Linux Audio

Check our new training course

Loading...
   1/*
   2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include <linux/log2.h>
  19#include <linux/iversion.h>
  20
  21#include "xfs.h"
  22#include "xfs_fs.h"
  23#include "xfs_shared.h"
  24#include "xfs_format.h"
  25#include "xfs_log_format.h"
  26#include "xfs_trans_resv.h"
  27#include "xfs_sb.h"
  28#include "xfs_mount.h"
  29#include "xfs_defer.h"
  30#include "xfs_inode.h"
  31#include "xfs_da_format.h"
  32#include "xfs_da_btree.h"
  33#include "xfs_dir2.h"
  34#include "xfs_attr_sf.h"
  35#include "xfs_attr.h"
  36#include "xfs_trans_space.h"
  37#include "xfs_trans.h"
  38#include "xfs_buf_item.h"
  39#include "xfs_inode_item.h"
  40#include "xfs_ialloc.h"
  41#include "xfs_bmap.h"
  42#include "xfs_bmap_util.h"
  43#include "xfs_errortag.h"
  44#include "xfs_error.h"
  45#include "xfs_quota.h"
  46#include "xfs_filestream.h"
  47#include "xfs_cksum.h"
  48#include "xfs_trace.h"
  49#include "xfs_icache.h"
  50#include "xfs_symlink.h"
  51#include "xfs_trans_priv.h"
  52#include "xfs_log.h"
  53#include "xfs_bmap_btree.h"
  54#include "xfs_reflink.h"
  55#include "xfs_dir2_priv.h"
  56
  57kmem_zone_t *xfs_inode_zone;
  58
  59/*
  60 * Used in xfs_itruncate_extents().  This is the maximum number of extents
  61 * freed from a file in a single transaction.
  62 */
  63#define	XFS_ITRUNC_MAX_EXTENTS	2
  64
  65STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
  66STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
  67STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
  68
  69/*
  70 * helper function to extract extent size hint from inode
  71 */
  72xfs_extlen_t
  73xfs_get_extsz_hint(
  74	struct xfs_inode	*ip)
  75{
  76	if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
  77		return ip->i_d.di_extsize;
  78	if (XFS_IS_REALTIME_INODE(ip))
  79		return ip->i_mount->m_sb.sb_rextsize;
  80	return 0;
  81}
  82
  83/*
  84 * Helper function to extract CoW extent size hint from inode.
  85 * Between the extent size hint and the CoW extent size hint, we
  86 * return the greater of the two.  If the value is zero (automatic),
  87 * use the default size.
  88 */
  89xfs_extlen_t
  90xfs_get_cowextsz_hint(
  91	struct xfs_inode	*ip)
  92{
  93	xfs_extlen_t		a, b;
  94
  95	a = 0;
  96	if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
  97		a = ip->i_d.di_cowextsize;
  98	b = xfs_get_extsz_hint(ip);
  99
 100	a = max(a, b);
 101	if (a == 0)
 102		return XFS_DEFAULT_COWEXTSZ_HINT;
 103	return a;
 104}
 105
 106/*
 107 * These two are wrapper routines around the xfs_ilock() routine used to
 108 * centralize some grungy code.  They are used in places that wish to lock the
 109 * inode solely for reading the extents.  The reason these places can't just
 110 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
 111 * bringing in of the extents from disk for a file in b-tree format.  If the
 112 * inode is in b-tree format, then we need to lock the inode exclusively until
 113 * the extents are read in.  Locking it exclusively all the time would limit
 114 * our parallelism unnecessarily, though.  What we do instead is check to see
 115 * if the extents have been read in yet, and only lock the inode exclusively
 116 * if they have not.
 117 *
 118 * The functions return a value which should be given to the corresponding
 119 * xfs_iunlock() call.
 120 */
 121uint
 122xfs_ilock_data_map_shared(
 123	struct xfs_inode	*ip)
 124{
 125	uint			lock_mode = XFS_ILOCK_SHARED;
 126
 127	if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
 128	    (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
 129		lock_mode = XFS_ILOCK_EXCL;
 130	xfs_ilock(ip, lock_mode);
 131	return lock_mode;
 132}
 133
 134uint
 135xfs_ilock_attr_map_shared(
 136	struct xfs_inode	*ip)
 137{
 138	uint			lock_mode = XFS_ILOCK_SHARED;
 139
 140	if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
 141	    (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
 142		lock_mode = XFS_ILOCK_EXCL;
 143	xfs_ilock(ip, lock_mode);
 144	return lock_mode;
 145}
 146
 147/*
 148 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
 149 * multi-reader locks: i_mmap_lock and the i_lock.  This routine allows
 150 * various combinations of the locks to be obtained.
 151 *
 152 * The 3 locks should always be ordered so that the IO lock is obtained first,
 153 * the mmap lock second and the ilock last in order to prevent deadlock.
 154 *
 155 * Basic locking order:
 156 *
 157 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
 158 *
 159 * mmap_sem locking order:
 160 *
 161 * i_rwsem -> page lock -> mmap_sem
 162 * mmap_sem -> i_mmap_lock -> page_lock
 163 *
 164 * The difference in mmap_sem locking order mean that we cannot hold the
 165 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
 166 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
 167 * in get_user_pages() to map the user pages into the kernel address space for
 168 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
 169 * page faults already hold the mmap_sem.
 170 *
 171 * Hence to serialise fully against both syscall and mmap based IO, we need to
 172 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
 173 * taken in places where we need to invalidate the page cache in a race
 174 * free manner (e.g. truncate, hole punch and other extent manipulation
 175 * functions).
 176 */
 177void
 178xfs_ilock(
 179	xfs_inode_t		*ip,
 180	uint			lock_flags)
 181{
 182	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
 183
 184	/*
 185	 * You can't set both SHARED and EXCL for the same lock,
 186	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 187	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 188	 */
 189	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 190	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 191	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 192	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 193	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 194	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 195	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 196
 197	if (lock_flags & XFS_IOLOCK_EXCL) {
 198		down_write_nested(&VFS_I(ip)->i_rwsem,
 199				  XFS_IOLOCK_DEP(lock_flags));
 200	} else if (lock_flags & XFS_IOLOCK_SHARED) {
 201		down_read_nested(&VFS_I(ip)->i_rwsem,
 202				 XFS_IOLOCK_DEP(lock_flags));
 203	}
 204
 205	if (lock_flags & XFS_MMAPLOCK_EXCL)
 206		mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 207	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 208		mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 209
 210	if (lock_flags & XFS_ILOCK_EXCL)
 211		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 212	else if (lock_flags & XFS_ILOCK_SHARED)
 213		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 214}
 215
 216/*
 217 * This is just like xfs_ilock(), except that the caller
 218 * is guaranteed not to sleep.  It returns 1 if it gets
 219 * the requested locks and 0 otherwise.  If the IO lock is
 220 * obtained but the inode lock cannot be, then the IO lock
 221 * is dropped before returning.
 222 *
 223 * ip -- the inode being locked
 224 * lock_flags -- this parameter indicates the inode's locks to be
 225 *       to be locked.  See the comment for xfs_ilock() for a list
 226 *	 of valid values.
 227 */
 228int
 229xfs_ilock_nowait(
 230	xfs_inode_t		*ip,
 231	uint			lock_flags)
 232{
 233	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
 234
 235	/*
 236	 * You can't set both SHARED and EXCL for the same lock,
 237	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 238	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 239	 */
 240	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 241	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 242	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 243	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 244	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 245	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 246	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 247
 248	if (lock_flags & XFS_IOLOCK_EXCL) {
 249		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
 250			goto out;
 251	} else if (lock_flags & XFS_IOLOCK_SHARED) {
 252		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
 253			goto out;
 254	}
 255
 256	if (lock_flags & XFS_MMAPLOCK_EXCL) {
 257		if (!mrtryupdate(&ip->i_mmaplock))
 258			goto out_undo_iolock;
 259	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
 260		if (!mrtryaccess(&ip->i_mmaplock))
 261			goto out_undo_iolock;
 262	}
 263
 264	if (lock_flags & XFS_ILOCK_EXCL) {
 265		if (!mrtryupdate(&ip->i_lock))
 266			goto out_undo_mmaplock;
 267	} else if (lock_flags & XFS_ILOCK_SHARED) {
 268		if (!mrtryaccess(&ip->i_lock))
 269			goto out_undo_mmaplock;
 270	}
 271	return 1;
 272
 273out_undo_mmaplock:
 274	if (lock_flags & XFS_MMAPLOCK_EXCL)
 275		mrunlock_excl(&ip->i_mmaplock);
 276	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 277		mrunlock_shared(&ip->i_mmaplock);
 278out_undo_iolock:
 279	if (lock_flags & XFS_IOLOCK_EXCL)
 280		up_write(&VFS_I(ip)->i_rwsem);
 281	else if (lock_flags & XFS_IOLOCK_SHARED)
 282		up_read(&VFS_I(ip)->i_rwsem);
 283out:
 284	return 0;
 285}
 286
 287/*
 288 * xfs_iunlock() is used to drop the inode locks acquired with
 289 * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
 290 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
 291 * that we know which locks to drop.
 292 *
 293 * ip -- the inode being unlocked
 294 * lock_flags -- this parameter indicates the inode's locks to be
 295 *       to be unlocked.  See the comment for xfs_ilock() for a list
 296 *	 of valid values for this parameter.
 297 *
 298 */
 299void
 300xfs_iunlock(
 301	xfs_inode_t		*ip,
 302	uint			lock_flags)
 303{
 304	/*
 305	 * You can't set both SHARED and EXCL for the same lock,
 306	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 307	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 308	 */
 309	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 310	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 311	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 312	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 313	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 314	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 315	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 316	ASSERT(lock_flags != 0);
 317
 318	if (lock_flags & XFS_IOLOCK_EXCL)
 319		up_write(&VFS_I(ip)->i_rwsem);
 320	else if (lock_flags & XFS_IOLOCK_SHARED)
 321		up_read(&VFS_I(ip)->i_rwsem);
 322
 323	if (lock_flags & XFS_MMAPLOCK_EXCL)
 324		mrunlock_excl(&ip->i_mmaplock);
 325	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 326		mrunlock_shared(&ip->i_mmaplock);
 327
 328	if (lock_flags & XFS_ILOCK_EXCL)
 329		mrunlock_excl(&ip->i_lock);
 330	else if (lock_flags & XFS_ILOCK_SHARED)
 331		mrunlock_shared(&ip->i_lock);
 332
 333	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
 334}
 335
 336/*
 337 * give up write locks.  the i/o lock cannot be held nested
 338 * if it is being demoted.
 339 */
 340void
 341xfs_ilock_demote(
 342	xfs_inode_t		*ip,
 343	uint			lock_flags)
 344{
 345	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
 346	ASSERT((lock_flags &
 347		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
 348
 349	if (lock_flags & XFS_ILOCK_EXCL)
 350		mrdemote(&ip->i_lock);
 351	if (lock_flags & XFS_MMAPLOCK_EXCL)
 352		mrdemote(&ip->i_mmaplock);
 353	if (lock_flags & XFS_IOLOCK_EXCL)
 354		downgrade_write(&VFS_I(ip)->i_rwsem);
 355
 356	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
 357}
 358
 359#if defined(DEBUG) || defined(XFS_WARN)
 360int
 361xfs_isilocked(
 362	xfs_inode_t		*ip,
 363	uint			lock_flags)
 364{
 365	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
 366		if (!(lock_flags & XFS_ILOCK_SHARED))
 367			return !!ip->i_lock.mr_writer;
 368		return rwsem_is_locked(&ip->i_lock.mr_lock);
 369	}
 370
 371	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
 372		if (!(lock_flags & XFS_MMAPLOCK_SHARED))
 373			return !!ip->i_mmaplock.mr_writer;
 374		return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
 375	}
 376
 377	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
 378		if (!(lock_flags & XFS_IOLOCK_SHARED))
 379			return !debug_locks ||
 380				lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
 381		return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
 382	}
 383
 384	ASSERT(0);
 385	return 0;
 386}
 387#endif
 388
 
 
 
 
 
 
 
 
 389/*
 390 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
 391 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
 392 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
 393 * errors and warnings.
 394 */
 395#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
 396static bool
 397xfs_lockdep_subclass_ok(
 398	int subclass)
 399{
 400	return subclass < MAX_LOCKDEP_SUBCLASSES;
 401}
 402#else
 403#define xfs_lockdep_subclass_ok(subclass)	(true)
 404#endif
 405
 406/*
 407 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
 408 * value. This can be called for any type of inode lock combination, including
 409 * parent locking. Care must be taken to ensure we don't overrun the subclass
 410 * storage fields in the class mask we build.
 411 */
 412static inline int
 413xfs_lock_inumorder(int lock_mode, int subclass)
 414{
 415	int	class = 0;
 416
 417	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
 418			      XFS_ILOCK_RTSUM)));
 419	ASSERT(xfs_lockdep_subclass_ok(subclass));
 420
 421	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
 422		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
 
 
 423		class += subclass << XFS_IOLOCK_SHIFT;
 
 
 424	}
 425
 426	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
 427		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
 428		class += subclass << XFS_MMAPLOCK_SHIFT;
 429	}
 430
 431	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
 432		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
 433		class += subclass << XFS_ILOCK_SHIFT;
 434	}
 435
 436	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
 437}
 438
 439/*
 440 * The following routine will lock n inodes in exclusive mode.  We assume the
 441 * caller calls us with the inodes in i_ino order.
 442 *
 443 * We need to detect deadlock where an inode that we lock is in the AIL and we
 444 * start waiting for another inode that is locked by a thread in a long running
 445 * transaction (such as truncate). This can result in deadlock since the long
 446 * running trans might need to wait for the inode we just locked in order to
 447 * push the tail and free space in the log.
 448 *
 449 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
 450 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
 451 * lock more than one at a time, lockdep will report false positives saying we
 452 * have violated locking orders.
 453 */
 454static void
 455xfs_lock_inodes(
 456	xfs_inode_t	**ips,
 457	int		inodes,
 458	uint		lock_mode)
 459{
 460	int		attempts = 0, i, j, try_lock;
 461	xfs_log_item_t	*lp;
 462
 463	/*
 464	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
 465	 * support an arbitrary depth of locking here, but absolute limits on
 466	 * inodes depend on the the type of locking and the limits placed by
 467	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
 468	 * the asserts.
 469	 */
 470	ASSERT(ips && inodes >= 2 && inodes <= 5);
 471	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
 472			    XFS_ILOCK_EXCL));
 473	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
 474			      XFS_ILOCK_SHARED)));
 
