Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 *  NSA Security-Enhanced Linux (SELinux) security module
  3 *
  4 *  This file contains the SELinux XFRM hook function implementations.
  5 *
  6 *  Authors:  Serge Hallyn <sergeh@us.ibm.com>
  7 *	      Trent Jaeger <jaegert@us.ibm.com>
  8 *
  9 *  Updated: Venkat Yekkirala <vyekkirala@TrustedCS.com>
 10 *
 11 *           Granular IPSec Associations for use in MLS environments.
 12 *
 13 *  Copyright (C) 2005 International Business Machines Corporation
 14 *  Copyright (C) 2006 Trusted Computer Solutions, Inc.
 15 *
 16 *	This program is free software; you can redistribute it and/or modify
 17 *	it under the terms of the GNU General Public License version 2,
 18 *	as published by the Free Software Foundation.
 19 */
 20
 21/*
 22 * USAGE:
 23 * NOTES:
 24 *   1. Make sure to enable the following options in your kernel config:
 25 *	CONFIG_SECURITY=y
 26 *	CONFIG_SECURITY_NETWORK=y
 27 *	CONFIG_SECURITY_NETWORK_XFRM=y
 28 *	CONFIG_SECURITY_SELINUX=m/y
 29 * ISSUES:
 30 *   1. Caching packets, so they are not dropped during negotiation
 31 *   2. Emulating a reasonable SO_PEERSEC across machines
 32 *   3. Testing addition of sk_policy's with security context via setsockopt
 33 */
 34#include <linux/kernel.h>
 35#include <linux/init.h>
 36#include <linux/security.h>
 37#include <linux/types.h>
 38#include <linux/slab.h>
 39#include <linux/ip.h>
 40#include <linux/tcp.h>
 41#include <linux/skbuff.h>
 42#include <linux/xfrm.h>
 43#include <net/xfrm.h>
 44#include <net/checksum.h>
 45#include <net/udp.h>
 46#include <linux/atomic.h>
 47
 48#include "avc.h"
 49#include "objsec.h"
 50#include "xfrm.h"
 51
 52/* Labeled XFRM instance counter */
 53atomic_t selinux_xfrm_refcount = ATOMIC_INIT(0);
 54
 55/*
 56 * Returns true if the context is an LSM/SELinux context.
 57 */
 58static inline int selinux_authorizable_ctx(struct xfrm_sec_ctx *ctx)
 59{
 60	return (ctx &&
 61		(ctx->ctx_doi == XFRM_SC_DOI_LSM) &&
 62		(ctx->ctx_alg == XFRM_SC_ALG_SELINUX));
 63}
 64
 65/*
 66 * Returns true if the xfrm contains a security blob for SELinux.
 67 */
 68static inline int selinux_authorizable_xfrm(struct xfrm_state *x)
 69{
 70	return selinux_authorizable_ctx(x->security);
 71}
 72
 73/*
 74 * Allocates a xfrm_sec_state and populates it using the supplied security
 75 * xfrm_user_sec_ctx context.
 76 */
 77static int selinux_xfrm_alloc_user(struct xfrm_sec_ctx **ctxp,
 78				   struct xfrm_user_sec_ctx *uctx,
 79				   gfp_t gfp)
 80{
 81	int rc;
 82	const struct task_security_struct *tsec = current_security();
 83	struct xfrm_sec_ctx *ctx = NULL;
 84	u32 str_len;
 85
 86	if (ctxp == NULL || uctx == NULL ||
 87	    uctx->ctx_doi != XFRM_SC_DOI_LSM ||
 88	    uctx->ctx_alg != XFRM_SC_ALG_SELINUX)
 89		return -EINVAL;
 90
 91	str_len = uctx->ctx_len;
 92	if (str_len >= PAGE_SIZE)
 93		return -ENOMEM;
 94
 95	ctx = kmalloc(sizeof(*ctx) + str_len + 1, gfp);
 96	if (!ctx)
 97		return -ENOMEM;
 98
 99	ctx->ctx_doi = XFRM_SC_DOI_LSM;
100	ctx->ctx_alg = XFRM_SC_ALG_SELINUX;
101	ctx->ctx_len = str_len;
102	memcpy(ctx->ctx_str, &uctx[1], str_len);
103	ctx->ctx_str[str_len] = '\0';
104	rc = security_context_to_sid(&selinux_state, ctx->ctx_str, str_len,
105				     &ctx->ctx_sid, gfp);
106	if (rc)
107		goto err;
108
109	rc = avc_has_perm(&selinux_state,
110			  tsec->sid, ctx->ctx_sid,
111			  SECCLASS_ASSOCIATION, ASSOCIATION__SETCONTEXT, NULL);
112	if (rc)
113		goto err;
114
115	*ctxp = ctx;
116	atomic_inc(&selinux_xfrm_refcount);
117	return 0;
118
119err:
120	kfree(ctx);
121	return rc;
122}
123
124/*
125 * Free the xfrm_sec_ctx structure.
