Loading...
1/*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux XFRM hook function implementations.
5 *
6 * Authors: Serge Hallyn <sergeh@us.ibm.com>
7 * Trent Jaeger <jaegert@us.ibm.com>
8 *
9 * Updated: Venkat Yekkirala <vyekkirala@TrustedCS.com>
10 *
11 * Granular IPSec Associations for use in MLS environments.
12 *
13 * Copyright (C) 2005 International Business Machines Corporation
14 * Copyright (C) 2006 Trusted Computer Solutions, Inc.
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License version 2,
18 * as published by the Free Software Foundation.
19 */
20
21/*
22 * USAGE:
23 * NOTES:
24 * 1. Make sure to enable the following options in your kernel config:
25 * CONFIG_SECURITY=y
26 * CONFIG_SECURITY_NETWORK=y
27 * CONFIG_SECURITY_NETWORK_XFRM=y
28 * CONFIG_SECURITY_SELINUX=m/y
29 * ISSUES:
30 * 1. Caching packets, so they are not dropped during negotiation
31 * 2. Emulating a reasonable SO_PEERSEC across machines
32 * 3. Testing addition of sk_policy's with security context via setsockopt
33 */
34#include <linux/kernel.h>
35#include <linux/init.h>
36#include <linux/security.h>
37#include <linux/types.h>
38#include <linux/slab.h>
39#include <linux/ip.h>
40#include <linux/tcp.h>
41#include <linux/skbuff.h>
42#include <linux/xfrm.h>
43#include <net/xfrm.h>
44#include <net/checksum.h>
45#include <net/udp.h>
46#include <linux/atomic.h>
47
48#include "avc.h"
49#include "objsec.h"
50#include "xfrm.h"
51
52/* Labeled XFRM instance counter */
53atomic_t selinux_xfrm_refcount = ATOMIC_INIT(0);
54
55/*
56 * Returns true if the context is an LSM/SELinux context.
57 */
58static inline int selinux_authorizable_ctx(struct xfrm_sec_ctx *ctx)
59{
60 return (ctx &&
61 (ctx->ctx_doi == XFRM_SC_DOI_LSM) &&
62 (ctx->ctx_alg == XFRM_SC_ALG_SELINUX));
63}
64
65/*
66 * Returns true if the xfrm contains a security blob for SELinux.
67 */
68static inline int selinux_authorizable_xfrm(struct xfrm_state *x)
69{
70 return selinux_authorizable_ctx(x->security);
71}
72
73/*
74 * Allocates a xfrm_sec_state and populates it using the supplied security
75 * xfrm_user_sec_ctx context.
76 */
77static int selinux_xfrm_alloc_user(struct xfrm_sec_ctx **ctxp,
78 struct xfrm_user_sec_ctx *uctx,
79 gfp_t gfp)
80{
81 int rc;
82 const struct task_security_struct *tsec = current_security();
83 struct xfrm_sec_ctx *ctx = NULL;
84 u32 str_len;
85
86 if (ctxp == NULL || uctx == NULL ||
87 uctx->ctx_doi != XFRM_SC_DOI_LSM ||
88 uctx->ctx_alg != XFRM_SC_ALG_SELINUX)
89 return -EINVAL;
90
91 str_len = uctx->ctx_len;
92 if (str_len >= PAGE_SIZE)
93 return -ENOMEM;
94
95 ctx = kmalloc(sizeof(*ctx) + str_len + 1, gfp);
96 if (!ctx)
97 return -ENOMEM;
98
99 ctx->ctx_doi = XFRM_SC_DOI_LSM;
100 ctx->ctx_alg = XFRM_SC_ALG_SELINUX;
101 ctx->ctx_len = str_len;
102 memcpy(ctx->ctx_str, &uctx[1], str_len);
103 ctx->ctx_str[str_len] = '\0';
104 rc = security_context_to_sid(&selinux_state, ctx->ctx_str, str_len,
105 &ctx->ctx_sid, gfp);
106 if (rc)
107 goto err;
108
109 rc = avc_has_perm(&selinux_state,
110 tsec->sid, ctx->ctx_sid,
111 SECCLASS_ASSOCIATION, ASSOCIATION__SETCONTEXT, NULL);
112 if (rc)
113 goto err;
114
115 *ctxp = ctx;
116 atomic_inc(&selinux_xfrm_refcount);
117 return 0;
118
119err:
120 kfree(ctx);
121 return rc;
122}
123
124/*
125 * Free the xfrm_sec_ctx structure.
