349 * @removed_count: Number of buffers removed from the receive queue.
 350 * @scatter_n: Used by NIC specific receive code.
 351 * @scatter_len: Used by NIC specific receive code.
 352 * @page_ring: The ring to store DMA mapped pages for reuse.
 353 * @page_add: Counter to calculate the write pointer for the recycle ring.
 354 * @page_remove: Counter to calculate the read pointer for the recycle ring.
 355 * @page_recycle_count: The number of pages that have been recycled.
 356 * @page_recycle_failed: The number of pages that couldn't be recycled because
 357 *      the kernel still held a reference to them.
 358 * @page_recycle_full: The number of pages that were released because the
 359 *      recycle ring was full.
 360 * @page_ptr_mask: The number of pages in the RX recycle ring minus 1.
 361 * @max_fill: RX descriptor maximum fill level (<= ring size)
 362 * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
 363 *	(<= @max_fill)
 364 * @min_fill: RX descriptor minimum non-zero fill level.
 365 *	This records the minimum fill level observed when a ring
 366 *	refill was triggered.
 367 * @recycle_count: RX buffer recycle counter.
 368 * @slow_fill: Timer used to defer efx_nic_generate_fill_event().
 369 */
 370struct efx_rx_queue {
 371	struct efx_nic *efx;
 372	int core_index;
 373	struct efx_rx_buffer *buffer;
 374	struct efx_special_buffer rxd;
 375	unsigned int ptr_mask;
 376	bool refill_enabled;
 377	bool flush_pending;
 378
 379	unsigned int added_count;
 380	unsigned int notified_count;
 381	unsigned int removed_count;
 382	unsigned int scatter_n;
 383	unsigned int scatter_len;
 384	struct page **page_ring;
 385	unsigned int page_add;
 386	unsigned int page_remove;
 387	unsigned int page_recycle_count;
 388	unsigned int page_recycle_failed;
 389	unsigned int page_recycle_full;
 390	unsigned int page_ptr_mask;
 391	unsigned int max_fill;
 392	unsigned int fast_fill_trigger;
 393	unsigned int min_fill;
 394	unsigned int min_overfill;
 395	unsigned int recycle_count;
 396	struct timer_list slow_fill;
 397	unsigned int slow_fill_count;
 398	/* Statistics to supplement MAC stats */
 399	unsigned long rx_packets;
 400};
 401
 402enum efx_sync_events_state {
 403	SYNC_EVENTS_DISABLED = 0,
 404	SYNC_EVENTS_QUIESCENT,
 405	SYNC_EVENTS_REQUESTED,
 406	SYNC_EVENTS_VALID,
 407};
 408
 409/**
 410 * struct efx_channel - An Efx channel
 411 *
 412 * A channel comprises an event queue, at least one TX queue, at least
 413 * one RX queue, and an associated tasklet for processing the event
 414 * queue.
 415 *
 416 * @efx: Associated Efx NIC
 417 * @channel: Channel instance number
 418 * @type: Channel type definition
 419 * @eventq_init: Event queue initialised flag
 420 * @enabled: Channel enabled indicator
 421 * @irq: IRQ number (MSI and MSI-X only)
 422 * @irq_moderation_us: IRQ moderation value (in microseconds)
 423 * @napi_dev: Net device used with NAPI
 424 * @napi_str: NAPI control structure
 425 * @state: state for NAPI vs busy polling
 426 * @state_lock: lock protecting @state
 427 * @eventq: Event queue buffer
 428 * @eventq_mask: Event queue pointer mask
 429 * @eventq_read_ptr: Event queue read pointer
 430 * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
 431 * @irq_count: Number of IRQs since last adaptive moderation decision
 432 * @irq_mod_score: IRQ moderation score
 433 * @filter_work: Work item for efx_filter_rfs_expire()
 434 * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS,
 435 *      indexed by filter ID
 436 * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
 437 * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
 438 * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
 439 * @n_rx_mcast_mismatch: Count of unmatched multicast frames
 440 * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
 441 * @n_rx_overlength: Count of RX_OVERLENGTH errors
 442 * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
 443 * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to
 444 *	lack of descriptors
 445 * @n_rx_merge_events: Number of RX merged completion events
 446 * @n_rx_merge_packets: Number of RX packets completed by merged events
 447 * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by
 448 *	__efx_rx_packet(), or zero if there is none
 449 * @rx_pkt_index: Ring index of first buffer for next packet to be delivered
 450 *	by __efx_rx_packet(), if @rx_pkt_n_frags != 0
 451 * @rx_queue: RX queue for this channel
 452 * @tx_queue: TX queues for this channel
 453 * @sync_events_state: Current state of sync events on this channel
 454 * @sync_timestamp_major: Major part of the last ptp sync event
 455 * @sync_timestamp_minor: Minor part of the last ptp sync event
 456 */
 457struct efx_channel {
 458	struct efx_nic *efx;
 459	int channel;
 460	const struct efx_channel_type *type;
 461	bool eventq_init;
 462	bool enabled;
 463	int irq;
 464	unsigned int irq_moderation_us;
 465	struct net_device *napi_dev;
 466	struct napi_struct napi_str;
 467#ifdef CONFIG_NET_RX_BUSY_POLL
 468	unsigned long busy_poll_state;
 469#endif
 470	struct efx_special_buffer eventq;
 471	unsigned int eventq_mask;
 472	unsigned int eventq_read_ptr;
 473	int event_test_cpu;
 474
 475	unsigned int irq_count;
 476	unsigned int irq_mod_score;
 477#ifdef CONFIG_RFS_ACCEL
 478	unsigned int rfs_filters_added;
 479	struct work_struct filter_work;
 480#define RPS_FLOW_ID_INVALID 0xFFFFFFFF
 481	u32 *rps_flow_id;
 482#endif
 483
 484	unsigned int n_rx_tobe_disc;
 485	unsigned int n_rx_ip_hdr_chksum_err;
 486	unsigned int n_rx_tcp_udp_chksum_err;
 487	unsigned int n_rx_outer_ip_hdr_chksum_err;
 488	unsigned int n_rx_outer_tcp_udp_chksum_err;
 489	unsigned int n_rx_inner_ip_hdr_chksum_err;
 490	unsigned int n_rx_inner_tcp_udp_chksum_err;
 491	unsigned int n_rx_eth_crc_err;
 492	unsigned int n_rx_mcast_mismatch;
 493	unsigned int n_rx_frm_trunc;
 494	unsigned int n_rx_overlength;
 495	unsigned int n_skbuff_leaks;
 496	unsigned int n_rx_nodesc_trunc;
 497	unsigned int n_rx_merge_events;
 498	unsigned int n_rx_merge_packets;
 499
 500	unsigned int rx_pkt_n_frags;
 501	unsigned int rx_pkt_index;
 502
 503	struct efx_rx_queue rx_queue;
 504	struct efx_tx_queue tx_queue[EFX_TXQ_TYPES];
 505
 506	enum efx_sync_events_state sync_events_state;
 507	u32 sync_timestamp_major;
 508	u32 sync_timestamp_minor;
 509};
 510
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 511/**
 512 * struct efx_msi_context - Context for each MSI
 513 * @efx: The associated NIC
 514 * @index: Index of the channel/IRQ
 515 * @name: Name of the channel/IRQ
 516 *
 517 * Unlike &struct efx_channel, this is never reallocated and is always
 518 * safe for the IRQ handler to access.
 519 */
 520struct efx_msi_context {
 521	struct efx_nic *efx;
 522	unsigned int index;
 523	char name[IFNAMSIZ + 6];
 524};
 525
 526/**
 527 * struct efx_channel_type - distinguishes traffic and extra channels
 528 * @handle_no_channel: Handle failure to allocate an extra channel
 529 * @pre_probe: Set up extra state prior to initialisation
 530 * @post_remove: Tear down extra state after finalisation, if allocated.
 531 *	May be called on channels that have not been probed.
 532 * @get_name: Generate the channel's name (used for its IRQ handler)
 533 * @copy: Copy the channel state prior to reallocation.  May be %NULL if
 534 *	reallocation is not supported.
 535 * @receive_skb: Handle an skb ready to be passed to netif_receive_skb()
 536 * @want_txqs: Determine whether this channel should have TX queues
 537 *	created.  If %NULL, TX queues are not created.
 538 * @keep_eventq: Flag for whether event queue should be kept initialised
 539 *	while the device is stopped
 540 * @want_pio: Flag for whether PIO buffers should be linked to this
 541 *	channel's TX queues.
 542 */
 543struct efx_channel_type {
 544	void (*handle_no_channel)(struct efx_nic *);
 545	int (*pre_probe)(struct efx_channel *);
 546	void (*post_remove)(struct efx_channel *);
 547	void (*get_name)(struct efx_channel *, char *buf, size_t len);
 548	struct efx_channel *(*copy)(const struct efx_channel *);
 549	bool (*receive_skb)(struct efx_channel *, struct sk_buff *);
 550	bool (*want_txqs)(struct efx_channel *);
 551	bool keep_eventq;
 552	bool want_pio;
 553};
 554
 555enum efx_led_mode {
 556	EFX_LED_OFF	= 0,
 557	EFX_LED_ON	= 1,
 558	EFX_LED_DEFAULT	= 2
 559};
 560
 561#define STRING_TABLE_LOOKUP(val, member) \
 562	((val) < member ## _max) ? member ## _names[val] : "(invalid)"
 563
 564extern const char *const efx_loopback_mode_names[];
 565extern const unsigned int efx_loopback_mode_max;
 566#define LOOPBACK_MODE(efx) \
 567	STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode)
 568
 569extern const char *const efx_reset_type_names[];
 570extern const unsigned int efx_reset_type_max;
 571#define RESET_TYPE(type) \
 572	STRING_TABLE_LOOKUP(type, efx_reset_type)
 573
 574void efx_get_udp_tunnel_type_name(u16 type, char *buf, size_t buflen);
 575
 576enum efx_int_mode {
 577	/* Be careful if altering to correct macro below */
 578	EFX_INT_MODE_MSIX = 0,
 579	EFX_INT_MODE_MSI = 1,
 580	EFX_INT_MODE_LEGACY = 2,
 581	EFX_INT_MODE_MAX	/* Insert any new items before this */
 582};
 583#define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
 584
 585enum nic_state {
 586	STATE_UNINIT = 0,	/* device being probed/removed or is frozen */
 587	STATE_READY = 1,	/* hardware ready and netdev registered */
 588	STATE_DISABLED = 2,	/* device disabled due to hardware errors */
 589	STATE_RECOVERY = 3,	/* device recovering from PCI error */
 590};
 591
 592/* Forward declaration */
 593struct efx_nic;
 594
 595/* Pseudo bit-mask flow control field */
 596#define EFX_FC_RX	FLOW_CTRL_RX
 597#define EFX_FC_TX	FLOW_CTRL_TX
 598#define EFX_FC_AUTO	4
 599
 600/**
 601 * struct efx_link_state - Current state of the link
 602 * @up: Link is up
 603 * @fd: Link is full-duplex
 604 * @fc: Actual flow control flags
 605 * @speed: Link speed (Mbps)
 606 */
 607struct efx_link_state {
 608	bool up;
 609	bool fd;
 610	u8 fc;
 611	unsigned int speed;
 612};
 613
 614static inline bool efx_link_state_equal(const struct efx_link_state *left,
 615					const struct efx_link_state *right)
 616{
 617	return left->up == right->up && left->fd == right->fd &&
 618		left->fc == right->fc && left->speed == right->speed;
 619}
 620
 621/**
 622 * struct efx_phy_operations - Efx PHY operations table
 623 * @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds,
 624 *	efx->loopback_modes.
 625 * @init: Initialise PHY
 626 * @fini: Shut down PHY
 627 * @reconfigure: Reconfigure PHY (e.g. for new link parameters)
 628 * @poll: Update @link_state and report whether it changed.
 629 *	Serialised by the mac_lock.
 630 * @get_link_ksettings: Get ethtool settings. Serialised by the mac_lock.
 631 * @set_link_ksettings: Set ethtool settings. Serialised by the mac_lock.
 632 * @get_fecparam: Get Forward Error Correction settings. Serialised by mac_lock.
 633 * @set_fecparam: Set Forward Error Correction settings. Serialised by mac_lock.
 634 * @set_npage_adv: Set abilities advertised in (Extended) Next Page
 635 *	(only needed where AN bit is set in mmds)
 636 * @test_alive: Test that PHY is 'alive' (online)
 637 * @test_name: Get the name of a PHY-specific test/result
 638 * @run_tests: Run tests and record results as appropriate (offline).
 639 *	Flags are the ethtool tests flags.
 640 */
 641struct efx_phy_operations {
 642	int (*probe) (struct efx_nic *efx);
 643	int (*init) (struct efx_nic *efx);
 644	void (*fini) (struct efx_nic *efx);
 645	void (*remove) (struct efx_nic *efx);
 646	int (*reconfigure) (struct efx_nic *efx);
 647	bool (*poll) (struct efx_nic *efx);
 648	void (*get_link_ksettings)(struct efx_nic *efx,
 649				   struct ethtool_link_ksettings *cmd);
 650	int (*set_link_ksettings)(struct efx_nic *efx,
 651				  const struct ethtool_link_ksettings *cmd);
 652	int (*get_fecparam)(struct efx_nic *efx, struct ethtool_fecparam *fec);
 653	int (*set_fecparam)(struct efx_nic *efx,
 654			    const struct ethtool_fecparam *fec);
 655	void (*set_npage_adv) (struct efx_nic *efx, u32);
 656	int (*test_alive) (struct efx_nic *efx);
 657	const char *(*test_name) (struct efx_nic *efx, unsigned int index);
 658	int (*run_tests) (struct efx_nic *efx, int *results, unsigned flags);
 659	int (*get_module_eeprom) (struct efx_nic *efx,
 660			       struct ethtool_eeprom *ee,
 661			       u8 *data);
 662	int (*get_module_info) (struct efx_nic *efx,
 663				struct ethtool_modinfo *modinfo);
 664};
 665
 666/**
 667 * enum efx_phy_mode - PHY operating mode flags
 668 * @PHY_MODE_NORMAL: on and should pass traffic
 669 * @PHY_MODE_TX_DISABLED: on with TX disabled
 670 * @PHY_MODE_LOW_POWER: set to low power through MDIO
 671 * @PHY_MODE_OFF: switched off through external control
 672 * @PHY_MODE_SPECIAL: on but will not pass traffic
 673 */
 674enum efx_phy_mode {
 675	PHY_MODE_NORMAL		= 0,
 676	PHY_MODE_TX_DISABLED	= 1,
 677	PHY_MODE_LOW_POWER	= 2,
 678	PHY_MODE_OFF		= 4,
 679	PHY_MODE_SPECIAL	= 8,
 680};
 681
 682static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
 683{
 684	return !!(mode & ~PHY_MODE_TX_DISABLED);
 685}
 686
 687/**
 688 * struct efx_hw_stat_desc - Description of a hardware statistic
 689 * @name: Name of the statistic as visible through ethtool, or %NULL if
 690 *	it should not be exposed
 691 * @dma_width: Width in bits (0 for non-DMA statistics)
 692 * @offset: Offset within stats (ignored for non-DMA statistics)
 693 */
 694struct efx_hw_stat_desc {
 695	const char *name;
 696	u16 dma_width;
 697	u16 offset;
 698};
 699
 700/* Number of bits used in a multicast filter hash address */
 701#define EFX_MCAST_HASH_BITS 8
 702
 703/* Number of (single-bit) entries in a multicast filter hash */
 704#define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS)
 705
 706/* An Efx multicast filter hash */
 707union efx_multicast_hash {
 708	u8 byte[EFX_MCAST_HASH_ENTRIES / 8];
 709	efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8];
 710};
 711
 712struct vfdi_status;
 713
 714/* The reserved RSS context value */
 715#define EFX_EF10_RSS_CONTEXT_INVALID	0xffffffff
 716/**
 717 * struct efx_rss_context - A user-defined RSS context for filtering
 718 * @list: node of linked list on which this struct is stored
 719 * @context_id: the RSS_CONTEXT_ID returned by MC firmware, or
 720 *	%EFX_EF10_RSS_CONTEXT_INVALID if this context is not present on the NIC.
 721 *	For Siena, 0 if RSS is active, else %EFX_EF10_RSS_CONTEXT_INVALID.
 722 * @user_id: the rss_context ID exposed to userspace over ethtool.
 723 * @rx_hash_udp_4tuple: UDP 4-tuple hashing enabled
 724 * @rx_hash_key: Toeplitz hash key for this RSS context
 725 * @indir_table: Indirection table for this RSS context
 726 */
 727struct efx_rss_context {
 728	struct list_head list;
 729	u32 context_id;
 730	u32 user_id;
 731	bool rx_hash_udp_4tuple;
 732	u8 rx_hash_key[40];
 733	u32 rx_indir_table[128];
 734};
 735
 736#ifdef CONFIG_RFS_ACCEL
 737/* Order of these is important, since filter_id >= %EFX_ARFS_FILTER_ID_PENDING
 738 * is used to test if filter does or will exist.
 739 */
 740#define EFX_ARFS_FILTER_ID_PENDING	-1
 741#define EFX_ARFS_FILTER_ID_ERROR	-2
 742#define EFX_ARFS_FILTER_ID_REMOVING	-3
 743/**
 744 * struct efx_arfs_rule - record of an ARFS filter and its IDs
 745 * @node: linkage into hash table
 746 * @spec: details of the filter (used as key for hash table).  Use efx->type to
 747 *	determine which member to use.
 748 * @rxq_index: channel to which the filter will steer traffic.
 749 * @arfs_id: filter ID which was returned to ARFS
 750 * @filter_id: index in software filter table.  May be
 751 *	%EFX_ARFS_FILTER_ID_PENDING if filter was not inserted yet,
 752 *	%EFX_ARFS_FILTER_ID_ERROR if filter insertion failed, or
 753 *	%EFX_ARFS_FILTER_ID_REMOVING if expiry is currently removing the filter.
 754 */
 755struct efx_arfs_rule {
 756	struct hlist_node node;
 757	struct efx_filter_spec spec;
 758	u16 rxq_index;
 759	u16 arfs_id;
 760	s32 filter_id;
 761};
 762
 763/* Size chosen so that the table is one page (4kB) */
 764#define EFX_ARFS_HASH_TABLE_SIZE	512
 765
 766/**
 767 * struct efx_async_filter_insertion - Request to asynchronously insert a filter
 768 * @net_dev: Reference to the netdevice
 769 * @spec: The filter to insert
 770 * @work: Workitem for this request
 771 * @rxq_index: Identifies the channel for which this request was made
 772 * @flow_id: Identifies the kernel-side flow for which this request was made
 773 */
 774struct efx_async_filter_insertion {
 775	struct net_device *net_dev;
 776	struct efx_filter_spec spec;
 777	struct work_struct work;
 778	u16 rxq_index;
 779	u32 flow_id;
 780};
 781
 782/* Maximum number of ARFS workitems that may be in flight on an efx_nic */
 783#define EFX_RPS_MAX_IN_FLIGHT	8
 784#endif /* CONFIG_RFS_ACCEL */
 785
 786/**
 787 * struct efx_nic - an Efx NIC
 788 * @name: Device name (net device name or bus id before net device registered)
 789 * @pci_dev: The PCI device
 790 * @node: List node for maintaning primary/secondary function lists
 791 * @primary: &struct efx_nic instance for the primary function of this
 792 *	controller.  May be the same structure, and may be %NULL if no
 793 *	primary function is bound.  Serialised by rtnl_lock.
 794 * @secondary_list: List of &struct efx_nic instances for the secondary PCI
 795 *	functions of the controller, if this is for the primary function.
 796 *	Serialised by rtnl_lock.
 797 * @type: Controller type attributes
 798 * @legacy_irq: IRQ number
 799 * @workqueue: Workqueue for port reconfigures and the HW monitor.
 800 *	Work items do not hold and must not acquire RTNL.
 801 * @workqueue_name: Name of workqueue
 802 * @reset_work: Scheduled reset workitem
 803 * @membase_phys: Memory BAR value as physical address
 804 * @membase: Memory BAR value
 805 * @vi_stride: step between per-VI registers / memory regions
 806 * @interrupt_mode: Interrupt mode
 807 * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
 808 * @timer_max_ns: Interrupt timer maximum value, in nanoseconds
 809 * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
 810 * @irq_rx_mod_step_us: Step size for IRQ moderation for RX event queues
 811 * @irq_rx_moderation_us: IRQ moderation time for RX event queues
 812 * @msg_enable: Log message enable flags
 813 * @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
 814 * @reset_pending: Bitmask for pending resets
 815 * @tx_queue: TX DMA queues
 816 * @rx_queue: RX DMA queues
 817 * @channel: Channels
 818 * @msi_context: Context for each MSI
 819 * @extra_channel_types: Types of extra (non-traffic) channels that
 820 *	should be allocated for this NIC
 821 * @rxq_entries: Size of receive queues requested by user.
 822 * @txq_entries: Size of transmit queues requested by user.
 823 * @txq_stop_thresh: TX queue fill level at or above which we stop it.
 824 * @txq_wake_thresh: TX queue fill level at or below which we wake it.
 825 * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
 826 * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
 827 * @sram_lim_qw: Qword address limit of SRAM
 828 * @next_buffer_table: First available buffer table id
 829 * @n_channels: Number of channels in use
 830 * @n_rx_channels: Number of channels used for RX (= number of RX queues)
 831 * @n_tx_channels: Number of channels used for TX
 832 * @n_extra_tx_channels: Number of extra channels with TX queues
 833 * @rx_ip_align: RX DMA address offset to have IP header aligned in
 834 *	in accordance with NET_IP_ALIGN
 835 * @rx_dma_len: Current maximum RX DMA length
 836 * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
 837 * @rx_buffer_truesize: Amortised allocation size of an RX buffer,
 838 *	for use in sk_buff::truesize
 839 * @rx_prefix_size: Size of RX prefix before packet data
 840 * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data
 841 *	(valid only if @rx_prefix_size != 0; always negative)
 842 * @rx_packet_len_offset: Offset of RX packet length from start of packet data
 843 *	(valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative)
 844 * @rx_packet_ts_offset: Offset of timestamp from start of packet data
 845 *	(valid only if channel->sync_timestamps_enabled; always negative)
 
