Loading...
1/*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_shared.h"
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
24#include "xfs_mount.h"
25#include "xfs_inode.h"
26#include "xfs_trans.h"
27#include "xfs_buf_item.h"
28#include "xfs_trans_priv.h"
29#include "xfs_error.h"
30#include "xfs_trace.h"
31
32/*
33 * Check to see if a buffer matching the given parameters is already
34 * a part of the given transaction.
35 */
36STATIC struct xfs_buf *
37xfs_trans_buf_item_match(
38 struct xfs_trans *tp,
39 struct xfs_buftarg *target,
40 struct xfs_buf_map *map,
41 int nmaps)
42{
43 struct xfs_log_item_desc *lidp;
44 struct xfs_buf_log_item *blip;
45 int len = 0;
46 int i;
47
48 for (i = 0; i < nmaps; i++)
49 len += map[i].bm_len;
50
51 list_for_each_entry(lidp, &tp->t_items, lid_trans) {
52 blip = (struct xfs_buf_log_item *)lidp->lid_item;
53 if (blip->bli_item.li_type == XFS_LI_BUF &&
54 blip->bli_buf->b_target == target &&
55 XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn &&
56 blip->bli_buf->b_length == len) {
57 ASSERT(blip->bli_buf->b_map_count == nmaps);
58 return blip->bli_buf;
59 }
60 }
61
62 return NULL;
63}
64
65/*
66 * Add the locked buffer to the transaction.
67 *
68 * The buffer must be locked, and it cannot be associated with any
69 * transaction.
70 *
71 * If the buffer does not yet have a buf log item associated with it,
72 * then allocate one for it. Then add the buf item to the transaction.
73 */
74STATIC void
75_xfs_trans_bjoin(
76 struct xfs_trans *tp,
77 struct xfs_buf *bp,
78 int reset_recur)
79{
80 struct xfs_buf_log_item *bip;
81
82 ASSERT(bp->b_transp == NULL);
83
84 /*
85 * The xfs_buf_log_item pointer is stored in b_log_item. If
86 * it doesn't have one yet, then allocate one and initialize it.
87 * The checks to see if one is there are in xfs_buf_item_init().
88 */
89 xfs_buf_item_init(bp, tp->t_mountp);
90 bip = bp->b_log_item;
91 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
92 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
93 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
94 if (reset_recur)
95 bip->bli_recur = 0;
96
97 /*
98 * Take a reference for this transaction on the buf item.
99 */
100 atomic_inc(&bip->bli_refcount);
101
102 /*
103 * Get a log_item_desc to point at the new item.
104 */
105 xfs_trans_add_item(tp, &bip->bli_item);
106
107 /*
108 * Initialize b_fsprivate2 so we can find it with incore_match()
109 * in xfs_trans_get_buf() and friends above.
110 */
111 bp->b_transp = tp;
112
113}
114
115void
116xfs_trans_bjoin(
117 struct xfs_trans *tp,
118 struct xfs_buf *bp)
119{
120 _xfs_trans_bjoin(tp, bp, 0);
121 trace_xfs_trans_bjoin(bp->b_log_item);
122}
123
124/*
125 * Get and lock the buffer for the caller if it is not already
126 * locked within the given transaction. If it is already locked
127 * within the transaction, just increment its lock recursion count
128 * and return a pointer to it.
129 *
130 * If the transaction pointer is NULL, make this just a normal
131 * get_buf() call.
132 */
133struct xfs_buf *
134xfs_trans_get_buf_map(
135 struct xfs_trans *tp,
136 struct xfs_buftarg *target,
137 struct xfs_buf_map *map,
138 int nmaps,
139 xfs_buf_flags_t flags)
140{
141 xfs_buf_t *bp;
142 struct xfs_buf_log_item *bip;
143
144 if (!tp)
145 return xfs_buf_get_map(target, map, nmaps, flags);
146
147 /*
148 * If we find the buffer in the cache with this transaction
149 * pointer in its b_fsprivate2 field, then we know we already
150 * have it locked. In this case we just increment the lock
151 * recursion count and return the buffer to the caller.
152 */
153 bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
154 if (bp != NULL) {
155 ASSERT(xfs_buf_islocked(bp));
156 if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) {
157 xfs_buf_stale(bp);
158 bp->b_flags |= XBF_DONE;
159 }
160
161 ASSERT(bp->b_transp == tp);
162 bip = bp->b_log_item;
163 ASSERT(bip != NULL);
164 ASSERT(atomic_read(&bip->bli_refcount) > 0);
165 bip->bli_recur++;
166 trace_xfs_trans_get_buf_recur(bip);
167 return bp;
168 }
169
170 bp = xfs_buf_get_map(target, map, nmaps, flags);
171 if (bp == NULL) {
172 return NULL;
173 }
174
175 ASSERT(!bp->b_error);
176
177 _xfs_trans_bjoin(tp, bp, 1);
178 trace_xfs_trans_get_buf(bp->b_log_item);
179 return bp;
180}
181
182/*
183 * Get and lock the superblock buffer of this file system for the
184 * given transaction.
185 *
186 * We don't need to use incore_match() here, because the superblock
187 * buffer is a private buffer which we keep a pointer to in the
188 * mount structure.
189 */
190xfs_buf_t *
191xfs_trans_getsb(
192 xfs_trans_t *tp,
193 struct xfs_mount *mp,
194 int flags)
195{
196 xfs_buf_t *bp;
197 struct xfs_buf_log_item *bip;
198
199 /*
200 * Default to just trying to lock the superblock buffer
201 * if tp is NULL.
202 */
203 if (tp == NULL)
204 return xfs_getsb(mp, flags);
205
206 /*
207 * If the superblock buffer already has this transaction
208 * pointer in its b_fsprivate2 field, then we know we already
209 * have it locked. In this case we just increment the lock
210 * recursion count and return the buffer to the caller.
211 */
212 bp = mp->m_sb_bp;
213 if (bp->b_transp == tp) {
214 bip = bp->b_log_item;
215 ASSERT(bip != NULL);
216 ASSERT(atomic_read(&bip->bli_refcount) > 0);
217 bip->bli_recur++;
218 trace_xfs_trans_getsb_recur(bip);
219 return bp;
220 }
221
222 bp = xfs_getsb(mp, flags);
223 if (bp == NULL)
224 return NULL;
225
226 _xfs_trans_bjoin(tp, bp, 1);
227 trace_xfs_trans_getsb(bp->b_log_item);
228 return bp;
229}
230
231/*
232 * Get and lock the buffer for the caller if it is not already
233 * locked within the given transaction. If it has not yet been
234 * read in, read it from disk. If it is already locked
235 * within the transaction and already read in, just increment its
236 * lock recursion count and return a pointer to it.