126 */
127static void selinux_xfrm_free(struct xfrm_sec_ctx *ctx)
128{
129 if (!ctx)
130 return;
131
132 atomic_dec(&selinux_xfrm_refcount);
133 kfree(ctx);
134}
135
136/*
137 * Authorize the deletion of a labeled SA or policy rule.
138 */
139static int selinux_xfrm_delete(struct xfrm_sec_ctx *ctx)
140{
141 const struct task_security_struct *tsec = current_security();
142
143 if (!ctx)
144 return 0;
145
146 return avc_has_perm(&selinux_state,
147 tsec->sid, ctx->ctx_sid,
148 SECCLASS_ASSOCIATION, ASSOCIATION__SETCONTEXT,
149 NULL);
150}
151
152/*
153 * LSM hook implementation that authorizes that a flow can use a xfrm policy
154 * rule.
155 */
156int selinux_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
157{
158 int rc;
159
160 /* All flows should be treated as polmatch'ing an otherwise applicable
161 * "non-labeled" policy. This would prevent inadvertent "leaks". */
162 if (!ctx)
163 return 0;
164
165 /* Context sid is either set to label or ANY_ASSOC */
166 if (!selinux_authorizable_ctx(ctx))
167 return -EINVAL;
168
169 rc = avc_has_perm(&selinux_state,
170 fl_secid, ctx->ctx_sid,
171 SECCLASS_ASSOCIATION, ASSOCIATION__POLMATCH, NULL);
172 return (rc == -EACCES ? -ESRCH : rc);
173}
174
175/*
176 * LSM hook implementation that authorizes that a state matches
177 * the given policy, flow combo.
178 */
179int selinux_xfrm_state_pol_flow_match(struct xfrm_state *x,
180 struct xfrm_policy *xp,
181 const struct flowi *fl)
182{
183 u32 state_sid;
184
185 if (!xp->security)
186 if (x->security)
187 /* unlabeled policy and labeled SA can't match */
188 return 0;
189 else
190 /* unlabeled policy and unlabeled SA match all flows */
191 return 1;
192 else
193 if (!x->security)
194 /* unlabeled SA and labeled policy can't match */
195 return 0;
196 else
197 if (!selinux_authorizable_xfrm(x))
198 /* Not a SELinux-labeled SA */
199 return 0;
200
201 state_sid = x->security->ctx_sid;
202
203 if (fl->flowi_secid != state_sid)
204 return 0;
205
206 /* We don't need a separate SA Vs. policy polmatch check since the SA
207 * is now of the same label as the flow and a flow Vs. policy polmatch
208 * check had already happened in selinux_xfrm_policy_lookup() above. */
209 return (avc_has_perm(&selinux_state,
210 fl->flowi_secid, state_sid,
211 SECCLASS_ASSOCIATION, ASSOCIATION__SENDTO,
212 NULL) ? 0 : 1);
213}
214
215static u32 selinux_xfrm_skb_sid_egress(struct sk_buff *skb)
216{
217 struct dst_entry *dst = skb_dst(skb);
218 struct xfrm_state *x;
219
220 if (dst == NULL)
221 return SECSID_NULL;
222 x = dst->xfrm;
223 if (x == NULL || !selinux_authorizable_xfrm(x))
224 return SECSID_NULL;
225
226 return x->security->ctx_sid;
227}
228
229static int selinux_xfrm_skb_sid_ingress(struct sk_buff *skb,
230 u32 *sid, int ckall)
231{
232 u32 sid_session = SECSID_NULL;
233 struct sec_path *sp = skb->sp;
234
235 if (sp) {
236 int i;
237
238 for (i = sp->len - 1; i >= 0; i--) {
239 struct xfrm_state *x = sp->xvec[i];
240 if (selinux_authorizable_xfrm(x)) {
241 struct xfrm_sec_ctx *ctx = x->security;
242
243 if (sid_session == SECSID_NULL) {
244 sid_session = ctx->ctx_sid;
245 if (!ckall)
246 goto out;
247 } else if (sid_session != ctx->ctx_sid) {
248 *sid = SECSID_NULL;
249 return -EINVAL;
250 }
251 }
252 }
253 }
254
255out:
256 *sid = sid_session;
257 return 0;
258}
259
260/*
261 * LSM hook implementation that checks and/or returns the xfrm sid for the
262 * incoming packet.
