Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 *  linux/arch/arm/kernel/setup.c
   3 *
   4 *  Copyright (C) 1995-2001 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10#include <linux/efi.h>
  11#include <linux/export.h>
  12#include <linux/kernel.h>
  13#include <linux/stddef.h>
  14#include <linux/ioport.h>
  15#include <linux/delay.h>
  16#include <linux/utsname.h>
  17#include <linux/initrd.h>
  18#include <linux/console.h>
  19#include <linux/bootmem.h>
  20#include <linux/seq_file.h>
  21#include <linux/screen_info.h>
  22#include <linux/of_platform.h>
  23#include <linux/init.h>
  24#include <linux/kexec.h>
 
  25#include <linux/of_fdt.h>
  26#include <linux/cpu.h>
  27#include <linux/interrupt.h>
  28#include <linux/smp.h>
  29#include <linux/proc_fs.h>
  30#include <linux/memblock.h>
  31#include <linux/bug.h>
  32#include <linux/compiler.h>
  33#include <linux/sort.h>
  34#include <linux/psci.h>
  35
  36#include <asm/unified.h>
  37#include <asm/cp15.h>
  38#include <asm/cpu.h>
  39#include <asm/cputype.h>
  40#include <asm/efi.h>
  41#include <asm/elf.h>
  42#include <asm/early_ioremap.h>
  43#include <asm/fixmap.h>
  44#include <asm/procinfo.h>
  45#include <asm/psci.h>
  46#include <asm/sections.h>
  47#include <asm/setup.h>
  48#include <asm/smp_plat.h>
  49#include <asm/mach-types.h>
  50#include <asm/cacheflush.h>
  51#include <asm/cachetype.h>
  52#include <asm/tlbflush.h>
  53#include <asm/xen/hypervisor.h>
  54
  55#include <asm/prom.h>
  56#include <asm/mach/arch.h>
  57#include <asm/mach/irq.h>
  58#include <asm/mach/time.h>
  59#include <asm/system_info.h>
  60#include <asm/system_misc.h>
  61#include <asm/traps.h>
  62#include <asm/unwind.h>
  63#include <asm/memblock.h>
  64#include <asm/virt.h>
 
  65
  66#include "atags.h"
  67
  68
  69#if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
  70char fpe_type[8];
  71
  72static int __init fpe_setup(char *line)
  73{
  74	memcpy(fpe_type, line, 8);
  75	return 1;
  76}
  77
  78__setup("fpe=", fpe_setup);
  79#endif
  80
  81extern void init_default_cache_policy(unsigned long);
  82extern void paging_init(const struct machine_desc *desc);
  83extern void early_mm_init(const struct machine_desc *);
  84extern void adjust_lowmem_bounds(void);
  85extern enum reboot_mode reboot_mode;
  86extern void setup_dma_zone(const struct machine_desc *desc);
  87
  88unsigned int processor_id;
  89EXPORT_SYMBOL(processor_id);
  90unsigned int __machine_arch_type __read_mostly;
  91EXPORT_SYMBOL(__machine_arch_type);
  92unsigned int cacheid __read_mostly;
  93EXPORT_SYMBOL(cacheid);
  94
  95unsigned int __atags_pointer __initdata;
  96
  97unsigned int system_rev;
  98EXPORT_SYMBOL(system_rev);
  99
 100const char *system_serial;
 101EXPORT_SYMBOL(system_serial);
 102
 103unsigned int system_serial_low;
 104EXPORT_SYMBOL(system_serial_low);
 105
 106unsigned int system_serial_high;
 107EXPORT_SYMBOL(system_serial_high);
 108
 109unsigned int elf_hwcap __read_mostly;
 110EXPORT_SYMBOL(elf_hwcap);
 111
 112unsigned int elf_hwcap2 __read_mostly;
 113EXPORT_SYMBOL(elf_hwcap2);
 114
 115
 116#ifdef MULTI_CPU
 117struct processor processor __ro_after_init;
 
 
 
 
 
 118#endif
 119#ifdef MULTI_TLB
 120struct cpu_tlb_fns cpu_tlb __ro_after_init;
 121#endif
 122#ifdef MULTI_USER
 123struct cpu_user_fns cpu_user __ro_after_init;
 124#endif
 125#ifdef MULTI_CACHE
 126struct cpu_cache_fns cpu_cache __ro_after_init;
 127#endif
 128#ifdef CONFIG_OUTER_CACHE
 129struct outer_cache_fns outer_cache __ro_after_init;
 130EXPORT_SYMBOL(outer_cache);
 131#endif
 132
 133/*
 134 * Cached cpu_architecture() result for use by assembler code.
 135 * C code should use the cpu_architecture() function instead of accessing this
 136 * variable directly.
 137 */
 138int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
 139
 140struct stack {
 141	u32 irq[3];
 142	u32 abt[3];
 143	u32 und[3];
 144	u32 fiq[3];
 145} ____cacheline_aligned;
 146
 147#ifndef CONFIG_CPU_V7M
 148static struct stack stacks[NR_CPUS];
 149#endif
 150
 151char elf_platform[ELF_PLATFORM_SIZE];
 152EXPORT_SYMBOL(elf_platform);
 153
 154static const char *cpu_name;
 155static const char *machine_name;
 156static char __initdata cmd_line[COMMAND_LINE_SIZE];
 157const struct machine_desc *machine_desc __initdata;
 158
 159static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
 160#define ENDIANNESS ((char)endian_test.l)
 161
 162DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
 163
 164/*
 165 * Standard memory resources
 166 */
 167static struct resource mem_res[] = {
 168	{
 169		.name = "Video RAM",
 170		.start = 0,
 171		.end = 0,
 172		.flags = IORESOURCE_MEM
 173	},
 174	{
 175		.name = "Kernel code",
 176		.start = 0,
 177		.end = 0,
 178		.flags = IORESOURCE_SYSTEM_RAM
 179	},
 180	{
 181		.name = "Kernel data",
 182		.start = 0,
 183		.end = 0,
 184		.flags = IORESOURCE_SYSTEM_RAM
 185	}
 186};
 187
 188#define video_ram   mem_res[0]
 189#define kernel_code mem_res[1]
 190#define kernel_data mem_res[2]
 191
 192static struct resource io_res[] = {
 193	{
 194		.name = "reserved",
 195		.start = 0x3bc,
 196		.end = 0x3be,
 197		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 198	},
 199	{
 200		.name = "reserved",
 201		.start = 0x378,
 202		.end = 0x37f,
 203		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 204	},
 205	{
 206		.name = "reserved",
 207		.start = 0x278,
 208		.end = 0x27f,
 209		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 210	}
 211};
 212
 213#define lp0 io_res[0]
 214#define lp1 io_res[1]
 215#define lp2 io_res[2]
 216
 217static const char *proc_arch[] = {
 218	"undefined/unknown",
 219	"3",
 220	"4",
 221	"4T",
 222	"5",
 223	"5T",
 224	"5TE",
 225	"5TEJ",
 226	"6TEJ",
 227	"7",
 228	"7M",
 229	"?(12)",
 230	"?(13)",
 231	"?(14)",
 232	"?(15)",
 233	"?(16)",
 234	"?(17)",
 235};
 236
 237#ifdef CONFIG_CPU_V7M
 238static int __get_cpu_architecture(void)
 239{
 240	return CPU_ARCH_ARMv7M;
 241}
 242#else
 243static int __get_cpu_architecture(void)
 244{
 245	int cpu_arch;
 246
 247	if ((read_cpuid_id() & 0x0008f000) == 0) {
 248		cpu_arch = CPU_ARCH_UNKNOWN;
 249	} else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
 250		cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
 251	} else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
 252		cpu_arch = (read_cpuid_id() >> 16) & 7;
 253		if (cpu_arch)
 254			cpu_arch += CPU_ARCH_ARMv3;
 255	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
 256		/* Revised CPUID format. Read the Memory Model Feature
 257		 * Register 0 and check for VMSAv7 or PMSAv7 */
 258		unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0);
 259		if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
 260		    (mmfr0 & 0x000000f0) >= 0x00000030)
 261			cpu_arch = CPU_ARCH_ARMv7;
 262		else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
 263			 (mmfr0 & 0x000000f0) == 0x00000020)
 264			cpu_arch = CPU_ARCH_ARMv6;
 265		else
 266			cpu_arch = CPU_ARCH_UNKNOWN;
 267	} else
 268		cpu_arch = CPU_ARCH_UNKNOWN;
 269
 270	return cpu_arch;
 271}
 272#endif
 273
 274int __pure cpu_architecture(void)
 275{
 276	BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
 277
 278	return __cpu_architecture;
 279}
 280
 281static int cpu_has_aliasing_icache(unsigned int arch)
 282{
 283	int aliasing_icache;
 284	unsigned int id_reg, num_sets, line_size;
 285
 286	/* PIPT caches never alias. */
 287	if (icache_is_pipt())
 288		return 0;
 289
 290	/* arch specifies the register format */
 291	switch (arch) {
 292	case CPU_ARCH_ARMv7:
 293		set_csselr(CSSELR_ICACHE | CSSELR_L1);
 294		isb();
 295		id_reg = read_ccsidr();
 296		line_size = 4 << ((id_reg & 0x7) + 2);
 297		num_sets = ((id_reg >> 13) & 0x7fff) + 1;
 298		aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
 299		break;
 300	case CPU_ARCH_ARMv6:
 301		aliasing_icache = read_cpuid_cachetype() & (1 << 11);
 302		break;
 303	default:
 304		/* I-cache aliases will be handled by D-cache aliasing code */
 305		aliasing_icache = 0;
 306	}
 307
 308	return aliasing_icache;
 309}
 310
 311static void __init cacheid_init(void)
 312{
 313	unsigned int arch = cpu_architecture();
 314
 315	if (arch >= CPU_ARCH_ARMv6) {
 316		unsigned int cachetype = read_cpuid_cachetype();
 317
 318		if ((arch == CPU_ARCH_ARMv7M) && !(cachetype & 0xf000f)) {
 319			cacheid = 0;
 320		} else if ((cachetype & (7 << 29)) == 4 << 29) {
 321			/* ARMv7 register format */
 322			arch = CPU_ARCH_ARMv7;
 323			cacheid = CACHEID_VIPT_NONALIASING;
 324			switch (cachetype & (3 << 14)) {
 325			case (1 << 14):
 326				cacheid |= CACHEID_ASID_TAGGED;
 327				break;
 328			case (3 << 14):
 329				cacheid |= CACHEID_PIPT;
 330				break;
 331			}
 332		} else {
 333			arch = CPU_ARCH_ARMv6;
 334			if (cachetype & (1 << 23))
 335				cacheid = CACHEID_VIPT_ALIASING;
 336			else
 337				cacheid = CACHEID_VIPT_NONALIASING;
 338		}
 339		if (cpu_has_aliasing_icache(arch))
 340			cacheid |= CACHEID_VIPT_I_ALIASING;
 341	} else {
 342		cacheid = CACHEID_VIVT;
 343	}
 344
 345	pr_info("CPU: %s data cache, %s instruction cache\n",
 346		cache_is_vivt() ? "VIVT" :
 347		cache_is_vipt_aliasing() ? "VIPT aliasing" :
 348		cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
 349		cache_is_vivt() ? "VIVT" :
 350		icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
 351		icache_is_vipt_aliasing() ? "VIPT aliasing" :
 352		icache_is_pipt() ? "PIPT" :
 353		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
 354}
 355
 356/*
 357 * These functions re-use the assembly code in head.S, which
 358 * already provide the required functionality.
 359 */
 360extern struct proc_info_list *lookup_processor_type(unsigned int);
 361
 362void __init early_print(const char *str, ...)
 363{
 364	extern void printascii(const char *);
 365	char buf[256];
 366	va_list ap;
 367
 368	va_start(ap, str);
 369	vsnprintf(buf, sizeof(buf), str, ap);
 370	va_end(ap);
 371
 372#ifdef CONFIG_DEBUG_LL
 373	printascii(buf);
 374#endif
 375	printk("%s", buf);
 376}
 377
 378#ifdef CONFIG_ARM_PATCH_IDIV
 379
 380static inline u32 __attribute_const__ sdiv_instruction(void)
 381{
 382	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 383		/* "sdiv r0, r0, r1" */
 384		u32 insn = __opcode_thumb32_compose(0xfb90, 0xf0f1);
 385		return __opcode_to_mem_thumb32(insn);
 386	}
 387
 388	/* "sdiv r0, r0, r1" */
 389	return __opcode_to_mem_arm(0xe710f110);
 390}
 391
 392static inline u32 __attribute_const__ udiv_instruction(void)
 393{
 394	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 395		/* "udiv r0, r0, r1" */
 396		u32 insn = __opcode_thumb32_compose(0xfbb0, 0xf0f1);
 397		return __opcode_to_mem_thumb32(insn);
 398	}
 399
 400	/* "udiv r0, r0, r1" */
 401	return __opcode_to_mem_arm(0xe730f110);
 402}
 403
 404static inline u32 __attribute_const__ bx_lr_instruction(void)
 405{
 406	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 407		/* "bx lr; nop" */
 408		u32 insn = __opcode_thumb32_compose(0x4770, 0x46c0);
 409		return __opcode_to_mem_thumb32(insn);
 410	}
 411
 412	/* "bx lr" */
 413	return __opcode_to_mem_arm(0xe12fff1e);
 414}
 415
 416static void __init patch_aeabi_idiv(void)
 417{
 418	extern void __aeabi_uidiv(void);
 419	extern void __aeabi_idiv(void);
 420	uintptr_t fn_addr;
 421	unsigned int mask;
 422
 423	mask = IS_ENABLED(CONFIG_THUMB2_KERNEL) ? HWCAP_IDIVT : HWCAP_IDIVA;
 424	if (!(elf_hwcap & mask))
 425		return;
 426
 427	pr_info("CPU: div instructions available: patching division code\n");
 428
 429	fn_addr = ((uintptr_t)&__aeabi_uidiv) & ~1;
 430	asm ("" : "+g" (fn_addr));
 431	((u32 *)fn_addr)[0] = udiv_instruction();
 432	((u32 *)fn_addr)[1] = bx_lr_instruction();
 433	flush_icache_range(fn_addr, fn_addr + 8);
 434
 435	fn_addr = ((uintptr_t)&__aeabi_idiv) & ~1;
 436	asm ("" : "+g" (fn_addr));
 437	((u32 *)fn_addr)[0] = sdiv_instruction();
 438	((u32 *)fn_addr)[1] = bx_lr_instruction();
 439	flush_icache_range(fn_addr, fn_addr + 8);
 440}
 441
 442#else
 443static inline void patch_aeabi_idiv(void) { }
 444#endif
 445
 446static void __init cpuid_init_hwcaps(void)
 447{
 448	int block;
 449	u32 isar5;
 
