Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
  3 * All Rights Reserved.
  4 *
  5 * This program is free software; you can redistribute it and/or
  6 * modify it under the terms of the GNU General Public License as
  7 * published by the Free Software Foundation.
  8 *
  9 * This program is distributed in the hope that it would be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write the Free Software Foundation,
 16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 17 */
 18#include "xfs.h"
 19#include "xfs_fs.h"
 20#include "xfs_shared.h"
 21#include "xfs_format.h"
 22#include "xfs_log_format.h"
 23#include "xfs_trans_resv.h"
 24#include "xfs_mount.h"
 25#include "xfs_inode.h"
 26#include "xfs_trans.h"
 27#include "xfs_buf_item.h"
 28#include "xfs_trans_priv.h"
 29#include "xfs_error.h"
 30#include "xfs_trace.h"
 31
 32/*
 33 * Check to see if a buffer matching the given parameters is already
 34 * a part of the given transaction.
 35 */
 36STATIC struct xfs_buf *
 37xfs_trans_buf_item_match(
 38	struct xfs_trans	*tp,
 39	struct xfs_buftarg	*target,
 40	struct xfs_buf_map	*map,
 41	int			nmaps)
 42{
 43	struct xfs_log_item_desc *lidp;
 44	struct xfs_buf_log_item	*blip;
 45	int			len = 0;
 46	int			i;
 47
 48	for (i = 0; i < nmaps; i++)
 49		len += map[i].bm_len;
 50
 51	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
 52		blip = (struct xfs_buf_log_item *)lidp->lid_item;
 53		if (blip->bli_item.li_type == XFS_LI_BUF &&
 54		    blip->bli_buf->b_target == target &&
 55		    XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn &&
 56		    blip->bli_buf->b_length == len) {
 57			ASSERT(blip->bli_buf->b_map_count == nmaps);
 58			return blip->bli_buf;
 59		}
 60	}
 61
 62	return NULL;
 63}
 64
 65/*
 66 * Add the locked buffer to the transaction.
 67 *
 68 * The buffer must be locked, and it cannot be associated with any
 69 * transaction.
 70 *
 71 * If the buffer does not yet have a buf log item associated with it,
 72 * then allocate one for it.  Then add the buf item to the transaction.
 73 */
 74STATIC void
 75_xfs_trans_bjoin(
 76	struct xfs_trans	*tp,
 77	struct xfs_buf		*bp,
 78	int			reset_recur)
 79{
 80	struct xfs_buf_log_item	*bip;
 81
 82	ASSERT(bp->b_transp == NULL);
 83
 84	/*
 85	 * The xfs_buf_log_item pointer is stored in b_log_item.  If
 86	 * it doesn't have one yet, then allocate one and initialize it.
 87	 * The checks to see if one is there are in xfs_buf_item_init().
 88	 */
 89	xfs_buf_item_init(bp, tp->t_mountp);
 90	bip = bp->b_log_item;
 91	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
 92	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
 93	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
 94	if (reset_recur)
 95		bip->bli_recur = 0;
 96
 97	/*
 98	 * Take a reference for this transaction on the buf item.
 99	 */
100	atomic_inc(&bip->bli_refcount);
101
102	/*
103	 * Get a log_item_desc to point at the new item.
104	 */
105	xfs_trans_add_item(tp, &bip->bli_item);
106
107	/*
108	 * Initialize b_fsprivate2 so we can find it with incore_match()
109	 * in xfs_trans_get_buf() and friends above.
110	 */
111	bp->b_transp = tp;
112
113}
114
115void
116xfs_trans_bjoin(
117	struct xfs_trans	*tp,
118	struct xfs_buf		*bp)
119{
120	_xfs_trans_bjoin(tp, bp, 0);
121	trace_xfs_trans_bjoin(bp->b_log_item);
122}
123
124/*
125 * Get and lock the buffer for the caller if it is not already
126 * locked within the given transaction.  If it is already locked
127 * within the transaction, just increment its lock recursion count
128 * and return a pointer to it.
129 *
130 * If the transaction pointer is NULL, make this just a normal
131 * get_buf() call.
132 */
133struct xfs_buf *
134xfs_trans_get_buf_map(
135	struct xfs_trans	*tp,
136	struct xfs_buftarg	*target,
137	struct xfs_buf_map	*map,
138	int			nmaps,
139	xfs_buf_flags_t		flags)
140{
141	xfs_buf_t		*bp;
142	struct xfs_buf_log_item	*bip;
143
144	if (!tp)
145		return xfs_buf_get_map(target, map, nmaps, flags);
146
147	/*
148	 * If we find the buffer in the cache with this transaction
149	 * pointer in its b_fsprivate2 field, then we know we already
150	 * have it locked.  In this case we just increment the lock
151	 * recursion count and return the buffer to the caller.
152	 */
153	bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
154	if (bp != NULL) {
155		ASSERT(xfs_buf_islocked(bp));
156		if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) {
157			xfs_buf_stale(bp);
158			bp->b_flags |= XBF_DONE;
159		}
160
161		ASSERT(bp->b_transp == tp);
162		bip = bp->b_log_item;
163		ASSERT(bip != NULL);
164		ASSERT(atomic_read(&bip->bli_refcount) > 0);
165		bip->bli_recur++;
166		trace_xfs_trans_get_buf_recur(bip);
167		return bp;
168	}
169
170	bp = xfs_buf_get_map(target, map, nmaps, flags);
171	if (bp == NULL) {
172		return NULL;
173	}
174
175	ASSERT(!bp->b_error);
176
177	_xfs_trans_bjoin(tp, bp, 1);
178	trace_xfs_trans_get_buf(bp->b_log_item);
179	return bp;
180}
181
182/*
183 * Get and lock the superblock buffer of this file system for the
184 * given transaction.
185 *
186 * We don't need to use incore_match() here, because the superblock
187 * buffer is a private buffer which we keep a pointer to in the
188 * mount structure.
189 */
190xfs_buf_t *
191xfs_trans_getsb(
192	xfs_trans_t		*tp,
193	struct xfs_mount	*mp,
194	int			flags)
195{
196	xfs_buf_t		*bp;
197	struct xfs_buf_log_item	*bip;
198
199	/*
200	 * Default to just trying to lock the superblock buffer
201	 * if tp is NULL.
202	 */
203	if (tp == NULL)
204		return xfs_getsb(mp, flags);
205
206	/*
207	 * If the superblock buffer already has this transaction
208	 * pointer in its b_fsprivate2 field, then we know we already
209	 * have it locked.  In this case we just increment the lock
210	 * recursion count and return the buffer to the caller.
211	 */
212	bp = mp->m_sb_bp;
213	if (bp->b_transp == tp) {
214		bip = bp->b_log_item;
215		ASSERT(bip != NULL);
216		ASSERT(atomic_read(&bip->bli_refcount) > 0);
217		bip->bli_recur++;
218		trace_xfs_trans_getsb_recur(bip);
219		return bp;
220	}
221
222	bp = xfs_getsb(mp, flags);
223	if (bp == NULL)
224		return NULL;
225
226	_xfs_trans_bjoin(tp, bp, 1);
227	trace_xfs_trans_getsb(bp->b_log_item);
228	return bp;
229}
230
231/*
232 * Get and lock the buffer for the caller if it is not already
233 * locked within the given transaction.  If it has not yet been
234 * read in, read it from disk. If it is already locked
235 * within the transaction and already read in, just increment its
236 * lock recursion count and return a pointer to it.
237 *
238 * If the transaction pointer is NULL, make this just a normal
239 * read_buf() call.
240 */
241int
242xfs_trans_read_buf_map(
243	struct xfs_mount	*mp,
244	struct xfs_trans	*tp,
245	struct xfs_buftarg	*target,
246	struct xfs_buf_map	*map,
247	int			nmaps,
248	xfs_buf_flags_t		flags,
249	struct xfs_buf		**bpp,
250	const struct xfs_buf_ops *ops)
251{
252	struct xfs_buf		*bp = NULL;
253	struct xfs_buf_log_item	*bip;
254	int			error;
255
256	*bpp = NULL;
257	/*
258	 * If we find the buffer in the cache with this transaction
259	 * pointer in its b_fsprivate2 field, then we know we already
260	 * have it locked.  If it is already read in we just increment