263 */
264int selinux_xfrm_decode_session(struct sk_buff *skb, u32 *sid, int ckall)
265{
266 if (skb == NULL) {
267 *sid = SECSID_NULL;
268 return 0;
269 }
270 return selinux_xfrm_skb_sid_ingress(skb, sid, ckall);
271}
272
273int selinux_xfrm_skb_sid(struct sk_buff *skb, u32 *sid)
274{
275 int rc;
276
277 rc = selinux_xfrm_skb_sid_ingress(skb, sid, 0);
278 if (rc == 0 && *sid == SECSID_NULL)
279 *sid = selinux_xfrm_skb_sid_egress(skb);
280
281 return rc;
282}
283
284/*
285 * LSM hook implementation that allocs and transfers uctx spec to xfrm_policy.
286 */
287int selinux_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
288 struct xfrm_user_sec_ctx *uctx,
289 gfp_t gfp)
290{
291 return selinux_xfrm_alloc_user(ctxp, uctx, gfp);
292}
293
294/*
295 * LSM hook implementation that copies security data structure from old to new
296 * for policy cloning.
297 */
298int selinux_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
299 struct xfrm_sec_ctx **new_ctxp)
300{
301 struct xfrm_sec_ctx *new_ctx;
302
303 if (!old_ctx)
304 return 0;
305
306 new_ctx = kmemdup(old_ctx, sizeof(*old_ctx) + old_ctx->ctx_len,
307 GFP_ATOMIC);
308 if (!new_ctx)
309 return -ENOMEM;
310 atomic_inc(&selinux_xfrm_refcount);
311 *new_ctxp = new_ctx;
312
313 return 0;
314}
315
316/*
317 * LSM hook implementation that frees xfrm_sec_ctx security information.
318 */
319void selinux_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
320{
321 selinux_xfrm_free(ctx);
322}
323
324/*
325 * LSM hook implementation that authorizes deletion of labeled policies.
326 */
327int selinux_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
328{
329 return selinux_xfrm_delete(ctx);
330}
331
332/*
333 * LSM hook implementation that allocates a xfrm_sec_state, populates it using
334 * the supplied security context, and assigns it to the xfrm_state.
335 */
336int selinux_xfrm_state_alloc(struct xfrm_state *x,
337 struct xfrm_user_sec_ctx *uctx)
338{
339 return selinux_xfrm_alloc_user(&x->security, uctx, GFP_KERNEL);
340}
341
342/*
343 * LSM hook implementation that allocates a xfrm_sec_state and populates based
344 * on a secid.