 
 475	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
 476		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
 477	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
 478		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
 479
 480	if (lock_mode & XFS_IOLOCK_EXCL) {
 481		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
 482	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
 483		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
 484
 485	try_lock = 0;
 486	i = 0;
 487again:
 488	for (; i < inodes; i++) {
 489		ASSERT(ips[i]);
 490
 491		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
 492			continue;
 493
 494		/*
 495		 * If try_lock is not set yet, make sure all locked inodes are
 496		 * not in the AIL.  If any are, set try_lock to be used later.
 497		 */
 498		if (!try_lock) {
 499			for (j = (i - 1); j >= 0 && !try_lock; j--) {
 500				lp = (xfs_log_item_t *)ips[j]->i_itemp;
 501				if (lp && (lp->li_flags & XFS_LI_IN_AIL))
 502					try_lock++;
 503			}
 504		}
 505
 506		/*
 507		 * If any of the previous locks we have locked is in the AIL,
 508		 * we must TRY to get the second and subsequent locks. If
 509		 * we can't get any, we must release all we have
 510		 * and try again.
 511		 */
 512		if (!try_lock) {
 513			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
 514			continue;
 515		}
 516
 517		/* try_lock means we have an inode locked that is in the AIL. */
 518		ASSERT(i != 0);
 519		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
 520			continue;
 521
 522		/*
 523		 * Unlock all previous guys and try again.  xfs_iunlock will try
 524		 * to push the tail if the inode is in the AIL.
 525		 */
 526		attempts++;
 527		for (j = i - 1; j >= 0; j--) {
 528			/*
 529			 * Check to see if we've already unlocked this one.  Not
 530			 * the first one going back, and the inode ptr is the
 531			 * same.
 532			 */
 533			if (j != (i - 1) && ips[j] == ips[j + 1])
 534				continue;
 535
 536			xfs_iunlock(ips[j], lock_mode);
 537		}
 538
 539		if ((attempts % 5) == 0) {
 540			delay(1); /* Don't just spin the CPU */
 
 
 
 541		}
 542		i = 0;
 543		try_lock = 0;
 544		goto again;
 545	}
 
 
 
 
 
 
 
 
 
 
 546}
 547
 548/*
 549 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
 550 * the mmaplock or the ilock, but not more than one type at a time. If we lock
 551 * more than one at a time, lockdep will report false positives saying we have
 552 * violated locking orders.  The iolock must be double-locked separately since
 553 * we use i_rwsem for that.  We now support taking one lock EXCL and the other
 554 * SHARED.
 555 */
 556void
 557xfs_lock_two_inodes(
 558	struct xfs_inode	*ip0,
 559	uint			ip0_mode,
 560	struct xfs_inode	*ip1,
 561	uint			ip1_mode)
 562{
 563	struct xfs_inode	*temp;
 564	uint			mode_temp;
 565	int			attempts = 0;
 566	xfs_log_item_t		*lp;
 567
 568	ASSERT(hweight32(ip0_mode) == 1);
 569	ASSERT(hweight32(ip1_mode) == 1);
 570	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 571	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 572	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 573	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 574	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 575	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 576	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 577	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 578	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 579	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 580
 581	ASSERT(ip0->i_ino != ip1->i_ino);
 582
 583	if (ip0->i_ino > ip1->i_ino) {
 584		temp = ip0;
 585		ip0 = ip1;
 586		ip1 = temp;
 587		mode_temp = ip0_mode;
 588		ip0_mode = ip1_mode;
 589		ip1_mode = mode_temp;
 590	}
 591
 592 again:
 593	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
 594
 595	/*
 596	 * If the first lock we have locked is in the AIL, we must TRY to get
 597	 * the second lock. If we can't get it, we must release the first one
 598	 * and try again.
 599	 */
 600	lp = (xfs_log_item_t *)ip0->i_itemp;
 601	if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
 602		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
 603			xfs_iunlock(ip0, ip0_mode);
 604			if ((++attempts % 5) == 0)
 605				delay(1); /* Don't just spin the CPU */
 606			goto again;
 607		}
 608	} else {
 609		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
 610	}
 611}
 612
 
 613void
 614__xfs_iflock(
 615	struct xfs_inode	*ip)
 616{
 617	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
 618	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
 619
 620	do {
 621		prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
 622		if (xfs_isiflocked(ip))
 623			io_schedule();
 624	} while (!xfs_iflock_nowait(ip));
 625
 626	finish_wait(wq, &wait.wq_entry);
 627}
 628
 629STATIC uint
 630_xfs_dic2xflags(
 631	uint16_t		di_flags,
 632	uint64_t		di_flags2,
 633	bool			has_attr)
 634{
 635	uint			flags = 0;
 636
 637	if (di_flags & XFS_DIFLAG_ANY) {
 638		if (di_flags & XFS_DIFLAG_REALTIME)
 639			flags |= FS_XFLAG_REALTIME;
 640		if (di_flags & XFS_DIFLAG_PREALLOC)
 641			flags |= FS_XFLAG_PREALLOC;
 642		if (di_flags & XFS_DIFLAG_IMMUTABLE)
 643			flags |= FS_XFLAG_IMMUTABLE;
 644		if (di_flags & XFS_DIFLAG_APPEND)
 645			flags |= FS_XFLAG_APPEND;
 646		if (di_flags & XFS_DIFLAG_SYNC)
 647			flags |= FS_XFLAG_SYNC;
 648		if (di_flags & XFS_DIFLAG_NOATIME)
 649			flags |= FS_XFLAG_NOATIME;
 650		if (di_flags & XFS_DIFLAG_NODUMP)
 651			flags |= FS_XFLAG_NODUMP;
 652		if (di_flags & XFS_DIFLAG_RTINHERIT)
 653			flags |= FS_XFLAG_RTINHERIT;
 654		if (di_flags & XFS_DIFLAG_PROJINHERIT)
 655			flags |= FS_XFLAG_PROJINHERIT;
 656		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
 657			flags |= FS_XFLAG_NOSYMLINKS;
 658		if (di_flags & XFS_DIFLAG_EXTSIZE)
 659			flags |= FS_XFLAG_EXTSIZE;
 660		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
 661			flags |= FS_XFLAG_EXTSZINHERIT;
 662		if (di_flags & XFS_DIFLAG_NODEFRAG)
 663			flags |= FS_XFLAG_NODEFRAG;
 664		if (di_flags & XFS_DIFLAG_FILESTREAM)
 665			flags |= FS_XFLAG_FILESTREAM;
 666	}
 667
 668	if (di_flags2 & XFS_DIFLAG2_ANY) {
 669		if (di_flags2 & XFS_DIFLAG2_DAX)
 670			flags |= FS_XFLAG_DAX;
 671		if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
 672			flags |= FS_XFLAG_COWEXTSIZE;
 673	}
 674
 675	if (has_attr)
 676		flags |= FS_XFLAG_HASATTR;
 677
 678	return flags;
 679}
 680
 681uint
 682xfs_ip2xflags(
 683	struct xfs_inode	*ip)
 684{
 685	struct xfs_icdinode	*dic = &ip->i_d;
 686
 687	return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
 688}
 689
 
 
 
 
 
 
 
 
 690/*
 691 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
 692 * is allowed, otherwise it has to be an exact match. If a CI match is found,
 693 * ci_name->name will point to a the actual name (caller must free) or
 694 * will be set to NULL if an exact match is found.
 695 */
 696int
 697xfs_lookup(
 698	xfs_inode_t		*dp,
 699	struct xfs_name		*name,
 700	xfs_inode_t		**ipp,
 701	struct xfs_name		*ci_name)
 702{
 703	xfs_ino_t		inum;
 704	int			error;
 705
 706	trace_xfs_lookup(dp, name);
 707
 708	if (XFS_FORCED_SHUTDOWN(dp->i_mount))
 709		return -EIO;
 710
 
 711	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
 712	if (error)
 713		goto out_unlock;
 714
 715	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
 716	if (error)
 717		goto out_free_name;
 718
 
 719	return 0;
 720
 721out_free_name:
 722	if (ci_name)
 723		kmem_free(ci_name->name);
 724out_unlock:
 
 725	*ipp = NULL;
 726	return error;
 727}
 728
 729/*
 730 * Allocate an inode on disk and return a copy of its in-core version.
 731 * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
 732 * appropriately within the inode.  The uid and gid for the inode are
 733 * set according to the contents of the given cred structure.
 734 *
 735 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
 736 * has a free inode available, call xfs_iget() to obtain the in-core
 737 * version of the allocated inode.  Finally, fill in the inode and
 738 * log its initial contents.  In this case, ialloc_context would be
 739 * set to NULL.
 740 *
 741 * If xfs_dialloc() does not have an available inode, it will replenish
 742 * its supply by doing an allocation. Since we can only do one
 743 * allocation within a transaction without deadlocks, we must commit
 744 * the current transaction before returning the inode itself.
 745 * In this case, therefore, we will set ialloc_context and return.
 746 * The caller should then commit the current transaction, start a new
 747 * transaction, and call xfs_ialloc() again to actually get the inode.
 748 *
 749 * To ensure that some other process does not grab the inode that
 750 * was allocated during the first call to xfs_ialloc(), this routine
 751 * also returns the [locked] bp pointing to the head of the freelist
 752 * as ialloc_context.  The caller should hold this buffer across
 753 * the commit and pass it back into this routine on the second call.
 754 *
 755 * If we are allocating quota inodes, we do not have a parent inode
 756 * to attach to or associate with (i.e. pip == NULL) because they
 757 * are not linked into the directory structure - they are attached
 758 * directly to the superblock - and so have no parent.
 759 */
 760static int
 761xfs_ialloc(
 762	xfs_trans_t	*tp,
 763	xfs_inode_t	*pip,
 764	umode_t		mode,
 765	xfs_nlink_t	nlink,
 766	dev_t		rdev,
 767	prid_t		prid,
 
 768	xfs_buf_t	**ialloc_context,
 769	xfs_inode_t	**ipp)
 770{
 771	struct xfs_mount *mp = tp->t_mountp;
 772	xfs_ino_t	ino;
 773	xfs_inode_t	*ip;
 774	uint		flags;
 775	int		error;
 776	struct timespec	tv;
 777	struct inode	*inode;
 778
 779	/*
 780	 * Call the space management code to pick
 781	 * the on-disk inode to be allocated.
 782	 */
 783	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode,
 784			    ialloc_context, &ino);
 785	if (error)
 786		return error;
 787	if (*ialloc_context || ino == NULLFSINO) {
 788		*ipp = NULL;
 789		return 0;
 790	}
 791	ASSERT(*ialloc_context == NULL);
 792
 793	/*
 794	 * Get the in-core inode with the lock held exclusively.
 795	 * This is because we're setting fields here we need
 796	 * to prevent others from looking at until we're done.
 797	 */
 798	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
 799			 XFS_ILOCK_EXCL, &ip);
 800	if (error)
 801		return error;
 802	ASSERT(ip != NULL);
 803	inode = VFS_I(ip);
 804
 805	/*
 806	 * We always convert v1 inodes to v2 now - we only support filesystems
 807	 * with >= v2 inode capability, so there is no reason for ever leaving
 808	 * an inode in v1 format.
 809	 */
 810	if (ip->i_d.di_version == 1)
 811		ip->i_d.di_version = 2;
 812
 813	inode->i_mode = mode;
 814	set_nlink(inode, nlink);
 815	ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
 816	ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
 817	inode->i_rdev = rdev;
 818	xfs_set_projid(ip, prid);
 819
 820	if (pip && XFS_INHERIT_GID(pip)) {
 821		ip->i_d.di_gid = pip->i_d.di_gid;
 822		if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
 823			inode->i_mode |= S_ISGID;
 824	}
 825
 826	/*
 827	 * If the group ID of the new file does not match the effective group
 828	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
 829	 * (and only if the irix_sgid_inherit compatibility variable is set).
 830	 */
 831	if ((irix_sgid_inherit) &&
 832	    (inode->i_mode & S_ISGID) &&
 833	    (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
 834		inode->i_mode &= ~S_ISGID;
 835
 836	ip->i_d.di_size = 0;
 837	ip->i_d.di_nextents = 0;
 838	ASSERT(ip->i_d.di_nblocks == 0);
 839
 840	tv = current_time(inode);
 841	inode->i_mtime = tv;
 842	inode->i_atime = tv;
 843	inode->i_ctime = tv;
 844
 845	ip->i_d.di_extsize = 0;
 846	ip->i_d.di_dmevmask = 0;
 847	ip->i_d.di_dmstate = 0;
 848	ip->i_d.di_flags = 0;
 849
 850	if (ip->i_d.di_version == 3) {
 851		inode_set_iversion(inode, 1);
 852		ip->i_d.di_flags2 = 0;
 853		ip->i_d.di_cowextsize = 0;
 854		ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec;
 855		ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec;
 856	}
 857
 858
 859	flags = XFS_ILOG_CORE;
 860	switch (mode & S_IFMT) {
 861	case S_IFIFO:
 862	case S_IFCHR:
 863	case S_IFBLK:
 864	case S_IFSOCK:
 865		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
 
 866		ip->i_df.if_flags = 0;
 867		flags |= XFS_ILOG_DEV;
 868		break;
 869	case S_IFREG:
 870	case S_IFDIR:
 871		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
 
 872			uint		di_flags = 0;
 873
 874			if (S_ISDIR(mode)) {
 875				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
 876					di_flags |= XFS_DIFLAG_RTINHERIT;
 877				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
 878					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
 879					ip->i_d.di_extsize = pip->i_d.di_extsize;
 880				}
 881				if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
 882					di_flags |= XFS_DIFLAG_PROJINHERIT;
 883			} else if (S_ISREG(mode)) {
 884				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
 885					di_flags |= XFS_DIFLAG_REALTIME;
 886				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
 887					di_flags |= XFS_DIFLAG_EXTSIZE;
 888					ip->i_d.di_extsize = pip->i_d.di_extsize;
 889				}
 890			}
 891			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
 892			    xfs_inherit_noatime)
 893				di_flags |= XFS_DIFLAG_NOATIME;
 894			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
 895			    xfs_inherit_nodump)
 896				di_flags |= XFS_DIFLAG_NODUMP;
 897			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
 898			    xfs_inherit_sync)
 899				di_flags |= XFS_DIFLAG_SYNC;
 900			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
 901			    xfs_inherit_nosymlinks)
 902				di_flags |= XFS_DIFLAG_NOSYMLINKS;
 903			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
 904			    xfs_inherit_nodefrag)
 905				di_flags |= XFS_DIFLAG_NODEFRAG;
 906			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
 907				di_flags |= XFS_DIFLAG_FILESTREAM;
 908
 909			ip->i_d.di_flags |= di_flags;
 910		}
 911		if (pip &&
 912		    (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) &&
 913		    pip->i_d.di_version == 3 &&
 914		    ip->i_d.di_version == 3) {
 915			uint64_t	di_flags2 = 0;
 916
 917			if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
 918				di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
 919				ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
 920			}
 921			if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
 922				di_flags2 |= XFS_DIFLAG2_DAX;
 923
 
 924			ip->i_d.di_flags2 |= di_flags2;
 925		}
 926		/* FALLTHROUGH */
 927	case S_IFLNK:
 928		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
 929		ip->i_df.if_flags = XFS_IFEXTENTS;
 930		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
 931		ip->i_df.if_u1.if_root = NULL;
 932		break;
 933	default:
 934		ASSERT(0);
 935	}
 936	/*
 937	 * Attribute fork settings for new inode.
 938	 */
 939	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
 940	ip->i_d.di_anextents = 0;
 941
 942	/*
 943	 * Log the new values stuffed into the inode.
 944	 */
 945	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 946	xfs_trans_log_inode(tp, ip, flags);
 947
 948	/* now that we have an i_mode we can setup the inode structure */
 949	xfs_setup_inode(ip);
 950
 951	*ipp = ip;
 952	return 0;
 953}
 954
 955/*
 956 * Allocates a new inode from disk and return a pointer to the
 957 * incore copy. This routine will internally commit the current
 958 * transaction and allocate a new one if the Space Manager needed
 959 * to do an allocation to replenish the inode free-list.
 960 *
 961 * This routine is designed to be called from xfs_create and
 962 * xfs_create_dir.
 963 *
 964 */
 965int
 966xfs_dir_ialloc(
 967	xfs_trans_t	**tpp,		/* input: current transaction;
 968					   output: may be a new transaction. */
 969	xfs_inode_t	*dp,		/* directory within whose allocate
 970					   the inode. */
 971	umode_t		mode,
 972	xfs_nlink_t	nlink,
 973	dev_t		rdev,
 974	prid_t		prid,		/* project id */
 975	xfs_inode_t	**ipp)		/* pointer to inode; it will be
 