261	 * the lock recursion count and return the buffer to the caller.
262	 * If the buffer is not yet read in, then we read it in, increment
263	 * the lock recursion count, and return it to the caller.
264	 */
265	if (tp)
266		bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
267	if (bp) {
268		ASSERT(xfs_buf_islocked(bp));
269		ASSERT(bp->b_transp == tp);
270		ASSERT(bp->b_log_item != NULL);
271		ASSERT(!bp->b_error);
272		ASSERT(bp->b_flags & XBF_DONE);
273
274		/*
275		 * We never locked this buf ourselves, so we shouldn't
276		 * brelse it either. Just get out.
277		 */
278		if (XFS_FORCED_SHUTDOWN(mp)) {
279			trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
280			return -EIO;
281		}
282
283		bip = bp->b_log_item;
284		bip->bli_recur++;
285
286		ASSERT(atomic_read(&bip->bli_refcount) > 0);
287		trace_xfs_trans_read_buf_recur(bip);
288		*bpp = bp;
289		return 0;
290	}
291
292	bp = xfs_buf_read_map(target, map, nmaps, flags, ops);
293	if (!bp) {
294		if (!(flags & XBF_TRYLOCK))
295			return -ENOMEM;
296		return tp ? 0 : -EAGAIN;
297	}
298
299	/*
300	 * If we've had a read error, then the contents of the buffer are
301	 * invalid and should not be used. To ensure that a followup read tries
302	 * to pull the buffer from disk again, we clear the XBF_DONE flag and
303	 * mark the buffer stale. This ensures that anyone who has a current
304	 * reference to the buffer will interpret it's contents correctly and
305	 * future cache lookups will also treat it as an empty, uninitialised
306	 * buffer.
307	 */
308	if (bp->b_error) {
309		error = bp->b_error;
310		if (!XFS_FORCED_SHUTDOWN(mp))
311			xfs_buf_ioerror_alert(bp, __func__);
312		bp->b_flags &= ~XBF_DONE;
313		xfs_buf_stale(bp);
314
315		if (tp && (tp->t_flags & XFS_TRANS_DIRTY))
316			xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
317		xfs_buf_relse(bp);
318
319		/* bad CRC means corrupted metadata */
320		if (error == -EFSBADCRC)
321			error = -EFSCORRUPTED;
322		return error;
323	}
324
325	if (XFS_FORCED_SHUTDOWN(mp)) {
326		xfs_buf_relse(bp);
327		trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
328		return -EIO;
329	}
330
331	if (tp) {
332		_xfs_trans_bjoin(tp, bp, 1);
333		trace_xfs_trans_read_buf(bp->b_log_item);
334	}
335	*bpp = bp;
336	return 0;
337
338}
339
340/*
341 * Release the buffer bp which was previously acquired with one of the
342 * xfs_trans_... buffer allocation routines if the buffer has not
343 * been modified within this transaction.  If the buffer is modified
344 * within this transaction, do decrement the recursion count but do
345 * not release the buffer even if the count goes to 0.  If the buffer is not
346 * modified within the transaction, decrement the recursion count and
347 * release the buffer if the recursion count goes to 0.
348 *
349 * If the buffer is to be released and it was not modified before
350 * this transaction began, then free the buf_log_item associated with it.
351 *
352 * If the transaction pointer is NULL, make this just a normal
353 * brelse() call.
354 */
355void
356xfs_trans_brelse(
357	xfs_trans_t		*tp,
358	xfs_buf_t		*bp)
359{
360	struct xfs_buf_log_item	*bip;
361	int			freed;
362
363	/*
364	 * Default to a normal brelse() call if the tp is NULL.
365	 */
366	if (tp == NULL) {
367		ASSERT(bp->b_transp == NULL);
368		xfs_buf_relse(bp);
369		return;
370	}
371
372	ASSERT(bp->b_transp == tp);
373	bip = bp->b_log_item;
374	ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
375	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
376	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
377	ASSERT(atomic_read(&bip->bli_refcount) > 0);
378
379	trace_xfs_trans_brelse(bip);
380
381	/*
382	 * If the release is just for a recursive lock,
383	 * then decrement the count and return.
384	 */
385	if (bip->bli_recur > 0) {
386		bip->bli_recur--;
387		return;
388	}
389
390	/*
391	 * If the buffer is dirty within this transaction, we can't
392	 * release it until we commit.
393	 */
394	if (bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY)
395		return;
396
397	/*
398	 * If the buffer has been invalidated, then we can't release
399	 * it until the transaction commits to disk unless it is re-dirtied
400	 * as part of this transaction.  This prevents us from pulling
401	 * the item from the AIL before we should.
402	 */
403	if (bip->bli_flags & XFS_BLI_STALE)
404		return;
405
406	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
407
408	/*
409	 * Free up the log item descriptor tracking the released item.
410	 */
411	xfs_trans_del_item(&bip->bli_item);
412
413	/*
414	 * Clear the hold flag in the buf log item if it is set.
415	 * We wouldn't want the next user of the buffer to
416	 * get confused.
417	 */
418	if (bip->bli_flags & XFS_BLI_HOLD) {
419		bip->bli_flags &= ~XFS_BLI_HOLD;
420	}
421
422	/*
423	 * Drop our reference to the buf log item.
424	 */
425	freed = atomic_dec_and_test(&bip->bli_refcount);
426
427	/*
428	 * If the buf item is not tracking data in the log, then we must free it
429	 * before releasing the buffer back to the free pool.
430	 *
431	 * If the fs has shutdown and we dropped the last reference, it may fall
432	 * on us to release a (possibly dirty) bli if it never made it to the
433	 * AIL (e.g., the aborted unpin already happened and didn't release it
434	 * due to our reference). Since we're already shutdown and need
435	 * ail_lock, just force remove from the AIL and release the bli here.
436	 */
437	if (XFS_FORCED_SHUTDOWN(tp->t_mountp) && freed) {
438		xfs_trans_ail_remove(&bip->bli_item, SHUTDOWN_LOG_IO_ERROR);
439		xfs_buf_item_relse(bp);
440	} else if (!(bip->bli_flags & XFS_BLI_DIRTY)) {
441/***
442		ASSERT(bp->b_pincount == 0);
443***/
444		ASSERT(atomic_read(&bip->bli_refcount) == 0);
445		ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
446		ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF));
447		xfs_buf_item_relse(bp);
448	}
449
450	bp->b_transp = NULL;
451	xfs_buf_relse(bp);
452}
453
454/*
455 * Mark the buffer as not needing to be unlocked when the buf item's
456 * iop_unlock() routine is called.  The buffer must already be locked
457 * and associated with the given transaction.
458 */
459/* ARGSUSED */
460void
461xfs_trans_bhold(
462	xfs_trans_t		*tp,
463	xfs_buf_t		*bp)
464{
465	struct xfs_buf_log_item	*bip = bp->b_log_item;
466
467	ASSERT(bp->b_transp == tp);
468	ASSERT(bip != NULL);
469	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
470	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
471	ASSERT(atomic_read(&bip->bli_refcount) > 0);
472
473	bip->bli_flags |= XFS_BLI_HOLD;
474	trace_xfs_trans_bhold(bip);
475}
476
477/*
478 * Cancel the previous buffer hold request made on this buffer
479 * for this transaction.
480 */
481void
482xfs_trans_bhold_release(
483	xfs_trans_t		*tp,
484	xfs_buf_t		*bp)
485{
486	struct xfs_buf_log_item	*bip = bp->b_log_item;
487
488	ASSERT(bp->b_transp == tp);
489	ASSERT(bip != NULL);
490	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
491	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
492	ASSERT(atomic_read(&bip->bli_refcount) > 0);
493	ASSERT(bip->bli_flags & XFS_BLI_HOLD);
494
495	bip->bli_flags &= ~XFS_BLI_HOLD;
496	trace_xfs_trans_bhold_release(bip);
497}
498
499/*
500 * Mark a buffer dirty in the transaction.
 