 
 846 * @rx_scatter: Scatter mode enabled for receives
 847 * @rss_context: Main RSS context.  Its @list member is the head of the list of
 848 *	RSS contexts created by user requests
 849 * @rss_lock: Protects custom RSS context software state in @rss_context.list
 850 * @int_error_count: Number of internal errors seen recently
 851 * @int_error_expire: Time at which error count will be expired
 852 * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will
 853 *	acknowledge but do nothing else.
 854 * @irq_status: Interrupt status buffer
 855 * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
 856 * @irq_level: IRQ level/index for IRQs not triggered by an event queue
 857 * @selftest_work: Work item for asynchronous self-test
 858 * @mtd_list: List of MTDs attached to the NIC
 859 * @nic_data: Hardware dependent state
 860 * @mcdi: Management-Controller-to-Driver Interface state
 861 * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
 862 *	efx_monitor() and efx_reconfigure_port()
 863 * @port_enabled: Port enabled indicator.
 864 *	Serialises efx_stop_all(), efx_start_all(), efx_monitor() and
 865 *	efx_mac_work() with kernel interfaces. Safe to read under any
 866 *	one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
 867 *	be held to modify it.
 868 * @port_initialized: Port initialized?
 869 * @net_dev: Operating system network device. Consider holding the rtnl lock
 870 * @fixed_features: Features which cannot be turned off
 871 * @num_mac_stats: Number of MAC stats reported by firmware (MAC_STATS_NUM_STATS
 872 *	field of %MC_CMD_GET_CAPABILITIES_V4 response, or %MC_CMD_MAC_NSTATS)
 873 * @stats_buffer: DMA buffer for statistics
 874 * @phy_type: PHY type
 875 * @phy_op: PHY interface
 876 * @phy_data: PHY private data (including PHY-specific stats)
 877 * @mdio: PHY MDIO interface
 878 * @mdio_bus: PHY MDIO bus ID (only used by Siena)
 879 * @phy_mode: PHY operating mode. Serialised by @mac_lock.
 880 * @link_advertising: Autonegotiation advertising flags
 881 * @fec_config: Forward Error Correction configuration flags.  For bit positions
 882 *	see &enum ethtool_fec_config_bits.
 883 * @link_state: Current state of the link
 884 * @n_link_state_changes: Number of times the link has changed state
 885 * @unicast_filter: Flag for Falcon-arch simple unicast filter.
 886 *	Protected by @mac_lock.
 887 * @multicast_hash: Multicast hash table for Falcon-arch.
 888 *	Protected by @mac_lock.
 889 * @wanted_fc: Wanted flow control flags
 890 * @fc_disable: When non-zero flow control is disabled. Typically used to
 891 *	ensure that network back pressure doesn't delay dma queue flushes.
 892 *	Serialised by the rtnl lock.
 893 * @mac_work: Work item for changing MAC promiscuity and multicast hash
 894 * @loopback_mode: Loopback status
 895 * @loopback_modes: Supported loopback mode bitmask
 896 * @loopback_selftest: Offline self-test private state
 897 * @filter_sem: Filter table rw_semaphore, protects existence of @filter_state
 
 898 * @filter_state: Architecture-dependent filter table state
 899 * @rps_mutex: Protects RPS state of all channels
 900 * @rps_expire_channel: Next channel to check for expiry
 901 * @rps_expire_index: Next index to check for expiry in
 902 *	@rps_expire_channel's @rps_flow_id
 903 * @rps_slot_map: bitmap of in-flight entries in @rps_slot
 904 * @rps_slot: array of ARFS insertion requests for efx_filter_rfs_work()
 905 * @rps_hash_lock: Protects ARFS filter mapping state (@rps_hash_table and
 906 *	@rps_next_id).
 907 * @rps_hash_table: Mapping between ARFS filters and their various IDs
 908 * @rps_next_id: next arfs_id for an ARFS filter
 909 * @active_queues: Count of RX and TX queues that haven't been flushed and drained.
 910 * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
 911 *	Decremented when the efx_flush_rx_queue() is called.
 912 * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
 913 *	completed (either success or failure). Not used when MCDI is used to
 914 *	flush receive queues.
 915 * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions.
 916 * @vf_count: Number of VFs intended to be enabled.
 917 * @vf_init_count: Number of VFs that have been fully initialised.
 918 * @vi_scale: log2 number of vnics per VF.
 919 * @ptp_data: PTP state data
 920 * @ptp_warned: has this NIC seen and warned about unexpected PTP events?
 921 * @vpd_sn: Serial number read from VPD
 922 * @monitor_work: Hardware monitor workitem
 923 * @biu_lock: BIU (bus interface unit) lock
 924 * @last_irq_cpu: Last CPU to handle a possible test interrupt.  This
 925 *	field is used by efx_test_interrupts() to verify that an
 926 *	interrupt has occurred.
 927 * @stats_lock: Statistics update lock. Must be held when calling
 928 *	efx_nic_type::{update,start,stop}_stats.
 929 * @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb
 
 930 *
 931 * This is stored in the private area of the &struct net_device.
 932 */
 933struct efx_nic {
 934	/* The following fields should be written very rarely */
 935
 936	char name[IFNAMSIZ];
 937	struct list_head node;
 938	struct efx_nic *primary;
 939	struct list_head secondary_list;
 940	struct pci_dev *pci_dev;
 941	unsigned int port_num;
 942	const struct efx_nic_type *type;
 943	int legacy_irq;
 944	bool eeh_disabled_legacy_irq;
 945	struct workqueue_struct *workqueue;
 946	char workqueue_name[16];
 947	struct work_struct reset_work;
 948	resource_size_t membase_phys;
 949	void __iomem *membase;
 950
 951	unsigned int vi_stride;
 952
 953	enum efx_int_mode interrupt_mode;
 954	unsigned int timer_quantum_ns;
 955	unsigned int timer_max_ns;
 956	bool irq_rx_adaptive;
 957	unsigned int irq_mod_step_us;
 958	unsigned int irq_rx_moderation_us;
 959	u32 msg_enable;
 960
 961	enum nic_state state;
 962	unsigned long reset_pending;
 963
 964	struct efx_channel *channel[EFX_MAX_CHANNELS];
 965	struct efx_msi_context msi_context[EFX_MAX_CHANNELS];
 966	const struct efx_channel_type *
 967	extra_channel_type[EFX_MAX_EXTRA_CHANNELS];
 968
 969	unsigned rxq_entries;
 970	unsigned txq_entries;
 971	unsigned int txq_stop_thresh;
 972	unsigned int txq_wake_thresh;
 973
 974	unsigned tx_dc_base;
 975	unsigned rx_dc_base;
 976	unsigned sram_lim_qw;
 977	unsigned next_buffer_table;
 978
 979	unsigned int max_channels;
 980	unsigned int max_tx_channels;
 981	unsigned n_channels;
 982	unsigned n_rx_channels;
 983	unsigned rss_spread;
 984	unsigned tx_channel_offset;
 985	unsigned n_tx_channels;
 986	unsigned n_extra_tx_channels;
 987	unsigned int rx_ip_align;
 988	unsigned int rx_dma_len;
 989	unsigned int rx_buffer_order;
 990	unsigned int rx_buffer_truesize;
 991	unsigned int rx_page_buf_step;
 992	unsigned int rx_bufs_per_page;
 993	unsigned int rx_pages_per_batch;
 994	unsigned int rx_prefix_size;
 995	int rx_packet_hash_offset;
 996	int rx_packet_len_offset;
 997	int rx_packet_ts_offset;
 
 
 998	bool rx_scatter;
 999	struct efx_rss_context rss_context;
1000	struct mutex rss_lock;
1001
1002	unsigned int_error_count;
1003	unsigned long int_error_expire;
1004
1005	bool irq_soft_enabled;
1006	struct efx_buffer irq_status;
1007	unsigned irq_zero_count;
1008	unsigned irq_level;
1009	struct delayed_work selftest_work;
1010
1011#ifdef CONFIG_SFC_MTD
1012	struct list_head mtd_list;
1013#endif
1014
1015	void *nic_data;
1016	struct efx_mcdi_data *mcdi;
1017
1018	struct mutex mac_lock;
1019	struct work_struct mac_work;
1020	bool port_enabled;
1021
1022	bool mc_bist_for_other_fn;
1023	bool port_initialized;
1024	struct net_device *net_dev;
1025
1026	netdev_features_t fixed_features;
1027
1028	u16 num_mac_stats;
1029	struct efx_buffer stats_buffer;
1030	u64 rx_nodesc_drops_total;
1031	u64 rx_nodesc_drops_while_down;
1032	bool rx_nodesc_drops_prev_state;
1033
1034	unsigned int phy_type;
1035	const struct efx_phy_operations *phy_op;
1036	void *phy_data;
1037	struct mdio_if_info mdio;
1038	unsigned int mdio_bus;
1039	enum efx_phy_mode phy_mode;
1040
1041	__ETHTOOL_DECLARE_LINK_MODE_MASK(link_advertising);
1042	u32 fec_config;
1043	struct efx_link_state link_state;
1044	unsigned int n_link_state_changes;
1045
1046	bool unicast_filter;
1047	union efx_multicast_hash multicast_hash;
1048	u8 wanted_fc;
1049	unsigned fc_disable;
1050
1051	atomic_t rx_reset;
1052	enum efx_loopback_mode loopback_mode;
1053	u64 loopback_modes;
1054
1055	void *loopback_selftest;
1056
1057	struct rw_semaphore filter_sem;
 