 976					   locked. */
 
 
 977{
 978	xfs_trans_t	*tp;
 979	xfs_inode_t	*ip;
 980	xfs_buf_t	*ialloc_context = NULL;
 981	int		code;
 982	void		*dqinfo;
 983	uint		tflags;
 984
 985	tp = *tpp;
 986	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
 987
 988	/*
 989	 * xfs_ialloc will return a pointer to an incore inode if
 990	 * the Space Manager has an available inode on the free
 991	 * list. Otherwise, it will do an allocation and replenish
 992	 * the freelist.  Since we can only do one allocation per
 993	 * transaction without deadlocks, we will need to commit the
 994	 * current transaction and start a new one.  We will then
 995	 * need to call xfs_ialloc again to get the inode.
 996	 *
 997	 * If xfs_ialloc did an allocation to replenish the freelist,
 998	 * it returns the bp containing the head of the freelist as
 999	 * ialloc_context. We will hold a lock on it across the
1000	 * transaction commit so that no other process can steal
1001	 * the inode(s) that we've just allocated.
1002	 */
1003	code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context,
1004			&ip);
1005
1006	/*
1007	 * Return an error if we were unable to allocate a new inode.
1008	 * This should only happen if we run out of space on disk or
1009	 * encounter a disk error.
1010	 */
1011	if (code) {
1012		*ipp = NULL;
1013		return code;
1014	}
1015	if (!ialloc_context && !ip) {
1016		*ipp = NULL;
1017		return -ENOSPC;
1018	}
1019
1020	/*
1021	 * If the AGI buffer is non-NULL, then we were unable to get an
1022	 * inode in one operation.  We need to commit the current
1023	 * transaction and call xfs_ialloc() again.  It is guaranteed
1024	 * to succeed the second time.
1025	 */
1026	if (ialloc_context) {
1027		/*
1028		 * Normally, xfs_trans_commit releases all the locks.
1029		 * We call bhold to hang on to the ialloc_context across
1030		 * the commit.  Holding this buffer prevents any other
1031		 * processes from doing any allocations in this
1032		 * allocation group.
1033		 */
1034		xfs_trans_bhold(tp, ialloc_context);
1035
1036		/*
1037		 * We want the quota changes to be associated with the next
1038		 * transaction, NOT this one. So, detach the dqinfo from this
1039		 * and attach it to the next transaction.
1040		 */
1041		dqinfo = NULL;
1042		tflags = 0;
1043		if (tp->t_dqinfo) {
1044			dqinfo = (void *)tp->t_dqinfo;
1045			tp->t_dqinfo = NULL;
1046			tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1047			tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1048		}
1049
1050		code = xfs_trans_roll(&tp);
 
 
1051
1052		/*
1053		 * Re-attach the quota info that we detached from prev trx.
1054		 */
1055		if (dqinfo) {
1056			tp->t_dqinfo = dqinfo;
1057			tp->t_flags |= tflags;
1058		}
1059
1060		if (code) {
1061			xfs_buf_relse(ialloc_context);
1062			*tpp = tp;
1063			*ipp = NULL;
1064			return code;
1065		}
1066		xfs_trans_bjoin(tp, ialloc_context);
1067
1068		/*
1069		 * Call ialloc again. Since we've locked out all
1070		 * other allocations in this allocation group,
1071		 * this call should always succeed.
1072		 */
1073		code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1074				  &ialloc_context, &ip);
1075
1076		/*
1077		 * If we get an error at this point, return to the caller
1078		 * so that the current transaction can be aborted.
1079		 */
1080		if (code) {
1081			*tpp = tp;
1082			*ipp = NULL;
1083			return code;
1084		}
1085		ASSERT(!ialloc_context && ip);
1086
 
 
 
1087	}
1088
1089	*ipp = ip;
1090	*tpp = tp;
1091
1092	return 0;
1093}
1094
1095/*
1096 * Decrement the link count on an inode & log the change.  If this causes the
1097 * link count to go to zero, move the inode to AGI unlinked list so that it can
1098 * be freed when the last active reference goes away via xfs_inactive().
1099 */
1100static int			/* error */
1101xfs_droplink(
1102	xfs_trans_t *tp,
1103	xfs_inode_t *ip)
1104{
1105	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1106
1107	drop_nlink(VFS_I(ip));
1108	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1109
1110	if (VFS_I(ip)->i_nlink)
1111		return 0;
1112
1113	return xfs_iunlink(tp, ip);
1114}
1115
1116/*
1117 * Increment the link count on an inode & log the change.
1118 */
1119static int
1120xfs_bumplink(
1121	xfs_trans_t *tp,
1122	xfs_inode_t *ip)
1123{
1124	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1125
1126	ASSERT(ip->i_d.di_version > 1);
1127	inc_nlink(VFS_I(ip));
1128	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1129	return 0;
1130}
1131
1132int
1133xfs_create(
1134	xfs_inode_t		*dp,
1135	struct xfs_name		*name,
1136	umode_t			mode,
1137	dev_t			rdev,
1138	xfs_inode_t		**ipp)
1139{
1140	int			is_dir = S_ISDIR(mode);
1141	struct xfs_mount	*mp = dp->i_mount;
1142	struct xfs_inode	*ip = NULL;
1143	struct xfs_trans	*tp = NULL;
1144	int			error;
1145	struct xfs_defer_ops	dfops;
1146	xfs_fsblock_t		first_block;
1147	bool                    unlock_dp_on_error = false;
1148	prid_t			prid;
1149	struct xfs_dquot	*udqp = NULL;
1150	struct xfs_dquot	*gdqp = NULL;
1151	struct xfs_dquot	*pdqp = NULL;
1152	struct xfs_trans_res	*tres;
1153	uint			resblks;
1154
1155	trace_xfs_create(dp, name);
1156
1157	if (XFS_FORCED_SHUTDOWN(mp))
1158		return -EIO;
1159
1160	prid = xfs_get_initial_prid(dp);
1161
1162	/*
1163	 * Make sure that we have allocated dquot(s) on disk.
1164	 */
1165	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1166					xfs_kgid_to_gid(current_fsgid()), prid,
1167					XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1168					&udqp, &gdqp, &pdqp);
1169	if (error)
1170		return error;
1171
1172	if (is_dir) {
 
1173		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1174		tres = &M_RES(mp)->tr_mkdir;
 
1175	} else {
1176		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1177		tres = &M_RES(mp)->tr_create;
 
1178	}
1179
1180	/*
1181	 * Initially assume that the file does not exist and
1182	 * reserve the resources for that case.  If that is not
1183	 * the case we'll drop the one we have and get a more
1184	 * appropriate transaction later.
1185	 */
1186	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1187	if (error == -ENOSPC) {
1188		/* flush outstanding delalloc blocks and retry */
1189		xfs_flush_inodes(mp);
1190		error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
 
 
 
 
 
1191	}
1192	if (error)
1193		goto out_release_inode;
 
1194
1195	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
 
1196	unlock_dp_on_error = true;
1197
1198	xfs_defer_init(&dfops, &first_block);
1199
1200	/*
1201	 * Reserve disk quota and the inode.
1202	 */
1203	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1204						pdqp, resblks, 1, 0);
1205	if (error)
1206		goto out_trans_cancel;
1207
 
 
 
 
 
 
1208	/*
1209	 * A newly created regular or special file just has one directory
1210	 * entry pointing to them, but a directory also the "." entry
1211	 * pointing to itself.
1212	 */
1213	error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip);
 
1214	if (error)
1215		goto out_trans_cancel;
1216
1217	/*
1218	 * Now we join the directory inode to the transaction.  We do not do it
1219	 * earlier because xfs_dir_ialloc might commit the previous transaction
1220	 * (and release all the locks).  An error from here on will result in
1221	 * the transaction cancel unlocking dp so don't do it explicitly in the
1222	 * error path.
1223	 */
1224	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1225	unlock_dp_on_error = false;
1226
1227	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1228					&first_block, &dfops, resblks ?
1229					resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1230	if (error) {
1231		ASSERT(error != -ENOSPC);
1232		goto out_trans_cancel;
1233	}
1234	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1235	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1236
1237	if (is_dir) {
1238		error = xfs_dir_init(tp, ip, dp);
1239		if (error)
1240			goto out_bmap_cancel;
1241
1242		error = xfs_bumplink(tp, dp);
1243		if (error)
1244			goto out_bmap_cancel;
1245	}
1246
1247	/*
1248	 * If this is a synchronous mount, make sure that the
1249	 * create transaction goes to disk before returning to
1250	 * the user.
1251	 */
1252	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1253		xfs_trans_set_sync(tp);
1254
1255	/*
1256	 * Attach the dquot(s) to the inodes and modify them incore.
1257	 * These ids of the inode couldn't have changed since the new
1258	 * inode has been locked ever since it was created.
1259	 */
1260	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1261
1262	error = xfs_defer_finish(&tp, &dfops);
1263	if (error)
1264		goto out_bmap_cancel;
1265
1266	error = xfs_trans_commit(tp);
1267	if (error)
1268		goto out_release_inode;
1269
1270	xfs_qm_dqrele(udqp);
1271	xfs_qm_dqrele(gdqp);
1272	xfs_qm_dqrele(pdqp);
1273
1274	*ipp = ip;
1275	return 0;
1276
1277 out_bmap_cancel:
1278	xfs_defer_cancel(&dfops);
1279 out_trans_cancel:
1280	xfs_trans_cancel(tp);
1281 out_release_inode:
1282	/*
1283	 * Wait until after the current transaction is aborted to finish the
1284	 * setup of the inode and release the inode.  This prevents recursive
1285	 * transactions and deadlocks from xfs_inactive.
1286	 */
1287	if (ip) {
1288		xfs_finish_inode_setup(ip);
1289		IRELE(ip);
1290	}
1291
1292	xfs_qm_dqrele(udqp);
1293	xfs_qm_dqrele(gdqp);
1294	xfs_qm_dqrele(pdqp);
1295
1296	if (unlock_dp_on_error)
1297		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1298	return error;
1299}
1300
1301int
1302xfs_create_tmpfile(
1303	struct xfs_inode	*dp,
 
1304	umode_t			mode,
1305	struct xfs_inode	**ipp)
1306{
1307	struct xfs_mount	*mp = dp->i_mount;
1308	struct xfs_inode	*ip = NULL;
1309	struct xfs_trans	*tp = NULL;
1310	int			error;
1311	prid_t                  prid;
1312	struct xfs_dquot	*udqp = NULL;
1313	struct xfs_dquot	*gdqp = NULL;
1314	struct xfs_dquot	*pdqp = NULL;
1315	struct xfs_trans_res	*tres;
1316	uint			resblks;
1317
1318	if (XFS_FORCED_SHUTDOWN(mp))
1319		return -EIO;
1320
1321	prid = xfs_get_initial_prid(dp);
1322
1323	/*
1324	 * Make sure that we have allocated dquot(s) on disk.
1325	 */
1326	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1327				xfs_kgid_to_gid(current_fsgid()), prid,
1328				XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1329				&udqp, &gdqp, &pdqp);
1330	if (error)
1331		return error;
1332
1333	resblks = XFS_IALLOC_SPACE_RES(mp);
1334	tres = &M_RES(mp)->tr_create_tmpfile;
1335
1336	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
 
 
 
 
 
 
1337	if (error)
1338		goto out_release_inode;
1339
1340	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1341						pdqp, resblks, 1, 0);
1342	if (error)
1343		goto out_trans_cancel;
1344
1345	error = xfs_dir_ialloc(&tp, dp, mode, 1, 0, prid, &ip);
 
1346	if (error)
1347		goto out_trans_cancel;
1348
1349	if (mp->m_flags & XFS_MOUNT_WSYNC)
1350		xfs_trans_set_sync(tp);
1351
1352	/*
1353	 * Attach the dquot(s) to the inodes and modify them incore.
1354	 * These ids of the inode couldn't have changed since the new
1355	 * inode has been locked ever since it was created.
1356	 */
1357	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1358
1359	error = xfs_iunlink(tp, ip);
1360	if (error)
1361		goto out_trans_cancel;
1362
1363	error = xfs_trans_commit(tp);
1364	if (error)
1365		goto out_release_inode;
1366
1367	xfs_qm_dqrele(udqp);
1368	xfs_qm_dqrele(gdqp);
1369	xfs_qm_dqrele(pdqp);
1370
1371	*ipp = ip;
1372	return 0;
1373
1374 out_trans_cancel:
1375	xfs_trans_cancel(tp);
1376 out_release_inode:
1377	/*
1378	 * Wait until after the current transaction is aborted to finish the
1379	 * setup of the inode and release the inode.  This prevents recursive
1380	 * transactions and deadlocks from xfs_inactive.
1381	 */
1382	if (ip) {
1383		xfs_finish_inode_setup(ip);
1384		IRELE(ip);
1385	}
1386
1387	xfs_qm_dqrele(udqp);
1388	xfs_qm_dqrele(gdqp);
1389	xfs_qm_dqrele(pdqp);
1390
1391	return error;
1392}
1393
1394int
1395xfs_link(
1396	xfs_inode_t		*tdp,
1397	xfs_inode_t		*sip,
1398	struct xfs_name		*target_name)
1399{
1400	xfs_mount_t		*mp = tdp->i_mount;
1401	xfs_trans_t		*tp;
1402	int			error;
1403	struct xfs_defer_ops	dfops;
1404	xfs_fsblock_t           first_block;
1405	int			resblks;
1406
1407	trace_xfs_link(tdp, target_name);
1408
1409	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1410
1411	if (XFS_FORCED_SHUTDOWN(mp))
1412		return -EIO;
1413
1414	error = xfs_qm_dqattach(sip, 0);
1415	if (error)
1416		goto std_return;
1417
1418	error = xfs_qm_dqattach(tdp, 0);
1419	if (error)
1420		goto std_return;
1421
 
1422	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1423	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1424	if (error == -ENOSPC) {
1425		resblks = 0;
1426		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1427	}
1428	if (error)
1429		goto std_return;
1430
1431	xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
 