237 *
238 * If the transaction pointer is NULL, make this just a normal
239 * read_buf() call.
240 */
241int
242xfs_trans_read_buf_map(
243 struct xfs_mount *mp,
244 struct xfs_trans *tp,
245 struct xfs_buftarg *target,
246 struct xfs_buf_map *map,
247 int nmaps,
248 xfs_buf_flags_t flags,
249 struct xfs_buf **bpp,
250 const struct xfs_buf_ops *ops)
251{
252 struct xfs_buf *bp = NULL;
253 struct xfs_buf_log_item *bip;
254 int error;
255
256 *bpp = NULL;
257 /*
258 * If we find the buffer in the cache with this transaction
259 * pointer in its b_fsprivate2 field, then we know we already
260 * have it locked. If it is already read in we just increment
261 * the lock recursion count and return the buffer to the caller.
262 * If the buffer is not yet read in, then we read it in, increment
263 * the lock recursion count, and return it to the caller.
264 */
265 if (tp)
266 bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
267 if (bp) {
268 ASSERT(xfs_buf_islocked(bp));
269 ASSERT(bp->b_transp == tp);
270 ASSERT(bp->b_log_item != NULL);
271 ASSERT(!bp->b_error);
272 ASSERT(bp->b_flags & XBF_DONE);
273
274 /*
275 * We never locked this buf ourselves, so we shouldn't
276 * brelse it either. Just get out.
277 */
278 if (XFS_FORCED_SHUTDOWN(mp)) {
279 trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
280 return -EIO;
281 }
282
283 bip = bp->b_log_item;
284 bip->bli_recur++;
285
286 ASSERT(atomic_read(&bip->bli_refcount) > 0);
287 trace_xfs_trans_read_buf_recur(bip);
288 *bpp = bp;
289 return 0;
290 }
291
292 bp = xfs_buf_read_map(target, map, nmaps, flags, ops);
293 if (!bp) {
294 if (!(flags & XBF_TRYLOCK))
295 return -ENOMEM;
296 return tp ? 0 : -EAGAIN;
297 }
298
299 /*
300 * If we've had a read error, then the contents of the buffer are
301 * invalid and should not be used. To ensure that a followup read tries
302 * to pull the buffer from disk again, we clear the XBF_DONE flag and
303 * mark the buffer stale. This ensures that anyone who has a current
304 * reference to the buffer will interpret it's contents correctly and
305 * future cache lookups will also treat it as an empty, uninitialised
306 * buffer.
307 */
308 if (bp->b_error) {
309 error = bp->b_error;
310 if (!XFS_FORCED_SHUTDOWN(mp))
311 xfs_buf_ioerror_alert(bp, __func__);
312 bp->b_flags &= ~XBF_DONE;
313 xfs_buf_stale(bp);
314
315 if (tp && (tp->t_flags & XFS_TRANS_DIRTY))
316 xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
317 xfs_buf_relse(bp);
318
319 /* bad CRC means corrupted metadata */
320 if (error == -EFSBADCRC)
321 error = -EFSCORRUPTED;
322 return error;
323 }
324
325 if (XFS_FORCED_SHUTDOWN(mp)) {
326 xfs_buf_relse(bp);
327 trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
328 return -EIO;
329 }
330
331 if (tp) {
332 _xfs_trans_bjoin(tp, bp, 1);
333 trace_xfs_trans_read_buf(bp->b_log_item);
334 }
335 *bpp = bp;
336 return 0;
337
338}
339
340/*
341 * Release the buffer bp which was previously acquired with one of the
342 * xfs_trans_... buffer allocation routines if the buffer has not
343 * been modified within this transaction. If the buffer is modified
344 * within this transaction, do decrement the recursion count but do
345 * not release the buffer even if the count goes to 0. If the buffer is not
346 * modified within the transaction, decrement the recursion count and
347 * release the buffer if the recursion count goes to 0.
348 *
349 * If the buffer is to be released and it was not modified before
350 * this transaction began, then free the buf_log_item associated with it.
351 *
352 * If the transaction pointer is NULL, make this just a normal
353 * brelse() call.
354 */
355void
356xfs_trans_brelse(
357 xfs_trans_t *tp,
358 xfs_buf_t *bp)
359{
360 struct xfs_buf_log_item *bip;
361 int freed;
362
363 /*
364 * Default to a normal brelse() call if the tp is NULL.
365 */
366 if (tp == NULL) {
367 ASSERT(bp->b_transp == NULL);
368 xfs_buf_relse(bp);
369 return;
370 }
371
372 ASSERT(bp->b_transp == tp);
373 bip = bp->b_log_item;
374 ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
375 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
376 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
377 ASSERT(atomic_read(&bip->bli_refcount) > 0);
378
379 trace_xfs_trans_brelse(bip);
380
381 /*
382 * If the release is just for a recursive lock,
383 * then decrement the count and return.
384 */
385 if (bip->bli_recur > 0) {
386 bip->bli_recur--;
387 return;
388 }
389
390 /*
391 * If the buffer is dirty within this transaction, we can't
392 * release it until we commit.
393 */
394 if (bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY)
395 return;
396
397 /*
398 * If the buffer has been invalidated, then we can't release
399 * it until the transaction commits to disk unless it is re-dirtied
400 * as part of this transaction. This prevents us from pulling
401 * the item from the AIL before we should.
402 */
403 if (bip->bli_flags & XFS_BLI_STALE)
404 return;
405
406 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
407
408 /*
409 * Free up the log item descriptor tracking the released item.
410 */
411 xfs_trans_del_item(&bip->bli_item);
412
413 /*
414 * Clear the hold flag in the buf log item if it is set.
415 * We wouldn't want the next user of the buffer to
416 * get confused.
417 */
418 if (bip->bli_flags & XFS_BLI_HOLD) {
419 bip->bli_flags &= ~XFS_BLI_HOLD;
420 }
421
422 /*
423 * Drop our reference to the buf log item.
424 */
425 freed = atomic_dec_and_test(&bip->bli_refcount);
426
427 /*
428 * If the buf item is not tracking data in the log, then we must free it
429 * before releasing the buffer back to the free pool.
430 *
431 * If the fs has shutdown and we dropped the last reference, it may fall
432 * on us to release a (possibly dirty) bli if it never made it to the
433 * AIL (e.g., the aborted unpin already happened and didn't release it
434 * due to our reference). Since we're already shutdown and need
435 * ail_lock, just force remove from the AIL and release the bli here.