1058	void *filter_state;
1059#ifdef CONFIG_RFS_ACCEL
1060	struct mutex rps_mutex;
1061	unsigned int rps_expire_channel;
1062	unsigned int rps_expire_index;
1063	unsigned long rps_slot_map;
1064	struct efx_async_filter_insertion rps_slot[EFX_RPS_MAX_IN_FLIGHT];
1065	spinlock_t rps_hash_lock;
1066	struct hlist_head *rps_hash_table;
1067	u32 rps_next_id;
1068#endif
1069
1070	atomic_t active_queues;
1071	atomic_t rxq_flush_pending;
1072	atomic_t rxq_flush_outstanding;
1073	wait_queue_head_t flush_wq;
1074
1075#ifdef CONFIG_SFC_SRIOV
1076	unsigned vf_count;
1077	unsigned vf_init_count;
1078	unsigned vi_scale;
1079#endif
1080
1081	struct efx_ptp_data *ptp_data;
1082	bool ptp_warned;
1083
1084	char *vpd_sn;
1085
1086	/* The following fields may be written more often */
1087
1088	struct delayed_work monitor_work ____cacheline_aligned_in_smp;
1089	spinlock_t biu_lock;
1090	int last_irq_cpu;
1091	spinlock_t stats_lock;
1092	atomic_t n_rx_noskb_drops;
 
1093};
1094
1095static inline int efx_dev_registered(struct efx_nic *efx)
1096{
1097	return efx->net_dev->reg_state == NETREG_REGISTERED;
1098}
1099
1100static inline unsigned int efx_port_num(struct efx_nic *efx)
1101{
1102	return efx->port_num;
1103}
1104
1105struct efx_mtd_partition {
1106	struct list_head node;
1107	struct mtd_info mtd;
1108	const char *dev_type_name;
1109	const char *type_name;
1110	char name[IFNAMSIZ + 20];
1111};
1112
1113struct efx_udp_tunnel {
1114	u16 type; /* TUNNEL_ENCAP_UDP_PORT_ENTRY_foo, see mcdi_pcol.h */
1115	__be16 port;
1116	/* Count of repeated adds of the same port.  Used only inside the list,
1117	 * not in request arguments.
1118	 */
1119	u16 count;
1120};
1121
1122/**
1123 * struct efx_nic_type - Efx device type definition
1124 * @mem_bar: Get the memory BAR
1125 * @mem_map_size: Get memory BAR mapped size
1126 * @probe: Probe the controller
1127 * @remove: Free resources allocated by probe()
1128 * @init: Initialise the controller
1129 * @dimension_resources: Dimension controller resources (buffer table,
1130 *	and VIs once the available interrupt resources are clear)
1131 * @fini: Shut down the controller
1132 * @monitor: Periodic function for polling link state and hardware monitor
1133 * @map_reset_reason: Map ethtool reset reason to a reset method
1134 * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
1135 * @reset: Reset the controller hardware and possibly the PHY.  This will
1136 *	be called while the controller is uninitialised.
1137 * @probe_port: Probe the MAC and PHY
1138 * @remove_port: Free resources allocated by probe_port()
1139 * @handle_global_event: Handle a "global" event (may be %NULL)
1140 * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues)
1141 * @prepare_flush: Prepare the hardware for flushing the DMA queues
1142 *	(for Falcon architecture)
1143 * @finish_flush: Clean up after flushing the DMA queues (for Falcon
1144 *	architecture)
1145 * @prepare_flr: Prepare for an FLR
1146 * @finish_flr: Clean up after an FLR
1147 * @describe_stats: Describe statistics for ethtool
1148 * @update_stats: Update statistics not provided by event handling.
1149 *	Either argument may be %NULL.
1150 * @start_stats: Start the regular fetching of statistics
1151 * @pull_stats: Pull stats from the NIC and wait until they arrive.
1152 * @stop_stats: Stop the regular fetching of statistics
1153 * @set_id_led: Set state of identifying LED or revert to automatic function
1154 * @push_irq_moderation: Apply interrupt moderation value
1155 * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
1156 * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL)
1157 * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
1158 *	to the hardware.  Serialised by the mac_lock.
1159 * @check_mac_fault: Check MAC fault state. True if fault present.
1160 * @get_wol: Get WoL configuration from driver state
1161 * @set_wol: Push WoL configuration to the NIC
1162 * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
1163 * @test_chip: Test registers.  May use efx_farch_test_registers(), and is
1164 *	expected to reset the NIC.
1165 * @test_nvram: Test validity of NVRAM contents
1166 * @mcdi_request: Send an MCDI request with the given header and SDU.
1167 *	The SDU length may be any value from 0 up to the protocol-
1168 *	defined maximum, but its buffer will be padded to a multiple
1169 *	of 4 bytes.
1170 * @mcdi_poll_response: Test whether an MCDI response is available.
1171 * @mcdi_read_response: Read the MCDI response PDU.  The offset will
1172 *	be a multiple of 4.  The length may not be, but the buffer
1173 *	will be padded so it is safe to round up.
1174 * @mcdi_poll_reboot: Test whether the MCDI has rebooted.  If so,
1175 *	return an appropriate error code for aborting any current
1176 *	request; otherwise return 0.
1177 * @irq_enable_master: Enable IRQs on the NIC.  Each event queue must
1178 *	be separately enabled after this.
1179 * @irq_test_generate: Generate a test IRQ
1180 * @irq_disable_non_ev: Disable non-event IRQs on the NIC.  Each event
1181 *	queue must be separately disabled before this.
1182 * @irq_handle_msi: Handle MSI for a channel.  The @dev_id argument is
1183 *	a pointer to the &struct efx_msi_context for the channel.
1184 * @irq_handle_legacy: Handle legacy interrupt.  The @dev_id argument
1185 *	is a pointer to the &struct efx_nic.
1186 * @tx_probe: Allocate resources for TX queue
1187 * @tx_init: Initialise TX queue on the NIC
1188 * @tx_remove: Free resources for TX queue
1189 * @tx_write: Write TX descriptors and doorbell
1190 * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC
1191 * @rx_pull_rss_config: Read RSS hash key and indirection table back from the NIC
1192 * @rx_push_rss_context_config: Write RSS hash key and indirection table for
1193 *	user RSS context to the NIC
1194 * @rx_pull_rss_context_config: Read RSS hash key and indirection table for user
1195 *	RSS context back from the NIC
1196 * @rx_probe: Allocate resources for RX queue
1197 * @rx_init: Initialise RX queue on the NIC
1198 * @rx_remove: Free resources for RX queue
1199 * @rx_write: Write RX descriptors and doorbell
1200 * @rx_defer_refill: Generate a refill reminder event
1201 * @ev_probe: Allocate resources for event queue
1202 * @ev_init: Initialise event queue on the NIC
1203 * @ev_fini: Deinitialise event queue on the NIC
1204 * @ev_remove: Free resources for event queue
1205 * @ev_process: Process events for a queue, up to the given NAPI quota
1206 * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ
1207 * @ev_test_generate: Generate a test event
1208 * @filter_table_probe: Probe filter capabilities and set up filter software state
1209 * @filter_table_restore: Restore filters removed from hardware
1210 * @filter_table_remove: Remove filters from hardware and tear down software state
1211 * @filter_update_rx_scatter: Update filters after change to rx scatter setting
1212 * @filter_insert: add or replace a filter
1213 * @filter_remove_safe: remove a filter by ID, carefully
1214 * @filter_get_safe: retrieve a filter by ID, carefully
1215 * @filter_clear_rx: Remove all RX filters whose priority is less than or
1216 *	equal to the given priority and is not %EFX_FILTER_PRI_AUTO
1217 * @filter_count_rx_used: Get the number of filters in use at a given priority
1218 * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1
1219 * @filter_get_rx_ids: Get list of RX filters at a given priority
 
 
 
 
1220 * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS.
1221 *	This must check whether the specified table entry is used by RFS
1222 *	and that rps_may_expire_flow() returns true for it.
1223 * @mtd_probe: Probe and add MTD partitions associated with this net device,
1224 *	 using efx_mtd_add()
1225 * @mtd_rename: Set an MTD partition name using the net device name
1226 * @mtd_read: Read from an MTD partition
1227 * @mtd_erase: Erase part of an MTD partition
1228 * @mtd_write: Write to an MTD partition
1229 * @mtd_sync: Wait for write-back to complete on MTD partition.  This
1230 *	also notifies the driver that a writer has finished using this
1231 *	partition.
1232 * @ptp_write_host_time: Send host time to MC as part of sync protocol
1233 * @ptp_set_ts_sync_events: Enable or disable sync events for inline RX
1234 *	timestamping, possibly only temporarily for the purposes of a reset.
1235 * @ptp_set_ts_config: Set hardware timestamp configuration.  The flags
1236 *	and tx_type will already have been validated but this operation
1237 *	must validate and update rx_filter.
1238 * @get_phys_port_id: Get the underlying physical port id.
1239 * @set_mac_address: Set the MAC address of the device
1240 * @tso_versions: Returns mask of firmware-assisted TSO versions supported.
1241 *	If %NULL, then device does not support any TSO version.
1242 * @udp_tnl_push_ports: Push the list of UDP tunnel ports to the NIC if required.
1243 * @udp_tnl_add_port: Add a UDP tunnel port
1244 * @udp_tnl_has_port: Check if a port has been added as UDP tunnel
1245 * @udp_tnl_del_port: Remove a UDP tunnel port
1246 * @revision: Hardware architecture revision
1247 * @txd_ptr_tbl_base: TX descriptor ring base address
1248 * @rxd_ptr_tbl_base: RX descriptor ring base address
1249 * @buf_tbl_base: Buffer table base address
1250 * @evq_ptr_tbl_base: Event queue pointer table base address
1251 * @evq_rptr_tbl_base: Event queue read-pointer table base address
1252 * @max_dma_mask: Maximum possible DMA mask
1253 * @rx_prefix_size: Size of RX prefix before packet data
1254 * @rx_hash_offset: Offset of RX flow hash within prefix
1255 * @rx_ts_offset: Offset of timestamp within prefix
1256 * @rx_buffer_padding: Size of padding at end of RX packet
1257 * @can_rx_scatter: NIC is able to scatter packets to multiple buffers
1258 * @always_rx_scatter: NIC will always scatter packets to multiple buffers
1259 * @option_descriptors: NIC supports TX option descriptors
1260 * @min_interrupt_mode: Lowest capability interrupt mode supported
1261 *	from &enum efx_int_mode.
1262 * @max_interrupt_mode: Highest capability interrupt mode supported
1263 *	from &enum efx_int_mode.
1264 * @timer_period_max: Maximum period of interrupt timer (in ticks)
1265 * @offload_features: net_device feature flags for protocol offload
1266 *	features implemented in hardware
1267 * @mcdi_max_ver: Maximum MCDI version supported
1268 * @hwtstamp_filters: Mask of hardware timestamp filter types supported
1269 */
1270struct efx_nic_type {
1271	bool is_vf;
1272	unsigned int (*mem_bar)(struct efx_nic *efx);
1273	unsigned int (*mem_map_size)(struct efx_nic *efx);
1274	int (*probe)(struct efx_nic *efx);
1275	void (*remove)(struct efx_nic *efx);
1276	int (*init)(struct efx_nic *efx);
1277	int (*dimension_resources)(struct efx_nic *efx);
1278	void (*fini)(struct efx_nic *efx);
1279	void (*monitor)(struct efx_nic *efx);
1280	enum reset_type (*map_reset_reason)(enum reset_type reason);
1281	int (*map_reset_flags)(u32 *flags);
1282	int (*reset)(struct efx_nic *efx, enum reset_type method);
1283	int (*probe_port)(struct efx_nic *efx);
1284	void (*remove_port)(struct efx_nic *efx);
1285	bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *);
1286	int (*fini_dmaq)(struct efx_nic *efx);
1287	void (*prepare_flush)(struct efx_nic *efx);
1288	void (*finish_flush)(struct efx_nic *efx);
1289	void (*prepare_flr)(struct efx_nic *efx);
1290	void (*finish_flr)(struct efx_nic *efx);
1291	size_t (*describe_stats)(struct efx_nic *efx, u8 *names);
1292	size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats,
1293			       struct rtnl_link_stats64 *core_stats);
1294	void (*start_stats)(struct efx_nic *efx);
1295	void (*pull_stats)(struct efx_nic *efx);
1296	void (*stop_stats)(struct efx_nic *efx);
1297	void (*set_id_led)(struct efx_nic *efx, enum efx_led_mode mode);
1298	void (*push_irq_moderation)(struct efx_channel *channel);
1299	int (*reconfigure_port)(struct efx_nic *efx);
1300	void (*prepare_enable_fc_tx)(struct efx_nic *efx);
1301	int (*reconfigure_mac)(struct efx_nic *efx);
1302	bool (*check_mac_fault)(struct efx_nic *efx);
1303	void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
1304	int (*set_wol)(struct efx_nic *efx, u32 type);
1305	void (*resume_wol)(struct efx_nic *efx);
1306	int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests);
1307	int (*test_nvram)(struct efx_nic *efx);
1308	void (*mcdi_request)(struct efx_nic *efx,
1309			     const efx_dword_t *hdr, size_t hdr_len,
1310			     const efx_dword_t *sdu, size_t sdu_len);
1311	bool (*mcdi_poll_response)(struct efx_nic *efx);
1312	void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu,
1313				   size_t pdu_offset, size_t pdu_len);
1314	int (*mcdi_poll_reboot)(struct efx_nic *efx);
1315	void (*mcdi_reboot_detected)(struct efx_nic *efx);
1316	void (*irq_enable_master)(struct efx_nic *efx);
1317	int (*irq_test_generate)(struct efx_nic *efx);
1318	void (*irq_disable_non_ev)(struct efx_nic *efx);
1319	irqreturn_t (*irq_handle_msi)(int irq, void *dev_id);
1320	irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id);
1321	int (*tx_probe)(struct efx_tx_queue *tx_queue);
1322	void (*tx_init)(struct efx_tx_queue *tx_queue);
1323	void (*tx_remove)(struct efx_tx_queue *tx_queue);
1324	void (*tx_write)(struct efx_tx_queue *tx_queue);
1325	unsigned int (*tx_limit_len)(struct efx_tx_queue *tx_queue,
1326				     dma_addr_t dma_addr, unsigned int len);
1327	int (*rx_push_rss_config)(struct efx_nic *efx, bool user,
1328				  const u32 *rx_indir_table, const u8 *key);
1329	int (*rx_pull_rss_config)(struct efx_nic *efx);
1330	int (*rx_push_rss_context_config)(struct efx_nic *efx,
1331					  struct efx_rss_context *ctx,
1332					  const u32 *rx_indir_table,
1333					  const u8 *key);
1334	int (*rx_pull_rss_context_config)(struct efx_nic *efx,
1335					  struct efx_rss_context *ctx);
1336	void (*rx_restore_rss_contexts)(struct efx_nic *efx);
1337	int (*rx_probe)(struct efx_rx_queue *rx_queue);
1338	void (*rx_init)(struct efx_rx_queue *rx_queue);
1339	void (*rx_remove)(struct efx_rx_queue *rx_queue);
1340	void (*rx_write)(struct efx_rx_queue *rx_queue);
1341	void (*rx_defer_refill)(struct efx_rx_queue *rx_queue);
1342	int (*ev_probe)(struct efx_channel *channel);
1343	int (*ev_init)(struct efx_channel *channel);
1344	void (*ev_fini)(struct efx_channel *channel);
1345	void (*ev_remove)(struct efx_channel *channel);
1346	int (*ev_process)(struct efx_channel *channel, int quota);
1347	void (*ev_read_ack)(struct efx_channel *channel);
1348	void (*ev_test_generate)(struct efx_channel *channel);
1349	int (*filter_table_probe)(struct efx_nic *efx);
1350	void (*filter_table_restore)(struct efx_nic *efx);
1351	void (*filter_table_remove)(struct efx_nic *efx);
1352	void (*filter_update_rx_scatter)(struct efx_nic *efx);
1353	s32 (*filter_insert)(struct efx_nic *efx,
1354			     struct efx_filter_spec *spec, bool replace);
1355	int (*filter_remove_safe)(struct efx_nic *efx,
1356				  enum efx_filter_priority priority,
1357				  u32 filter_id);
1358	int (*filter_get_safe)(struct efx_nic *efx,
1359			       enum efx_filter_priority priority,
1360			       u32 filter_id, struct efx_filter_spec *);
1361	int (*filter_clear_rx)(struct efx_nic *efx,
1362			       enum efx_filter_priority priority);
1363	u32 (*filter_count_rx_used)(struct efx_nic *efx,
1364				    enum efx_filter_priority priority);
1365	u32 (*filter_get_rx_id_limit)(struct efx_nic *efx);
1366	s32 (*filter_get_rx_ids)(struct efx_nic *efx,
1367				 enum efx_filter_priority priority,
1368				 u32 *buf, u32 size);
1369#ifdef CONFIG_RFS_ACCEL
 