 
 450
 451	if (cpu_architecture() < CPU_ARCH_ARMv7)
 452		return;
 453
 454	block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24);
 455	if (block >= 2)
 456		elf_hwcap |= HWCAP_IDIVA;
 457	if (block >= 1)
 458		elf_hwcap |= HWCAP_IDIVT;
 459
 460	/* LPAE implies atomic ldrd/strd instructions */
 461	block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
 462	if (block >= 5)
 463		elf_hwcap |= HWCAP_LPAE;
 464
 465	/* check for supported v8 Crypto instructions */
 466	isar5 = read_cpuid_ext(CPUID_EXT_ISAR5);
 467
 468	block = cpuid_feature_extract_field(isar5, 4);
 469	if (block >= 2)
 470		elf_hwcap2 |= HWCAP2_PMULL;
 471	if (block >= 1)
 472		elf_hwcap2 |= HWCAP2_AES;
 473
 474	block = cpuid_feature_extract_field(isar5, 8);
 475	if (block >= 1)
 476		elf_hwcap2 |= HWCAP2_SHA1;
 477
 478	block = cpuid_feature_extract_field(isar5, 12);
 479	if (block >= 1)
 480		elf_hwcap2 |= HWCAP2_SHA2;
 481
 482	block = cpuid_feature_extract_field(isar5, 16);
 483	if (block >= 1)
 484		elf_hwcap2 |= HWCAP2_CRC32;
 
 
 
 
 
 
 
 
 
 
 
 
 485}
 486
 487static void __init elf_hwcap_fixup(void)
 488{
 489	unsigned id = read_cpuid_id();
 490
 491	/*
 492	 * HWCAP_TLS is available only on 1136 r1p0 and later,
 493	 * see also kuser_get_tls_init.
 494	 */
 495	if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
 496	    ((id >> 20) & 3) == 0) {
 497		elf_hwcap &= ~HWCAP_TLS;
 498		return;
 499	}
 500
 501	/* Verify if CPUID scheme is implemented */
 502	if ((id & 0x000f0000) != 0x000f0000)
 503		return;
 504
 505	/*
 506	 * If the CPU supports LDREX/STREX and LDREXB/STREXB,
 507	 * avoid advertising SWP; it may not be atomic with
 508	 * multiprocessing cores.
 509	 */
 510	if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 ||
 511	    (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 &&
 512	     cpuid_feature_extract(CPUID_EXT_ISAR4, 20) >= 3))
 513		elf_hwcap &= ~HWCAP_SWP;
 514}
 515
 516/*
 517 * cpu_init - initialise one CPU.
 518 *
 519 * cpu_init sets up the per-CPU stacks.
 520 */
 521void notrace cpu_init(void)
 522{
 523#ifndef CONFIG_CPU_V7M
 524	unsigned int cpu = smp_processor_id();
 525	struct stack *stk = &stacks[cpu];
 526
 527	if (cpu >= NR_CPUS) {
 528		pr_crit("CPU%u: bad primary CPU number\n", cpu);
 529		BUG();
 530	}
 531
 532	/*
 533	 * This only works on resume and secondary cores. For booting on the
 534	 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
 535	 */
 536	set_my_cpu_offset(per_cpu_offset(cpu));
 537
 538	cpu_proc_init();
 539
 540	/*
 541	 * Define the placement constraint for the inline asm directive below.
 542	 * In Thumb-2, msr with an immediate value is not allowed.
 543	 */
 544#ifdef CONFIG_THUMB2_KERNEL
 545#define PLC	"r"
 
 546#else
 547#define PLC	"I"
 
 548#endif
 549
 550	/*
 551	 * setup stacks for re-entrant exception handlers
 552	 */
 553	__asm__ (
 554	"msr	cpsr_c, %1\n\t"
 555	"add	r14, %0, %2\n\t"
 556	"mov	sp, r14\n\t"
 557	"msr	cpsr_c, %3\n\t"
 558	"add	r14, %0, %4\n\t"
 559	"mov	sp, r14\n\t"
 560	"msr	cpsr_c, %5\n\t"
 561	"add	r14, %0, %6\n\t"
 562	"mov	sp, r14\n\t"
 563	"msr	cpsr_c, %7\n\t"
 564	"add	r14, %0, %8\n\t"
 565	"mov	sp, r14\n\t"
 566	"msr	cpsr_c, %9"
 567	    :
 568	    : "r" (stk),
 569	      PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
 570	      "I" (offsetof(struct stack, irq[0])),
 571	      PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
 572	      "I" (offsetof(struct stack, abt[0])),
 573	      PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
 574	      "I" (offsetof(struct stack, und[0])),
 575	      PLC (PSR_F_BIT | PSR_I_BIT | FIQ_MODE),
 576	      "I" (offsetof(struct stack, fiq[0])),
 577	      PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
 578	    : "r14");
 579#endif
 580}
 581
 582u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
 583
 584void __init smp_setup_processor_id(void)
 585{
 586	int i;
 587	u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
 588	u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 589
 590	cpu_logical_map(0) = cpu;
 591	for (i = 1; i < nr_cpu_ids; ++i)
 592		cpu_logical_map(i) = i == cpu ? 0 : i;
 593
 594	/*
 595	 * clear __my_cpu_offset on boot CPU to avoid hang caused by
 596	 * using percpu variable early, for example, lockdep will
 597	 * access percpu variable inside lock_release
 598	 */
 599	set_my_cpu_offset(0);
 600
 601	pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
 602}
 603
 604struct mpidr_hash mpidr_hash;
 605#ifdef CONFIG_SMP
 606/**
 607 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
 608 *			  level in order to build a linear index from an
 609 *			  MPIDR value. Resulting algorithm is a collision
 610 *			  free hash carried out through shifting and ORing
 611 */
 612static void __init smp_build_mpidr_hash(void)
 613{
 614	u32 i, affinity;
 615	u32 fs[3], bits[3], ls, mask = 0;
 616	/*
 617	 * Pre-scan the list of MPIDRS and filter out bits that do
 618	 * not contribute to affinity levels, ie they never toggle.
 619	 */
 620	for_each_possible_cpu(i)
 621		mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
 622	pr_debug("mask of set bits 0x%x\n", mask);
 623	/*
 624	 * Find and stash the last and first bit set at all affinity levels to
 625	 * check how many bits are required to represent them.
 626	 */
 627	for (i = 0; i < 3; i++) {
 628		affinity = MPIDR_AFFINITY_LEVEL(mask, i);
 629		/*
 630		 * Find the MSB bit and LSB bits position
 631		 * to determine how many bits are required
 632		 * to express the affinity level.
 633		 */
 634		ls = fls(affinity);
 635		fs[i] = affinity ? ffs(affinity) - 1 : 0;
 636		bits[i] = ls - fs[i];
 637	}
 638	/*
 639	 * An index can be created from the MPIDR by isolating the
 640	 * significant bits at each affinity level and by shifting
 641	 * them in order to compress the 24 bits values space to a
 642	 * compressed set of values. This is equivalent to hashing
 643	 * the MPIDR through shifting and ORing. It is a collision free
 644	 * hash though not minimal since some levels might contain a number
 645	 * of CPUs that is not an exact power of 2 and their bit
 646	 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
 647	 */
 648	mpidr_hash.shift_aff[0] = fs[0];
 649	mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
 650	mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
 651						(bits[1] + bits[0]);
 652	mpidr_hash.mask = mask;
 653	mpidr_hash.bits = bits[2] + bits[1] + bits[0];
 654	pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
 655				mpidr_hash.shift_aff[0],
 656				mpidr_hash.shift_aff[1],
 657				mpidr_hash.shift_aff[2],
 658				mpidr_hash.mask,
 659				mpidr_hash.bits);
 660	/*
 661	 * 4x is an arbitrary value used to warn on a hash table much bigger
 662	 * than expected on most systems.
 663	 */
 664	if (mpidr_hash_size() > 4 * num_possible_cpus())
 665		pr_warn("Large number of MPIDR hash buckets detected\n");
 666	sync_cache_w(&mpidr_hash);
 667}
 668#endif
 669
 670static void __init setup_processor(void)
 