436 */
437 if (XFS_FORCED_SHUTDOWN(tp->t_mountp) && freed) {
438 xfs_trans_ail_remove(&bip->bli_item, SHUTDOWN_LOG_IO_ERROR);
439 xfs_buf_item_relse(bp);
440 } else if (!(bip->bli_flags & XFS_BLI_DIRTY)) {
441/***
442 ASSERT(bp->b_pincount == 0);
443***/
444 ASSERT(atomic_read(&bip->bli_refcount) == 0);
445 ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
446 ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF));
447 xfs_buf_item_relse(bp);
448 }
449
450 bp->b_transp = NULL;
451 xfs_buf_relse(bp);
452}
453
454/*
455 * Mark the buffer as not needing to be unlocked when the buf item's
456 * iop_unlock() routine is called. The buffer must already be locked
457 * and associated with the given transaction.
458 */
459/* ARGSUSED */
460void
461xfs_trans_bhold(
462 xfs_trans_t *tp,
463 xfs_buf_t *bp)
464{
465 struct xfs_buf_log_item *bip = bp->b_log_item;
466
467 ASSERT(bp->b_transp == tp);
468 ASSERT(bip != NULL);
469 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
470 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
471 ASSERT(atomic_read(&bip->bli_refcount) > 0);
472
473 bip->bli_flags |= XFS_BLI_HOLD;
474 trace_xfs_trans_bhold(bip);
475}
476
477/*
478 * Cancel the previous buffer hold request made on this buffer
479 * for this transaction.
480 */
481void
482xfs_trans_bhold_release(
483 xfs_trans_t *tp,
484 xfs_buf_t *bp)
485{
486 struct xfs_buf_log_item *bip = bp->b_log_item;
487
488 ASSERT(bp->b_transp == tp);
489 ASSERT(bip != NULL);
490 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
491 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
492 ASSERT(atomic_read(&bip->bli_refcount) > 0);
493 ASSERT(bip->bli_flags & XFS_BLI_HOLD);
494
495 bip->bli_flags &= ~XFS_BLI_HOLD;
496 trace_xfs_trans_bhold_release(bip);
497}
498
499/*
500 * Mark a buffer dirty in the transaction.
501 */
502void
503xfs_trans_dirty_buf(
504 struct xfs_trans *tp,
505 struct xfs_buf *bp)
506{
507 struct xfs_buf_log_item *bip = bp->b_log_item;
508
509 ASSERT(bp->b_transp == tp);
510 ASSERT(bip != NULL);
511 ASSERT(bp->b_iodone == NULL ||
512 bp->b_iodone == xfs_buf_iodone_callbacks);
513
514 /*
515 * Mark the buffer as needing to be written out eventually,
516 * and set its iodone function to remove the buffer's buf log
517 * item from the AIL and free it when the buffer is flushed
518 * to disk. See xfs_buf_attach_iodone() for more details
519 * on li_cb and xfs_buf_iodone_callbacks().
520 * If we end up aborting this transaction, we trap this buffer
521 * inside the b_bdstrat callback so that this won't get written to
522 * disk.
523 */
524 bp->b_flags |= XBF_DONE;
525
526 ASSERT(atomic_read(&bip->bli_refcount) > 0);
527 bp->b_iodone = xfs_buf_iodone_callbacks;
528 bip->bli_item.li_cb = xfs_buf_iodone;
529
530 /*
531 * If we invalidated the buffer within this transaction, then
532 * cancel the invalidation now that we're dirtying the buffer
533 * again. There are no races with the code in xfs_buf_item_unpin(),
534 * because we have a reference to the buffer this entire time.
535 */
536 if (bip->bli_flags & XFS_BLI_STALE) {
537 bip->bli_flags &= ~XFS_BLI_STALE;
538 ASSERT(bp->b_flags & XBF_STALE);
539 bp->b_flags &= ~XBF_STALE;
540 bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL;
541 }
542 bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED;
543
544 tp->t_flags |= XFS_TRANS_DIRTY;
545 bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
546}
547
548/*
549 * This is called to mark bytes first through last inclusive of the given
550 * buffer as needing to be logged when the transaction is committed.
551 * The buffer must already be associated with the given transaction.
552 *
553 * First and last are numbers relative to the beginning of this buffer,
554 * so the first byte in the buffer is numbered 0 regardless of the
555 * value of b_blkno.
556 */
557void
558xfs_trans_log_buf(
559 struct xfs_trans *tp,
560 struct xfs_buf *bp,
561 uint first,
562 uint last)
563{
564 struct xfs_buf_log_item *bip = bp->b_log_item;
565
566 ASSERT(first <= last && last < BBTOB(bp->b_length));
567 ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED));
568
569 xfs_trans_dirty_buf(tp, bp);
570
571 trace_xfs_trans_log_buf(bip);
572 xfs_buf_item_log(bip, first, last);
573}
574
575
576/*
577 * Invalidate a buffer that is being used within a transaction.
578 *
579 * Typically this is because the blocks in the buffer are being freed, so we
580 * need to prevent it from being written out when we're done. Allowing it
581 * to be written again might overwrite data in the free blocks if they are
582 * reallocated to a file.
583 *
584 * We prevent the buffer from being written out by marking it stale. We can't
585 * get rid of the buf log item at this point because the buffer may still be
586 * pinned by another transaction. If that is the case, then we'll wait until
587 * the buffer is committed to disk for the last time (we can tell by the ref
588 * count) and free it in xfs_buf_item_unpin(). Until that happens we will
589 * keep the buffer locked so that the buffer and buf log item are not reused.
590 *
591 * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log
592 * the buf item. This will be used at recovery time to determine that copies
593 * of the buffer in the log before this should not be replayed.
594 *
595 * We mark the item descriptor and the transaction dirty so that we'll hold
596 * the buffer until after the commit.
597 *
598 * Since we're invalidating the buffer, we also clear the state about which
599 * parts of the buffer have been logged. We also clear the flag indicating
600 * that this is an inode buffer since the data in the buffer will no longer
601 * be valid.
602 *
603 * We set the stale bit in the buffer as well since we're getting rid of it.
604 */
605void
606xfs_trans_binval(
607 xfs_trans_t *tp,
608 xfs_buf_t *bp)
609{
610 struct xfs_buf_log_item *bip = bp->b_log_item;
611 int i;
612
613 ASSERT(bp->b_transp == tp);
614 ASSERT(bip != NULL);
615 ASSERT(atomic_read(&bip->bli_refcount) > 0);
616
617 trace_xfs_trans_binval(bip);
618
619 if (bip->bli_flags & XFS_BLI_STALE) {
620 /*
621 * If the buffer is already invalidated, then
622 * just return.