1432
1433	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1434	xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1435
1436	/*
1437	 * If we are using project inheritance, we only allow hard link
1438	 * creation in our tree when the project IDs are the same; else
1439	 * the tree quota mechanism could be circumvented.
1440	 */
1441	if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1442		     (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1443		error = -EXDEV;
1444		goto error_return;
1445	}
1446
1447	if (!resblks) {
1448		error = xfs_dir_canenter(tp, tdp, target_name);
1449		if (error)
1450			goto error_return;
1451	}
1452
1453	xfs_defer_init(&dfops, &first_block);
1454
1455	/*
1456	 * Handle initial link state of O_TMPFILE inode
1457	 */
1458	if (VFS_I(sip)->i_nlink == 0) {
1459		error = xfs_iunlink_remove(tp, sip);
1460		if (error)
1461			goto error_return;
1462	}
1463
1464	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1465					&first_block, &dfops, resblks);
1466	if (error)
1467		goto error_return;
1468	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1469	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1470
1471	error = xfs_bumplink(tp, sip);
1472	if (error)
1473		goto error_return;
1474
1475	/*
1476	 * If this is a synchronous mount, make sure that the
1477	 * link transaction goes to disk before returning to
1478	 * the user.
1479	 */
1480	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1481		xfs_trans_set_sync(tp);
1482
1483	error = xfs_defer_finish(&tp, &dfops);
1484	if (error) {
1485		xfs_defer_cancel(&dfops);
1486		goto error_return;
1487	}
1488
1489	return xfs_trans_commit(tp);
1490
1491 error_return:
1492	xfs_trans_cancel(tp);
1493 std_return:
1494	return error;
1495}
1496
1497/* Clear the reflink flag and the cowblocks tag if possible. */
1498static void
1499xfs_itruncate_clear_reflink_flags(
1500	struct xfs_inode	*ip)
1501{
1502	struct xfs_ifork	*dfork;
1503	struct xfs_ifork	*cfork;
1504
1505	if (!xfs_is_reflink_inode(ip))
1506		return;
1507	dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1508	cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1509	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1510		ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1511	if (cfork->if_bytes == 0)
1512		xfs_inode_clear_cowblocks_tag(ip);
1513}
1514
1515/*
1516 * Free up the underlying blocks past new_size.  The new size must be smaller
1517 * than the current size.  This routine can be used both for the attribute and
1518 * data fork, and does not modify the inode size, which is left to the caller.
1519 *
1520 * The transaction passed to this routine must have made a permanent log
1521 * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1522 * given transaction and start new ones, so make sure everything involved in
1523 * the transaction is tidy before calling here.  Some transaction will be
1524 * returned to the caller to be committed.  The incoming transaction must
1525 * already include the inode, and both inode locks must be held exclusively.
1526 * The inode must also be "held" within the transaction.  On return the inode
1527 * will be "held" within the returned transaction.  This routine does NOT
1528 * require any disk space to be reserved for it within the transaction.
1529 *
1530 * If we get an error, we must return with the inode locked and linked into the
1531 * current transaction. This keeps things simple for the higher level code,
1532 * because it always knows that the inode is locked and held in the transaction
1533 * that returns to it whether errors occur or not.  We don't mark the inode
1534 * dirty on error so that transactions can be easily aborted if possible.
1535 */
1536int
1537xfs_itruncate_extents(
1538	struct xfs_trans	**tpp,
1539	struct xfs_inode	*ip,
1540	int			whichfork,
1541	xfs_fsize_t		new_size)
1542{
1543	struct xfs_mount	*mp = ip->i_mount;
1544	struct xfs_trans	*tp = *tpp;
1545	struct xfs_defer_ops	dfops;
1546	xfs_fsblock_t		first_block;
1547	xfs_fileoff_t		first_unmap_block;
1548	xfs_fileoff_t		last_block;
1549	xfs_filblks_t		unmap_len;
1550	int			error = 0;
1551	int			done = 0;
1552
1553	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1554	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1555	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1556	ASSERT(new_size <= XFS_ISIZE(ip));
1557	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1558	ASSERT(ip->i_itemp != NULL);
1559	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1560	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1561
1562	trace_xfs_itruncate_extents_start(ip, new_size);
1563
1564	/*
1565	 * Since it is possible for space to become allocated beyond
1566	 * the end of the file (in a crash where the space is allocated
1567	 * but the inode size is not yet updated), simply remove any
1568	 * blocks which show up between the new EOF and the maximum
1569	 * possible file size.  If the first block to be removed is
1570	 * beyond the maximum file size (ie it is the same as last_block),
1571	 * then there is nothing to do.
1572	 */
1573	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1574	last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1575	if (first_unmap_block == last_block)
1576		return 0;
1577
1578	ASSERT(first_unmap_block < last_block);
1579	unmap_len = last_block - first_unmap_block + 1;
1580	while (!done) {
1581		xfs_defer_init(&dfops, &first_block);
1582		error = xfs_bunmapi(tp, ip,
1583				    first_unmap_block, unmap_len,
1584				    xfs_bmapi_aflag(whichfork),
1585				    XFS_ITRUNC_MAX_EXTENTS,
1586				    &first_block, &dfops,
1587				    &done);
1588		if (error)
1589			goto out_bmap_cancel;
1590
1591		/*
1592		 * Duplicate the transaction that has the permanent
1593		 * reservation and commit the old transaction.
1594		 */
1595		xfs_defer_ijoin(&dfops, ip);
1596		error = xfs_defer_finish(&tp, &dfops);
1597		if (error)
1598			goto out_bmap_cancel;
1599
1600		error = xfs_trans_roll_inode(&tp, ip);
1601		if (error)
1602			goto out;
1603	}
1604
1605	if (whichfork == XFS_DATA_FORK) {
1606		/* Remove all pending CoW reservations. */
1607		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1608				first_unmap_block, last_block, true);
1609		if (error)
1610			goto out;
1611
1612		xfs_itruncate_clear_reflink_flags(ip);
1613	}
1614
1615	/*
1616	 * Always re-log the inode so that our permanent transaction can keep
1617	 * on rolling it forward in the log.
1618	 */
1619	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1620
1621	trace_xfs_itruncate_extents_end(ip, new_size);
1622
1623out:
1624	*tpp = tp;
1625	return error;
1626out_bmap_cancel:
1627	/*
1628	 * If the bunmapi call encounters an error, return to the caller where
1629	 * the transaction can be properly aborted.  We just need to make sure
1630	 * we're not holding any resources that we were not when we came in.
1631	 */
1632	xfs_defer_cancel(&dfops);
1633	goto out;
1634}
1635
1636int
1637xfs_release(
1638	xfs_inode_t	*ip)
1639{
1640	xfs_mount_t	*mp = ip->i_mount;
1641	int		error;
1642
1643	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1644		return 0;
1645
1646	/* If this is a read-only mount, don't do this (would generate I/O) */
1647	if (mp->m_flags & XFS_MOUNT_RDONLY)
1648		return 0;
1649
1650	if (!XFS_FORCED_SHUTDOWN(mp)) {
1651		int truncated;
1652
1653		/*
1654		 * If we previously truncated this file and removed old data
1655		 * in the process, we want to initiate "early" writeout on
1656		 * the last close.  This is an attempt to combat the notorious
1657		 * NULL files problem which is particularly noticeable from a
1658		 * truncate down, buffered (re-)write (delalloc), followed by
1659		 * a crash.  What we are effectively doing here is
1660		 * significantly reducing the time window where we'd otherwise
1661		 * be exposed to that problem.
1662		 */
1663		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1664		if (truncated) {
1665			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1666			if (ip->i_delayed_blks > 0) {
1667				error = filemap_flush(VFS_I(ip)->i_mapping);
1668				if (error)
1669					return error;
1670			}
1671		}
1672	}
1673
1674	if (VFS_I(ip)->i_nlink == 0)
1675		return 0;
1676
1677	if (xfs_can_free_eofblocks(ip, false)) {
1678
1679		/*
1680		 * Check if the inode is being opened, written and closed
1681		 * frequently and we have delayed allocation blocks outstanding
1682		 * (e.g. streaming writes from the NFS server), truncating the
1683		 * blocks past EOF will cause fragmentation to occur.
1684		 *
1685		 * In this case don't do the truncation, but we have to be
1686		 * careful how we detect this case. Blocks beyond EOF show up as
1687		 * i_delayed_blks even when the inode is clean, so we need to
1688		 * truncate them away first before checking for a dirty release.
1689		 * Hence on the first dirty close we will still remove the
1690		 * speculative allocation, but after that we will leave it in
1691		 * place.
1692		 */
1693		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1694			return 0;
1695		/*
1696		 * If we can't get the iolock just skip truncating the blocks
1697		 * past EOF because we could deadlock with the mmap_sem
1698		 * otherwise. We'll get another chance to drop them once the
1699		 * last reference to the inode is dropped, so we'll never leak
1700		 * blocks permanently.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1701		 */
1702		if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1703			error = xfs_free_eofblocks(ip);
1704			xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1705			if (error)
1706				return error;
1707		}
1708
1709		/* delalloc blocks after truncation means it really is dirty */
1710		if (ip->i_delayed_blks)
1711			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1712	}
1713	return 0;
1714}
1715
1716/*
1717 * xfs_inactive_truncate
1718 *
1719 * Called to perform a truncate when an inode becomes unlinked.
1720 */
1721STATIC int
1722xfs_inactive_truncate(
1723	struct xfs_inode *ip)
1724{
1725	struct xfs_mount	*mp = ip->i_mount;
1726	struct xfs_trans	*tp;
1727	int			error;
1728
1729	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
 
1730	if (error) {
1731		ASSERT(XFS_FORCED_SHUTDOWN(mp));
 
1732		return error;
1733	}
1734
1735	xfs_ilock(ip, XFS_ILOCK_EXCL);
1736	xfs_trans_ijoin(tp, ip, 0);
1737
1738	/*
1739	 * Log the inode size first to prevent stale data exposure in the event
1740	 * of a system crash before the truncate completes. See the related
1741	 * comment in xfs_vn_setattr_size() for details.
1742	 */
1743	ip->i_d.di_size = 0;
1744	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1745
1746	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1747	if (error)
1748		goto error_trans_cancel;
1749
1750	ASSERT(ip->i_d.di_nextents == 0);
1751
1752	error = xfs_trans_commit(tp);
1753	if (error)
1754		goto error_unlock;
1755
1756	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1757	return 0;
1758
1759error_trans_cancel:
1760	xfs_trans_cancel(tp);
1761error_unlock:
1762	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1763	return error;
1764}
1765
1766/*
1767 * xfs_inactive_ifree()
1768 *
1769 * Perform the inode free when an inode is unlinked.
1770 */
1771STATIC int
1772xfs_inactive_ifree(
1773	struct xfs_inode *ip)
1774{
1775	struct xfs_defer_ops	dfops;
1776	xfs_fsblock_t		first_block;
1777	struct xfs_mount	*mp = ip->i_mount;
1778	struct xfs_trans	*tp;
1779	int			error;
1780
 
 
1781	/*
1782	 * We try to use a per-AG reservation for any block needed by the finobt
1783	 * tree, but as the finobt feature predates the per-AG reservation
1784	 * support a degraded file system might not have enough space for the
1785	 * reservation at mount time.  In that case try to dip into the reserved
1786	 * pool and pray.
 
 
 
 
1787	 *
1788	 * Send a warning if the reservation does happen to fail, as the inode
1789	 * now remains allocated and sits on the unlinked list until the fs is
1790	 * repaired.
1791	 */
1792	if (unlikely(mp->m_inotbt_nores)) {
1793		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1794				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1795				&tp);
1796	} else {
1797		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1798	}
1799	if (error) {
1800		if (error == -ENOSPC) {
1801			xfs_warn_ratelimited(mp,
1802			"Failed to remove inode(s) from unlinked list. "
1803			"Please free space, unmount and run xfs_repair.");
1804		} else {
1805			ASSERT(XFS_FORCED_SHUTDOWN(mp));
1806		}
 
1807		return error;
1808	}
1809
1810	xfs_ilock(ip, XFS_ILOCK_EXCL);
1811	xfs_trans_ijoin(tp, ip, 0);
1812
1813	xfs_defer_init(&dfops, &first_block);
1814	error = xfs_ifree(tp, ip, &dfops);
1815	if (error) {
1816		/*
1817		 * If we fail to free the inode, shut down.  The cancel
1818		 * might do that, we need to make sure.  Otherwise the
1819		 * inode might be lost for a long time or forever.
1820		 */
1821		if (!XFS_FORCED_SHUTDOWN(mp)) {
1822			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1823				__func__, error);
1824			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1825		}
1826		xfs_trans_cancel(tp);
1827		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1828		return error;
1829	}
1830
1831	/*
1832	 * Credit the quota account(s). The inode is gone.
1833	 */
1834	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1835
1836	/*
1837	 * Just ignore errors at this point.  There is nothing we can do except
1838	 * to try to keep going. Make sure it's not a silent error.
1839	 */
1840	error = xfs_defer_finish(&tp, &dfops);
1841	if (error) {
1842		xfs_notice(mp, "%s: xfs_defer_finish returned error %d",
1843			__func__, error);
1844		xfs_defer_cancel(&dfops);
1845	}
1846	error = xfs_trans_commit(tp);
1847	if (error)
1848		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1849			__func__, error);
1850
1851	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1852	return 0;
1853}
1854
1855/*
1856 * xfs_inactive
1857 *
1858 * This is called when the vnode reference count for the vnode
1859 * goes to zero.  If the file has been unlinked, then it must
1860 * now be truncated.  Also, we clear all of the read-ahead state
1861 * kept for the inode here since the file is now closed.
1862 */
1863void
1864xfs_inactive(
1865	xfs_inode_t	*ip)
1866{
1867	struct xfs_mount	*mp;
1868	struct xfs_ifork	*cow_ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1869	int			error;
1870	int			truncate = 0;
1871
1872	/*
1873	 * If the inode is already free, then there can be nothing
1874	 * to clean up here.
1875	 */
1876	if (VFS_I(ip)->i_mode == 0) {
1877		ASSERT(ip->i_df.if_real_bytes == 0);
1878		ASSERT(ip->i_df.if_broot_bytes == 0);
1879		return;
1880	}
1881
1882	mp = ip->i_mount;
1883	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1884
1885	/* If this is a read-only mount, don't do this (would generate I/O) */
1886	if (mp->m_flags & XFS_MOUNT_RDONLY)
1887		return;
1888
1889	/* Try to clean out the cow blocks if there are any. */
1890	if (xfs_is_reflink_inode(ip) && cow_ifp->if_bytes > 0)
1891		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1892
1893	if (VFS_I(ip)->i_nlink != 0) {
1894		/*
1895		 * force is true because we are evicting an inode from the
1896		 * cache. Post-eof blocks must be freed, lest we end up with
1897		 * broken free space accounting.
1898		 *
1899		 * Note: don't bother with iolock here since lockdep complains
1900		 * about acquiring it in reclaim context. We have the only
1901		 * reference to the inode at this point anyways.
1902		 */
1903		if (xfs_can_free_eofblocks(ip, true))
1904			xfs_free_eofblocks(ip);
1905
1906		return;
1907	}
1908
1909	if (S_ISREG(VFS_I(ip)->i_mode) &&
1910	    (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1911	     ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1912		truncate = 1;
1913
1914	error = xfs_qm_dqattach(ip, 0);
1915	if (error)
1916		return;
1917
1918	if (S_ISLNK(VFS_I(ip)->i_mode))
1919		error = xfs_inactive_symlink(ip);
1920	else if (truncate)
1921		error = xfs_inactive_truncate(ip);
1922	if (error)
1923		return;
1924
1925	/*
1926	 * If there are attributes associated with the file then blow them away
1927	 * now.  The code calls a routine that recursively deconstructs the
1928	 * attribute fork. If also blows away the in-core attribute fork.
1929	 */
1930	if (XFS_IFORK_Q(ip)) {
1931		error = xfs_attr_inactive(ip);
1932		if (error)
1933			return;
1934	}
1935
1936	ASSERT(!ip->i_afp);
1937	ASSERT(ip->i_d.di_anextents == 0);
1938	ASSERT(ip->i_d.di_forkoff == 0);
1939
1940	/*
1941	 * Free the inode.
1942	 */
1943	error = xfs_inactive_ifree(ip);
1944	if (error)
1945		return;
1946
1947	/*
1948	 * Release the dquots held by inode, if any.
1949	 */
1950	xfs_qm_dqdetach(ip);
1951}
1952
1953/*
1954 * This is called when the inode's link count goes to 0 or we are creating a
1955 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1956 * set to true as the link count is dropped to zero by the VFS after we've
1957 * created the file successfully, so we have to add it to the unlinked list
1958 * while the link count is non-zero.
1959 *
1960 * We place the on-disk inode on a list in the AGI.  It will be pulled from this
1961 * list when the inode is freed.
1962 */
1963STATIC int
1964xfs_iunlink(
1965	struct xfs_trans *tp,
1966	struct xfs_inode *ip)
1967{
1968	xfs_mount_t	*mp = tp->t_mountp;
1969	xfs_agi_t	*agi;
1970	xfs_dinode_t	*dip;
1971	xfs_buf_t	*agibp;
1972	xfs_buf_t	*ibp;
1973	xfs_agino_t	agino;
1974	short		bucket_index;
1975	int		offset;
1976	int		error;
1977
1978	ASSERT(VFS_I(ip)->i_mode != 0);
1979
1980	/*
1981	 * Get the agi buffer first.  It ensures lock ordering
1982	 * on the list.
1983	 */
1984	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1985	if (error)
1986		return error;
1987	agi = XFS_BUF_TO_AGI(agibp);
1988
1989	/*
1990	 * Get the index into the agi hash table for the
1991	 * list this inode will go on.
1992	 */
1993	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1994	ASSERT(agino != 0);
1995	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1996	ASSERT(agi->agi_unlinked[bucket_index]);
1997	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1998
1999	if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
2000		/*
2001		 * There is already another inode in the bucket we need
2002		 * to add ourselves to.  Add us at the front of the list.
2003		 * Here we put the head pointer into our next pointer,
2004		 * and then we fall through to point the head at us.
2005		 */
2006		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2007				       0, 0);
2008		if (error)
2009			return error;
2010
2011		ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
2012		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
2013		offset = ip->i_imap.im_boffset +
2014			offsetof(xfs_dinode_t, di_next_unlinked);
2015
2016		/* need to recalc the inode CRC if appropriate */
2017		xfs_dinode_calc_crc(mp, dip);
2018
2019		xfs_trans_inode_buf(tp, ibp);
2020		xfs_trans_log_buf(tp, ibp, offset,
2021				  (offset + sizeof(xfs_agino_t) - 1));
2022		xfs_inobp_check(mp, ibp);
2023	}
2024
2025	/*
2026	 * Point the bucket head pointer at the inode being inserted.
2027	 */
2028	ASSERT(agino != 0);
2029	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
2030	offset = offsetof(xfs_agi_t, agi_unlinked) +
2031		(sizeof(xfs_agino_t) * bucket_index);
 