 
 
 
 671{
 672	struct proc_info_list *list;
 673
 674	/*
 675	 * locate processor in the list of supported processor
 676	 * types.  The linker builds this table for us from the
 677	 * entries in arch/arm/mm/proc-*.S
 678	 */
 679	list = lookup_processor_type(read_cpuid_id());
 680	if (!list) {
 681		pr_err("CPU configuration botched (ID %08x), unable to continue.\n",
 682		       read_cpuid_id());
 683		while (1);
 
 684	}
 685
 
 
 
 
 
 
 
 
 686	cpu_name = list->cpu_name;
 687	__cpu_architecture = __get_cpu_architecture();
 688
 689#ifdef MULTI_CPU
 690	processor = *list->proc;
 691#endif
 692#ifdef MULTI_TLB
 693	cpu_tlb = *list->tlb;
 694#endif
 695#ifdef MULTI_USER
 696	cpu_user = *list->user;
 697#endif
 698#ifdef MULTI_CACHE
 699	cpu_cache = *list->cache;
 700#endif
 701
 702	pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
 703		cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
 704		proc_arch[cpu_architecture()], get_cr());
 705
 706	snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
 707		 list->arch_name, ENDIANNESS);
 708	snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
 709		 list->elf_name, ENDIANNESS);
 710	elf_hwcap = list->elf_hwcap;
 711
 712	cpuid_init_hwcaps();
 713	patch_aeabi_idiv();
 714
 715#ifndef CONFIG_ARM_THUMB
 716	elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
 717#endif
 718#ifdef CONFIG_MMU
 719	init_default_cache_policy(list->__cpu_mm_mmu_flags);
 720#endif
 721	erratum_a15_798181_init();
 722
 723	elf_hwcap_fixup();
 724
 725	cacheid_init();
 726	cpu_init();
 727}
 728
 729void __init dump_machine_table(void)
 730{
 731	const struct machine_desc *p;
 732
 733	early_print("Available machine support:\n\nID (hex)\tNAME\n");
 734	for_each_machine_desc(p)
 735		early_print("%08x\t%s\n", p->nr, p->name);
 736
 737	early_print("\nPlease check your kernel config and/or bootloader.\n");
 738
 739	while (true)
 740		/* can't use cpu_relax() here as it may require MMU setup */;
 741}
 742
 743int __init arm_add_memory(u64 start, u64 size)
 744{
 745	u64 aligned_start;
 746
 747	/*
 748	 * Ensure that start/size are aligned to a page boundary.
 749	 * Size is rounded down, start is rounded up.
 750	 */
 751	aligned_start = PAGE_ALIGN(start);
 752	if (aligned_start > start + size)
 753		size = 0;
 754	else
 755		size -= aligned_start - start;
 756
 757#ifndef CONFIG_ARCH_PHYS_ADDR_T_64BIT
 758	if (aligned_start > ULONG_MAX) {
 759		pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
 760			(long long)start);
 761		return -EINVAL;
 762	}
 763
 764	if (aligned_start + size > ULONG_MAX) {
 765		pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
 766			(long long)start);
 767		/*
 768		 * To ensure bank->start + bank->size is representable in
 769		 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
 770		 * This means we lose a page after masking.
 771		 */
 772		size = ULONG_MAX - aligned_start;
 773	}
 774#endif
 775
 776	if (aligned_start < PHYS_OFFSET) {
 777		if (aligned_start + size <= PHYS_OFFSET) {
 778			pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
 779				aligned_start, aligned_start + size);
 780			return -EINVAL;
 781		}
 782
 783		pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
 784			aligned_start, (u64)PHYS_OFFSET);
 785
 786		size -= PHYS_OFFSET - aligned_start;
 787		aligned_start = PHYS_OFFSET;
 788	}
 789
 790	start = aligned_start;
 791	size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
 792
 793	/*
 794	 * Check whether this memory region has non-zero size or
 795	 * invalid node number.
 796	 */
 797	if (size == 0)
 798		return -EINVAL;
 799
 800	memblock_add(start, size);
 801	return 0;
 802}
 803
 804/*
 805 * Pick out the memory size.  We look for mem=size@start,
 806 * where start and size are "size[KkMm]"
 807 */
 808
 809static int __init early_mem(char *p)
 810{
 811	static int usermem __initdata = 0;
 812	u64 size;
 813	u64 start;
 814	char *endp;
 815
 816	/*
 817	 * If the user specifies memory size, we
 818	 * blow away any automatically generated
 819	 * size.
 820	 */
 821	if (usermem == 0) {
 822		usermem = 1;
 823		memblock_remove(memblock_start_of_DRAM(),
 824			memblock_end_of_DRAM() - memblock_start_of_DRAM());
 825	}
 826
 827	start = PHYS_OFFSET;
 828	size  = memparse(p, &endp);
 829	if (*endp == '@')
 830		start = memparse(endp + 1, NULL);
 831
 832	arm_add_memory(start, size);
 833
 834	return 0;
 835}
 836early_param("mem", early_mem);
 837
 838static void __init request_standard_resources(const struct machine_desc *mdesc)
 839{
 840	struct memblock_region *region;
 841	struct resource *res;
 
 842
 843	kernel_code.start   = virt_to_phys(_text);
 844	kernel_code.end     = virt_to_phys(__init_begin - 1);
 845	kernel_data.start   = virt_to_phys(_sdata);
 846	kernel_data.end     = virt_to_phys(_end - 1);
 847
 848	for_each_memblock(memory, region) {
 849		phys_addr_t start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
 850		phys_addr_t end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
 851		unsigned long boot_alias_start;
 852
 853		/*
 
 
 
 
 
 
 
 854		 * Some systems have a special memory alias which is only
 855		 * used for booting.  We need to advertise this region to
 856		 * kexec-tools so they know where bootable RAM is located.
 857		 */
 858		boot_alias_start = phys_to_idmap(start);
 859		if (arm_has_idmap_alias() && boot_alias_start != IDMAP_INVALID_ADDR) {
 860			res = memblock_virt_alloc(sizeof(*res), 0);
 
 
 
 861			res->name = "System RAM (boot alias)";
 862			res->start = boot_alias_start;
 863			res->end = phys_to_idmap(end);
 864			res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 865			request_resource(&iomem_resource, res);
 866		}
 867
 868		res = memblock_virt_alloc(sizeof(*res), 0);
 
 
 
 869		res->name  = "System RAM";
 870		res->start = start;
 871		res->end = end;
 872		res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 873
 874		request_resource(&iomem_resource, res);
 875
 876		if (kernel_code.start >= res->start &&
 877		    kernel_code.end <= res->end)
 878			request_resource(res, &kernel_code);
 879		if (kernel_data.start >= res->start &&
 880		    kernel_data.end <= res->end)
 881			request_resource(res, &kernel_data);
 882	}
 883
 884	if (mdesc->video_start) {
 885		video_ram.start = mdesc->video_start;
 886		video_ram.end   = mdesc->video_end;
 887		request_resource(&iomem_resource, &video_ram);
 888	}
 889
 890	/*
 891	 * Some machines don't have the possibility of ever
 892	 * possessing lp0, lp1 or lp2
 893	 */
 894	if (mdesc->reserve_lp0)
 895		request_resource(&ioport_resource, &lp0);
 896	if (mdesc->reserve_lp1)
 897		request_resource(&ioport_resource, &lp1);
 898	if (mdesc->reserve_lp2)
 899		request_resource(&ioport_resource, &lp2);
 900}
 901
 902#if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE) || \
 903    defined(CONFIG_EFI)
 904struct screen_info screen_info = {
 905 .orig_video_lines	= 30,
 906 .orig_video_cols	= 80,
 907 .orig_video_mode	= 0,
 908 .orig_video_ega_bx	= 0,
 909 .orig_video_isVGA	= 1,
 910 .orig_video_points	= 8
 911};
 912#endif
 913
 914static int __init customize_machine(void)
 915{
 916	/*
 917	 * customizes platform devices, or adds new ones
 918	 * On DT based machines, we fall back to populating the
 919	 * machine from the device tree, if no callback is provided,
 920	 * otherwise we would always need an init_machine callback.
 921	 */
 922	if (machine_desc->init_machine)
 923		machine_desc->init_machine();
 924
 925	return 0;
 926}
 927arch_initcall(customize_machine);
 928
 929static int __init init_machine_late(void)
 930{
 931	struct device_node *root;
 932	int ret;
 933
 934	if (machine_desc->init_late)
 935		machine_desc->init_late();
 936
 937	root = of_find_node_by_path("/");
 938	if (root) {
 939		ret = of_property_read_string(root, "serial-number",
 940					      &system_serial);
 941		if (ret)
 942			system_serial = NULL;
 943	}
 944
 945	if (!system_serial)
 946		system_serial = kasprintf(GFP_KERNEL, "%08x%08x",
 947					  system_serial_high,
 948					  system_serial_low);
 949
 950	return 0;
 951}
 952late_initcall(init_machine_late);
 953
 954#ifdef CONFIG_KEXEC
 955/*
 956 * The crash region must be aligned to 128MB to avoid
 957 * zImage relocating below the reserved region.
 958 */
 959#define CRASH_ALIGN	(128 << 20)
 960
 961static inline unsigned long long get_total_mem(void)
 962{
 963	unsigned long total;
 964
 965	total = max_low_pfn - min_low_pfn;
 966	return total << PAGE_SHIFT;
 967}
 968
 969/**
 970 * reserve_crashkernel() - reserves memory are for crash kernel
 971 *
 972 * This function reserves memory area given in "crashkernel=" kernel command
 973 * line parameter. The memory reserved is used by a dump capture kernel when
 974 * primary kernel is crashing.
 975 */
 976static void __init reserve_crashkernel(void)
 977{
 978	unsigned long long crash_size, crash_base;
 979	unsigned long long total_mem;
 980	int ret;
 981
 982	total_mem = get_total_mem();
 983	ret = parse_crashkernel(boot_command_line, total_mem,
 984				&crash_size, &crash_base);
 985	if (ret)
 
 986		return;
 987
 988	if (crash_base <= 0) {
 989		unsigned long long crash_max = idmap_to_phys((u32)~0);
 990		unsigned long long lowmem_max = __pa(high_memory - 1) + 1;
 991		if (crash_max > lowmem_max)
 992			crash_max = lowmem_max;
 993		crash_base = memblock_find_in_range(CRASH_ALIGN, crash_max,
 994						    crash_size, CRASH_ALIGN);
 
 995		if (!crash_base) {
 996			pr_err("crashkernel reservation failed - No suitable area found.\n");
 997			return;
 998		}
 999	} else {
 