 
 
 
 
 
501 */
502void
503xfs_trans_dirty_buf(
504	struct xfs_trans	*tp,
505	struct xfs_buf		*bp)
 
506{
507	struct xfs_buf_log_item	*bip = bp->b_log_item;
508
509	ASSERT(bp->b_transp == tp);
510	ASSERT(bip != NULL);
 
511	ASSERT(bp->b_iodone == NULL ||
512	       bp->b_iodone == xfs_buf_iodone_callbacks);
513
514	/*
515	 * Mark the buffer as needing to be written out eventually,
516	 * and set its iodone function to remove the buffer's buf log
517	 * item from the AIL and free it when the buffer is flushed
518	 * to disk.  See xfs_buf_attach_iodone() for more details
519	 * on li_cb and xfs_buf_iodone_callbacks().
520	 * If we end up aborting this transaction, we trap this buffer
521	 * inside the b_bdstrat callback so that this won't get written to
522	 * disk.
523	 */
524	bp->b_flags |= XBF_DONE;
525
526	ASSERT(atomic_read(&bip->bli_refcount) > 0);
527	bp->b_iodone = xfs_buf_iodone_callbacks;
528	bip->bli_item.li_cb = xfs_buf_iodone;
529
 
 
530	/*
531	 * If we invalidated the buffer within this transaction, then
532	 * cancel the invalidation now that we're dirtying the buffer
533	 * again.  There are no races with the code in xfs_buf_item_unpin(),
534	 * because we have a reference to the buffer this entire time.
535	 */
536	if (bip->bli_flags & XFS_BLI_STALE) {
537		bip->bli_flags &= ~XFS_BLI_STALE;
538		ASSERT(bp->b_flags & XBF_STALE);
539		bp->b_flags &= ~XBF_STALE;
540		bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL;
541	}
542	bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED;
543
544	tp->t_flags |= XFS_TRANS_DIRTY;
545	bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
546}
547
548/*
549 * This is called to mark bytes first through last inclusive of the given
550 * buffer as needing to be logged when the transaction is committed.
551 * The buffer must already be associated with the given transaction.
552 *
553 * First and last are numbers relative to the beginning of this buffer,
554 * so the first byte in the buffer is numbered 0 regardless of the
555 * value of b_blkno.
556 */
557void
558xfs_trans_log_buf(
559	struct xfs_trans	*tp,
560	struct xfs_buf		*bp,
561	uint			first,
562	uint			last)
563{
564	struct xfs_buf_log_item	*bip = bp->b_log_item;
565
566	ASSERT(first <= last && last < BBTOB(bp->b_length));
567	ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED));
568
569	xfs_trans_dirty_buf(tp, bp);
570
571	trace_xfs_trans_log_buf(bip);
572	xfs_buf_item_log(bip, first, last);
573}
574
575
576/*
577 * Invalidate a buffer that is being used within a transaction.
578 *
579 * Typically this is because the blocks in the buffer are being freed, so we
580 * need to prevent it from being written out when we're done.  Allowing it
581 * to be written again might overwrite data in the free blocks if they are
582 * reallocated to a file.
583 *
584 * We prevent the buffer from being written out by marking it stale.  We can't
585 * get rid of the buf log item at this point because the buffer may still be
586 * pinned by another transaction.  If that is the case, then we'll wait until
587 * the buffer is committed to disk for the last time (we can tell by the ref
588 * count) and free it in xfs_buf_item_unpin().  Until that happens we will
589 * keep the buffer locked so that the buffer and buf log item are not reused.
590 *
591 * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log
592 * the buf item.  This will be used at recovery time to determine that copies
593 * of the buffer in the log before this should not be replayed.
594 *
595 * We mark the item descriptor and the transaction dirty so that we'll hold
596 * the buffer until after the commit.
597 *
598 * Since we're invalidating the buffer, we also clear the state about which
599 * parts of the buffer have been logged.  We also clear the flag indicating
600 * that this is an inode buffer since the data in the buffer will no longer
601 * be valid.
602 *
603 * We set the stale bit in the buffer as well since we're getting rid of it.
604 */
605void
606xfs_trans_binval(
607	xfs_trans_t		*tp,
608	xfs_buf_t		*bp)
609{
610	struct xfs_buf_log_item	*bip = bp->b_log_item;
611	int			i;
612
613	ASSERT(bp->b_transp == tp);
614	ASSERT(bip != NULL);
615	ASSERT(atomic_read(&bip->bli_refcount) > 0);
616
617	trace_xfs_trans_binval(bip);
618
619	if (bip->bli_flags & XFS_BLI_STALE) {
620		/*
621		 * If the buffer is already invalidated, then
622		 * just return.
623		 */
624		ASSERT(bp->b_flags & XBF_STALE);
625		ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
626		ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF));
627		ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK));
628		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
629		ASSERT(bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY);
630		ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
631		return;
632	}
633
634	xfs_buf_stale(bp);
635
636	bip->bli_flags |= XFS_BLI_STALE;
637	bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
638	bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
639	bip->__bli_format.blf_flags |= XFS_BLF_CANCEL;
640	bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK;
641	for (i = 0; i < bip->bli_format_count; i++) {
642		memset(bip->bli_formats[i].blf_data_map, 0,
643		       (bip->bli_formats[i].blf_map_size * sizeof(uint)));
644	}
645	bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
646	tp->t_flags |= XFS_TRANS_DIRTY;
647}
648
649/*
650 * This call is used to indicate that the buffer contains on-disk inodes which
651 * must be handled specially during recovery.  They require special handling
652 * because only the di_next_unlinked from the inodes in the buffer should be
653 * recovered.  The rest of the data in the buffer is logged via the inodes
654 * themselves.
655 *
656 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
657 * transferred to the buffer's log format structure so that we'll know what to
658 * do at recovery time.
659 */
660void
661xfs_trans_inode_buf(
662	xfs_trans_t		*tp,
663	xfs_buf_t		*bp)
664{
665	struct xfs_buf_log_item	*bip = bp->b_log_item;
666
667	ASSERT(bp->b_transp == tp);
668	ASSERT(bip != NULL);
669	ASSERT(atomic_read(&bip->bli_refcount) > 0);
670
671	bip->bli_flags |= XFS_BLI_INODE_BUF;
672	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
673}
674
675/*
676 * This call is used to indicate that the buffer is going to
677 * be staled and was an inode buffer. This means it gets
678 * special processing during unpin - where any inodes
679 * associated with the buffer should be removed from ail.
680 * There is also special processing during recovery,
681 * any replay of the inodes in the buffer needs to be
682 * prevented as the buffer may have been reused.
683 */
684void
685xfs_trans_stale_inode_buf(
686	xfs_trans_t		*tp,
687	xfs_buf_t		*bp)
688{
689	struct xfs_buf_log_item	*bip = bp->b_log_item;
690
691	ASSERT(bp->b_transp == tp);
692	ASSERT(bip != NULL);
693	ASSERT(atomic_read(&bip->bli_refcount) > 0);
694
695	bip->bli_flags |= XFS_BLI_STALE_INODE;
696	bip->bli_item.li_cb = xfs_buf_iodone;
697	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
698}
699
700/*
701 * Mark the buffer as being one which contains newly allocated
702 * inodes.  We need to make sure that even if this buffer is
703 * relogged as an 'inode buf' we still recover all of the inode
704 * images in the face of a crash.  This works in coordination with
705 * xfs_buf_item_committed() to ensure that the buffer remains in the
706 * AIL at its original location even after it has been relogged.
707 */
708/* ARGSUSED */
709void
710xfs_trans_inode_alloc_buf(
711	xfs_trans_t		*tp,
712	xfs_buf_t		*bp)
713{
714	struct xfs_buf_log_item	*bip = bp->b_log_item;
715
716	ASSERT(bp->b_transp == tp);
717	ASSERT(bip != NULL);
718	ASSERT(atomic_read(&bip->bli_refcount) > 0);
719
720	bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
721	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
722}
723
724/*
725 * Mark the buffer as ordered for this transaction. This means that the contents
726 * of the buffer are not recorded in the transaction but it is tracked in the
727 * AIL as though it was. This allows us to record logical changes in
728 * transactions rather than the physical changes we make to the buffer without
729 * changing writeback ordering constraints of metadata buffers.
 