2032	xfs_trans_log_buf(tp, agibp, offset,
2033			  (offset + sizeof(xfs_agino_t) - 1));
2034	return 0;
2035}
2036
2037/*
2038 * Pull the on-disk inode from the AGI unlinked list.
2039 */
2040STATIC int
2041xfs_iunlink_remove(
2042	xfs_trans_t	*tp,
2043	xfs_inode_t	*ip)
2044{
2045	xfs_ino_t	next_ino;
2046	xfs_mount_t	*mp;
2047	xfs_agi_t	*agi;
2048	xfs_dinode_t	*dip;
2049	xfs_buf_t	*agibp;
2050	xfs_buf_t	*ibp;
2051	xfs_agnumber_t	agno;
2052	xfs_agino_t	agino;
2053	xfs_agino_t	next_agino;
2054	xfs_buf_t	*last_ibp;
2055	xfs_dinode_t	*last_dip = NULL;
2056	short		bucket_index;
2057	int		offset, last_offset = 0;
2058	int		error;
2059
2060	mp = tp->t_mountp;
2061	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2062
2063	/*
2064	 * Get the agi buffer first.  It ensures lock ordering
2065	 * on the list.
2066	 */
2067	error = xfs_read_agi(mp, tp, agno, &agibp);
2068	if (error)
2069		return error;
2070
2071	agi = XFS_BUF_TO_AGI(agibp);
2072
2073	/*
2074	 * Get the index into the agi hash table for the
2075	 * list this inode will go on.
2076	 */
2077	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2078	ASSERT(agino != 0);
2079	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2080	ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2081	ASSERT(agi->agi_unlinked[bucket_index]);
2082
2083	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2084		/*
2085		 * We're at the head of the list.  Get the inode's on-disk
2086		 * buffer to see if there is anyone after us on the list.
2087		 * Only modify our next pointer if it is not already NULLAGINO.
2088		 * This saves us the overhead of dealing with the buffer when
2089		 * there is no need to change it.
2090		 */
2091		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2092				       0, 0);
2093		if (error) {
2094			xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2095				__func__, error);
2096			return error;
2097		}
2098		next_agino = be32_to_cpu(dip->di_next_unlinked);
2099		ASSERT(next_agino != 0);
2100		if (next_agino != NULLAGINO) {
2101			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2102			offset = ip->i_imap.im_boffset +
2103				offsetof(xfs_dinode_t, di_next_unlinked);
2104
2105			/* need to recalc the inode CRC if appropriate */
2106			xfs_dinode_calc_crc(mp, dip);
2107
2108			xfs_trans_inode_buf(tp, ibp);
2109			xfs_trans_log_buf(tp, ibp, offset,
2110					  (offset + sizeof(xfs_agino_t) - 1));
2111			xfs_inobp_check(mp, ibp);
2112		} else {
2113			xfs_trans_brelse(tp, ibp);
2114		}
2115		/*
2116		 * Point the bucket head pointer at the next inode.
2117		 */
2118		ASSERT(next_agino != 0);
2119		ASSERT(next_agino != agino);
2120		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2121		offset = offsetof(xfs_agi_t, agi_unlinked) +
2122			(sizeof(xfs_agino_t) * bucket_index);
 
2123		xfs_trans_log_buf(tp, agibp, offset,
2124				  (offset + sizeof(xfs_agino_t) - 1));
2125	} else {
2126		/*
2127		 * We need to search the list for the inode being freed.
2128		 */
2129		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2130		last_ibp = NULL;
2131		while (next_agino != agino) {
2132			struct xfs_imap	imap;
2133
2134			if (last_ibp)
2135				xfs_trans_brelse(tp, last_ibp);
2136
2137			imap.im_blkno = 0;
2138			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2139
2140			error = xfs_imap(mp, tp, next_ino, &imap, 0);
2141			if (error) {
2142				xfs_warn(mp,
2143	"%s: xfs_imap returned error %d.",
2144					 __func__, error);
2145				return error;
2146			}
2147
2148			error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2149					       &last_ibp, 0, 0);
2150			if (error) {
2151				xfs_warn(mp,
2152	"%s: xfs_imap_to_bp returned error %d.",
2153					__func__, error);
2154				return error;
2155			}
2156
2157			last_offset = imap.im_boffset;
2158			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2159			ASSERT(next_agino != NULLAGINO);
2160			ASSERT(next_agino != 0);
2161		}
2162
2163		/*
2164		 * Now last_ibp points to the buffer previous to us on the
2165		 * unlinked list.  Pull us from the list.
2166		 */
2167		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2168				       0, 0);
2169		if (error) {
2170			xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2171				__func__, error);
2172			return error;
2173		}
2174		next_agino = be32_to_cpu(dip->di_next_unlinked);
2175		ASSERT(next_agino != 0);
2176		ASSERT(next_agino != agino);
2177		if (next_agino != NULLAGINO) {
2178			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2179			offset = ip->i_imap.im_boffset +
2180				offsetof(xfs_dinode_t, di_next_unlinked);
2181
2182			/* need to recalc the inode CRC if appropriate */
2183			xfs_dinode_calc_crc(mp, dip);
2184
2185			xfs_trans_inode_buf(tp, ibp);
2186			xfs_trans_log_buf(tp, ibp, offset,
2187					  (offset + sizeof(xfs_agino_t) - 1));
2188			xfs_inobp_check(mp, ibp);
2189		} else {
2190			xfs_trans_brelse(tp, ibp);
2191		}
2192		/*
2193		 * Point the previous inode on the list to the next inode.
2194		 */
2195		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2196		ASSERT(next_agino != 0);
2197		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2198
2199		/* need to recalc the inode CRC if appropriate */
2200		xfs_dinode_calc_crc(mp, last_dip);
2201
2202		xfs_trans_inode_buf(tp, last_ibp);
2203		xfs_trans_log_buf(tp, last_ibp, offset,
2204				  (offset + sizeof(xfs_agino_t) - 1));
2205		xfs_inobp_check(mp, last_ibp);
2206	}
2207	return 0;
2208}
2209
2210/*
2211 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2212 * inodes that are in memory - they all must be marked stale and attached to
2213 * the cluster buffer.
2214 */
2215STATIC int
2216xfs_ifree_cluster(
2217	xfs_inode_t		*free_ip,
2218	xfs_trans_t		*tp,
2219	struct xfs_icluster	*xic)
2220{
2221	xfs_mount_t		*mp = free_ip->i_mount;
2222	int			blks_per_cluster;
2223	int			inodes_per_cluster;
2224	int			nbufs;
2225	int			i, j;
2226	int			ioffset;
2227	xfs_daddr_t		blkno;
2228	xfs_buf_t		*bp;
2229	xfs_inode_t		*ip;
2230	xfs_inode_log_item_t	*iip;
2231	struct xfs_log_item	*lip;
2232	struct xfs_perag	*pag;
2233	xfs_ino_t		inum;
2234
2235	inum = xic->first_ino;
2236	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2237	blks_per_cluster = xfs_icluster_size_fsb(mp);
2238	inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2239	nbufs = mp->m_ialloc_blks / blks_per_cluster;
2240
2241	for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2242		/*
2243		 * The allocation bitmap tells us which inodes of the chunk were
2244		 * physically allocated. Skip the cluster if an inode falls into
2245		 * a sparse region.
2246		 */
2247		ioffset = inum - xic->first_ino;
2248		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2249			ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
2250			continue;
2251		}
2252
2253		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2254					 XFS_INO_TO_AGBNO(mp, inum));
2255
2256		/*
2257		 * We obtain and lock the backing buffer first in the process
2258		 * here, as we have to ensure that any dirty inode that we
2259		 * can't get the flush lock on is attached to the buffer.
2260		 * If we scan the in-memory inodes first, then buffer IO can
2261		 * complete before we get a lock on it, and hence we may fail
2262		 * to mark all the active inodes on the buffer stale.
2263		 */
2264		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2265					mp->m_bsize * blks_per_cluster,
2266					XBF_UNMAPPED);
2267
2268		if (!bp)
2269			return -ENOMEM;
2270
2271		/*
2272		 * This buffer may not have been correctly initialised as we
2273		 * didn't read it from disk. That's not important because we are
2274		 * only using to mark the buffer as stale in the log, and to
2275		 * attach stale cached inodes on it. That means it will never be
2276		 * dispatched for IO. If it is, we want to know about it, and we
2277		 * want it to fail. We can acheive this by adding a write
2278		 * verifier to the buffer.
2279		 */
2280		 bp->b_ops = &xfs_inode_buf_ops;
2281
2282		/*
2283		 * Walk the inodes already attached to the buffer and mark them
2284		 * stale. These will all have the flush locks held, so an
2285		 * in-memory inode walk can't lock them. By marking them all
2286		 * stale first, we will not attempt to lock them in the loop
2287		 * below as the XFS_ISTALE flag will be set.
2288		 */
2289		list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
 
2290			if (lip->li_type == XFS_LI_INODE) {
2291				iip = (xfs_inode_log_item_t *)lip;
2292				ASSERT(iip->ili_logged == 1);
2293				lip->li_cb = xfs_istale_done;
2294				xfs_trans_ail_copy_lsn(mp->m_ail,
2295							&iip->ili_flush_lsn,
2296							&iip->ili_item.li_lsn);
2297				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2298			}
 