126 */
127static void selinux_xfrm_free(struct xfrm_sec_ctx *ctx)
128{
129	if (!ctx)
130		return;
131
132	atomic_dec(&selinux_xfrm_refcount);
133	kfree(ctx);
134}
135
136/*
137 * Authorize the deletion of a labeled SA or policy rule.
138 */
139static int selinux_xfrm_delete(struct xfrm_sec_ctx *ctx)
140{
141	const struct task_security_struct *tsec = current_security();
142
143	if (!ctx)
144		return 0;
145
146	return avc_has_perm(&selinux_state,
147			    tsec->sid, ctx->ctx_sid,
148			    SECCLASS_ASSOCIATION, ASSOCIATION__SETCONTEXT,
149			    NULL);
150}
151
152/*
153 * LSM hook implementation that authorizes that a flow can use a xfrm policy
154 * rule.
155 */
156int selinux_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
157{
158	int rc;
159
160	/* All flows should be treated as polmatch'ing an otherwise applicable
161	 * "non-labeled" policy. This would prevent inadvertent "leaks". */
162	if (!ctx)
163		return 0;
164
165	/* Context sid is either set to label or ANY_ASSOC */
166	if (!selinux_authorizable_ctx(ctx))
167		return -EINVAL;
168
169	rc = avc_has_perm(&selinux_state,
170			  fl_secid, ctx->ctx_sid,
171			  SECCLASS_ASSOCIATION, ASSOCIATION__POLMATCH, NULL);
172	return (rc == -EACCES ? -ESRCH : rc);
173}
174
175/*
176 * LSM hook implementation that authorizes that a state matches
177 * the given policy, flow combo.
178 */
179int selinux_xfrm_state_pol_flow_match(struct xfrm_state *x,
180				      struct xfrm_policy *xp,
181				      const struct flowi *fl)
182{
183	u32 state_sid;
 
184
185	if (!xp->security)
186		if (x->security)
187			/* unlabeled policy and labeled SA can't match */
188			return 0;
189		else
190			/* unlabeled policy and unlabeled SA match all flows */
191			return 1;
192	else
193		if (!x->security)
194			/* unlabeled SA and labeled policy can't match */
195			return 0;
196		else
197			if (!selinux_authorizable_xfrm(x))
198				/* Not a SELinux-labeled SA */
199				return 0;
200
201	state_sid = x->security->ctx_sid;
 
202
203	if (fl->flowi_secid != state_sid)
204		return 0;
205
206	/* We don't need a separate SA Vs. policy polmatch check since the SA
207	 * is now of the same label as the flow and a flow Vs. policy polmatch
208	 * check had already happened in selinux_xfrm_policy_lookup() above. */
209	return (avc_has_perm(&selinux_state,
210			     fl->flowi_secid, state_sid,
211			    SECCLASS_ASSOCIATION, ASSOCIATION__SENDTO,
212			    NULL) ? 0 : 1);
213}
214
215static u32 selinux_xfrm_skb_sid_egress(struct sk_buff *skb)
216{
217	struct dst_entry *dst = skb_dst(skb);
218	struct xfrm_state *x;
219
220	if (dst == NULL)
221		return SECSID_NULL;
222	x = dst->xfrm;
223	if (x == NULL || !selinux_authorizable_xfrm(x))
224		return SECSID_NULL;
225
226	return x->security->ctx_sid;
227}
228
229static int selinux_xfrm_skb_sid_ingress(struct sk_buff *skb,
230					u32 *sid, int ckall)
231{
232	u32 sid_session = SECSID_NULL;
233	struct sec_path *sp = skb->sp;
234
235	if (sp) {
236		int i;
237
238		for (i = sp->len - 1; i >= 0; i--) {
239			struct xfrm_state *x = sp->xvec[i];
240			if (selinux_authorizable_xfrm(x)) {
241				struct xfrm_sec_ctx *ctx = x->security;
242
243				if (sid_session == SECSID_NULL) {
244					sid_session = ctx->ctx_sid;
245					if (!ckall)
246						goto out;
247				} else if (sid_session != ctx->ctx_sid) {
248					*sid = SECSID_NULL;
249					return -EINVAL;
250				}
251			}
252		}
253	}
254
255out:
256	*sid = sid_session;
257	return 0;
258}
259
260/*
261 * LSM hook implementation that checks and/or returns the xfrm sid for the
262 * incoming packet.