730 */
731bool
732xfs_trans_ordered_buf(
733	struct xfs_trans	*tp,
734	struct xfs_buf		*bp)
735{
736	struct xfs_buf_log_item	*bip = bp->b_log_item;
737
738	ASSERT(bp->b_transp == tp);
739	ASSERT(bip != NULL);
740	ASSERT(atomic_read(&bip->bli_refcount) > 0);
741
742	if (xfs_buf_item_dirty_format(bip))
743		return false;
744
745	bip->bli_flags |= XFS_BLI_ORDERED;
746	trace_xfs_buf_item_ordered(bip);
747
748	/*
749	 * We don't log a dirty range of an ordered buffer but it still needs
750	 * to be marked dirty and that it has been logged.
751	 */
752	xfs_trans_dirty_buf(tp, bp);
753	return true;
754}
755
756/*
757 * Set the type of the buffer for log recovery so that it can correctly identify
758 * and hence attach the correct buffer ops to the buffer after replay.
759 */
760void
761xfs_trans_buf_set_type(
762	struct xfs_trans	*tp,
763	struct xfs_buf		*bp,
764	enum xfs_blft		type)
765{
766	struct xfs_buf_log_item	*bip = bp->b_log_item;
767
768	if (!tp)
769		return;
770
771	ASSERT(bp->b_transp == tp);
772	ASSERT(bip != NULL);
773	ASSERT(atomic_read(&bip->bli_refcount) > 0);
774
775	xfs_blft_to_flags(&bip->__bli_format, type);
776}
777
778void
779xfs_trans_buf_copy_type(
780	struct xfs_buf		*dst_bp,
781	struct xfs_buf		*src_bp)
782{
783	struct xfs_buf_log_item	*sbip = src_bp->b_log_item;
784	struct xfs_buf_log_item	*dbip = dst_bp->b_log_item;
785	enum xfs_blft		type;
786
787	type = xfs_blft_from_flags(&sbip->__bli_format);
788	xfs_blft_to_flags(&dbip->__bli_format, type);
789}
790
791/*
792 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
793 * dquots. However, unlike in inode buffer recovery, dquot buffers get
794 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
795 * The only thing that makes dquot buffers different from regular
796 * buffers is that we must not replay dquot bufs when recovering
797 * if a _corresponding_ quotaoff has happened. We also have to distinguish
798 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
799 * can be turned off independently.
800 */
801/* ARGSUSED */
802void
803xfs_trans_dquot_buf(
804	xfs_trans_t		*tp,
805	xfs_buf_t		*bp,
806	uint			type)
807{
808	struct xfs_buf_log_item	*bip = bp->b_log_item;
809
810	ASSERT(type == XFS_BLF_UDQUOT_BUF ||
811	       type == XFS_BLF_PDQUOT_BUF ||
812	       type == XFS_BLF_GDQUOT_BUF);
813
814	bip->__bli_format.blf_flags |= type;
815
816	switch (type) {
817	case XFS_BLF_UDQUOT_BUF:
818		type = XFS_BLFT_UDQUOT_BUF;
819		break;
820	case XFS_BLF_PDQUOT_BUF:
821		type = XFS_BLFT_PDQUOT_BUF;
822		break;
823	case XFS_BLF_GDQUOT_BUF:
824		type = XFS_BLFT_GDQUOT_BUF;
825		break;
826	default:
827		type = XFS_BLFT_UNKNOWN_BUF;
828		break;
829	}
830
831	xfs_trans_buf_set_type(tp, bp, type);
832}
v4.6
  1/*
  2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
  3 * All Rights Reserved.
  4 *
  5 * This program is free software; you can redistribute it and/or
  6 * modify it under the terms of the GNU General Public License as
  7 * published by the Free Software Foundation.
  8 *
  9 * This program is distributed in the hope that it would be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write the Free Software Foundation,
 16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 17 */
 18#include "xfs.h"
 19#include "xfs_fs.h"
 20#include "xfs_shared.h"
 21#include "xfs_format.h"
 22#include "xfs_log_format.h"
 23#include "xfs_trans_resv.h"
 24#include "xfs_mount.h"
 25#include "xfs_inode.h"
 26#include "xfs_trans.h"
 27#include "xfs_buf_item.h"
 28#include "xfs_trans_priv.h"
 29#include "xfs_error.h"
 30#include "xfs_trace.h"
 31
 32/*
 33 * Check to see if a buffer matching the given parameters is already
 34 * a part of the given transaction.
 35 */
 36STATIC struct xfs_buf *
 37xfs_trans_buf_item_match(
 38	struct xfs_trans	*tp,
 39	struct xfs_buftarg	*target,
 40	struct xfs_buf_map	*map,
 41	int			nmaps)
 42{
 43	struct xfs_log_item_desc *lidp;
 44	struct xfs_buf_log_item	*blip;
 45	int			len = 0;
 46	int			i;
 47
 48	for (i = 0; i < nmaps; i++)
 49		len += map[i].bm_len;