1000		unsigned long long start;
1001
1002		start = memblock_find_in_range(crash_base,
1003					       crash_base + crash_size,
1004					       crash_size, SECTION_SIZE);
1005		if (start != crash_base) {
1006			pr_err("crashkernel reservation failed - memory is in use.\n");
1007			return;
1008		}
1009	}
1010
1011	ret = memblock_reserve(crash_base, crash_size);
1012	if (ret < 0) {
1013		pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n",
1014			(unsigned long)crash_base);
1015		return;
1016	}
1017
1018	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
1019		(unsigned long)(crash_size >> 20),
1020		(unsigned long)(crash_base >> 20),
1021		(unsigned long)(total_mem >> 20));
1022
1023	/* The crashk resource must always be located in normal mem */
1024	crashk_res.start = crash_base;
1025	crashk_res.end = crash_base + crash_size - 1;
1026	insert_resource(&iomem_resource, &crashk_res);
1027
1028	if (arm_has_idmap_alias()) {
1029		/*
1030		 * If we have a special RAM alias for use at boot, we
1031		 * need to advertise to kexec tools where the alias is.
1032		 */
1033		static struct resource crashk_boot_res = {
1034			.name = "Crash kernel (boot alias)",
1035			.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
1036		};
1037
1038		crashk_boot_res.start = phys_to_idmap(crash_base);
1039		crashk_boot_res.end = crashk_boot_res.start + crash_size - 1;
1040		insert_resource(&iomem_resource, &crashk_boot_res);
1041	}
1042}
1043#else
1044static inline void reserve_crashkernel(void) {}
1045#endif /* CONFIG_KEXEC */
1046
1047void __init hyp_mode_check(void)
1048{
1049#ifdef CONFIG_ARM_VIRT_EXT
1050	sync_boot_mode();
1051
1052	if (is_hyp_mode_available()) {
1053		pr_info("CPU: All CPU(s) started in HYP mode.\n");
1054		pr_info("CPU: Virtualization extensions available.\n");
1055	} else if (is_hyp_mode_mismatched()) {
1056		pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
1057			__boot_cpu_mode & MODE_MASK);
1058		pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
1059	} else
1060		pr_info("CPU: All CPU(s) started in SVC mode.\n");
1061#endif
1062}
1063
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1064void __init setup_arch(char **cmdline_p)
1065{
1066	const struct machine_desc *mdesc;
 
 
 
 
1067
1068	setup_processor();
1069	mdesc = setup_machine_fdt(__atags_pointer);
 
 
 
 
 
1070	if (!mdesc)
1071		mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
1072	if (!mdesc) {
1073		early_print("\nError: invalid dtb and unrecognized/unsupported machine ID\n");
1074		early_print("  r1=0x%08x, r2=0x%08x\n", __machine_arch_type,
1075			    __atags_pointer);
1076		if (__atags_pointer)
1077			early_print("  r2[]=%*ph\n", 16,
1078				    phys_to_virt(__atags_pointer));
1079		dump_machine_table();
1080	}
1081
1082	machine_desc = mdesc;
1083	machine_name = mdesc->name;
1084	dump_stack_set_arch_desc("%s", mdesc->name);
1085
1086	if (mdesc->reboot_mode != REBOOT_HARD)
1087		reboot_mode = mdesc->reboot_mode;
1088
1089	init_mm.start_code = (unsigned long) _text;
1090	init_mm.end_code   = (unsigned long) _etext;
1091	init_mm.end_data   = (unsigned long) _edata;
1092	init_mm.brk	   = (unsigned long) _end;
1093
1094	/* populate cmd_line too for later use, preserving boot_command_line */
1095	strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
1096	*cmdline_p = cmd_line;
1097
1098	early_fixmap_init();
1099	early_ioremap_init();
1100
1101	parse_early_param();
1102
1103#ifdef CONFIG_MMU
1104	early_mm_init(mdesc);
1105#endif
1106	setup_dma_zone(mdesc);
1107	xen_early_init();
1108	efi_init();
1109	/*
1110	 * Make sure the calculation for lowmem/highmem is set appropriately
1111	 * before reserving/allocating any mmeory
1112	 */
1113	adjust_lowmem_bounds();
1114	arm_memblock_init(mdesc);
1115	/* Memory may have been removed so recalculate the bounds. */
1116	adjust_lowmem_bounds();
1117
1118	early_ioremap_reset();
1119
1120	paging_init(mdesc);
 
1121	request_standard_resources(mdesc);
1122
1123	if (mdesc->restart)
1124		arm_pm_restart = mdesc->restart;
 
 
1125
1126	unflatten_device_tree();
1127
1128	arm_dt_init_cpu_maps();
1129	psci_dt_init();
1130#ifdef CONFIG_SMP
1131	if (is_smp()) {
1132		if (!mdesc->smp_init || !mdesc->smp_init()) {
1133			if (psci_smp_available())
1134				smp_set_ops(&psci_smp_ops);
1135			else if (mdesc->smp)
1136				smp_set_ops(mdesc->smp);
1137		}
1138		smp_init_cpus();
1139		smp_build_mpidr_hash();
1140	}
1141#endif
1142
1143	if (!is_smp())
1144		hyp_mode_check();
1145
1146	reserve_crashkernel();
1147
1148#ifdef CONFIG_MULTI_IRQ_HANDLER
1149	handle_arch_irq = mdesc->handle_irq;
1150#endif
1151
1152#ifdef CONFIG_VT
1153#if defined(CONFIG_VGA_CONSOLE)
1154	conswitchp = &vga_con;
1155#elif defined(CONFIG_DUMMY_CONSOLE)
1156	conswitchp = &dummy_con;
1157#endif
1158#endif
1159
1160	if (mdesc->init_early)
1161		mdesc->init_early();
1162}
1163
1164
1165static int __init topology_init(void)
1166{
1167	int cpu;
1168
1169	for_each_possible_cpu(cpu) {
1170		struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
1171		cpuinfo->cpu.hotpluggable = platform_can_hotplug_cpu(cpu);
1172		register_cpu(&cpuinfo->cpu, cpu);
1173	}
1174
1175	return 0;
1176}
1177subsys_initcall(topology_init);
1178
1179#ifdef CONFIG_HAVE_PROC_CPU
1180static int __init proc_cpu_init(void)
1181{
1182	struct proc_dir_entry *res;
1183
1184	res = proc_mkdir("cpu", NULL);
1185	if (!res)
1186		return -ENOMEM;
1187	return 0;
1188}
1189fs_initcall(proc_cpu_init);
1190#endif
1191
1192static const char *hwcap_str[] = {
1193	"swp",
1194	"half",
1195	"thumb",
1196	"26bit",
1197	"fastmult",
1198	"fpa",
1199	"vfp",
1200	"edsp",
1201	"java",
1202	"iwmmxt",
1203	"crunch",
1204	"thumbee",
1205	"neon",
1206	"vfpv3",
1207	"vfpv3d16",
1208	"tls",
1209	"vfpv4",
1210	"idiva",
1211	"idivt",
1212	"vfpd32",
1213	"lpae",
1214	"evtstrm",
 
 
 
 
 
 
1215	NULL
1216};
1217
1218static const char *hwcap2_str[] = {
1219	"aes",
1220	"pmull",
1221	"sha1",
1222	"sha2",
1223	"crc32",
 
 
1224	NULL
1225};
1226
1227static int c_show(struct seq_file *m, void *v)
1228{
1229	int i, j;
1230	u32 cpuid;
1231
1232	for_each_online_cpu(i) {
1233		/*
1234		 * glibc reads /proc/cpuinfo to determine the number of
1235		 * online processors, looking for lines beginning with
1236		 * "processor".  Give glibc what it expects.
1237		 */
1238		seq_printf(m, "processor\t: %d\n", i);
1239		cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
1240		seq_printf(m, "model name\t: %s rev %d (%s)\n",
1241			   cpu_name, cpuid & 15, elf_platform);
1242
1243#if defined(CONFIG_SMP)
1244		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1245			   per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1246			   (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1247#else
1248		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1249			   loops_per_jiffy / (500000/HZ),
1250			   (loops_per_jiffy / (5000/HZ)) % 100);
1251#endif
1252		/* dump out the processor features */
1253		seq_puts(m, "Features\t: ");
1254
1255		for (j = 0; hwcap_str[j]; j++)
1256			if (elf_hwcap & (1 << j))
1257				seq_printf(m, "%s ", hwcap_str[j]);
1258
1259		for (j = 0; hwcap2_str[j]; j++)
1260			if (elf_hwcap2 & (1 << j))
1261				seq_printf(m, "%s ", hwcap2_str[j]);
1262
1263		seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1264		seq_printf(m, "CPU architecture: %s\n",
1265			   proc_arch[cpu_architecture()]);
1266
1267		if ((cpuid & 0x0008f000) == 0x00000000) {
1268			/* pre-ARM7 */
1269			seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
1270		} else {
1271			if ((cpuid & 0x0008f000) == 0x00007000) {
1272				/* ARM7 */
1273				seq_printf(m, "CPU variant\t: 0x%02x\n",
1274					   (cpuid >> 16) & 127);
1275			} else {
1276				/* post-ARM7 */
1277				seq_printf(m, "CPU variant\t: 0x%x\n",
1278					   (cpuid >> 20) & 15);
1279			}
1280			seq_printf(m, "CPU part\t: 0x%03x\n",
1281				   (cpuid >> 4) & 0xfff);
1282		}
1283		seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
1284	}
1285
1286	seq_printf(m, "Hardware\t: %s\n", machine_name);
1287	seq_printf(m, "Revision\t: %04x\n", system_rev);
1288	seq_printf(m, "Serial\t\t: %s\n", system_serial);
1289
1290	return 0;
1291}
1292
1293static void *c_start(struct seq_file *m, loff_t *pos)
1294{
1295	return *pos < 1 ? (void *)1 : NULL;
1296}
1297
1298static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1299{
1300	++*pos;
1301	return NULL;
1302}
1303
1304static void c_stop(struct seq_file *m, void *v)
1305{
1306}
1307
1308const struct seq_operations cpuinfo_op = {
1309	.start	= c_start,
1310	.next	= c_next,
1311	.stop	= c_stop,
1312	.show	= c_show
1313};
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/arch/arm/kernel/setup.c
   4 *
   5 *  Copyright (C) 1995-2001 Russell King
 
 
 
 
   6 */
   7#include <linux/efi.h>
   8#include <linux/export.h>
   9#include <linux/kernel.h>
  10#include <linux/stddef.h>
  11#include <linux/ioport.h>
  12#include <linux/delay.h>
  13#include <linux/utsname.h>
  14#include <linux/initrd.h>
  15#include <linux/console.h>
 