263 */
264int selinux_xfrm_decode_session(struct sk_buff *skb, u32 *sid, int ckall)
265{
266	if (skb == NULL) {
267		*sid = SECSID_NULL;
268		return 0;
269	}
270	return selinux_xfrm_skb_sid_ingress(skb, sid, ckall);
271}
272
273int selinux_xfrm_skb_sid(struct sk_buff *skb, u32 *sid)
274{
275	int rc;
276
277	rc = selinux_xfrm_skb_sid_ingress(skb, sid, 0);
278	if (rc == 0 && *sid == SECSID_NULL)
279		*sid = selinux_xfrm_skb_sid_egress(skb);
280
281	return rc;
282}
283
284/*
285 * LSM hook implementation that allocs and transfers uctx spec to xfrm_policy.
286 */
287int selinux_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
288			      struct xfrm_user_sec_ctx *uctx,
289			      gfp_t gfp)
290{
291	return selinux_xfrm_alloc_user(ctxp, uctx, gfp);
292}
293
294/*
295 * LSM hook implementation that copies security data structure from old to new
296 * for policy cloning.
297 */
298int selinux_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
299			      struct xfrm_sec_ctx **new_ctxp)
300{
301	struct xfrm_sec_ctx *new_ctx;
302
303	if (!old_ctx)
304		return 0;
305
306	new_ctx = kmemdup(old_ctx, sizeof(*old_ctx) + old_ctx->ctx_len,
307			  GFP_ATOMIC);
308	if (!new_ctx)
309		return -ENOMEM;
310	atomic_inc(&selinux_xfrm_refcount);
311	*new_ctxp = new_ctx;
312
313	return 0;
314}
315
316/*
317 * LSM hook implementation that frees xfrm_sec_ctx security information.
318 */
319void selinux_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
320{
321	selinux_xfrm_free(ctx);
322}
323
324/*
325 * LSM hook implementation that authorizes deletion of labeled policies.
326 */
327int selinux_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
328{
329	return selinux_xfrm_delete(ctx);
330}
331
332/*
333 * LSM hook implementation that allocates a xfrm_sec_state, populates it using
334 * the supplied security context, and assigns it to the xfrm_state.
335 */
336int selinux_xfrm_state_alloc(struct xfrm_state *x,
337			     struct xfrm_user_sec_ctx *uctx)
338{
339	return selinux_xfrm_alloc_user(&x->security, uctx, GFP_KERNEL);
340}
341
342/*
343 * LSM hook implementation that allocates a xfrm_sec_state and populates based
344 * on a secid.