 
1370	bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id,
1371				      unsigned int index);
1372#endif
1373#ifdef CONFIG_SFC_MTD
1374	int (*mtd_probe)(struct efx_nic *efx);
1375	void (*mtd_rename)(struct efx_mtd_partition *part);
1376	int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len,
1377			size_t *retlen, u8 *buffer);
1378	int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len);
1379	int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len,
1380			 size_t *retlen, const u8 *buffer);
1381	int (*mtd_sync)(struct mtd_info *mtd);
1382#endif
1383	void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time);
1384	int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp);
1385	int (*ptp_set_ts_config)(struct efx_nic *efx,
1386				 struct hwtstamp_config *init);
1387	int (*sriov_configure)(struct efx_nic *efx, int num_vfs);
1388	int (*vlan_rx_add_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1389	int (*vlan_rx_kill_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1390	int (*get_phys_port_id)(struct efx_nic *efx,
1391				struct netdev_phys_item_id *ppid);
1392	int (*sriov_init)(struct efx_nic *efx);
1393	void (*sriov_fini)(struct efx_nic *efx);
1394	bool (*sriov_wanted)(struct efx_nic *efx);
1395	void (*sriov_reset)(struct efx_nic *efx);
1396	void (*sriov_flr)(struct efx_nic *efx, unsigned vf_i);
1397	int (*sriov_set_vf_mac)(struct efx_nic *efx, int vf_i, u8 *mac);
1398	int (*sriov_set_vf_vlan)(struct efx_nic *efx, int vf_i, u16 vlan,
1399				 u8 qos);
1400	int (*sriov_set_vf_spoofchk)(struct efx_nic *efx, int vf_i,
1401				     bool spoofchk);
1402	int (*sriov_get_vf_config)(struct efx_nic *efx, int vf_i,
1403				   struct ifla_vf_info *ivi);
1404	int (*sriov_set_vf_link_state)(struct efx_nic *efx, int vf_i,
1405				       int link_state);
 
 
1406	int (*vswitching_probe)(struct efx_nic *efx);
1407	int (*vswitching_restore)(struct efx_nic *efx);
1408	void (*vswitching_remove)(struct efx_nic *efx);
1409	int (*get_mac_address)(struct efx_nic *efx, unsigned char *perm_addr);
1410	int (*set_mac_address)(struct efx_nic *efx);
1411	u32 (*tso_versions)(struct efx_nic *efx);
1412	int (*udp_tnl_push_ports)(struct efx_nic *efx);
1413	int (*udp_tnl_add_port)(struct efx_nic *efx, struct efx_udp_tunnel tnl);
1414	bool (*udp_tnl_has_port)(struct efx_nic *efx, __be16 port);
1415	int (*udp_tnl_del_port)(struct efx_nic *efx, struct efx_udp_tunnel tnl);
1416
1417	int revision;
1418	unsigned int txd_ptr_tbl_base;
1419	unsigned int rxd_ptr_tbl_base;
1420	unsigned int buf_tbl_base;
1421	unsigned int evq_ptr_tbl_base;
1422	unsigned int evq_rptr_tbl_base;
1423	u64 max_dma_mask;
1424	unsigned int rx_prefix_size;
1425	unsigned int rx_hash_offset;
1426	unsigned int rx_ts_offset;
1427	unsigned int rx_buffer_padding;
1428	bool can_rx_scatter;
1429	bool always_rx_scatter;
1430	bool option_descriptors;
1431	unsigned int min_interrupt_mode;
1432	unsigned int max_interrupt_mode;
1433	unsigned int timer_period_max;
1434	netdev_features_t offload_features;
1435	int mcdi_max_ver;
1436	unsigned int max_rx_ip_filters;
1437	u32 hwtstamp_filters;
1438	unsigned int rx_hash_key_size;
1439};
1440
1441/**************************************************************************
1442 *
1443 * Prototypes and inline functions
1444 *
1445 *************************************************************************/
1446
1447static inline struct efx_channel *
1448efx_get_channel(struct efx_nic *efx, unsigned index)
1449{
1450	EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_channels);
1451	return efx->channel[index];
1452}
1453
1454/* Iterate over all used channels */
1455#define efx_for_each_channel(_channel, _efx)				\
1456	for (_channel = (_efx)->channel[0];				\
1457	     _channel;							\
1458	     _channel = (_channel->channel + 1 < (_efx)->n_channels) ?	\
1459		     (_efx)->channel[_channel->channel + 1] : NULL)
1460
1461/* Iterate over all used channels in reverse */
1462#define efx_for_each_channel_rev(_channel, _efx)			\
1463	for (_channel = (_efx)->channel[(_efx)->n_channels - 1];	\
1464	     _channel;							\
1465	     _channel = _channel->channel ?				\
1466		     (_efx)->channel[_channel->channel - 1] : NULL)
1467
1468static inline struct efx_tx_queue *
1469efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type)
1470{
1471	EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_tx_channels ||
1472				  type >= EFX_TXQ_TYPES);
1473	return &efx->channel[efx->tx_channel_offset + index]->tx_queue[type];
1474}
1475
1476static inline bool efx_channel_has_tx_queues(struct efx_channel *channel)
1477{
1478	return channel->type && channel->type->want_txqs &&
1479				channel->type->want_txqs(channel);
1480}
1481
1482static inline struct efx_tx_queue *
1483efx_channel_get_tx_queue(struct efx_channel *channel, unsigned type)
1484{
1485	EFX_WARN_ON_ONCE_PARANOID(!efx_channel_has_tx_queues(channel) ||
1486				  type >= EFX_TXQ_TYPES);
1487	return &channel->tx_queue[type];
1488}
1489
1490static inline bool efx_tx_queue_used(struct efx_tx_queue *tx_queue)
1491{
1492	return !(tx_queue->efx->net_dev->num_tc < 2 &&
1493		 tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI);
1494}
1495
1496/* Iterate over all TX queues belonging to a channel */
1497#define efx_for_each_channel_tx_queue(_tx_queue, _channel)		\
1498	if (!efx_channel_has_tx_queues(_channel))			\
1499		;							\
1500	else								\
1501		for (_tx_queue = (_channel)->tx_queue;			\
1502		     _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES && \
1503			     efx_tx_queue_used(_tx_queue);		\
1504		     _tx_queue++)
1505
1506/* Iterate over all possible TX queues belonging to a channel */
1507#define efx_for_each_possible_channel_tx_queue(_tx_queue, _channel)	\
1508	if (!efx_channel_has_tx_queues(_channel))			\
1509		;							\
1510	else								\
1511		for (_tx_queue = (_channel)->tx_queue;			\
1512		     _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES;	\
1513		     _tx_queue++)
1514
1515static inline bool efx_channel_has_rx_queue(struct efx_channel *channel)
1516{
1517	return channel->rx_queue.core_index >= 0;
1518}
1519
1520static inline struct efx_rx_queue *
1521efx_channel_get_rx_queue(struct efx_channel *channel)
1522{
1523	EFX_WARN_ON_ONCE_PARANOID(!efx_channel_has_rx_queue(channel));
1524	return &channel->rx_queue;
1525}
1526
1527/* Iterate over all RX queues belonging to a channel */
1528#define efx_for_each_channel_rx_queue(_rx_queue, _channel)		\
1529	if (!efx_channel_has_rx_queue(_channel))			\
1530		;							\
1531	else								\
1532		for (_rx_queue = &(_channel)->rx_queue;			\
1533		     _rx_queue;						\
1534		     _rx_queue = NULL)
1535
1536static inline struct efx_channel *
1537efx_rx_queue_channel(struct efx_rx_queue *rx_queue)
1538{
1539	return container_of(rx_queue, struct efx_channel, rx_queue);
1540}
1541
1542static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue)
1543{
1544	return efx_rx_queue_channel(rx_queue)->channel;
1545}
1546
1547/* Returns a pointer to the specified receive buffer in the RX
1548 * descriptor queue.
1549 */
1550static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
1551						  unsigned int index)
1552{
1553	return &rx_queue->buffer[index];
1554}
1555
1556/**
1557 * EFX_MAX_FRAME_LEN - calculate maximum frame length
1558 *
1559 * This calculates the maximum frame length that will be used for a
1560 * given MTU.  The frame length will be equal to the MTU plus a
1561 * constant amount of header space and padding.  This is the quantity
1562 * that the net driver will program into the MAC as the maximum frame
1563 * length.
1564 *
1565 * The 10G MAC requires 8-byte alignment on the frame
1566 * length, so we round up to the nearest 8.
1567 *
1568 * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
1569 * XGMII cycle).  If the frame length reaches the maximum value in the
1570 * same cycle, the XMAC can miss the IPG altogether.  We work around
1571 * this by adding a further 16 bytes.
1572 */
1573#define EFX_FRAME_PAD	16
1574#define EFX_MAX_FRAME_LEN(mtu) \
1575	(ALIGN(((mtu) + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN + EFX_FRAME_PAD), 8))
1576
1577static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb)
1578{
1579	return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP;
1580}
1581static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb)
1582{
1583	skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1584}
1585
1586/* Get all supported features.
1587 * If a feature is not fixed, it is present in hw_features.
1588 * If a feature is fixed, it does not present in hw_features, but
1589 * always in features.
1590 */
1591static inline netdev_features_t efx_supported_features(const struct efx_nic *efx)
1592{
1593	const struct net_device *net_dev = efx->net_dev;
1594
1595	return net_dev->features | net_dev->hw_features;
1596}
1597
1598/* Get the current TX queue insert index. */
1599static inline unsigned int
1600efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
1601{
1602	return tx_queue->insert_count & tx_queue->ptr_mask;
1603}
1604
1605/* Get a TX buffer. */
1606static inline struct efx_tx_buffer *
1607__efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
1608{
1609	return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
1610}
1611
1612/* Get a TX buffer, checking it's not currently in use. */
1613static inline struct efx_tx_buffer *
1614efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
1615{
1616	struct efx_tx_buffer *buffer =
1617		__efx_tx_queue_get_insert_buffer(tx_queue);
1618
1619	EFX_WARN_ON_ONCE_PARANOID(buffer->len);
1620	EFX_WARN_ON_ONCE_PARANOID(buffer->flags);
1621	EFX_WARN_ON_ONCE_PARANOID(buffer->unmap_len);
1622
1623	return buffer;
1624}
1625
1626#endif /* EFX_NET_DRIVER_H */
v4.6
   1/****************************************************************************
   2 * Driver for Solarflare network controllers and boards
   3 * Copyright 2005-2006 Fen Systems Ltd.
   4 * Copyright 2005-2013 Solarflare Communications Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation, incorporated herein by reference.
   9 */
  10
  11/* Common definitions for all Efx net driver code */
  12
  13#ifndef EFX_NET_DRIVER_H
  14#define EFX_NET_DRIVER_H
  15
  16#include <linux/netdevice.h>
  17#include <linux/etherdevice.h>
  18#include <linux/ethtool.h>
  19#include <linux/if_vlan.h>
  20#include <linux/timer.h>
  21#include <linux/mdio.h>
  22#include <linux/list.h>
  23#include <linux/pci.h>
  24#include <linux/device.h>
  25#include <linux/highmem.h>
  26#include <linux/workqueue.h>
  27#include <linux/mutex.h>
  28#include <linux/rwsem.h>
  29#include <linux/vmalloc.h>
  30#include <linux/i2c.h>
  31#include <linux/mtd/mtd.h>
  32#include <net/busy_poll.h>
  33
  34#include "enum.h"
  35#include "bitfield.h"
  36#include "filter.h"
  37
  38/**************************************************************************
  39 *
  40 * Build definitions
  41 *
  42 **************************************************************************/
  43
  44#define EFX_DRIVER_VERSION	"4.0"
  45
  46#ifdef DEBUG
  47#define EFX_BUG_ON_PARANOID(x) BUG_ON(x)
  48#define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
  49#else
  50#define EFX_BUG_ON_PARANOID(x) do {} while (0)
  51#define EFX_WARN_ON_PARANOID(x) do {} while (0)
  52#endif
  53
  54/**************************************************************************
  55 *
  56 * Efx data structures
  57 *
  58 **************************************************************************/
  59
  60#define EFX_MAX_CHANNELS 32U
  61#define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
  62#define EFX_EXTRA_CHANNEL_IOV	0
  63#define EFX_EXTRA_CHANNEL_PTP	1
  64#define EFX_MAX_EXTRA_CHANNELS	2U
  65
  66/* Checksum generation is a per-queue option in hardware, so each
  67 * queue visible to the networking core is backed by two hardware TX
  68 * queues. */
  69#define EFX_MAX_TX_TC		2
  70#define EFX_MAX_CORE_TX_QUEUES	(EFX_MAX_TX_TC * EFX_MAX_CHANNELS)
  71#define EFX_TXQ_TYPE_OFFLOAD	1	/* flag */
  72#define EFX_TXQ_TYPE_HIGHPRI	2	/* flag */
  73#define EFX_TXQ_TYPES		4
  74#define EFX_MAX_TX_QUEUES	(EFX_TXQ_TYPES * EFX_MAX_CHANNELS)
  75
  76/* Maximum possible MTU the driver supports */
  77#define EFX_MAX_MTU (9 * 1024)
  78
 
 
 