623 */
624 ASSERT(bp->b_flags & XBF_STALE);
625 ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
626 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF));
627 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK));
628 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
629 ASSERT(bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY);
630 ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
631 return;
632 }
633
634 xfs_buf_stale(bp);
635
636 bip->bli_flags |= XFS_BLI_STALE;
637 bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
638 bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
639 bip->__bli_format.blf_flags |= XFS_BLF_CANCEL;
640 bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK;
641 for (i = 0; i < bip->bli_format_count; i++) {
642 memset(bip->bli_formats[i].blf_data_map, 0,
643 (bip->bli_formats[i].blf_map_size * sizeof(uint)));
644 }
645 bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
646 tp->t_flags |= XFS_TRANS_DIRTY;
647}
648
649/*
650 * This call is used to indicate that the buffer contains on-disk inodes which
651 * must be handled specially during recovery. They require special handling
652 * because only the di_next_unlinked from the inodes in the buffer should be
653 * recovered. The rest of the data in the buffer is logged via the inodes
654 * themselves.
655 *
656 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
657 * transferred to the buffer's log format structure so that we'll know what to
658 * do at recovery time.
659 */
660void
661xfs_trans_inode_buf(
662 xfs_trans_t *tp,
663 xfs_buf_t *bp)
664{
665 struct xfs_buf_log_item *bip = bp->b_log_item;
666
667 ASSERT(bp->b_transp == tp);
668 ASSERT(bip != NULL);
669 ASSERT(atomic_read(&bip->bli_refcount) > 0);
670
671 bip->bli_flags |= XFS_BLI_INODE_BUF;
672 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
673}
674
675/*
676 * This call is used to indicate that the buffer is going to
677 * be staled and was an inode buffer. This means it gets
678 * special processing during unpin - where any inodes
679 * associated with the buffer should be removed from ail.
680 * There is also special processing during recovery,
681 * any replay of the inodes in the buffer needs to be
682 * prevented as the buffer may have been reused.
683 */
684void
685xfs_trans_stale_inode_buf(
686 xfs_trans_t *tp,
687 xfs_buf_t *bp)
688{
689 struct xfs_buf_log_item *bip = bp->b_log_item;
690
691 ASSERT(bp->b_transp == tp);
692 ASSERT(bip != NULL);
693 ASSERT(atomic_read(&bip->bli_refcount) > 0);
694
695 bip->bli_flags |= XFS_BLI_STALE_INODE;
696 bip->bli_item.li_cb = xfs_buf_iodone;
697 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
698}
699
700/*
701 * Mark the buffer as being one which contains newly allocated
702 * inodes. We need to make sure that even if this buffer is
703 * relogged as an 'inode buf' we still recover all of the inode
704 * images in the face of a crash. This works in coordination with
705 * xfs_buf_item_committed() to ensure that the buffer remains in the
706 * AIL at its original location even after it has been relogged.
707 */
708/* ARGSUSED */
709void
710xfs_trans_inode_alloc_buf(
711 xfs_trans_t *tp,
712 xfs_buf_t *bp)
713{
714 struct xfs_buf_log_item *bip = bp->b_log_item;
715
716 ASSERT(bp->b_transp == tp);
717 ASSERT(bip != NULL);
718 ASSERT(atomic_read(&bip->bli_refcount) > 0);
719
720 bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
721 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
722}
723
724/*
725 * Mark the buffer as ordered for this transaction. This means that the contents
726 * of the buffer are not recorded in the transaction but it is tracked in the
727 * AIL as though it was. This allows us to record logical changes in
728 * transactions rather than the physical changes we make to the buffer without
729 * changing writeback ordering constraints of metadata buffers.
730 */
731bool
732xfs_trans_ordered_buf(
733 struct xfs_trans *tp,
734 struct xfs_buf *bp)
735{
736 struct xfs_buf_log_item *bip = bp->b_log_item;
737
738 ASSERT(bp->b_transp == tp);
739 ASSERT(bip != NULL);
740 ASSERT(atomic_read(&bip->bli_refcount) > 0);
741
742 if (xfs_buf_item_dirty_format(bip))
743 return false;
744
745 bip->bli_flags |= XFS_BLI_ORDERED;
746 trace_xfs_buf_item_ordered(bip);
747
748 /*
749 * We don't log a dirty range of an ordered buffer but it still needs
750 * to be marked dirty and that it has been logged.
751 */
752 xfs_trans_dirty_buf(tp, bp);
753 return true;
754}
755
756/*
757 * Set the type of the buffer for log recovery so that it can correctly identify
758 * and hence attach the correct buffer ops to the buffer after replay.
759 */
760void
761xfs_trans_buf_set_type(
762 struct xfs_trans *tp,
763 struct xfs_buf *bp,
764 enum xfs_blft type)
765{
766 struct xfs_buf_log_item *bip = bp->b_log_item;
767
768 if (!tp)
769 return;
770
771 ASSERT(bp->b_transp == tp);
772 ASSERT(bip != NULL);
773 ASSERT(atomic_read(&bip->bli_refcount) > 0);
774
775 xfs_blft_to_flags(&bip->__bli_format, type);
776}
777
778void
779xfs_trans_buf_copy_type(
780 struct xfs_buf *dst_bp,
781 struct xfs_buf *src_bp)
782{
783 struct xfs_buf_log_item *sbip = src_bp->b_log_item;
784 struct xfs_buf_log_item *dbip = dst_bp->b_log_item;
785 enum xfs_blft type;
786
787 type = xfs_blft_from_flags(&sbip->__bli_format);
788 xfs_blft_to_flags(&dbip->__bli_format, type);
789}
790
791/*
792 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
793 * dquots. However, unlike in inode buffer recovery, dquot buffers get
794 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
795 * The only thing that makes dquot buffers different from regular
796 * buffers is that we must not replay dquot bufs when recovering
797 * if a _corresponding_ quotaoff has happened. We also have to distinguish
798 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
799 * can be turned off independently.
800 */
801/* ARGSUSED */
802void
803xfs_trans_dquot_buf(
804 xfs_trans_t *tp,
805 xfs_buf_t *bp,
806 uint type)
807{
808 struct xfs_buf_log_item *bip = bp->b_log_item;
809
810 ASSERT(type == XFS_BLF_UDQUOT_BUF ||
811 type == XFS_BLF_PDQUOT_BUF ||
812 type == XFS_BLF_GDQUOT_BUF);
813
814 bip->__bli_format.blf_flags |= type;
815
816 switch (type) {
817 case XFS_BLF_UDQUOT_BUF:
818 type = XFS_BLFT_UDQUOT_BUF;
819 break;
820 case XFS_BLF_PDQUOT_BUF:
821 type = XFS_BLFT_PDQUOT_BUF;
822 break;
823 case XFS_BLF_GDQUOT_BUF:
824 type = XFS_BLFT_GDQUOT_BUF;
825 break;
826 default:
827 type = XFS_BLFT_UNKNOWN_BUF;
828 break;
829 }
830
831 xfs_trans_buf_set_type(tp, bp, type);
832}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_trans.h"
14#include "xfs_buf_item.h"
15#include "xfs_trans_priv.h"
16#include "xfs_trace.h"
17
18/*
19 * Check to see if a buffer matching the given parameters is already
20 * a part of the given transaction.
