Loading...
1/*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include <linux/log2.h>
19#include <linux/iversion.h>
20
21#include "xfs.h"
22#include "xfs_fs.h"
23#include "xfs_shared.h"
24#include "xfs_format.h"
25#include "xfs_log_format.h"
26#include "xfs_trans_resv.h"
27#include "xfs_sb.h"
28#include "xfs_mount.h"
29#include "xfs_defer.h"
30#include "xfs_inode.h"
31#include "xfs_da_format.h"
32#include "xfs_da_btree.h"
33#include "xfs_dir2.h"
34#include "xfs_attr_sf.h"
35#include "xfs_attr.h"
36#include "xfs_trans_space.h"
37#include "xfs_trans.h"
38#include "xfs_buf_item.h"
39#include "xfs_inode_item.h"
40#include "xfs_ialloc.h"
41#include "xfs_bmap.h"
42#include "xfs_bmap_util.h"
43#include "xfs_errortag.h"
44#include "xfs_error.h"
45#include "xfs_quota.h"
46#include "xfs_filestream.h"
47#include "xfs_cksum.h"
48#include "xfs_trace.h"
49#include "xfs_icache.h"
50#include "xfs_symlink.h"
51#include "xfs_trans_priv.h"
52#include "xfs_log.h"
53#include "xfs_bmap_btree.h"
54#include "xfs_reflink.h"
55#include "xfs_dir2_priv.h"
56
57kmem_zone_t *xfs_inode_zone;
58
59/*
60 * Used in xfs_itruncate_extents(). This is the maximum number of extents
61 * freed from a file in a single transaction.
62 */
63#define XFS_ITRUNC_MAX_EXTENTS 2
64
65STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
66STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
67STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
68
69/*
70 * helper function to extract extent size hint from inode
71 */
72xfs_extlen_t
73xfs_get_extsz_hint(
74 struct xfs_inode *ip)
75{
76 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
77 return ip->i_d.di_extsize;
78 if (XFS_IS_REALTIME_INODE(ip))
79 return ip->i_mount->m_sb.sb_rextsize;
80 return 0;
81}
82
83/*
84 * Helper function to extract CoW extent size hint from inode.
85 * Between the extent size hint and the CoW extent size hint, we
86 * return the greater of the two. If the value is zero (automatic),
87 * use the default size.
88 */
89xfs_extlen_t
90xfs_get_cowextsz_hint(
91 struct xfs_inode *ip)
92{
93 xfs_extlen_t a, b;
94
95 a = 0;
96 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
97 a = ip->i_d.di_cowextsize;
98 b = xfs_get_extsz_hint(ip);
99
100 a = max(a, b);
101 if (a == 0)
102 return XFS_DEFAULT_COWEXTSZ_HINT;
103 return a;
104}
105
106/*
107 * These two are wrapper routines around the xfs_ilock() routine used to
108 * centralize some grungy code. They are used in places that wish to lock the
109 * inode solely for reading the extents. The reason these places can't just
110 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
111 * bringing in of the extents from disk for a file in b-tree format. If the
112 * inode is in b-tree format, then we need to lock the inode exclusively until
113 * the extents are read in. Locking it exclusively all the time would limit
114 * our parallelism unnecessarily, though. What we do instead is check to see
115 * if the extents have been read in yet, and only lock the inode exclusively
116 * if they have not.
117 *
118 * The functions return a value which should be given to the corresponding
119 * xfs_iunlock() call.
120 */
121uint
122xfs_ilock_data_map_shared(
123 struct xfs_inode *ip)
124{
125 uint lock_mode = XFS_ILOCK_SHARED;
126
127 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
128 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
129 lock_mode = XFS_ILOCK_EXCL;
130 xfs_ilock(ip, lock_mode);
131 return lock_mode;
132}
133
134uint
135xfs_ilock_attr_map_shared(
136 struct xfs_inode *ip)
137{
138 uint lock_mode = XFS_ILOCK_SHARED;
139
140 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
141 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
142 lock_mode = XFS_ILOCK_EXCL;
143 xfs_ilock(ip, lock_mode);
144 return lock_mode;
145}
146
147/*
148 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
149 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows
150 * various combinations of the locks to be obtained.
151 *
152 * The 3 locks should always be ordered so that the IO lock is obtained first,
153 * the mmap lock second and the ilock last in order to prevent deadlock.
154 *
155 * Basic locking order:
156 *
157 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
158 *
159 * mmap_sem locking order:
160 *
161 * i_rwsem -> page lock -> mmap_sem
162 * mmap_sem -> i_mmap_lock -> page_lock
163 *
164 * The difference in mmap_sem locking order mean that we cannot hold the
165 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
166 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
167 * in get_user_pages() to map the user pages into the kernel address space for
168 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
169 * page faults already hold the mmap_sem.
170 *
171 * Hence to serialise fully against both syscall and mmap based IO, we need to
172 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
173 * taken in places where we need to invalidate the page cache in a race
174 * free manner (e.g. truncate, hole punch and other extent manipulation
175 * functions).
176 */
177void
178xfs_ilock(
179 xfs_inode_t *ip,
180 uint lock_flags)
181{
182 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
183
184 /*
185 * You can't set both SHARED and EXCL for the same lock,
186 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
187 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
188 */
189 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
190 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
191 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
192 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
193 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
194 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
195 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
196
197 if (lock_flags & XFS_IOLOCK_EXCL) {
198 down_write_nested(&VFS_I(ip)->i_rwsem,
199 XFS_IOLOCK_DEP(lock_flags));
200 } else if (lock_flags & XFS_IOLOCK_SHARED) {
201 down_read_nested(&VFS_I(ip)->i_rwsem,
202 XFS_IOLOCK_DEP(lock_flags));
203 }
204
205 if (lock_flags & XFS_MMAPLOCK_EXCL)
206 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
207 else if (lock_flags & XFS_MMAPLOCK_SHARED)
208 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
209
210 if (lock_flags & XFS_ILOCK_EXCL)
211 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
212 else if (lock_flags & XFS_ILOCK_SHARED)
213 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
214}
215
216/*
217 * This is just like xfs_ilock(), except that the caller
218 * is guaranteed not to sleep. It returns 1 if it gets
219 * the requested locks and 0 otherwise. If the IO lock is
220 * obtained but the inode lock cannot be, then the IO lock
221 * is dropped before returning.
222 *
223 * ip -- the inode being locked
224 * lock_flags -- this parameter indicates the inode's locks to be
225 * to be locked. See the comment for xfs_ilock() for a list
226 * of valid values.
227 */
228int
229xfs_ilock_nowait(
230 xfs_inode_t *ip,
231 uint lock_flags)
232{
233 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
234
235 /*
236 * You can't set both SHARED and EXCL for the same lock,
237 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
238 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
239 */
240 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
241 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
242 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
243 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
244 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
245 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
246 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
247
248 if (lock_flags & XFS_IOLOCK_EXCL) {
249 if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
250 goto out;
251 } else if (lock_flags & XFS_IOLOCK_SHARED) {
252 if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
253 goto out;
254 }
255
256 if (lock_flags & XFS_MMAPLOCK_EXCL) {
257 if (!mrtryupdate(&ip->i_mmaplock))
258 goto out_undo_iolock;
259 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
260 if (!mrtryaccess(&ip->i_mmaplock))
261 goto out_undo_iolock;
262 }
263
264 if (lock_flags & XFS_ILOCK_EXCL) {
265 if (!mrtryupdate(&ip->i_lock))
266 goto out_undo_mmaplock;
267 } else if (lock_flags & XFS_ILOCK_SHARED) {
268 if (!mrtryaccess(&ip->i_lock))
269 goto out_undo_mmaplock;
270 }
271 return 1;
272
273out_undo_mmaplock:
274 if (lock_flags & XFS_MMAPLOCK_EXCL)
275 mrunlock_excl(&ip->i_mmaplock);
276 else if (lock_flags & XFS_MMAPLOCK_SHARED)
277 mrunlock_shared(&ip->i_mmaplock);
278out_undo_iolock:
279 if (lock_flags & XFS_IOLOCK_EXCL)
280 up_write(&VFS_I(ip)->i_rwsem);
281 else if (lock_flags & XFS_IOLOCK_SHARED)
282 up_read(&VFS_I(ip)->i_rwsem);
283out:
284 return 0;
285}
286
287/*
288 * xfs_iunlock() is used to drop the inode locks acquired with
289 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
290 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
291 * that we know which locks to drop.
292 *
293 * ip -- the inode being unlocked
294 * lock_flags -- this parameter indicates the inode's locks to be
295 * to be unlocked. See the comment for xfs_ilock() for a list
296 * of valid values for this parameter.
297 *
298 */
299void
300xfs_iunlock(
301 xfs_inode_t *ip,
302 uint lock_flags)
303{
304 /*
305 * You can't set both SHARED and EXCL for the same lock,
306 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
307 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
308 */
309 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
310 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
311 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
312 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
313 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
314 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
315 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
316 ASSERT(lock_flags != 0);
317
318 if (lock_flags & XFS_IOLOCK_EXCL)
319 up_write(&VFS_I(ip)->i_rwsem);
320 else if (lock_flags & XFS_IOLOCK_SHARED)
321 up_read(&VFS_I(ip)->i_rwsem);
322
323 if (lock_flags & XFS_MMAPLOCK_EXCL)
324 mrunlock_excl(&ip->i_mmaplock);
325 else if (lock_flags & XFS_MMAPLOCK_SHARED)
326 mrunlock_shared(&ip->i_mmaplock);
327
328 if (lock_flags & XFS_ILOCK_EXCL)
329 mrunlock_excl(&ip->i_lock);
330 else if (lock_flags & XFS_ILOCK_SHARED)
331 mrunlock_shared(&ip->i_lock);
332
333 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
334}
335
336/*
337 * give up write locks. the i/o lock cannot be held nested
338 * if it is being demoted.
339 */
340void
341xfs_ilock_demote(
342 xfs_inode_t *ip,
343 uint lock_flags)
344{
345 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
346 ASSERT((lock_flags &
347 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
348
349 if (lock_flags & XFS_ILOCK_EXCL)
350 mrdemote(&ip->i_lock);
351 if (lock_flags & XFS_MMAPLOCK_EXCL)
352 mrdemote(&ip->i_mmaplock);
353 if (lock_flags & XFS_IOLOCK_EXCL)
354 downgrade_write(&VFS_I(ip)->i_rwsem);
355
356 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
357}
358
359#if defined(DEBUG) || defined(XFS_WARN)
360int
361xfs_isilocked(
362 xfs_inode_t *ip,
363 uint lock_flags)
364{
365 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
366 if (!(lock_flags & XFS_ILOCK_SHARED))
367 return !!ip->i_lock.mr_writer;
368 return rwsem_is_locked(&ip->i_lock.mr_lock);
369 }
370
371 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
372 if (!(lock_flags & XFS_MMAPLOCK_SHARED))
373 return !!ip->i_mmaplock.mr_writer;
374 return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
375 }
376
377 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
378 if (!(lock_flags & XFS_IOLOCK_SHARED))
379 return !debug_locks ||
380 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
381 return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
382 }
383
384 ASSERT(0);
385 return 0;
386}
387#endif
388
389/*
390 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
391 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
392 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
393 * errors and warnings.
394 */
395#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
396static bool
397xfs_lockdep_subclass_ok(
398 int subclass)
399{
400 return subclass < MAX_LOCKDEP_SUBCLASSES;
401}
402#else
403#define xfs_lockdep_subclass_ok(subclass) (true)
404#endif
405
406/*
407 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
408 * value. This can be called for any type of inode lock combination, including
409 * parent locking. Care must be taken to ensure we don't overrun the subclass
410 * storage fields in the class mask we build.
411 */
412static inline int
413xfs_lock_inumorder(int lock_mode, int subclass)
414{
415 int class = 0;
416
417 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
418 XFS_ILOCK_RTSUM)));
419 ASSERT(xfs_lockdep_subclass_ok(subclass));
420
421 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
422 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
423 class += subclass << XFS_IOLOCK_SHIFT;
424 }
425
426 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
427 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
428 class += subclass << XFS_MMAPLOCK_SHIFT;
429 }
430
431 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
432 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
433 class += subclass << XFS_ILOCK_SHIFT;
434 }
435
436 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
437}
438
439/*
440 * The following routine will lock n inodes in exclusive mode. We assume the
441 * caller calls us with the inodes in i_ino order.
442 *
443 * We need to detect deadlock where an inode that we lock is in the AIL and we
444 * start waiting for another inode that is locked by a thread in a long running
445 * transaction (such as truncate). This can result in deadlock since the long
446 * running trans might need to wait for the inode we just locked in order to
447 * push the tail and free space in the log.
448 *
449 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
450 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
451 * lock more than one at a time, lockdep will report false positives saying we
452 * have violated locking orders.
453 */
454static void
455xfs_lock_inodes(
456 xfs_inode_t **ips,
457 int inodes,
458 uint lock_mode)
459{
460 int attempts = 0, i, j, try_lock;
461 xfs_log_item_t *lp;
462
463 /*
464 * Currently supports between 2 and 5 inodes with exclusive locking. We
465 * support an arbitrary depth of locking here, but absolute limits on
466 * inodes depend on the the type of locking and the limits placed by
467 * lockdep annotations in xfs_lock_inumorder. These are all checked by
468 * the asserts.
469 */
470 ASSERT(ips && inodes >= 2 && inodes <= 5);
471 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
472 XFS_ILOCK_EXCL));
473 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
474 XFS_ILOCK_SHARED)));
475 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
476 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
477 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
478 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
479
480 if (lock_mode & XFS_IOLOCK_EXCL) {
481 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
482 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
483 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
484
485 try_lock = 0;
486 i = 0;
487again:
488 for (; i < inodes; i++) {
489 ASSERT(ips[i]);
490
491 if (i && (ips[i] == ips[i - 1])) /* Already locked */
492 continue;
493
494 /*
495 * If try_lock is not set yet, make sure all locked inodes are
496 * not in the AIL. If any are, set try_lock to be used later.
497 */
498 if (!try_lock) {
499 for (j = (i - 1); j >= 0 && !try_lock; j--) {
500 lp = (xfs_log_item_t *)ips[j]->i_itemp;
501 if (lp && (lp->li_flags & XFS_LI_IN_AIL))
502 try_lock++;
503 }
504 }
505
506 /*
507 * If any of the previous locks we have locked is in the AIL,
508 * we must TRY to get the second and subsequent locks. If
509 * we can't get any, we must release all we have
510 * and try again.
511 */
512 if (!try_lock) {
513 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
514 continue;
515 }
516
517 /* try_lock means we have an inode locked that is in the AIL. */
518 ASSERT(i != 0);
519 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
520 continue;
521
522 /*
523 * Unlock all previous guys and try again. xfs_iunlock will try
524 * to push the tail if the inode is in the AIL.
525 */
526 attempts++;
527 for (j = i - 1; j >= 0; j--) {
528 /*
529 * Check to see if we've already unlocked this one. Not
530 * the first one going back, and the inode ptr is the
531 * same.
532 */
533 if (j != (i - 1) && ips[j] == ips[j + 1])
534 continue;
535
536 xfs_iunlock(ips[j], lock_mode);
537 }
538
539 if ((attempts % 5) == 0) {
540 delay(1); /* Don't just spin the CPU */
541 }
542 i = 0;
543 try_lock = 0;
544 goto again;
545 }
546}
547
548/*
549 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
550 * the mmaplock or the ilock, but not more than one type at a time. If we lock
551 * more than one at a time, lockdep will report false positives saying we have
552 * violated locking orders. The iolock must be double-locked separately since
553 * we use i_rwsem for that. We now support taking one lock EXCL and the other
554 * SHARED.
555 */
556void
557xfs_lock_two_inodes(
558 struct xfs_inode *ip0,
559 uint ip0_mode,
560 struct xfs_inode *ip1,
561 uint ip1_mode)
562{
563 struct xfs_inode *temp;
564 uint mode_temp;
565 int attempts = 0;
566 xfs_log_item_t *lp;
567
568 ASSERT(hweight32(ip0_mode) == 1);
569 ASSERT(hweight32(ip1_mode) == 1);
570 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
571 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
572 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
573 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
574 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
575 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
576 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
577 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
578 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
579 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
580
581 ASSERT(ip0->i_ino != ip1->i_ino);
582
583 if (ip0->i_ino > ip1->i_ino) {
584 temp = ip0;
585 ip0 = ip1;
586 ip1 = temp;
587 mode_temp = ip0_mode;
588 ip0_mode = ip1_mode;
589 ip1_mode = mode_temp;
590 }
591
592 again:
593 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
594
595 /*
596 * If the first lock we have locked is in the AIL, we must TRY to get
597 * the second lock. If we can't get it, we must release the first one
598 * and try again.
599 */
600 lp = (xfs_log_item_t *)ip0->i_itemp;
601 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
602 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
603 xfs_iunlock(ip0, ip0_mode);
604 if ((++attempts % 5) == 0)
605 delay(1); /* Don't just spin the CPU */
606 goto again;
607 }
608 } else {
609 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
610 }
611}
612
613void
614__xfs_iflock(
615 struct xfs_inode *ip)
616{
617 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
618 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
619
620 do {
621 prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
622 if (xfs_isiflocked(ip))
623 io_schedule();
624 } while (!xfs_iflock_nowait(ip));
625
626 finish_wait(wq, &wait.wq_entry);
627}
628
629STATIC uint
630_xfs_dic2xflags(
631 uint16_t di_flags,
632 uint64_t di_flags2,
633 bool has_attr)
634{
635 uint flags = 0;
636
637 if (di_flags & XFS_DIFLAG_ANY) {
638 if (di_flags & XFS_DIFLAG_REALTIME)
639 flags |= FS_XFLAG_REALTIME;
640 if (di_flags & XFS_DIFLAG_PREALLOC)
641 flags |= FS_XFLAG_PREALLOC;
642 if (di_flags & XFS_DIFLAG_IMMUTABLE)
643 flags |= FS_XFLAG_IMMUTABLE;
644 if (di_flags & XFS_DIFLAG_APPEND)
645 flags |= FS_XFLAG_APPEND;
646 if (di_flags & XFS_DIFLAG_SYNC)
647 flags |= FS_XFLAG_SYNC;
648 if (di_flags & XFS_DIFLAG_NOATIME)
649 flags |= FS_XFLAG_NOATIME;
650 if (di_flags & XFS_DIFLAG_NODUMP)
651 flags |= FS_XFLAG_NODUMP;
652 if (di_flags & XFS_DIFLAG_RTINHERIT)
653 flags |= FS_XFLAG_RTINHERIT;
654 if (di_flags & XFS_DIFLAG_PROJINHERIT)
655 flags |= FS_XFLAG_PROJINHERIT;
656 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
657 flags |= FS_XFLAG_NOSYMLINKS;
658 if (di_flags & XFS_DIFLAG_EXTSIZE)
659 flags |= FS_XFLAG_EXTSIZE;
660 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
661 flags |= FS_XFLAG_EXTSZINHERIT;
662 if (di_flags & XFS_DIFLAG_NODEFRAG)
663 flags |= FS_XFLAG_NODEFRAG;
664 if (di_flags & XFS_DIFLAG_FILESTREAM)
665 flags |= FS_XFLAG_FILESTREAM;
666 }
667
668 if (di_flags2 & XFS_DIFLAG2_ANY) {
669 if (di_flags2 & XFS_DIFLAG2_DAX)
670 flags |= FS_XFLAG_DAX;
671 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
672 flags |= FS_XFLAG_COWEXTSIZE;
673 }
674
675 if (has_attr)
676 flags |= FS_XFLAG_HASATTR;
677
678 return flags;
679}
680
681uint
682xfs_ip2xflags(
683 struct xfs_inode *ip)
684{
685 struct xfs_icdinode *dic = &ip->i_d;
686
687 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
688}
689
690/*
691 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
692 * is allowed, otherwise it has to be an exact match. If a CI match is found,
693 * ci_name->name will point to a the actual name (caller must free) or
694 * will be set to NULL if an exact match is found.
695 */
696int
697xfs_lookup(
698 xfs_inode_t *dp,
699 struct xfs_name *name,
700 xfs_inode_t **ipp,
701 struct xfs_name *ci_name)
702{
703 xfs_ino_t inum;
704 int error;
705
706 trace_xfs_lookup(dp, name);
707
708 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
709 return -EIO;
710
711 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
712 if (error)
713 goto out_unlock;
714
715 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
716 if (error)
717 goto out_free_name;
718
719 return 0;
720
721out_free_name:
722 if (ci_name)
723 kmem_free(ci_name->name);
724out_unlock:
725 *ipp = NULL;
726 return error;
727}
728
729/*
730 * Allocate an inode on disk and return a copy of its in-core version.
731 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
732 * appropriately within the inode. The uid and gid for the inode are
733 * set according to the contents of the given cred structure.
734 *
735 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
736 * has a free inode available, call xfs_iget() to obtain the in-core
737 * version of the allocated inode. Finally, fill in the inode and
738 * log its initial contents. In this case, ialloc_context would be
739 * set to NULL.
740 *
741 * If xfs_dialloc() does not have an available inode, it will replenish
742 * its supply by doing an allocation. Since we can only do one
743 * allocation within a transaction without deadlocks, we must commit
744 * the current transaction before returning the inode itself.
745 * In this case, therefore, we will set ialloc_context and return.
746 * The caller should then commit the current transaction, start a new
747 * transaction, and call xfs_ialloc() again to actually get the inode.
748 *
749 * To ensure that some other process does not grab the inode that
750 * was allocated during the first call to xfs_ialloc(), this routine
751 * also returns the [locked] bp pointing to the head of the freelist
752 * as ialloc_context. The caller should hold this buffer across
753 * the commit and pass it back into this routine on the second call.
754 *
755 * If we are allocating quota inodes, we do not have a parent inode
756 * to attach to or associate with (i.e. pip == NULL) because they
757 * are not linked into the directory structure - they are attached
758 * directly to the superblock - and so have no parent.
759 */
760static int
761xfs_ialloc(
762 xfs_trans_t *tp,
763 xfs_inode_t *pip,
764 umode_t mode,
765 xfs_nlink_t nlink,
766 dev_t rdev,
767 prid_t prid,
768 xfs_buf_t **ialloc_context,
769 xfs_inode_t **ipp)
770{
771 struct xfs_mount *mp = tp->t_mountp;
772 xfs_ino_t ino;
773 xfs_inode_t *ip;
774 uint flags;
775 int error;
776 struct timespec tv;
777 struct inode *inode;
778
779 /*
780 * Call the space management code to pick
781 * the on-disk inode to be allocated.
782 */
783 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode,
784 ialloc_context, &ino);
785 if (error)
786 return error;
787 if (*ialloc_context || ino == NULLFSINO) {
788 *ipp = NULL;
789 return 0;
790 }
791 ASSERT(*ialloc_context == NULL);
792
793 /*
794 * Get the in-core inode with the lock held exclusively.
795 * This is because we're setting fields here we need
796 * to prevent others from looking at until we're done.
797 */
798 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
799 XFS_ILOCK_EXCL, &ip);
800 if (error)
801 return error;
802 ASSERT(ip != NULL);
803 inode = VFS_I(ip);
804
805 /*
806 * We always convert v1 inodes to v2 now - we only support filesystems
807 * with >= v2 inode capability, so there is no reason for ever leaving
808 * an inode in v1 format.
809 */
810 if (ip->i_d.di_version == 1)
811 ip->i_d.di_version = 2;
812
813 inode->i_mode = mode;
814 set_nlink(inode, nlink);
815 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
816 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
817 inode->i_rdev = rdev;
818 xfs_set_projid(ip, prid);
819
820 if (pip && XFS_INHERIT_GID(pip)) {
821 ip->i_d.di_gid = pip->i_d.di_gid;
822 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
823 inode->i_mode |= S_ISGID;
824 }
825
826 /*
827 * If the group ID of the new file does not match the effective group
828 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
829 * (and only if the irix_sgid_inherit compatibility variable is set).
830 */
831 if ((irix_sgid_inherit) &&
832 (inode->i_mode & S_ISGID) &&
833 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
834 inode->i_mode &= ~S_ISGID;
835
836 ip->i_d.di_size = 0;
837 ip->i_d.di_nextents = 0;
838 ASSERT(ip->i_d.di_nblocks == 0);
839
840 tv = current_time(inode);
841 inode->i_mtime = tv;
842 inode->i_atime = tv;
843 inode->i_ctime = tv;
844
845 ip->i_d.di_extsize = 0;
846 ip->i_d.di_dmevmask = 0;
847 ip->i_d.di_dmstate = 0;
848 ip->i_d.di_flags = 0;
849
850 if (ip->i_d.di_version == 3) {
851 inode_set_iversion(inode, 1);
852 ip->i_d.di_flags2 = 0;
853 ip->i_d.di_cowextsize = 0;
854 ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec;
855 ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec;
856 }
857
858
859 flags = XFS_ILOG_CORE;
860 switch (mode & S_IFMT) {
861 case S_IFIFO:
862 case S_IFCHR:
863 case S_IFBLK:
864 case S_IFSOCK:
865 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
866 ip->i_df.if_flags = 0;
867 flags |= XFS_ILOG_DEV;
868 break;
869 case S_IFREG:
870 case S_IFDIR:
871 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
872 uint di_flags = 0;
873
874 if (S_ISDIR(mode)) {
875 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
876 di_flags |= XFS_DIFLAG_RTINHERIT;
877 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
878 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
879 ip->i_d.di_extsize = pip->i_d.di_extsize;
880 }
881 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
882 di_flags |= XFS_DIFLAG_PROJINHERIT;
883 } else if (S_ISREG(mode)) {
884 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
885 di_flags |= XFS_DIFLAG_REALTIME;
886 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
887 di_flags |= XFS_DIFLAG_EXTSIZE;
888 ip->i_d.di_extsize = pip->i_d.di_extsize;
889 }
890 }
891 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
892 xfs_inherit_noatime)
893 di_flags |= XFS_DIFLAG_NOATIME;
894 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
895 xfs_inherit_nodump)
896 di_flags |= XFS_DIFLAG_NODUMP;
897 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
898 xfs_inherit_sync)
899 di_flags |= XFS_DIFLAG_SYNC;
900 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
901 xfs_inherit_nosymlinks)
902 di_flags |= XFS_DIFLAG_NOSYMLINKS;
903 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
904 xfs_inherit_nodefrag)
905 di_flags |= XFS_DIFLAG_NODEFRAG;
906 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
907 di_flags |= XFS_DIFLAG_FILESTREAM;
908
909 ip->i_d.di_flags |= di_flags;
910 }
911 if (pip &&
912 (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) &&
913 pip->i_d.di_version == 3 &&
914 ip->i_d.di_version == 3) {
915 uint64_t di_flags2 = 0;
916
917 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
918 di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
919 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
920 }
921 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
922 di_flags2 |= XFS_DIFLAG2_DAX;
923
924 ip->i_d.di_flags2 |= di_flags2;
925 }
926 /* FALLTHROUGH */
927 case S_IFLNK:
928 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
929 ip->i_df.if_flags = XFS_IFEXTENTS;
930 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
931 ip->i_df.if_u1.if_root = NULL;
932 break;
933 default:
934 ASSERT(0);
935 }
936 /*
937 * Attribute fork settings for new inode.