  79/* Size of an RX scatter buffer.  Small enough to pack 2 into a 4K page,
  80 * and should be a multiple of the cache line size.
  81 */
  82#define EFX_RX_USR_BUF_SIZE	(2048 - 256)
  83
  84/* If possible, we should ensure cache line alignment at start and end
  85 * of every buffer.  Otherwise, we just need to ensure 4-byte
  86 * alignment of the network header.
  87 */
  88#if NET_IP_ALIGN == 0
  89#define EFX_RX_BUF_ALIGNMENT	L1_CACHE_BYTES
  90#else
  91#define EFX_RX_BUF_ALIGNMENT	4
  92#endif
  93
  94/* Forward declare Precision Time Protocol (PTP) support structure. */
  95struct efx_ptp_data;
  96struct hwtstamp_config;
  97
  98struct efx_self_tests;
  99
 100/**
 101 * struct efx_buffer - A general-purpose DMA buffer
 102 * @addr: host base address of the buffer
 103 * @dma_addr: DMA base address of the buffer
 104 * @len: Buffer length, in bytes
 105 *
 106 * The NIC uses these buffers for its interrupt status registers and
 107 * MAC stats dumps.
 108 */
 109struct efx_buffer {
 110	void *addr;
 111	dma_addr_t dma_addr;
 112	unsigned int len;
 113};
 114
 115/**
 116 * struct efx_special_buffer - DMA buffer entered into buffer table
 117 * @buf: Standard &struct efx_buffer
 118 * @index: Buffer index within controller;s buffer table
 119 * @entries: Number of buffer table entries
 120 *
 121 * The NIC has a buffer table that maps buffers of size %EFX_BUF_SIZE.
 122 * Event and descriptor rings are addressed via one or more buffer
 123 * table entries (and so can be physically non-contiguous, although we
 124 * currently do not take advantage of that).  On Falcon and Siena we
 125 * have to take care of allocating and initialising the entries
 126 * ourselves.  On later hardware this is managed by the firmware and
 127 * @index and @entries are left as 0.
 128 */
 129struct efx_special_buffer {
 130	struct efx_buffer buf;
 131	unsigned int index;
 132	unsigned int entries;
 133};
 134
 135/**
 136 * struct efx_tx_buffer - buffer state for a TX descriptor
 137 * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be
 138 *	freed when descriptor completes
 139 * @heap_buf: When @flags & %EFX_TX_BUF_HEAP, the associated heap buffer to be
 140 *	freed when descriptor completes.
 141 * @option: When @flags & %EFX_TX_BUF_OPTION, a NIC-specific option descriptor.
 142 * @dma_addr: DMA address of the fragment.
 143 * @flags: Flags for allocation and DMA mapping type
 144 * @len: Length of this fragment.
 145 *	This field is zero when the queue slot is empty.
 146 * @unmap_len: Length of this fragment to unmap
 147 * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping.
 148 * Only valid if @unmap_len != 0.
 149 */
 150struct efx_tx_buffer {
 151	union {
 152		const struct sk_buff *skb;
 153		void *heap_buf;
 154	};
 155	union {
 156		efx_qword_t option;
 157		dma_addr_t dma_addr;
 158	};
 159	unsigned short flags;
 160	unsigned short len;
 161	unsigned short unmap_len;
 162	unsigned short dma_offset;
 163};
 164#define EFX_TX_BUF_CONT		1	/* not last descriptor of packet */
 165#define EFX_TX_BUF_SKB		2	/* buffer is last part of skb */
 166#define EFX_TX_BUF_HEAP		4	/* buffer was allocated with kmalloc() */
 167#define EFX_TX_BUF_MAP_SINGLE	8	/* buffer was mapped with dma_map_single() */
 168#define EFX_TX_BUF_OPTION	0x10	/* empty buffer for option descriptor */
 169
 170/**
 171 * struct efx_tx_queue - An Efx TX queue
 172 *
 173 * This is a ring buffer of TX fragments.
 174 * Since the TX completion path always executes on the same
 175 * CPU and the xmit path can operate on different CPUs,
 176 * performance is increased by ensuring that the completion
 177 * path and the xmit path operate on different cache lines.
 178 * This is particularly important if the xmit path is always
 179 * executing on one CPU which is different from the completion
 180 * path.  There is also a cache line for members which are
 181 * read but not written on the fast path.
 182 *
 183 * @efx: The associated Efx NIC
 184 * @queue: DMA queue number
 185 * @tso_version: Version of TSO in use for this queue.
 186 * @channel: The associated channel
 187 * @core_txq: The networking core TX queue structure
 188 * @buffer: The software buffer ring
 189 * @tsoh_page: Array of pages of TSO header buffers
 
 190 * @txd: The hardware descriptor ring
 191 * @ptr_mask: The size of the ring minus 1.
 192 * @piobuf: PIO buffer region for this TX queue (shared with its partner).
 193 *	Size of the region is efx_piobuf_size.
 194 * @piobuf_offset: Buffer offset to be specified in PIO descriptors
 195 * @initialised: Has hardware queue been initialised?
 
 
 
 196 * @read_count: Current read pointer.
 197 *	This is the number of buffers that have been removed from both rings.
 198 * @old_write_count: The value of @write_count when last checked.
 199 *	This is here for performance reasons.  The xmit path will
 200 *	only get the up-to-date value of @write_count if this
 201 *	variable indicates that the queue is empty.  This is to
 202 *	avoid cache-line ping-pong between the xmit path and the
 203 *	completion path.
 204 * @merge_events: Number of TX merged completion events
 
 
 
 
 205 * @insert_count: Current insert pointer
 206 *	This is the number of buffers that have been added to the
 207 *	software ring.
 208 * @write_count: Current write pointer
 209 *	This is the number of buffers that have been added to the
 210 *	hardware ring.
 
 
 
 
 
 
 211 * @old_read_count: The value of read_count when last checked.
 212 *	This is here for performance reasons.  The xmit path will
 213 *	only get the up-to-date value of read_count if this
 214 *	variable indicates that the queue is full.  This is to
 215 *	avoid cache-line ping-pong between the xmit path and the
 216 *	completion path.
 217 * @tso_bursts: Number of times TSO xmit invoked by kernel
 218 * @tso_long_headers: Number of packets with headers too long for standard
 219 *	blocks
 220 * @tso_packets: Number of packets via the TSO xmit path
 
 221 * @pushes: Number of times the TX push feature has been used
 222 * @pio_packets: Number of times the TX PIO feature has been used
 223 * @xmit_more_available: Are any packets waiting to be pushed to the NIC
 
 224 * @empty_read_count: If the completion path has seen the queue as empty
 225 *	and the transmission path has not yet checked this, the value of
 226 *	@read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
 227 */
 228struct efx_tx_queue {
 229	/* Members which don't change on the fast path */
 230	struct efx_nic *efx ____cacheline_aligned_in_smp;
 231	unsigned queue;
 232	unsigned int tso_version;
 233	struct efx_channel *channel;
 234	struct netdev_queue *core_txq;
 235	struct efx_tx_buffer *buffer;
 236	struct efx_buffer *tsoh_page;
 237	struct efx_special_buffer txd;
 238	unsigned int ptr_mask;
 239	void __iomem *piobuf;
 240	unsigned int piobuf_offset;
 241	bool initialised;
 
 
 
 
 242
 243	/* Members used mainly on the completion path */
 244	unsigned int read_count ____cacheline_aligned_in_smp;
 245	unsigned int old_write_count;
 246	unsigned int merge_events;
 247	unsigned int bytes_compl;
 248	unsigned int pkts_compl;
 
 
 
 249
 250	/* Members used only on the xmit path */
 251	unsigned int insert_count ____cacheline_aligned_in_smp;
 252	unsigned int write_count;
 
 253	unsigned int old_read_count;
 254	unsigned int tso_bursts;
 255	unsigned int tso_long_headers;
 256	unsigned int tso_packets;
 
 257	unsigned int pushes;
 258	unsigned int pio_packets;
 259	bool xmit_more_available;
 
 260	/* Statistics to supplement MAC stats */
 261	unsigned long tx_packets;
 262
 263	/* Members shared between paths and sometimes updated */
 264	unsigned int empty_read_count ____cacheline_aligned_in_smp;
 265#define EFX_EMPTY_COUNT_VALID 0x80000000
 266	atomic_t flush_outstanding;
 267};
 268
 
 
 
 269/**
 270 * struct efx_rx_buffer - An Efx RX data buffer
 271 * @dma_addr: DMA base address of the buffer
 272 * @page: The associated page buffer.
 273 *	Will be %NULL if the buffer slot is currently free.
 274 * @page_offset: If pending: offset in @page of DMA base address.
 275 *	If completed: offset in @page of Ethernet header.
 276 * @len: If pending: length for DMA descriptor.
 277 *	If completed: received length, excluding hash prefix.
 278 * @flags: Flags for buffer and packet state.  These are only set on the
 279 *	first buffer of a scattered packet.
 280 */
 281struct efx_rx_buffer {
 282	dma_addr_t dma_addr;
 283	struct page *page;
 284	u16 page_offset;
 285	u16 len;
 286	u16 flags;
 287};
 288#define EFX_RX_BUF_LAST_IN_PAGE	0x0001
 289#define EFX_RX_PKT_CSUMMED	0x0002
 290#define EFX_RX_PKT_DISCARD	0x0004
 291#define EFX_RX_PKT_TCP		0x0040
 292#define EFX_RX_PKT_PREFIX_LEN	0x0080	/* length is in prefix only */
 
 293
 294/**
 295 * struct efx_rx_page_state - Page-based rx buffer state
 296 *
 297 * Inserted at the start of every page allocated for receive buffers.
 298 * Used to facilitate sharing dma mappings between recycled rx buffers
 299 * and those passed up to the kernel.
 300 *
 301 * @dma_addr: The dma address of this page.
 302 */
 303struct efx_rx_page_state {
 304	dma_addr_t dma_addr;
 305
 306	unsigned int __pad[0] ____cacheline_aligned;
 307};
 308
 309/**
 310 * struct efx_rx_queue - An Efx RX queue
 311 * @efx: The associated Efx NIC
 312 * @core_index:  Index of network core RX queue.  Will be >= 0 iff this
 313 *	is associated with a real RX queue.
 314 * @buffer: The software buffer ring
 315 * @rxd: The hardware descriptor ring
 316 * @ptr_mask: The size of the ring minus 1.
 317 * @refill_enabled: Enable refill whenever fill level is low
 318 * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
 319 *	@rxq_flush_pending.
 320 * @added_count: Number of buffers added to the receive queue.
 321 * @notified_count: Number of buffers given to NIC (<= @added_count).
 322 * @removed_count: Number of buffers removed from the receive queue.
 323 * @scatter_n: Used by NIC specific receive code.
 324 * @scatter_len: Used by NIC specific receive code.
 325 * @page_ring: The ring to store DMA mapped pages for reuse.
 326 * @page_add: Counter to calculate the write pointer for the recycle ring.
 327 * @page_remove: Counter to calculate the read pointer for the recycle ring.
 328 * @page_recycle_count: The number of pages that have been recycled.
 329 * @page_recycle_failed: The number of pages that couldn't be recycled because
 330 *      the kernel still held a reference to them.
 331 * @page_recycle_full: The number of pages that were released because the
 332 *      recycle ring was full.
 333 * @page_ptr_mask: The number of pages in the RX recycle ring minus 1.
 334 * @max_fill: RX descriptor maximum fill level (<= ring size)
 335 * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
 336 *	(<= @max_fill)
 337 * @min_fill: RX descriptor minimum non-zero fill level.
 338 *	This records the minimum fill level observed when a ring
 339 *	refill was triggered.
 340 * @recycle_count: RX buffer recycle counter.
 341 * @slow_fill: Timer used to defer efx_nic_generate_fill_event().
 342 */
 343struct efx_rx_queue {
 344	struct efx_nic *efx;
 345	int core_index;
 346	struct efx_rx_buffer *buffer;
 347	struct efx_special_buffer rxd;
 348	unsigned int ptr_mask;
 349	bool refill_enabled;
 350	bool flush_pending;
 351
 352	unsigned int added_count;
 353	unsigned int notified_count;
 354	unsigned int removed_count;
 355	unsigned int scatter_n;
 356	unsigned int scatter_len;
 357	struct page **page_ring;
 358	unsigned int page_add;
 359	unsigned int page_remove;
 360	unsigned int page_recycle_count;
 361	unsigned int page_recycle_failed;
 362	unsigned int page_recycle_full;
 363	unsigned int page_ptr_mask;
 364	unsigned int max_fill;
 365	unsigned int fast_fill_trigger;
 366	unsigned int min_fill;
 367	unsigned int min_overfill;
 368	unsigned int recycle_count;
 369	struct timer_list slow_fill;
 370	unsigned int slow_fill_count;
 371	/* Statistics to supplement MAC stats */
 372	unsigned long rx_packets;
 373};
 374
 375enum efx_sync_events_state {
 376	SYNC_EVENTS_DISABLED = 0,
 377	SYNC_EVENTS_QUIESCENT,
 378	SYNC_EVENTS_REQUESTED,
 379	SYNC_EVENTS_VALID,
 380};
 381
 382/**
 383 * struct efx_channel - An Efx channel
 384 *
 385 * A channel comprises an event queue, at least one TX queue, at least
 386 * one RX queue, and an associated tasklet for processing the event
 387 * queue.
 388 *
 389 * @efx: Associated Efx NIC
 390 * @channel: Channel instance number
 391 * @type: Channel type definition
 392 * @eventq_init: Event queue initialised flag
 393 * @enabled: Channel enabled indicator
 394 * @irq: IRQ number (MSI and MSI-X only)
 395 * @irq_moderation: IRQ moderation value (in hardware ticks)
 396 * @napi_dev: Net device used with NAPI
 397 * @napi_str: NAPI control structure
 398 * @state: state for NAPI vs busy polling
 399 * @state_lock: lock protecting @state
 400 * @eventq: Event queue buffer
 401 * @eventq_mask: Event queue pointer mask
 402 * @eventq_read_ptr: Event queue read pointer
 403 * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
 404 * @irq_count: Number of IRQs since last adaptive moderation decision
 405 * @irq_mod_score: IRQ moderation score
 
 
 
 406 * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
 407 * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
 408 * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
 409 * @n_rx_mcast_mismatch: Count of unmatched multicast frames
 410 * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
 411 * @n_rx_overlength: Count of RX_OVERLENGTH errors
 412 * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
 413 * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to
 414 *	lack of descriptors
 415 * @n_rx_merge_events: Number of RX merged completion events
 416 * @n_rx_merge_packets: Number of RX packets completed by merged events
 417 * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by
 418 *	__efx_rx_packet(), or zero if there is none
 419 * @rx_pkt_index: Ring index of first buffer for next packet to be delivered
 420 *	by __efx_rx_packet(), if @rx_pkt_n_frags != 0
 421 * @rx_queue: RX queue for this channel
 422 * @tx_queue: TX queues for this channel
 423 * @sync_events_state: Current state of sync events on this channel
 424 * @sync_timestamp_major: Major part of the last ptp sync event
 425 * @sync_timestamp_minor: Minor part of the last ptp sync event
 426 */
 427struct efx_channel {
 428	struct efx_nic *efx;
 429	int channel;
 430	const struct efx_channel_type *type;
 431	bool eventq_init;
 432	bool enabled;
 433	int irq;
 434	unsigned int irq_moderation;
 435	struct net_device *napi_dev;
 436	struct napi_struct napi_str;
 437#ifdef CONFIG_NET_RX_BUSY_POLL
 438	unsigned long busy_poll_state;
 439#endif
 440	struct efx_special_buffer eventq;
 441	unsigned int eventq_mask;
 442	unsigned int eventq_read_ptr;
 443	int event_test_cpu;
 444
 445	unsigned int irq_count;
 446	unsigned int irq_mod_score;
 447#ifdef CONFIG_RFS_ACCEL
 448	unsigned int rfs_filters_added;
 
 
 
 449#endif
 450
 451	unsigned n_rx_tobe_disc;
 452	unsigned n_rx_ip_hdr_chksum_err;
 453	unsigned n_rx_tcp_udp_chksum_err;
 454	unsigned n_rx_mcast_mismatch;
 455	unsigned n_rx_frm_trunc;
 456	unsigned n_rx_overlength;
 457	unsigned n_skbuff_leaks;
 
 
 
 
 