  16#include <linux/seq_file.h>
  17#include <linux/screen_info.h>
  18#include <linux/of_platform.h>
  19#include <linux/init.h>
  20#include <linux/kexec.h>
  21#include <linux/libfdt.h>
  22#include <linux/of_fdt.h>
  23#include <linux/cpu.h>
  24#include <linux/interrupt.h>
  25#include <linux/smp.h>
  26#include <linux/proc_fs.h>
  27#include <linux/memblock.h>
  28#include <linux/bug.h>
  29#include <linux/compiler.h>
  30#include <linux/sort.h>
  31#include <linux/psci.h>
  32
  33#include <asm/unified.h>
  34#include <asm/cp15.h>
  35#include <asm/cpu.h>
  36#include <asm/cputype.h>
  37#include <asm/efi.h>
  38#include <asm/elf.h>
  39#include <asm/early_ioremap.h>
  40#include <asm/fixmap.h>
  41#include <asm/procinfo.h>
  42#include <asm/psci.h>
  43#include <asm/sections.h>
  44#include <asm/setup.h>
  45#include <asm/smp_plat.h>
  46#include <asm/mach-types.h>
  47#include <asm/cacheflush.h>
  48#include <asm/cachetype.h>
  49#include <asm/tlbflush.h>
  50#include <asm/xen/hypervisor.h>
  51
  52#include <asm/prom.h>
  53#include <asm/mach/arch.h>
  54#include <asm/mach/irq.h>
  55#include <asm/mach/time.h>
  56#include <asm/system_info.h>
  57#include <asm/system_misc.h>
  58#include <asm/traps.h>
  59#include <asm/unwind.h>
  60#include <asm/memblock.h>
  61#include <asm/virt.h>
  62#include <asm/kasan.h>
  63
  64#include "atags.h"
  65
  66
  67#if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
  68char fpe_type[8];
  69
  70static int __init fpe_setup(char *line)
  71{
  72	memcpy(fpe_type, line, 8);
  73	return 1;
  74}
  75
  76__setup("fpe=", fpe_setup);
  77#endif
  78
  79extern void init_default_cache_policy(unsigned long);
  80extern void paging_init(const struct machine_desc *desc);
  81extern void early_mm_init(const struct machine_desc *);
  82extern void adjust_lowmem_bounds(void);
  83extern enum reboot_mode reboot_mode;
  84extern void setup_dma_zone(const struct machine_desc *desc);
  85
  86unsigned int processor_id;
  87EXPORT_SYMBOL(processor_id);
  88unsigned int __machine_arch_type __read_mostly;
  89EXPORT_SYMBOL(__machine_arch_type);
  90unsigned int cacheid __read_mostly;
  91EXPORT_SYMBOL(cacheid);
  92
  93unsigned int __atags_pointer __initdata;
  94
  95unsigned int system_rev;
  96EXPORT_SYMBOL(system_rev);
  97
  98const char *system_serial;
  99EXPORT_SYMBOL(system_serial);
 100
 101unsigned int system_serial_low;
 102EXPORT_SYMBOL(system_serial_low);
 103
 104unsigned int system_serial_high;
 105EXPORT_SYMBOL(system_serial_high);
 106
 107unsigned int elf_hwcap __read_mostly;
 108EXPORT_SYMBOL(elf_hwcap);
 109
 110unsigned int elf_hwcap2 __read_mostly;
 111EXPORT_SYMBOL(elf_hwcap2);
 112
 113
 114#ifdef MULTI_CPU
 115struct processor processor __ro_after_init;
 116#if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
 117struct processor *cpu_vtable[NR_CPUS] = {
 118	[0] = &processor,
 119};
 120#endif
 121#endif
 122#ifdef MULTI_TLB
 123struct cpu_tlb_fns cpu_tlb __ro_after_init;
 124#endif
 125#ifdef MULTI_USER
 126struct cpu_user_fns cpu_user __ro_after_init;
 127#endif
 128#ifdef MULTI_CACHE
 129struct cpu_cache_fns cpu_cache __ro_after_init;
 130#endif
 131#ifdef CONFIG_OUTER_CACHE
 132struct outer_cache_fns outer_cache __ro_after_init;
 133EXPORT_SYMBOL(outer_cache);
 134#endif
 135
 136/*
 137 * Cached cpu_architecture() result for use by assembler code.
 138 * C code should use the cpu_architecture() function instead of accessing this
 139 * variable directly.
 140 */
 141int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
 142
 143struct stack {
 144	u32 irq[4];
 145	u32 abt[4];
 146	u32 und[4];
 147	u32 fiq[4];
 148} ____cacheline_aligned;
 149
 150#ifndef CONFIG_CPU_V7M
 151static struct stack stacks[NR_CPUS];
 152#endif
 153
 154char elf_platform[ELF_PLATFORM_SIZE];
 155EXPORT_SYMBOL(elf_platform);
 156
 157static const char *cpu_name;
 158static const char *machine_name;
 159static char __initdata cmd_line[COMMAND_LINE_SIZE];
 160const struct machine_desc *machine_desc __initdata;
 161
 162static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
 163#define ENDIANNESS ((char)endian_test.l)
 164
 165DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
 166
 167/*
 168 * Standard memory resources
 169 */
 170static struct resource mem_res[] = {
 171	{
 172		.name = "Video RAM",
 173		.start = 0,
 174		.end = 0,
 175		.flags = IORESOURCE_MEM
 176	},
 177	{
 178		.name = "Kernel code",
 179		.start = 0,
 180		.end = 0,
 181		.flags = IORESOURCE_SYSTEM_RAM
 182	},
 183	{
 184		.name = "Kernel data",
 185		.start = 0,
 186		.end = 0,
 187		.flags = IORESOURCE_SYSTEM_RAM
 188	}
 189};
 190
 191#define video_ram   mem_res[0]
 192#define kernel_code mem_res[1]
 193#define kernel_data mem_res[2]
 194
 195static struct resource io_res[] = {
 196	{
 197		.name = "reserved",
 198		.start = 0x3bc,
 199		.end = 0x3be,
 200		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 201	},
 202	{
 203		.name = "reserved",
 204		.start = 0x378,
 205		.end = 0x37f,
 206		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 207	},
 208	{
 209		.name = "reserved",
 210		.start = 0x278,
 211		.end = 0x27f,
 212		.flags = IORESOURCE_IO | IORESOURCE_BUSY
 213	}
 214};
 215
 216#define lp0 io_res[0]
 217#define lp1 io_res[1]
 218#define lp2 io_res[2]
 219
 220static const char *proc_arch[] = {
 221	"undefined/unknown",
 222	"3",
 223	"4",
 224	"4T",
 225	"5",
 226	"5T",
 227	"5TE",
 228	"5TEJ",
 229	"6TEJ",
 230	"7",
 231	"7M",
 232	"?(12)",
 233	"?(13)",
 234	"?(14)",
 235	"?(15)",
 236	"?(16)",
 237	"?(17)",
 238};
 239
 240#ifdef CONFIG_CPU_V7M
 241static int __get_cpu_architecture(void)
 242{
 243	return CPU_ARCH_ARMv7M;
 244}
 245#else
 246static int __get_cpu_architecture(void)
 247{
 248	int cpu_arch;
 249
 250	if ((read_cpuid_id() & 0x0008f000) == 0) {
 251		cpu_arch = CPU_ARCH_UNKNOWN;
 252	} else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
 253		cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
 254	} else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
 255		cpu_arch = (read_cpuid_id() >> 16) & 7;
 256		if (cpu_arch)
 257			cpu_arch += CPU_ARCH_ARMv3;
 258	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
 259		/* Revised CPUID format. Read the Memory Model Feature
 260		 * Register 0 and check for VMSAv7 or PMSAv7 */
 261		unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0);
 262		if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
 263		    (mmfr0 & 0x000000f0) >= 0x00000030)
 264			cpu_arch = CPU_ARCH_ARMv7;
 265		else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
 266			 (mmfr0 & 0x000000f0) == 0x00000020)
 267			cpu_arch = CPU_ARCH_ARMv6;
 268		else
 269			cpu_arch = CPU_ARCH_UNKNOWN;
 270	} else
 271		cpu_arch = CPU_ARCH_UNKNOWN;
 272
 273	return cpu_arch;
 274}
 275#endif
 276
 277int __pure cpu_architecture(void)
 278{
 279	BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
 280
 281	return __cpu_architecture;
 282}
 283
 284static int cpu_has_aliasing_icache(unsigned int arch)
 285{
 286	int aliasing_icache;
 287	unsigned int id_reg, num_sets, line_size;
 288
 289	/* PIPT caches never alias. */
 290	if (icache_is_pipt())
 291		return 0;
 292
 293	/* arch specifies the register format */
 294	switch (arch) {
 295	case CPU_ARCH_ARMv7:
 296		set_csselr(CSSELR_ICACHE | CSSELR_L1);
 297		isb();
 298		id_reg = read_ccsidr();
 299		line_size = 4 << ((id_reg & 0x7) + 2);
 300		num_sets = ((id_reg >> 13) & 0x7fff) + 1;
 301		aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
 302		break;
 303	case CPU_ARCH_ARMv6:
 304		aliasing_icache = read_cpuid_cachetype() & (1 << 11);
 305		break;
 306	default:
 307		/* I-cache aliases will be handled by D-cache aliasing code */
 308		aliasing_icache = 0;
 309	}
 310
 311	return aliasing_icache;
 312}
 313
 314static void __init cacheid_init(void)
 315{
 316	unsigned int arch = cpu_architecture();
 317
 318	if (arch >= CPU_ARCH_ARMv6) {
 319		unsigned int cachetype = read_cpuid_cachetype();
 320
 321		if ((arch == CPU_ARCH_ARMv7M) && !(cachetype & 0xf000f)) {
 322			cacheid = 0;
 323		} else if ((cachetype & (7 << 29)) == 4 << 29) {
 324			/* ARMv7 register format */
 325			arch = CPU_ARCH_ARMv7;
 326			cacheid = CACHEID_VIPT_NONALIASING;
 327			switch (cachetype & (3 << 14)) {
 328			case (1 << 14):
 329				cacheid |= CACHEID_ASID_TAGGED;
 330				break;
 331			case (3 << 14):
 332				cacheid |= CACHEID_PIPT;
 333				break;
 334			}
 335		} else {
 336			arch = CPU_ARCH_ARMv6;
 337			if (cachetype & (1 << 23))
 338				cacheid = CACHEID_VIPT_ALIASING;
 339			else
 340				cacheid = CACHEID_VIPT_NONALIASING;
 341		}
 342		if (cpu_has_aliasing_icache(arch))
 343			cacheid |= CACHEID_VIPT_I_ALIASING;
 344	} else {
 345		cacheid = CACHEID_VIVT;
 346	}
 347
 348	pr_info("CPU: %s data cache, %s instruction cache\n",
 349		cache_is_vivt() ? "VIVT" :
 350		cache_is_vipt_aliasing() ? "VIPT aliasing" :
 351		cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
 352		cache_is_vivt() ? "VIVT" :
 353		icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
 354		icache_is_vipt_aliasing() ? "VIPT aliasing" :
 355		icache_is_pipt() ? "PIPT" :
 356		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
 357}
 358
 359/*
 360 * These functions re-use the assembly code in head.S, which
 361 * already provide the required functionality.
 362 */
 363extern struct proc_info_list *lookup_processor_type(unsigned int);
 364
 365void __init early_print(const char *str, ...)
 366{
 367	extern void printascii(const char *);
 368	char buf[256];
 369	va_list ap;
 370
 371	va_start(ap, str);
 372	vsnprintf(buf, sizeof(buf), str, ap);
 373	va_end(ap);
 374
 375#ifdef CONFIG_DEBUG_LL
 376	printascii(buf);
 377#endif
 378	printk("%s", buf);
 379}
 380
 381#ifdef CONFIG_ARM_PATCH_IDIV
 382