938 */
939 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
940 ip->i_d.di_anextents = 0;
941
942 /*
943 * Log the new values stuffed into the inode.
944 */
945 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
946 xfs_trans_log_inode(tp, ip, flags);
947
948 /* now that we have an i_mode we can setup the inode structure */
949 xfs_setup_inode(ip);
950
951 *ipp = ip;
952 return 0;
953}
954
955/*
956 * Allocates a new inode from disk and return a pointer to the
957 * incore copy. This routine will internally commit the current
958 * transaction and allocate a new one if the Space Manager needed
959 * to do an allocation to replenish the inode free-list.
960 *
961 * This routine is designed to be called from xfs_create and
962 * xfs_create_dir.
963 *
964 */
965int
966xfs_dir_ialloc(
967 xfs_trans_t **tpp, /* input: current transaction;
968 output: may be a new transaction. */
969 xfs_inode_t *dp, /* directory within whose allocate
970 the inode. */
971 umode_t mode,
972 xfs_nlink_t nlink,
973 dev_t rdev,
974 prid_t prid, /* project id */
975 xfs_inode_t **ipp) /* pointer to inode; it will be
976 locked. */
977{
978 xfs_trans_t *tp;
979 xfs_inode_t *ip;
980 xfs_buf_t *ialloc_context = NULL;
981 int code;
982 void *dqinfo;
983 uint tflags;
984
985 tp = *tpp;
986 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
987
988 /*
989 * xfs_ialloc will return a pointer to an incore inode if
990 * the Space Manager has an available inode on the free
991 * list. Otherwise, it will do an allocation and replenish
992 * the freelist. Since we can only do one allocation per
993 * transaction without deadlocks, we will need to commit the
994 * current transaction and start a new one. We will then
995 * need to call xfs_ialloc again to get the inode.
996 *
997 * If xfs_ialloc did an allocation to replenish the freelist,
998 * it returns the bp containing the head of the freelist as
999 * ialloc_context. We will hold a lock on it across the
1000 * transaction commit so that no other process can steal
1001 * the inode(s) that we've just allocated.
1002 */
1003 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context,
1004 &ip);
1005
1006 /*
1007 * Return an error if we were unable to allocate a new inode.
1008 * This should only happen if we run out of space on disk or
1009 * encounter a disk error.
1010 */
1011 if (code) {
1012 *ipp = NULL;
1013 return code;
1014 }
1015 if (!ialloc_context && !ip) {
1016 *ipp = NULL;
1017 return -ENOSPC;
1018 }
1019
1020 /*
1021 * If the AGI buffer is non-NULL, then we were unable to get an
1022 * inode in one operation. We need to commit the current
1023 * transaction and call xfs_ialloc() again. It is guaranteed
1024 * to succeed the second time.
1025 */
1026 if (ialloc_context) {
1027 /*
1028 * Normally, xfs_trans_commit releases all the locks.
1029 * We call bhold to hang on to the ialloc_context across
1030 * the commit. Holding this buffer prevents any other
1031 * processes from doing any allocations in this
1032 * allocation group.
1033 */
1034 xfs_trans_bhold(tp, ialloc_context);
1035
1036 /*
1037 * We want the quota changes to be associated with the next
1038 * transaction, NOT this one. So, detach the dqinfo from this
1039 * and attach it to the next transaction.
1040 */
1041 dqinfo = NULL;
1042 tflags = 0;
1043 if (tp->t_dqinfo) {
1044 dqinfo = (void *)tp->t_dqinfo;
1045 tp->t_dqinfo = NULL;
1046 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1047 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1048 }
1049
1050 code = xfs_trans_roll(&tp);
1051
1052 /*
1053 * Re-attach the quota info that we detached from prev trx.
1054 */
1055 if (dqinfo) {
1056 tp->t_dqinfo = dqinfo;
1057 tp->t_flags |= tflags;
1058 }
1059
1060 if (code) {
1061 xfs_buf_relse(ialloc_context);
1062 *tpp = tp;
1063 *ipp = NULL;
1064 return code;
1065 }
1066 xfs_trans_bjoin(tp, ialloc_context);
1067
1068 /*
1069 * Call ialloc again. Since we've locked out all
1070 * other allocations in this allocation group,
1071 * this call should always succeed.
1072 */
1073 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1074 &ialloc_context, &ip);
1075
1076 /*
1077 * If we get an error at this point, return to the caller
1078 * so that the current transaction can be aborted.
1079 */
1080 if (code) {
1081 *tpp = tp;
1082 *ipp = NULL;
1083 return code;
1084 }
1085 ASSERT(!ialloc_context && ip);
1086
1087 }
1088
1089 *ipp = ip;
1090 *tpp = tp;
1091
1092 return 0;
1093}
1094
1095/*
1096 * Decrement the link count on an inode & log the change. If this causes the
1097 * link count to go to zero, move the inode to AGI unlinked list so that it can
1098 * be freed when the last active reference goes away via xfs_inactive().
1099 */
1100static int /* error */
1101xfs_droplink(
1102 xfs_trans_t *tp,
1103 xfs_inode_t *ip)
1104{
1105 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1106
1107 drop_nlink(VFS_I(ip));
1108 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1109
1110 if (VFS_I(ip)->i_nlink)
1111 return 0;
1112
1113 return xfs_iunlink(tp, ip);
1114}
1115
1116/*
1117 * Increment the link count on an inode & log the change.
1118 */
1119static int
1120xfs_bumplink(
1121 xfs_trans_t *tp,
1122 xfs_inode_t *ip)
1123{
1124 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1125
1126 ASSERT(ip->i_d.di_version > 1);
1127 inc_nlink(VFS_I(ip));
1128 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1129 return 0;
1130}
1131
1132int
1133xfs_create(
1134 xfs_inode_t *dp,
1135 struct xfs_name *name,
1136 umode_t mode,
1137 dev_t rdev,
1138 xfs_inode_t **ipp)
1139{
1140 int is_dir = S_ISDIR(mode);
1141 struct xfs_mount *mp = dp->i_mount;
1142 struct xfs_inode *ip = NULL;
1143 struct xfs_trans *tp = NULL;
1144 int error;
1145 struct xfs_defer_ops dfops;
1146 xfs_fsblock_t first_block;
1147 bool unlock_dp_on_error = false;
1148 prid_t prid;
1149 struct xfs_dquot *udqp = NULL;
1150 struct xfs_dquot *gdqp = NULL;
1151 struct xfs_dquot *pdqp = NULL;
1152 struct xfs_trans_res *tres;
1153 uint resblks;
1154
1155 trace_xfs_create(dp, name);
1156
1157 if (XFS_FORCED_SHUTDOWN(mp))
1158 return -EIO;
1159
1160 prid = xfs_get_initial_prid(dp);
1161
1162 /*
1163 * Make sure that we have allocated dquot(s) on disk.
1164 */
1165 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1166 xfs_kgid_to_gid(current_fsgid()), prid,
1167 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1168 &udqp, &gdqp, &pdqp);
1169 if (error)
1170 return error;
1171
1172 if (is_dir) {
1173 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1174 tres = &M_RES(mp)->tr_mkdir;
1175 } else {
1176 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1177 tres = &M_RES(mp)->tr_create;
1178 }
1179
1180 /*
1181 * Initially assume that the file does not exist and
1182 * reserve the resources for that case. If that is not
1183 * the case we'll drop the one we have and get a more
1184 * appropriate transaction later.
1185 */
1186 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1187 if (error == -ENOSPC) {
1188 /* flush outstanding delalloc blocks and retry */
1189 xfs_flush_inodes(mp);
1190 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1191 }
1192 if (error)
1193 goto out_release_inode;
1194
1195 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1196 unlock_dp_on_error = true;
1197
1198 xfs_defer_init(&dfops, &first_block);
1199
1200 /*
1201 * Reserve disk quota and the inode.
1202 */
1203 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1204 pdqp, resblks, 1, 0);
1205 if (error)
1206 goto out_trans_cancel;
1207
1208 /*
1209 * A newly created regular or special file just has one directory
1210 * entry pointing to them, but a directory also the "." entry
1211 * pointing to itself.
1212 */
1213 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip);
1214 if (error)
1215 goto out_trans_cancel;
1216
1217 /*
1218 * Now we join the directory inode to the transaction. We do not do it
1219 * earlier because xfs_dir_ialloc might commit the previous transaction
1220 * (and release all the locks). An error from here on will result in
1221 * the transaction cancel unlocking dp so don't do it explicitly in the
1222 * error path.
1223 */
1224 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1225 unlock_dp_on_error = false;
1226
1227 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1228 &first_block, &dfops, resblks ?
1229 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1230 if (error) {
1231 ASSERT(error != -ENOSPC);
1232 goto out_trans_cancel;
1233 }
1234 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1235 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1236
1237 if (is_dir) {
1238 error = xfs_dir_init(tp, ip, dp);
1239 if (error)
1240 goto out_bmap_cancel;
1241
1242 error = xfs_bumplink(tp, dp);
1243 if (error)
1244 goto out_bmap_cancel;
1245 }
1246
1247 /*
1248 * If this is a synchronous mount, make sure that the
1249 * create transaction goes to disk before returning to
1250 * the user.
1251 */
1252 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1253 xfs_trans_set_sync(tp);
1254
1255 /*
1256 * Attach the dquot(s) to the inodes and modify them incore.
1257 * These ids of the inode couldn't have changed since the new
1258 * inode has been locked ever since it was created.
1259 */
1260 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1261
1262 error = xfs_defer_finish(&tp, &dfops);
1263 if (error)
1264 goto out_bmap_cancel;
1265
1266 error = xfs_trans_commit(tp);
1267 if (error)
1268 goto out_release_inode;
1269
1270 xfs_qm_dqrele(udqp);
1271 xfs_qm_dqrele(gdqp);
1272 xfs_qm_dqrele(pdqp);
1273
1274 *ipp = ip;
1275 return 0;
1276
1277 out_bmap_cancel:
1278 xfs_defer_cancel(&dfops);
1279 out_trans_cancel:
1280 xfs_trans_cancel(tp);
1281 out_release_inode:
1282 /*
1283 * Wait until after the current transaction is aborted to finish the
1284 * setup of the inode and release the inode. This prevents recursive
1285 * transactions and deadlocks from xfs_inactive.
1286 */
1287 if (ip) {
1288 xfs_finish_inode_setup(ip);
1289 IRELE(ip);
1290 }
1291
1292 xfs_qm_dqrele(udqp);
1293 xfs_qm_dqrele(gdqp);
1294 xfs_qm_dqrele(pdqp);
1295
1296 if (unlock_dp_on_error)
1297 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1298 return error;
1299}
1300
1301int
1302xfs_create_tmpfile(
1303 struct xfs_inode *dp,
1304 umode_t mode,
1305 struct xfs_inode **ipp)
1306{
1307 struct xfs_mount *mp = dp->i_mount;
1308 struct xfs_inode *ip = NULL;
1309 struct xfs_trans *tp = NULL;
1310 int error;
1311 prid_t prid;
1312 struct xfs_dquot *udqp = NULL;
1313 struct xfs_dquot *gdqp = NULL;
1314 struct xfs_dquot *pdqp = NULL;
1315 struct xfs_trans_res *tres;
1316 uint resblks;
1317
1318 if (XFS_FORCED_SHUTDOWN(mp))
1319 return -EIO;
1320
1321 prid = xfs_get_initial_prid(dp);
1322
1323 /*
1324 * Make sure that we have allocated dquot(s) on disk.
1325 */
1326 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1327 xfs_kgid_to_gid(current_fsgid()), prid,
1328 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1329 &udqp, &gdqp, &pdqp);
1330 if (error)
1331 return error;
1332
1333 resblks = XFS_IALLOC_SPACE_RES(mp);
1334 tres = &M_RES(mp)->tr_create_tmpfile;
1335
1336 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1337 if (error)
1338 goto out_release_inode;
1339
1340 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1341 pdqp, resblks, 1, 0);
1342 if (error)
1343 goto out_trans_cancel;
1344
1345 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0, prid, &ip);
1346 if (error)
1347 goto out_trans_cancel;
1348
1349 if (mp->m_flags & XFS_MOUNT_WSYNC)
1350 xfs_trans_set_sync(tp);
1351
1352 /*
1353 * Attach the dquot(s) to the inodes and modify them incore.
1354 * These ids of the inode couldn't have changed since the new
1355 * inode has been locked ever since it was created.
1356 */
1357 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1358
1359 error = xfs_iunlink(tp, ip);
1360 if (error)
1361 goto out_trans_cancel;
1362
1363 error = xfs_trans_commit(tp);
1364 if (error)
1365 goto out_release_inode;
1366
1367 xfs_qm_dqrele(udqp);
1368 xfs_qm_dqrele(gdqp);
1369 xfs_qm_dqrele(pdqp);
1370
1371 *ipp = ip;
1372 return 0;
1373
1374 out_trans_cancel:
1375 xfs_trans_cancel(tp);
1376 out_release_inode:
1377 /*
1378 * Wait until after the current transaction is aborted to finish the
1379 * setup of the inode and release the inode. This prevents recursive
1380 * transactions and deadlocks from xfs_inactive.
1381 */
1382 if (ip) {
1383 xfs_finish_inode_setup(ip);
1384 IRELE(ip);
1385 }
1386
1387 xfs_qm_dqrele(udqp);
1388 xfs_qm_dqrele(gdqp);
1389 xfs_qm_dqrele(pdqp);
1390
1391 return error;
1392}
1393
1394int
1395xfs_link(
1396 xfs_inode_t *tdp,
1397 xfs_inode_t *sip,
1398 struct xfs_name *target_name)
1399{
1400 xfs_mount_t *mp = tdp->i_mount;
1401 xfs_trans_t *tp;
1402 int error;
1403 struct xfs_defer_ops dfops;
1404 xfs_fsblock_t first_block;
1405 int resblks;
1406
1407 trace_xfs_link(tdp, target_name);
1408
1409 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1410
1411 if (XFS_FORCED_SHUTDOWN(mp))
1412 return -EIO;
1413
1414 error = xfs_qm_dqattach(sip, 0);
1415 if (error)
1416 goto std_return;
1417
1418 error = xfs_qm_dqattach(tdp, 0);
1419 if (error)
1420 goto std_return;
1421
1422 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1423 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1424 if (error == -ENOSPC) {
1425 resblks = 0;
1426 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1427 }
1428 if (error)
1429 goto std_return;
1430
1431 xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
1432
1433 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1434 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1435
1436 /*
1437 * If we are using project inheritance, we only allow hard link
1438 * creation in our tree when the project IDs are the same; else
1439 * the tree quota mechanism could be circumvented.
1440 */
1441 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1442 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1443 error = -EXDEV;
1444 goto error_return;
1445 }
1446
1447 if (!resblks) {
1448 error = xfs_dir_canenter(tp, tdp, target_name);
1449 if (error)
1450 goto error_return;
1451 }
1452
1453 xfs_defer_init(&dfops, &first_block);
1454
1455 /*
1456 * Handle initial link state of O_TMPFILE inode
1457 */
1458 if (VFS_I(sip)->i_nlink == 0) {
1459 error = xfs_iunlink_remove(tp, sip);
1460 if (error)
1461 goto error_return;
1462 }
1463
1464 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1465 &first_block, &dfops, resblks);
1466 if (error)
1467 goto error_return;
1468 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1469 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1470
1471 error = xfs_bumplink(tp, sip);
1472 if (error)
1473 goto error_return;
1474
1475 /*
1476 * If this is a synchronous mount, make sure that the
1477 * link transaction goes to disk before returning to
1478 * the user.
1479 */
1480 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1481 xfs_trans_set_sync(tp);
1482
1483 error = xfs_defer_finish(&tp, &dfops);
1484 if (error) {
1485 xfs_defer_cancel(&dfops);
1486 goto error_return;
1487 }
1488
1489 return xfs_trans_commit(tp);
1490
1491 error_return:
1492 xfs_trans_cancel(tp);
1493 std_return:
1494 return error;
1495}
1496
1497/* Clear the reflink flag and the cowblocks tag if possible. */
1498static void
1499xfs_itruncate_clear_reflink_flags(
1500 struct xfs_inode *ip)
1501{
1502 struct xfs_ifork *dfork;
1503 struct xfs_ifork *cfork;
1504
1505 if (!xfs_is_reflink_inode(ip))
1506 return;
1507 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1508 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1509 if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1510 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1511 if (cfork->if_bytes == 0)
1512 xfs_inode_clear_cowblocks_tag(ip);
1513}
1514
1515/*
1516 * Free up the underlying blocks past new_size. The new size must be smaller
1517 * than the current size. This routine can be used both for the attribute and
1518 * data fork, and does not modify the inode size, which is left to the caller.
1519 *
1520 * The transaction passed to this routine must have made a permanent log
1521 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1522 * given transaction and start new ones, so make sure everything involved in
1523 * the transaction is tidy before calling here. Some transaction will be
1524 * returned to the caller to be committed. The incoming transaction must
1525 * already include the inode, and both inode locks must be held exclusively.
1526 * The inode must also be "held" within the transaction. On return the inode
1527 * will be "held" within the returned transaction. This routine does NOT
1528 * require any disk space to be reserved for it within the transaction.
1529 *
1530 * If we get an error, we must return with the inode locked and linked into the
1531 * current transaction. This keeps things simple for the higher level code,
1532 * because it always knows that the inode is locked and held in the transaction
1533 * that returns to it whether errors occur or not. We don't mark the inode
1534 * dirty on error so that transactions can be easily aborted if possible.
1535 */
1536int
1537xfs_itruncate_extents(
1538 struct xfs_trans **tpp,
1539 struct xfs_inode *ip,
1540 int whichfork,
1541 xfs_fsize_t new_size)
1542{
1543 struct xfs_mount *mp = ip->i_mount;
1544 struct xfs_trans *tp = *tpp;
1545 struct xfs_defer_ops dfops;
1546 xfs_fsblock_t first_block;
1547 xfs_fileoff_t first_unmap_block;
1548 xfs_fileoff_t last_block;
1549 xfs_filblks_t unmap_len;
1550 int error = 0;
1551 int done = 0;
1552
1553 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1554 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1555 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1556 ASSERT(new_size <= XFS_ISIZE(ip));
1557 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1558 ASSERT(ip->i_itemp != NULL);
1559 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1560 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1561
1562 trace_xfs_itruncate_extents_start(ip, new_size);
1563
1564 /*
1565 * Since it is possible for space to become allocated beyond
1566 * the end of the file (in a crash where the space is allocated
1567 * but the inode size is not yet updated), simply remove any
1568 * blocks which show up between the new EOF and the maximum
1569 * possible file size. If the first block to be removed is
1570 * beyond the maximum file size (ie it is the same as last_block),
1571 * then there is nothing to do.
1572 */
1573 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1574 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1575 if (first_unmap_block == last_block)
1576 return 0;
1577
1578 ASSERT(first_unmap_block < last_block);
1579 unmap_len = last_block - first_unmap_block + 1;
1580 while (!done) {
1581 xfs_defer_init(&dfops, &first_block);
1582 error = xfs_bunmapi(tp, ip,
1583 first_unmap_block, unmap_len,
1584 xfs_bmapi_aflag(whichfork),
1585 XFS_ITRUNC_MAX_EXTENTS,
1586 &first_block, &dfops,
1587 &done);
1588 if (error)
1589 goto out_bmap_cancel;
1590
1591 /*
1592 * Duplicate the transaction that has the permanent
1593 * reservation and commit the old transaction.
1594 */
1595 xfs_defer_ijoin(&dfops, ip);
1596 error = xfs_defer_finish(&tp, &dfops);
1597 if (error)
1598 goto out_bmap_cancel;
1599
1600 error = xfs_trans_roll_inode(&tp, ip);
1601 if (error)
1602 goto out;
1603 }
1604
1605 if (whichfork == XFS_DATA_FORK) {
1606 /* Remove all pending CoW reservations. */
1607 error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1608 first_unmap_block, last_block, true);
1609 if (error)
1610 goto out;
1611
1612 xfs_itruncate_clear_reflink_flags(ip);
1613 }
1614
1615 /*
1616 * Always re-log the inode so that our permanent transaction can keep
1617 * on rolling it forward in the log.
1618 */
1619 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1620
1621 trace_xfs_itruncate_extents_end(ip, new_size);
1622
1623out:
1624 *tpp = tp;
1625 return error;
1626out_bmap_cancel:
1627 /*
1628 * If the bunmapi call encounters an error, return to the caller where
1629 * the transaction can be properly aborted. We just need to make sure
1630 * we're not holding any resources that we were not when we came in.
1631 */
1632 xfs_defer_cancel(&dfops);
1633 goto out;
1634}
1635
1636int
1637xfs_release(
1638 xfs_inode_t *ip)
1639{
1640 xfs_mount_t *mp = ip->i_mount;
1641 int error;
1642
1643 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1644 return 0;
1645
1646 /* If this is a read-only mount, don't do this (would generate I/O) */
1647 if (mp->m_flags & XFS_MOUNT_RDONLY)
1648 return 0;
1649
1650 if (!XFS_FORCED_SHUTDOWN(mp)) {
1651 int truncated;
1652
1653 /*
1654 * If we previously truncated this file and removed old data
1655 * in the process, we want to initiate "early" writeout on
1656 * the last close. This is an attempt to combat the notorious
1657 * NULL files problem which is particularly noticeable from a
1658 * truncate down, buffered (re-)write (delalloc), followed by
1659 * a crash. What we are effectively doing here is
1660 * significantly reducing the time window where we'd otherwise
1661 * be exposed to that problem.
1662 */
1663 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1664 if (truncated) {
1665 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1666 if (ip->i_delayed_blks > 0) {
1667 error = filemap_flush(VFS_I(ip)->i_mapping);
1668 if (error)
1669 return error;
1670 }
1671 }
1672 }
1673
1674 if (VFS_I(ip)->i_nlink == 0)
1675 return 0;
1676
1677 if (xfs_can_free_eofblocks(ip, false)) {
1678
1679 /*
1680 * Check if the inode is being opened, written and closed
1681 * frequently and we have delayed allocation blocks outstanding
1682 * (e.g. streaming writes from the NFS server), truncating the
1683 * blocks past EOF will cause fragmentation to occur.
1684 *
1685 * In this case don't do the truncation, but we have to be
1686 * careful how we detect this case. Blocks beyond EOF show up as
1687 * i_delayed_blks even when the inode is clean, so we need to
1688 * truncate them away first before checking for a dirty release.
1689 * Hence on the first dirty close we will still remove the
1690 * speculative allocation, but after that we will leave it in
1691 * place.
1692 */
1693 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1694 return 0;
1695 /*
1696 * If we can't get the iolock just skip truncating the blocks
1697 * past EOF because we could deadlock with the mmap_sem
1698 * otherwise. We'll get another chance to drop them once the
1699 * last reference to the inode is dropped, so we'll never leak
1700 * blocks permanently.
1701 */
1702 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1703 error = xfs_free_eofblocks(ip);
1704 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1705 if (error)
1706 return error;
1707 }
1708
1709 /* delalloc blocks after truncation means it really is dirty */
1710 if (ip->i_delayed_blks)
1711 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1712 }
1713 return 0;
1714}
1715
1716/*
1717 * xfs_inactive_truncate
1718 *
1719 * Called to perform a truncate when an inode becomes unlinked.
1720 */
1721STATIC int
1722xfs_inactive_truncate(
1723 struct xfs_inode *ip)
1724{
1725 struct xfs_mount *mp = ip->i_mount;
1726 struct xfs_trans *tp;
1727 int error;
1728
1729 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1730 if (error) {
1731 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1732 return error;
1733 }
1734
1735 xfs_ilock(ip, XFS_ILOCK_EXCL);
1736 xfs_trans_ijoin(tp, ip, 0);
1737
1738 /*
1739 * Log the inode size first to prevent stale data exposure in the event
1740 * of a system crash before the truncate completes. See the related
1741 * comment in xfs_vn_setattr_size() for details.
1742 */
1743 ip->i_d.di_size = 0;
1744 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1745
1746 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1747 if (error)
1748 goto error_trans_cancel;
1749
1750 ASSERT(ip->i_d.di_nextents == 0);
1751
1752 error = xfs_trans_commit(tp);
1753 if (error)
1754 goto error_unlock;
1755
1756 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1757 return 0;
1758
1759error_trans_cancel:
1760 xfs_trans_cancel(tp);
1761error_unlock:
1762 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1763 return error;
1764}
1765
1766/*
1767 * xfs_inactive_ifree()
1768 *
1769 * Perform the inode free when an inode is unlinked.