 458	unsigned int n_rx_nodesc_trunc;
 459	unsigned int n_rx_merge_events;
 460	unsigned int n_rx_merge_packets;
 461
 462	unsigned int rx_pkt_n_frags;
 463	unsigned int rx_pkt_index;
 464
 465	struct efx_rx_queue rx_queue;
 466	struct efx_tx_queue tx_queue[EFX_TXQ_TYPES];
 467
 468	enum efx_sync_events_state sync_events_state;
 469	u32 sync_timestamp_major;
 470	u32 sync_timestamp_minor;
 471};
 472
 473#ifdef CONFIG_NET_RX_BUSY_POLL
 474enum efx_channel_busy_poll_state {
 475	EFX_CHANNEL_STATE_IDLE = 0,
 476	EFX_CHANNEL_STATE_NAPI = BIT(0),
 477	EFX_CHANNEL_STATE_NAPI_REQ_BIT = 1,
 478	EFX_CHANNEL_STATE_NAPI_REQ = BIT(1),
 479	EFX_CHANNEL_STATE_POLL_BIT = 2,
 480	EFX_CHANNEL_STATE_POLL = BIT(2),
 481	EFX_CHANNEL_STATE_DISABLE_BIT = 3,
 482};
 483
 484static inline void efx_channel_busy_poll_init(struct efx_channel *channel)
 485{
 486	WRITE_ONCE(channel->busy_poll_state, EFX_CHANNEL_STATE_IDLE);
 487}
 488
 489/* Called from the device poll routine to get ownership of a channel. */
 490static inline bool efx_channel_lock_napi(struct efx_channel *channel)
 491{
 492	unsigned long prev, old = READ_ONCE(channel->busy_poll_state);
 493
 494	while (1) {
 495		switch (old) {
 496		case EFX_CHANNEL_STATE_POLL:
 497			/* Ensure efx_channel_try_lock_poll() wont starve us */
 498			set_bit(EFX_CHANNEL_STATE_NAPI_REQ_BIT,
 499				&channel->busy_poll_state);
 500			/* fallthrough */
 501		case EFX_CHANNEL_STATE_POLL | EFX_CHANNEL_STATE_NAPI_REQ:
 502			return false;
 503		default:
 504			break;
 505		}
 506		prev = cmpxchg(&channel->busy_poll_state, old,
 507			       EFX_CHANNEL_STATE_NAPI);
 508		if (unlikely(prev != old)) {
 509			/* This is likely to mean we've just entered polling
 510			 * state. Go back round to set the REQ bit.
 511			 */
 512			old = prev;
 513			continue;
 514		}
 515		return true;
 516	}
 517}
 518
 519static inline void efx_channel_unlock_napi(struct efx_channel *channel)
 520{
 521	/* Make sure write has completed from efx_channel_lock_napi() */
 522	smp_wmb();
 523	WRITE_ONCE(channel->busy_poll_state, EFX_CHANNEL_STATE_IDLE);
 524}
 525
 526/* Called from efx_busy_poll(). */
 527static inline bool efx_channel_try_lock_poll(struct efx_channel *channel)
 528{
 529	return cmpxchg(&channel->busy_poll_state, EFX_CHANNEL_STATE_IDLE,
 530			EFX_CHANNEL_STATE_POLL) == EFX_CHANNEL_STATE_IDLE;
 531}
 532
 533static inline void efx_channel_unlock_poll(struct efx_channel *channel)
 534{
 535	clear_bit_unlock(EFX_CHANNEL_STATE_POLL_BIT, &channel->busy_poll_state);
 536}
 537
 538static inline bool efx_channel_busy_polling(struct efx_channel *channel)
 539{
 540	return test_bit(EFX_CHANNEL_STATE_POLL_BIT, &channel->busy_poll_state);
 541}
 542
 543static inline void efx_channel_enable(struct efx_channel *channel)
 544{
 545	clear_bit_unlock(EFX_CHANNEL_STATE_DISABLE_BIT,
 546			 &channel->busy_poll_state);
 547}
 548
 549/* Stop further polling or napi access.
 550 * Returns false if the channel is currently busy polling.
 551 */
 552static inline bool efx_channel_disable(struct efx_channel *channel)
 553{
 554	set_bit(EFX_CHANNEL_STATE_DISABLE_BIT, &channel->busy_poll_state);
 555	/* Implicit barrier in efx_channel_busy_polling() */
 556	return !efx_channel_busy_polling(channel);
 557}
 558
 559#else /* CONFIG_NET_RX_BUSY_POLL */
 560
 561static inline void efx_channel_busy_poll_init(struct efx_channel *channel)
 562{
 563}
 564
 565static inline bool efx_channel_lock_napi(struct efx_channel *channel)
 566{
 567	return true;
 568}
 569
 570static inline void efx_channel_unlock_napi(struct efx_channel *channel)
 571{
 572}
 573
 574static inline bool efx_channel_try_lock_poll(struct efx_channel *channel)
 575{
 576	return false;
 577}
 578
 579static inline void efx_channel_unlock_poll(struct efx_channel *channel)
 580{
 581}
 582
 583static inline bool efx_channel_busy_polling(struct efx_channel *channel)
 584{
 585	return false;
 586}
 587
 588static inline void efx_channel_enable(struct efx_channel *channel)
 589{
 590}
 591
 592static inline bool efx_channel_disable(struct efx_channel *channel)
 593{
 594	return true;
 595}
 596#endif /* CONFIG_NET_RX_BUSY_POLL */
 597
 598/**
 599 * struct efx_msi_context - Context for each MSI
 600 * @efx: The associated NIC
 601 * @index: Index of the channel/IRQ
 602 * @name: Name of the channel/IRQ
 603 *
 604 * Unlike &struct efx_channel, this is never reallocated and is always
 605 * safe for the IRQ handler to access.
 606 */
 607struct efx_msi_context {
 608	struct efx_nic *efx;
 609	unsigned int index;
 610	char name[IFNAMSIZ + 6];
 611};
 612
 613/**
 614 * struct efx_channel_type - distinguishes traffic and extra channels
 615 * @handle_no_channel: Handle failure to allocate an extra channel
 616 * @pre_probe: Set up extra state prior to initialisation
 617 * @post_remove: Tear down extra state after finalisation, if allocated.
 618 *	May be called on channels that have not been probed.
 619 * @get_name: Generate the channel's name (used for its IRQ handler)
 620 * @copy: Copy the channel state prior to reallocation.  May be %NULL if
 621 *	reallocation is not supported.
 622 * @receive_skb: Handle an skb ready to be passed to netif_receive_skb()
 
 
 623 * @keep_eventq: Flag for whether event queue should be kept initialised
 624 *	while the device is stopped
 
 
 625 */
 626struct efx_channel_type {
 627	void (*handle_no_channel)(struct efx_nic *);
 628	int (*pre_probe)(struct efx_channel *);
 629	void (*post_remove)(struct efx_channel *);
 630	void (*get_name)(struct efx_channel *, char *buf, size_t len);
 631	struct efx_channel *(*copy)(const struct efx_channel *);
 632	bool (*receive_skb)(struct efx_channel *, struct sk_buff *);
 
 633	bool keep_eventq;
 
 634};
 635
 636enum efx_led_mode {
 637	EFX_LED_OFF	= 0,
 638	EFX_LED_ON	= 1,
 639	EFX_LED_DEFAULT	= 2
 640};
 641
 642#define STRING_TABLE_LOOKUP(val, member) \
 643	((val) < member ## _max) ? member ## _names[val] : "(invalid)"
 644
 645extern const char *const efx_loopback_mode_names[];
 646extern const unsigned int efx_loopback_mode_max;
 647#define LOOPBACK_MODE(efx) \
 648	STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode)
 649
 650extern const char *const efx_reset_type_names[];
 651extern const unsigned int efx_reset_type_max;
 652#define RESET_TYPE(type) \
 653	STRING_TABLE_LOOKUP(type, efx_reset_type)
 654
 
 
 655enum efx_int_mode {
 656	/* Be careful if altering to correct macro below */
 657	EFX_INT_MODE_MSIX = 0,
 658	EFX_INT_MODE_MSI = 1,
 659	EFX_INT_MODE_LEGACY = 2,
 660	EFX_INT_MODE_MAX	/* Insert any new items before this */
 661};
 662#define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
 663
 664enum nic_state {
 665	STATE_UNINIT = 0,	/* device being probed/removed or is frozen */
 666	STATE_READY = 1,	/* hardware ready and netdev registered */
 667	STATE_DISABLED = 2,	/* device disabled due to hardware errors */
 668	STATE_RECOVERY = 3,	/* device recovering from PCI error */
 669};
 670
 671/* Forward declaration */
 672struct efx_nic;
 673
 674/* Pseudo bit-mask flow control field */
 675#define EFX_FC_RX	FLOW_CTRL_RX
 676#define EFX_FC_TX	FLOW_CTRL_TX
 677#define EFX_FC_AUTO	4
 678
 679/**
 680 * struct efx_link_state - Current state of the link
 681 * @up: Link is up
 682 * @fd: Link is full-duplex
 683 * @fc: Actual flow control flags
 684 * @speed: Link speed (Mbps)
 685 */
 686struct efx_link_state {
 687	bool up;
 688	bool fd;
 689	u8 fc;
 690	unsigned int speed;
 691};
 692
 693static inline bool efx_link_state_equal(const struct efx_link_state *left,
 694					const struct efx_link_state *right)
 695{
 696	return left->up == right->up && left->fd == right->fd &&
 697		left->fc == right->fc && left->speed == right->speed;
 698}
 699
 700/**
 701 * struct efx_phy_operations - Efx PHY operations table
 702 * @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds,
 703 *	efx->loopback_modes.
 704 * @init: Initialise PHY
 705 * @fini: Shut down PHY
 706 * @reconfigure: Reconfigure PHY (e.g. for new link parameters)
 707 * @poll: Update @link_state and report whether it changed.
 708 *	Serialised by the mac_lock.
 709 * @get_settings: Get ethtool settings. Serialised by the mac_lock.
 710 * @set_settings: Set ethtool settings. Serialised by the mac_lock.
 
 
 711 * @set_npage_adv: Set abilities advertised in (Extended) Next Page
 712 *	(only needed where AN bit is set in mmds)
 713 * @test_alive: Test that PHY is 'alive' (online)
 714 * @test_name: Get the name of a PHY-specific test/result
 715 * @run_tests: Run tests and record results as appropriate (offline).
 716 *	Flags are the ethtool tests flags.
 717 */
 718struct efx_phy_operations {
 719	int (*probe) (struct efx_nic *efx);
 720	int (*init) (struct efx_nic *efx);
 721	void (*fini) (struct efx_nic *efx);
 722	void (*remove) (struct efx_nic *efx);
 723	int (*reconfigure) (struct efx_nic *efx);
 724	bool (*poll) (struct efx_nic *efx);
 725	void (*get_settings) (struct efx_nic *efx,
 726			      struct ethtool_cmd *ecmd);
 727	int (*set_settings) (struct efx_nic *efx,
 728			     struct ethtool_cmd *ecmd);
 
 
 
 729	void (*set_npage_adv) (struct efx_nic *efx, u32);
 730	int (*test_alive) (struct efx_nic *efx);
 731	const char *(*test_name) (struct efx_nic *efx, unsigned int index);
 732	int (*run_tests) (struct efx_nic *efx, int *results, unsigned flags);
 733	int (*get_module_eeprom) (struct efx_nic *efx,
 734			       struct ethtool_eeprom *ee,
 735			       u8 *data);
 736	int (*get_module_info) (struct efx_nic *efx,
 737				struct ethtool_modinfo *modinfo);
 738};
 739
 740/**
 741 * enum efx_phy_mode - PHY operating mode flags
 742 * @PHY_MODE_NORMAL: on and should pass traffic
 743 * @PHY_MODE_TX_DISABLED: on with TX disabled
 744 * @PHY_MODE_LOW_POWER: set to low power through MDIO
 745 * @PHY_MODE_OFF: switched off through external control
 746 * @PHY_MODE_SPECIAL: on but will not pass traffic
 747 */
 748enum efx_phy_mode {
 749	PHY_MODE_NORMAL		= 0,
 750	PHY_MODE_TX_DISABLED	= 1,
 751	PHY_MODE_LOW_POWER	= 2,
 752	PHY_MODE_OFF		= 4,
 753	PHY_MODE_SPECIAL	= 8,
 754};
 755
 756static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
 757{
 758	return !!(mode & ~PHY_MODE_TX_DISABLED);
 759}
 760
 761/**
 762 * struct efx_hw_stat_desc - Description of a hardware statistic
 763 * @name: Name of the statistic as visible through ethtool, or %NULL if
 764 *	it should not be exposed
 765 * @dma_width: Width in bits (0 for non-DMA statistics)
 766 * @offset: Offset within stats (ignored for non-DMA statistics)
 767 */
 768struct efx_hw_stat_desc {
 769	const char *name;
 770	u16 dma_width;
 771	u16 offset;
 772};
 773
 774/* Number of bits used in a multicast filter hash address */
 775#define EFX_MCAST_HASH_BITS 8
 776
 777/* Number of (single-bit) entries in a multicast filter hash */
 778#define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS)
 779
 780/* An Efx multicast filter hash */
 781union efx_multicast_hash {
 782	u8 byte[EFX_MCAST_HASH_ENTRIES / 8];
 783	efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8];
 784};
 785
 786struct vfdi_status;
 787
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 788/**
 789 * struct efx_nic - an Efx NIC
 790 * @name: Device name (net device name or bus id before net device registered)
 791 * @pci_dev: The PCI device
 792 * @node: List node for maintaning primary/secondary function lists
 793 * @primary: &struct efx_nic instance for the primary function of this
 794 *	controller.  May be the same structure, and may be %NULL if no
 795 *	primary function is bound.  Serialised by rtnl_lock.
 796 * @secondary_list: List of &struct efx_nic instances for the secondary PCI
 797 *	functions of the controller, if this is for the primary function.
 798 *	Serialised by rtnl_lock.
 799 * @type: Controller type attributes
 800 * @legacy_irq: IRQ number
 801 * @workqueue: Workqueue for port reconfigures and the HW monitor.
 802 *	Work items do not hold and must not acquire RTNL.
 803 * @workqueue_name: Name of workqueue
 804 * @reset_work: Scheduled reset workitem
 805 * @membase_phys: Memory BAR value as physical address
 806 * @membase: Memory BAR value
 
 807 * @interrupt_mode: Interrupt mode
 808 * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
 
 809 * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
 810 * @irq_rx_moderation: IRQ moderation time for RX event queues
 
 811 * @msg_enable: Log message enable flags
 812 * @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
 813 * @reset_pending: Bitmask for pending resets
 814 * @tx_queue: TX DMA queues
 815 * @rx_queue: RX DMA queues
 816 * @channel: Channels
 817 * @msi_context: Context for each MSI
 818 * @extra_channel_types: Types of extra (non-traffic) channels that
 819 *	should be allocated for this NIC
 820 * @rxq_entries: Size of receive queues requested by user.
 821 * @txq_entries: Size of transmit queues requested by user.
 822 * @txq_stop_thresh: TX queue fill level at or above which we stop it.
 823 * @txq_wake_thresh: TX queue fill level at or below which we wake it.
 824 * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
 825 * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
 826 * @sram_lim_qw: Qword address limit of SRAM
 827 * @next_buffer_table: First available buffer table id
 828 * @n_channels: Number of channels in use
 829 * @n_rx_channels: Number of channels used for RX (= number of RX queues)
 830 * @n_tx_channels: Number of channels used for TX
 
 831 * @rx_ip_align: RX DMA address offset to have IP header aligned in
 832 *	in accordance with NET_IP_ALIGN
 833 * @rx_dma_len: Current maximum RX DMA length
 834 * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
 835 * @rx_buffer_truesize: Amortised allocation size of an RX buffer,
 836 *	for use in sk_buff::truesize
 837 * @rx_prefix_size: Size of RX prefix before packet data
 838 * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data
 839 *	(valid only if @rx_prefix_size != 0; always negative)
 840 * @rx_packet_len_offset: Offset of RX packet length from start of packet data
 841 *	(valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative)
 842 * @rx_packet_ts_offset: Offset of timestamp from start of packet data
 843 *	(valid only if channel->sync_timestamps_enabled; always negative)
 844 * @rx_hash_key: Toeplitz hash key for RSS
 845 * @rx_indir_table: Indirection table for RSS
 846 * @rx_scatter: Scatter mode enabled for receives
 
 
 