2299		}
2300
2301
2302		/*
2303		 * For each inode in memory attempt to add it to the inode
2304		 * buffer and set it up for being staled on buffer IO
2305		 * completion.  This is safe as we've locked out tail pushing
2306		 * and flushing by locking the buffer.
2307		 *
2308		 * We have already marked every inode that was part of a
2309		 * transaction stale above, which means there is no point in
2310		 * even trying to lock them.
2311		 */
2312		for (i = 0; i < inodes_per_cluster; i++) {
2313retry:
2314			rcu_read_lock();
2315			ip = radix_tree_lookup(&pag->pag_ici_root,
2316					XFS_INO_TO_AGINO(mp, (inum + i)));
2317
2318			/* Inode not in memory, nothing to do */
2319			if (!ip) {
2320				rcu_read_unlock();
2321				continue;
2322			}
2323
2324			/*
2325			 * because this is an RCU protected lookup, we could
2326			 * find a recently freed or even reallocated inode
2327			 * during the lookup. We need to check under the
2328			 * i_flags_lock for a valid inode here. Skip it if it
2329			 * is not valid, the wrong inode or stale.
2330			 */
2331			spin_lock(&ip->i_flags_lock);
2332			if (ip->i_ino != inum + i ||
2333			    __xfs_iflags_test(ip, XFS_ISTALE)) {
2334				spin_unlock(&ip->i_flags_lock);
2335				rcu_read_unlock();
2336				continue;
2337			}
2338			spin_unlock(&ip->i_flags_lock);
2339
2340			/*
2341			 * Don't try to lock/unlock the current inode, but we
2342			 * _cannot_ skip the other inodes that we did not find
2343			 * in the list attached to the buffer and are not
2344			 * already marked stale. If we can't lock it, back off
2345			 * and retry.
2346			 */
2347			if (ip != free_ip) {
2348				if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2349					rcu_read_unlock();
2350					delay(1);
2351					goto retry;
2352				}
2353
2354				/*
2355				 * Check the inode number again in case we're
2356				 * racing with freeing in xfs_reclaim_inode().
2357				 * See the comments in that function for more
2358				 * information as to why the initial check is
2359				 * not sufficient.
2360				 */
2361				if (ip->i_ino != inum + i) {
2362					xfs_iunlock(ip, XFS_ILOCK_EXCL);
2363					rcu_read_unlock();
2364					continue;
2365				}
2366			}
2367			rcu_read_unlock();
2368
2369			xfs_iflock(ip);
2370			xfs_iflags_set(ip, XFS_ISTALE);
2371
2372			/*
2373			 * we don't need to attach clean inodes or those only
2374			 * with unlogged changes (which we throw away, anyway).
2375			 */
2376			iip = ip->i_itemp;
2377			if (!iip || xfs_inode_clean(ip)) {
2378				ASSERT(ip != free_ip);
2379				xfs_ifunlock(ip);
2380				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2381				continue;
2382			}
2383
2384			iip->ili_last_fields = iip->ili_fields;
2385			iip->ili_fields = 0;
2386			iip->ili_fsync_fields = 0;
2387			iip->ili_logged = 1;
2388			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2389						&iip->ili_item.li_lsn);
2390
2391			xfs_buf_attach_iodone(bp, xfs_istale_done,
2392						  &iip->ili_item);
2393
2394			if (ip != free_ip)
2395				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2396		}
2397
2398		xfs_trans_stale_inode_buf(tp, bp);
2399		xfs_trans_binval(tp, bp);
2400	}
2401
2402	xfs_perag_put(pag);
2403	return 0;
2404}
2405
2406/*
2407 * Free any local-format buffers sitting around before we reset to
2408 * extents format.
2409 */
2410static inline void
2411xfs_ifree_local_data(
2412	struct xfs_inode	*ip,
2413	int			whichfork)
2414{
2415	struct xfs_ifork	*ifp;
2416
2417	if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL)
2418		return;
2419
2420	ifp = XFS_IFORK_PTR(ip, whichfork);
2421	xfs_idata_realloc(ip, -ifp->if_bytes, whichfork);
2422}
2423
2424/*
2425 * This is called to return an inode to the inode free list.
2426 * The inode should already be truncated to 0 length and have
2427 * no pages associated with it.  This routine also assumes that
2428 * the inode is already a part of the transaction.
2429 *
2430 * The on-disk copy of the inode will have been added to the list
2431 * of unlinked inodes in the AGI. We need to remove the inode from
2432 * that list atomically with respect to freeing it here.
2433 */
2434int
2435xfs_ifree(
2436	xfs_trans_t	*tp,
2437	xfs_inode_t	*ip,
2438	struct xfs_defer_ops	*dfops)
2439{
2440	int			error;
2441	struct xfs_icluster	xic = { 0 };
2442
2443	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2444	ASSERT(VFS_I(ip)->i_nlink == 0);
2445	ASSERT(ip->i_d.di_nextents == 0);
2446	ASSERT(ip->i_d.di_anextents == 0);
2447	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2448	ASSERT(ip->i_d.di_nblocks == 0);
2449
2450	/*
2451	 * Pull the on-disk inode from the AGI unlinked list.
2452	 */
2453	error = xfs_iunlink_remove(tp, ip);
2454	if (error)
2455		return error;
2456
2457	error = xfs_difree(tp, ip->i_ino, dfops, &xic);
2458	if (error)
2459		return error;
2460
2461	xfs_ifree_local_data(ip, XFS_DATA_FORK);
2462	xfs_ifree_local_data(ip, XFS_ATTR_FORK);
2463
2464	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2465	ip->i_d.di_flags = 0;
2466	ip->i_d.di_flags2 = 0;
2467	ip->i_d.di_dmevmask = 0;
2468	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2469	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2470	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2471
2472	/* Don't attempt to replay owner changes for a deleted inode */
2473	ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER);
2474
2475	/*
2476	 * Bump the generation count so no one will be confused
2477	 * by reincarnations of this inode.
2478	 */
2479	VFS_I(ip)->i_generation++;
2480	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2481
2482	if (xic.deleted)
2483		error = xfs_ifree_cluster(ip, tp, &xic);
2484
2485	return error;
2486}
2487
2488/*
2489 * This is called to unpin an inode.  The caller must have the inode locked
2490 * in at least shared mode so that the buffer cannot be subsequently pinned
2491 * once someone is waiting for it to be unpinned.
2492 */
2493static void
2494xfs_iunpin(
2495	struct xfs_inode	*ip)
2496{
2497	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2498
2499	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2500
2501	/* Give the log a push to start the unpinning I/O */
2502	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL);
2503
2504}
2505
2506static void
2507__xfs_iunpin_wait(
2508	struct xfs_inode	*ip)
2509{
2510	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2511	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2512
2513	xfs_iunpin(ip);
2514
2515	do {
2516		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2517		if (xfs_ipincount(ip))
2518			io_schedule();
2519	} while (xfs_ipincount(ip));
2520	finish_wait(wq, &wait.wq_entry);
2521}
2522
2523void
2524xfs_iunpin_wait(
2525	struct xfs_inode	*ip)
2526{
2527	if (xfs_ipincount(ip))
2528		__xfs_iunpin_wait(ip);
2529}
2530
2531/*
2532 * Removing an inode from the namespace involves removing the directory entry
2533 * and dropping the link count on the inode. Removing the directory entry can
2534 * result in locking an AGF (directory blocks were freed) and removing a link
2535 * count can result in placing the inode on an unlinked list which results in
2536 * locking an AGI.
2537 *
2538 * The big problem here is that we have an ordering constraint on AGF and AGI
2539 * locking - inode allocation locks the AGI, then can allocate a new extent for
2540 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2541 * removes the inode from the unlinked list, requiring that we lock the AGI
2542 * first, and then freeing the inode can result in an inode chunk being freed
2543 * and hence freeing disk space requiring that we lock an AGF.
2544 *
2545 * Hence the ordering that is imposed by other parts of the code is AGI before
2546 * AGF. This means we cannot remove the directory entry before we drop the inode
2547 * reference count and put it on the unlinked list as this results in a lock
2548 * order of AGF then AGI, and this can deadlock against inode allocation and
2549 * freeing. Therefore we must drop the link counts before we remove the
2550 * directory entry.
2551 *
2552 * This is still safe from a transactional point of view - it is not until we
2553 * get to xfs_defer_finish() that we have the possibility of multiple
2554 * transactions in this operation. Hence as long as we remove the directory
2555 * entry and drop the link count in the first transaction of the remove
2556 * operation, there are no transactional constraints on the ordering here.
2557 */
2558int
2559xfs_remove(
2560	xfs_inode_t             *dp,
2561	struct xfs_name		*name,
2562	xfs_inode_t		*ip)
2563{
2564	xfs_mount_t		*mp = dp->i_mount;
2565	xfs_trans_t             *tp = NULL;
2566	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2567	int                     error = 0;
2568	struct xfs_defer_ops	dfops;
2569	xfs_fsblock_t           first_block;
2570	uint			resblks;
2571
2572	trace_xfs_remove(dp, name);
2573
2574	if (XFS_FORCED_SHUTDOWN(mp))
2575		return -EIO;
2576
2577	error = xfs_qm_dqattach(dp, 0);
2578	if (error)
2579		goto std_return;
2580
2581	error = xfs_qm_dqattach(ip, 0);
2582	if (error)
2583		goto std_return;
2584
 
 
 
 
 
2585	/*
2586	 * We try to get the real space reservation first,
2587	 * allowing for directory btree deletion(s) implying
2588	 * possible bmap insert(s).  If we can't get the space
2589	 * reservation then we use 0 instead, and avoid the bmap
2590	 * btree insert(s) in the directory code by, if the bmap
2591	 * insert tries to happen, instead trimming the LAST
2592	 * block from the directory.
2593	 */
2594	resblks = XFS_REMOVE_SPACE_RES(mp);
2595	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2596	if (error == -ENOSPC) {
2597		resblks = 0;
2598		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2599				&tp);
2600	}
2601	if (error) {
2602		ASSERT(error != -ENOSPC);
2603		goto std_return;
2604	}
2605
2606	xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
 
2607
2608	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2609	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2610
2611	/*
2612	 * If we're removing a directory perform some additional validation.
2613	 */
2614	if (is_dir) {
2615		ASSERT(VFS_I(ip)->i_nlink >= 2);
2616		if (VFS_I(ip)->i_nlink != 2) {
2617			error = -ENOTEMPTY;
2618			goto out_trans_cancel;
2619		}
2620		if (!xfs_dir_isempty(ip)) {
2621			error = -ENOTEMPTY;
2622			goto out_trans_cancel;
2623		}
2624
2625		/* Drop the link from ip's "..".  */
2626		error = xfs_droplink(tp, dp);
2627		if (error)
2628			goto out_trans_cancel;
2629
2630		/* Drop the "." link from ip to self.  */
2631		error = xfs_droplink(tp, ip);
2632		if (error)
2633			goto out_trans_cancel;
2634	} else {
2635		/*
2636		 * When removing a non-directory we need to log the parent
2637		 * inode here.  For a directory this is done implicitly
2638		 * by the xfs_droplink call for the ".." entry.
2639		 */
2640		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2641	}
2642	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2643
2644	/* Drop the link from dp to ip. */
2645	error = xfs_droplink(tp, ip);
2646	if (error)
2647		goto out_trans_cancel;
2648
2649	xfs_defer_init(&dfops, &first_block);
2650	error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2651					&first_block, &dfops, resblks);
2652	if (error) {
2653		ASSERT(error != -ENOENT);
2654		goto out_bmap_cancel;
2655	}
2656
2657	/*
2658	 * If this is a synchronous mount, make sure that the
2659	 * remove transaction goes to disk before returning to
2660	 * the user.
2661	 */
2662	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2663		xfs_trans_set_sync(tp);
2664
2665	error = xfs_defer_finish(&tp, &dfops);
2666	if (error)
2667		goto out_bmap_cancel;
2668
2669	error = xfs_trans_commit(tp);
2670	if (error)
2671		goto std_return;
2672
2673	if (is_dir && xfs_inode_is_filestream(ip))
2674		xfs_filestream_deassociate(ip);
2675
2676	return 0;
2677
2678 out_bmap_cancel:
2679	xfs_defer_cancel(&dfops);
2680 out_trans_cancel:
2681	xfs_trans_cancel(tp);
2682 std_return:
2683	return error;
2684}
2685
2686/*
2687 * Enter all inodes for a rename transaction into a sorted array.
2688 */
2689#define __XFS_SORT_INODES	5
2690STATIC void
2691xfs_sort_for_rename(
2692	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2693	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2694	struct xfs_inode	*ip1,	/* in: inode of old entry */
2695	struct xfs_inode	*ip2,	/* in: inode of new entry */
2696	struct xfs_inode	*wip,	/* in: whiteout inode */
2697	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2698	int			*num_inodes)  /* in/out: inodes in array */
2699{
2700	int			i, j;
2701
2702	ASSERT(*num_inodes == __XFS_SORT_INODES);
2703	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2704
2705	/*
2706	 * i_tab contains a list of pointers to inodes.  We initialize
2707	 * the table here & we'll sort it.  We will then use it to
2708	 * order the acquisition of the inode locks.
2709	 *
2710	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2711	 */
2712	i = 0;
2713	i_tab[i++] = dp1;
2714	i_tab[i++] = dp2;
2715	i_tab[i++] = ip1;
2716	if (ip2)
2717		i_tab[i++] = ip2;
2718	if (wip)
2719		i_tab[i++] = wip;
2720	*num_inodes = i;
2721
2722	/*
2723	 * Sort the elements via bubble sort.  (Remember, there are at
2724	 * most 5 elements to sort, so this is adequate.)
2725	 */
2726	for (i = 0; i < *num_inodes; i++) {
2727		for (j = 1; j < *num_inodes; j++) {
2728			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2729				struct xfs_inode *temp = i_tab[j];
2730				i_tab[j] = i_tab[j-1];
2731				i_tab[j-1] = temp;
2732			}
2733		}
2734	}
2735}
2736
2737static int
2738xfs_finish_rename(
2739	struct xfs_trans	*tp,
2740	struct xfs_defer_ops	*dfops)
2741{
2742	int			error;
2743
2744	/*
2745	 * If this is a synchronous mount, make sure that the rename transaction
2746	 * goes to disk before returning to the user.
2747	 */
2748	if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2749		xfs_trans_set_sync(tp);
2750
2751	error = xfs_defer_finish(&tp, dfops);
2752	if (error) {
2753		xfs_defer_cancel(dfops);
2754		xfs_trans_cancel(tp);
2755		return error;
2756	}
2757
2758	return xfs_trans_commit(tp);
2759}
2760
2761/*
2762 * xfs_cross_rename()
2763 *
2764 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2765 */
2766STATIC int
2767xfs_cross_rename(
2768	struct xfs_trans	*tp,
2769	struct xfs_inode	*dp1,
2770	struct xfs_name		*name1,
2771	struct xfs_inode	*ip1,
2772	struct xfs_inode	*dp2,
2773	struct xfs_name		*name2,
2774	struct xfs_inode	*ip2,
2775	struct xfs_defer_ops	*dfops,
2776	xfs_fsblock_t		*first_block,
2777	int			spaceres)
2778{
2779	int		error = 0;
2780	int		ip1_flags = 0;
2781	int		ip2_flags = 0;
2782	int		dp2_flags = 0;
2783
2784	/* Swap inode number for dirent in first parent */
2785	error = xfs_dir_replace(tp, dp1, name1,
2786				ip2->i_ino,
2787				first_block, dfops, spaceres);
2788	if (error)
2789		goto out_trans_abort;
2790
2791	/* Swap inode number for dirent in second parent */
2792	error = xfs_dir_replace(tp, dp2, name2,
2793				ip1->i_ino,
2794				first_block, dfops, spaceres);
2795	if (error)
2796		goto out_trans_abort;
2797
2798	/*
2799	 * If we're renaming one or more directories across different parents,
2800	 * update the respective ".." entries (and link counts) to match the new
2801	 * parents.
2802	 */
2803	if (dp1 != dp2) {
2804		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2805
2806		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2807			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2808						dp1->i_ino, first_block,
2809						dfops, spaceres);
2810			if (error)
2811				goto out_trans_abort;
2812
2813			/* transfer ip2 ".." reference to dp1 */
2814			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2815				error = xfs_droplink(tp, dp2);
2816				if (error)
2817					goto out_trans_abort;
2818				error = xfs_bumplink(tp, dp1);
2819				if (error)
2820					goto out_trans_abort;
2821			}
2822
2823			/*
2824			 * Although ip1 isn't changed here, userspace needs
2825			 * to be warned about the change, so that applications
2826			 * relying on it (like backup ones), will properly
2827			 * notify the change
2828			 */
2829			ip1_flags |= XFS_ICHGTIME_CHG;
2830			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2831		}
2832
2833		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2834			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2835						dp2->i_ino, first_block,
2836						dfops, spaceres);
2837			if (error)
2838				goto out_trans_abort;
2839
2840			/* transfer ip1 ".." reference to dp2 */
2841			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2842				error = xfs_droplink(tp, dp1);
2843				if (error)
2844					goto out_trans_abort;
2845				error = xfs_bumplink(tp, dp2);
2846				if (error)
2847					goto out_trans_abort;
2848			}
2849
2850			/*
2851			 * Although ip2 isn't changed here, userspace needs
2852			 * to be warned about the change, so that applications
2853			 * relying on it (like backup ones), will properly
2854			 * notify the change
2855			 */
2856			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2857			ip2_flags |= XFS_ICHGTIME_CHG;
2858		}
2859	}
2860
2861	if (ip1_flags) {
2862		xfs_trans_ichgtime(tp, ip1, ip1_flags);
2863		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2864	}
2865	if (ip2_flags) {
2866		xfs_trans_ichgtime(tp, ip2, ip2_flags);
2867		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2868	}
2869	if (dp2_flags) {
2870		xfs_trans_ichgtime(tp, dp2, dp2_flags);
2871		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2872	}
2873	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2874	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2875	return xfs_finish_rename(tp, dfops);
2876
2877out_trans_abort:
2878	xfs_defer_cancel(dfops);
2879	xfs_trans_cancel(tp);
2880	return error;
2881}
2882
2883/*
2884 * xfs_rename_alloc_whiteout()
2885 *
2886 * Return a referenced, unlinked, unlocked inode that that can be used as a
2887 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2888 * crash between allocating the inode and linking it into the rename transaction
2889 * recovery will free the inode and we won't leak it.
2890 */
2891static int
2892xfs_rename_alloc_whiteout(
2893	struct xfs_inode	*dp,
2894	struct xfs_inode	**wip)
2895{
2896	struct xfs_inode	*tmpfile;
2897	int			error;
2898
2899	error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2900	if (error)
2901		return error;
2902
2903	/*
2904	 * Prepare the tmpfile inode as if it were created through the VFS.
2905	 * Otherwise, the link increment paths will complain about nlink 0->1.
2906	 * Drop the link count as done by d_tmpfile(), complete the inode setup
2907	 * and flag it as linkable.
2908	 */
2909	drop_nlink(VFS_I(tmpfile));
2910	xfs_setup_iops(tmpfile);
2911	xfs_finish_inode_setup(tmpfile);
2912	VFS_I(tmpfile)->i_state |= I_LINKABLE;
2913
2914	*wip = tmpfile;
2915	return 0;
2916}
2917
2918/*
2919 * xfs_rename
2920 */
2921int
2922xfs_rename(
2923	struct xfs_inode	*src_dp,
2924	struct xfs_name		*src_name,
2925	struct xfs_inode	*src_ip,
2926	struct xfs_inode	*target_dp,
2927	struct xfs_name		*target_name,
2928	struct xfs_inode	*target_ip,
2929	unsigned int		flags)
2930{
2931	struct xfs_mount	*mp = src_dp->i_mount;
2932	struct xfs_trans	*tp;
2933	struct xfs_defer_ops	dfops;
2934	xfs_fsblock_t		first_block;
2935	struct xfs_inode	*wip = NULL;		/* whiteout inode */
2936	struct xfs_inode	*inodes[__XFS_SORT_INODES];
2937	int			num_inodes = __XFS_SORT_INODES;
2938	bool			new_parent = (src_dp != target_dp);
2939	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2940	int			spaceres;
2941	int			error;
2942
2943	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2944
2945	if ((flags & RENAME_EXCHANGE) && !target_ip)
2946		return -EINVAL;
2947
2948	/*
2949	 * If we are doing a whiteout operation, allocate the whiteout inode
2950	 * we will be placing at the target and ensure the type is set
2951	 * appropriately.
2952	 */
2953	if (flags & RENAME_WHITEOUT) {
2954		ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2955		error = xfs_rename_alloc_whiteout(target_dp, &wip);
2956		if (error)
2957			return error;
2958
2959		/* setup target dirent info as whiteout */
2960		src_name->type = XFS_DIR3_FT_CHRDEV;
2961	}
2962
2963	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2964				inodes, &num_inodes);
2965
 