1770 */
1771STATIC int
1772xfs_inactive_ifree(
1773 struct xfs_inode *ip)
1774{
1775 struct xfs_defer_ops dfops;
1776 xfs_fsblock_t first_block;
1777 struct xfs_mount *mp = ip->i_mount;
1778 struct xfs_trans *tp;
1779 int error;
1780
1781 /*
1782 * We try to use a per-AG reservation for any block needed by the finobt
1783 * tree, but as the finobt feature predates the per-AG reservation
1784 * support a degraded file system might not have enough space for the
1785 * reservation at mount time. In that case try to dip into the reserved
1786 * pool and pray.
1787 *
1788 * Send a warning if the reservation does happen to fail, as the inode
1789 * now remains allocated and sits on the unlinked list until the fs is
1790 * repaired.
1791 */
1792 if (unlikely(mp->m_inotbt_nores)) {
1793 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1794 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1795 &tp);
1796 } else {
1797 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1798 }
1799 if (error) {
1800 if (error == -ENOSPC) {
1801 xfs_warn_ratelimited(mp,
1802 "Failed to remove inode(s) from unlinked list. "
1803 "Please free space, unmount and run xfs_repair.");
1804 } else {
1805 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1806 }
1807 return error;
1808 }
1809
1810 xfs_ilock(ip, XFS_ILOCK_EXCL);
1811 xfs_trans_ijoin(tp, ip, 0);
1812
1813 xfs_defer_init(&dfops, &first_block);
1814 error = xfs_ifree(tp, ip, &dfops);
1815 if (error) {
1816 /*
1817 * If we fail to free the inode, shut down. The cancel
1818 * might do that, we need to make sure. Otherwise the
1819 * inode might be lost for a long time or forever.
1820 */
1821 if (!XFS_FORCED_SHUTDOWN(mp)) {
1822 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1823 __func__, error);
1824 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1825 }
1826 xfs_trans_cancel(tp);
1827 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1828 return error;
1829 }
1830
1831 /*
1832 * Credit the quota account(s). The inode is gone.
1833 */
1834 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1835
1836 /*
1837 * Just ignore errors at this point. There is nothing we can do except
1838 * to try to keep going. Make sure it's not a silent error.
1839 */
1840 error = xfs_defer_finish(&tp, &dfops);
1841 if (error) {
1842 xfs_notice(mp, "%s: xfs_defer_finish returned error %d",
1843 __func__, error);
1844 xfs_defer_cancel(&dfops);
1845 }
1846 error = xfs_trans_commit(tp);
1847 if (error)
1848 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1849 __func__, error);
1850
1851 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1852 return 0;
1853}
1854
1855/*
1856 * xfs_inactive
1857 *
1858 * This is called when the vnode reference count for the vnode
1859 * goes to zero. If the file has been unlinked, then it must
1860 * now be truncated. Also, we clear all of the read-ahead state
1861 * kept for the inode here since the file is now closed.
1862 */
1863void
1864xfs_inactive(
1865 xfs_inode_t *ip)
1866{
1867 struct xfs_mount *mp;
1868 struct xfs_ifork *cow_ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1869 int error;
1870 int truncate = 0;
1871
1872 /*
1873 * If the inode is already free, then there can be nothing
1874 * to clean up here.
1875 */
1876 if (VFS_I(ip)->i_mode == 0) {
1877 ASSERT(ip->i_df.if_real_bytes == 0);
1878 ASSERT(ip->i_df.if_broot_bytes == 0);
1879 return;
1880 }
1881
1882 mp = ip->i_mount;
1883 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1884
1885 /* If this is a read-only mount, don't do this (would generate I/O) */
1886 if (mp->m_flags & XFS_MOUNT_RDONLY)
1887 return;
1888
1889 /* Try to clean out the cow blocks if there are any. */
1890 if (xfs_is_reflink_inode(ip) && cow_ifp->if_bytes > 0)
1891 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1892
1893 if (VFS_I(ip)->i_nlink != 0) {
1894 /*
1895 * force is true because we are evicting an inode from the
1896 * cache. Post-eof blocks must be freed, lest we end up with
1897 * broken free space accounting.
1898 *
1899 * Note: don't bother with iolock here since lockdep complains
1900 * about acquiring it in reclaim context. We have the only
1901 * reference to the inode at this point anyways.
1902 */
1903 if (xfs_can_free_eofblocks(ip, true))
1904 xfs_free_eofblocks(ip);
1905
1906 return;
1907 }
1908
1909 if (S_ISREG(VFS_I(ip)->i_mode) &&
1910 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1911 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1912 truncate = 1;
1913
1914 error = xfs_qm_dqattach(ip, 0);
1915 if (error)
1916 return;
1917
1918 if (S_ISLNK(VFS_I(ip)->i_mode))
1919 error = xfs_inactive_symlink(ip);
1920 else if (truncate)
1921 error = xfs_inactive_truncate(ip);
1922 if (error)
1923 return;
1924
1925 /*
1926 * If there are attributes associated with the file then blow them away
1927 * now. The code calls a routine that recursively deconstructs the
1928 * attribute fork. If also blows away the in-core attribute fork.
1929 */
1930 if (XFS_IFORK_Q(ip)) {
1931 error = xfs_attr_inactive(ip);
1932 if (error)
1933 return;
1934 }
1935
1936 ASSERT(!ip->i_afp);
1937 ASSERT(ip->i_d.di_anextents == 0);
1938 ASSERT(ip->i_d.di_forkoff == 0);
1939
1940 /*
1941 * Free the inode.
1942 */
1943 error = xfs_inactive_ifree(ip);
1944 if (error)
1945 return;
1946
1947 /*
1948 * Release the dquots held by inode, if any.
1949 */
1950 xfs_qm_dqdetach(ip);
1951}
1952
1953/*
1954 * This is called when the inode's link count goes to 0 or we are creating a
1955 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1956 * set to true as the link count is dropped to zero by the VFS after we've
1957 * created the file successfully, so we have to add it to the unlinked list
1958 * while the link count is non-zero.
1959 *
1960 * We place the on-disk inode on a list in the AGI. It will be pulled from this
1961 * list when the inode is freed.
1962 */
1963STATIC int
1964xfs_iunlink(
1965 struct xfs_trans *tp,
1966 struct xfs_inode *ip)
1967{
1968 xfs_mount_t *mp = tp->t_mountp;
1969 xfs_agi_t *agi;
1970 xfs_dinode_t *dip;
1971 xfs_buf_t *agibp;
1972 xfs_buf_t *ibp;
1973 xfs_agino_t agino;
1974 short bucket_index;
1975 int offset;
1976 int error;
1977
1978 ASSERT(VFS_I(ip)->i_mode != 0);
1979
1980 /*
1981 * Get the agi buffer first. It ensures lock ordering
1982 * on the list.
1983 */
1984 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1985 if (error)
1986 return error;
1987 agi = XFS_BUF_TO_AGI(agibp);
1988
1989 /*
1990 * Get the index into the agi hash table for the
1991 * list this inode will go on.
1992 */
1993 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1994 ASSERT(agino != 0);
1995 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1996 ASSERT(agi->agi_unlinked[bucket_index]);
1997 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1998
1999 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
2000 /*
2001 * There is already another inode in the bucket we need
2002 * to add ourselves to. Add us at the front of the list.
2003 * Here we put the head pointer into our next pointer,
2004 * and then we fall through to point the head at us.
2005 */
2006 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2007 0, 0);
2008 if (error)
2009 return error;
2010
2011 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
2012 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
2013 offset = ip->i_imap.im_boffset +
2014 offsetof(xfs_dinode_t, di_next_unlinked);
2015
2016 /* need to recalc the inode CRC if appropriate */
2017 xfs_dinode_calc_crc(mp, dip);
2018
2019 xfs_trans_inode_buf(tp, ibp);
2020 xfs_trans_log_buf(tp, ibp, offset,
2021 (offset + sizeof(xfs_agino_t) - 1));
2022 xfs_inobp_check(mp, ibp);
2023 }
2024
2025 /*
2026 * Point the bucket head pointer at the inode being inserted.
2027 */
2028 ASSERT(agino != 0);
2029 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
2030 offset = offsetof(xfs_agi_t, agi_unlinked) +
2031 (sizeof(xfs_agino_t) * bucket_index);
2032 xfs_trans_log_buf(tp, agibp, offset,
2033 (offset + sizeof(xfs_agino_t) - 1));
2034 return 0;
2035}
2036
2037/*
2038 * Pull the on-disk inode from the AGI unlinked list.
2039 */
2040STATIC int
2041xfs_iunlink_remove(
2042 xfs_trans_t *tp,
2043 xfs_inode_t *ip)
2044{
2045 xfs_ino_t next_ino;
2046 xfs_mount_t *mp;
2047 xfs_agi_t *agi;
2048 xfs_dinode_t *dip;
2049 xfs_buf_t *agibp;
2050 xfs_buf_t *ibp;
2051 xfs_agnumber_t agno;
2052 xfs_agino_t agino;
2053 xfs_agino_t next_agino;
2054 xfs_buf_t *last_ibp;
2055 xfs_dinode_t *last_dip = NULL;
2056 short bucket_index;
2057 int offset, last_offset = 0;
2058 int error;
2059
2060 mp = tp->t_mountp;
2061 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2062
2063 /*
2064 * Get the agi buffer first. It ensures lock ordering
2065 * on the list.
2066 */
2067 error = xfs_read_agi(mp, tp, agno, &agibp);
2068 if (error)
2069 return error;
2070
2071 agi = XFS_BUF_TO_AGI(agibp);
2072
2073 /*
2074 * Get the index into the agi hash table for the
2075 * list this inode will go on.
2076 */
2077 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2078 ASSERT(agino != 0);
2079 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2080 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2081 ASSERT(agi->agi_unlinked[bucket_index]);
2082
2083 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2084 /*
2085 * We're at the head of the list. Get the inode's on-disk
2086 * buffer to see if there is anyone after us on the list.
2087 * Only modify our next pointer if it is not already NULLAGINO.
2088 * This saves us the overhead of dealing with the buffer when
2089 * there is no need to change it.
2090 */
2091 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2092 0, 0);
2093 if (error) {
2094 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2095 __func__, error);
2096 return error;
2097 }
2098 next_agino = be32_to_cpu(dip->di_next_unlinked);
2099 ASSERT(next_agino != 0);
2100 if (next_agino != NULLAGINO) {
2101 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2102 offset = ip->i_imap.im_boffset +
2103 offsetof(xfs_dinode_t, di_next_unlinked);
2104
2105 /* need to recalc the inode CRC if appropriate */
2106 xfs_dinode_calc_crc(mp, dip);
2107
2108 xfs_trans_inode_buf(tp, ibp);
2109 xfs_trans_log_buf(tp, ibp, offset,
2110 (offset + sizeof(xfs_agino_t) - 1));
2111 xfs_inobp_check(mp, ibp);
2112 } else {
2113 xfs_trans_brelse(tp, ibp);
2114 }
2115 /*
2116 * Point the bucket head pointer at the next inode.
2117 */
2118 ASSERT(next_agino != 0);
2119 ASSERT(next_agino != agino);
2120 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2121 offset = offsetof(xfs_agi_t, agi_unlinked) +
2122 (sizeof(xfs_agino_t) * bucket_index);
2123 xfs_trans_log_buf(tp, agibp, offset,
2124 (offset + sizeof(xfs_agino_t) - 1));
2125 } else {
2126 /*
2127 * We need to search the list for the inode being freed.
2128 */
2129 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2130 last_ibp = NULL;
2131 while (next_agino != agino) {
2132 struct xfs_imap imap;
2133
2134 if (last_ibp)
2135 xfs_trans_brelse(tp, last_ibp);
2136
2137 imap.im_blkno = 0;
2138 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2139
2140 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2141 if (error) {
2142 xfs_warn(mp,
2143 "%s: xfs_imap returned error %d.",
2144 __func__, error);
2145 return error;
2146 }
2147
2148 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2149 &last_ibp, 0, 0);
2150 if (error) {
2151 xfs_warn(mp,
2152 "%s: xfs_imap_to_bp returned error %d.",
2153 __func__, error);
2154 return error;
2155 }
2156
2157 last_offset = imap.im_boffset;
2158 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2159 ASSERT(next_agino != NULLAGINO);
2160 ASSERT(next_agino != 0);
2161 }
2162
2163 /*
2164 * Now last_ibp points to the buffer previous to us on the
2165 * unlinked list. Pull us from the list.
2166 */
2167 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2168 0, 0);
2169 if (error) {
2170 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2171 __func__, error);
2172 return error;
2173 }
2174 next_agino = be32_to_cpu(dip->di_next_unlinked);
2175 ASSERT(next_agino != 0);
2176 ASSERT(next_agino != agino);
2177 if (next_agino != NULLAGINO) {
2178 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2179 offset = ip->i_imap.im_boffset +
2180 offsetof(xfs_dinode_t, di_next_unlinked);
2181
2182 /* need to recalc the inode CRC if appropriate */
2183 xfs_dinode_calc_crc(mp, dip);
2184
2185 xfs_trans_inode_buf(tp, ibp);
2186 xfs_trans_log_buf(tp, ibp, offset,
2187 (offset + sizeof(xfs_agino_t) - 1));
2188 xfs_inobp_check(mp, ibp);
2189 } else {
2190 xfs_trans_brelse(tp, ibp);
2191 }
2192 /*
2193 * Point the previous inode on the list to the next inode.
2194 */
2195 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2196 ASSERT(next_agino != 0);
2197 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2198
2199 /* need to recalc the inode CRC if appropriate */
2200 xfs_dinode_calc_crc(mp, last_dip);
2201
2202 xfs_trans_inode_buf(tp, last_ibp);
2203 xfs_trans_log_buf(tp, last_ibp, offset,
2204 (offset + sizeof(xfs_agino_t) - 1));
2205 xfs_inobp_check(mp, last_ibp);
2206 }
2207 return 0;
2208}
2209
2210/*
2211 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2212 * inodes that are in memory - they all must be marked stale and attached to
2213 * the cluster buffer.
2214 */
2215STATIC int
2216xfs_ifree_cluster(
2217 xfs_inode_t *free_ip,
2218 xfs_trans_t *tp,
2219 struct xfs_icluster *xic)
2220{
2221 xfs_mount_t *mp = free_ip->i_mount;
2222 int blks_per_cluster;
2223 int inodes_per_cluster;
2224 int nbufs;
2225 int i, j;
2226 int ioffset;
2227 xfs_daddr_t blkno;
2228 xfs_buf_t *bp;
2229 xfs_inode_t *ip;
2230 xfs_inode_log_item_t *iip;
2231 struct xfs_log_item *lip;
2232 struct xfs_perag *pag;
2233 xfs_ino_t inum;
2234
2235 inum = xic->first_ino;
2236 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2237 blks_per_cluster = xfs_icluster_size_fsb(mp);
2238 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2239 nbufs = mp->m_ialloc_blks / blks_per_cluster;
2240
2241 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2242 /*
2243 * The allocation bitmap tells us which inodes of the chunk were
2244 * physically allocated. Skip the cluster if an inode falls into
2245 * a sparse region.
2246 */
2247 ioffset = inum - xic->first_ino;
2248 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2249 ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
2250 continue;
2251 }
2252
2253 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2254 XFS_INO_TO_AGBNO(mp, inum));
2255
2256 /*
2257 * We obtain and lock the backing buffer first in the process
2258 * here, as we have to ensure that any dirty inode that we
2259 * can't get the flush lock on is attached to the buffer.
2260 * If we scan the in-memory inodes first, then buffer IO can
2261 * complete before we get a lock on it, and hence we may fail
2262 * to mark all the active inodes on the buffer stale.
2263 */
2264 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2265 mp->m_bsize * blks_per_cluster,
2266 XBF_UNMAPPED);
2267
2268 if (!bp)
2269 return -ENOMEM;
2270
2271 /*
2272 * This buffer may not have been correctly initialised as we
2273 * didn't read it from disk. That's not important because we are
2274 * only using to mark the buffer as stale in the log, and to
2275 * attach stale cached inodes on it. That means it will never be
2276 * dispatched for IO. If it is, we want to know about it, and we
2277 * want it to fail. We can acheive this by adding a write
2278 * verifier to the buffer.
2279 */
2280 bp->b_ops = &xfs_inode_buf_ops;
2281
2282 /*
2283 * Walk the inodes already attached to the buffer and mark them
2284 * stale. These will all have the flush locks held, so an
2285 * in-memory inode walk can't lock them. By marking them all
2286 * stale first, we will not attempt to lock them in the loop
2287 * below as the XFS_ISTALE flag will be set.
2288 */
2289 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
2290 if (lip->li_type == XFS_LI_INODE) {
2291 iip = (xfs_inode_log_item_t *)lip;
2292 ASSERT(iip->ili_logged == 1);
2293 lip->li_cb = xfs_istale_done;
2294 xfs_trans_ail_copy_lsn(mp->m_ail,
2295 &iip->ili_flush_lsn,
2296 &iip->ili_item.li_lsn);
2297 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2298 }
2299 }
2300
2301
2302 /*
2303 * For each inode in memory attempt to add it to the inode
2304 * buffer and set it up for being staled on buffer IO
2305 * completion. This is safe as we've locked out tail pushing
2306 * and flushing by locking the buffer.
2307 *
2308 * We have already marked every inode that was part of a
2309 * transaction stale above, which means there is no point in
2310 * even trying to lock them.
2311 */
2312 for (i = 0; i < inodes_per_cluster; i++) {
2313retry:
2314 rcu_read_lock();
2315 ip = radix_tree_lookup(&pag->pag_ici_root,
2316 XFS_INO_TO_AGINO(mp, (inum + i)));
2317
2318 /* Inode not in memory, nothing to do */
2319 if (!ip) {
2320 rcu_read_unlock();
2321 continue;
2322 }
2323
2324 /*
2325 * because this is an RCU protected lookup, we could
2326 * find a recently freed or even reallocated inode
2327 * during the lookup. We need to check under the
2328 * i_flags_lock for a valid inode here. Skip it if it
2329 * is not valid, the wrong inode or stale.
2330 */
2331 spin_lock(&ip->i_flags_lock);
2332 if (ip->i_ino != inum + i ||
2333 __xfs_iflags_test(ip, XFS_ISTALE)) {
2334 spin_unlock(&ip->i_flags_lock);
2335 rcu_read_unlock();
2336 continue;
2337 }
2338 spin_unlock(&ip->i_flags_lock);
2339
2340 /*
2341 * Don't try to lock/unlock the current inode, but we
2342 * _cannot_ skip the other inodes that we did not find
2343 * in the list attached to the buffer and are not
2344 * already marked stale. If we can't lock it, back off
2345 * and retry.
2346 */
2347 if (ip != free_ip) {
2348 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2349 rcu_read_unlock();
2350 delay(1);
2351 goto retry;
2352 }
2353
2354 /*
2355 * Check the inode number again in case we're
2356 * racing with freeing in xfs_reclaim_inode().
2357 * See the comments in that function for more
2358 * information as to why the initial check is
2359 * not sufficient.
2360 */
2361 if (ip->i_ino != inum + i) {
2362 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2363 rcu_read_unlock();
2364 continue;
2365 }
2366 }
2367 rcu_read_unlock();
2368
2369 xfs_iflock(ip);
2370 xfs_iflags_set(ip, XFS_ISTALE);
2371
2372 /*
2373 * we don't need to attach clean inodes or those only
2374 * with unlogged changes (which we throw away, anyway).
2375 */
2376 iip = ip->i_itemp;
2377 if (!iip || xfs_inode_clean(ip)) {
2378 ASSERT(ip != free_ip);
2379 xfs_ifunlock(ip);
2380 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2381 continue;
2382 }
2383
2384 iip->ili_last_fields = iip->ili_fields;
2385 iip->ili_fields = 0;
2386 iip->ili_fsync_fields = 0;
2387 iip->ili_logged = 1;
2388 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2389 &iip->ili_item.li_lsn);
2390
2391 xfs_buf_attach_iodone(bp, xfs_istale_done,
2392 &iip->ili_item);
2393
2394 if (ip != free_ip)
2395 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2396 }
2397
2398 xfs_trans_stale_inode_buf(tp, bp);
2399 xfs_trans_binval(tp, bp);
2400 }
2401
2402 xfs_perag_put(pag);
2403 return 0;
2404}
2405
2406/*
2407 * Free any local-format buffers sitting around before we reset to
2408 * extents format.
2409 */
2410static inline void
2411xfs_ifree_local_data(
2412 struct xfs_inode *ip,
2413 int whichfork)
2414{
2415 struct xfs_ifork *ifp;
2416
2417 if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL)
2418 return;
2419
2420 ifp = XFS_IFORK_PTR(ip, whichfork);
2421 xfs_idata_realloc(ip, -ifp->if_bytes, whichfork);
2422}
2423
2424/*
2425 * This is called to return an inode to the inode free list.
2426 * The inode should already be truncated to 0 length and have
2427 * no pages associated with it. This routine also assumes that
2428 * the inode is already a part of the transaction.
2429 *
2430 * The on-disk copy of the inode will have been added to the list
2431 * of unlinked inodes in the AGI. We need to remove the inode from
2432 * that list atomically with respect to freeing it here.
2433 */
2434int
2435xfs_ifree(
2436 xfs_trans_t *tp,
2437 xfs_inode_t *ip,
2438 struct xfs_defer_ops *dfops)
2439{
2440 int error;
2441 struct xfs_icluster xic = { 0 };
2442
2443 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2444 ASSERT(VFS_I(ip)->i_nlink == 0);
2445 ASSERT(ip->i_d.di_nextents == 0);
2446 ASSERT(ip->i_d.di_anextents == 0);
2447 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2448 ASSERT(ip->i_d.di_nblocks == 0);
2449
2450 /*
2451 * Pull the on-disk inode from the AGI unlinked list.
2452 */
2453 error = xfs_iunlink_remove(tp, ip);
2454 if (error)
2455 return error;
2456
2457 error = xfs_difree(tp, ip->i_ino, dfops, &xic);
2458 if (error)
2459 return error;
2460
2461 xfs_ifree_local_data(ip, XFS_DATA_FORK);
2462 xfs_ifree_local_data(ip, XFS_ATTR_FORK);
2463
2464 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
2465 ip->i_d.di_flags = 0;
2466 ip->i_d.di_flags2 = 0;
2467 ip->i_d.di_dmevmask = 0;
2468 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2469 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2470 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2471
2472 /* Don't attempt to replay owner changes for a deleted inode */
2473 ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER);
2474
2475 /*
2476 * Bump the generation count so no one will be confused
2477 * by reincarnations of this inode.
2478 */
2479 VFS_I(ip)->i_generation++;
2480 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2481
2482 if (xic.deleted)
2483 error = xfs_ifree_cluster(ip, tp, &xic);
2484
2485 return error;
2486}
2487
2488/*
2489 * This is called to unpin an inode. The caller must have the inode locked
2490 * in at least shared mode so that the buffer cannot be subsequently pinned
2491 * once someone is waiting for it to be unpinned.
2492 */
2493static void
2494xfs_iunpin(
2495 struct xfs_inode *ip)
2496{
2497 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2498
2499 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2500
2501 /* Give the log a push to start the unpinning I/O */
2502 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL);
2503
2504}
2505
2506static void
2507__xfs_iunpin_wait(
2508 struct xfs_inode *ip)
2509{
2510 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2511 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2512
2513 xfs_iunpin(ip);
2514
2515 do {
2516 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2517 if (xfs_ipincount(ip))
2518 io_schedule();
2519 } while (xfs_ipincount(ip));
2520 finish_wait(wq, &wait.wq_entry);
2521}
2522
2523void
2524xfs_iunpin_wait(
2525 struct xfs_inode *ip)
2526{
2527 if (xfs_ipincount(ip))
2528 __xfs_iunpin_wait(ip);
2529}
2530
2531/*
2532 * Removing an inode from the namespace involves removing the directory entry
2533 * and dropping the link count on the inode. Removing the directory entry can
2534 * result in locking an AGF (directory blocks were freed) and removing a link
2535 * count can result in placing the inode on an unlinked list which results in
2536 * locking an AGI.
2537 *
2538 * The big problem here is that we have an ordering constraint on AGF and AGI
2539 * locking - inode allocation locks the AGI, then can allocate a new extent for
2540 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2541 * removes the inode from the unlinked list, requiring that we lock the AGI
2542 * first, and then freeing the inode can result in an inode chunk being freed
2543 * and hence freeing disk space requiring that we lock an AGF.
2544 *
2545 * Hence the ordering that is imposed by other parts of the code is AGI before
2546 * AGF. This means we cannot remove the directory entry before we drop the inode
2547 * reference count and put it on the unlinked list as this results in a lock
2548 * order of AGF then AGI, and this can deadlock against inode allocation and
2549 * freeing. Therefore we must drop the link counts before we remove the
2550 * directory entry.
2551 *
2552 * This is still safe from a transactional point of view - it is not until we
2553 * get to xfs_defer_finish() that we have the possibility of multiple
2554 * transactions in this operation. Hence as long as we remove the directory
2555 * entry and drop the link count in the first transaction of the remove
2556 * operation, there are no transactional constraints on the ordering here.
2557 */
2558int
2559xfs_remove(
2560 xfs_inode_t *dp,
2561 struct xfs_name *name,
2562 xfs_inode_t *ip)
2563{
2564 xfs_mount_t *mp = dp->i_mount;
2565 xfs_trans_t *tp = NULL;
2566 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2567 int error = 0;
2568 struct xfs_defer_ops dfops;
2569 xfs_fsblock_t first_block;
2570 uint resblks;
2571
2572 trace_xfs_remove(dp, name);
2573
2574 if (XFS_FORCED_SHUTDOWN(mp))
2575 return -EIO;
2576
2577 error = xfs_qm_dqattach(dp, 0);
2578 if (error)
2579 goto std_return;
2580
2581 error = xfs_qm_dqattach(ip, 0);
2582 if (error)
2583 goto std_return;
2584
2585 /*
2586 * We try to get the real space reservation first,
2587 * allowing for directory btree deletion(s) implying
2588 * possible bmap insert(s). If we can't get the space
2589 * reservation then we use 0 instead, and avoid the bmap
2590 * btree insert(s) in the directory code by, if the bmap
2591 * insert tries to happen, instead trimming the LAST
2592 * block from the directory.