21 */
22STATIC struct xfs_buf *
23xfs_trans_buf_item_match(
24 struct xfs_trans *tp,
25 struct xfs_buftarg *target,
26 struct xfs_buf_map *map,
27 int nmaps)
28{
29 struct xfs_log_item *lip;
30 struct xfs_buf_log_item *blip;
31 int len = 0;
32 int i;
33
34 for (i = 0; i < nmaps; i++)
35 len += map[i].bm_len;
36
37 list_for_each_entry(lip, &tp->t_items, li_trans) {
38 blip = (struct xfs_buf_log_item *)lip;
39 if (blip->bli_item.li_type == XFS_LI_BUF &&
40 blip->bli_buf->b_target == target &&
41 xfs_buf_daddr(blip->bli_buf) == map[0].bm_bn &&
42 blip->bli_buf->b_length == len) {
43 ASSERT(blip->bli_buf->b_map_count == nmaps);
44 return blip->bli_buf;
45 }
46 }
47
48 return NULL;
49}
50
51/*
52 * Add the locked buffer to the transaction.
53 *
54 * The buffer must be locked, and it cannot be associated with any
55 * transaction.
56 *
57 * If the buffer does not yet have a buf log item associated with it,
58 * then allocate one for it. Then add the buf item to the transaction.
59 */
60STATIC void
61_xfs_trans_bjoin(
62 struct xfs_trans *tp,
63 struct xfs_buf *bp,
64 int reset_recur)
65{
66 struct xfs_buf_log_item *bip;
67
68 ASSERT(bp->b_transp == NULL);
69
70 /*
71 * The xfs_buf_log_item pointer is stored in b_log_item. If
72 * it doesn't have one yet, then allocate one and initialize it.
73 * The checks to see if one is there are in xfs_buf_item_init().
74 */
75 xfs_buf_item_init(bp, tp->t_mountp);
76 bip = bp->b_log_item;
77 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
78 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
79 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
80 if (reset_recur)
81 bip->bli_recur = 0;
82
83 /*
84 * Take a reference for this transaction on the buf item.
85 */
86 atomic_inc(&bip->bli_refcount);
87
88 /*
89 * Attach the item to the transaction so we can find it in
90 * xfs_trans_get_buf() and friends.
91 */
92 xfs_trans_add_item(tp, &bip->bli_item);
93 bp->b_transp = tp;
94
95}
96
97void
98xfs_trans_bjoin(
99 struct xfs_trans *tp,
100 struct xfs_buf *bp)
101{
102 _xfs_trans_bjoin(tp, bp, 0);
103 trace_xfs_trans_bjoin(bp->b_log_item);
104}
105
106/*
107 * Get and lock the buffer for the caller if it is not already
108 * locked within the given transaction. If it is already locked
109 * within the transaction, just increment its lock recursion count
110 * and return a pointer to it.
111 *
112 * If the transaction pointer is NULL, make this just a normal
113 * get_buf() call.
114 */
115int
116xfs_trans_get_buf_map(
117 struct xfs_trans *tp,
118 struct xfs_buftarg *target,
119 struct xfs_buf_map *map,
120 int nmaps,
121 xfs_buf_flags_t flags,
122 struct xfs_buf **bpp)
123{
124 struct xfs_buf *bp;
125 struct xfs_buf_log_item *bip;
126 int error;
127
128 *bpp = NULL;
129 if (!tp)
130 return xfs_buf_get_map(target, map, nmaps, flags, bpp);
131
132 /*
133 * If we find the buffer in the cache with this transaction
134 * pointer in its b_fsprivate2 field, then we know we already
135 * have it locked. In this case we just increment the lock
136 * recursion count and return the buffer to the caller.
137 */
138 bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
139 if (bp != NULL) {
140 ASSERT(xfs_buf_islocked(bp));
141 if (xfs_is_shutdown(tp->t_mountp)) {
142 xfs_buf_stale(bp);
143 bp->b_flags |= XBF_DONE;
144 }
145
146 ASSERT(bp->b_transp == tp);
147 bip = bp->b_log_item;
148 ASSERT(bip != NULL);
149 ASSERT(atomic_read(&bip->bli_refcount) > 0);
150 bip->bli_recur++;
151 trace_xfs_trans_get_buf_recur(bip);
152 *bpp = bp;
153 return 0;
154 }
155
156 error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
157 if (error)
158 return error;
159
160 ASSERT(!bp->b_error);
161
162 _xfs_trans_bjoin(tp, bp, 1);
163 trace_xfs_trans_get_buf(bp->b_log_item);
164 *bpp = bp;
165 return 0;
166}
167
168/*
169 * Get and lock the superblock buffer for the given transaction.
170 */
171static struct xfs_buf *
172__xfs_trans_getsb(
173 struct xfs_trans *tp,
174 struct xfs_buf *bp)
175{
176 /*
177 * Just increment the lock recursion count if the buffer is already
178 * attached to this transaction.
179 */
180 if (bp->b_transp == tp) {
181 struct xfs_buf_log_item *bip = bp->b_log_item;
182
183 ASSERT(bip != NULL);
184 ASSERT(atomic_read(&bip->bli_refcount) > 0);
185 bip->bli_recur++;
186
187 trace_xfs_trans_getsb_recur(bip);
188 } else {
189 xfs_buf_lock(bp);
190 xfs_buf_hold(bp);
191 _xfs_trans_bjoin(tp, bp, 1);
192
193 trace_xfs_trans_getsb(bp->b_log_item);
194 }
195
196 return bp;
197}
198
199struct xfs_buf *
200xfs_trans_getsb(
201 struct xfs_trans *tp)
202{
203 return __xfs_trans_getsb(tp, tp->t_mountp->m_sb_bp);
204}
205
206struct xfs_buf *
207xfs_trans_getrtsb(
208 struct xfs_trans *tp)
209{
210 if (!tp->t_mountp->m_rtsb_bp)
211 return NULL;
212 return __xfs_trans_getsb(tp, tp->t_mountp->m_rtsb_bp);
213}
214
215/*
216 * Get and lock the buffer for the caller if it is not already
217 * locked within the given transaction. If it has not yet been
218 * read in, read it from disk. If it is already locked
219 * within the transaction and already read in, just increment its
220 * lock recursion count and return a pointer to it.