2966	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2967	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2968	if (error == -ENOSPC) {
2969		spaceres = 0;
2970		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2971				&tp);
2972	}
2973	if (error)
2974		goto out_release_wip;
2975
2976	/*
2977	 * Attach the dquots to the inodes
2978	 */
2979	error = xfs_qm_vop_rename_dqattach(inodes);
2980	if (error)
2981		goto out_trans_cancel;
2982
2983	/*
2984	 * Lock all the participating inodes. Depending upon whether
2985	 * the target_name exists in the target directory, and
2986	 * whether the target directory is the same as the source
2987	 * directory, we can lock from 2 to 4 inodes.
2988	 */
 
 
 
 
 
 
2989	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2990
2991	/*
2992	 * Join all the inodes to the transaction. From this point on,
2993	 * we can rely on either trans_commit or trans_cancel to unlock
2994	 * them.
2995	 */
2996	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2997	if (new_parent)
2998		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2999	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3000	if (target_ip)
3001		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3002	if (wip)
3003		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3004
3005	/*
3006	 * If we are using project inheritance, we only allow renames
3007	 * into our tree when the project IDs are the same; else the
3008	 * tree quota mechanism would be circumvented.
3009	 */
3010	if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
3011		     (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
3012		error = -EXDEV;
3013		goto out_trans_cancel;
3014	}
3015
3016	xfs_defer_init(&dfops, &first_block);
3017
3018	/* RENAME_EXCHANGE is unique from here on. */
3019	if (flags & RENAME_EXCHANGE)
3020		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3021					target_dp, target_name, target_ip,
3022					&dfops, &first_block, spaceres);
3023
3024	/*
3025	 * Set up the target.
3026	 */
3027	if (target_ip == NULL) {
3028		/*
3029		 * If there's no space reservation, check the entry will
3030		 * fit before actually inserting it.
3031		 */
3032		if (!spaceres) {
3033			error = xfs_dir_canenter(tp, target_dp, target_name);
3034			if (error)
3035				goto out_trans_cancel;
3036		}
3037		/*
3038		 * If target does not exist and the rename crosses
3039		 * directories, adjust the target directory link count
3040		 * to account for the ".." reference from the new entry.
3041		 */
3042		error = xfs_dir_createname(tp, target_dp, target_name,
3043						src_ip->i_ino, &first_block,
3044						&dfops, spaceres);
3045		if (error)
3046			goto out_bmap_cancel;
3047
3048		xfs_trans_ichgtime(tp, target_dp,
3049					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3050
3051		if (new_parent && src_is_directory) {
3052			error = xfs_bumplink(tp, target_dp);
3053			if (error)
3054				goto out_bmap_cancel;
3055		}
3056	} else { /* target_ip != NULL */
3057		/*
3058		 * If target exists and it's a directory, check that both
3059		 * target and source are directories and that target can be
3060		 * destroyed, or that neither is a directory.
3061		 */
3062		if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
3063			/*
3064			 * Make sure target dir is empty.
3065			 */
3066			if (!(xfs_dir_isempty(target_ip)) ||
3067			    (VFS_I(target_ip)->i_nlink > 2)) {
3068				error = -EEXIST;
3069				goto out_trans_cancel;
3070			}
3071		}
3072
3073		/*
3074		 * Link the source inode under the target name.
3075		 * If the source inode is a directory and we are moving
3076		 * it across directories, its ".." entry will be
3077		 * inconsistent until we replace that down below.
3078		 *
3079		 * In case there is already an entry with the same
3080		 * name at the destination directory, remove it first.
3081		 */
3082		error = xfs_dir_replace(tp, target_dp, target_name,
3083					src_ip->i_ino,
3084					&first_block, &dfops, spaceres);
3085		if (error)
3086			goto out_bmap_cancel;
3087
3088		xfs_trans_ichgtime(tp, target_dp,
3089					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3090
3091		/*
3092		 * Decrement the link count on the target since the target
3093		 * dir no longer points to it.
3094		 */
3095		error = xfs_droplink(tp, target_ip);
3096		if (error)
3097			goto out_bmap_cancel;
3098
3099		if (src_is_directory) {
3100			/*
3101			 * Drop the link from the old "." entry.
3102			 */
3103			error = xfs_droplink(tp, target_ip);
3104			if (error)
3105				goto out_bmap_cancel;
3106		}
3107	} /* target_ip != NULL */
3108
3109	/*
3110	 * Remove the source.
3111	 */
3112	if (new_parent && src_is_directory) {
3113		/*
3114		 * Rewrite the ".." entry to point to the new
3115		 * directory.
3116		 */
3117		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3118					target_dp->i_ino,
3119					&first_block, &dfops, spaceres);
3120		ASSERT(error != -EEXIST);
3121		if (error)
3122			goto out_bmap_cancel;
3123	}
3124
3125	/*
3126	 * We always want to hit the ctime on the source inode.
3127	 *
3128	 * This isn't strictly required by the standards since the source
3129	 * inode isn't really being changed, but old unix file systems did
3130	 * it and some incremental backup programs won't work without it.
3131	 */
3132	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3133	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3134
3135	/*
3136	 * Adjust the link count on src_dp.  This is necessary when
3137	 * renaming a directory, either within one parent when
3138	 * the target existed, or across two parent directories.
3139	 */
3140	if (src_is_directory && (new_parent || target_ip != NULL)) {
3141
3142		/*
3143		 * Decrement link count on src_directory since the
3144		 * entry that's moved no longer points to it.
3145		 */
3146		error = xfs_droplink(tp, src_dp);
3147		if (error)
3148			goto out_bmap_cancel;
3149	}
3150
3151	/*
3152	 * For whiteouts, we only need to update the source dirent with the
3153	 * inode number of the whiteout inode rather than removing it
3154	 * altogether.
3155	 */
3156	if (wip) {
3157		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3158					&first_block, &dfops, spaceres);
3159	} else
3160		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3161					   &first_block, &dfops, spaceres);
3162	if (error)
3163		goto out_bmap_cancel;
3164
3165	/*
3166	 * For whiteouts, we need to bump the link count on the whiteout inode.
3167	 * This means that failures all the way up to this point leave the inode
3168	 * on the unlinked list and so cleanup is a simple matter of dropping
3169	 * the remaining reference to it. If we fail here after bumping the link
3170	 * count, we're shutting down the filesystem so we'll never see the
3171	 * intermediate state on disk.
3172	 */
3173	if (wip) {
3174		ASSERT(VFS_I(wip)->i_nlink == 0);
3175		error = xfs_bumplink(tp, wip);
3176		if (error)
3177			goto out_bmap_cancel;
3178		error = xfs_iunlink_remove(tp, wip);
3179		if (error)
3180			goto out_bmap_cancel;
3181		xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3182
3183		/*
3184		 * Now we have a real link, clear the "I'm a tmpfile" state
3185		 * flag from the inode so it doesn't accidentally get misused in
3186		 * future.
3187		 */
3188		VFS_I(wip)->i_state &= ~I_LINKABLE;
3189	}
3190
3191	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3192	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3193	if (new_parent)
3194		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3195
3196	error = xfs_finish_rename(tp, &dfops);
3197	if (wip)
3198		IRELE(wip);
3199	return error;
3200
3201out_bmap_cancel:
3202	xfs_defer_cancel(&dfops);
3203out_trans_cancel:
3204	xfs_trans_cancel(tp);
3205out_release_wip:
3206	if (wip)
3207		IRELE(wip);
3208	return error;
3209}
3210
3211STATIC int
3212xfs_iflush_cluster(
3213	struct xfs_inode	*ip,
3214	struct xfs_buf		*bp)
3215{
3216	struct xfs_mount	*mp = ip->i_mount;
3217	struct xfs_perag	*pag;
3218	unsigned long		first_index, mask;
3219	unsigned long		inodes_per_cluster;
3220	int			cilist_size;
3221	struct xfs_inode	**cilist;
3222	struct xfs_inode	*cip;
3223	int			nr_found;
3224	int			clcount = 0;
3225	int			bufwasdelwri;
3226	int			i;
3227
3228	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3229
3230	inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3231	cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3232	cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3233	if (!cilist)
3234		goto out_put;
3235
3236	mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3237	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3238	rcu_read_lock();
3239	/* really need a gang lookup range call here */
3240	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
3241					first_index, inodes_per_cluster);
3242	if (nr_found == 0)
3243		goto out_free;
3244
3245	for (i = 0; i < nr_found; i++) {
3246		cip = cilist[i];
3247		if (cip == ip)
3248			continue;
3249
3250		/*
3251		 * because this is an RCU protected lookup, we could find a
3252		 * recently freed or even reallocated inode during the lookup.
3253		 * We need to check under the i_flags_lock for a valid inode
3254		 * here. Skip it if it is not valid or the wrong inode.
3255		 */
3256		spin_lock(&cip->i_flags_lock);
3257		if (!cip->i_ino ||
3258		    __xfs_iflags_test(cip, XFS_ISTALE)) {
3259			spin_unlock(&cip->i_flags_lock);
3260			continue;
3261		}
3262
3263		/*
3264		 * Once we fall off the end of the cluster, no point checking
3265		 * any more inodes in the list because they will also all be
3266		 * outside the cluster.
3267		 */
3268		if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3269			spin_unlock(&cip->i_flags_lock);
3270			break;
3271		}
3272		spin_unlock(&cip->i_flags_lock);
3273
3274		/*
3275		 * Do an un-protected check to see if the inode is dirty and
3276		 * is a candidate for flushing.  These checks will be repeated
3277		 * later after the appropriate locks are acquired.
3278		 */
3279		if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
3280			continue;
3281
3282		/*
3283		 * Try to get locks.  If any are unavailable or it is pinned,
3284		 * then this inode cannot be flushed and is skipped.
3285		 */
3286
3287		if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
3288			continue;
3289		if (!xfs_iflock_nowait(cip)) {
3290			xfs_iunlock(cip, XFS_ILOCK_SHARED);
3291			continue;
3292		}
3293		if (xfs_ipincount(cip)) {
3294			xfs_ifunlock(cip);
3295			xfs_iunlock(cip, XFS_ILOCK_SHARED);
3296			continue;
3297		}
3298
3299
3300		/*
3301		 * Check the inode number again, just to be certain we are not
3302		 * racing with freeing in xfs_reclaim_inode(). See the comments
3303		 * in that function for more information as to why the initial
3304		 * check is not sufficient.
3305		 */
3306		if (!cip->i_ino) {
3307			xfs_ifunlock(cip);
3308			xfs_iunlock(cip, XFS_ILOCK_SHARED);
3309			continue;
3310		}
3311
3312		/*
3313		 * arriving here means that this inode can be flushed.  First
3314		 * re-check that it's dirty before flushing.
3315		 */
3316		if (!xfs_inode_clean(cip)) {
3317			int	error;
3318			error = xfs_iflush_int(cip, bp);
3319			if (error) {
3320				xfs_iunlock(cip, XFS_ILOCK_SHARED);
3321				goto cluster_corrupt_out;
3322			}
3323			clcount++;
3324		} else {
3325			xfs_ifunlock(cip);
3326		}
3327		xfs_iunlock(cip, XFS_ILOCK_SHARED);
3328	}
3329
3330	if (clcount) {
3331		XFS_STATS_INC(mp, xs_icluster_flushcnt);
3332		XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3333	}
3334
3335out_free:
3336	rcu_read_unlock();
3337	kmem_free(cilist);
3338out_put:
3339	xfs_perag_put(pag);
3340	return 0;
3341
3342
3343cluster_corrupt_out:
3344	/*
3345	 * Corruption detected in the clustering loop.  Invalidate the
3346	 * inode buffer and shut down the filesystem.
3347	 */
3348	rcu_read_unlock();
3349	/*
3350	 * Clean up the buffer.  If it was delwri, just release it --
3351	 * brelse can handle it with no problems.  If not, shut down the
3352	 * filesystem before releasing the buffer.
3353	 */
3354	bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3355	if (bufwasdelwri)
3356		xfs_buf_relse(bp);
3357
3358	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3359
3360	if (!bufwasdelwri) {
3361		/*
3362		 * Just like incore_relse: if we have b_iodone functions,
3363		 * mark the buffer as an error and call them.  Otherwise
3364		 * mark it as stale and brelse.
3365		 */
3366		if (bp->b_iodone) {
3367			bp->b_flags &= ~XBF_DONE;
3368			xfs_buf_stale(bp);
3369			xfs_buf_ioerror(bp, -EIO);
3370			xfs_buf_ioend(bp);
3371		} else {
3372			xfs_buf_stale(bp);
3373			xfs_buf_relse(bp);
3374		}
3375	}
3376
3377	/*
3378	 * Unlocks the flush lock
3379	 */
3380	xfs_iflush_abort(cip, false);
3381	kmem_free(cilist);
3382	xfs_perag_put(pag);
3383	return -EFSCORRUPTED;
3384}
3385
3386/*
3387 * Flush dirty inode metadata into the backing buffer.
3388 *
3389 * The caller must have the inode lock and the inode flush lock held.  The
3390 * inode lock will still be held upon return to the caller, and the inode
3391 * flush lock will be released after the inode has reached the disk.
3392 *
3393 * The caller must write out the buffer returned in *bpp and release it.
3394 */
3395int
3396xfs_iflush(
3397	struct xfs_inode	*ip,
3398	struct xfs_buf		**bpp)
3399{
3400	struct xfs_mount	*mp = ip->i_mount;
3401	struct xfs_buf		*bp = NULL;
3402	struct xfs_dinode	*dip;
3403	int			error;
3404
3405	XFS_STATS_INC(mp, xs_iflush_count);
3406
3407	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3408	ASSERT(xfs_isiflocked(ip));
3409	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3410	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3411
3412	*bpp = NULL;
3413
3414	xfs_iunpin_wait(ip);
3415
3416	/*
3417	 * For stale inodes we cannot rely on the backing buffer remaining
3418	 * stale in cache for the remaining life of the stale inode and so
3419	 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3420	 * inodes below. We have to check this after ensuring the inode is
3421	 * unpinned so that it is safe to reclaim the stale inode after the
3422	 * flush call.
3423	 */
3424	if (xfs_iflags_test(ip, XFS_ISTALE)) {
3425		xfs_ifunlock(ip);
3426		return 0;
3427	}
3428
3429	/*
3430	 * This may have been unpinned because the filesystem is shutting
3431	 * down forcibly. If that's the case we must not write this inode
3432	 * to disk, because the log record didn't make it to disk.
3433	 *
3434	 * We also have to remove the log item from the AIL in this case,
3435	 * as we wait for an empty AIL as part of the unmount process.
3436	 */
3437	if (XFS_FORCED_SHUTDOWN(mp)) {
3438		error = -EIO;
3439		goto abort_out;
3440	}
3441
3442	/*
3443	 * Get the buffer containing the on-disk inode. We are doing a try-lock
3444	 * operation here, so we may get  an EAGAIN error. In that case, we
3445	 * simply want to return with the inode still dirty.
3446	 *
3447	 * If we get any other error, we effectively have a corruption situation
3448	 * and we cannot flush the inode, so we treat it the same as failing
3449	 * xfs_iflush_int().
3450	 */
3451	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3452			       0);
3453	if (error == -EAGAIN) {
3454		xfs_ifunlock(ip);
3455		return error;
3456	}
3457	if (error)
3458		goto corrupt_out;
3459
3460	/*
3461	 * First flush out the inode that xfs_iflush was called with.
3462	 */
3463	error = xfs_iflush_int(ip, bp);
3464	if (error)
3465		goto corrupt_out;
3466
3467	/*
3468	 * If the buffer is pinned then push on the log now so we won't
3469	 * get stuck waiting in the write for too long.
3470	 */
3471	if (xfs_buf_ispinned(bp))
3472		xfs_log_force(mp, 0);
3473
3474	/*
3475	 * inode clustering:
3476	 * see if other inodes can be gathered into this write
3477	 */
3478	error = xfs_iflush_cluster(ip, bp);
3479	if (error)
3480		goto cluster_corrupt_out;
3481
3482	*bpp = bp;
3483	return 0;
3484
3485corrupt_out:
3486	if (bp)
3487		xfs_buf_relse(bp);
3488	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3489cluster_corrupt_out:
3490	error = -EFSCORRUPTED;
3491abort_out:
3492	/*
3493	 * Unlocks the flush lock
3494	 */
3495	xfs_iflush_abort(ip, false);
3496	return error;
3497}
3498
3499/*
3500 * If there are inline format data / attr forks attached to this inode,
3501 * make sure they're not corrupt.
3502 */
3503bool
3504xfs_inode_verify_forks(
3505	struct xfs_inode	*ip)
3506{
3507	struct xfs_ifork	*ifp;
3508	xfs_failaddr_t		fa;
3509
3510	fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops);
3511	if (fa) {
3512		ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
3513		xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork",
3514				ifp->if_u1.if_data, ifp->if_bytes, fa);
3515		return false;
3516	}
3517
3518	fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops);
3519	if (fa) {
3520		ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK);
3521		xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork",
3522				ifp ? ifp->if_u1.if_data : NULL,
3523				ifp ? ifp->if_bytes : 0, fa);
3524		return false;
3525	}
3526	return true;
3527}
3528
3529STATIC int
3530xfs_iflush_int(
3531	struct xfs_inode	*ip,
3532	struct xfs_buf		*bp)
3533{
3534	struct xfs_inode_log_item *iip = ip->i_itemp;
3535	struct xfs_dinode	*dip;
3536	struct xfs_mount	*mp = ip->i_mount;
3537
3538	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3539	ASSERT(xfs_isiflocked(ip));
3540	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3541	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3542	ASSERT(iip != NULL && iip->ili_fields != 0);
3543	ASSERT(ip->i_d.di_version > 1);
3544
3545	/* set *dip = inode's place in the buffer */
3546	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3547
3548	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3549			       mp, XFS_ERRTAG_IFLUSH_1)) {
3550		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3551			"%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3552			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3553		goto corrupt_out;
3554	}
3555	if (S_ISREG(VFS_I(ip)->i_mode)) {
3556		if (XFS_TEST_ERROR(
3557		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3558		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3559		    mp, XFS_ERRTAG_IFLUSH_3)) {
3560			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3561				"%s: Bad regular inode %Lu, ptr "PTR_FMT,
3562				__func__, ip->i_ino, ip);
3563			goto corrupt_out;
3564		}
3565	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3566		if (XFS_TEST_ERROR(
3567		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3568		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3569		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3570		    mp, XFS_ERRTAG_IFLUSH_4)) {
3571			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3572				"%s: Bad directory inode %Lu, ptr "PTR_FMT,
3573				__func__, ip->i_ino, ip);
3574			goto corrupt_out;
3575		}
3576	}
3577	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3578				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
 