345 */
346int selinux_xfrm_state_alloc_acquire(struct xfrm_state *x,
347				     struct xfrm_sec_ctx *polsec, u32 secid)
348{
349	int rc;
350	struct xfrm_sec_ctx *ctx;
351	char *ctx_str = NULL;
352	int str_len;
353
354	if (!polsec)
355		return 0;
356
357	if (secid == 0)
358		return -EINVAL;
359
360	rc = security_sid_to_context(&selinux_state, secid, &ctx_str,
361				     &str_len);
362	if (rc)
363		return rc;
364
365	ctx = kmalloc(sizeof(*ctx) + str_len, GFP_ATOMIC);
366	if (!ctx) {
367		rc = -ENOMEM;
368		goto out;
369	}
370
371	ctx->ctx_doi = XFRM_SC_DOI_LSM;
372	ctx->ctx_alg = XFRM_SC_ALG_SELINUX;
373	ctx->ctx_sid = secid;
374	ctx->ctx_len = str_len;
375	memcpy(ctx->ctx_str, ctx_str, str_len);
376
377	x->security = ctx;
378	atomic_inc(&selinux_xfrm_refcount);
379out:
380	kfree(ctx_str);
381	return rc;
382}
383
384/*
385 * LSM hook implementation that frees xfrm_state security information.
386 */
387void selinux_xfrm_state_free(struct xfrm_state *x)
388{
389	selinux_xfrm_free(x->security);
390}
391
392/*
393 * LSM hook implementation that authorizes deletion of labeled SAs.
394 */
395int selinux_xfrm_state_delete(struct xfrm_state *x)
396{
397	return selinux_xfrm_delete(x->security);
398}
399
400/*
401 * LSM hook that controls access to unlabelled packets.  If
402 * a xfrm_state is authorizable (defined by macro) then it was
403 * already authorized by the IPSec process.  If not, then
404 * we need to check for unlabelled access since this may not have
405 * gone thru the IPSec process.
406 */
407int selinux_xfrm_sock_rcv_skb(u32 sk_sid, struct sk_buff *skb,
408			      struct common_audit_data *ad)
409{
410	int i;
411	struct sec_path *sp = skb->sp;
412	u32 peer_sid = SECINITSID_UNLABELED;
413
414	if (sp) {
415		for (i = 0; i < sp->len; i++) {
416			struct xfrm_state *x = sp->xvec[i];
417
418			if (x && selinux_authorizable_xfrm(x)) {
419				struct xfrm_sec_ctx *ctx = x->security;
420				peer_sid = ctx->ctx_sid;
421				break;
422			}
423		}
424	}
425
426	/* This check even when there's no association involved is intended,
427	 * according to Trent Jaeger, to make sure a process can't engage in
428	 * non-IPsec communication unless explicitly allowed by policy. */
429	return avc_has_perm(&selinux_state,
430			    sk_sid, peer_sid,
431			    SECCLASS_ASSOCIATION, ASSOCIATION__RECVFROM, ad);
432}
433
434/*
435 * POSTROUTE_LAST hook's XFRM processing:
436 * If we have no security association, then we need to determine
437 * whether the socket is allowed to send to an unlabelled destination.
438 * If we do have a authorizable security association, then it has already been
439 * checked in the selinux_xfrm_state_pol_flow_match hook above.
440 */
441int selinux_xfrm_postroute_last(u32 sk_sid, struct sk_buff *skb,
442				struct common_audit_data *ad, u8 proto)
443{
444	struct dst_entry *dst;
445
446	switch (proto) {
447	case IPPROTO_AH:
448	case IPPROTO_ESP:
449	case IPPROTO_COMP:
450		/* We should have already seen this packet once before it
451		 * underwent xfrm(s). No need to subject it to the unlabeled
452		 * check. */
453		return 0;
454	default:
455		break;
456	}
457
458	dst = skb_dst(skb);
459	if (dst) {
460		struct dst_entry *iter;
461
462		for (iter = dst; iter != NULL; iter = xfrm_dst_child(iter)) {
463			struct xfrm_state *x = iter->xfrm;
464
465			if (x && selinux_authorizable_xfrm(x))
466				return 0;
467		}
468	}
469
470	/* This check even when there's no association involved is intended,
471	 * according to Trent Jaeger, to make sure a process can't engage in
472	 * non-IPsec communication unless explicitly allowed by policy. */
473	return avc_has_perm(&selinux_state, sk_sid, SECINITSID_UNLABELED,
474			    SECCLASS_ASSOCIATION, ASSOCIATION__SENDTO, ad);
475}
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  Security-Enhanced Linux (SELinux) security module
  4 *
  5 *  This file contains the SELinux XFRM hook function implementations.