221 *
222 * If the transaction pointer is NULL, make this just a normal
223 * read_buf() call.
224 */
225int
226xfs_trans_read_buf_map(
227 struct xfs_mount *mp,
228 struct xfs_trans *tp,
229 struct xfs_buftarg *target,
230 struct xfs_buf_map *map,
231 int nmaps,
232 xfs_buf_flags_t flags,
233 struct xfs_buf **bpp,
234 const struct xfs_buf_ops *ops)
235{
236 struct xfs_buf *bp = NULL;
237 struct xfs_buf_log_item *bip;
238 int error;
239
240 *bpp = NULL;
241 /*
242 * If we find the buffer in the cache with this transaction
243 * pointer in its b_fsprivate2 field, then we know we already
244 * have it locked. If it is already read in we just increment
245 * the lock recursion count and return the buffer to the caller.
246 * If the buffer is not yet read in, then we read it in, increment
247 * the lock recursion count, and return it to the caller.
248 */
249 if (tp)
250 bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
251 if (bp) {
252 ASSERT(xfs_buf_islocked(bp));
253 ASSERT(bp->b_transp == tp);
254 ASSERT(bp->b_log_item != NULL);
255 ASSERT(!bp->b_error);
256 ASSERT(bp->b_flags & XBF_DONE);
257
258 /*
259 * We never locked this buf ourselves, so we shouldn't
260 * brelse it either. Just get out.
261 */
262 if (xfs_is_shutdown(mp)) {
263 trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
264 return -EIO;
265 }
266
267 /*
268 * Check if the caller is trying to read a buffer that is
269 * already attached to the transaction yet has no buffer ops
270 * assigned. Ops are usually attached when the buffer is
271 * attached to the transaction, or by the read caller if
272 * special circumstances. That didn't happen, which is not
273 * how this is supposed to go.
274 *
275 * If the buffer passes verification we'll let this go, but if
276 * not we have to shut down. Let the transaction cleanup code
277 * release this buffer when it kills the tranaction.
278 */
279 ASSERT(bp->b_ops != NULL);
280 error = xfs_buf_reverify(bp, ops);
281 if (error) {
282 xfs_buf_ioerror_alert(bp, __return_address);
283
284 if (tp->t_flags & XFS_TRANS_DIRTY)
285 xfs_force_shutdown(tp->t_mountp,
286 SHUTDOWN_META_IO_ERROR);
287
288 /* bad CRC means corrupted metadata */
289 if (error == -EFSBADCRC)
290 error = -EFSCORRUPTED;
291 return error;
292 }
293
294 bip = bp->b_log_item;
295 bip->bli_recur++;
296
297 ASSERT(atomic_read(&bip->bli_refcount) > 0);
298 trace_xfs_trans_read_buf_recur(bip);
299 ASSERT(bp->b_ops != NULL || ops == NULL);
300 *bpp = bp;
301 return 0;
302 }
303
304 error = xfs_buf_read_map(target, map, nmaps, flags, &bp, ops,
305 __return_address);
306 switch (error) {
307 case 0:
308 break;
309 default:
310 if (tp && (tp->t_flags & XFS_TRANS_DIRTY))
311 xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
312 fallthrough;
313 case -ENOMEM:
314 case -EAGAIN:
315 return error;
316 }
317
318 if (xfs_is_shutdown(mp)) {
319 xfs_buf_relse(bp);
320 trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
321 return -EIO;
322 }
323
324 if (tp) {
325 _xfs_trans_bjoin(tp, bp, 1);
326 trace_xfs_trans_read_buf(bp->b_log_item);
327 }
328 ASSERT(bp->b_ops != NULL || ops == NULL);
329 *bpp = bp;
330 return 0;
331
332}
333
334/* Has this buffer been dirtied by anyone? */
335bool
336xfs_trans_buf_is_dirty(
337 struct xfs_buf *bp)
338{
339 struct xfs_buf_log_item *bip = bp->b_log_item;
340
341 if (!bip)
342 return false;
343 ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
344 return test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
345}
346
347/*
348 * Release a buffer previously joined to the transaction. If the buffer is
349 * modified within this transaction, decrement the recursion count but do not
350 * release the buffer even if the count goes to 0. If the buffer is not modified
351 * within the transaction, decrement the recursion count and release the buffer
352 * if the recursion count goes to 0.
353 *
354 * If the buffer is to be released and it was not already dirty before this
355 * transaction began, then also free the buf_log_item associated with it.
356 *
357 * If the transaction pointer is NULL, this is a normal xfs_buf_relse() call.
358 */
359void
360xfs_trans_brelse(
361 struct xfs_trans *tp,
362 struct xfs_buf *bp)
363{
364 struct xfs_buf_log_item *bip = bp->b_log_item;
365
366 ASSERT(bp->b_transp == tp);
367
368 if (!tp) {
369 xfs_buf_relse(bp);
370 return;
371 }
372
373 trace_xfs_trans_brelse(bip);
374 ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
375 ASSERT(atomic_read(&bip->bli_refcount) > 0);
376
377 /*
378 * If the release is for a recursive lookup, then decrement the count
379 * and return.
380 */
381 if (bip->bli_recur > 0) {
382 bip->bli_recur--;
383 return;
384 }
385
386 /*
387 * If the buffer is invalidated or dirty in this transaction, we can't
388 * release it until we commit.
389 */
390 if (test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags))
391 return;
392 if (bip->bli_flags & XFS_BLI_STALE)
393 return;
394
395 /*
396 * Unlink the log item from the transaction and clear the hold flag, if
397 * set. We wouldn't want the next user of the buffer to get confused.
398 */
399 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
400 xfs_trans_del_item(&bip->bli_item);
401 bip->bli_flags &= ~XFS_BLI_HOLD;
402
403 /* drop the reference to the bli */
404 xfs_buf_item_put(bip);
405
406 bp->b_transp = NULL;
407 xfs_buf_relse(bp);
408}
409
410/*
411 * Forcibly detach a buffer previously joined to the transaction. The caller
412 * will retain its locked reference to the buffer after this function returns.
413 * The buffer must be completely clean and must not be held to the transaction.
414 */
415void
416xfs_trans_bdetach(
417 struct xfs_trans *tp,
418 struct xfs_buf *bp)
419{
420 struct xfs_buf_log_item *bip = bp->b_log_item;
421
422 ASSERT(tp != NULL);
423 ASSERT(bp->b_transp == tp);
424 ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
425 ASSERT(atomic_read(&bip->bli_refcount) > 0);
426
427 trace_xfs_trans_bdetach(bip);
428
429 /*
430 * Erase all recursion count, since we're removing this buffer from the
431 * transaction.