 847 * @int_error_count: Number of internal errors seen recently
 848 * @int_error_expire: Time at which error count will be expired
 849 * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will
 850 *	acknowledge but do nothing else.
 851 * @irq_status: Interrupt status buffer
 852 * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
 853 * @irq_level: IRQ level/index for IRQs not triggered by an event queue
 854 * @selftest_work: Work item for asynchronous self-test
 855 * @mtd_list: List of MTDs attached to the NIC
 856 * @nic_data: Hardware dependent state
 857 * @mcdi: Management-Controller-to-Driver Interface state
 858 * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
 859 *	efx_monitor() and efx_reconfigure_port()
 860 * @port_enabled: Port enabled indicator.
 861 *	Serialises efx_stop_all(), efx_start_all(), efx_monitor() and
 862 *	efx_mac_work() with kernel interfaces. Safe to read under any
 863 *	one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
 864 *	be held to modify it.
 865 * @port_initialized: Port initialized?
 866 * @net_dev: Operating system network device. Consider holding the rtnl lock
 
 
 
 867 * @stats_buffer: DMA buffer for statistics
 868 * @phy_type: PHY type
 869 * @phy_op: PHY interface
 870 * @phy_data: PHY private data (including PHY-specific stats)
 871 * @mdio: PHY MDIO interface
 872 * @mdio_bus: PHY MDIO bus ID (only used by Siena)
 873 * @phy_mode: PHY operating mode. Serialised by @mac_lock.
 874 * @link_advertising: Autonegotiation advertising flags
 
 
 875 * @link_state: Current state of the link
 876 * @n_link_state_changes: Number of times the link has changed state
 877 * @unicast_filter: Flag for Falcon-arch simple unicast filter.
 878 *	Protected by @mac_lock.
 879 * @multicast_hash: Multicast hash table for Falcon-arch.
 880 *	Protected by @mac_lock.
 881 * @wanted_fc: Wanted flow control flags
 882 * @fc_disable: When non-zero flow control is disabled. Typically used to
 883 *	ensure that network back pressure doesn't delay dma queue flushes.
 884 *	Serialised by the rtnl lock.
 885 * @mac_work: Work item for changing MAC promiscuity and multicast hash
 886 * @loopback_mode: Loopback status
 887 * @loopback_modes: Supported loopback mode bitmask
 888 * @loopback_selftest: Offline self-test private state
 889 * @filter_sem: Filter table rw_semaphore, for freeing the table
 890 * @filter_lock: Filter table lock, for mere content changes
 891 * @filter_state: Architecture-dependent filter table state
 892 * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS,
 893 *	indexed by filter ID
 894 * @rps_expire_index: Next index to check for expiry in @rps_flow_id
 
 
 
 
 
 
 
 895 * @active_queues: Count of RX and TX queues that haven't been flushed and drained.
 896 * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
 897 *	Decremented when the efx_flush_rx_queue() is called.
 898 * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
 899 *	completed (either success or failure). Not used when MCDI is used to
 900 *	flush receive queues.
 901 * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions.
 902 * @vf_count: Number of VFs intended to be enabled.
 903 * @vf_init_count: Number of VFs that have been fully initialised.
 904 * @vi_scale: log2 number of vnics per VF.
 905 * @ptp_data: PTP state data
 
 906 * @vpd_sn: Serial number read from VPD
 907 * @monitor_work: Hardware monitor workitem
 908 * @biu_lock: BIU (bus interface unit) lock
 909 * @last_irq_cpu: Last CPU to handle a possible test interrupt.  This
 910 *	field is used by efx_test_interrupts() to verify that an
 911 *	interrupt has occurred.
 912 * @stats_lock: Statistics update lock. Must be held when calling
 913 *	efx_nic_type::{update,start,stop}_stats.
 914 * @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb
 915 * @mc_promisc: Whether in multicast promiscuous mode when last changed
 916 *
 917 * This is stored in the private area of the &struct net_device.
 918 */
 919struct efx_nic {
 920	/* The following fields should be written very rarely */
 921
 922	char name[IFNAMSIZ];
 923	struct list_head node;
 924	struct efx_nic *primary;
 925	struct list_head secondary_list;
 926	struct pci_dev *pci_dev;
 927	unsigned int port_num;
 928	const struct efx_nic_type *type;
 929	int legacy_irq;
 930	bool eeh_disabled_legacy_irq;
 931	struct workqueue_struct *workqueue;
 932	char workqueue_name[16];
 933	struct work_struct reset_work;
 934	resource_size_t membase_phys;
 935	void __iomem *membase;
 936
 
 
 937	enum efx_int_mode interrupt_mode;
 938	unsigned int timer_quantum_ns;
 
 939	bool irq_rx_adaptive;
 940	unsigned int irq_rx_moderation;
 
 941	u32 msg_enable;
 942
 943	enum nic_state state;
 944	unsigned long reset_pending;
 945
 946	struct efx_channel *channel[EFX_MAX_CHANNELS];
 947	struct efx_msi_context msi_context[EFX_MAX_CHANNELS];
 948	const struct efx_channel_type *
 949	extra_channel_type[EFX_MAX_EXTRA_CHANNELS];
 950
 951	unsigned rxq_entries;
 952	unsigned txq_entries;
 953	unsigned int txq_stop_thresh;
 954	unsigned int txq_wake_thresh;
 955
 956	unsigned tx_dc_base;
 957	unsigned rx_dc_base;
 958	unsigned sram_lim_qw;
 959	unsigned next_buffer_table;
 960
 961	unsigned int max_channels;
 962	unsigned int max_tx_channels;
 963	unsigned n_channels;
 964	unsigned n_rx_channels;
 965	unsigned rss_spread;
 966	unsigned tx_channel_offset;
 967	unsigned n_tx_channels;
 
 968	unsigned int rx_ip_align;
 969	unsigned int rx_dma_len;
 970	unsigned int rx_buffer_order;
 971	unsigned int rx_buffer_truesize;
 972	unsigned int rx_page_buf_step;
 973	unsigned int rx_bufs_per_page;
 974	unsigned int rx_pages_per_batch;
 975	unsigned int rx_prefix_size;
 976	int rx_packet_hash_offset;
 977	int rx_packet_len_offset;
 978	int rx_packet_ts_offset;
 979	u8 rx_hash_key[40];
 980	u32 rx_indir_table[128];
 981	bool rx_scatter;
 
 
 982
 983	unsigned int_error_count;
 984	unsigned long int_error_expire;
 985
 986	bool irq_soft_enabled;
 987	struct efx_buffer irq_status;
 988	unsigned irq_zero_count;
 989	unsigned irq_level;
 990	struct delayed_work selftest_work;
 991
 992#ifdef CONFIG_SFC_MTD
 993	struct list_head mtd_list;
 994#endif
 995
 996	void *nic_data;
 997	struct efx_mcdi_data *mcdi;
 998
 999	struct mutex mac_lock;
1000	struct work_struct mac_work;
1001	bool port_enabled;
1002
1003	bool mc_bist_for_other_fn;
1004	bool port_initialized;
1005	struct net_device *net_dev;
1006
 
 
 
1007	struct efx_buffer stats_buffer;
1008	u64 rx_nodesc_drops_total;
1009	u64 rx_nodesc_drops_while_down;
1010	bool rx_nodesc_drops_prev_state;
1011
1012	unsigned int phy_type;
1013	const struct efx_phy_operations *phy_op;
1014	void *phy_data;
1015	struct mdio_if_info mdio;
1016	unsigned int mdio_bus;
1017	enum efx_phy_mode phy_mode;
1018
1019	u32 link_advertising;
 
1020	struct efx_link_state link_state;
1021	unsigned int n_link_state_changes;
1022
1023	bool unicast_filter;
1024	union efx_multicast_hash multicast_hash;
1025	u8 wanted_fc;
1026	unsigned fc_disable;
1027
1028	atomic_t rx_reset;
1029	enum efx_loopback_mode loopback_mode;
1030	u64 loopback_modes;
1031
1032	void *loopback_selftest;
1033
1034	struct rw_semaphore filter_sem;
1035	spinlock_t filter_lock;
1036	void *filter_state;
1037#ifdef CONFIG_RFS_ACCEL
1038	u32 *rps_flow_id;
 
1039	unsigned int rps_expire_index;
 
 
 
 
 
1040#endif
1041
1042	atomic_t active_queues;
1043	atomic_t rxq_flush_pending;
1044	atomic_t rxq_flush_outstanding;
1045	wait_queue_head_t flush_wq;
1046
1047#ifdef CONFIG_SFC_SRIOV
1048	unsigned vf_count;
1049	unsigned vf_init_count;
1050	unsigned vi_scale;
1051#endif
1052
1053	struct efx_ptp_data *ptp_data;
 
1054
1055	char *vpd_sn;
1056
1057	/* The following fields may be written more often */
1058
1059	struct delayed_work monitor_work ____cacheline_aligned_in_smp;
1060	spinlock_t biu_lock;
1061	int last_irq_cpu;
1062	spinlock_t stats_lock;
1063	atomic_t n_rx_noskb_drops;
1064	bool mc_promisc;
1065};
1066
1067static inline int efx_dev_registered(struct efx_nic *efx)
1068{
1069	return efx->net_dev->reg_state == NETREG_REGISTERED;
1070}
1071
1072static inline unsigned int efx_port_num(struct efx_nic *efx)
1073{
1074	return efx->port_num;
1075}
1076
1077struct efx_mtd_partition {
1078	struct list_head node;
1079	struct mtd_info mtd;
1080	const char *dev_type_name;
1081	const char *type_name;
1082	char name[IFNAMSIZ + 20];
1083};
1084
 
 
 
 
 
 
 
 
 
1085/**
1086 * struct efx_nic_type - Efx device type definition
1087 * @mem_bar: Get the memory BAR
1088 * @mem_map_size: Get memory BAR mapped size
1089 * @probe: Probe the controller
1090 * @remove: Free resources allocated by probe()
1091 * @init: Initialise the controller
1092 * @dimension_resources: Dimension controller resources (buffer table,
1093 *	and VIs once the available interrupt resources are clear)
1094 * @fini: Shut down the controller
1095 * @monitor: Periodic function for polling link state and hardware monitor
1096 * @map_reset_reason: Map ethtool reset reason to a reset method
1097 * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
1098 * @reset: Reset the controller hardware and possibly the PHY.  This will
1099 *	be called while the controller is uninitialised.
1100 * @probe_port: Probe the MAC and PHY
1101 * @remove_port: Free resources allocated by probe_port()
1102 * @handle_global_event: Handle a "global" event (may be %NULL)
1103 * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues)
1104 * @prepare_flush: Prepare the hardware for flushing the DMA queues
1105 *	(for Falcon architecture)
1106 * @finish_flush: Clean up after flushing the DMA queues (for Falcon
1107 *	architecture)
1108 * @prepare_flr: Prepare for an FLR
1109 * @finish_flr: Clean up after an FLR
1110 * @describe_stats: Describe statistics for ethtool
1111 * @update_stats: Update statistics not provided by event handling.
1112 *	Either argument may be %NULL.
1113 * @start_stats: Start the regular fetching of statistics
1114 * @pull_stats: Pull stats from the NIC and wait until they arrive.
1115 * @stop_stats: Stop the regular fetching of statistics
1116 * @set_id_led: Set state of identifying LED or revert to automatic function
1117 * @push_irq_moderation: Apply interrupt moderation value
1118 * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
1119 * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL)
1120 * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
1121 *	to the hardware.  Serialised by the mac_lock.
1122 * @check_mac_fault: Check MAC fault state. True if fault present.
1123 * @get_wol: Get WoL configuration from driver state
1124 * @set_wol: Push WoL configuration to the NIC
1125 * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
1126 * @test_chip: Test registers.  May use efx_farch_test_registers(), and is
1127 *	expected to reset the NIC.
1128 * @test_nvram: Test validity of NVRAM contents
1129 * @mcdi_request: Send an MCDI request with the given header and SDU.
1130 *	The SDU length may be any value from 0 up to the protocol-
1131 *	defined maximum, but its buffer will be padded to a multiple
1132 *	of 4 bytes.
1133 * @mcdi_poll_response: Test whether an MCDI response is available.
1134 * @mcdi_read_response: Read the MCDI response PDU.  The offset will
1135 *	be a multiple of 4.  The length may not be, but the buffer
1136 *	will be padded so it is safe to round up.
1137 * @mcdi_poll_reboot: Test whether the MCDI has rebooted.  If so,
1138 *	return an appropriate error code for aborting any current
1139 *	request; otherwise return 0.
1140 * @irq_enable_master: Enable IRQs on the NIC.  Each event queue must
1141 *	be separately enabled after this.
1142 * @irq_test_generate: Generate a test IRQ
1143 * @irq_disable_non_ev: Disable non-event IRQs on the NIC.  Each event
1144 *	queue must be separately disabled before this.
1145 * @irq_handle_msi: Handle MSI for a channel.  The @dev_id argument is
1146 *	a pointer to the &struct efx_msi_context for the channel.
1147 * @irq_handle_legacy: Handle legacy interrupt.  The @dev_id argument
1148 *	is a pointer to the &struct efx_nic.
1149 * @tx_probe: Allocate resources for TX queue
1150 * @tx_init: Initialise TX queue on the NIC
1151 * @tx_remove: Free resources for TX queue
1152 * @tx_write: Write TX descriptors and doorbell
1153 * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC
 
 
 
 
 
1154 * @rx_probe: Allocate resources for RX queue
1155 * @rx_init: Initialise RX queue on the NIC
1156 * @rx_remove: Free resources for RX queue
1157 * @rx_write: Write RX descriptors and doorbell
1158 * @rx_defer_refill: Generate a refill reminder event
1159 * @ev_probe: Allocate resources for event queue
1160 * @ev_init: Initialise event queue on the NIC
1161 * @ev_fini: Deinitialise event queue on the NIC
1162 * @ev_remove: Free resources for event queue
1163 * @ev_process: Process events for a queue, up to the given NAPI quota
1164 * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ
1165 * @ev_test_generate: Generate a test event
1166 * @filter_table_probe: Probe filter capabilities and set up filter software state
1167 * @filter_table_restore: Restore filters removed from hardware
1168 * @filter_table_remove: Remove filters from hardware and tear down software state
1169 * @filter_update_rx_scatter: Update filters after change to rx scatter setting
1170 * @filter_insert: add or replace a filter
1171 * @filter_remove_safe: remove a filter by ID, carefully
1172 * @filter_get_safe: retrieve a filter by ID, carefully
1173 * @filter_clear_rx: Remove all RX filters whose priority is less than or
1174 *	equal to the given priority and is not %EFX_FILTER_PRI_AUTO
1175 * @filter_count_rx_used: Get the number of filters in use at a given priority
1176 * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1
1177 * @filter_get_rx_ids: Get list of RX filters at a given priority
1178 * @filter_rfs_insert: Add or replace a filter for RFS.  This must be
1179 *	atomic.  The hardware change may be asynchronous but should
1180 *	not be delayed for long.  It may fail if this can't be done
1181 *	atomically.
1182 * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS.
1183 *	This must check whether the specified table entry is used by RFS
1184 *	and that rps_may_expire_flow() returns true for it.
1185 * @mtd_probe: Probe and add MTD partitions associated with this net device,
1186 *	 using efx_mtd_add()
1187 * @mtd_rename: Set an MTD partition name using the net device name
1188 * @mtd_read: Read from an MTD partition
1189 * @mtd_erase: Erase part of an MTD partition
1190 * @mtd_write: Write to an MTD partition
1191 * @mtd_sync: Wait for write-back to complete on MTD partition.  This
1192 *	also notifies the driver that a writer has finished using this
1193 *	partition.
1194 * @ptp_write_host_time: Send host time to MC as part of sync protocol
1195 * @ptp_set_ts_sync_events: Enable or disable sync events for inline RX
1196 *	timestamping, possibly only temporarily for the purposes of a reset.
1197 * @ptp_set_ts_config: Set hardware timestamp configuration.  The flags
1198 *	and tx_type will already have been validated but this operation
1199 *	must validate and update rx_filter.
 