 50
 51	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
 52		blip = (struct xfs_buf_log_item *)lidp->lid_item;
 53		if (blip->bli_item.li_type == XFS_LI_BUF &&
 54		    blip->bli_buf->b_target == target &&
 55		    XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn &&
 56		    blip->bli_buf->b_length == len) {
 57			ASSERT(blip->bli_buf->b_map_count == nmaps);
 58			return blip->bli_buf;
 59		}
 60	}
 61
 62	return NULL;
 63}
 64
 65/*
 66 * Add the locked buffer to the transaction.
 67 *
 68 * The buffer must be locked, and it cannot be associated with any
 69 * transaction.
 70 *
 71 * If the buffer does not yet have a buf log item associated with it,
 72 * then allocate one for it.  Then add the buf item to the transaction.
 73 */
 74STATIC void
 75_xfs_trans_bjoin(
 76	struct xfs_trans	*tp,
 77	struct xfs_buf		*bp,
 78	int			reset_recur)
 79{
 80	struct xfs_buf_log_item	*bip;
 81
 82	ASSERT(bp->b_transp == NULL);
 83
 84	/*
 85	 * The xfs_buf_log_item pointer is stored in b_fsprivate.  If
 86	 * it doesn't have one yet, then allocate one and initialize it.
 87	 * The checks to see if one is there are in xfs_buf_item_init().
 88	 */
 89	xfs_buf_item_init(bp, tp->t_mountp);
 90	bip = bp->b_fspriv;
 91	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
 92	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
 93	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
 94	if (reset_recur)
 95		bip->bli_recur = 0;
 96
 97	/*
 98	 * Take a reference for this transaction on the buf item.
 99	 */
100	atomic_inc(&bip->bli_refcount);
101
102	/*
103	 * Get a log_item_desc to point at the new item.
104	 */
105	xfs_trans_add_item(tp, &bip->bli_item);
106
107	/*
108	 * Initialize b_fsprivate2 so we can find it with incore_match()
109	 * in xfs_trans_get_buf() and friends above.
110	 */
111	bp->b_transp = tp;
112
113}
114
115void
116xfs_trans_bjoin(
117	struct xfs_trans	*tp,
118	struct xfs_buf		*bp)
119{
120	_xfs_trans_bjoin(tp, bp, 0);
121	trace_xfs_trans_bjoin(bp->b_fspriv);
122}
123
124/*
125 * Get and lock the buffer for the caller if it is not already
126 * locked within the given transaction.  If it is already locked
127 * within the transaction, just increment its lock recursion count
128 * and return a pointer to it.
129 *
130 * If the transaction pointer is NULL, make this just a normal
131 * get_buf() call.
132 */
133struct xfs_buf *
134xfs_trans_get_buf_map(
135	struct xfs_trans	*tp,
136	struct xfs_buftarg	*target,
137	struct xfs_buf_map	*map,
138	int			nmaps,
139	xfs_buf_flags_t		flags)
140{
141	xfs_buf_t		*bp;
142	xfs_buf_log_item_t	*bip;
143
144	if (!tp)
145		return xfs_buf_get_map(target, map, nmaps, flags);
146
147	/*
148	 * If we find the buffer in the cache with this transaction
149	 * pointer in its b_fsprivate2 field, then we know we already
150	 * have it locked.  In this case we just increment the lock
151	 * recursion count and return the buffer to the caller.
152	 */
153	bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
154	if (bp != NULL) {
155		ASSERT(xfs_buf_islocked(bp));
156		if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) {
157			xfs_buf_stale(bp);
158			bp->b_flags |= XBF_DONE;
159		}
160
161		ASSERT(bp->b_transp == tp);
162		bip = bp->b_fspriv;
163		ASSERT(bip != NULL);
164		ASSERT(atomic_read(&bip->bli_refcount) > 0);
165		bip->bli_recur++;
166		trace_xfs_trans_get_buf_recur(bip);
167		return bp;
168	}
169
170	bp = xfs_buf_get_map(target, map, nmaps, flags);
171	if (bp == NULL) {
172		return NULL;
173	}
174
175	ASSERT(!bp->b_error);
176
177	_xfs_trans_bjoin(tp, bp, 1);
178	trace_xfs_trans_get_buf(bp->b_fspriv);
179	return bp;
180}
181
182/*
183 * Get and lock the superblock buffer of this file system for the
184 * given transaction.
185 *
186 * We don't need to use incore_match() here, because the superblock
187 * buffer is a private buffer which we keep a pointer to in the
188 * mount structure.
189 */
190xfs_buf_t *
191xfs_trans_getsb(xfs_trans_t	*tp,
192		struct xfs_mount *mp,
193		int		flags)
 