432 */
433 bip->bli_recur = 0;
434
435 /*
436 * The buffer must be completely clean. Specifically, it had better
437 * not be dirty, stale, logged, ordered, or held to the transaction.
438 */
439 ASSERT(!test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags));
440 ASSERT(!(bip->bli_flags & XFS_BLI_DIRTY));
441 ASSERT(!(bip->bli_flags & XFS_BLI_HOLD));
442 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
443 ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED));
444 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
445
446 /* Unlink the log item from the transaction and drop the log item. */
447 xfs_trans_del_item(&bip->bli_item);
448 xfs_buf_item_put(bip);
449 bp->b_transp = NULL;
450}
451
452/*
453 * Mark the buffer as not needing to be unlocked when the buf item's
454 * iop_committing() routine is called. The buffer must already be locked
455 * and associated with the given transaction.
456 */
457/* ARGSUSED */
458void
459xfs_trans_bhold(
460 xfs_trans_t *tp,
461 struct xfs_buf *bp)
462{
463 struct xfs_buf_log_item *bip = bp->b_log_item;
464
465 ASSERT(bp->b_transp == tp);
466 ASSERT(bip != NULL);
467 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
468 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
469 ASSERT(atomic_read(&bip->bli_refcount) > 0);
470
471 bip->bli_flags |= XFS_BLI_HOLD;
472 trace_xfs_trans_bhold(bip);
473}
474
475/*
476 * Cancel the previous buffer hold request made on this buffer
477 * for this transaction.
478 */
479void
480xfs_trans_bhold_release(
481 xfs_trans_t *tp,
482 struct xfs_buf *bp)
483{
484 struct xfs_buf_log_item *bip = bp->b_log_item;
485
486 ASSERT(bp->b_transp == tp);
487 ASSERT(bip != NULL);
488 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
489 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
490 ASSERT(atomic_read(&bip->bli_refcount) > 0);
491 ASSERT(bip->bli_flags & XFS_BLI_HOLD);
492
493 bip->bli_flags &= ~XFS_BLI_HOLD;
494 trace_xfs_trans_bhold_release(bip);
495}
496
497/*
498 * Mark a buffer dirty in the transaction.
499 */
500void
501xfs_trans_dirty_buf(
502 struct xfs_trans *tp,
503 struct xfs_buf *bp)
504{
505 struct xfs_buf_log_item *bip = bp->b_log_item;
506
507 ASSERT(bp->b_transp == tp);
508 ASSERT(bip != NULL);
509
510 /*
511 * Mark the buffer as needing to be written out eventually,
512 * and set its iodone function to remove the buffer's buf log
513 * item from the AIL and free it when the buffer is flushed
514 * to disk.
515 */
516 bp->b_flags |= XBF_DONE;
517
518 ASSERT(atomic_read(&bip->bli_refcount) > 0);
519
520 /*
521 * If we invalidated the buffer within this transaction, then
522 * cancel the invalidation now that we're dirtying the buffer
523 * again. There are no races with the code in xfs_buf_item_unpin(),
524 * because we have a reference to the buffer this entire time.
525 */
526 if (bip->bli_flags & XFS_BLI_STALE) {
527 bip->bli_flags &= ~XFS_BLI_STALE;
528 ASSERT(bp->b_flags & XBF_STALE);
529 bp->b_flags &= ~XBF_STALE;
530 bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL;
531 }
532 bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED;
533
534 tp->t_flags |= XFS_TRANS_DIRTY;
535 set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
536}
537
538/*
539 * This is called to mark bytes first through last inclusive of the given
540 * buffer as needing to be logged when the transaction is committed.
541 * The buffer must already be associated with the given transaction.
542 *
543 * First and last are numbers relative to the beginning of this buffer,
544 * so the first byte in the buffer is numbered 0 regardless of the
545 * value of b_blkno.
546 */
547void
548xfs_trans_log_buf(
549 struct xfs_trans *tp,
550 struct xfs_buf *bp,
551 uint first,
552 uint last)
553{
554 struct xfs_buf_log_item *bip = bp->b_log_item;
555
556 ASSERT(first <= last && last < BBTOB(bp->b_length));
557 ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED));
558
559 xfs_trans_dirty_buf(tp, bp);
560
561 trace_xfs_trans_log_buf(bip);
562 xfs_buf_item_log(bip, first, last);
563}
564
565
566/*
567 * Invalidate a buffer that is being used within a transaction.
568 *
569 * Typically this is because the blocks in the buffer are being freed, so we
570 * need to prevent it from being written out when we're done. Allowing it
571 * to be written again might overwrite data in the free blocks if they are
572 * reallocated to a file.
573 *
574 * We prevent the buffer from being written out by marking it stale. We can't
575 * get rid of the buf log item at this point because the buffer may still be
576 * pinned by another transaction. If that is the case, then we'll wait until
577 * the buffer is committed to disk for the last time (we can tell by the ref
578 * count) and free it in xfs_buf_item_unpin(). Until that happens we will
579 * keep the buffer locked so that the buffer and buf log item are not reused.
580 *
581 * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log
582 * the buf item. This will be used at recovery time to determine that copies
583 * of the buffer in the log before this should not be replayed.
584 *
585 * We mark the item descriptor and the transaction dirty so that we'll hold
586 * the buffer until after the commit.
587 *
588 * Since we're invalidating the buffer, we also clear the state about which
589 * parts of the buffer have been logged. We also clear the flag indicating
590 * that this is an inode buffer since the data in the buffer will no longer
591 * be valid.
592 *
593 * We set the stale bit in the buffer as well since we're getting rid of it.
594 */
595void
596xfs_trans_binval(
597 xfs_trans_t *tp,
598 struct xfs_buf *bp)
599{
600 struct xfs_buf_log_item *bip = bp->b_log_item;
601 int i;
602
603 ASSERT(bp->b_transp == tp);
604 ASSERT(bip != NULL);
605 ASSERT(atomic_read(&bip->bli_refcount) > 0);
606
607 trace_xfs_trans_binval(bip);
608
609 if (bip->bli_flags & XFS_BLI_STALE) {
610 /*
611 * If the buffer is already invalidated, then
612 * just return.
613 */
614 ASSERT(bp->b_flags & XBF_STALE);
615 ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
616 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF));
617 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK));
618 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
619 ASSERT(test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags));
620 ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
621 return;
622 }
623
624 xfs_buf_stale(bp);
625
626 bip->bli_flags |= XFS_BLI_STALE;
627 bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
628 bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
629 bip->__bli_format.blf_flags |= XFS_BLF_CANCEL;
630 bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK;
631 for (i = 0; i < bip->bli_format_count; i++) {
632 memset(bip->bli_formats[i].blf_data_map, 0,
633 (bip->bli_formats[i].blf_map_size * sizeof(uint)));
634 }
635 set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
636 tp->t_flags |= XFS_TRANS_DIRTY;
637}
638
639/*
640 * This call is used to indicate that the buffer contains on-disk inodes which
641 * must be handled specially during recovery. They require special handling
642 * because only the di_next_unlinked from the inodes in the buffer should be
643 * recovered. The rest of the data in the buffer is logged via the inodes
644 * themselves.