2593 */
2594 resblks = XFS_REMOVE_SPACE_RES(mp);
2595 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2596 if (error == -ENOSPC) {
2597 resblks = 0;
2598 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2599 &tp);
2600 }
2601 if (error) {
2602 ASSERT(error != -ENOSPC);
2603 goto std_return;
2604 }
2605
2606 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
2607
2608 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2609 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2610
2611 /*
2612 * If we're removing a directory perform some additional validation.
2613 */
2614 if (is_dir) {
2615 ASSERT(VFS_I(ip)->i_nlink >= 2);
2616 if (VFS_I(ip)->i_nlink != 2) {
2617 error = -ENOTEMPTY;
2618 goto out_trans_cancel;
2619 }
2620 if (!xfs_dir_isempty(ip)) {
2621 error = -ENOTEMPTY;
2622 goto out_trans_cancel;
2623 }
2624
2625 /* Drop the link from ip's "..". */
2626 error = xfs_droplink(tp, dp);
2627 if (error)
2628 goto out_trans_cancel;
2629
2630 /* Drop the "." link from ip to self. */
2631 error = xfs_droplink(tp, ip);
2632 if (error)
2633 goto out_trans_cancel;
2634 } else {
2635 /*
2636 * When removing a non-directory we need to log the parent
2637 * inode here. For a directory this is done implicitly
2638 * by the xfs_droplink call for the ".." entry.
2639 */
2640 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2641 }
2642 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2643
2644 /* Drop the link from dp to ip. */
2645 error = xfs_droplink(tp, ip);
2646 if (error)
2647 goto out_trans_cancel;
2648
2649 xfs_defer_init(&dfops, &first_block);
2650 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2651 &first_block, &dfops, resblks);
2652 if (error) {
2653 ASSERT(error != -ENOENT);
2654 goto out_bmap_cancel;
2655 }
2656
2657 /*
2658 * If this is a synchronous mount, make sure that the
2659 * remove transaction goes to disk before returning to
2660 * the user.
2661 */
2662 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2663 xfs_trans_set_sync(tp);
2664
2665 error = xfs_defer_finish(&tp, &dfops);
2666 if (error)
2667 goto out_bmap_cancel;
2668
2669 error = xfs_trans_commit(tp);
2670 if (error)
2671 goto std_return;
2672
2673 if (is_dir && xfs_inode_is_filestream(ip))
2674 xfs_filestream_deassociate(ip);
2675
2676 return 0;
2677
2678 out_bmap_cancel:
2679 xfs_defer_cancel(&dfops);
2680 out_trans_cancel:
2681 xfs_trans_cancel(tp);
2682 std_return:
2683 return error;
2684}
2685
2686/*
2687 * Enter all inodes for a rename transaction into a sorted array.
2688 */
2689#define __XFS_SORT_INODES 5
2690STATIC void
2691xfs_sort_for_rename(
2692 struct xfs_inode *dp1, /* in: old (source) directory inode */
2693 struct xfs_inode *dp2, /* in: new (target) directory inode */
2694 struct xfs_inode *ip1, /* in: inode of old entry */
2695 struct xfs_inode *ip2, /* in: inode of new entry */
2696 struct xfs_inode *wip, /* in: whiteout inode */
2697 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2698 int *num_inodes) /* in/out: inodes in array */
2699{
2700 int i, j;
2701
2702 ASSERT(*num_inodes == __XFS_SORT_INODES);
2703 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2704
2705 /*
2706 * i_tab contains a list of pointers to inodes. We initialize
2707 * the table here & we'll sort it. We will then use it to
2708 * order the acquisition of the inode locks.
2709 *
2710 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2711 */
2712 i = 0;
2713 i_tab[i++] = dp1;
2714 i_tab[i++] = dp2;
2715 i_tab[i++] = ip1;
2716 if (ip2)
2717 i_tab[i++] = ip2;
2718 if (wip)
2719 i_tab[i++] = wip;
2720 *num_inodes = i;
2721
2722 /*
2723 * Sort the elements via bubble sort. (Remember, there are at
2724 * most 5 elements to sort, so this is adequate.)
2725 */
2726 for (i = 0; i < *num_inodes; i++) {
2727 for (j = 1; j < *num_inodes; j++) {
2728 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2729 struct xfs_inode *temp = i_tab[j];
2730 i_tab[j] = i_tab[j-1];
2731 i_tab[j-1] = temp;
2732 }
2733 }
2734 }
2735}
2736
2737static int
2738xfs_finish_rename(
2739 struct xfs_trans *tp,
2740 struct xfs_defer_ops *dfops)
2741{
2742 int error;
2743
2744 /*
2745 * If this is a synchronous mount, make sure that the rename transaction
2746 * goes to disk before returning to the user.
2747 */
2748 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2749 xfs_trans_set_sync(tp);
2750
2751 error = xfs_defer_finish(&tp, dfops);
2752 if (error) {
2753 xfs_defer_cancel(dfops);
2754 xfs_trans_cancel(tp);
2755 return error;
2756 }
2757
2758 return xfs_trans_commit(tp);
2759}
2760
2761/*
2762 * xfs_cross_rename()
2763 *
2764 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2765 */
2766STATIC int
2767xfs_cross_rename(
2768 struct xfs_trans *tp,
2769 struct xfs_inode *dp1,
2770 struct xfs_name *name1,
2771 struct xfs_inode *ip1,
2772 struct xfs_inode *dp2,
2773 struct xfs_name *name2,
2774 struct xfs_inode *ip2,
2775 struct xfs_defer_ops *dfops,
2776 xfs_fsblock_t *first_block,
2777 int spaceres)
2778{
2779 int error = 0;
2780 int ip1_flags = 0;
2781 int ip2_flags = 0;
2782 int dp2_flags = 0;
2783
2784 /* Swap inode number for dirent in first parent */
2785 error = xfs_dir_replace(tp, dp1, name1,
2786 ip2->i_ino,
2787 first_block, dfops, spaceres);
2788 if (error)
2789 goto out_trans_abort;
2790
2791 /* Swap inode number for dirent in second parent */
2792 error = xfs_dir_replace(tp, dp2, name2,
2793 ip1->i_ino,
2794 first_block, dfops, spaceres);
2795 if (error)
2796 goto out_trans_abort;
2797
2798 /*
2799 * If we're renaming one or more directories across different parents,
2800 * update the respective ".." entries (and link counts) to match the new
2801 * parents.
2802 */
2803 if (dp1 != dp2) {
2804 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2805
2806 if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2807 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2808 dp1->i_ino, first_block,
2809 dfops, spaceres);
2810 if (error)
2811 goto out_trans_abort;
2812
2813 /* transfer ip2 ".." reference to dp1 */
2814 if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2815 error = xfs_droplink(tp, dp2);
2816 if (error)
2817 goto out_trans_abort;
2818 error = xfs_bumplink(tp, dp1);
2819 if (error)
2820 goto out_trans_abort;
2821 }
2822
2823 /*
2824 * Although ip1 isn't changed here, userspace needs
2825 * to be warned about the change, so that applications
2826 * relying on it (like backup ones), will properly
2827 * notify the change
2828 */
2829 ip1_flags |= XFS_ICHGTIME_CHG;
2830 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2831 }
2832
2833 if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2834 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2835 dp2->i_ino, first_block,
2836 dfops, spaceres);
2837 if (error)
2838 goto out_trans_abort;
2839
2840 /* transfer ip1 ".." reference to dp2 */
2841 if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2842 error = xfs_droplink(tp, dp1);
2843 if (error)
2844 goto out_trans_abort;
2845 error = xfs_bumplink(tp, dp2);
2846 if (error)
2847 goto out_trans_abort;
2848 }
2849
2850 /*
2851 * Although ip2 isn't changed here, userspace needs
2852 * to be warned about the change, so that applications
2853 * relying on it (like backup ones), will properly
2854 * notify the change
2855 */
2856 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2857 ip2_flags |= XFS_ICHGTIME_CHG;
2858 }
2859 }
2860
2861 if (ip1_flags) {
2862 xfs_trans_ichgtime(tp, ip1, ip1_flags);
2863 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2864 }
2865 if (ip2_flags) {
2866 xfs_trans_ichgtime(tp, ip2, ip2_flags);
2867 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2868 }
2869 if (dp2_flags) {
2870 xfs_trans_ichgtime(tp, dp2, dp2_flags);
2871 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2872 }
2873 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2874 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2875 return xfs_finish_rename(tp, dfops);
2876
2877out_trans_abort:
2878 xfs_defer_cancel(dfops);
2879 xfs_trans_cancel(tp);
2880 return error;
2881}
2882
2883/*
2884 * xfs_rename_alloc_whiteout()
2885 *
2886 * Return a referenced, unlinked, unlocked inode that that can be used as a
2887 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2888 * crash between allocating the inode and linking it into the rename transaction
2889 * recovery will free the inode and we won't leak it.
2890 */
2891static int
2892xfs_rename_alloc_whiteout(
2893 struct xfs_inode *dp,
2894 struct xfs_inode **wip)
2895{
2896 struct xfs_inode *tmpfile;
2897 int error;
2898
2899 error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2900 if (error)
2901 return error;
2902
2903 /*
2904 * Prepare the tmpfile inode as if it were created through the VFS.
2905 * Otherwise, the link increment paths will complain about nlink 0->1.
2906 * Drop the link count as done by d_tmpfile(), complete the inode setup
2907 * and flag it as linkable.
2908 */
2909 drop_nlink(VFS_I(tmpfile));
2910 xfs_setup_iops(tmpfile);
2911 xfs_finish_inode_setup(tmpfile);
2912 VFS_I(tmpfile)->i_state |= I_LINKABLE;
2913
2914 *wip = tmpfile;
2915 return 0;
2916}
2917
2918/*
2919 * xfs_rename
2920 */
2921int
2922xfs_rename(
2923 struct xfs_inode *src_dp,
2924 struct xfs_name *src_name,
2925 struct xfs_inode *src_ip,
2926 struct xfs_inode *target_dp,
2927 struct xfs_name *target_name,
2928 struct xfs_inode *target_ip,
2929 unsigned int flags)
2930{
2931 struct xfs_mount *mp = src_dp->i_mount;
2932 struct xfs_trans *tp;
2933 struct xfs_defer_ops dfops;
2934 xfs_fsblock_t first_block;
2935 struct xfs_inode *wip = NULL; /* whiteout inode */
2936 struct xfs_inode *inodes[__XFS_SORT_INODES];
2937 int num_inodes = __XFS_SORT_INODES;
2938 bool new_parent = (src_dp != target_dp);
2939 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2940 int spaceres;
2941 int error;
2942
2943 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2944
2945 if ((flags & RENAME_EXCHANGE) && !target_ip)
2946 return -EINVAL;
2947
2948 /*
2949 * If we are doing a whiteout operation, allocate the whiteout inode
2950 * we will be placing at the target and ensure the type is set
2951 * appropriately.
2952 */
2953 if (flags & RENAME_WHITEOUT) {
2954 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2955 error = xfs_rename_alloc_whiteout(target_dp, &wip);
2956 if (error)
2957 return error;
2958
2959 /* setup target dirent info as whiteout */
2960 src_name->type = XFS_DIR3_FT_CHRDEV;
2961 }
2962
2963 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2964 inodes, &num_inodes);
2965
2966 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2967 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2968 if (error == -ENOSPC) {
2969 spaceres = 0;
2970 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2971 &tp);
2972 }
2973 if (error)
2974 goto out_release_wip;
2975
2976 /*
2977 * Attach the dquots to the inodes
2978 */
2979 error = xfs_qm_vop_rename_dqattach(inodes);
2980 if (error)
2981 goto out_trans_cancel;
2982
2983 /*
2984 * Lock all the participating inodes. Depending upon whether
2985 * the target_name exists in the target directory, and
2986 * whether the target directory is the same as the source
2987 * directory, we can lock from 2 to 4 inodes.
2988 */
2989 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2990
2991 /*
2992 * Join all the inodes to the transaction. From this point on,
2993 * we can rely on either trans_commit or trans_cancel to unlock
2994 * them.
2995 */
2996 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2997 if (new_parent)
2998 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2999 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3000 if (target_ip)
3001 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3002 if (wip)
3003 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3004
3005 /*
3006 * If we are using project inheritance, we only allow renames
3007 * into our tree when the project IDs are the same; else the
3008 * tree quota mechanism would be circumvented.
3009 */
3010 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
3011 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
3012 error = -EXDEV;
3013 goto out_trans_cancel;
3014 }
3015
3016 xfs_defer_init(&dfops, &first_block);
3017
3018 /* RENAME_EXCHANGE is unique from here on. */
3019 if (flags & RENAME_EXCHANGE)
3020 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3021 target_dp, target_name, target_ip,
3022 &dfops, &first_block, spaceres);
3023
3024 /*
3025 * Set up the target.
3026 */
3027 if (target_ip == NULL) {
3028 /*
3029 * If there's no space reservation, check the entry will
3030 * fit before actually inserting it.
3031 */
3032 if (!spaceres) {
3033 error = xfs_dir_canenter(tp, target_dp, target_name);
3034 if (error)
3035 goto out_trans_cancel;
3036 }
3037 /*
3038 * If target does not exist and the rename crosses
3039 * directories, adjust the target directory link count
3040 * to account for the ".." reference from the new entry.
3041 */
3042 error = xfs_dir_createname(tp, target_dp, target_name,
3043 src_ip->i_ino, &first_block,
3044 &dfops, spaceres);
3045 if (error)
3046 goto out_bmap_cancel;
3047
3048 xfs_trans_ichgtime(tp, target_dp,
3049 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3050
3051 if (new_parent && src_is_directory) {
3052 error = xfs_bumplink(tp, target_dp);
3053 if (error)
3054 goto out_bmap_cancel;
3055 }
3056 } else { /* target_ip != NULL */
3057 /*
3058 * If target exists and it's a directory, check that both
3059 * target and source are directories and that target can be
3060 * destroyed, or that neither is a directory.
3061 */
3062 if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
3063 /*
3064 * Make sure target dir is empty.
3065 */
3066 if (!(xfs_dir_isempty(target_ip)) ||
3067 (VFS_I(target_ip)->i_nlink > 2)) {
3068 error = -EEXIST;
3069 goto out_trans_cancel;
3070 }
3071 }
3072
3073 /*
3074 * Link the source inode under the target name.
3075 * If the source inode is a directory and we are moving
3076 * it across directories, its ".." entry will be
3077 * inconsistent until we replace that down below.
3078 *
3079 * In case there is already an entry with the same
3080 * name at the destination directory, remove it first.
3081 */
3082 error = xfs_dir_replace(tp, target_dp, target_name,
3083 src_ip->i_ino,
3084 &first_block, &dfops, spaceres);
3085 if (error)
3086 goto out_bmap_cancel;
3087
3088 xfs_trans_ichgtime(tp, target_dp,
3089 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3090
3091 /*
3092 * Decrement the link count on the target since the target
3093 * dir no longer points to it.
3094 */
3095 error = xfs_droplink(tp, target_ip);
3096 if (error)
3097 goto out_bmap_cancel;
3098
3099 if (src_is_directory) {
3100 /*
3101 * Drop the link from the old "." entry.
3102 */
3103 error = xfs_droplink(tp, target_ip);
3104 if (error)
3105 goto out_bmap_cancel;
3106 }
3107 } /* target_ip != NULL */
3108
3109 /*
3110 * Remove the source.
3111 */
3112 if (new_parent && src_is_directory) {
3113 /*
3114 * Rewrite the ".." entry to point to the new
3115 * directory.
3116 */
3117 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3118 target_dp->i_ino,
3119 &first_block, &dfops, spaceres);
3120 ASSERT(error != -EEXIST);
3121 if (error)
3122 goto out_bmap_cancel;
3123 }
3124
3125 /*
3126 * We always want to hit the ctime on the source inode.
3127 *
3128 * This isn't strictly required by the standards since the source
3129 * inode isn't really being changed, but old unix file systems did
3130 * it and some incremental backup programs won't work without it.
3131 */
3132 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3133 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3134
3135 /*
3136 * Adjust the link count on src_dp. This is necessary when
3137 * renaming a directory, either within one parent when
3138 * the target existed, or across two parent directories.
3139 */
3140 if (src_is_directory && (new_parent || target_ip != NULL)) {
3141
3142 /*
3143 * Decrement link count on src_directory since the
3144 * entry that's moved no longer points to it.
3145 */
3146 error = xfs_droplink(tp, src_dp);
3147 if (error)
3148 goto out_bmap_cancel;
3149 }
3150
3151 /*
3152 * For whiteouts, we only need to update the source dirent with the
3153 * inode number of the whiteout inode rather than removing it
3154 * altogether.
3155 */
3156 if (wip) {
3157 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3158 &first_block, &dfops, spaceres);
3159 } else
3160 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3161 &first_block, &dfops, spaceres);
3162 if (error)
3163 goto out_bmap_cancel;
3164
3165 /*
3166 * For whiteouts, we need to bump the link count on the whiteout inode.
3167 * This means that failures all the way up to this point leave the inode
3168 * on the unlinked list and so cleanup is a simple matter of dropping
3169 * the remaining reference to it. If we fail here after bumping the link
3170 * count, we're shutting down the filesystem so we'll never see the
3171 * intermediate state on disk.
3172 */
3173 if (wip) {
3174 ASSERT(VFS_I(wip)->i_nlink == 0);
3175 error = xfs_bumplink(tp, wip);
3176 if (error)
3177 goto out_bmap_cancel;
3178 error = xfs_iunlink_remove(tp, wip);
3179 if (error)
3180 goto out_bmap_cancel;
3181 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3182
3183 /*
3184 * Now we have a real link, clear the "I'm a tmpfile" state
3185 * flag from the inode so it doesn't accidentally get misused in
3186 * future.
3187 */
3188 VFS_I(wip)->i_state &= ~I_LINKABLE;
3189 }
3190
3191 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3192 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3193 if (new_parent)
3194 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3195
3196 error = xfs_finish_rename(tp, &dfops);
3197 if (wip)
3198 IRELE(wip);
3199 return error;
3200
3201out_bmap_cancel:
3202 xfs_defer_cancel(&dfops);
3203out_trans_cancel:
3204 xfs_trans_cancel(tp);
3205out_release_wip:
3206 if (wip)
3207 IRELE(wip);
3208 return error;
3209}
3210
3211STATIC int
3212xfs_iflush_cluster(
3213 struct xfs_inode *ip,
3214 struct xfs_buf *bp)
3215{
3216 struct xfs_mount *mp = ip->i_mount;
3217 struct xfs_perag *pag;
3218 unsigned long first_index, mask;
3219 unsigned long inodes_per_cluster;
3220 int cilist_size;
3221 struct xfs_inode **cilist;
3222 struct xfs_inode *cip;
3223 int nr_found;
3224 int clcount = 0;
3225 int bufwasdelwri;
3226 int i;
3227
3228 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3229
3230 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3231 cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3232 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3233 if (!cilist)
3234 goto out_put;
3235
3236 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3237 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3238 rcu_read_lock();
3239 /* really need a gang lookup range call here */
3240 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
3241 first_index, inodes_per_cluster);
3242 if (nr_found == 0)
3243 goto out_free;
3244
3245 for (i = 0; i < nr_found; i++) {
3246 cip = cilist[i];
3247 if (cip == ip)
3248 continue;
3249
3250 /*
3251 * because this is an RCU protected lookup, we could find a
3252 * recently freed or even reallocated inode during the lookup.
3253 * We need to check under the i_flags_lock for a valid inode
3254 * here. Skip it if it is not valid or the wrong inode.
3255 */
3256 spin_lock(&cip->i_flags_lock);
3257 if (!cip->i_ino ||
3258 __xfs_iflags_test(cip, XFS_ISTALE)) {
3259 spin_unlock(&cip->i_flags_lock);
3260 continue;
3261 }
3262
3263 /*
3264 * Once we fall off the end of the cluster, no point checking
3265 * any more inodes in the list because they will also all be
3266 * outside the cluster.
3267 */
3268 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3269 spin_unlock(&cip->i_flags_lock);
3270 break;
3271 }
3272 spin_unlock(&cip->i_flags_lock);
3273
3274 /*
3275 * Do an un-protected check to see if the inode is dirty and
3276 * is a candidate for flushing. These checks will be repeated
3277 * later after the appropriate locks are acquired.
3278 */
3279 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
3280 continue;
3281
3282 /*
3283 * Try to get locks. If any are unavailable or it is pinned,
3284 * then this inode cannot be flushed and is skipped.
3285 */
3286
3287 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
3288 continue;
3289 if (!xfs_iflock_nowait(cip)) {
3290 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3291 continue;
3292 }
3293 if (xfs_ipincount(cip)) {
3294 xfs_ifunlock(cip);
3295 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3296 continue;
3297 }
3298
3299
3300 /*
3301 * Check the inode number again, just to be certain we are not
3302 * racing with freeing in xfs_reclaim_inode(). See the comments
3303 * in that function for more information as to why the initial
3304 * check is not sufficient.
3305 */
3306 if (!cip->i_ino) {
3307 xfs_ifunlock(cip);
3308 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3309 continue;
3310 }
3311
3312 /*
3313 * arriving here means that this inode can be flushed. First
3314 * re-check that it's dirty before flushing.
3315 */
3316 if (!xfs_inode_clean(cip)) {
3317 int error;
3318 error = xfs_iflush_int(cip, bp);
3319 if (error) {
3320 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3321 goto cluster_corrupt_out;
3322 }
3323 clcount++;
3324 } else {
3325 xfs_ifunlock(cip);
3326 }
3327 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3328 }
3329
3330 if (clcount) {
3331 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3332 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3333 }
3334
3335out_free:
3336 rcu_read_unlock();
3337 kmem_free(cilist);
3338out_put:
3339 xfs_perag_put(pag);
3340 return 0;
3341
3342
3343cluster_corrupt_out:
3344 /*
3345 * Corruption detected in the clustering loop. Invalidate the
3346 * inode buffer and shut down the filesystem.
3347 */
3348 rcu_read_unlock();
3349 /*
3350 * Clean up the buffer. If it was delwri, just release it --
3351 * brelse can handle it with no problems. If not, shut down the
3352 * filesystem before releasing the buffer.
3353 */
3354 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3355 if (bufwasdelwri)
3356 xfs_buf_relse(bp);
3357
3358 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3359
3360 if (!bufwasdelwri) {
3361 /*
3362 * Just like incore_relse: if we have b_iodone functions,
3363 * mark the buffer as an error and call them. Otherwise
3364 * mark it as stale and brelse.
3365 */
3366 if (bp->b_iodone) {
3367 bp->b_flags &= ~XBF_DONE;
3368 xfs_buf_stale(bp);
3369 xfs_buf_ioerror(bp, -EIO);
3370 xfs_buf_ioend(bp);
3371 } else {
3372 xfs_buf_stale(bp);
3373 xfs_buf_relse(bp);
3374 }
3375 }
3376
3377 /*
3378 * Unlocks the flush lock
3379 */
3380 xfs_iflush_abort(cip, false);
3381 kmem_free(cilist);
3382 xfs_perag_put(pag);
3383 return -EFSCORRUPTED;
3384}
3385
3386/*
3387 * Flush dirty inode metadata into the backing buffer.
3388 *
3389 * The caller must have the inode lock and the inode flush lock held. The
3390 * inode lock will still be held upon return to the caller, and the inode
3391 * flush lock will be released after the inode has reached the disk.
3392 *
3393 * The caller must write out the buffer returned in *bpp and release it.
3394 */
3395int
3396xfs_iflush(
3397 struct xfs_inode *ip,
3398 struct xfs_buf **bpp)
3399{
3400 struct xfs_mount *mp = ip->i_mount;
3401 struct xfs_buf *bp = NULL;
3402 struct xfs_dinode *dip;
3403 int error;
3404
3405 XFS_STATS_INC(mp, xs_iflush_count);
3406
3407 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3408 ASSERT(xfs_isiflocked(ip));
3409 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3410 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3411
3412 *bpp = NULL;
3413
3414 xfs_iunpin_wait(ip);
3415
3416 /*
3417 * For stale inodes we cannot rely on the backing buffer remaining
3418 * stale in cache for the remaining life of the stale inode and so
3419 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3420 * inodes below. We have to check this after ensuring the inode is
3421 * unpinned so that it is safe to reclaim the stale inode after the
3422 * flush call.
3423 */
3424 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3425 xfs_ifunlock(ip);
3426 return 0;
3427 }
3428
3429 /*
3430 * This may have been unpinned because the filesystem is shutting
3431 * down forcibly. If that's the case we must not write this inode
3432 * to disk, because the log record didn't make it to disk.
3433 *
3434 * We also have to remove the log item from the AIL in this case,
3435 * as we wait for an empty AIL as part of the unmount process.
3436 */
3437 if (XFS_FORCED_SHUTDOWN(mp)) {
3438 error = -EIO;
3439 goto abort_out;
3440 }
3441
3442 /*
3443 * Get the buffer containing the on-disk inode. We are doing a try-lock
3444 * operation here, so we may get an EAGAIN error. In that case, we
3445 * simply want to return with the inode still dirty.
3446 *
3447 * If we get any other error, we effectively have a corruption situation
3448 * and we cannot flush the inode, so we treat it the same as failing
3449 * xfs_iflush_int().
3450 */
3451 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3452 0);
3453 if (error == -EAGAIN) {
3454 xfs_ifunlock(ip);
3455 return error;
3456 }
3457 if (error)
3458 goto corrupt_out;
3459
3460 /*
3461 * First flush out the inode that xfs_iflush was called with.
3462 */
3463 error = xfs_iflush_int(ip, bp);
3464 if (error)
3465 goto corrupt_out;
3466
3467 /*
3468 * If the buffer is pinned then push on the log now so we won't
3469 * get stuck waiting in the write for too long.