345 */
346int selinux_xfrm_state_alloc_acquire(struct xfrm_state *x,
347 struct xfrm_sec_ctx *polsec, u32 secid)
348{
349 int rc;
350 struct xfrm_sec_ctx *ctx;
351 char *ctx_str = NULL;
352 int str_len;
353
354 if (!polsec)
355 return 0;
356
357 if (secid == 0)
358 return -EINVAL;
359
360 rc = security_sid_to_context(&selinux_state, secid, &ctx_str,
361 &str_len);
362 if (rc)
363 return rc;
364
365 ctx = kmalloc(sizeof(*ctx) + str_len, GFP_ATOMIC);
366 if (!ctx) {
367 rc = -ENOMEM;
368 goto out;
369 }
370
371 ctx->ctx_doi = XFRM_SC_DOI_LSM;
372 ctx->ctx_alg = XFRM_SC_ALG_SELINUX;
373 ctx->ctx_sid = secid;
374 ctx->ctx_len = str_len;
375 memcpy(ctx->ctx_str, ctx_str, str_len);
376
377 x->security = ctx;
378 atomic_inc(&selinux_xfrm_refcount);
379out:
380 kfree(ctx_str);
381 return rc;
382}
383
384/*
385 * LSM hook implementation that frees xfrm_state security information.
386 */
387void selinux_xfrm_state_free(struct xfrm_state *x)
388{
389 selinux_xfrm_free(x->security);
390}
391
392/*
393 * LSM hook implementation that authorizes deletion of labeled SAs.
394 */
395int selinux_xfrm_state_delete(struct xfrm_state *x)
396{
397 return selinux_xfrm_delete(x->security);
398}
399
400/*
401 * LSM hook that controls access to unlabelled packets. If
402 * a xfrm_state is authorizable (defined by macro) then it was
403 * already authorized by the IPSec process. If not, then
404 * we need to check for unlabelled access since this may not have
405 * gone thru the IPSec process.
406 */
407int selinux_xfrm_sock_rcv_skb(u32 sk_sid, struct sk_buff *skb,
408 struct common_audit_data *ad)
409{
410 int i;
411 struct sec_path *sp = skb->sp;
412 u32 peer_sid = SECINITSID_UNLABELED;
413
414 if (sp) {
415 for (i = 0; i < sp->len; i++) {
416 struct xfrm_state *x = sp->xvec[i];
417
418 if (x && selinux_authorizable_xfrm(x)) {
419 struct xfrm_sec_ctx *ctx = x->security;
420 peer_sid = ctx->ctx_sid;
421 break;
422 }
423 }
424 }
425
426 /* This check even when there's no association involved is intended,
427 * according to Trent Jaeger, to make sure a process can't engage in
428 * non-IPsec communication unless explicitly allowed by policy. */
429 return avc_has_perm(&selinux_state,
430 sk_sid, peer_sid,
431 SECCLASS_ASSOCIATION, ASSOCIATION__RECVFROM, ad);
432}
433
434/*
435 * POSTROUTE_LAST hook's XFRM processing:
436 * If we have no security association, then we need to determine
437 * whether the socket is allowed to send to an unlabelled destination.
438 * If we do have a authorizable security association, then it has already been
439 * checked in the selinux_xfrm_state_pol_flow_match hook above.
440 */
441int selinux_xfrm_postroute_last(u32 sk_sid, struct sk_buff *skb,
442 struct common_audit_data *ad, u8 proto)
443{
444 struct dst_entry *dst;
445
446 switch (proto) {
447 case IPPROTO_AH:
448 case IPPROTO_ESP:
449 case IPPROTO_COMP:
450 /* We should have already seen this packet once before it
451 * underwent xfrm(s). No need to subject it to the unlabeled
452 * check. */
453 return 0;
454 default:
455 break;
456 }
457
458 dst = skb_dst(skb);
459 if (dst) {
460 struct dst_entry *iter;
461
462 for (iter = dst; iter != NULL; iter = xfrm_dst_child(iter)) {
463 struct xfrm_state *x = iter->xfrm;
464
465 if (x && selinux_authorizable_xfrm(x))
466 return 0;
467 }
468 }
469
470 /* This check even when there's no association involved is intended,
471 * according to Trent Jaeger, to make sure a process can't engage in
472 * non-IPsec communication unless explicitly allowed by policy. */
473 return avc_has_perm(&selinux_state, sk_sid, SECINITSID_UNLABELED,
474 SECCLASS_ASSOCIATION, ASSOCIATION__SENDTO, ad);
475}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Security-Enhanced Linux (SELinux) security module
4 *
5 * This file contains the SELinux XFRM hook function implementations.