645 *
646 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
647 * transferred to the buffer's log format structure so that we'll know what to
648 * do at recovery time.
649 */
650void
651xfs_trans_inode_buf(
652 xfs_trans_t *tp,
653 struct xfs_buf *bp)
654{
655 struct xfs_buf_log_item *bip = bp->b_log_item;
656
657 ASSERT(bp->b_transp == tp);
658 ASSERT(bip != NULL);
659 ASSERT(atomic_read(&bip->bli_refcount) > 0);
660
661 bip->bli_flags |= XFS_BLI_INODE_BUF;
662 bp->b_flags |= _XBF_INODES;
663 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
664}
665
666/*
667 * This call is used to indicate that the buffer is going to
668 * be staled and was an inode buffer. This means it gets
669 * special processing during unpin - where any inodes
670 * associated with the buffer should be removed from ail.
671 * There is also special processing during recovery,
672 * any replay of the inodes in the buffer needs to be
673 * prevented as the buffer may have been reused.
674 */
675void
676xfs_trans_stale_inode_buf(
677 xfs_trans_t *tp,
678 struct xfs_buf *bp)
679{
680 struct xfs_buf_log_item *bip = bp->b_log_item;
681
682 ASSERT(bp->b_transp == tp);
683 ASSERT(bip != NULL);
684 ASSERT(atomic_read(&bip->bli_refcount) > 0);
685
686 bip->bli_flags |= XFS_BLI_STALE_INODE;
687 bp->b_flags |= _XBF_INODES;
688 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
689}
690
691/*
692 * Mark the buffer as being one which contains newly allocated
693 * inodes. We need to make sure that even if this buffer is
694 * relogged as an 'inode buf' we still recover all of the inode
695 * images in the face of a crash. This works in coordination with
696 * xfs_buf_item_committed() to ensure that the buffer remains in the
697 * AIL at its original location even after it has been relogged.
698 */
699/* ARGSUSED */
700void
701xfs_trans_inode_alloc_buf(
702 xfs_trans_t *tp,
703 struct xfs_buf *bp)
704{
705 struct xfs_buf_log_item *bip = bp->b_log_item;
706
707 ASSERT(bp->b_transp == tp);
708 ASSERT(bip != NULL);
709 ASSERT(atomic_read(&bip->bli_refcount) > 0);
710
711 bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
712 bp->b_flags |= _XBF_INODES;
713 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
714}
715
716/*
717 * Mark the buffer as ordered for this transaction. This means that the contents
718 * of the buffer are not recorded in the transaction but it is tracked in the
719 * AIL as though it was. This allows us to record logical changes in
720 * transactions rather than the physical changes we make to the buffer without
721 * changing writeback ordering constraints of metadata buffers.
722 */
723bool
724xfs_trans_ordered_buf(
725 struct xfs_trans *tp,
726 struct xfs_buf *bp)
727{
728 struct xfs_buf_log_item *bip = bp->b_log_item;
729
730 ASSERT(bp->b_transp == tp);
731 ASSERT(bip != NULL);
732 ASSERT(atomic_read(&bip->bli_refcount) > 0);
733
734 if (xfs_buf_item_dirty_format(bip))
735 return false;
736
737 bip->bli_flags |= XFS_BLI_ORDERED;
738 trace_xfs_buf_item_ordered(bip);
739
740 /*
741 * We don't log a dirty range of an ordered buffer but it still needs
742 * to be marked dirty and that it has been logged.
743 */
744 xfs_trans_dirty_buf(tp, bp);
745 return true;
746}
747
748/*
749 * Set the type of the buffer for log recovery so that it can correctly identify
750 * and hence attach the correct buffer ops to the buffer after replay.
751 */
752void
753xfs_trans_buf_set_type(
754 struct xfs_trans *tp,
755 struct xfs_buf *bp,
756 enum xfs_blft type)
757{
758 struct xfs_buf_log_item *bip = bp->b_log_item;
759
760 if (!tp)
761 return;
762
763 ASSERT(bp->b_transp == tp);
764 ASSERT(bip != NULL);
765 ASSERT(atomic_read(&bip->bli_refcount) > 0);
766
767 xfs_blft_to_flags(&bip->__bli_format, type);
768}
769
770void
771xfs_trans_buf_copy_type(
772 struct xfs_buf *dst_bp,
773 struct xfs_buf *src_bp)
774{
775 struct xfs_buf_log_item *sbip = src_bp->b_log_item;
776 struct xfs_buf_log_item *dbip = dst_bp->b_log_item;
777 enum xfs_blft type;
778
779 type = xfs_blft_from_flags(&sbip->__bli_format);
780 xfs_blft_to_flags(&dbip->__bli_format, type);
781}
782
783/*
784 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
785 * dquots. However, unlike in inode buffer recovery, dquot buffers get
786 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
787 * The only thing that makes dquot buffers different from regular
788 * buffers is that we must not replay dquot bufs when recovering
789 * if a _corresponding_ quotaoff has happened. We also have to distinguish
790 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
791 * can be turned off independently.
792 */
793/* ARGSUSED */
794void
795xfs_trans_dquot_buf(
796 xfs_trans_t *tp,
797 struct xfs_buf *bp,
798 uint type)
799{
800 struct xfs_buf_log_item *bip = bp->b_log_item;
801
802 ASSERT(type == XFS_BLF_UDQUOT_BUF ||
803 type == XFS_BLF_PDQUOT_BUF ||
804 type == XFS_BLF_GDQUOT_BUF);
805
806 bip->__bli_format.blf_flags |= type;
807
808 switch (type) {
809 case XFS_BLF_UDQUOT_BUF:
810 type = XFS_BLFT_UDQUOT_BUF;
811 break;
812 case XFS_BLF_PDQUOT_BUF:
813 type = XFS_BLFT_PDQUOT_BUF;
814 break;
815 case XFS_BLF_GDQUOT_BUF:
816 type = XFS_BLFT_GDQUOT_BUF;
817 break;
818 default:
819 type = XFS_BLFT_UNKNOWN_BUF;
820 break;
821 }
822
823 bp->b_flags |= _XBF_DQUOTS;
824 xfs_trans_buf_set_type(tp, bp, type);
825}