194{
195	xfs_buf_t		*bp;
196	xfs_buf_log_item_t	*bip;
197
198	/*
199	 * Default to just trying to lock the superblock buffer
200	 * if tp is NULL.
201	 */
202	if (tp == NULL)
203		return xfs_getsb(mp, flags);
204
205	/*
206	 * If the superblock buffer already has this transaction
207	 * pointer in its b_fsprivate2 field, then we know we already
208	 * have it locked.  In this case we just increment the lock
209	 * recursion count and return the buffer to the caller.
210	 */
211	bp = mp->m_sb_bp;
212	if (bp->b_transp == tp) {
213		bip = bp->b_fspriv;
214		ASSERT(bip != NULL);
215		ASSERT(atomic_read(&bip->bli_refcount) > 0);
216		bip->bli_recur++;
217		trace_xfs_trans_getsb_recur(bip);
218		return bp;
219	}
220
221	bp = xfs_getsb(mp, flags);
222	if (bp == NULL)
223		return NULL;
224
225	_xfs_trans_bjoin(tp, bp, 1);
226	trace_xfs_trans_getsb(bp->b_fspriv);
227	return bp;
228}
229
230/*
231 * Get and lock the buffer for the caller if it is not already
232 * locked within the given transaction.  If it has not yet been
233 * read in, read it from disk. If it is already locked
234 * within the transaction and already read in, just increment its
235 * lock recursion count and return a pointer to it.
236 *
237 * If the transaction pointer is NULL, make this just a normal
238 * read_buf() call.
239 */
240int
241xfs_trans_read_buf_map(
242	struct xfs_mount	*mp,
243	struct xfs_trans	*tp,
244	struct xfs_buftarg	*target,
245	struct xfs_buf_map	*map,
246	int			nmaps,
247	xfs_buf_flags_t		flags,
248	struct xfs_buf		**bpp,
249	const struct xfs_buf_ops *ops)
250{
251	struct xfs_buf		*bp = NULL;
252	struct xfs_buf_log_item	*bip;
253	int			error;
254
255	*bpp = NULL;
256	/*
257	 * If we find the buffer in the cache with this transaction
258	 * pointer in its b_fsprivate2 field, then we know we already
259	 * have it locked.  If it is already read in we just increment
260	 * the lock recursion count and return the buffer to the caller.
261	 * If the buffer is not yet read in, then we read it in, increment
262	 * the lock recursion count, and return it to the caller.
263	 */
264	if (tp)
265		bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
266	if (bp) {
267		ASSERT(xfs_buf_islocked(bp));
268		ASSERT(bp->b_transp == tp);
269		ASSERT(bp->b_fspriv != NULL);
270		ASSERT(!bp->b_error);
271		ASSERT(bp->b_flags & XBF_DONE);
272
273		/*
274		 * We never locked this buf ourselves, so we shouldn't
275		 * brelse it either. Just get out.
276		 */
277		if (XFS_FORCED_SHUTDOWN(mp)) {
278			trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
279			return -EIO;
280		}
281
282		bip = bp->b_fspriv;
283		bip->bli_recur++;
284
285		ASSERT(atomic_read(&bip->bli_refcount) > 0);
286		trace_xfs_trans_read_buf_recur(bip);
287		*bpp = bp;
288		return 0;
289	}
290
291	bp = xfs_buf_read_map(target, map, nmaps, flags, ops);
292	if (!bp) {
293		if (!(flags & XBF_TRYLOCK))
294			return -ENOMEM;
295		return tp ? 0 : -EAGAIN;
296	}
297
298	/*
299	 * If we've had a read error, then the contents of the buffer are
300	 * invalid and should not be used. To ensure that a followup read tries
301	 * to pull the buffer from disk again, we clear the XBF_DONE flag and
302	 * mark the buffer stale. This ensures that anyone who has a current
303	 * reference to the buffer will interpret it's contents correctly and
304	 * future cache lookups will also treat it as an empty, uninitialised
305	 * buffer.
306	 */
307	if (bp->b_error) {
308		error = bp->b_error;
309		if (!XFS_FORCED_SHUTDOWN(mp))
310			xfs_buf_ioerror_alert(bp, __func__);
311		bp->b_flags &= ~XBF_DONE;
312		xfs_buf_stale(bp);
313
314		if (tp && (tp->t_flags & XFS_TRANS_DIRTY))
315			xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
316		xfs_buf_relse(bp);
317
318		/* bad CRC means corrupted metadata */
319		if (error == -EFSBADCRC)
320			error = -EFSCORRUPTED;
321		return error;
322	}
323
324	if (XFS_FORCED_SHUTDOWN(mp)) {
325		xfs_buf_relse(bp);
326		trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
327		return -EIO;
328	}
329
330	if (tp) {
331		_xfs_trans_bjoin(tp, bp, 1);
332		trace_xfs_trans_read_buf(bp->b_fspriv);
333	}
334	*bpp = bp;
335	return 0;
336
337}
338
339/*
340 * Release the buffer bp which was previously acquired with one of the
341 * xfs_trans_... buffer allocation routines if the buffer has not
342 * been modified within this transaction.  If the buffer is modified
343 * within this transaction, do decrement the recursion count but do
344 * not release the buffer even if the count goes to 0.  If the buffer is not
345 * modified within the transaction, decrement the recursion count and
346 * release the buffer if the recursion count goes to 0.
347 *
348 * If the buffer is to be released and it was not modified before
349 * this transaction began, then free the buf_log_item associated with it.
350 *
351 * If the transaction pointer is NULL, make this just a normal
352 * brelse() call.
353 */
354void
355xfs_trans_brelse(xfs_trans_t	*tp,
356		 xfs_buf_t	*bp)
 
357{
358	xfs_buf_log_item_t	*bip;
 
359
360	/*
361	 * Default to a normal brelse() call if the tp is NULL.
362	 */
363	if (tp == NULL) {
364		ASSERT(bp->b_transp == NULL);
365		xfs_buf_relse(bp);
366		return;
367	}
368
369	ASSERT(bp->b_transp == tp);
370	bip = bp->b_fspriv;
371	ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
372	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
373	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
374	ASSERT(atomic_read(&bip->bli_refcount) > 0);
375
376	trace_xfs_trans_brelse(bip);
377
378	/*
379	 * If the release is just for a recursive lock,
380	 * then decrement the count and return.
381	 */
382	if (bip->bli_recur > 0) {
383		bip->bli_recur--;
384		return;
385	}
386
387	/*
388	 * If the buffer is dirty within this transaction, we can't
389	 * release it until we commit.
390	 */
391	if (bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY)
392		return;
393
394	/*
395	 * If the buffer has been invalidated, then we can't release
396	 * it until the transaction commits to disk unless it is re-dirtied
397	 * as part of this transaction.  This prevents us from pulling
398	 * the item from the AIL before we should.
399	 */
400	if (bip->bli_flags & XFS_BLI_STALE)
401		return;
402
403	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
404
405	/*
406	 * Free up the log item descriptor tracking the released item.
407	 */
408	xfs_trans_del_item(&bip->bli_item);
409
410	/*
411	 * Clear the hold flag in the buf log item if it is set.
412	 * We wouldn't want the next user of the buffer to
413	 * get confused.
414	 */
415	if (bip->bli_flags & XFS_BLI_HOLD) {
416		bip->bli_flags &= ~XFS_BLI_HOLD;
417	}
418
419	/*
420	 * Drop our reference to the buf log item.
421	 */
422	atomic_dec(&bip->bli_refcount);
423
424	/*
425	 * If the buf item is not tracking data in the log, then
426	 * we must free it before releasing the buffer back to the
427	 * free pool.  Before releasing the buffer to the free pool,
428	 * clear the transaction pointer in b_fsprivate2 to dissolve
429	 * its relation to this transaction.
 