3470 */
3471 if (xfs_buf_ispinned(bp))
3472 xfs_log_force(mp, 0);
3473
3474 /*
3475 * inode clustering:
3476 * see if other inodes can be gathered into this write
3477 */
3478 error = xfs_iflush_cluster(ip, bp);
3479 if (error)
3480 goto cluster_corrupt_out;
3481
3482 *bpp = bp;
3483 return 0;
3484
3485corrupt_out:
3486 if (bp)
3487 xfs_buf_relse(bp);
3488 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3489cluster_corrupt_out:
3490 error = -EFSCORRUPTED;
3491abort_out:
3492 /*
3493 * Unlocks the flush lock
3494 */
3495 xfs_iflush_abort(ip, false);
3496 return error;
3497}
3498
3499/*
3500 * If there are inline format data / attr forks attached to this inode,
3501 * make sure they're not corrupt.
3502 */
3503bool
3504xfs_inode_verify_forks(
3505 struct xfs_inode *ip)
3506{
3507 struct xfs_ifork *ifp;
3508 xfs_failaddr_t fa;
3509
3510 fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops);
3511 if (fa) {
3512 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
3513 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork",
3514 ifp->if_u1.if_data, ifp->if_bytes, fa);
3515 return false;
3516 }
3517
3518 fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops);
3519 if (fa) {
3520 ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK);
3521 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork",
3522 ifp ? ifp->if_u1.if_data : NULL,
3523 ifp ? ifp->if_bytes : 0, fa);
3524 return false;
3525 }
3526 return true;
3527}
3528
3529STATIC int
3530xfs_iflush_int(
3531 struct xfs_inode *ip,
3532 struct xfs_buf *bp)
3533{
3534 struct xfs_inode_log_item *iip = ip->i_itemp;
3535 struct xfs_dinode *dip;
3536 struct xfs_mount *mp = ip->i_mount;
3537
3538 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3539 ASSERT(xfs_isiflocked(ip));
3540 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3541 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3542 ASSERT(iip != NULL && iip->ili_fields != 0);
3543 ASSERT(ip->i_d.di_version > 1);
3544
3545 /* set *dip = inode's place in the buffer */
3546 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3547
3548 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3549 mp, XFS_ERRTAG_IFLUSH_1)) {
3550 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3551 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3552 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3553 goto corrupt_out;
3554 }
3555 if (S_ISREG(VFS_I(ip)->i_mode)) {
3556 if (XFS_TEST_ERROR(
3557 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3558 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3559 mp, XFS_ERRTAG_IFLUSH_3)) {
3560 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3561 "%s: Bad regular inode %Lu, ptr "PTR_FMT,
3562 __func__, ip->i_ino, ip);
3563 goto corrupt_out;
3564 }
3565 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3566 if (XFS_TEST_ERROR(
3567 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3568 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3569 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3570 mp, XFS_ERRTAG_IFLUSH_4)) {
3571 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3572 "%s: Bad directory inode %Lu, ptr "PTR_FMT,
3573 __func__, ip->i_ino, ip);
3574 goto corrupt_out;
3575 }
3576 }
3577 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3578 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3579 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3580 "%s: detected corrupt incore inode %Lu, "
3581 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3582 __func__, ip->i_ino,
3583 ip->i_d.di_nextents + ip->i_d.di_anextents,
3584 ip->i_d.di_nblocks, ip);
3585 goto corrupt_out;
3586 }
3587 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3588 mp, XFS_ERRTAG_IFLUSH_6)) {
3589 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3590 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3591 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3592 goto corrupt_out;
3593 }
3594
3595 /*
3596 * Inode item log recovery for v2 inodes are dependent on the
3597 * di_flushiter count for correct sequencing. We bump the flush
3598 * iteration count so we can detect flushes which postdate a log record
3599 * during recovery. This is redundant as we now log every change and
3600 * hence this can't happen but we need to still do it to ensure
3601 * backwards compatibility with old kernels that predate logging all
3602 * inode changes.
3603 */
3604 if (ip->i_d.di_version < 3)
3605 ip->i_d.di_flushiter++;
3606
3607 /* Check the inline fork data before we write out. */
3608 if (!xfs_inode_verify_forks(ip))
3609 goto corrupt_out;
3610
3611 /*
3612 * Copy the dirty parts of the inode into the on-disk inode. We always
3613 * copy out the core of the inode, because if the inode is dirty at all
3614 * the core must be.
3615 */
3616 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3617
3618 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3619 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3620 ip->i_d.di_flushiter = 0;
3621
3622 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3623 if (XFS_IFORK_Q(ip))
3624 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3625 xfs_inobp_check(mp, bp);
3626
3627 /*
3628 * We've recorded everything logged in the inode, so we'd like to clear
3629 * the ili_fields bits so we don't log and flush things unnecessarily.
3630 * However, we can't stop logging all this information until the data
3631 * we've copied into the disk buffer is written to disk. If we did we
3632 * might overwrite the copy of the inode in the log with all the data
3633 * after re-logging only part of it, and in the face of a crash we
3634 * wouldn't have all the data we need to recover.
3635 *
3636 * What we do is move the bits to the ili_last_fields field. When
3637 * logging the inode, these bits are moved back to the ili_fields field.
3638 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3639 * know that the information those bits represent is permanently on
3640 * disk. As long as the flush completes before the inode is logged
3641 * again, then both ili_fields and ili_last_fields will be cleared.
3642 *
3643 * We can play with the ili_fields bits here, because the inode lock
3644 * must be held exclusively in order to set bits there and the flush
3645 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3646 * done routine can tell whether or not to look in the AIL. Also, store
3647 * the current LSN of the inode so that we can tell whether the item has
3648 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3649 * need the AIL lock, because it is a 64 bit value that cannot be read
3650 * atomically.
3651 */
3652 iip->ili_last_fields = iip->ili_fields;
3653 iip->ili_fields = 0;
3654 iip->ili_fsync_fields = 0;
3655 iip->ili_logged = 1;
3656
3657 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3658 &iip->ili_item.li_lsn);
3659
3660 /*
3661 * Attach the function xfs_iflush_done to the inode's
3662 * buffer. This will remove the inode from the AIL
3663 * and unlock the inode's flush lock when the inode is
3664 * completely written to disk.
3665 */
3666 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3667
3668 /* generate the checksum. */
3669 xfs_dinode_calc_crc(mp, dip);
3670
3671 ASSERT(!list_empty(&bp->b_li_list));
3672 ASSERT(bp->b_iodone != NULL);
3673 return 0;
3674
3675corrupt_out:
3676 return -EFSCORRUPTED;
3677}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include <linux/iversion.h>
7
8#include "xfs.h"
9#include "xfs_fs.h"
10#include "xfs_shared.h"
11#include "xfs_format.h"
12#include "xfs_log_format.h"
13#include "xfs_trans_resv.h"
14#include "xfs_mount.h"
15#include "xfs_defer.h"
16#include "xfs_inode.h"
17#include "xfs_dir2.h"
18#include "xfs_attr.h"
19#include "xfs_bit.h"
20#include "xfs_trans_space.h"
21#include "xfs_trans.h"
22#include "xfs_buf_item.h"
23#include "xfs_inode_item.h"
24#include "xfs_iunlink_item.h"
25#include "xfs_ialloc.h"
26#include "xfs_bmap.h"
27#include "xfs_bmap_util.h"
28#include "xfs_errortag.h"
29#include "xfs_error.h"
30#include "xfs_quota.h"
31#include "xfs_filestream.h"
32#include "xfs_trace.h"
33#include "xfs_icache.h"
34#include "xfs_symlink.h"
35#include "xfs_trans_priv.h"
36#include "xfs_log.h"
37#include "xfs_bmap_btree.h"
38#include "xfs_reflink.h"
39#include "xfs_ag.h"
40#include "xfs_log_priv.h"
41#include "xfs_health.h"
42#include "xfs_pnfs.h"
43#include "xfs_parent.h"
44#include "xfs_xattr.h"
45#include "xfs_inode_util.h"
46#include "xfs_metafile.h"
47
48struct kmem_cache *xfs_inode_cache;
49
50/*
51 * These two are wrapper routines around the xfs_ilock() routine used to
52 * centralize some grungy code. They are used in places that wish to lock the
53 * inode solely for reading the extents. The reason these places can't just
54 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
55 * bringing in of the extents from disk for a file in b-tree format. If the
56 * inode is in b-tree format, then we need to lock the inode exclusively until
57 * the extents are read in. Locking it exclusively all the time would limit
58 * our parallelism unnecessarily, though. What we do instead is check to see
59 * if the extents have been read in yet, and only lock the inode exclusively
60 * if they have not.
61 *
62 * The functions return a value which should be given to the corresponding
63 * xfs_iunlock() call.
64 */
65uint
66xfs_ilock_data_map_shared(
67 struct xfs_inode *ip)
68{
69 uint lock_mode = XFS_ILOCK_SHARED;
70
71 if (xfs_need_iread_extents(&ip->i_df))
72 lock_mode = XFS_ILOCK_EXCL;
73 xfs_ilock(ip, lock_mode);
74 return lock_mode;
75}
76
77uint
78xfs_ilock_attr_map_shared(
79 struct xfs_inode *ip)
80{
81 uint lock_mode = XFS_ILOCK_SHARED;
82
83 if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af))
84 lock_mode = XFS_ILOCK_EXCL;
85 xfs_ilock(ip, lock_mode);
86 return lock_mode;
87}
88
89/*
90 * You can't set both SHARED and EXCL for the same lock,
91 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED,
92 * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values
93 * to set in lock_flags.
94 */
95static inline void
96xfs_lock_flags_assert(
97 uint lock_flags)
98{
99 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
100 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
101 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
102 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
103 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
104 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
105 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
106 ASSERT(lock_flags != 0);
107}
108
109/*
110 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
111 * multi-reader locks: invalidate_lock and the i_lock. This routine allows
112 * various combinations of the locks to be obtained.
113 *
114 * The 3 locks should always be ordered so that the IO lock is obtained first,
115 * the mmap lock second and the ilock last in order to prevent deadlock.
116 *
117 * Basic locking order:
118 *
119 * i_rwsem -> invalidate_lock -> page_lock -> i_ilock
120 *
121 * mmap_lock locking order:
122 *
123 * i_rwsem -> page lock -> mmap_lock
124 * mmap_lock -> invalidate_lock -> page_lock
125 *
126 * The difference in mmap_lock locking order mean that we cannot hold the
127 * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths
128 * can fault in pages during copy in/out (for buffered IO) or require the
129 * mmap_lock in get_user_pages() to map the user pages into the kernel address
130 * space for direct IO. Similarly the i_rwsem cannot be taken inside a page
131 * fault because page faults already hold the mmap_lock.
132 *
133 * Hence to serialise fully against both syscall and mmap based IO, we need to
134 * take both the i_rwsem and the invalidate_lock. These locks should *only* be
135 * both taken in places where we need to invalidate the page cache in a race
136 * free manner (e.g. truncate, hole punch and other extent manipulation
137 * functions).
138 */
139void
140xfs_ilock(
141 xfs_inode_t *ip,
142 uint lock_flags)
143{
144 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
145
146 xfs_lock_flags_assert(lock_flags);
147
148 if (lock_flags & XFS_IOLOCK_EXCL) {
149 down_write_nested(&VFS_I(ip)->i_rwsem,
150 XFS_IOLOCK_DEP(lock_flags));
151 } else if (lock_flags & XFS_IOLOCK_SHARED) {
152 down_read_nested(&VFS_I(ip)->i_rwsem,
153 XFS_IOLOCK_DEP(lock_flags));
154 }
155
156 if (lock_flags & XFS_MMAPLOCK_EXCL) {
157 down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
158 XFS_MMAPLOCK_DEP(lock_flags));
159 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
160 down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
161 XFS_MMAPLOCK_DEP(lock_flags));
162 }
163
164 if (lock_flags & XFS_ILOCK_EXCL)
165 down_write_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
166 else if (lock_flags & XFS_ILOCK_SHARED)
167 down_read_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
168}
169
170/*
171 * This is just like xfs_ilock(), except that the caller
172 * is guaranteed not to sleep. It returns 1 if it gets
173 * the requested locks and 0 otherwise. If the IO lock is
174 * obtained but the inode lock cannot be, then the IO lock
175 * is dropped before returning.
176 *
177 * ip -- the inode being locked
178 * lock_flags -- this parameter indicates the inode's locks to be
179 * to be locked. See the comment for xfs_ilock() for a list
180 * of valid values.
181 */
182int
183xfs_ilock_nowait(
184 xfs_inode_t *ip,
185 uint lock_flags)
186{
187 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
188
189 xfs_lock_flags_assert(lock_flags);
190
191 if (lock_flags & XFS_IOLOCK_EXCL) {
192 if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
193 goto out;
194 } else if (lock_flags & XFS_IOLOCK_SHARED) {
195 if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
196 goto out;
197 }
198
199 if (lock_flags & XFS_MMAPLOCK_EXCL) {
200 if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
201 goto out_undo_iolock;
202 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
203 if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
204 goto out_undo_iolock;
205 }
206
207 if (lock_flags & XFS_ILOCK_EXCL) {
208 if (!down_write_trylock(&ip->i_lock))
209 goto out_undo_mmaplock;
210 } else if (lock_flags & XFS_ILOCK_SHARED) {
211 if (!down_read_trylock(&ip->i_lock))
212 goto out_undo_mmaplock;
213 }
214 return 1;
215
216out_undo_mmaplock:
217 if (lock_flags & XFS_MMAPLOCK_EXCL)
218 up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
219 else if (lock_flags & XFS_MMAPLOCK_SHARED)
220 up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
221out_undo_iolock:
222 if (lock_flags & XFS_IOLOCK_EXCL)
223 up_write(&VFS_I(ip)->i_rwsem);
224 else if (lock_flags & XFS_IOLOCK_SHARED)
225 up_read(&VFS_I(ip)->i_rwsem);
226out:
227 return 0;
228}
229
230/*
231 * xfs_iunlock() is used to drop the inode locks acquired with
232 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
233 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
234 * that we know which locks to drop.
235 *
236 * ip -- the inode being unlocked
237 * lock_flags -- this parameter indicates the inode's locks to be
238 * to be unlocked. See the comment for xfs_ilock() for a list
239 * of valid values for this parameter.
240 *
241 */
242void
243xfs_iunlock(
244 xfs_inode_t *ip,
245 uint lock_flags)
246{
247 xfs_lock_flags_assert(lock_flags);
248
249 if (lock_flags & XFS_IOLOCK_EXCL)
250 up_write(&VFS_I(ip)->i_rwsem);
251 else if (lock_flags & XFS_IOLOCK_SHARED)
252 up_read(&VFS_I(ip)->i_rwsem);
253
254 if (lock_flags & XFS_MMAPLOCK_EXCL)
255 up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
256 else if (lock_flags & XFS_MMAPLOCK_SHARED)
257 up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
258
259 if (lock_flags & XFS_ILOCK_EXCL)
260 up_write(&ip->i_lock);
261 else if (lock_flags & XFS_ILOCK_SHARED)
262 up_read(&ip->i_lock);
263
264 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
265}
266
267/*
268 * give up write locks. the i/o lock cannot be held nested
269 * if it is being demoted.
270 */
271void
272xfs_ilock_demote(
273 xfs_inode_t *ip,
274 uint lock_flags)
275{
276 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
277 ASSERT((lock_flags &
278 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
279
280 if (lock_flags & XFS_ILOCK_EXCL)
281 downgrade_write(&ip->i_lock);
282 if (lock_flags & XFS_MMAPLOCK_EXCL)
283 downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock);
284 if (lock_flags & XFS_IOLOCK_EXCL)
285 downgrade_write(&VFS_I(ip)->i_rwsem);
286
287 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
288}
289
290void
291xfs_assert_ilocked(
292 struct xfs_inode *ip,
293 uint lock_flags)
294{
295 /*
296 * Sometimes we assert the ILOCK is held exclusively, but we're in
297 * a workqueue, so lockdep doesn't know we're the owner.
298 */
299 if (lock_flags & XFS_ILOCK_SHARED)
300 rwsem_assert_held(&ip->i_lock);
301 else if (lock_flags & XFS_ILOCK_EXCL)
302 rwsem_assert_held_write_nolockdep(&ip->i_lock);
303
304 if (lock_flags & XFS_MMAPLOCK_SHARED)
305 rwsem_assert_held(&VFS_I(ip)->i_mapping->invalidate_lock);
306 else if (lock_flags & XFS_MMAPLOCK_EXCL)
307 rwsem_assert_held_write(&VFS_I(ip)->i_mapping->invalidate_lock);
308
309 if (lock_flags & XFS_IOLOCK_SHARED)
310 rwsem_assert_held(&VFS_I(ip)->i_rwsem);
311 else if (lock_flags & XFS_IOLOCK_EXCL)
312 rwsem_assert_held_write(&VFS_I(ip)->i_rwsem);
313}
314
315/*
316 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
317 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
318 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
319 * errors and warnings.
320 */
321#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
322static bool
323xfs_lockdep_subclass_ok(
324 int subclass)
325{
326 return subclass < MAX_LOCKDEP_SUBCLASSES;
327}
328#else
329#define xfs_lockdep_subclass_ok(subclass) (true)
330#endif
331
332/*
333 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
334 * value. This can be called for any type of inode lock combination, including
335 * parent locking. Care must be taken to ensure we don't overrun the subclass
336 * storage fields in the class mask we build.
337 */
338static inline uint
339xfs_lock_inumorder(
340 uint lock_mode,
341 uint subclass)
342{
343 uint class = 0;
344
345 ASSERT(!(lock_mode & XFS_ILOCK_PARENT));
346 ASSERT(xfs_lockdep_subclass_ok(subclass));
347
348 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
349 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
350 class += subclass << XFS_IOLOCK_SHIFT;
351 }
352
353 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
354 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
355 class += subclass << XFS_MMAPLOCK_SHIFT;
356 }
357
358 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
359 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
360 class += subclass << XFS_ILOCK_SHIFT;
361 }
362
363 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
364}
365
366/*
367 * The following routine will lock n inodes in exclusive mode. We assume the
368 * caller calls us with the inodes in i_ino order.
369 *
370 * We need to detect deadlock where an inode that we lock is in the AIL and we
371 * start waiting for another inode that is locked by a thread in a long running
372 * transaction (such as truncate). This can result in deadlock since the long
373 * running trans might need to wait for the inode we just locked in order to
374 * push the tail and free space in the log.
375 *
376 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
377 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
378 * lock more than one at a time, lockdep will report false positives saying we
379 * have violated locking orders.
380 */
381void
382xfs_lock_inodes(
383 struct xfs_inode **ips,
384 int inodes,
385 uint lock_mode)
386{
387 int attempts = 0;
388 uint i;
389 int j;
390 bool try_lock;
391 struct xfs_log_item *lp;
392
393 /*
394 * Currently supports between 2 and 5 inodes with exclusive locking. We
395 * support an arbitrary depth of locking here, but absolute limits on
396 * inodes depend on the type of locking and the limits placed by
397 * lockdep annotations in xfs_lock_inumorder. These are all checked by
398 * the asserts.
399 */
400 ASSERT(ips && inodes >= 2 && inodes <= 5);
401 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
402 XFS_ILOCK_EXCL));
403 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
404 XFS_ILOCK_SHARED)));
405 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
406 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
407 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
408 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
409
410 if (lock_mode & XFS_IOLOCK_EXCL) {
411 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
412 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
413 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
414
415again:
416 try_lock = false;
417 i = 0;
418 for (; i < inodes; i++) {
419 ASSERT(ips[i]);
420
421 if (i && (ips[i] == ips[i - 1])) /* Already locked */
422 continue;
423
424 /*
425 * If try_lock is not set yet, make sure all locked inodes are
426 * not in the AIL. If any are, set try_lock to be used later.
427 */
428 if (!try_lock) {
429 for (j = (i - 1); j >= 0 && !try_lock; j--) {
430 lp = &ips[j]->i_itemp->ili_item;
431 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
432 try_lock = true;
433 }
434 }
435
436 /*
437 * If any of the previous locks we have locked is in the AIL,
438 * we must TRY to get the second and subsequent locks. If
439 * we can't get any, we must release all we have
440 * and try again.
441 */
442 if (!try_lock) {
443 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
444 continue;
445 }
446
447 /* try_lock means we have an inode locked that is in the AIL. */
448 ASSERT(i != 0);
449 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
450 continue;
451
452 /*
453 * Unlock all previous guys and try again. xfs_iunlock will try
454 * to push the tail if the inode is in the AIL.
455 */
456 attempts++;
457 for (j = i - 1; j >= 0; j--) {
458 /*
459 * Check to see if we've already unlocked this one. Not
460 * the first one going back, and the inode ptr is the
461 * same.
462 */
463 if (j != (i - 1) && ips[j] == ips[j + 1])
464 continue;
465
466 xfs_iunlock(ips[j], lock_mode);
467 }
468
469 if ((attempts % 5) == 0) {
470 delay(1); /* Don't just spin the CPU */
471 }
472 goto again;
473 }
474}
475
476/*
477 * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and
478 * mmaplock must be double-locked separately since we use i_rwsem and
479 * invalidate_lock for that. We now support taking one lock EXCL and the
480 * other SHARED.
481 */
482void
483xfs_lock_two_inodes(
484 struct xfs_inode *ip0,
485 uint ip0_mode,
486 struct xfs_inode *ip1,
487 uint ip1_mode)
488{
489 int attempts = 0;
490 struct xfs_log_item *lp;
491
492 ASSERT(hweight32(ip0_mode) == 1);
493 ASSERT(hweight32(ip1_mode) == 1);
494 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
495 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
496 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
497 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
498 ASSERT(ip0->i_ino != ip1->i_ino);
499
500 if (ip0->i_ino > ip1->i_ino) {
501 swap(ip0, ip1);
502 swap(ip0_mode, ip1_mode);
503 }
504
505 again:
506 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
507
508 /*
509 * If the first lock we have locked is in the AIL, we must TRY to get
510 * the second lock. If we can't get it, we must release the first one
511 * and try again.
512 */
513 lp = &ip0->i_itemp->ili_item;
514 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
515 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
516 xfs_iunlock(ip0, ip0_mode);
517 if ((++attempts % 5) == 0)
518 delay(1); /* Don't just spin the CPU */
519 goto again;
520 }
521 } else {
522 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
523 }
524}
525
526/*
527 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
528 * is allowed, otherwise it has to be an exact match. If a CI match is found,
529 * ci_name->name will point to a the actual name (caller must free) or
530 * will be set to NULL if an exact match is found.
531 */
532int
533xfs_lookup(
534 struct xfs_inode *dp,
535 const struct xfs_name *name,
536 struct xfs_inode **ipp,
537 struct xfs_name *ci_name)
538{
539 xfs_ino_t inum;
540 int error;
541
542 trace_xfs_lookup(dp, name);
543
544 if (xfs_is_shutdown(dp->i_mount))
545 return -EIO;
546 if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
547 return -EIO;
548
549 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
550 if (error)
551 goto out_unlock;
552
553 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
554 if (error)
555 goto out_free_name;
556
557 /*
558 * Fail if a directory entry in the regular directory tree points to
559 * a metadata file.
560 */
561 if (XFS_IS_CORRUPT(dp->i_mount, xfs_is_metadir_inode(*ipp))) {
562 xfs_fs_mark_sick(dp->i_mount, XFS_SICK_FS_METADIR);
563 error = -EFSCORRUPTED;
564 goto out_irele;
565 }
566
567 return 0;
568
569out_irele:
570 xfs_irele(*ipp);
571out_free_name:
572 if (ci_name)
573 kfree(ci_name->name);
574out_unlock:
575 *ipp = NULL;
576 return error;
577}
578
579/*
580 * Initialise a newly allocated inode and return the in-core inode to the
581 * caller locked exclusively.
582 *
583 * Caller is responsible for unlocking the inode manually upon return
584 */
585int
586xfs_icreate(
587 struct xfs_trans *tp,
588 xfs_ino_t ino,
589 const struct xfs_icreate_args *args,
590 struct xfs_inode **ipp)
591{
592 struct xfs_mount *mp = tp->t_mountp;
593 struct xfs_inode *ip = NULL;
594 int error;
595
596 /*
597 * Get the in-core inode with the lock held exclusively to prevent
598 * others from looking at until we're done.
599 */
600 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
601 if (error)
602 return error;
603
604 ASSERT(ip != NULL);
605 xfs_trans_ijoin(tp, ip, 0);
606 xfs_inode_init(tp, args, ip);
607
608 /* now that we have an i_mode we can setup the inode structure */
609 xfs_setup_inode(ip);
610
611 *ipp = ip;
612 return 0;
613}
614
615/* Return dquots for the ids that will be assigned to a new file. */
616int
617xfs_icreate_dqalloc(
618 const struct xfs_icreate_args *args,
619 struct xfs_dquot **udqpp,
620 struct xfs_dquot **gdqpp,
621 struct xfs_dquot **pdqpp)
622{
623 struct inode *dir = VFS_I(args->pip);
624 kuid_t uid = GLOBAL_ROOT_UID;
625 kgid_t gid = GLOBAL_ROOT_GID;
626 prid_t prid = 0;
627 unsigned int flags = XFS_QMOPT_QUOTALL;
628
629 if (args->idmap) {
630 /*
631 * The uid/gid computation code must match what the VFS uses to
632 * assign i_[ug]id. INHERIT adjusts the gid computation for
633 * setgid/grpid systems.