 383static inline u32 __attribute_const__ sdiv_instruction(void)
 384{
 385	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 386		/* "sdiv r0, r0, r1" */
 387		u32 insn = __opcode_thumb32_compose(0xfb90, 0xf0f1);
 388		return __opcode_to_mem_thumb32(insn);
 389	}
 390
 391	/* "sdiv r0, r0, r1" */
 392	return __opcode_to_mem_arm(0xe710f110);
 393}
 394
 395static inline u32 __attribute_const__ udiv_instruction(void)
 396{
 397	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 398		/* "udiv r0, r0, r1" */
 399		u32 insn = __opcode_thumb32_compose(0xfbb0, 0xf0f1);
 400		return __opcode_to_mem_thumb32(insn);
 401	}
 402
 403	/* "udiv r0, r0, r1" */
 404	return __opcode_to_mem_arm(0xe730f110);
 405}
 406
 407static inline u32 __attribute_const__ bx_lr_instruction(void)
 408{
 409	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 410		/* "bx lr; nop" */
 411		u32 insn = __opcode_thumb32_compose(0x4770, 0x46c0);
 412		return __opcode_to_mem_thumb32(insn);
 413	}
 414
 415	/* "bx lr" */
 416	return __opcode_to_mem_arm(0xe12fff1e);
 417}
 418
 419static void __init patch_aeabi_idiv(void)
 420{
 421	extern void __aeabi_uidiv(void);
 422	extern void __aeabi_idiv(void);
 423	uintptr_t fn_addr;
 424	unsigned int mask;
 425
 426	mask = IS_ENABLED(CONFIG_THUMB2_KERNEL) ? HWCAP_IDIVT : HWCAP_IDIVA;
 427	if (!(elf_hwcap & mask))
 428		return;
 429
 430	pr_info("CPU: div instructions available: patching division code\n");
 431
 432	fn_addr = ((uintptr_t)&__aeabi_uidiv) & ~1;
 433	asm ("" : "+g" (fn_addr));
 434	((u32 *)fn_addr)[0] = udiv_instruction();
 435	((u32 *)fn_addr)[1] = bx_lr_instruction();
 436	flush_icache_range(fn_addr, fn_addr + 8);
 437
 438	fn_addr = ((uintptr_t)&__aeabi_idiv) & ~1;
 439	asm ("" : "+g" (fn_addr));
 440	((u32 *)fn_addr)[0] = sdiv_instruction();
 441	((u32 *)fn_addr)[1] = bx_lr_instruction();
 442	flush_icache_range(fn_addr, fn_addr + 8);
 443}
 444
 445#else
 446static inline void patch_aeabi_idiv(void) { }
 447#endif
 448
 449static void __init cpuid_init_hwcaps(void)
 450{
 451	int block;
 452	u32 isar5;
 453	u32 isar6;
 454	u32 pfr2;
 455
 456	if (cpu_architecture() < CPU_ARCH_ARMv7)
 457		return;
 458
 459	block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24);
 460	if (block >= 2)
 461		elf_hwcap |= HWCAP_IDIVA;
 462	if (block >= 1)
 463		elf_hwcap |= HWCAP_IDIVT;
 464
 465	/* LPAE implies atomic ldrd/strd instructions */
 466	block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
 467	if (block >= 5)
 468		elf_hwcap |= HWCAP_LPAE;
 469
 470	/* check for supported v8 Crypto instructions */
 471	isar5 = read_cpuid_ext(CPUID_EXT_ISAR5);
 472
 473	block = cpuid_feature_extract_field(isar5, 4);
 474	if (block >= 2)
 475		elf_hwcap2 |= HWCAP2_PMULL;
 476	if (block >= 1)
 477		elf_hwcap2 |= HWCAP2_AES;
 478
 479	block = cpuid_feature_extract_field(isar5, 8);
 480	if (block >= 1)
 481		elf_hwcap2 |= HWCAP2_SHA1;
 482
 483	block = cpuid_feature_extract_field(isar5, 12);
 484	if (block >= 1)
 485		elf_hwcap2 |= HWCAP2_SHA2;
 486
 487	block = cpuid_feature_extract_field(isar5, 16);
 488	if (block >= 1)
 489		elf_hwcap2 |= HWCAP2_CRC32;
 490
 491	/* Check for Speculation barrier instruction */
 492	isar6 = read_cpuid_ext(CPUID_EXT_ISAR6);
 493	block = cpuid_feature_extract_field(isar6, 12);
 494	if (block >= 1)
 495		elf_hwcap2 |= HWCAP2_SB;
 496
 497	/* Check for Speculative Store Bypassing control */
 498	pfr2 = read_cpuid_ext(CPUID_EXT_PFR2);
 499	block = cpuid_feature_extract_field(pfr2, 4);
 500	if (block >= 1)
 501		elf_hwcap2 |= HWCAP2_SSBS;
 502}
 503
 504static void __init elf_hwcap_fixup(void)
 505{
 506	unsigned id = read_cpuid_id();
 507
 508	/*
 509	 * HWCAP_TLS is available only on 1136 r1p0 and later,
 510	 * see also kuser_get_tls_init.
 511	 */
 512	if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
 513	    ((id >> 20) & 3) == 0) {
 514		elf_hwcap &= ~HWCAP_TLS;
 515		return;
 516	}
 517
 518	/* Verify if CPUID scheme is implemented */
 519	if ((id & 0x000f0000) != 0x000f0000)
 520		return;
 521
 522	/*
 523	 * If the CPU supports LDREX/STREX and LDREXB/STREXB,
 524	 * avoid advertising SWP; it may not be atomic with
 525	 * multiprocessing cores.
 526	 */
 527	if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 ||
 528	    (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 &&
 529	     cpuid_feature_extract(CPUID_EXT_ISAR4, 20) >= 3))
 530		elf_hwcap &= ~HWCAP_SWP;
 531}
 532
 533/*
 534 * cpu_init - initialise one CPU.
 535 *
 536 * cpu_init sets up the per-CPU stacks.
 537 */
 538void notrace cpu_init(void)
 539{
 540#ifndef CONFIG_CPU_V7M
 541	unsigned int cpu = smp_processor_id();
 542	struct stack *stk = &stacks[cpu];
 543
 544	if (cpu >= NR_CPUS) {
 545		pr_crit("CPU%u: bad primary CPU number\n", cpu);
 546		BUG();
 547	}
 548
 549	/*
 550	 * This only works on resume and secondary cores. For booting on the
 551	 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
 552	 */
 553	set_my_cpu_offset(per_cpu_offset(cpu));
 554
 555	cpu_proc_init();
 556
 557	/*
 558	 * Define the placement constraint for the inline asm directive below.
 559	 * In Thumb-2, msr with an immediate value is not allowed.
 560	 */
 561#ifdef CONFIG_THUMB2_KERNEL
 562#define PLC_l	"l"
 563#define PLC_r	"r"
 564#else
 565#define PLC_l	"I"
 566#define PLC_r	"I"
 567#endif
 568
 569	/*
 570	 * setup stacks for re-entrant exception handlers
 571	 */
 572	__asm__ (
 573	"msr	cpsr_c, %1\n\t"
 574	"add	r14, %0, %2\n\t"
 575	"mov	sp, r14\n\t"
 576	"msr	cpsr_c, %3\n\t"
 577	"add	r14, %0, %4\n\t"
 578	"mov	sp, r14\n\t"
 579	"msr	cpsr_c, %5\n\t"
 580	"add	r14, %0, %6\n\t"
 581	"mov	sp, r14\n\t"
 582	"msr	cpsr_c, %7\n\t"
 583	"add	r14, %0, %8\n\t"
 584	"mov	sp, r14\n\t"
 585	"msr	cpsr_c, %9"
 586	    :
 587	    : "r" (stk),
 588	      PLC_r (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
 589	      "I" (offsetof(struct stack, irq[0])),
 590	      PLC_r (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
 591	      "I" (offsetof(struct stack, abt[0])),
 592	      PLC_r (PSR_F_BIT | PSR_I_BIT | UND_MODE),
 593	      "I" (offsetof(struct stack, und[0])),
 594	      PLC_r (PSR_F_BIT | PSR_I_BIT | FIQ_MODE),
 595	      "I" (offsetof(struct stack, fiq[0])),
 596	      PLC_l (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
 597	    : "r14");
 598#endif
 599}
 600
 601u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
 602
 603void __init smp_setup_processor_id(void)
 604{
 605	int i;
 606	u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
 607	u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 608
 609	cpu_logical_map(0) = cpu;
 610	for (i = 1; i < nr_cpu_ids; ++i)
 611		cpu_logical_map(i) = i == cpu ? 0 : i;
 612
 613	/*
 614	 * clear __my_cpu_offset on boot CPU to avoid hang caused by
 615	 * using percpu variable early, for example, lockdep will
 616	 * access percpu variable inside lock_release
 617	 */
 618	set_my_cpu_offset(0);
 619
 620	pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
 621}
 622
 623struct mpidr_hash mpidr_hash;
 624#ifdef CONFIG_SMP
 625/**
 626 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
 627 *			  level in order to build a linear index from an
 628 *			  MPIDR value. Resulting algorithm is a collision
 629 *			  free hash carried out through shifting and ORing
 630 */
 631static void __init smp_build_mpidr_hash(void)
 632{
 633	u32 i, affinity;
 634	u32 fs[3], bits[3], ls, mask = 0;
 635	/*
 636	 * Pre-scan the list of MPIDRS and filter out bits that do
 637	 * not contribute to affinity levels, ie they never toggle.
 638	 */
 639	for_each_possible_cpu(i)
 640		mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
 641	pr_debug("mask of set bits 0x%x\n", mask);
 642	/*
 643	 * Find and stash the last and first bit set at all affinity levels to
 644	 * check how many bits are required to represent them.
 645	 */
 646	for (i = 0; i < 3; i++) {
 647		affinity = MPIDR_AFFINITY_LEVEL(mask, i);
 648		/*
 649		 * Find the MSB bit and LSB bits position
 650		 * to determine how many bits are required
 651		 * to express the affinity level.
 652		 */
 653		ls = fls(affinity);
 654		fs[i] = affinity ? ffs(affinity) - 1 : 0;
 655		bits[i] = ls - fs[i];
 656	}
 657	/*
 658	 * An index can be created from the MPIDR by isolating the
 659	 * significant bits at each affinity level and by shifting
 660	 * them in order to compress the 24 bits values space to a
 661	 * compressed set of values. This is equivalent to hashing
 662	 * the MPIDR through shifting and ORing. It is a collision free
 663	 * hash though not minimal since some levels might contain a number
 664	 * of CPUs that is not an exact power of 2 and their bit
 665	 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
 666	 */
 667	mpidr_hash.shift_aff[0] = fs[0];
 668	mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
 669	mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
 670						(bits[1] + bits[0]);
 671	mpidr_hash.mask = mask;
 672	mpidr_hash.bits = bits[2] + bits[1] + bits[0];
 673	pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
 674				mpidr_hash.shift_aff[0],
 675				mpidr_hash.shift_aff[1],
 676				mpidr_hash.shift_aff[2],
 677				mpidr_hash.mask,
 678				mpidr_hash.bits);
 679	/*
 680	 * 4x is an arbitrary value used to warn on a hash table much bigger
 681	 * than expected on most systems.
 682	 */
 683	if (mpidr_hash_size() > 4 * num_possible_cpus())
 684		pr_warn("Large number of MPIDR hash buckets detected\n");
 685	sync_cache_w(&mpidr_hash);
 686}
 687#endif
 688
 689/*
 690 * locate processor in the list of supported processor types.  The linker
 691 * builds this table for us from the entries in arch/arm/mm/proc-*.S
 692 */
 693struct proc_info_list *lookup_processor(u32 midr)
 694{
 695	struct proc_info_list *list = lookup_processor_type(midr);
 696
 