6 *
7 * Authors: Serge Hallyn <sergeh@us.ibm.com>
8 * Trent Jaeger <jaegert@us.ibm.com>
9 *
10 * Updated: Venkat Yekkirala <vyekkirala@TrustedCS.com>
11 *
12 * Granular IPSec Associations for use in MLS environments.
13 *
14 * Copyright (C) 2005 International Business Machines Corporation
15 * Copyright (C) 2006 Trusted Computer Solutions, Inc.
16 */
17
18/*
19 * USAGE:
20 * NOTES:
21 * 1. Make sure to enable the following options in your kernel config:
22 * CONFIG_SECURITY=y
23 * CONFIG_SECURITY_NETWORK=y
24 * CONFIG_SECURITY_NETWORK_XFRM=y
25 * CONFIG_SECURITY_SELINUX=m/y
26 * ISSUES:
27 * 1. Caching packets, so they are not dropped during negotiation
28 * 2. Emulating a reasonable SO_PEERSEC across machines
29 * 3. Testing addition of sk_policy's with security context via setsockopt
30 */
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/security.h>
34#include <linux/types.h>
35#include <linux/slab.h>
36#include <linux/ip.h>
37#include <linux/tcp.h>
38#include <linux/skbuff.h>
39#include <linux/xfrm.h>
40#include <net/xfrm.h>
41#include <net/checksum.h>
42#include <net/udp.h>
43#include <linux/atomic.h>
44
45#include "avc.h"
46#include "objsec.h"
47#include "xfrm.h"
48
49/* Labeled XFRM instance counter */
50atomic_t selinux_xfrm_refcount __read_mostly = ATOMIC_INIT(0);
51
52/*
53 * Returns true if the context is an LSM/SELinux context.
54 */
55static inline int selinux_authorizable_ctx(struct xfrm_sec_ctx *ctx)
56{
57 return (ctx &&
58 (ctx->ctx_doi == XFRM_SC_DOI_LSM) &&
59 (ctx->ctx_alg == XFRM_SC_ALG_SELINUX));
60}
61
62/*
63 * Returns true if the xfrm contains a security blob for SELinux.
64 */
65static inline int selinux_authorizable_xfrm(struct xfrm_state *x)
66{
67 return selinux_authorizable_ctx(x->security);
68}
69
70/*
71 * Allocates a xfrm_sec_state and populates it using the supplied security
72 * xfrm_user_sec_ctx context.
73 */
74static int selinux_xfrm_alloc_user(struct xfrm_sec_ctx **ctxp,
75 struct xfrm_user_sec_ctx *uctx,
76 gfp_t gfp)
77{
78 int rc;
79 const struct task_security_struct *tsec = selinux_cred(current_cred());
80 struct xfrm_sec_ctx *ctx = NULL;
81 u32 str_len;
82
83 if (ctxp == NULL || uctx == NULL ||
84 uctx->ctx_doi != XFRM_SC_DOI_LSM ||
85 uctx->ctx_alg != XFRM_SC_ALG_SELINUX)
86 return -EINVAL;
87
88 str_len = uctx->ctx_len;
89 if (str_len >= PAGE_SIZE)
90 return -ENOMEM;
91
92 ctx = kmalloc(struct_size(ctx, ctx_str, str_len + 1), gfp);
93 if (!ctx)
94 return -ENOMEM;
95
96 ctx->ctx_doi = XFRM_SC_DOI_LSM;
97 ctx->ctx_alg = XFRM_SC_ALG_SELINUX;
98 ctx->ctx_len = str_len;
99 memcpy(ctx->ctx_str, &uctx[1], str_len);
100 ctx->ctx_str[str_len] = '\0';
101 rc = security_context_to_sid(ctx->ctx_str, str_len,
102 &ctx->ctx_sid, gfp);
103 if (rc)
104 goto err;
105
106 rc = avc_has_perm(tsec->sid, ctx->ctx_sid,
107 SECCLASS_ASSOCIATION, ASSOCIATION__SETCONTEXT, NULL);
108 if (rc)
109 goto err;
110
111 *ctxp = ctx;
112 atomic_inc(&selinux_xfrm_refcount);
113 return 0;
114
115err:
116 kfree(ctx);
117 return rc;
118}
119
120/*
121 * Free the xfrm_sec_ctx structure.