  6 *
  7 *  Authors:  Serge Hallyn <sergeh@us.ibm.com>
  8 *	      Trent Jaeger <jaegert@us.ibm.com>
  9 *
 10 *  Updated: Venkat Yekkirala <vyekkirala@TrustedCS.com>
 11 *
 12 *           Granular IPSec Associations for use in MLS environments.
 13 *
 14 *  Copyright (C) 2005 International Business Machines Corporation
 15 *  Copyright (C) 2006 Trusted Computer Solutions, Inc.
 
 
 
 
 16 */
 17
 18/*
 19 * USAGE:
 20 * NOTES:
 21 *   1. Make sure to enable the following options in your kernel config:
 22 *	CONFIG_SECURITY=y
 23 *	CONFIG_SECURITY_NETWORK=y
 24 *	CONFIG_SECURITY_NETWORK_XFRM=y
 25 *	CONFIG_SECURITY_SELINUX=m/y
 26 * ISSUES:
 27 *   1. Caching packets, so they are not dropped during negotiation
 28 *   2. Emulating a reasonable SO_PEERSEC across machines
 29 *   3. Testing addition of sk_policy's with security context via setsockopt
 30 */
 31#include <linux/kernel.h>
 32#include <linux/init.h>
 33#include <linux/security.h>
 34#include <linux/types.h>
 35#include <linux/slab.h>
 36#include <linux/ip.h>
 37#include <linux/tcp.h>
 38#include <linux/skbuff.h>
 39#include <linux/xfrm.h>
 40#include <net/xfrm.h>
 41#include <net/checksum.h>
 42#include <net/udp.h>
 43#include <linux/atomic.h>
 44
 45#include "avc.h"
 46#include "objsec.h"
 47#include "xfrm.h"
 48
 49/* Labeled XFRM instance counter */
 50atomic_t selinux_xfrm_refcount __read_mostly = ATOMIC_INIT(0);
 51
 52/*
 53 * Returns true if the context is an LSM/SELinux context.
 54 */
 55static inline int selinux_authorizable_ctx(struct xfrm_sec_ctx *ctx)
 56{
 57	return (ctx &&
 58		(ctx->ctx_doi == XFRM_SC_DOI_LSM) &&
 59		(ctx->ctx_alg == XFRM_SC_ALG_SELINUX));
 60}
 61
 62/*
 63 * Returns true if the xfrm contains a security blob for SELinux.
 64 */
 65static inline int selinux_authorizable_xfrm(struct xfrm_state *x)
 66{
 67	return selinux_authorizable_ctx(x->security);
 68}
 69
 70/*
 71 * Allocates a xfrm_sec_state and populates it using the supplied security
 72 * xfrm_user_sec_ctx context.
 73 */
 74static int selinux_xfrm_alloc_user(struct xfrm_sec_ctx **ctxp,
 75				   struct xfrm_user_sec_ctx *uctx,
 76				   gfp_t gfp)
 77{
 78	int rc;
 
 79	struct xfrm_sec_ctx *ctx = NULL;
 80	u32 str_len;
 81
 82	if (ctxp == NULL || uctx == NULL ||
 83	    uctx->ctx_doi != XFRM_SC_DOI_LSM ||
 84	    uctx->ctx_alg != XFRM_SC_ALG_SELINUX)
 85		return -EINVAL;
 86
 87	str_len = uctx->ctx_len;
 88	if (str_len >= PAGE_SIZE)
 89		return -ENOMEM;
 90
 91	ctx = kmalloc(struct_size(ctx, ctx_str, str_len + 1), gfp);
 92	if (!ctx)
 93		return -ENOMEM;
 94
 95	ctx->ctx_doi = XFRM_SC_DOI_LSM;
 96	ctx->ctx_alg = XFRM_SC_ALG_SELINUX;
 97	ctx->ctx_len = str_len;
 98	memcpy(ctx->ctx_str, &uctx[1], str_len);
 99	ctx->ctx_str[str_len] = '\0';
100	rc = security_context_to_sid(ctx->ctx_str, str_len,
101				     &ctx->ctx_sid, gfp);
102	if (rc)
103		goto err;
104
105	rc = avc_has_perm(current_sid(), ctx->ctx_sid,
 
106			  SECCLASS_ASSOCIATION, ASSOCIATION__SETCONTEXT, NULL);
107	if (rc)
108		goto err;
109
110	*ctxp = ctx;
111	atomic_inc(&selinux_xfrm_refcount);
112	return 0;
113
114err:
115	kfree(ctx);
116	return rc;
117}
118
119/*
120 * Free the xfrm_sec_ctx structure.