634 */
635 uid = mapped_fsuid(args->idmap, i_user_ns(dir));
636 gid = mapped_fsgid(args->idmap, i_user_ns(dir));
637 prid = xfs_get_initial_prid(args->pip);
638 flags |= XFS_QMOPT_INHERIT;
639 }
640
641 *udqpp = *gdqpp = *pdqpp = NULL;
642
643 return xfs_qm_vop_dqalloc(args->pip, uid, gid, prid, flags, udqpp,
644 gdqpp, pdqpp);
645}
646
647int
648xfs_create(
649 const struct xfs_icreate_args *args,
650 struct xfs_name *name,
651 struct xfs_inode **ipp)
652{
653 struct xfs_inode *dp = args->pip;
654 struct xfs_dir_update du = {
655 .dp = dp,
656 .name = name,
657 };
658 struct xfs_mount *mp = dp->i_mount;
659 struct xfs_trans *tp = NULL;
660 struct xfs_dquot *udqp;
661 struct xfs_dquot *gdqp;
662 struct xfs_dquot *pdqp;
663 struct xfs_trans_res *tres;
664 xfs_ino_t ino;
665 bool unlock_dp_on_error = false;
666 bool is_dir = S_ISDIR(args->mode);
667 uint resblks;
668 int error;
669
670 trace_xfs_create(dp, name);
671
672 if (xfs_is_shutdown(mp))
673 return -EIO;
674 if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
675 return -EIO;
676
677 /* Make sure that we have allocated dquot(s) on disk. */
678 error = xfs_icreate_dqalloc(args, &udqp, &gdqp, &pdqp);
679 if (error)
680 return error;
681
682 if (is_dir) {
683 resblks = xfs_mkdir_space_res(mp, name->len);
684 tres = &M_RES(mp)->tr_mkdir;
685 } else {
686 resblks = xfs_create_space_res(mp, name->len);
687 tres = &M_RES(mp)->tr_create;
688 }
689
690 error = xfs_parent_start(mp, &du.ppargs);
691 if (error)
692 goto out_release_dquots;
693
694 /*
695 * Initially assume that the file does not exist and
696 * reserve the resources for that case. If that is not
697 * the case we'll drop the one we have and get a more
698 * appropriate transaction later.
699 */
700 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
701 &tp);
702 if (error == -ENOSPC) {
703 /* flush outstanding delalloc blocks and retry */
704 xfs_flush_inodes(mp);
705 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
706 resblks, &tp);
707 }
708 if (error)
709 goto out_parent;
710
711 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
712 unlock_dp_on_error = true;
713
714 /*
715 * A newly created regular or special file just has one directory
716 * entry pointing to them, but a directory also the "." entry
717 * pointing to itself.
718 */
719 error = xfs_dialloc(&tp, args, &ino);
720 if (!error)
721 error = xfs_icreate(tp, ino, args, &du.ip);
722 if (error)
723 goto out_trans_cancel;
724
725 /*
726 * Now we join the directory inode to the transaction. We do not do it
727 * earlier because xfs_dialloc might commit the previous transaction
728 * (and release all the locks). An error from here on will result in
729 * the transaction cancel unlocking dp so don't do it explicitly in the
730 * error path.
731 */
732 xfs_trans_ijoin(tp, dp, 0);
733
734 error = xfs_dir_create_child(tp, resblks, &du);
735 if (error)
736 goto out_trans_cancel;
737
738 /*
739 * If this is a synchronous mount, make sure that the
740 * create transaction goes to disk before returning to
741 * the user.
742 */
743 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
744 xfs_trans_set_sync(tp);
745
746 /*
747 * Attach the dquot(s) to the inodes and modify them incore.
748 * These ids of the inode couldn't have changed since the new
749 * inode has been locked ever since it was created.
750 */
751 xfs_qm_vop_create_dqattach(tp, du.ip, udqp, gdqp, pdqp);
752
753 error = xfs_trans_commit(tp);
754 if (error)
755 goto out_release_inode;
756
757 xfs_qm_dqrele(udqp);
758 xfs_qm_dqrele(gdqp);
759 xfs_qm_dqrele(pdqp);
760
761 *ipp = du.ip;
762 xfs_iunlock(du.ip, XFS_ILOCK_EXCL);
763 xfs_iunlock(dp, XFS_ILOCK_EXCL);
764 xfs_parent_finish(mp, du.ppargs);
765 return 0;
766
767 out_trans_cancel:
768 xfs_trans_cancel(tp);
769 out_release_inode:
770 /*
771 * Wait until after the current transaction is aborted to finish the
772 * setup of the inode and release the inode. This prevents recursive
773 * transactions and deadlocks from xfs_inactive.
774 */
775 if (du.ip) {
776 xfs_iunlock(du.ip, XFS_ILOCK_EXCL);
777 xfs_finish_inode_setup(du.ip);
778 xfs_irele(du.ip);
779 }
780 out_parent:
781 xfs_parent_finish(mp, du.ppargs);
782 out_release_dquots:
783 xfs_qm_dqrele(udqp);
784 xfs_qm_dqrele(gdqp);
785 xfs_qm_dqrele(pdqp);
786
787 if (unlock_dp_on_error)
788 xfs_iunlock(dp, XFS_ILOCK_EXCL);
789 return error;
790}
791
792int
793xfs_create_tmpfile(
794 const struct xfs_icreate_args *args,
795 struct xfs_inode **ipp)
796{
797 struct xfs_inode *dp = args->pip;
798 struct xfs_mount *mp = dp->i_mount;
799 struct xfs_inode *ip = NULL;
800 struct xfs_trans *tp = NULL;
801 struct xfs_dquot *udqp;
802 struct xfs_dquot *gdqp;
803 struct xfs_dquot *pdqp;
804 struct xfs_trans_res *tres;
805 xfs_ino_t ino;
806 uint resblks;
807 int error;
808
809 ASSERT(args->flags & XFS_ICREATE_TMPFILE);
810
811 if (xfs_is_shutdown(mp))
812 return -EIO;
813
814 /* Make sure that we have allocated dquot(s) on disk. */
815 error = xfs_icreate_dqalloc(args, &udqp, &gdqp, &pdqp);
816 if (error)
817 return error;
818
819 resblks = XFS_IALLOC_SPACE_RES(mp);
820 tres = &M_RES(mp)->tr_create_tmpfile;
821
822 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
823 &tp);
824 if (error)
825 goto out_release_dquots;
826
827 error = xfs_dialloc(&tp, args, &ino);
828 if (!error)
829 error = xfs_icreate(tp, ino, args, &ip);
830 if (error)
831 goto out_trans_cancel;
832
833 if (xfs_has_wsync(mp))
834 xfs_trans_set_sync(tp);
835
836 /*
837 * Attach the dquot(s) to the inodes and modify them incore.
838 * These ids of the inode couldn't have changed since the new
839 * inode has been locked ever since it was created.
840 */
841 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
842
843 error = xfs_iunlink(tp, ip);
844 if (error)
845 goto out_trans_cancel;
846
847 error = xfs_trans_commit(tp);
848 if (error)
849 goto out_release_inode;
850
851 xfs_qm_dqrele(udqp);
852 xfs_qm_dqrele(gdqp);
853 xfs_qm_dqrele(pdqp);
854
855 *ipp = ip;
856 xfs_iunlock(ip, XFS_ILOCK_EXCL);
857 return 0;
858
859 out_trans_cancel:
860 xfs_trans_cancel(tp);
861 out_release_inode:
862 /*
863 * Wait until after the current transaction is aborted to finish the
864 * setup of the inode and release the inode. This prevents recursive
865 * transactions and deadlocks from xfs_inactive.
866 */
867 if (ip) {
868 xfs_iunlock(ip, XFS_ILOCK_EXCL);
869 xfs_finish_inode_setup(ip);
870 xfs_irele(ip);
871 }
872 out_release_dquots:
873 xfs_qm_dqrele(udqp);
874 xfs_qm_dqrele(gdqp);
875 xfs_qm_dqrele(pdqp);
876
877 return error;
878}
879
880int
881xfs_link(
882 struct xfs_inode *tdp,
883 struct xfs_inode *sip,
884 struct xfs_name *target_name)
885{
886 struct xfs_dir_update du = {
887 .dp = tdp,
888 .name = target_name,
889 .ip = sip,
890 };
891 struct xfs_mount *mp = tdp->i_mount;
892 struct xfs_trans *tp;
893 int error, nospace_error = 0;
894 int resblks;
895
896 trace_xfs_link(tdp, target_name);
897
898 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
899
900 if (xfs_is_shutdown(mp))
901 return -EIO;
902 if (xfs_ifork_zapped(tdp, XFS_DATA_FORK))
903 return -EIO;
904
905 error = xfs_qm_dqattach(sip);
906 if (error)
907 goto std_return;
908
909 error = xfs_qm_dqattach(tdp);
910 if (error)
911 goto std_return;
912
913 error = xfs_parent_start(mp, &du.ppargs);
914 if (error)
915 goto std_return;
916
917 resblks = xfs_link_space_res(mp, target_name->len);
918 error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks,
919 &tp, &nospace_error);
920 if (error)
921 goto out_parent;
922
923 /*
924 * We don't allow reservationless or quotaless hardlinking when parent
925 * pointers are enabled because we can't back out if the xattrs must
926 * grow.
927 */
928 if (du.ppargs && nospace_error) {
929 error = nospace_error;
930 goto error_return;
931 }
932
933 /*
934 * If we are using project inheritance, we only allow hard link
935 * creation in our tree when the project IDs are the same; else
936 * the tree quota mechanism could be circumvented.
937 */
938 if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
939 tdp->i_projid != sip->i_projid)) {
940 /*
941 * Project quota setup skips special files which can
942 * leave inodes in a PROJINHERIT directory without a
943 * project ID set. We need to allow links to be made
944 * to these "project-less" inodes because userspace
945 * expects them to succeed after project ID setup,
946 * but everything else should be rejected.
947 */
948 if (!special_file(VFS_I(sip)->i_mode) ||
949 sip->i_projid != 0) {
950 error = -EXDEV;
951 goto error_return;
952 }
953 }
954
955 error = xfs_dir_add_child(tp, resblks, &du);
956 if (error)
957 goto error_return;
958
959 /*
960 * If this is a synchronous mount, make sure that the
961 * link transaction goes to disk before returning to
962 * the user.
963 */
964 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
965 xfs_trans_set_sync(tp);
966
967 error = xfs_trans_commit(tp);
968 xfs_iunlock(tdp, XFS_ILOCK_EXCL);
969 xfs_iunlock(sip, XFS_ILOCK_EXCL);
970 xfs_parent_finish(mp, du.ppargs);
971 return error;
972
973 error_return:
974 xfs_trans_cancel(tp);
975 xfs_iunlock(tdp, XFS_ILOCK_EXCL);
976 xfs_iunlock(sip, XFS_ILOCK_EXCL);
977 out_parent:
978 xfs_parent_finish(mp, du.ppargs);
979 std_return:
980 if (error == -ENOSPC && nospace_error)
981 error = nospace_error;
982 return error;
983}
984
985/* Clear the reflink flag and the cowblocks tag if possible. */
986static void
987xfs_itruncate_clear_reflink_flags(
988 struct xfs_inode *ip)
989{
990 struct xfs_ifork *dfork;
991 struct xfs_ifork *cfork;
992
993 if (!xfs_is_reflink_inode(ip))
994 return;
995 dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK);
996 cfork = xfs_ifork_ptr(ip, XFS_COW_FORK);
997 if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
998 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
999 if (cfork->if_bytes == 0)
1000 xfs_inode_clear_cowblocks_tag(ip);
1001}
1002
1003/*
1004 * Free up the underlying blocks past new_size. The new size must be smaller
1005 * than the current size. This routine can be used both for the attribute and
1006 * data fork, and does not modify the inode size, which is left to the caller.
1007 *
1008 * The transaction passed to this routine must have made a permanent log
1009 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1010 * given transaction and start new ones, so make sure everything involved in
1011 * the transaction is tidy before calling here. Some transaction will be
1012 * returned to the caller to be committed. The incoming transaction must
1013 * already include the inode, and both inode locks must be held exclusively.
1014 * The inode must also be "held" within the transaction. On return the inode
1015 * will be "held" within the returned transaction. This routine does NOT
1016 * require any disk space to be reserved for it within the transaction.
1017 *
1018 * If we get an error, we must return with the inode locked and linked into the
1019 * current transaction. This keeps things simple for the higher level code,
1020 * because it always knows that the inode is locked and held in the transaction
1021 * that returns to it whether errors occur or not. We don't mark the inode
1022 * dirty on error so that transactions can be easily aborted if possible.
1023 */
1024int
1025xfs_itruncate_extents_flags(
1026 struct xfs_trans **tpp,
1027 struct xfs_inode *ip,
1028 int whichfork,
1029 xfs_fsize_t new_size,
1030 int flags)
1031{
1032 struct xfs_mount *mp = ip->i_mount;
1033 struct xfs_trans *tp = *tpp;
1034 xfs_fileoff_t first_unmap_block;
1035 int error = 0;
1036
1037 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1038 if (atomic_read(&VFS_I(ip)->i_count))
1039 xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL);
1040 ASSERT(new_size <= XFS_ISIZE(ip));
1041 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1042 ASSERT(ip->i_itemp != NULL);
1043 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1044 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1045
1046 trace_xfs_itruncate_extents_start(ip, new_size);
1047
1048 flags |= xfs_bmapi_aflag(whichfork);
1049
1050 /*
1051 * Since it is possible for space to become allocated beyond
1052 * the end of the file (in a crash where the space is allocated
1053 * but the inode size is not yet updated), simply remove any
1054 * blocks which show up between the new EOF and the maximum
1055 * possible file size.
1056 *
1057 * We have to free all the blocks to the bmbt maximum offset, even if
1058 * the page cache can't scale that far.
1059 */
1060 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1061 if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1062 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1063 return 0;
1064 }
1065
1066 error = xfs_bunmapi_range(&tp, ip, flags, first_unmap_block,
1067 XFS_MAX_FILEOFF);
1068 if (error)
1069 goto out;
1070
1071 if (whichfork == XFS_DATA_FORK) {
1072 /* Remove all pending CoW reservations. */
1073 error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1074 first_unmap_block, XFS_MAX_FILEOFF, true);
1075 if (error)
1076 goto out;
1077
1078 xfs_itruncate_clear_reflink_flags(ip);
1079 }
1080
1081 /*
1082 * Always re-log the inode so that our permanent transaction can keep
1083 * on rolling it forward in the log.
1084 */
1085 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1086
1087 trace_xfs_itruncate_extents_end(ip, new_size);
1088
1089out:
1090 *tpp = tp;
1091 return error;
1092}
1093
1094/*
1095 * Mark all the buffers attached to this directory stale. In theory we should
1096 * never be freeing a directory with any blocks at all, but this covers the
1097 * case where we've recovered a directory swap with a "temporary" directory
1098 * created by online repair and now need to dump it.
1099 */
1100STATIC void
1101xfs_inactive_dir(
1102 struct xfs_inode *dp)
1103{
1104 struct xfs_iext_cursor icur;
1105 struct xfs_bmbt_irec got;
1106 struct xfs_mount *mp = dp->i_mount;
1107 struct xfs_da_geometry *geo = mp->m_dir_geo;
1108 struct xfs_ifork *ifp = xfs_ifork_ptr(dp, XFS_DATA_FORK);
1109 xfs_fileoff_t off;
1110
1111 /*
1112 * Invalidate each directory block. All directory blocks are of
1113 * fsbcount length and alignment, so we only need to walk those same
1114 * offsets. We hold the only reference to this inode, so we must wait
1115 * for the buffer locks.
1116 */
1117 for_each_xfs_iext(ifp, &icur, &got) {
1118 for (off = round_up(got.br_startoff, geo->fsbcount);
1119 off < got.br_startoff + got.br_blockcount;
1120 off += geo->fsbcount) {
1121 struct xfs_buf *bp = NULL;
1122 xfs_fsblock_t fsbno;
1123 int error;
1124
1125 fsbno = (off - got.br_startoff) + got.br_startblock;
1126 error = xfs_buf_incore(mp->m_ddev_targp,
1127 XFS_FSB_TO_DADDR(mp, fsbno),
1128 XFS_FSB_TO_BB(mp, geo->fsbcount),
1129 XBF_LIVESCAN, &bp);
1130 if (error)
1131 continue;
1132
1133 xfs_buf_stale(bp);
1134 xfs_buf_relse(bp);
1135 }
1136 }
1137}
1138
1139/*
1140 * xfs_inactive_truncate
1141 *
1142 * Called to perform a truncate when an inode becomes unlinked.
1143 */
1144STATIC int
1145xfs_inactive_truncate(
1146 struct xfs_inode *ip)
1147{
1148 struct xfs_mount *mp = ip->i_mount;
1149 struct xfs_trans *tp;
1150 int error;
1151
1152 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1153 if (error) {
1154 ASSERT(xfs_is_shutdown(mp));
1155 return error;
1156 }
1157 xfs_ilock(ip, XFS_ILOCK_EXCL);
1158 xfs_trans_ijoin(tp, ip, 0);
1159
1160 /*
1161 * Log the inode size first to prevent stale data exposure in the event
1162 * of a system crash before the truncate completes. See the related
1163 * comment in xfs_vn_setattr_size() for details.
1164 */
1165 ip->i_disk_size = 0;
1166 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1167
1168 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1169 if (error)
1170 goto error_trans_cancel;
1171
1172 ASSERT(ip->i_df.if_nextents == 0);
1173
1174 error = xfs_trans_commit(tp);
1175 if (error)
1176 goto error_unlock;
1177
1178 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1179 return 0;
1180
1181error_trans_cancel:
1182 xfs_trans_cancel(tp);
1183error_unlock:
1184 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1185 return error;
1186}
1187
1188/*
1189 * xfs_inactive_ifree()
1190 *
1191 * Perform the inode free when an inode is unlinked.
1192 */
1193STATIC int
1194xfs_inactive_ifree(
1195 struct xfs_inode *ip)
1196{
1197 struct xfs_mount *mp = ip->i_mount;
1198 struct xfs_trans *tp;
1199 int error;
1200
1201 /*
1202 * We try to use a per-AG reservation for any block needed by the finobt
1203 * tree, but as the finobt feature predates the per-AG reservation
1204 * support a degraded file system might not have enough space for the
1205 * reservation at mount time. In that case try to dip into the reserved
1206 * pool and pray.
1207 *
1208 * Send a warning if the reservation does happen to fail, as the inode
1209 * now remains allocated and sits on the unlinked list until the fs is
1210 * repaired.
1211 */
1212 if (unlikely(mp->m_finobt_nores)) {
1213 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1214 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1215 &tp);
1216 } else {
1217 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1218 }
1219 if (error) {
1220 if (error == -ENOSPC) {
1221 xfs_warn_ratelimited(mp,
1222 "Failed to remove inode(s) from unlinked list. "
1223 "Please free space, unmount and run xfs_repair.");
1224 } else {
1225 ASSERT(xfs_is_shutdown(mp));
1226 }
1227 return error;
1228 }
1229
1230 /*
1231 * We do not hold the inode locked across the entire rolling transaction
1232 * here. We only need to hold it for the first transaction that
1233 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1234 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1235 * here breaks the relationship between cluster buffer invalidation and
1236 * stale inode invalidation on cluster buffer item journal commit
1237 * completion, and can result in leaving dirty stale inodes hanging
1238 * around in memory.
1239 *
1240 * We have no need for serialising this inode operation against other
1241 * operations - we freed the inode and hence reallocation is required
1242 * and that will serialise on reallocating the space the deferops need
1243 * to free. Hence we can unlock the inode on the first commit of
1244 * the transaction rather than roll it right through the deferops. This
1245 * avoids relogging the XFS_ISTALE inode.
1246 *
1247 * We check that xfs_ifree() hasn't grown an internal transaction roll
1248 * by asserting that the inode is still locked when it returns.
1249 */
1250 xfs_ilock(ip, XFS_ILOCK_EXCL);
1251 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1252
1253 error = xfs_ifree(tp, ip);
1254 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1255 if (error) {
1256 /*
1257 * If we fail to free the inode, shut down. The cancel
1258 * might do that, we need to make sure. Otherwise the
1259 * inode might be lost for a long time or forever.
1260 */
1261 if (!xfs_is_shutdown(mp)) {
1262 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1263 __func__, error);
1264 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1265 }
1266 xfs_trans_cancel(tp);
1267 return error;
1268 }
1269
1270 /*
1271 * Credit the quota account(s). The inode is gone.
1272 */
1273 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1274
1275 return xfs_trans_commit(tp);
1276}
1277
1278/*
1279 * Returns true if we need to update the on-disk metadata before we can free
1280 * the memory used by this inode. Updates include freeing post-eof
1281 * preallocations; freeing COW staging extents; and marking the inode free in
1282 * the inobt if it is on the unlinked list.
1283 */
1284bool
1285xfs_inode_needs_inactive(
1286 struct xfs_inode *ip)
1287{
1288 struct xfs_mount *mp = ip->i_mount;
1289 struct xfs_ifork *cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
1290
1291 /*
1292 * If the inode is already free, then there can be nothing
1293 * to clean up here.
1294 */
1295 if (VFS_I(ip)->i_mode == 0)
1296 return false;
1297
1298 /*
1299 * If this is a read-only mount, don't do this (would generate I/O)
1300 * unless we're in log recovery and cleaning the iunlinked list.
1301 */
1302 if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1303 return false;
1304
1305 /* If the log isn't running, push inodes straight to reclaim. */
1306 if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp))
1307 return false;
1308
1309 /* Metadata inodes require explicit resource cleanup. */
1310 if (xfs_is_internal_inode(ip))
1311 return false;
1312
1313 /* Want to clean out the cow blocks if there are any. */
1314 if (cow_ifp && cow_ifp->if_bytes > 0)
1315 return true;
1316
1317 /* Unlinked files must be freed. */
1318 if (VFS_I(ip)->i_nlink == 0)
1319 return true;
1320
1321 /*
1322 * This file isn't being freed, so check if there are post-eof blocks
1323 * to free.
1324 *
1325 * Note: don't bother with iolock here since lockdep complains about
1326 * acquiring it in reclaim context. We have the only reference to the
1327 * inode at this point anyways.
1328 */
1329 return xfs_can_free_eofblocks(ip);
1330}
1331
1332/*
1333 * Save health status somewhere, if we're dumping an inode with uncorrected
1334 * errors and online repair isn't running.
1335 */
1336static inline void
1337xfs_inactive_health(
1338 struct xfs_inode *ip)
1339{
1340 struct xfs_mount *mp = ip->i_mount;
1341 struct xfs_perag *pag;
1342 unsigned int sick;
1343 unsigned int checked;
1344
1345 xfs_inode_measure_sickness(ip, &sick, &checked);
1346 if (!sick)
1347 return;
1348
1349 trace_xfs_inode_unfixed_corruption(ip, sick);
1350
1351 if (sick & XFS_SICK_INO_FORGET)
1352 return;
1353
1354 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1355 if (!pag) {
1356 /* There had better still be a perag structure! */
1357 ASSERT(0);
1358 return;
1359 }
1360
1361 xfs_ag_mark_sick(pag, XFS_SICK_AG_INODES);
1362 xfs_perag_put(pag);
1363}
1364
1365/*
1366 * xfs_inactive
1367 *
1368 * This is called when the vnode reference count for the vnode
1369 * goes to zero. If the file has been unlinked, then it must
1370 * now be truncated. Also, we clear all of the read-ahead state
1371 * kept for the inode here since the file is now closed.
1372 */
1373int
1374xfs_inactive(
1375 xfs_inode_t *ip)
1376{
1377 struct xfs_mount *mp;
1378 int error = 0;
1379 int truncate = 0;
1380
1381 /*
1382 * If the inode is already free, then there can be nothing
1383 * to clean up here.
1384 */
1385 if (VFS_I(ip)->i_mode == 0) {
1386 ASSERT(ip->i_df.if_broot_bytes == 0);
1387 goto out;
1388 }
1389
1390 mp = ip->i_mount;
1391 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1392
1393 xfs_inactive_health(ip);
1394
1395 /*
1396 * If this is a read-only mount, don't do this (would generate I/O)
1397 * unless we're in log recovery and cleaning the iunlinked list.
1398 */
1399 if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1400 goto out;
1401
1402 /* Metadata inodes require explicit resource cleanup. */
1403 if (xfs_is_internal_inode(ip))
1404 goto out;
1405
1406 /* Try to clean out the cow blocks if there are any. */
1407 if (xfs_inode_has_cow_data(ip)) {
1408 error = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1409 if (error)
1410 goto out;
1411 }
1412
1413 if (VFS_I(ip)->i_nlink != 0) {
1414 /*
1415 * Note: don't bother with iolock here since lockdep complains
1416 * about acquiring it in reclaim context. We have the only
1417 * reference to the inode at this point anyways.
1418 */
1419 if (xfs_can_free_eofblocks(ip))
1420 error = xfs_free_eofblocks(ip);
1421
1422 goto out;
1423 }
1424
1425 if (S_ISREG(VFS_I(ip)->i_mode) &&
1426 (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1427 xfs_inode_has_filedata(ip)))
1428 truncate = 1;
1429
1430 if (xfs_iflags_test(ip, XFS_IQUOTAUNCHECKED)) {
1431 /*
1432 * If this inode is being inactivated during a quotacheck and
1433 * has not yet been scanned by quotacheck, we /must/ remove
1434 * the dquots from the inode before inactivation changes the
1435 * block and inode counts. Most probably this is a result of
1436 * reloading the incore iunlinked list to purge unrecovered
1437 * unlinked inodes.
1438 */
1439 xfs_qm_dqdetach(ip);
1440 } else {
1441 error = xfs_qm_dqattach(ip);
1442 if (error)
1443 goto out;
1444 }
1445
1446 if (S_ISDIR(VFS_I(ip)->i_mode) && ip->i_df.if_nextents > 0) {
1447 xfs_inactive_dir(ip);
1448 truncate = 1;
1449 }
1450
1451 if (S_ISLNK(VFS_I(ip)->i_mode))
1452 error = xfs_inactive_symlink(ip);
1453 else if (truncate)
1454 error = xfs_inactive_truncate(ip);
1455 if (error)
1456 goto out;
1457
1458 /*
1459 * If there are attributes associated with the file then blow them away
1460 * now. The code calls a routine that recursively deconstructs the
1461 * attribute fork. If also blows away the in-core attribute fork.
1462 */
1463 if (xfs_inode_has_attr_fork(ip)) {
1464 error = xfs_attr_inactive(ip);
1465 if (error)
1466 goto out;
1467 }
1468
1469 ASSERT(ip->i_forkoff == 0);
1470
1471 /*
1472 * Free the inode.