 
 
 
 
 
 697	if (!list) {
 698		pr_err("CPU%u: configuration botched (ID %08x), CPU halted\n",
 699		       smp_processor_id(), midr);
 700		while (1)
 701		/* can't use cpu_relax() here as it may require MMU setup */;
 702	}
 703
 704	return list;
 705}
 706
 707static void __init setup_processor(void)
 708{
 709	unsigned int midr = read_cpuid_id();
 710	struct proc_info_list *list = lookup_processor(midr);
 711
 712	cpu_name = list->cpu_name;
 713	__cpu_architecture = __get_cpu_architecture();
 714
 715	init_proc_vtable(list->proc);
 
 
 716#ifdef MULTI_TLB
 717	cpu_tlb = *list->tlb;
 718#endif
 719#ifdef MULTI_USER
 720	cpu_user = *list->user;
 721#endif
 722#ifdef MULTI_CACHE
 723	cpu_cache = *list->cache;
 724#endif
 725
 726	pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
 727		list->cpu_name, midr, midr & 15,
 728		proc_arch[cpu_architecture()], get_cr());
 729
 730	snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
 731		 list->arch_name, ENDIANNESS);
 732	snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
 733		 list->elf_name, ENDIANNESS);
 734	elf_hwcap = list->elf_hwcap;
 735
 736	cpuid_init_hwcaps();
 737	patch_aeabi_idiv();
 738
 739#ifndef CONFIG_ARM_THUMB
 740	elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
 741#endif
 742#ifdef CONFIG_MMU
 743	init_default_cache_policy(list->__cpu_mm_mmu_flags);
 744#endif
 745	erratum_a15_798181_init();
 746
 747	elf_hwcap_fixup();
 748
 749	cacheid_init();
 750	cpu_init();
 751}
 752
 753void __init dump_machine_table(void)
 754{
 755	const struct machine_desc *p;
 756
 757	early_print("Available machine support:\n\nID (hex)\tNAME\n");
 758	for_each_machine_desc(p)
 759		early_print("%08x\t%s\n", p->nr, p->name);
 760
 761	early_print("\nPlease check your kernel config and/or bootloader.\n");
 762
 763	while (true)
 764		/* can't use cpu_relax() here as it may require MMU setup */;
 765}
 766
 767int __init arm_add_memory(u64 start, u64 size)
 768{
 769	u64 aligned_start;
 770
 771	/*
 772	 * Ensure that start/size are aligned to a page boundary.
 773	 * Size is rounded down, start is rounded up.
 774	 */
 775	aligned_start = PAGE_ALIGN(start);
 776	if (aligned_start > start + size)
 777		size = 0;
 778	else
 779		size -= aligned_start - start;
 780
 781#ifndef CONFIG_PHYS_ADDR_T_64BIT
 782	if (aligned_start > ULONG_MAX) {
 783		pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
 784			start);
 785		return -EINVAL;
 786	}
 787
 788	if (aligned_start + size > ULONG_MAX) {
 789		pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
 790			(long long)start);
 791		/*
 792		 * To ensure bank->start + bank->size is representable in
 793		 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
 794		 * This means we lose a page after masking.
 795		 */
 796		size = ULONG_MAX - aligned_start;
 797	}
 798#endif
 799
 800	if (aligned_start < PHYS_OFFSET) {
 801		if (aligned_start + size <= PHYS_OFFSET) {
 802			pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
 803				aligned_start, aligned_start + size);
 804			return -EINVAL;
 805		}
 806
 807		pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
 808			aligned_start, (u64)PHYS_OFFSET);
 809
 810		size -= PHYS_OFFSET - aligned_start;
 811		aligned_start = PHYS_OFFSET;
 812	}
 813
 814	start = aligned_start;
 815	size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
 816
 817	/*
 818	 * Check whether this memory region has non-zero size or
 819	 * invalid node number.
 820	 */
 821	if (size == 0)
 822		return -EINVAL;
 823
 824	memblock_add(start, size);
 825	return 0;
 826}
 827
 828/*
 829 * Pick out the memory size.  We look for mem=size@start,
 830 * where start and size are "size[KkMm]"
 831 */
 832
 833static int __init early_mem(char *p)
 834{
 835	static int usermem __initdata = 0;
 836	u64 size;
 837	u64 start;
 838	char *endp;
 839
 840	/*
 841	 * If the user specifies memory size, we
 842	 * blow away any automatically generated
 843	 * size.
 844	 */
 845	if (usermem == 0) {
 846		usermem = 1;
 847		memblock_remove(memblock_start_of_DRAM(),
 848			memblock_end_of_DRAM() - memblock_start_of_DRAM());
 849	}
 850
 851	start = PHYS_OFFSET;
 852	size  = memparse(p, &endp);
 853	if (*endp == '@')
 854		start = memparse(endp + 1, NULL);
 855
 856	arm_add_memory(start, size);
 857
 858	return 0;
 859}
 860early_param("mem", early_mem);
 861
 862static void __init request_standard_resources(const struct machine_desc *mdesc)
 863{
 864	phys_addr_t start, end, res_end;
 865	struct resource *res;
 866	u64 i;
 867
 868	kernel_code.start   = virt_to_phys(_text);
 869	kernel_code.end     = virt_to_phys(__init_begin - 1);
 870	kernel_data.start   = virt_to_phys(_sdata);
 871	kernel_data.end     = virt_to_phys(_end - 1);
 872
 873	for_each_mem_range(i, &start, &end) {
 
 
 874		unsigned long boot_alias_start;
 875
 876		/*
 877		 * In memblock, end points to the first byte after the
 878		 * range while in resourses, end points to the last byte in
 879		 * the range.
 880		 */
 881		res_end = end - 1;
 882
 883		/*
 884		 * Some systems have a special memory alias which is only
 885		 * used for booting.  We need to advertise this region to
 886		 * kexec-tools so they know where bootable RAM is located.
 887		 */
 888		boot_alias_start = phys_to_idmap(start);
 889		if (arm_has_idmap_alias() && boot_alias_start != IDMAP_INVALID_ADDR) {
 890			res = memblock_alloc(sizeof(*res), SMP_CACHE_BYTES);
 891			if (!res)
 892				panic("%s: Failed to allocate %zu bytes\n",
 893				      __func__, sizeof(*res));
 894			res->name = "System RAM (boot alias)";
 895			res->start = boot_alias_start;
 896			res->end = phys_to_idmap(res_end);
 897			res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 898			request_resource(&iomem_resource, res);
 899		}
 900
 901		res = memblock_alloc(sizeof(*res), SMP_CACHE_BYTES);
 902		if (!res)
 903			panic("%s: Failed to allocate %zu bytes\n", __func__,
 904			      sizeof(*res));
 905		res->name  = "System RAM";
 906		res->start = start;
 907		res->end = res_end;
 908		res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 909
 910		request_resource(&iomem_resource, res);
 911
 912		if (kernel_code.start >= res->start &&
 913		    kernel_code.end <= res->end)
 914			request_resource(res, &kernel_code);
 915		if (kernel_data.start >= res->start &&
 916		    kernel_data.end <= res->end)
 917			request_resource(res, &kernel_data);
 918	}
 919
 920	if (mdesc->video_start) {
 921		video_ram.start = mdesc->video_start;
 922		video_ram.end   = mdesc->video_end;
 923		request_resource(&iomem_resource, &video_ram);
 924	}
 925
 926	/*
 927	 * Some machines don't have the possibility of ever
 928	 * possessing lp0, lp1 or lp2
 929	 */
 930	if (mdesc->reserve_lp0)
 931		request_resource(&ioport_resource, &lp0);
 932	if (mdesc->reserve_lp1)
 933		request_resource(&ioport_resource, &lp1);
 934	if (mdesc->reserve_lp2)
 935		request_resource(&ioport_resource, &lp2);
 936}
 937
 938#if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE) || \
 939    defined(CONFIG_EFI)
 940struct screen_info screen_info = {
 941 .orig_video_lines	= 30,
 942 .orig_video_cols	= 80,
 943 .orig_video_mode	= 0,
 944 .orig_video_ega_bx	= 0,
 945 .orig_video_isVGA	= 1,
 946 .orig_video_points	= 8
 947};
 948#endif
 949
 950static int __init customize_machine(void)
 951{
 952	/*
 953	 * customizes platform devices, or adds new ones
 954	 * On DT based machines, we fall back to populating the
 955	 * machine from the device tree, if no callback is provided,
 956	 * otherwise we would always need an init_machine callback.
 957	 */
 958	if (machine_desc->init_machine)
 959		machine_desc->init_machine();
 960
 961	return 0;
 962}
 963arch_initcall(customize_machine);
 964
 965static int __init init_machine_late(void)
 966{
 967	struct device_node *root;
 968	int ret;
 969
 970	if (machine_desc->init_late)
 971		machine_desc->init_late();
 972
 973	root = of_find_node_by_path("/");
 974	if (root) {
 975		ret = of_property_read_string(root, "serial-number",
 976					      &system_serial);
 977		if (ret)
 978			system_serial = NULL;
 979	}
 980
 981	if (!system_serial)
 982		system_serial = kasprintf(GFP_KERNEL, "%08x%08x",
 983					  system_serial_high,
 984					  system_serial_low);
 985
 986	return 0;
 987}
 988late_initcall(init_machine_late);
 989
 990#ifdef CONFIG_KEXEC
 991/*
 992 * The crash region must be aligned to 128MB to avoid
 993 * zImage relocating below the reserved region.
 994 */
 995#define CRASH_ALIGN	(128 << 20)
 996
 997static inline unsigned long long get_total_mem(void)
 998{
 999	unsigned long total;
1000
1001	total = max_low_pfn - min_low_pfn;
1002	return total << PAGE_SHIFT;
1003}
1004
1005/**
1006 * reserve_crashkernel() - reserves memory are for crash kernel
1007 *
1008 * This function reserves memory area given in "crashkernel=" kernel command
1009 * line parameter. The memory reserved is used by a dump capture kernel when
1010 * primary kernel is crashing.
1011 */
1012static void __init reserve_crashkernel(void)
1013{
1014	unsigned long long crash_size, crash_base;
1015	unsigned long long total_mem;
1016	int ret;
1017
1018	total_mem = get_total_mem();
1019	ret = parse_crashkernel(boot_command_line, total_mem,
1020				&crash_size, &crash_base);
1021	/* invalid value specified or crashkernel=0 */
1022	if (ret || !crash_size)
1023		return;
1024
1025	if (crash_base <= 0) {
1026		unsigned long long crash_max = idmap_to_phys((u32)~0);
1027		unsigned long long lowmem_max = __pa(high_memory - 1) + 1;
1028		if (crash_max > lowmem_max)
1029			crash_max = lowmem_max;
1030
1031		crash_base = memblock_phys_alloc_range(crash_size, CRASH_ALIGN,
1032						       CRASH_ALIGN, crash_max);
1033		if (!crash_base) {
1034			pr_err("crashkernel reservation failed - No suitable area found.\n");
1035			return;
1036		}
1037	} else {
1038		unsigned long long crash_max = crash_base + crash_size;
1039		unsigned long long start;
1040
1041		start = memblock_phys_alloc_range(crash_size, SECTION_SIZE,
1042						  crash_base, crash_max);
1043		if (!start) {
 