122 */
123static void selinux_xfrm_free(struct xfrm_sec_ctx *ctx)
124{
125 if (!ctx)
126 return;
127
128 atomic_dec(&selinux_xfrm_refcount);
129 kfree(ctx);
130}
131
132/*
133 * Authorize the deletion of a labeled SA or policy rule.
134 */
135static int selinux_xfrm_delete(struct xfrm_sec_ctx *ctx)
136{
137 const struct task_security_struct *tsec = selinux_cred(current_cred());
138
139 if (!ctx)
140 return 0;
141
142 return avc_has_perm(tsec->sid, ctx->ctx_sid,
143 SECCLASS_ASSOCIATION, ASSOCIATION__SETCONTEXT,
144 NULL);
145}
146
147/*
148 * LSM hook implementation that authorizes that a flow can use a xfrm policy
149 * rule.
150 */
151int selinux_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
152{
153 int rc;
154
155 /* All flows should be treated as polmatch'ing an otherwise applicable
156 * "non-labeled" policy. This would prevent inadvertent "leaks". */
157 if (!ctx)
158 return 0;
159
160 /* Context sid is either set to label or ANY_ASSOC */
161 if (!selinux_authorizable_ctx(ctx))
162 return -EINVAL;
163
164 rc = avc_has_perm(fl_secid, ctx->ctx_sid,
165 SECCLASS_ASSOCIATION, ASSOCIATION__POLMATCH, NULL);
166 return (rc == -EACCES ? -ESRCH : rc);
167}
168
169/*
170 * LSM hook implementation that authorizes that a state matches
171 * the given policy, flow combo.
172 */
173int selinux_xfrm_state_pol_flow_match(struct xfrm_state *x,
174 struct xfrm_policy *xp,
175 const struct flowi_common *flic)
176{
177 u32 state_sid;
178 u32 flic_sid;
179
180 if (!xp->security)
181 if (x->security)
182 /* unlabeled policy and labeled SA can't match */
183 return 0;
184 else
185 /* unlabeled policy and unlabeled SA match all flows */
186 return 1;
187 else
188 if (!x->security)
189 /* unlabeled SA and labeled policy can't match */
190 return 0;
191 else
192 if (!selinux_authorizable_xfrm(x))
193 /* Not a SELinux-labeled SA */
194 return 0;
195
196 state_sid = x->security->ctx_sid;
197 flic_sid = flic->flowic_secid;
198
199 if (flic_sid != state_sid)
200 return 0;
201
202 /* We don't need a separate SA Vs. policy polmatch check since the SA
203 * is now of the same label as the flow and a flow Vs. policy polmatch
204 * check had already happened in selinux_xfrm_policy_lookup() above. */
205 return (avc_has_perm(flic_sid, state_sid,
206 SECCLASS_ASSOCIATION, ASSOCIATION__SENDTO,
207 NULL) ? 0 : 1);
208}
209
210static u32 selinux_xfrm_skb_sid_egress(struct sk_buff *skb)
211{
212 struct dst_entry *dst = skb_dst(skb);
213 struct xfrm_state *x;
214
215 if (dst == NULL)
216 return SECSID_NULL;
217 x = dst->xfrm;
218 if (x == NULL || !selinux_authorizable_xfrm(x))
219 return SECSID_NULL;
220
221 return x->security->ctx_sid;
222}
223
224static int selinux_xfrm_skb_sid_ingress(struct sk_buff *skb,
225 u32 *sid, int ckall)
226{
227 u32 sid_session = SECSID_NULL;
228 struct sec_path *sp = skb_sec_path(skb);
229
230 if (sp) {
231 int i;
232
233 for (i = sp->len - 1; i >= 0; i--) {
234 struct xfrm_state *x = sp->xvec[i];
235 if (selinux_authorizable_xfrm(x)) {
236 struct xfrm_sec_ctx *ctx = x->security;
237
238 if (sid_session == SECSID_NULL) {
239 sid_session = ctx->ctx_sid;
240 if (!ckall)
241 goto out;
242 } else if (sid_session != ctx->ctx_sid) {
243 *sid = SECSID_NULL;
244 return -EINVAL;
245 }
246 }
247 }
248 }
249
250out:
251 *sid = sid_session;
252 return 0;
253}
254
255/*
256 * LSM hook implementation that checks and/or returns the xfrm sid for the
257 * incoming packet.