121 */
122static void selinux_xfrm_free(struct xfrm_sec_ctx *ctx)
123{
124	if (!ctx)
125		return;
126
127	atomic_dec(&selinux_xfrm_refcount);
128	kfree(ctx);
129}
130
131/*
132 * Authorize the deletion of a labeled SA or policy rule.
133 */
134static int selinux_xfrm_delete(struct xfrm_sec_ctx *ctx)
135{
 
 
136	if (!ctx)
137		return 0;
138
139	return avc_has_perm(current_sid(), ctx->ctx_sid,
 
140			    SECCLASS_ASSOCIATION, ASSOCIATION__SETCONTEXT,
141			    NULL);
142}
143
144/*
145 * LSM hook implementation that authorizes that a flow can use a xfrm policy
146 * rule.
147 */
148int selinux_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
149{
150	int rc;
151
152	/* All flows should be treated as polmatch'ing an otherwise applicable
153	 * "non-labeled" policy. This would prevent inadvertent "leaks". */
154	if (!ctx)
155		return 0;
156
157	/* Context sid is either set to label or ANY_ASSOC */
158	if (!selinux_authorizable_ctx(ctx))
159		return -EINVAL;
160
161	rc = avc_has_perm(fl_secid, ctx->ctx_sid,
 
162			  SECCLASS_ASSOCIATION, ASSOCIATION__POLMATCH, NULL);
163	return (rc == -EACCES ? -ESRCH : rc);
164}
165
166/*
167 * LSM hook implementation that authorizes that a state matches
168 * the given policy, flow combo.
169 */
170int selinux_xfrm_state_pol_flow_match(struct xfrm_state *x,
171				      struct xfrm_policy *xp,
172				      const struct flowi_common *flic)
173{
174	u32 state_sid;
175	u32 flic_sid;
176
177	if (!xp->security)
178		if (x->security)
179			/* unlabeled policy and labeled SA can't match */
180			return 0;
181		else
182			/* unlabeled policy and unlabeled SA match all flows */
183			return 1;
184	else
185		if (!x->security)
186			/* unlabeled SA and labeled policy can't match */
187			return 0;
188		else
189			if (!selinux_authorizable_xfrm(x))
190				/* Not a SELinux-labeled SA */
191				return 0;
192
193	state_sid = x->security->ctx_sid;
194	flic_sid = flic->flowic_secid;
195
196	if (flic_sid != state_sid)
197		return 0;
198
199	/* We don't need a separate SA Vs. policy polmatch check since the SA
200	 * is now of the same label as the flow and a flow Vs. policy polmatch
201	 * check had already happened in selinux_xfrm_policy_lookup() above. */
202	return (avc_has_perm(flic_sid, state_sid,
203			     SECCLASS_ASSOCIATION, ASSOCIATION__SENDTO,
204			     NULL) ? 0 : 1);
 
205}
206
207static u32 selinux_xfrm_skb_sid_egress(struct sk_buff *skb)
208{
209	struct dst_entry *dst = skb_dst(skb);
210	struct xfrm_state *x;
211
212	if (dst == NULL)
213		return SECSID_NULL;
214	x = dst->xfrm;
215	if (x == NULL || !selinux_authorizable_xfrm(x))
216		return SECSID_NULL;
217
218	return x->security->ctx_sid;
219}
220
221static int selinux_xfrm_skb_sid_ingress(struct sk_buff *skb,
222					u32 *sid, int ckall)
223{
224	u32 sid_session = SECSID_NULL;
225	struct sec_path *sp = skb_sec_path(skb);
226
227	if (sp) {
228		int i;
229
230		for (i = sp->len - 1; i >= 0; i--) {
231			struct xfrm_state *x = sp->xvec[i];
232			if (selinux_authorizable_xfrm(x)) {
233				struct xfrm_sec_ctx *ctx = x->security;
234
235				if (sid_session == SECSID_NULL) {
236					sid_session = ctx->ctx_sid;
237					if (!ckall)
238						goto out;
239				} else if (sid_session != ctx->ctx_sid) {
240					*sid = SECSID_NULL;
241					return -EINVAL;
242				}
243			}
244		}
245	}
246
247out:
248	*sid = sid_session;
249	return 0;
250}
251
252/*
253 * LSM hook implementation that checks and/or returns the xfrm sid for the
254 * incoming packet.