 
 
430	 */
431	if (!xfs_buf_item_dirty(bip)) {
 
 
 
432/***
433		ASSERT(bp->b_pincount == 0);
434***/
435		ASSERT(atomic_read(&bip->bli_refcount) == 0);
436		ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
437		ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF));
438		xfs_buf_item_relse(bp);
439	}
440
441	bp->b_transp = NULL;
442	xfs_buf_relse(bp);
443}
444
445/*
446 * Mark the buffer as not needing to be unlocked when the buf item's
447 * iop_unlock() routine is called.  The buffer must already be locked
448 * and associated with the given transaction.
449 */
450/* ARGSUSED */
451void
452xfs_trans_bhold(xfs_trans_t	*tp,
453		xfs_buf_t	*bp)
 
454{
455	xfs_buf_log_item_t	*bip = bp->b_fspriv;
456
457	ASSERT(bp->b_transp == tp);
458	ASSERT(bip != NULL);
459	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
460	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
461	ASSERT(atomic_read(&bip->bli_refcount) > 0);
462
463	bip->bli_flags |= XFS_BLI_HOLD;
464	trace_xfs_trans_bhold(bip);
465}
466
467/*
468 * Cancel the previous buffer hold request made on this buffer
469 * for this transaction.
470 */
471void
472xfs_trans_bhold_release(xfs_trans_t	*tp,
473			xfs_buf_t	*bp)
 
474{
475	xfs_buf_log_item_t	*bip = bp->b_fspriv;
476
477	ASSERT(bp->b_transp == tp);
478	ASSERT(bip != NULL);
479	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
480	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
481	ASSERT(atomic_read(&bip->bli_refcount) > 0);
482	ASSERT(bip->bli_flags & XFS_BLI_HOLD);
483
484	bip->bli_flags &= ~XFS_BLI_HOLD;
485	trace_xfs_trans_bhold_release(bip);
486}
487
488/*
489 * This is called to mark bytes first through last inclusive of the given
490 * buffer as needing to be logged when the transaction is committed.
491 * The buffer must already be associated with the given transaction.
492 *
493 * First and last are numbers relative to the beginning of this buffer,
494 * so the first byte in the buffer is numbered 0 regardless of the
495 * value of b_blkno.
496 */
497void
498xfs_trans_log_buf(xfs_trans_t	*tp,
499		  xfs_buf_t	*bp,
500		  uint		first,
501		  uint		last)
502{
503	xfs_buf_log_item_t	*bip = bp->b_fspriv;
504
505	ASSERT(bp->b_transp == tp);
506	ASSERT(bip != NULL);
507	ASSERT(first <= last && last < BBTOB(bp->b_length));
508	ASSERT(bp->b_iodone == NULL ||
509	       bp->b_iodone == xfs_buf_iodone_callbacks);
510
511	/*
512	 * Mark the buffer as needing to be written out eventually,
513	 * and set its iodone function to remove the buffer's buf log
514	 * item from the AIL and free it when the buffer is flushed
515	 * to disk.  See xfs_buf_attach_iodone() for more details
516	 * on li_cb and xfs_buf_iodone_callbacks().
517	 * If we end up aborting this transaction, we trap this buffer
518	 * inside the b_bdstrat callback so that this won't get written to
519	 * disk.
520	 */
521	bp->b_flags |= XBF_DONE;
522
523	ASSERT(atomic_read(&bip->bli_refcount) > 0);
524	bp->b_iodone = xfs_buf_iodone_callbacks;
525	bip->bli_item.li_cb = xfs_buf_iodone;
526
527	trace_xfs_trans_log_buf(bip);
528
529	/*
530	 * If we invalidated the buffer within this transaction, then
531	 * cancel the invalidation now that we're dirtying the buffer
532	 * again.  There are no races with the code in xfs_buf_item_unpin(),
533	 * because we have a reference to the buffer this entire time.
534	 */
535	if (bip->bli_flags & XFS_BLI_STALE) {
536		bip->bli_flags &= ~XFS_BLI_STALE;
537		ASSERT(bp->b_flags & XBF_STALE);
538		bp->b_flags &= ~XBF_STALE;
539		bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL;
540	}
 
541
542	tp->t_flags |= XFS_TRANS_DIRTY;
543	bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
 