1044			pr_err("crashkernel reservation failed - memory is in use.\n");
1045			return;
1046		}
1047	}
1048
 
 
 
 
 
 
 
1049	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
1050		(unsigned long)(crash_size >> 20),
1051		(unsigned long)(crash_base >> 20),
1052		(unsigned long)(total_mem >> 20));
1053
1054	/* The crashk resource must always be located in normal mem */
1055	crashk_res.start = crash_base;
1056	crashk_res.end = crash_base + crash_size - 1;
1057	insert_resource(&iomem_resource, &crashk_res);
1058
1059	if (arm_has_idmap_alias()) {
1060		/*
1061		 * If we have a special RAM alias for use at boot, we
1062		 * need to advertise to kexec tools where the alias is.
1063		 */
1064		static struct resource crashk_boot_res = {
1065			.name = "Crash kernel (boot alias)",
1066			.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
1067		};
1068
1069		crashk_boot_res.start = phys_to_idmap(crash_base);
1070		crashk_boot_res.end = crashk_boot_res.start + crash_size - 1;
1071		insert_resource(&iomem_resource, &crashk_boot_res);
1072	}
1073}
1074#else
1075static inline void reserve_crashkernel(void) {}
1076#endif /* CONFIG_KEXEC */
1077
1078void __init hyp_mode_check(void)
1079{
1080#ifdef CONFIG_ARM_VIRT_EXT
1081	sync_boot_mode();
1082
1083	if (is_hyp_mode_available()) {
1084		pr_info("CPU: All CPU(s) started in HYP mode.\n");
1085		pr_info("CPU: Virtualization extensions available.\n");
1086	} else if (is_hyp_mode_mismatched()) {
1087		pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
1088			__boot_cpu_mode & MODE_MASK);
1089		pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
1090	} else
1091		pr_info("CPU: All CPU(s) started in SVC mode.\n");
1092#endif
1093}
1094
1095static void (*__arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
1096
1097static int arm_restart(struct notifier_block *nb, unsigned long action,
1098		       void *data)
1099{
1100	__arm_pm_restart(action, data);
1101	return NOTIFY_DONE;
1102}
1103
1104static struct notifier_block arm_restart_nb = {
1105	.notifier_call = arm_restart,
1106	.priority = 128,
1107};
1108
1109void __init setup_arch(char **cmdline_p)
1110{
1111	const struct machine_desc *mdesc = NULL;
1112	void *atags_vaddr = NULL;
1113
1114	if (__atags_pointer)
1115		atags_vaddr = FDT_VIRT_BASE(__atags_pointer);
1116
1117	setup_processor();
1118	if (atags_vaddr) {
1119		mdesc = setup_machine_fdt(atags_vaddr);
1120		if (mdesc)
1121			memblock_reserve(__atags_pointer,
1122					 fdt_totalsize(atags_vaddr));
1123	}
1124	if (!mdesc)
1125		mdesc = setup_machine_tags(atags_vaddr, __machine_arch_type);
1126	if (!mdesc) {
1127		early_print("\nError: invalid dtb and unrecognized/unsupported machine ID\n");
1128		early_print("  r1=0x%08x, r2=0x%08x\n", __machine_arch_type,
1129			    __atags_pointer);
1130		if (__atags_pointer)
1131			early_print("  r2[]=%*ph\n", 16, atags_vaddr);
 
1132		dump_machine_table();
1133	}
1134
1135	machine_desc = mdesc;
1136	machine_name = mdesc->name;
1137	dump_stack_set_arch_desc("%s", mdesc->name);
1138
1139	if (mdesc->reboot_mode != REBOOT_HARD)
1140		reboot_mode = mdesc->reboot_mode;
1141
1142	setup_initial_init_mm(_text, _etext, _edata, _end);
 
 
 
1143
1144	/* populate cmd_line too for later use, preserving boot_command_line */
1145	strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
1146	*cmdline_p = cmd_line;
1147
1148	early_fixmap_init();
1149	early_ioremap_init();
1150
1151	parse_early_param();
1152
1153#ifdef CONFIG_MMU
1154	early_mm_init(mdesc);
1155#endif
1156	setup_dma_zone(mdesc);
1157	xen_early_init();
1158	arm_efi_init();
1159	/*
1160	 * Make sure the calculation for lowmem/highmem is set appropriately
1161	 * before reserving/allocating any memory
1162	 */
1163	adjust_lowmem_bounds();
1164	arm_memblock_init(mdesc);
1165	/* Memory may have been removed so recalculate the bounds. */
1166	adjust_lowmem_bounds();
1167
1168	early_ioremap_reset();
1169
1170	paging_init(mdesc);
1171	kasan_init();
1172	request_standard_resources(mdesc);
1173
1174	if (mdesc->restart) {
1175		__arm_pm_restart = mdesc->restart;
1176		register_restart_handler(&arm_restart_nb);
1177	}
1178
1179	unflatten_device_tree();
1180
1181	arm_dt_init_cpu_maps();
1182	psci_dt_init();
1183#ifdef CONFIG_SMP
1184	if (is_smp()) {
1185		if (!mdesc->smp_init || !mdesc->smp_init()) {
1186			if (psci_smp_available())
1187				smp_set_ops(&psci_smp_ops);
1188			else if (mdesc->smp)
1189				smp_set_ops(mdesc->smp);
1190		}
1191		smp_init_cpus();
1192		smp_build_mpidr_hash();
1193	}
1194#endif
1195
1196	if (!is_smp())
1197		hyp_mode_check();
1198
1199	reserve_crashkernel();
1200
1201#ifdef CONFIG_GENERIC_IRQ_MULTI_HANDLER
1202	handle_arch_irq = mdesc->handle_irq;
1203#endif
1204
1205#ifdef CONFIG_VT
1206#if defined(CONFIG_VGA_CONSOLE)
1207	conswitchp = &vga_con;
 
 
1208#endif
1209#endif
1210
1211	if (mdesc->init_early)
1212		mdesc->init_early();
1213}
1214
1215
1216static int __init topology_init(void)
1217{
1218	int cpu;
1219
1220	for_each_possible_cpu(cpu) {
1221		struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
1222		cpuinfo->cpu.hotpluggable = platform_can_hotplug_cpu(cpu);
1223		register_cpu(&cpuinfo->cpu, cpu);
1224	}
1225
1226	return 0;
1227}
1228subsys_initcall(topology_init);
1229
1230#ifdef CONFIG_HAVE_PROC_CPU
1231static int __init proc_cpu_init(void)
1232{
1233	struct proc_dir_entry *res;
1234
1235	res = proc_mkdir("cpu", NULL);
1236	if (!res)
1237		return -ENOMEM;
1238	return 0;
1239}
1240fs_initcall(proc_cpu_init);
1241#endif
1242
1243static const char *hwcap_str[] = {
1244	"swp",
1245	"half",
1246	"thumb",
1247	"26bit",
1248	"fastmult",
1249	"fpa",
1250	"vfp",
1251	"edsp",
1252	"java",
1253	"iwmmxt",
1254	"crunch",
1255	"thumbee",
1256	"neon",
1257	"vfpv3",
1258	"vfpv3d16",
1259	"tls",
1260	"vfpv4",
1261	"idiva",
1262	"idivt",
1263	"vfpd32",
1264	"lpae",
1265	"evtstrm",
1266	"fphp",
1267	"asimdhp",
1268	"asimddp",
1269	"asimdfhm",
1270	"asimdbf16",
1271	"i8mm",
1272	NULL
1273};
1274
1275static const char *hwcap2_str[] = {
1276	"aes",
1277	"pmull",
1278	"sha1",
1279	"sha2",
1280	"crc32",
1281	"sb",
1282	"ssbs",
1283	NULL
1284};
1285
1286static int c_show(struct seq_file *m, void *v)
1287{
1288	int i, j;
1289	u32 cpuid;
1290
1291	for_each_online_cpu(i) {
1292		/*
1293		 * glibc reads /proc/cpuinfo to determine the number of
1294		 * online processors, looking for lines beginning with
1295		 * "processor".  Give glibc what it expects.
1296		 */
1297		seq_printf(m, "processor\t: %d\n", i);
1298		cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
1299		seq_printf(m, "model name\t: %s rev %d (%s)\n",
1300			   cpu_name, cpuid & 15, elf_platform);
1301
1302#if defined(CONFIG_SMP)
1303		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1304			   per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1305			   (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1306#else
1307		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1308			   loops_per_jiffy / (500000/HZ),
1309			   (loops_per_jiffy / (5000/HZ)) % 100);
1310#endif
1311		/* dump out the processor features */
1312		seq_puts(m, "Features\t: ");
1313
1314		for (j = 0; hwcap_str[j]; j++)
1315			if (elf_hwcap & (1 << j))
1316				seq_printf(m, "%s ", hwcap_str[j]);
1317
1318		for (j = 0; hwcap2_str[j]; j++)
1319			if (elf_hwcap2 & (1 << j))
1320				seq_printf(m, "%s ", hwcap2_str[j]);
1321
1322		seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1323		seq_printf(m, "CPU architecture: %s\n",
1324			   proc_arch[cpu_architecture()]);
1325
1326		if ((cpuid & 0x0008f000) == 0x00000000) {
1327			/* pre-ARM7 */
1328			seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
1329		} else {
1330			if ((cpuid & 0x0008f000) == 0x00007000) {
1331				/* ARM7 */
1332				seq_printf(m, "CPU variant\t: 0x%02x\n",
1333					   (cpuid >> 16) & 127);
1334			} else {
1335				/* post-ARM7 */
1336				seq_printf(m, "CPU variant\t: 0x%x\n",
1337					   (cpuid >> 20) & 15);
1338			}
1339			seq_printf(m, "CPU part\t: 0x%03x\n",
1340				   (cpuid >> 4) & 0xfff);
1341		}
1342		seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
1343	}
1344
1345	seq_printf(m, "Hardware\t: %s\n", machine_name);
1346	seq_printf(m, "Revision\t: %04x\n", system_rev);
1347	seq_printf(m, "Serial\t\t: %s\n", system_serial);
1348
1349	return 0;
1350}
1351
1352static void *c_start(struct seq_file *m, loff_t *pos)
1353{
1354	return *pos < 1 ? (void *)1 : NULL;
1355}
1356
1357static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1358{
1359	++*pos;
1360	return NULL;
1361}
1362
1363static void c_stop(struct seq_file *m, void *v)
1364{
1365}
1366
1367const struct seq_operations cpuinfo_op = {
1368	.start	= c_start,
1369	.next	= c_next,
1370	.stop	= c_stop,
1371	.show	= c_show
1372};