255 */
256int selinux_xfrm_decode_session(struct sk_buff *skb, u32 *sid, int ckall)
257{
258	if (skb == NULL) {
259		*sid = SECSID_NULL;
260		return 0;
261	}
262	return selinux_xfrm_skb_sid_ingress(skb, sid, ckall);
263}
264
265int selinux_xfrm_skb_sid(struct sk_buff *skb, u32 *sid)
266{
267	int rc;
268
269	rc = selinux_xfrm_skb_sid_ingress(skb, sid, 0);
270	if (rc == 0 && *sid == SECSID_NULL)
271		*sid = selinux_xfrm_skb_sid_egress(skb);
272
273	return rc;
274}
275
276/*
277 * LSM hook implementation that allocs and transfers uctx spec to xfrm_policy.
278 */
279int selinux_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
280			      struct xfrm_user_sec_ctx *uctx,
281			      gfp_t gfp)
282{
283	return selinux_xfrm_alloc_user(ctxp, uctx, gfp);
284}
285
286/*
287 * LSM hook implementation that copies security data structure from old to new
288 * for policy cloning.
289 */
290int selinux_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
291			      struct xfrm_sec_ctx **new_ctxp)
292{
293	struct xfrm_sec_ctx *new_ctx;
294
295	if (!old_ctx)
296		return 0;
297
298	new_ctx = kmemdup(old_ctx, sizeof(*old_ctx) + old_ctx->ctx_len,
299			  GFP_ATOMIC);
300	if (!new_ctx)
301		return -ENOMEM;
302	atomic_inc(&selinux_xfrm_refcount);
303	*new_ctxp = new_ctx;
304
305	return 0;
306}
307
308/*
309 * LSM hook implementation that frees xfrm_sec_ctx security information.
310 */
311void selinux_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
312{
313	selinux_xfrm_free(ctx);
314}
315
316/*
317 * LSM hook implementation that authorizes deletion of labeled policies.
318 */
319int selinux_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
320{
321	return selinux_xfrm_delete(ctx);
322}
323
324/*
325 * LSM hook implementation that allocates a xfrm_sec_state, populates it using
326 * the supplied security context, and assigns it to the xfrm_state.
327 */
328int selinux_xfrm_state_alloc(struct xfrm_state *x,
329			     struct xfrm_user_sec_ctx *uctx)
330{
331	return selinux_xfrm_alloc_user(&x->security, uctx, GFP_KERNEL);
332}
333
334/*
335 * LSM hook implementation that allocates a xfrm_sec_state and populates based
336 * on a secid.