258 */
259int selinux_xfrm_decode_session(struct sk_buff *skb, u32 *sid, int ckall)
260{
261 if (skb == NULL) {
262 *sid = SECSID_NULL;
263 return 0;
264 }
265 return selinux_xfrm_skb_sid_ingress(skb, sid, ckall);
266}
267
268int selinux_xfrm_skb_sid(struct sk_buff *skb, u32 *sid)
269{
270 int rc;
271
272 rc = selinux_xfrm_skb_sid_ingress(skb, sid, 0);
273 if (rc == 0 && *sid == SECSID_NULL)
274 *sid = selinux_xfrm_skb_sid_egress(skb);
275
276 return rc;
277}
278
279/*
280 * LSM hook implementation that allocs and transfers uctx spec to xfrm_policy.
281 */
282int selinux_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
283 struct xfrm_user_sec_ctx *uctx,
284 gfp_t gfp)
285{
286 return selinux_xfrm_alloc_user(ctxp, uctx, gfp);
287}
288
289/*
290 * LSM hook implementation that copies security data structure from old to new
291 * for policy cloning.
292 */
293int selinux_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
294 struct xfrm_sec_ctx **new_ctxp)
295{
296 struct xfrm_sec_ctx *new_ctx;
297
298 if (!old_ctx)
299 return 0;
300
301 new_ctx = kmemdup(old_ctx, sizeof(*old_ctx) + old_ctx->ctx_len,
302 GFP_ATOMIC);
303 if (!new_ctx)
304 return -ENOMEM;
305 atomic_inc(&selinux_xfrm_refcount);
306 *new_ctxp = new_ctx;
307
308 return 0;
309}
310
311/*
312 * LSM hook implementation that frees xfrm_sec_ctx security information.
313 */
314void selinux_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
315{
316 selinux_xfrm_free(ctx);
317}
318
319/*
320 * LSM hook implementation that authorizes deletion of labeled policies.
321 */
322int selinux_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
323{
324 return selinux_xfrm_delete(ctx);
325}
326
327/*
328 * LSM hook implementation that allocates a xfrm_sec_state, populates it using
329 * the supplied security context, and assigns it to the xfrm_state.
330 */
331int selinux_xfrm_state_alloc(struct xfrm_state *x,
332 struct xfrm_user_sec_ctx *uctx)
333{
334 return selinux_xfrm_alloc_user(&x->security, uctx, GFP_KERNEL);
335}
336
337/*
338 * LSM hook implementation that allocates a xfrm_sec_state and populates based
339 * on a secid.