1473 */
1474 error = xfs_inactive_ifree(ip);
1475
1476out:
1477 /*
1478 * We're done making metadata updates for this inode, so we can release
1479 * the attached dquots.
1480 */
1481 xfs_qm_dqdetach(ip);
1482 return error;
1483}
1484
1485/*
1486 * Find an inode on the unlinked list. This does not take references to the
1487 * inode as we have existence guarantees by holding the AGI buffer lock and that
1488 * only unlinked, referenced inodes can be on the unlinked inode list. If we
1489 * don't find the inode in cache, then let the caller handle the situation.
1490 */
1491struct xfs_inode *
1492xfs_iunlink_lookup(
1493 struct xfs_perag *pag,
1494 xfs_agino_t agino)
1495{
1496 struct xfs_inode *ip;
1497
1498 rcu_read_lock();
1499 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
1500 if (!ip) {
1501 /* Caller can handle inode not being in memory. */
1502 rcu_read_unlock();
1503 return NULL;
1504 }
1505
1506 /*
1507 * Inode in RCU freeing limbo should not happen. Warn about this and
1508 * let the caller handle the failure.
1509 */
1510 if (WARN_ON_ONCE(!ip->i_ino)) {
1511 rcu_read_unlock();
1512 return NULL;
1513 }
1514 ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM));
1515 rcu_read_unlock();
1516 return ip;
1517}
1518
1519/*
1520 * Load the inode @next_agino into the cache and set its prev_unlinked pointer
1521 * to @prev_agino. Caller must hold the AGI to synchronize with other changes
1522 * to the unlinked list.
1523 */
1524int
1525xfs_iunlink_reload_next(
1526 struct xfs_trans *tp,
1527 struct xfs_buf *agibp,
1528 xfs_agino_t prev_agino,
1529 xfs_agino_t next_agino)
1530{
1531 struct xfs_perag *pag = agibp->b_pag;
1532 struct xfs_mount *mp = pag_mount(pag);
1533 struct xfs_inode *next_ip = NULL;
1534 int error;
1535
1536 ASSERT(next_agino != NULLAGINO);
1537
1538#ifdef DEBUG
1539 rcu_read_lock();
1540 next_ip = radix_tree_lookup(&pag->pag_ici_root, next_agino);
1541 ASSERT(next_ip == NULL);
1542 rcu_read_unlock();
1543#endif
1544
1545 xfs_info_ratelimited(mp,
1546 "Found unrecovered unlinked inode 0x%x in AG 0x%x. Initiating recovery.",
1547 next_agino, pag_agno(pag));
1548
1549 /*
1550 * Use an untrusted lookup just to be cautious in case the AGI has been
1551 * corrupted and now points at a free inode. That shouldn't happen,
1552 * but we'd rather shut down now since we're already running in a weird
1553 * situation.
1554 */
1555 error = xfs_iget(mp, tp, xfs_agino_to_ino(pag, next_agino),
1556 XFS_IGET_UNTRUSTED, 0, &next_ip);
1557 if (error) {
1558 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
1559 return error;
1560 }
1561
1562 /* If this is not an unlinked inode, something is very wrong. */
1563 if (VFS_I(next_ip)->i_nlink != 0) {
1564 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
1565 error = -EFSCORRUPTED;
1566 goto rele;
1567 }
1568
1569 next_ip->i_prev_unlinked = prev_agino;
1570 trace_xfs_iunlink_reload_next(next_ip);
1571rele:
1572 ASSERT(!(VFS_I(next_ip)->i_state & I_DONTCACHE));
1573 if (xfs_is_quotacheck_running(mp) && next_ip)
1574 xfs_iflags_set(next_ip, XFS_IQUOTAUNCHECKED);
1575 xfs_irele(next_ip);
1576 return error;
1577}
1578
1579/*
1580 * Look up the inode number specified and if it is not already marked XFS_ISTALE
1581 * mark it stale. We should only find clean inodes in this lookup that aren't
1582 * already stale.
1583 */
1584static void
1585xfs_ifree_mark_inode_stale(
1586 struct xfs_perag *pag,
1587 struct xfs_inode *free_ip,
1588 xfs_ino_t inum)
1589{
1590 struct xfs_mount *mp = pag_mount(pag);
1591 struct xfs_inode_log_item *iip;
1592 struct xfs_inode *ip;
1593
1594retry:
1595 rcu_read_lock();
1596 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
1597
1598 /* Inode not in memory, nothing to do */
1599 if (!ip) {
1600 rcu_read_unlock();
1601 return;
1602 }
1603
1604 /*
1605 * because this is an RCU protected lookup, we could find a recently
1606 * freed or even reallocated inode during the lookup. We need to check
1607 * under the i_flags_lock for a valid inode here. Skip it if it is not
1608 * valid, the wrong inode or stale.
1609 */
1610 spin_lock(&ip->i_flags_lock);
1611 if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
1612 goto out_iflags_unlock;
1613
1614 /*
1615 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
1616 * other inodes that we did not find in the list attached to the buffer
1617 * and are not already marked stale. If we can't lock it, back off and
1618 * retry.
1619 */
1620 if (ip != free_ip) {
1621 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1622 spin_unlock(&ip->i_flags_lock);
1623 rcu_read_unlock();
1624 delay(1);
1625 goto retry;
1626 }
1627 }
1628 ip->i_flags |= XFS_ISTALE;
1629
1630 /*
1631 * If the inode is flushing, it is already attached to the buffer. All
1632 * we needed to do here is mark the inode stale so buffer IO completion
1633 * will remove it from the AIL.
1634 */
1635 iip = ip->i_itemp;
1636 if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
1637 ASSERT(!list_empty(&iip->ili_item.li_bio_list));
1638 ASSERT(iip->ili_last_fields);
1639 goto out_iunlock;
1640 }
1641
1642 /*
1643 * Inodes not attached to the buffer can be released immediately.
1644 * Everything else has to go through xfs_iflush_abort() on journal
1645 * commit as the flock synchronises removal of the inode from the
1646 * cluster buffer against inode reclaim.
1647 */
1648 if (!iip || list_empty(&iip->ili_item.li_bio_list))
1649 goto out_iunlock;
1650
1651 __xfs_iflags_set(ip, XFS_IFLUSHING);
1652 spin_unlock(&ip->i_flags_lock);
1653 rcu_read_unlock();
1654
1655 /* we have a dirty inode in memory that has not yet been flushed. */
1656 spin_lock(&iip->ili_lock);
1657 iip->ili_last_fields = iip->ili_fields;
1658 iip->ili_fields = 0;
1659 iip->ili_fsync_fields = 0;
1660 spin_unlock(&iip->ili_lock);
1661 ASSERT(iip->ili_last_fields);
1662
1663 if (ip != free_ip)
1664 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1665 return;
1666
1667out_iunlock:
1668 if (ip != free_ip)
1669 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1670out_iflags_unlock:
1671 spin_unlock(&ip->i_flags_lock);
1672 rcu_read_unlock();
1673}
1674
1675/*
1676 * A big issue when freeing the inode cluster is that we _cannot_ skip any
1677 * inodes that are in memory - they all must be marked stale and attached to
1678 * the cluster buffer.
1679 */
1680static int
1681xfs_ifree_cluster(
1682 struct xfs_trans *tp,
1683 struct xfs_perag *pag,
1684 struct xfs_inode *free_ip,
1685 struct xfs_icluster *xic)
1686{
1687 struct xfs_mount *mp = free_ip->i_mount;
1688 struct xfs_ino_geometry *igeo = M_IGEO(mp);
1689 struct xfs_buf *bp;
1690 xfs_daddr_t blkno;
1691 xfs_ino_t inum = xic->first_ino;
1692 int nbufs;
1693 int i, j;
1694 int ioffset;
1695 int error;
1696
1697 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
1698
1699 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
1700 /*
1701 * The allocation bitmap tells us which inodes of the chunk were
1702 * physically allocated. Skip the cluster if an inode falls into
1703 * a sparse region.
1704 */
1705 ioffset = inum - xic->first_ino;
1706 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
1707 ASSERT(ioffset % igeo->inodes_per_cluster == 0);
1708 continue;
1709 }
1710
1711 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1712 XFS_INO_TO_AGBNO(mp, inum));
1713
1714 /*
1715 * We obtain and lock the backing buffer first in the process
1716 * here to ensure dirty inodes attached to the buffer remain in
1717 * the flushing state while we mark them stale.
1718 *
1719 * If we scan the in-memory inodes first, then buffer IO can
1720 * complete before we get a lock on it, and hence we may fail
1721 * to mark all the active inodes on the buffer stale.
1722 */
1723 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
1724 mp->m_bsize * igeo->blocks_per_cluster,
1725 XBF_UNMAPPED, &bp);
1726 if (error)
1727 return error;
1728
1729 /*
1730 * This buffer may not have been correctly initialised as we
1731 * didn't read it from disk. That's not important because we are
1732 * only using to mark the buffer as stale in the log, and to
1733 * attach stale cached inodes on it.
1734 *
1735 * For the inode that triggered the cluster freeing, this
1736 * attachment may occur in xfs_inode_item_precommit() after we
1737 * have marked this buffer stale. If this buffer was not in
1738 * memory before xfs_ifree_cluster() started, it will not be
1739 * marked XBF_DONE and this will cause problems later in
1740 * xfs_inode_item_precommit() when we trip over a (stale, !done)
1741 * buffer to attached to the transaction.
1742 *
1743 * Hence we have to mark the buffer as XFS_DONE here. This is
1744 * safe because we are also marking the buffer as XBF_STALE and
1745 * XFS_BLI_STALE. That means it will never be dispatched for
1746 * IO and it won't be unlocked until the cluster freeing has
1747 * been committed to the journal and the buffer unpinned. If it
1748 * is written, we want to know about it, and we want it to
1749 * fail. We can acheive this by adding a write verifier to the
1750 * buffer.
1751 */
1752 bp->b_flags |= XBF_DONE;
1753 bp->b_ops = &xfs_inode_buf_ops;
1754
1755 /*
1756 * Now we need to set all the cached clean inodes as XFS_ISTALE,
1757 * too. This requires lookups, and will skip inodes that we've
1758 * already marked XFS_ISTALE.
1759 */
1760 for (i = 0; i < igeo->inodes_per_cluster; i++)
1761 xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
1762
1763 xfs_trans_stale_inode_buf(tp, bp);
1764 xfs_trans_binval(tp, bp);
1765 }
1766 return 0;
1767}
1768
1769/*
1770 * This is called to return an inode to the inode free list. The inode should
1771 * already be truncated to 0 length and have no pages associated with it. This
1772 * routine also assumes that the inode is already a part of the transaction.
1773 *
1774 * The on-disk copy of the inode will have been added to the list of unlinked
1775 * inodes in the AGI. We need to remove the inode from that list atomically with
1776 * respect to freeing it here.
1777 */
1778int
1779xfs_ifree(
1780 struct xfs_trans *tp,
1781 struct xfs_inode *ip)
1782{
1783 struct xfs_mount *mp = ip->i_mount;
1784 struct xfs_perag *pag;
1785 struct xfs_icluster xic = { 0 };
1786 struct xfs_inode_log_item *iip = ip->i_itemp;
1787 int error;
1788
1789 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1790 ASSERT(VFS_I(ip)->i_nlink == 0);
1791 ASSERT(ip->i_df.if_nextents == 0);
1792 ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
1793 ASSERT(ip->i_nblocks == 0);
1794
1795 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1796
1797 error = xfs_inode_uninit(tp, pag, ip, &xic);
1798 if (error)
1799 goto out;
1800
1801 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
1802 xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
1803
1804 /* Don't attempt to replay owner changes for a deleted inode */
1805 spin_lock(&iip->ili_lock);
1806 iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
1807 spin_unlock(&iip->ili_lock);
1808
1809 if (xic.deleted)
1810 error = xfs_ifree_cluster(tp, pag, ip, &xic);
1811out:
1812 xfs_perag_put(pag);
1813 return error;
1814}
1815
1816/*
1817 * This is called to unpin an inode. The caller must have the inode locked
1818 * in at least shared mode so that the buffer cannot be subsequently pinned
1819 * once someone is waiting for it to be unpinned.
1820 */
1821static void
1822xfs_iunpin(
1823 struct xfs_inode *ip)
1824{
1825 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);
1826
1827 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
1828
1829 /* Give the log a push to start the unpinning I/O */
1830 xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
1831
1832}
1833
1834static void
1835__xfs_iunpin_wait(
1836 struct xfs_inode *ip)
1837{
1838 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
1839 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
1840
1841 xfs_iunpin(ip);
1842
1843 do {
1844 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
1845 if (xfs_ipincount(ip))
1846 io_schedule();
1847 } while (xfs_ipincount(ip));
1848 finish_wait(wq, &wait.wq_entry);
1849}
1850
1851void
1852xfs_iunpin_wait(
1853 struct xfs_inode *ip)
1854{
1855 if (xfs_ipincount(ip))
1856 __xfs_iunpin_wait(ip);
1857}
1858
1859/*
1860 * Removing an inode from the namespace involves removing the directory entry
1861 * and dropping the link count on the inode. Removing the directory entry can
1862 * result in locking an AGF (directory blocks were freed) and removing a link
1863 * count can result in placing the inode on an unlinked list which results in
1864 * locking an AGI.
1865 *
1866 * The big problem here is that we have an ordering constraint on AGF and AGI
1867 * locking - inode allocation locks the AGI, then can allocate a new extent for
1868 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
1869 * removes the inode from the unlinked list, requiring that we lock the AGI
1870 * first, and then freeing the inode can result in an inode chunk being freed
1871 * and hence freeing disk space requiring that we lock an AGF.
1872 *
1873 * Hence the ordering that is imposed by other parts of the code is AGI before
1874 * AGF. This means we cannot remove the directory entry before we drop the inode
1875 * reference count and put it on the unlinked list as this results in a lock
1876 * order of AGF then AGI, and this can deadlock against inode allocation and
1877 * freeing. Therefore we must drop the link counts before we remove the
1878 * directory entry.
1879 *
1880 * This is still safe from a transactional point of view - it is not until we
1881 * get to xfs_defer_finish() that we have the possibility of multiple
1882 * transactions in this operation. Hence as long as we remove the directory
1883 * entry and drop the link count in the first transaction of the remove
1884 * operation, there are no transactional constraints on the ordering here.
1885 */
1886int
1887xfs_remove(
1888 struct xfs_inode *dp,
1889 struct xfs_name *name,
1890 struct xfs_inode *ip)
1891{
1892 struct xfs_dir_update du = {
1893 .dp = dp,
1894 .name = name,
1895 .ip = ip,
1896 };
1897 struct xfs_mount *mp = dp->i_mount;
1898 struct xfs_trans *tp = NULL;
1899 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
1900 int dontcare;
1901 int error = 0;
1902 uint resblks;
1903
1904 trace_xfs_remove(dp, name);
1905
1906 if (xfs_is_shutdown(mp))
1907 return -EIO;
1908 if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
1909 return -EIO;
1910
1911 error = xfs_qm_dqattach(dp);
1912 if (error)
1913 goto std_return;
1914
1915 error = xfs_qm_dqattach(ip);
1916 if (error)
1917 goto std_return;
1918
1919 error = xfs_parent_start(mp, &du.ppargs);
1920 if (error)
1921 goto std_return;
1922
1923 /*
1924 * We try to get the real space reservation first, allowing for
1925 * directory btree deletion(s) implying possible bmap insert(s). If we
1926 * can't get the space reservation then we use 0 instead, and avoid the
1927 * bmap btree insert(s) in the directory code by, if the bmap insert
1928 * tries to happen, instead trimming the LAST block from the directory.
1929 *
1930 * Ignore EDQUOT and ENOSPC being returned via nospace_error because
1931 * the directory code can handle a reservationless update and we don't
1932 * want to prevent a user from trying to free space by deleting things.
1933 */
1934 resblks = xfs_remove_space_res(mp, name->len);
1935 error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks,
1936 &tp, &dontcare);
1937 if (error) {
1938 ASSERT(error != -ENOSPC);
1939 goto out_parent;
1940 }
1941
1942 error = xfs_dir_remove_child(tp, resblks, &du);
1943 if (error)
1944 goto out_trans_cancel;
1945
1946 /*
1947 * If this is a synchronous mount, make sure that the
1948 * remove transaction goes to disk before returning to
1949 * the user.
1950 */
1951 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1952 xfs_trans_set_sync(tp);
1953
1954 error = xfs_trans_commit(tp);
1955 if (error)
1956 goto out_unlock;
1957
1958 if (is_dir && xfs_inode_is_filestream(ip))
1959 xfs_filestream_deassociate(ip);
1960
1961 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1962 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1963 xfs_parent_finish(mp, du.ppargs);
1964 return 0;
1965
1966 out_trans_cancel:
1967 xfs_trans_cancel(tp);
1968 out_unlock:
1969 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1970 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1971 out_parent:
1972 xfs_parent_finish(mp, du.ppargs);
1973 std_return:
1974 return error;
1975}
1976
1977static inline void
1978xfs_iunlock_rename(
1979 struct xfs_inode **i_tab,
1980 int num_inodes)
1981{
1982 int i;
1983
1984 for (i = num_inodes - 1; i >= 0; i--) {
1985 /* Skip duplicate inodes if src and target dps are the same */
1986 if (!i_tab[i] || (i > 0 && i_tab[i] == i_tab[i - 1]))
1987 continue;
1988 xfs_iunlock(i_tab[i], XFS_ILOCK_EXCL);
1989 }
1990}
1991
1992/*
1993 * Enter all inodes for a rename transaction into a sorted array.
1994 */
1995#define __XFS_SORT_INODES 5
1996STATIC void
1997xfs_sort_for_rename(
1998 struct xfs_inode *dp1, /* in: old (source) directory inode */
1999 struct xfs_inode *dp2, /* in: new (target) directory inode */
2000 struct xfs_inode *ip1, /* in: inode of old entry */
2001 struct xfs_inode *ip2, /* in: inode of new entry */
2002 struct xfs_inode *wip, /* in: whiteout inode */
2003 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2004 int *num_inodes) /* in/out: inodes in array */
2005{
2006 int i;
2007
2008 ASSERT(*num_inodes == __XFS_SORT_INODES);
2009 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2010
2011 /*
2012 * i_tab contains a list of pointers to inodes. We initialize
2013 * the table here & we'll sort it. We will then use it to
2014 * order the acquisition of the inode locks.
2015 *
2016 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2017 */
2018 i = 0;
2019 i_tab[i++] = dp1;
2020 i_tab[i++] = dp2;
2021 i_tab[i++] = ip1;
2022 if (ip2)
2023 i_tab[i++] = ip2;
2024 if (wip)
2025 i_tab[i++] = wip;
2026 *num_inodes = i;
2027
2028 xfs_sort_inodes(i_tab, *num_inodes);
2029}
2030
2031void
2032xfs_sort_inodes(
2033 struct xfs_inode **i_tab,
2034 unsigned int num_inodes)
2035{
2036 int i, j;
2037
2038 ASSERT(num_inodes <= __XFS_SORT_INODES);
2039
2040 /*
2041 * Sort the elements via bubble sort. (Remember, there are at
2042 * most 5 elements to sort, so this is adequate.)
2043 */
2044 for (i = 0; i < num_inodes; i++) {
2045 for (j = 1; j < num_inodes; j++) {
2046 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino)
2047 swap(i_tab[j], i_tab[j - 1]);
2048 }
2049 }
2050}
2051
2052/*
2053 * xfs_rename_alloc_whiteout()
2054 *
2055 * Return a referenced, unlinked, unlocked inode that can be used as a
2056 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2057 * crash between allocating the inode and linking it into the rename transaction
2058 * recovery will free the inode and we won't leak it.
2059 */
2060static int
2061xfs_rename_alloc_whiteout(
2062 struct mnt_idmap *idmap,
2063 struct xfs_name *src_name,
2064 struct xfs_inode *dp,
2065 struct xfs_inode **wip)
2066{
2067 struct xfs_icreate_args args = {
2068 .idmap = idmap,
2069 .pip = dp,
2070 .mode = S_IFCHR | WHITEOUT_MODE,
2071 .flags = XFS_ICREATE_TMPFILE,
2072 };
2073 struct xfs_inode *tmpfile;
2074 struct qstr name;
2075 int error;
2076
2077 error = xfs_create_tmpfile(&args, &tmpfile);
2078 if (error)
2079 return error;
2080
2081 name.name = src_name->name;
2082 name.len = src_name->len;
2083 error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name);
2084 if (error) {
2085 xfs_finish_inode_setup(tmpfile);
2086 xfs_irele(tmpfile);
2087 return error;
2088 }
2089
2090 /*
2091 * Prepare the tmpfile inode as if it were created through the VFS.
2092 * Complete the inode setup and flag it as linkable. nlink is already
2093 * zero, so we can skip the drop_nlink.
2094 */
2095 xfs_setup_iops(tmpfile);
2096 xfs_finish_inode_setup(tmpfile);
2097 VFS_I(tmpfile)->i_state |= I_LINKABLE;
2098
2099 *wip = tmpfile;
2100 return 0;
2101}
2102
2103/*
2104 * xfs_rename
2105 */
2106int
2107xfs_rename(
2108 struct mnt_idmap *idmap,
2109 struct xfs_inode *src_dp,
2110 struct xfs_name *src_name,
2111 struct xfs_inode *src_ip,
2112 struct xfs_inode *target_dp,
2113 struct xfs_name *target_name,
2114 struct xfs_inode *target_ip,
2115 unsigned int flags)
2116{
2117 struct xfs_dir_update du_src = {
2118 .dp = src_dp,
2119 .name = src_name,
2120 .ip = src_ip,
2121 };
2122 struct xfs_dir_update du_tgt = {
2123 .dp = target_dp,
2124 .name = target_name,
2125 .ip = target_ip,
2126 };
2127 struct xfs_dir_update du_wip = { };
2128 struct xfs_mount *mp = src_dp->i_mount;
2129 struct xfs_trans *tp;
2130 struct xfs_inode *inodes[__XFS_SORT_INODES];
2131 int i;
2132 int num_inodes = __XFS_SORT_INODES;
2133 bool new_parent = (src_dp != target_dp);
2134 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2135 int spaceres;
2136 bool retried = false;
2137 int error, nospace_error = 0;
2138
2139 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2140
2141 if ((flags & RENAME_EXCHANGE) && !target_ip)
2142 return -EINVAL;
2143
2144 /*
2145 * If we are doing a whiteout operation, allocate the whiteout inode
2146 * we will be placing at the target and ensure the type is set
2147 * appropriately.
2148 */
2149 if (flags & RENAME_WHITEOUT) {
2150 error = xfs_rename_alloc_whiteout(idmap, src_name, target_dp,
2151 &du_wip.ip);
2152 if (error)
2153 return error;
2154
2155 /* setup target dirent info as whiteout */
2156 src_name->type = XFS_DIR3_FT_CHRDEV;
2157 }
2158
2159 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, du_wip.ip,
2160 inodes, &num_inodes);
2161
2162 error = xfs_parent_start(mp, &du_src.ppargs);
2163 if (error)
2164 goto out_release_wip;
2165
2166 if (du_wip.ip) {
2167 error = xfs_parent_start(mp, &du_wip.ppargs);
2168 if (error)
2169 goto out_src_ppargs;
2170 }
2171
2172 if (target_ip) {
2173 error = xfs_parent_start(mp, &du_tgt.ppargs);
2174 if (error)
2175 goto out_wip_ppargs;
2176 }
2177
2178retry:
2179 nospace_error = 0;
2180 spaceres = xfs_rename_space_res(mp, src_name->len, target_ip != NULL,
2181 target_name->len, du_wip.ip != NULL);
2182 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2183 if (error == -ENOSPC) {
2184 nospace_error = error;
2185 spaceres = 0;
2186 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2187 &tp);
2188 }
2189 if (error)
2190 goto out_tgt_ppargs;
2191
2192 /*
2193 * We don't allow reservationless renaming when parent pointers are
2194 * enabled because we can't back out if the xattrs must grow.
2195 */
2196 if (du_src.ppargs && nospace_error) {
2197 error = nospace_error;
2198 xfs_trans_cancel(tp);
2199 goto out_tgt_ppargs;
2200 }
2201
2202 /*
2203 * Attach the dquots to the inodes
2204 */
2205 error = xfs_qm_vop_rename_dqattach(inodes);
2206 if (error) {
2207 xfs_trans_cancel(tp);
2208 goto out_tgt_ppargs;
2209 }
2210
2211 /*
2212 * Lock all the participating inodes. Depending upon whether
2213 * the target_name exists in the target directory, and
2214 * whether the target directory is the same as the source
2215 * directory, we can lock from 2 to 5 inodes.
2216 */
2217 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2218
2219 /*
2220 * Join all the inodes to the transaction.
2221 */
2222 xfs_trans_ijoin(tp, src_dp, 0);
2223 if (new_parent)
2224 xfs_trans_ijoin(tp, target_dp, 0);
2225 xfs_trans_ijoin(tp, src_ip, 0);
2226 if (target_ip)
2227 xfs_trans_ijoin(tp, target_ip, 0);
2228 if (du_wip.ip)
2229 xfs_trans_ijoin(tp, du_wip.ip, 0);
2230
2231 /*
2232 * If we are using project inheritance, we only allow renames
2233 * into our tree when the project IDs are the same; else the
2234 * tree quota mechanism would be circumvented.
2235 */
2236 if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
2237 target_dp->i_projid != src_ip->i_projid)) {
2238 error = -EXDEV;
2239 goto out_trans_cancel;
2240 }
2241
2242 /* RENAME_EXCHANGE is unique from here on. */
2243 if (flags & RENAME_EXCHANGE) {
2244 error = xfs_dir_exchange_children(tp, &du_src, &du_tgt,
2245 spaceres);
2246 if (error)
2247 goto out_trans_cancel;
2248 goto out_commit;
2249 }
2250
2251 /*
2252 * Try to reserve quota to handle an expansion of the target directory.
2253 * We'll allow the rename to continue in reservationless mode if we hit
2254 * a space usage constraint. If we trigger reservationless mode, save
2255 * the errno if there isn't any free space in the target directory.