337 */
338int selinux_xfrm_state_alloc_acquire(struct xfrm_state *x,
339				     struct xfrm_sec_ctx *polsec, u32 secid)
340{
341	int rc;
342	struct xfrm_sec_ctx *ctx;
343	char *ctx_str = NULL;
344	u32 str_len;
345
346	if (!polsec)
347		return 0;
348
349	if (secid == 0)
350		return -EINVAL;
351
352	rc = security_sid_to_context(secid, &ctx_str,
353				     &str_len);
354	if (rc)
355		return rc;
356
357	ctx = kmalloc(struct_size(ctx, ctx_str, str_len), GFP_ATOMIC);
358	if (!ctx) {
359		rc = -ENOMEM;
360		goto out;
361	}
362
363	ctx->ctx_doi = XFRM_SC_DOI_LSM;
364	ctx->ctx_alg = XFRM_SC_ALG_SELINUX;
365	ctx->ctx_sid = secid;
366	ctx->ctx_len = str_len;
367	memcpy(ctx->ctx_str, ctx_str, str_len);
368
369	x->security = ctx;
370	atomic_inc(&selinux_xfrm_refcount);
371out:
372	kfree(ctx_str);
373	return rc;
374}
375
376/*
377 * LSM hook implementation that frees xfrm_state security information.
378 */
379void selinux_xfrm_state_free(struct xfrm_state *x)
380{
381	selinux_xfrm_free(x->security);
382}
383
384/*
385 * LSM hook implementation that authorizes deletion of labeled SAs.
386 */
387int selinux_xfrm_state_delete(struct xfrm_state *x)
388{
389	return selinux_xfrm_delete(x->security);
390}
391
392/*
393 * LSM hook that controls access to unlabelled packets.  If
394 * a xfrm_state is authorizable (defined by macro) then it was
395 * already authorized by the IPSec process.  If not, then
396 * we need to check for unlabelled access since this may not have
397 * gone thru the IPSec process.
398 */
399int selinux_xfrm_sock_rcv_skb(u32 sk_sid, struct sk_buff *skb,
400			      struct common_audit_data *ad)
401{
402	int i;
403	struct sec_path *sp = skb_sec_path(skb);
404	u32 peer_sid = SECINITSID_UNLABELED;
405
406	if (sp) {
407		for (i = 0; i < sp->len; i++) {
408			struct xfrm_state *x = sp->xvec[i];
409
410			if (x && selinux_authorizable_xfrm(x)) {
411				struct xfrm_sec_ctx *ctx = x->security;
412				peer_sid = ctx->ctx_sid;
413				break;
414			}
415		}
416	}
417
418	/* This check even when there's no association involved is intended,
419	 * according to Trent Jaeger, to make sure a process can't engage in
420	 * non-IPsec communication unless explicitly allowed by policy. */
421	return avc_has_perm(sk_sid, peer_sid,
 
422			    SECCLASS_ASSOCIATION, ASSOCIATION__RECVFROM, ad);
423}
424
425/*
426 * POSTROUTE_LAST hook's XFRM processing:
427 * If we have no security association, then we need to determine
428 * whether the socket is allowed to send to an unlabelled destination.
429 * If we do have a authorizable security association, then it has already been
430 * checked in the selinux_xfrm_state_pol_flow_match hook above.
431 */
432int selinux_xfrm_postroute_last(u32 sk_sid, struct sk_buff *skb,
433				struct common_audit_data *ad, u8 proto)
434{
435	struct dst_entry *dst;
436
437	switch (proto) {
438	case IPPROTO_AH:
439	case IPPROTO_ESP:
440	case IPPROTO_COMP:
441		/* We should have already seen this packet once before it
442		 * underwent xfrm(s). No need to subject it to the unlabeled
443		 * check. */
444		return 0;
445	default:
446		break;
447	}
448
449	dst = skb_dst(skb);
450	if (dst) {
451		struct dst_entry *iter;
452
453		for (iter = dst; iter != NULL; iter = xfrm_dst_child(iter)) {
454			struct xfrm_state *x = iter->xfrm;
455
456			if (x && selinux_authorizable_xfrm(x))
457				return 0;
458		}
459	}
460
461	/* This check even when there's no association involved is intended,
462	 * according to Trent Jaeger, to make sure a process can't engage in
463	 * non-IPsec communication unless explicitly allowed by policy. */
464	return avc_has_perm(sk_sid, SECINITSID_UNLABELED,
465			    SECCLASS_ASSOCIATION, ASSOCIATION__SENDTO, ad);
466}