340 */
341int selinux_xfrm_state_alloc_acquire(struct xfrm_state *x,
342 struct xfrm_sec_ctx *polsec, u32 secid)
343{
344 int rc;
345 struct xfrm_sec_ctx *ctx;
346 char *ctx_str = NULL;
347 u32 str_len;
348
349 if (!polsec)
350 return 0;
351
352 if (secid == 0)
353 return -EINVAL;
354
355 rc = security_sid_to_context(secid, &ctx_str,
356 &str_len);
357 if (rc)
358 return rc;
359
360 ctx = kmalloc(struct_size(ctx, ctx_str, str_len), GFP_ATOMIC);
361 if (!ctx) {
362 rc = -ENOMEM;
363 goto out;
364 }
365
366 ctx->ctx_doi = XFRM_SC_DOI_LSM;
367 ctx->ctx_alg = XFRM_SC_ALG_SELINUX;
368 ctx->ctx_sid = secid;
369 ctx->ctx_len = str_len;
370 memcpy(ctx->ctx_str, ctx_str, str_len);
371
372 x->security = ctx;
373 atomic_inc(&selinux_xfrm_refcount);
374out:
375 kfree(ctx_str);
376 return rc;
377}
378
379/*
380 * LSM hook implementation that frees xfrm_state security information.
381 */
382void selinux_xfrm_state_free(struct xfrm_state *x)
383{
384 selinux_xfrm_free(x->security);
385}
386
387/*
388 * LSM hook implementation that authorizes deletion of labeled SAs.
389 */
390int selinux_xfrm_state_delete(struct xfrm_state *x)
391{
392 return selinux_xfrm_delete(x->security);
393}
394
395/*
396 * LSM hook that controls access to unlabelled packets. If
397 * a xfrm_state is authorizable (defined by macro) then it was
398 * already authorized by the IPSec process. If not, then
399 * we need to check for unlabelled access since this may not have
400 * gone thru the IPSec process.
401 */
402int selinux_xfrm_sock_rcv_skb(u32 sk_sid, struct sk_buff *skb,
403 struct common_audit_data *ad)
404{
405 int i;
406 struct sec_path *sp = skb_sec_path(skb);
407 u32 peer_sid = SECINITSID_UNLABELED;
408
409 if (sp) {
410 for (i = 0; i < sp->len; i++) {
411 struct xfrm_state *x = sp->xvec[i];
412
413 if (x && selinux_authorizable_xfrm(x)) {
414 struct xfrm_sec_ctx *ctx = x->security;
415 peer_sid = ctx->ctx_sid;
416 break;
417 }
418 }
419 }
420
421 /* This check even when there's no association involved is intended,
422 * according to Trent Jaeger, to make sure a process can't engage in
423 * non-IPsec communication unless explicitly allowed by policy. */
424 return avc_has_perm(sk_sid, peer_sid,
425 SECCLASS_ASSOCIATION, ASSOCIATION__RECVFROM, ad);
426}
427
428/*
429 * POSTROUTE_LAST hook's XFRM processing:
430 * If we have no security association, then we need to determine
431 * whether the socket is allowed to send to an unlabelled destination.
432 * If we do have a authorizable security association, then it has already been
433 * checked in the selinux_xfrm_state_pol_flow_match hook above.
434 */
435int selinux_xfrm_postroute_last(u32 sk_sid, struct sk_buff *skb,
436 struct common_audit_data *ad, u8 proto)
437{
438 struct dst_entry *dst;
439
440 switch (proto) {
441 case IPPROTO_AH:
442 case IPPROTO_ESP:
443 case IPPROTO_COMP:
444 /* We should have already seen this packet once before it
445 * underwent xfrm(s). No need to subject it to the unlabeled
446 * check. */
447 return 0;
448 default:
449 break;
450 }
451
452 dst = skb_dst(skb);
453 if (dst) {
454 struct dst_entry *iter;
455
456 for (iter = dst; iter != NULL; iter = xfrm_dst_child(iter)) {
457 struct xfrm_state *x = iter->xfrm;
458
459 if (x && selinux_authorizable_xfrm(x))
460 return 0;
461 }
462 }
463
464 /* This check even when there's no association involved is intended,
465 * according to Trent Jaeger, to make sure a process can't engage in
466 * non-IPsec communication unless explicitly allowed by policy. */
467 return avc_has_perm(sk_sid, SECINITSID_UNLABELED,
468 SECCLASS_ASSOCIATION, ASSOCIATION__SENDTO, ad);
469}