1200 * @set_mac_address: Set the MAC address of the device
 
 
 
 
 
 
1201 * @revision: Hardware architecture revision
1202 * @txd_ptr_tbl_base: TX descriptor ring base address
1203 * @rxd_ptr_tbl_base: RX descriptor ring base address
1204 * @buf_tbl_base: Buffer table base address
1205 * @evq_ptr_tbl_base: Event queue pointer table base address
1206 * @evq_rptr_tbl_base: Event queue read-pointer table base address
1207 * @max_dma_mask: Maximum possible DMA mask
1208 * @rx_prefix_size: Size of RX prefix before packet data
1209 * @rx_hash_offset: Offset of RX flow hash within prefix
1210 * @rx_ts_offset: Offset of timestamp within prefix
1211 * @rx_buffer_padding: Size of padding at end of RX packet
1212 * @can_rx_scatter: NIC is able to scatter packets to multiple buffers
1213 * @always_rx_scatter: NIC will always scatter packets to multiple buffers
 
 
 
1214 * @max_interrupt_mode: Highest capability interrupt mode supported
1215 *	from &enum efx_init_mode.
1216 * @timer_period_max: Maximum period of interrupt timer (in ticks)
1217 * @offload_features: net_device feature flags for protocol offload
1218 *	features implemented in hardware
1219 * @mcdi_max_ver: Maximum MCDI version supported
1220 * @hwtstamp_filters: Mask of hardware timestamp filter types supported
1221 */
1222struct efx_nic_type {
1223	bool is_vf;
1224	unsigned int mem_bar;
1225	unsigned int (*mem_map_size)(struct efx_nic *efx);
1226	int (*probe)(struct efx_nic *efx);
1227	void (*remove)(struct efx_nic *efx);
1228	int (*init)(struct efx_nic *efx);
1229	int (*dimension_resources)(struct efx_nic *efx);
1230	void (*fini)(struct efx_nic *efx);
1231	void (*monitor)(struct efx_nic *efx);
1232	enum reset_type (*map_reset_reason)(enum reset_type reason);
1233	int (*map_reset_flags)(u32 *flags);
1234	int (*reset)(struct efx_nic *efx, enum reset_type method);
1235	int (*probe_port)(struct efx_nic *efx);
1236	void (*remove_port)(struct efx_nic *efx);
1237	bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *);
1238	int (*fini_dmaq)(struct efx_nic *efx);
1239	void (*prepare_flush)(struct efx_nic *efx);
1240	void (*finish_flush)(struct efx_nic *efx);
1241	void (*prepare_flr)(struct efx_nic *efx);
1242	void (*finish_flr)(struct efx_nic *efx);
1243	size_t (*describe_stats)(struct efx_nic *efx, u8 *names);
1244	size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats,
1245			       struct rtnl_link_stats64 *core_stats);
1246	void (*start_stats)(struct efx_nic *efx);
1247	void (*pull_stats)(struct efx_nic *efx);
1248	void (*stop_stats)(struct efx_nic *efx);
1249	void (*set_id_led)(struct efx_nic *efx, enum efx_led_mode mode);
1250	void (*push_irq_moderation)(struct efx_channel *channel);
1251	int (*reconfigure_port)(struct efx_nic *efx);
1252	void (*prepare_enable_fc_tx)(struct efx_nic *efx);
1253	int (*reconfigure_mac)(struct efx_nic *efx);
1254	bool (*check_mac_fault)(struct efx_nic *efx);
1255	void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
1256	int (*set_wol)(struct efx_nic *efx, u32 type);
1257	void (*resume_wol)(struct efx_nic *efx);
1258	int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests);
1259	int (*test_nvram)(struct efx_nic *efx);
1260	void (*mcdi_request)(struct efx_nic *efx,
1261			     const efx_dword_t *hdr, size_t hdr_len,
1262			     const efx_dword_t *sdu, size_t sdu_len);
1263	bool (*mcdi_poll_response)(struct efx_nic *efx);
1264	void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu,
1265				   size_t pdu_offset, size_t pdu_len);
1266	int (*mcdi_poll_reboot)(struct efx_nic *efx);
1267	void (*mcdi_reboot_detected)(struct efx_nic *efx);
1268	void (*irq_enable_master)(struct efx_nic *efx);
1269	void (*irq_test_generate)(struct efx_nic *efx);
1270	void (*irq_disable_non_ev)(struct efx_nic *efx);
1271	irqreturn_t (*irq_handle_msi)(int irq, void *dev_id);
1272	irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id);
1273	int (*tx_probe)(struct efx_tx_queue *tx_queue);
1274	void (*tx_init)(struct efx_tx_queue *tx_queue);
1275	void (*tx_remove)(struct efx_tx_queue *tx_queue);
1276	void (*tx_write)(struct efx_tx_queue *tx_queue);
 
 
1277	int (*rx_push_rss_config)(struct efx_nic *efx, bool user,
1278				  const u32 *rx_indir_table);
 
 
 
 
 
 
 
 
1279	int (*rx_probe)(struct efx_rx_queue *rx_queue);
1280	void (*rx_init)(struct efx_rx_queue *rx_queue);
1281	void (*rx_remove)(struct efx_rx_queue *rx_queue);
1282	void (*rx_write)(struct efx_rx_queue *rx_queue);
1283	void (*rx_defer_refill)(struct efx_rx_queue *rx_queue);
1284	int (*ev_probe)(struct efx_channel *channel);
1285	int (*ev_init)(struct efx_channel *channel);
1286	void (*ev_fini)(struct efx_channel *channel);
1287	void (*ev_remove)(struct efx_channel *channel);
1288	int (*ev_process)(struct efx_channel *channel, int quota);
1289	void (*ev_read_ack)(struct efx_channel *channel);
1290	void (*ev_test_generate)(struct efx_channel *channel);
1291	int (*filter_table_probe)(struct efx_nic *efx);
1292	void (*filter_table_restore)(struct efx_nic *efx);
1293	void (*filter_table_remove)(struct efx_nic *efx);
1294	void (*filter_update_rx_scatter)(struct efx_nic *efx);
1295	s32 (*filter_insert)(struct efx_nic *efx,
1296			     struct efx_filter_spec *spec, bool replace);
1297	int (*filter_remove_safe)(struct efx_nic *efx,
1298				  enum efx_filter_priority priority,
1299				  u32 filter_id);
1300	int (*filter_get_safe)(struct efx_nic *efx,
1301			       enum efx_filter_priority priority,
1302			       u32 filter_id, struct efx_filter_spec *);
1303	int (*filter_clear_rx)(struct efx_nic *efx,
1304			       enum efx_filter_priority priority);
1305	u32 (*filter_count_rx_used)(struct efx_nic *efx,
1306				    enum efx_filter_priority priority);
1307	u32 (*filter_get_rx_id_limit)(struct efx_nic *efx);
1308	s32 (*filter_get_rx_ids)(struct efx_nic *efx,
1309				 enum efx_filter_priority priority,
1310				 u32 *buf, u32 size);
1311#ifdef CONFIG_RFS_ACCEL
1312	s32 (*filter_rfs_insert)(struct efx_nic *efx,
1313				 struct efx_filter_spec *spec);
1314	bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id,
1315				      unsigned int index);
1316#endif
1317#ifdef CONFIG_SFC_MTD
1318	int (*mtd_probe)(struct efx_nic *efx);
1319	void (*mtd_rename)(struct efx_mtd_partition *part);
1320	int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len,
1321			size_t *retlen, u8 *buffer);
1322	int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len);
1323	int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len,
1324			 size_t *retlen, const u8 *buffer);
1325	int (*mtd_sync)(struct mtd_info *mtd);
1326#endif
1327	void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time);
1328	int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp);
1329	int (*ptp_set_ts_config)(struct efx_nic *efx,
1330				 struct hwtstamp_config *init);
1331	int (*sriov_configure)(struct efx_nic *efx, int num_vfs);
 
 
 
 
1332	int (*sriov_init)(struct efx_nic *efx);
1333	void (*sriov_fini)(struct efx_nic *efx);
1334	bool (*sriov_wanted)(struct efx_nic *efx);
1335	void (*sriov_reset)(struct efx_nic *efx);
1336	void (*sriov_flr)(struct efx_nic *efx, unsigned vf_i);
1337	int (*sriov_set_vf_mac)(struct efx_nic *efx, int vf_i, u8 *mac);
1338	int (*sriov_set_vf_vlan)(struct efx_nic *efx, int vf_i, u16 vlan,
1339				 u8 qos);
1340	int (*sriov_set_vf_spoofchk)(struct efx_nic *efx, int vf_i,
1341				     bool spoofchk);
1342	int (*sriov_get_vf_config)(struct efx_nic *efx, int vf_i,
1343				   struct ifla_vf_info *ivi);
1344	int (*sriov_set_vf_link_state)(struct efx_nic *efx, int vf_i,
1345				       int link_state);
1346	int (*sriov_get_phys_port_id)(struct efx_nic *efx,
1347				      struct netdev_phys_item_id *ppid);
1348	int (*vswitching_probe)(struct efx_nic *efx);
1349	int (*vswitching_restore)(struct efx_nic *efx);
1350	void (*vswitching_remove)(struct efx_nic *efx);
1351	int (*get_mac_address)(struct efx_nic *efx, unsigned char *perm_addr);
1352	int (*set_mac_address)(struct efx_nic *efx);
 
 
 
 
 
1353
1354	int revision;
1355	unsigned int txd_ptr_tbl_base;
1356	unsigned int rxd_ptr_tbl_base;
1357	unsigned int buf_tbl_base;
1358	unsigned int evq_ptr_tbl_base;
1359	unsigned int evq_rptr_tbl_base;
1360	u64 max_dma_mask;
1361	unsigned int rx_prefix_size;
1362	unsigned int rx_hash_offset;
1363	unsigned int rx_ts_offset;
1364	unsigned int rx_buffer_padding;
1365	bool can_rx_scatter;
1366	bool always_rx_scatter;
 
 
1367	unsigned int max_interrupt_mode;
1368	unsigned int timer_period_max;
1369	netdev_features_t offload_features;
1370	int mcdi_max_ver;
1371	unsigned int max_rx_ip_filters;
1372	u32 hwtstamp_filters;
 
1373};
1374
1375/**************************************************************************
1376 *
1377 * Prototypes and inline functions
1378 *
1379 *************************************************************************/
1380
1381static inline struct efx_channel *
1382efx_get_channel(struct efx_nic *efx, unsigned index)
1383{
1384	EFX_BUG_ON_PARANOID(index >= efx->n_channels);
1385	return efx->channel[index];
1386}
1387
1388/* Iterate over all used channels */
1389#define efx_for_each_channel(_channel, _efx)				\
1390	for (_channel = (_efx)->channel[0];				\
1391	     _channel;							\
1392	     _channel = (_channel->channel + 1 < (_efx)->n_channels) ?	\
1393		     (_efx)->channel[_channel->channel + 1] : NULL)
1394
1395/* Iterate over all used channels in reverse */
1396#define efx_for_each_channel_rev(_channel, _efx)			\
1397	for (_channel = (_efx)->channel[(_efx)->n_channels - 1];	\
1398	     _channel;							\
1399	     _channel = _channel->channel ?				\
1400		     (_efx)->channel[_channel->channel - 1] : NULL)
1401
1402static inline struct efx_tx_queue *
1403efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type)
1404{
1405	EFX_BUG_ON_PARANOID(index >= efx->n_tx_channels ||
1406			    type >= EFX_TXQ_TYPES);
1407	return &efx->channel[efx->tx_channel_offset + index]->tx_queue[type];
1408}
1409
1410static inline bool efx_channel_has_tx_queues(struct efx_channel *channel)
1411{
1412	return channel->channel - channel->efx->tx_channel_offset <
1413		channel->efx->n_tx_channels;
1414}
1415
1416static inline struct efx_tx_queue *
1417efx_channel_get_tx_queue(struct efx_channel *channel, unsigned type)
1418{
1419	EFX_BUG_ON_PARANOID(!efx_channel_has_tx_queues(channel) ||
1420			    type >= EFX_TXQ_TYPES);
1421	return &channel->tx_queue[type];
1422}
1423
1424static inline bool efx_tx_queue_used(struct efx_tx_queue *tx_queue)
1425{
1426	return !(tx_queue->efx->net_dev->num_tc < 2 &&
1427		 tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI);
1428}
1429
1430/* Iterate over all TX queues belonging to a channel */
1431#define efx_for_each_channel_tx_queue(_tx_queue, _channel)		\
1432	if (!efx_channel_has_tx_queues(_channel))			\
1433		;							\
1434	else								\
1435		for (_tx_queue = (_channel)->tx_queue;			\
1436		     _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES && \
1437			     efx_tx_queue_used(_tx_queue);		\
1438		     _tx_queue++)
1439
1440/* Iterate over all possible TX queues belonging to a channel */
1441#define efx_for_each_possible_channel_tx_queue(_tx_queue, _channel)	\
1442	if (!efx_channel_has_tx_queues(_channel))			\
1443		;							\
1444	else								\
1445		for (_tx_queue = (_channel)->tx_queue;			\
1446		     _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES;	\
1447		     _tx_queue++)
1448
1449static inline bool efx_channel_has_rx_queue(struct efx_channel *channel)
1450{
1451	return channel->rx_queue.core_index >= 0;
1452}
1453
1454static inline struct efx_rx_queue *
1455efx_channel_get_rx_queue(struct efx_channel *channel)
1456{
1457	EFX_BUG_ON_PARANOID(!efx_channel_has_rx_queue(channel));
1458	return &channel->rx_queue;
1459}
1460
1461/* Iterate over all RX queues belonging to a channel */
1462#define efx_for_each_channel_rx_queue(_rx_queue, _channel)		\
1463	if (!efx_channel_has_rx_queue(_channel))			\
1464		;							\
1465	else								\
1466		for (_rx_queue = &(_channel)->rx_queue;			\
1467		     _rx_queue;						\
1468		     _rx_queue = NULL)
1469
1470static inline struct efx_channel *
1471efx_rx_queue_channel(struct efx_rx_queue *rx_queue)
1472{
1473	return container_of(rx_queue, struct efx_channel, rx_queue);
1474}
1475
1476static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue)
1477{
1478	return efx_rx_queue_channel(rx_queue)->channel;
1479}
1480
1481/* Returns a pointer to the specified receive buffer in the RX
1482 * descriptor queue.
1483 */
1484static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
1485						  unsigned int index)
1486{
1487	return &rx_queue->buffer[index];
1488}
1489
1490/**
1491 * EFX_MAX_FRAME_LEN - calculate maximum frame length
1492 *
1493 * This calculates the maximum frame length that will be used for a
1494 * given MTU.  The frame length will be equal to the MTU plus a
1495 * constant amount of header space and padding.  This is the quantity
1496 * that the net driver will program into the MAC as the maximum frame
1497 * length.
1498 *
1499 * The 10G MAC requires 8-byte alignment on the frame
1500 * length, so we round up to the nearest 8.
1501 *
1502 * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
1503 * XGMII cycle).  If the frame length reaches the maximum value in the
1504 * same cycle, the XMAC can miss the IPG altogether.  We work around
1505 * this by adding a further 16 bytes.
1506 */
1507#define EFX_FRAME_PAD	16
1508#define EFX_MAX_FRAME_LEN(mtu) \
1509	(ALIGN(((mtu) + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN + EFX_FRAME_PAD), 8))
1510
1511static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb)
1512{
1513	return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP;
1514}
1515static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb)
1516{
1517	skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1518}
1519
1520#endif /* EFX_NET_DRIVER_H */