544
545	/*
546	 * If we have an ordered buffer we are not logging any dirty range but
547	 * it still needs to be marked dirty and that it has been logged.
548	 */
549	bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED;
550	if (!(bip->bli_flags & XFS_BLI_ORDERED))
551		xfs_buf_item_log(bip, first, last);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
552}
553
554
555/*
556 * Invalidate a buffer that is being used within a transaction.
557 *
558 * Typically this is because the blocks in the buffer are being freed, so we
559 * need to prevent it from being written out when we're done.  Allowing it
560 * to be written again might overwrite data in the free blocks if they are
561 * reallocated to a file.
562 *
563 * We prevent the buffer from being written out by marking it stale.  We can't
564 * get rid of the buf log item at this point because the buffer may still be
565 * pinned by another transaction.  If that is the case, then we'll wait until
566 * the buffer is committed to disk for the last time (we can tell by the ref
567 * count) and free it in xfs_buf_item_unpin().  Until that happens we will
568 * keep the buffer locked so that the buffer and buf log item are not reused.
569 *
570 * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log
571 * the buf item.  This will be used at recovery time to determine that copies
572 * of the buffer in the log before this should not be replayed.
573 *
574 * We mark the item descriptor and the transaction dirty so that we'll hold
575 * the buffer until after the commit.
576 *
577 * Since we're invalidating the buffer, we also clear the state about which
578 * parts of the buffer have been logged.  We also clear the flag indicating
579 * that this is an inode buffer since the data in the buffer will no longer
580 * be valid.
581 *
582 * We set the stale bit in the buffer as well since we're getting rid of it.
583 */
584void
585xfs_trans_binval(
586	xfs_trans_t	*tp,
587	xfs_buf_t	*bp)
588{
589	xfs_buf_log_item_t	*bip = bp->b_fspriv;
590	int			i;
591
592	ASSERT(bp->b_transp == tp);
593	ASSERT(bip != NULL);
594	ASSERT(atomic_read(&bip->bli_refcount) > 0);
595
596	trace_xfs_trans_binval(bip);
597
598	if (bip->bli_flags & XFS_BLI_STALE) {
599		/*
600		 * If the buffer is already invalidated, then
601		 * just return.
602		 */
603		ASSERT(bp->b_flags & XBF_STALE);
604		ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
605		ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF));
606		ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK));
607		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
608		ASSERT(bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY);
609		ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
610		return;
611	}
612
613	xfs_buf_stale(bp);
614
615	bip->bli_flags |= XFS_BLI_STALE;
616	bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
617	bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
618	bip->__bli_format.blf_flags |= XFS_BLF_CANCEL;
619	bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK;
620	for (i = 0; i < bip->bli_format_count; i++) {
621		memset(bip->bli_formats[i].blf_data_map, 0,
622		       (bip->bli_formats[i].blf_map_size * sizeof(uint)));
623	}
624	bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
625	tp->t_flags |= XFS_TRANS_DIRTY;
626}
627
628/*
629 * This call is used to indicate that the buffer contains on-disk inodes which
630 * must be handled specially during recovery.  They require special handling
631 * because only the di_next_unlinked from the inodes in the buffer should be
632 * recovered.  The rest of the data in the buffer is logged via the inodes
633 * themselves.
634 *
635 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
636 * transferred to the buffer's log format structure so that we'll know what to
637 * do at recovery time.
638 */
639void
640xfs_trans_inode_buf(
641	xfs_trans_t	*tp,
642	xfs_buf_t	*bp)
643{
644	xfs_buf_log_item_t	*bip = bp->b_fspriv;
645
646	ASSERT(bp->b_transp == tp);
647	ASSERT(bip != NULL);
648	ASSERT(atomic_read(&bip->bli_refcount) > 0);
649
650	bip->bli_flags |= XFS_BLI_INODE_BUF;
651	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
652}
653
654/*
655 * This call is used to indicate that the buffer is going to
656 * be staled and was an inode buffer. This means it gets
657 * special processing during unpin - where any inodes
658 * associated with the buffer should be removed from ail.
659 * There is also special processing during recovery,
660 * any replay of the inodes in the buffer needs to be
661 * prevented as the buffer may have been reused.
662 */
663void
664xfs_trans_stale_inode_buf(
665	xfs_trans_t	*tp,
666	xfs_buf_t	*bp)
667{
668	xfs_buf_log_item_t	*bip = bp->b_fspriv;
669
670	ASSERT(bp->b_transp == tp);
671	ASSERT(bip != NULL);
672	ASSERT(atomic_read(&bip->bli_refcount) > 0);
673
674	bip->bli_flags |= XFS_BLI_STALE_INODE;
675	bip->bli_item.li_cb = xfs_buf_iodone;
676	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
677}
678
679/*
680 * Mark the buffer as being one which contains newly allocated
681 * inodes.  We need to make sure that even if this buffer is
682 * relogged as an 'inode buf' we still recover all of the inode
683 * images in the face of a crash.  This works in coordination with
684 * xfs_buf_item_committed() to ensure that the buffer remains in the
685 * AIL at its original location even after it has been relogged.
686 */
687/* ARGSUSED */
688void
689xfs_trans_inode_alloc_buf(
690	xfs_trans_t	*tp,
691	xfs_buf_t	*bp)
692{
693	xfs_buf_log_item_t	*bip = bp->b_fspriv;
694
695	ASSERT(bp->b_transp == tp);
696	ASSERT(bip != NULL);
697	ASSERT(atomic_read(&bip->bli_refcount) > 0);
698
699	bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
700	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
701}
702
703/*
704 * Mark the buffer as ordered for this transaction. This means
705 * that the contents of the buffer are not recorded in the transaction
706 * but it is tracked in the AIL as though it was. This allows us
707 * to record logical changes in transactions rather than the physical
708 * changes we make to the buffer without changing writeback ordering
709 * constraints of metadata buffers.
710 */
711void
712xfs_trans_ordered_buf(
713	struct xfs_trans	*tp,
714	struct xfs_buf		*bp)
715{
716	struct xfs_buf_log_item	*bip = bp->b_fspriv;
717
718	ASSERT(bp->b_transp == tp);
719	ASSERT(bip != NULL);
720	ASSERT(atomic_read(&bip->bli_refcount) > 0);
721
 
 
 
722	bip->bli_flags |= XFS_BLI_ORDERED;
723	trace_xfs_buf_item_ordered(bip);
 
 
 
 
 
 
 
724}
725
726/*
727 * Set the type of the buffer for log recovery so that it can correctly identify
728 * and hence attach the correct buffer ops to the buffer after replay.
729 */
730void
731xfs_trans_buf_set_type(
732	struct xfs_trans	*tp,
733	struct xfs_buf		*bp,
734	enum xfs_blft		type)
735{
736	struct xfs_buf_log_item	*bip = bp->b_fspriv;
737
738	if (!tp)
739		return;
740
741	ASSERT(bp->b_transp == tp);
742	ASSERT(bip != NULL);
743	ASSERT(atomic_read(&bip->bli_refcount) > 0);
744
745	xfs_blft_to_flags(&bip->__bli_format, type);
746}
747
748void
749xfs_trans_buf_copy_type(
750	struct xfs_buf		*dst_bp,
751	struct xfs_buf		*src_bp)
752{
753	struct xfs_buf_log_item	*sbip = src_bp->b_fspriv;
754	struct xfs_buf_log_item	*dbip = dst_bp->b_fspriv;
755	enum xfs_blft		type;
756
757	type = xfs_blft_from_flags(&sbip->__bli_format);
758	xfs_blft_to_flags(&dbip->__bli_format, type);
759}
760
761/*
762 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
763 * dquots. However, unlike in inode buffer recovery, dquot buffers get
764 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
765 * The only thing that makes dquot buffers different from regular
766 * buffers is that we must not replay dquot bufs when recovering
767 * if a _corresponding_ quotaoff has happened. We also have to distinguish
768 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
769 * can be turned off independently.
770 */
771/* ARGSUSED */
772void
773xfs_trans_dquot_buf(
774	xfs_trans_t	*tp,
775	xfs_buf_t	*bp,
776	uint		type)
777{
778	struct xfs_buf_log_item	*bip = bp->b_fspriv;
779
780	ASSERT(type == XFS_BLF_UDQUOT_BUF ||
781	       type == XFS_BLF_PDQUOT_BUF ||
782	       type == XFS_BLF_GDQUOT_BUF);
783
784	bip->__bli_format.blf_flags |= type;
785
786	switch (type) {
787	case XFS_BLF_UDQUOT_BUF:
788		type = XFS_BLFT_UDQUOT_BUF;
789		break;
790	case XFS_BLF_PDQUOT_BUF:
791		type = XFS_BLFT_PDQUOT_BUF;
792		break;
793	case XFS_BLF_GDQUOT_BUF:
794		type = XFS_BLFT_GDQUOT_BUF;
795		break;
796	default:
797		type = XFS_BLFT_UNKNOWN_BUF;
798		break;
799	}
800
801	xfs_trans_buf_set_type(tp, bp, type);
802}