2256 */
2257 if (spaceres != 0) {
2258 error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres,
2259 0, false);
2260 if (error == -EDQUOT || error == -ENOSPC) {
2261 if (!retried) {
2262 xfs_trans_cancel(tp);
2263 xfs_iunlock_rename(inodes, num_inodes);
2264 xfs_blockgc_free_quota(target_dp, 0);
2265 retried = true;
2266 goto retry;
2267 }
2268
2269 nospace_error = error;
2270 spaceres = 0;
2271 error = 0;
2272 }
2273 if (error)
2274 goto out_trans_cancel;
2275 }
2276
2277 /*
2278 * We don't allow quotaless renaming when parent pointers are enabled
2279 * because we can't back out if the xattrs must grow.
2280 */
2281 if (du_src.ppargs && nospace_error) {
2282 error = nospace_error;
2283 goto out_trans_cancel;
2284 }
2285
2286 /*
2287 * Lock the AGI buffers we need to handle bumping the nlink of the
2288 * whiteout inode off the unlinked list and to handle dropping the
2289 * nlink of the target inode. Per locking order rules, do this in
2290 * increasing AG order and before directory block allocation tries to
2291 * grab AGFs because we grab AGIs before AGFs.
2292 *
2293 * The (vfs) caller must ensure that if src is a directory then
2294 * target_ip is either null or an empty directory.
2295 */
2296 for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
2297 if (inodes[i] == du_wip.ip ||
2298 (inodes[i] == target_ip &&
2299 (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
2300 struct xfs_perag *pag;
2301 struct xfs_buf *bp;
2302
2303 pag = xfs_perag_get(mp,
2304 XFS_INO_TO_AGNO(mp, inodes[i]->i_ino));
2305 error = xfs_read_agi(pag, tp, 0, &bp);
2306 xfs_perag_put(pag);
2307 if (error)
2308 goto out_trans_cancel;
2309 }
2310 }
2311
2312 error = xfs_dir_rename_children(tp, &du_src, &du_tgt, spaceres,
2313 &du_wip);
2314 if (error)
2315 goto out_trans_cancel;
2316
2317 if (du_wip.ip) {
2318 /*
2319 * Now we have a real link, clear the "I'm a tmpfile" state
2320 * flag from the inode so it doesn't accidentally get misused in
2321 * future.
2322 */
2323 VFS_I(du_wip.ip)->i_state &= ~I_LINKABLE;
2324 }
2325
2326out_commit:
2327 /*
2328 * If this is a synchronous mount, make sure that the rename
2329 * transaction goes to disk before returning to the user.
2330 */
2331 if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp))
2332 xfs_trans_set_sync(tp);
2333
2334 error = xfs_trans_commit(tp);
2335 nospace_error = 0;
2336 goto out_unlock;
2337
2338out_trans_cancel:
2339 xfs_trans_cancel(tp);
2340out_unlock:
2341 xfs_iunlock_rename(inodes, num_inodes);
2342out_tgt_ppargs:
2343 xfs_parent_finish(mp, du_tgt.ppargs);
2344out_wip_ppargs:
2345 xfs_parent_finish(mp, du_wip.ppargs);
2346out_src_ppargs:
2347 xfs_parent_finish(mp, du_src.ppargs);
2348out_release_wip:
2349 if (du_wip.ip)
2350 xfs_irele(du_wip.ip);
2351 if (error == -ENOSPC && nospace_error)
2352 error = nospace_error;
2353 return error;
2354}
2355
2356static int
2357xfs_iflush(
2358 struct xfs_inode *ip,
2359 struct xfs_buf *bp)
2360{
2361 struct xfs_inode_log_item *iip = ip->i_itemp;
2362 struct xfs_dinode *dip;
2363 struct xfs_mount *mp = ip->i_mount;
2364 int error;
2365
2366 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);
2367 ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
2368 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
2369 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
2370 ASSERT(iip->ili_item.li_buf == bp);
2371
2372 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
2373
2374 /*
2375 * We don't flush the inode if any of the following checks fail, but we
2376 * do still update the log item and attach to the backing buffer as if
2377 * the flush happened. This is a formality to facilitate predictable
2378 * error handling as the caller will shutdown and fail the buffer.
2379 */
2380 error = -EFSCORRUPTED;
2381 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
2382 mp, XFS_ERRTAG_IFLUSH_1)) {
2383 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2384 "%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT,
2385 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
2386 goto flush_out;
2387 }
2388 if (S_ISREG(VFS_I(ip)->i_mode)) {
2389 if (XFS_TEST_ERROR(
2390 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
2391 ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
2392 mp, XFS_ERRTAG_IFLUSH_3)) {
2393 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2394 "%s: Bad regular inode %llu, ptr "PTR_FMT,
2395 __func__, ip->i_ino, ip);
2396 goto flush_out;
2397 }
2398 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
2399 if (XFS_TEST_ERROR(
2400 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
2401 ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
2402 ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
2403 mp, XFS_ERRTAG_IFLUSH_4)) {
2404 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2405 "%s: Bad directory inode %llu, ptr "PTR_FMT,
2406 __func__, ip->i_ino, ip);
2407 goto flush_out;
2408 }
2409 }
2410 if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) >
2411 ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
2412 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2413 "%s: detected corrupt incore inode %llu, "
2414 "total extents = %llu nblocks = %lld, ptr "PTR_FMT,
2415 __func__, ip->i_ino,
2416 ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af),
2417 ip->i_nblocks, ip);
2418 goto flush_out;
2419 }
2420 if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
2421 mp, XFS_ERRTAG_IFLUSH_6)) {
2422 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2423 "%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT,
2424 __func__, ip->i_ino, ip->i_forkoff, ip);
2425 goto flush_out;
2426 }
2427
2428 /*
2429 * Inode item log recovery for v2 inodes are dependent on the flushiter
2430 * count for correct sequencing. We bump the flush iteration count so
2431 * we can detect flushes which postdate a log record during recovery.
2432 * This is redundant as we now log every change and hence this can't
2433 * happen but we need to still do it to ensure backwards compatibility
2434 * with old kernels that predate logging all inode changes.
2435 */
2436 if (!xfs_has_v3inodes(mp))
2437 ip->i_flushiter++;
2438
2439 /*
2440 * If there are inline format data / attr forks attached to this inode,
2441 * make sure they are not corrupt.
2442 */
2443 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
2444 xfs_ifork_verify_local_data(ip))
2445 goto flush_out;
2446 if (xfs_inode_has_attr_fork(ip) &&
2447 ip->i_af.if_format == XFS_DINODE_FMT_LOCAL &&
2448 xfs_ifork_verify_local_attr(ip))
2449 goto flush_out;
2450
2451 /*
2452 * Copy the dirty parts of the inode into the on-disk inode. We always
2453 * copy out the core of the inode, because if the inode is dirty at all
2454 * the core must be.
2455 */
2456 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
2457
2458 /* Wrap, we never let the log put out DI_MAX_FLUSH */
2459 if (!xfs_has_v3inodes(mp)) {
2460 if (ip->i_flushiter == DI_MAX_FLUSH)
2461 ip->i_flushiter = 0;
2462 }
2463
2464 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
2465 if (xfs_inode_has_attr_fork(ip))
2466 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
2467
2468 /*
2469 * We've recorded everything logged in the inode, so we'd like to clear
2470 * the ili_fields bits so we don't log and flush things unnecessarily.
2471 * However, we can't stop logging all this information until the data
2472 * we've copied into the disk buffer is written to disk. If we did we
2473 * might overwrite the copy of the inode in the log with all the data
2474 * after re-logging only part of it, and in the face of a crash we
2475 * wouldn't have all the data we need to recover.
2476 *
2477 * What we do is move the bits to the ili_last_fields field. When
2478 * logging the inode, these bits are moved back to the ili_fields field.
2479 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
2480 * we know that the information those bits represent is permanently on
2481 * disk. As long as the flush completes before the inode is logged
2482 * again, then both ili_fields and ili_last_fields will be cleared.
2483 */
2484 error = 0;
2485flush_out:
2486 spin_lock(&iip->ili_lock);
2487 iip->ili_last_fields = iip->ili_fields;
2488 iip->ili_fields = 0;
2489 iip->ili_fsync_fields = 0;
2490 set_bit(XFS_LI_FLUSHING, &iip->ili_item.li_flags);
2491 spin_unlock(&iip->ili_lock);
2492
2493 /*
2494 * Store the current LSN of the inode so that we can tell whether the
2495 * item has moved in the AIL from xfs_buf_inode_iodone().
2496 */
2497 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2498 &iip->ili_item.li_lsn);
2499
2500 /* generate the checksum. */
2501 xfs_dinode_calc_crc(mp, dip);
2502 if (error)
2503 xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
2504 return error;
2505}
2506
2507/*
2508 * Non-blocking flush of dirty inode metadata into the backing buffer.
2509 *
2510 * The caller must have a reference to the inode and hold the cluster buffer
2511 * locked. The function will walk across all the inodes on the cluster buffer it
2512 * can find and lock without blocking, and flush them to the cluster buffer.
2513 *
2514 * On successful flushing of at least one inode, the caller must write out the
2515 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
2516 * the caller needs to release the buffer. On failure, the filesystem will be
2517 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
2518 * will be returned.
2519 */
2520int
2521xfs_iflush_cluster(
2522 struct xfs_buf *bp)
2523{
2524 struct xfs_mount *mp = bp->b_mount;
2525 struct xfs_log_item *lip, *n;
2526 struct xfs_inode *ip;
2527 struct xfs_inode_log_item *iip;
2528 int clcount = 0;
2529 int error = 0;
2530
2531 /*
2532 * We must use the safe variant here as on shutdown xfs_iflush_abort()
2533 * will remove itself from the list.
2534 */
2535 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
2536 iip = (struct xfs_inode_log_item *)lip;
2537 ip = iip->ili_inode;
2538
2539 /*
2540 * Quick and dirty check to avoid locks if possible.
2541 */
2542 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
2543 continue;
2544 if (xfs_ipincount(ip))
2545 continue;
2546
2547 /*
2548 * The inode is still attached to the buffer, which means it is
2549 * dirty but reclaim might try to grab it. Check carefully for
2550 * that, and grab the ilock while still holding the i_flags_lock
2551 * to guarantee reclaim will not be able to reclaim this inode
2552 * once we drop the i_flags_lock.
2553 */
2554 spin_lock(&ip->i_flags_lock);
2555 ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
2556 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
2557 spin_unlock(&ip->i_flags_lock);
2558 continue;
2559 }
2560
2561 /*
2562 * ILOCK will pin the inode against reclaim and prevent
2563 * concurrent transactions modifying the inode while we are
2564 * flushing the inode. If we get the lock, set the flushing
2565 * state before we drop the i_flags_lock.
2566 */
2567 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
2568 spin_unlock(&ip->i_flags_lock);
2569 continue;
2570 }
2571 __xfs_iflags_set(ip, XFS_IFLUSHING);
2572 spin_unlock(&ip->i_flags_lock);
2573
2574 /*
2575 * Abort flushing this inode if we are shut down because the
2576 * inode may not currently be in the AIL. This can occur when
2577 * log I/O failure unpins the inode without inserting into the
2578 * AIL, leaving a dirty/unpinned inode attached to the buffer
2579 * that otherwise looks like it should be flushed.
2580 */
2581 if (xlog_is_shutdown(mp->m_log)) {
2582 xfs_iunpin_wait(ip);
2583 xfs_iflush_abort(ip);
2584 xfs_iunlock(ip, XFS_ILOCK_SHARED);
2585 error = -EIO;
2586 continue;
2587 }
2588
2589 /* don't block waiting on a log force to unpin dirty inodes */
2590 if (xfs_ipincount(ip)) {
2591 xfs_iflags_clear(ip, XFS_IFLUSHING);
2592 xfs_iunlock(ip, XFS_ILOCK_SHARED);
2593 continue;
2594 }
2595
2596 if (!xfs_inode_clean(ip))
2597 error = xfs_iflush(ip, bp);
2598 else
2599 xfs_iflags_clear(ip, XFS_IFLUSHING);
2600 xfs_iunlock(ip, XFS_ILOCK_SHARED);
2601 if (error)
2602 break;
2603 clcount++;
2604 }
2605
2606 if (error) {
2607 /*
2608 * Shutdown first so we kill the log before we release this
2609 * buffer. If it is an INODE_ALLOC buffer and pins the tail
2610 * of the log, failing it before the _log_ is shut down can
2611 * result in the log tail being moved forward in the journal
2612 * on disk because log writes can still be taking place. Hence
2613 * unpinning the tail will allow the ICREATE intent to be
2614 * removed from the log an recovery will fail with uninitialised
2615 * inode cluster buffers.
2616 */
2617 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2618 bp->b_flags |= XBF_ASYNC;
2619 xfs_buf_ioend_fail(bp);
2620 return error;
2621 }
2622
2623 if (!clcount)
2624 return -EAGAIN;
2625
2626 XFS_STATS_INC(mp, xs_icluster_flushcnt);
2627 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
2628 return 0;
2629
2630}
2631
2632/* Release an inode. */
2633void
2634xfs_irele(
2635 struct xfs_inode *ip)
2636{
2637 trace_xfs_irele(ip, _RET_IP_);
2638 iput(VFS_I(ip));
2639}
2640
2641/*
2642 * Ensure all commited transactions touching the inode are written to the log.
2643 */
2644int
2645xfs_log_force_inode(
2646 struct xfs_inode *ip)
2647{
2648 xfs_csn_t seq = 0;
2649
2650 xfs_ilock(ip, XFS_ILOCK_SHARED);
2651 if (xfs_ipincount(ip))
2652 seq = ip->i_itemp->ili_commit_seq;
2653 xfs_iunlock(ip, XFS_ILOCK_SHARED);
2654
2655 if (!seq)
2656 return 0;
2657 return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
2658}
2659
2660/*
2661 * Grab the exclusive iolock for a data copy from src to dest, making sure to
2662 * abide vfs locking order (lowest pointer value goes first) and breaking the
2663 * layout leases before proceeding. The loop is needed because we cannot call
2664 * the blocking break_layout() with the iolocks held, and therefore have to
2665 * back out both locks.
2666 */
2667static int
2668xfs_iolock_two_inodes_and_break_layout(
2669 struct inode *src,
2670 struct inode *dest)
2671{
2672 int error;
2673
2674 if (src > dest)
2675 swap(src, dest);
2676
2677retry:
2678 /* Wait to break both inodes' layouts before we start locking. */
2679 error = break_layout(src, true);
2680 if (error)
2681 return error;
2682 if (src != dest) {
2683 error = break_layout(dest, true);
2684 if (error)
2685 return error;
2686 }
2687
2688 /* Lock one inode and make sure nobody got in and leased it. */
2689 inode_lock(src);
2690 error = break_layout(src, false);
2691 if (error) {
2692 inode_unlock(src);
2693 if (error == -EWOULDBLOCK)
2694 goto retry;
2695 return error;
2696 }
2697
2698 if (src == dest)
2699 return 0;
2700
2701 /* Lock the other inode and make sure nobody got in and leased it. */
2702 inode_lock_nested(dest, I_MUTEX_NONDIR2);
2703 error = break_layout(dest, false);
2704 if (error) {
2705 inode_unlock(src);
2706 inode_unlock(dest);
2707 if (error == -EWOULDBLOCK)
2708 goto retry;
2709 return error;
2710 }
2711
2712 return 0;
2713}
2714
2715static int
2716xfs_mmaplock_two_inodes_and_break_dax_layout(
2717 struct xfs_inode *ip1,
2718 struct xfs_inode *ip2)
2719{
2720 int error;
2721 bool retry;
2722 struct page *page;
2723
2724 if (ip1->i_ino > ip2->i_ino)
2725 swap(ip1, ip2);
2726
2727again:
2728 retry = false;
2729 /* Lock the first inode */
2730 xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
2731 error = xfs_break_dax_layouts(VFS_I(ip1), &retry);
2732 if (error || retry) {
2733 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
2734 if (error == 0 && retry)
2735 goto again;
2736 return error;
2737 }
2738
2739 if (ip1 == ip2)
2740 return 0;
2741
2742 /* Nested lock the second inode */
2743 xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1));
2744 /*
2745 * We cannot use xfs_break_dax_layouts() directly here because it may
2746 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable
2747 * for this nested lock case.
2748 */
2749 page = dax_layout_busy_page(VFS_I(ip2)->i_mapping);
2750 if (page && page_ref_count(page) != 1) {
2751 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
2752 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
2753 goto again;
2754 }
2755
2756 return 0;
2757}
2758
2759/*
2760 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
2761 * mmap activity.
2762 */
2763int
2764xfs_ilock2_io_mmap(
2765 struct xfs_inode *ip1,
2766 struct xfs_inode *ip2)
2767{
2768 int ret;
2769
2770 ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
2771 if (ret)
2772 return ret;
2773
2774 if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
2775 ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2);
2776 if (ret) {
2777 inode_unlock(VFS_I(ip2));
2778 if (ip1 != ip2)
2779 inode_unlock(VFS_I(ip1));
2780 return ret;
2781 }
2782 } else
2783 filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping,
2784 VFS_I(ip2)->i_mapping);
2785
2786 return 0;
2787}
2788
2789/* Unlock both inodes to allow IO and mmap activity. */
2790void
2791xfs_iunlock2_io_mmap(
2792 struct xfs_inode *ip1,
2793 struct xfs_inode *ip2)
2794{
2795 if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
2796 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
2797 if (ip1 != ip2)
2798 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
2799 } else
2800 filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping,
2801 VFS_I(ip2)->i_mapping);
2802
2803 inode_unlock(VFS_I(ip2));
2804 if (ip1 != ip2)
2805 inode_unlock(VFS_I(ip1));
2806}
2807
2808/* Drop the MMAPLOCK and the IOLOCK after a remap completes. */
2809void
2810xfs_iunlock2_remapping(
2811 struct xfs_inode *ip1,
2812 struct xfs_inode *ip2)
2813{
2814 xfs_iflags_clear(ip1, XFS_IREMAPPING);
2815
2816 if (ip1 != ip2)
2817 xfs_iunlock(ip1, XFS_MMAPLOCK_SHARED);
2818 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
2819
2820 if (ip1 != ip2)
2821 inode_unlock_shared(VFS_I(ip1));
2822 inode_unlock(VFS_I(ip2));
2823}
2824
2825/*
2826 * Reload the incore inode list for this inode. Caller should ensure that
2827 * the link count cannot change, either by taking ILOCK_SHARED or otherwise
2828 * preventing other threads from executing.
2829 */
2830int
2831xfs_inode_reload_unlinked_bucket(
2832 struct xfs_trans *tp,
2833 struct xfs_inode *ip)
2834{
2835 struct xfs_mount *mp = tp->t_mountp;
2836 struct xfs_buf *agibp;
2837 struct xfs_agi *agi;
2838 struct xfs_perag *pag;
2839 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2840 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2841 xfs_agino_t prev_agino, next_agino;
2842 unsigned int bucket;
2843 bool foundit = false;
2844 int error;
2845
2846 /* Grab the first inode in the list */
2847 pag = xfs_perag_get(mp, agno);
2848 error = xfs_ialloc_read_agi(pag, tp, 0, &agibp);
2849 xfs_perag_put(pag);
2850 if (error)
2851 return error;
2852
2853 /*
2854 * We've taken ILOCK_SHARED and the AGI buffer lock to stabilize the
2855 * incore unlinked list pointers for this inode. Check once more to
2856 * see if we raced with anyone else to reload the unlinked list.
2857 */
2858 if (!xfs_inode_unlinked_incomplete(ip)) {
2859 foundit = true;
2860 goto out_agibp;
2861 }
2862
2863 bucket = agino % XFS_AGI_UNLINKED_BUCKETS;
2864 agi = agibp->b_addr;
2865
2866 trace_xfs_inode_reload_unlinked_bucket(ip);
2867
2868 xfs_info_ratelimited(mp,
2869 "Found unrecovered unlinked inode 0x%x in AG 0x%x. Initiating list recovery.",
2870 agino, agno);
2871
2872 prev_agino = NULLAGINO;
2873 next_agino = be32_to_cpu(agi->agi_unlinked[bucket]);
2874 while (next_agino != NULLAGINO) {
2875 struct xfs_inode *next_ip = NULL;
2876
2877 /* Found this caller's inode, set its backlink. */
2878 if (next_agino == agino) {
2879 next_ip = ip;
2880 next_ip->i_prev_unlinked = prev_agino;
2881 foundit = true;
2882 goto next_inode;
2883 }
2884
2885 /* Try in-memory lookup first. */
2886 next_ip = xfs_iunlink_lookup(pag, next_agino);
2887 if (next_ip)
2888 goto next_inode;
2889
2890 /* Inode not in memory, try reloading it. */
2891 error = xfs_iunlink_reload_next(tp, agibp, prev_agino,
2892 next_agino);
2893 if (error)
2894 break;
2895
2896 /* Grab the reloaded inode. */
2897 next_ip = xfs_iunlink_lookup(pag, next_agino);
2898 if (!next_ip) {
2899 /* No incore inode at all? We reloaded it... */
2900 ASSERT(next_ip != NULL);
2901 error = -EFSCORRUPTED;
2902 break;
2903 }
2904
2905next_inode:
2906 prev_agino = next_agino;
2907 next_agino = next_ip->i_next_unlinked;
2908 }
2909
2910out_agibp:
2911 xfs_trans_brelse(tp, agibp);
2912 /* Should have found this inode somewhere in the iunlinked bucket. */
2913 if (!error && !foundit)
2914 error = -EFSCORRUPTED;
2915 return error;
2916}
2917
2918/* Decide if this inode is missing its unlinked list and reload it. */
2919int
2920xfs_inode_reload_unlinked(
2921 struct xfs_inode *ip)
2922{
2923 struct xfs_trans *tp;
2924 int error;
2925
2926 error = xfs_trans_alloc_empty(ip->i_mount, &tp);
2927 if (error)
2928 return error;
2929
2930 xfs_ilock(ip, XFS_ILOCK_SHARED);
2931 if (xfs_inode_unlinked_incomplete(ip))
2932 error = xfs_inode_reload_unlinked_bucket(tp, ip);
2933 xfs_iunlock(ip, XFS_ILOCK_SHARED);
2934 xfs_trans_cancel(tp);
2935
2936 return error;
2937}
2938
2939/* Has this inode fork been zapped by repair? */
2940bool
2941xfs_ifork_zapped(
2942 const struct xfs_inode *ip,
2943 int whichfork)
2944{
2945 unsigned int datamask = 0;
2946
2947 switch (whichfork) {
2948 case XFS_DATA_FORK:
2949 switch (ip->i_vnode.i_mode & S_IFMT) {
2950 case S_IFDIR:
2951 datamask = XFS_SICK_INO_DIR_ZAPPED;
2952 break;
2953 case S_IFLNK:
2954 datamask = XFS_SICK_INO_SYMLINK_ZAPPED;
2955 break;
2956 }
2957 return ip->i_sick & (XFS_SICK_INO_BMBTD_ZAPPED | datamask);
2958 case XFS_ATTR_FORK:
2959 return ip->i_sick & XFS_SICK_INO_BMBTA_ZAPPED;
2960 default:
2961 return false;
2962 }
2963}
2964
2965/* Compute the number of data and realtime blocks used by a file. */
2966void
2967xfs_inode_count_blocks(
2968 struct xfs_trans *tp,
2969 struct xfs_inode *ip,
2970 xfs_filblks_t *dblocks,
2971 xfs_filblks_t *rblocks)
2972{
2973 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
2974
2975 *rblocks = 0;
2976 if (XFS_IS_REALTIME_INODE(ip))
2977 xfs_bmap_count_leaves(ifp, rblocks);
2978 *dblocks = ip->i_nblocks - *rblocks;
2979}
2980
2981static void
2982xfs_wait_dax_page(
2983 struct inode *inode)
2984{
2985 struct xfs_inode *ip = XFS_I(inode);
2986
2987 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
2988 schedule();
2989 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
2990}
2991
2992int
2993xfs_break_dax_layouts(
2994 struct inode *inode,
2995 bool *retry)
2996{
2997 struct page *page;
2998
2999 xfs_assert_ilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL);
3000
3001 page = dax_layout_busy_page(inode->i_mapping);
3002 if (!page)
3003 return 0;
3004
3005 *retry = true;
3006 return ___wait_var_event(&page->_refcount,
3007 atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
3008 0, 0, xfs_wait_dax_page(inode));
3009}
3010
3011int
3012xfs_break_layouts(
3013 struct inode *inode,
3014 uint *iolock,
3015 enum layout_break_reason reason)
3016{
3017 bool retry;
3018 int error;
3019
3020 xfs_assert_ilocked(XFS_I(inode), XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL);
3021
3022 do {
3023 retry = false;
3024 switch (reason) {
3025 case BREAK_UNMAP:
3026 error = xfs_break_dax_layouts(inode, &retry);
3027 if (error || retry)
3028 break;
3029 fallthrough;
3030 case BREAK_WRITE:
3031 error = xfs_break_leased_layouts(inode, iolock, &retry);
3032 break;
3033 default:
3034 WARN_ON_ONCE(1);
3035 error = -EINVAL;
3036 }
3037 } while (error == 0 && retry);
3038
3039 return error;
3040}
3041
3042/* Returns the size of fundamental allocation unit for a file, in bytes. */
3043unsigned int
3044xfs_inode_alloc_unitsize(
3045 struct xfs_inode *ip)
3046{
3047 unsigned int blocks = 1;
3048
3049 if (XFS_IS_REALTIME_INODE(ip))
3050 blocks = ip->i_mount->m_sb.sb_rextsize;
3051
3052 return XFS_FSB_TO_B(ip->i_mount, blocks);
3053}
3054
3055/* Should we always be using copy on write for file writes? */
3056bool
3057xfs_is_always_cow_inode(
3058 const struct xfs_inode *ip)
3059{
3060 return ip->i_mount->m_always_cow && xfs_has_reflink(ip->i_mount);
3061}