3579		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3580			"%s: detected corrupt incore inode %Lu, "
3581			"total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3582			__func__, ip->i_ino,
3583			ip->i_d.di_nextents + ip->i_d.di_anextents,
3584			ip->i_d.di_nblocks, ip);
3585		goto corrupt_out;
3586	}
3587	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3588				mp, XFS_ERRTAG_IFLUSH_6)) {
3589		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3590			"%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3591			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3592		goto corrupt_out;
3593	}
3594
3595	/*
3596	 * Inode item log recovery for v2 inodes are dependent on the
3597	 * di_flushiter count for correct sequencing. We bump the flush
3598	 * iteration count so we can detect flushes which postdate a log record
3599	 * during recovery. This is redundant as we now log every change and
3600	 * hence this can't happen but we need to still do it to ensure
3601	 * backwards compatibility with old kernels that predate logging all
3602	 * inode changes.
3603	 */
3604	if (ip->i_d.di_version < 3)
3605		ip->i_d.di_flushiter++;
3606
3607	/* Check the inline fork data before we write out. */
3608	if (!xfs_inode_verify_forks(ip))
3609		goto corrupt_out;
3610
3611	/*
3612	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3613	 * copy out the core of the inode, because if the inode is dirty at all
3614	 * the core must be.
3615	 */
3616	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3617
3618	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3619	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3620		ip->i_d.di_flushiter = 0;
3621
3622	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3623	if (XFS_IFORK_Q(ip))
3624		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3625	xfs_inobp_check(mp, bp);
3626
3627	/*
3628	 * We've recorded everything logged in the inode, so we'd like to clear
3629	 * the ili_fields bits so we don't log and flush things unnecessarily.
3630	 * However, we can't stop logging all this information until the data
3631	 * we've copied into the disk buffer is written to disk.  If we did we
3632	 * might overwrite the copy of the inode in the log with all the data
3633	 * after re-logging only part of it, and in the face of a crash we
3634	 * wouldn't have all the data we need to recover.
3635	 *
3636	 * What we do is move the bits to the ili_last_fields field.  When
3637	 * logging the inode, these bits are moved back to the ili_fields field.
3638	 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3639	 * know that the information those bits represent is permanently on
3640	 * disk.  As long as the flush completes before the inode is logged
3641	 * again, then both ili_fields and ili_last_fields will be cleared.
3642	 *
3643	 * We can play with the ili_fields bits here, because the inode lock
3644	 * must be held exclusively in order to set bits there and the flush
3645	 * lock protects the ili_last_fields bits.  Set ili_logged so the flush
3646	 * done routine can tell whether or not to look in the AIL.  Also, store
3647	 * the current LSN of the inode so that we can tell whether the item has
3648	 * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
3649	 * need the AIL lock, because it is a 64 bit value that cannot be read
3650	 * atomically.
3651	 */
3652	iip->ili_last_fields = iip->ili_fields;
3653	iip->ili_fields = 0;
3654	iip->ili_fsync_fields = 0;
3655	iip->ili_logged = 1;
3656
3657	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3658				&iip->ili_item.li_lsn);
3659
3660	/*
3661	 * Attach the function xfs_iflush_done to the inode's
3662	 * buffer.  This will remove the inode from the AIL
3663	 * and unlock the inode's flush lock when the inode is
3664	 * completely written to disk.
3665	 */
3666	xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3667
3668	/* generate the checksum. */
3669	xfs_dinode_calc_crc(mp, dip);
3670
3671	ASSERT(!list_empty(&bp->b_li_list));
3672	ASSERT(bp->b_iodone != NULL);
3673	return 0;
3674
3675corrupt_out:
3676	return -EFSCORRUPTED;
3677}
   1/*
   2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include <linux/log2.h>
 
  19
  20#include "xfs.h"
  21#include "xfs_fs.h"
  22#include "xfs_shared.h"
  23#include "xfs_format.h"
  24#include "xfs_log_format.h"
  25#include "xfs_trans_resv.h"
  26#include "xfs_sb.h"
  27#include "xfs_mount.h"
 
  28#include "xfs_inode.h"
  29#include "xfs_da_format.h"
  30#include "xfs_da_btree.h"
  31#include "xfs_dir2.h"
  32#include "xfs_attr_sf.h"
  33#include "xfs_attr.h"
  34#include "xfs_trans_space.h"
  35#include "xfs_trans.h"
  36#include "xfs_buf_item.h"
  37#include "xfs_inode_item.h"
  38#include "xfs_ialloc.h"
  39#include "xfs_bmap.h"
  40#include "xfs_bmap_util.h"
 
  41#include "xfs_error.h"
  42#include "xfs_quota.h"
  43#include "xfs_filestream.h"
  44#include "xfs_cksum.h"
  45#include "xfs_trace.h"
  46#include "xfs_icache.h"
  47#include "xfs_symlink.h"
  48#include "xfs_trans_priv.h"
  49#include "xfs_log.h"
  50#include "xfs_bmap_btree.h"
 
 
  51
  52kmem_zone_t *xfs_inode_zone;
  53
  54/*
  55 * Used in xfs_itruncate_extents().  This is the maximum number of extents
  56 * freed from a file in a single transaction.
  57 */
  58#define	XFS_ITRUNC_MAX_EXTENTS	2
  59
  60STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
  61STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
  62STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
  63
  64/*
  65 * helper function to extract extent size hint from inode
  66 */
  67xfs_extlen_t
  68xfs_get_extsz_hint(
  69	struct xfs_inode	*ip)
  70{
  71	if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
  72		return ip->i_d.di_extsize;
  73	if (XFS_IS_REALTIME_INODE(ip))
  74		return ip->i_mount->m_sb.sb_rextsize;
  75	return 0;
  76}
  77
  78/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  79 * These two are wrapper routines around the xfs_ilock() routine used to
  80 * centralize some grungy code.  They are used in places that wish to lock the
  81 * inode solely for reading the extents.  The reason these places can't just
  82 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
  83 * bringing in of the extents from disk for a file in b-tree format.  If the
  84 * inode is in b-tree format, then we need to lock the inode exclusively until
  85 * the extents are read in.  Locking it exclusively all the time would limit
  86 * our parallelism unnecessarily, though.  What we do instead is check to see
  87 * if the extents have been read in yet, and only lock the inode exclusively
  88 * if they have not.
  89 *
  90 * The functions return a value which should be given to the corresponding
  91 * xfs_iunlock() call.
  92 */
  93uint
  94xfs_ilock_data_map_shared(
  95	struct xfs_inode	*ip)
  96{
  97	uint			lock_mode = XFS_ILOCK_SHARED;
  98
  99	if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
 100	    (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
 101		lock_mode = XFS_ILOCK_EXCL;
 102	xfs_ilock(ip, lock_mode);
 103	return lock_mode;
 104}
 105
 106uint
 107xfs_ilock_attr_map_shared(
 108	struct xfs_inode	*ip)
 109{
 110	uint			lock_mode = XFS_ILOCK_SHARED;
 111
 112	if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
 113	    (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
 114		lock_mode = XFS_ILOCK_EXCL;
 115	xfs_ilock(ip, lock_mode);
 116	return lock_mode;
 117}
 118
 119/*
 120 * The xfs inode contains 3 multi-reader locks: the i_iolock the i_mmap_lock and
 121 * the i_lock.  This routine allows various combinations of the locks to be
 122 * obtained.
 123 *
 124 * The 3 locks should always be ordered so that the IO lock is obtained first,
 125 * the mmap lock second and the ilock last in order to prevent deadlock.
 126 *
 127 * Basic locking order:
 128 *
 129 * i_iolock -> i_mmap_lock -> page_lock -> i_ilock
 130 *
 131 * mmap_sem locking order:
 132 *
 133 * i_iolock -> page lock -> mmap_sem
 134 * mmap_sem -> i_mmap_lock -> page_lock
 135 *
 136 * The difference in mmap_sem locking order mean that we cannot hold the
 137 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
 138 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
 139 * in get_user_pages() to map the user pages into the kernel address space for
 140 * direct IO. Similarly the i_iolock cannot be taken inside a page fault because
 141 * page faults already hold the mmap_sem.
 142 *
 143 * Hence to serialise fully against both syscall and mmap based IO, we need to
 144 * take both the i_iolock and the i_mmap_lock. These locks should *only* be both
 145 * taken in places where we need to invalidate the page cache in a race
 146 * free manner (e.g. truncate, hole punch and other extent manipulation
 147 * functions).
 148 */
 149void
 150xfs_ilock(
 151	xfs_inode_t		*ip,
 152	uint			lock_flags)
 153{
 154	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
 155
 156	/*
 157	 * You can't set both SHARED and EXCL for the same lock,
 158	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 159	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 160	 */
 161	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 162	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 163	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 164	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 165	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 166	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 167	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 168
 169	if (lock_flags & XFS_IOLOCK_EXCL)
 170		mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
 171	else if (lock_flags & XFS_IOLOCK_SHARED)
 172		mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
 
 
 
 173
 174	if (lock_flags & XFS_MMAPLOCK_EXCL)
 175		mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 176	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 177		mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 178
 179	if (lock_flags & XFS_ILOCK_EXCL)
 180		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 181	else if (lock_flags & XFS_ILOCK_SHARED)
 182		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 183}
 184
 185/*
 186 * This is just like xfs_ilock(), except that the caller
 187 * is guaranteed not to sleep.  It returns 1 if it gets
 188 * the requested locks and 0 otherwise.  If the IO lock is
 189 * obtained but the inode lock cannot be, then the IO lock
 190 * is dropped before returning.
 191 *
 192 * ip -- the inode being locked
 193 * lock_flags -- this parameter indicates the inode's locks to be
 194 *       to be locked.  See the comment for xfs_ilock() for a list
 195 *	 of valid values.
 196 */
 197int
 198xfs_ilock_nowait(
 199	xfs_inode_t		*ip,
 200	uint			lock_flags)
 201{
 202	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
 203
 204	/*
 205	 * You can't set both SHARED and EXCL for the same lock,
 206	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 207	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 208	 */
 209	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 210	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 211	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 212	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 213	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 214	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 215	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 216
 217	if (lock_flags & XFS_IOLOCK_EXCL) {
 218		if (!mrtryupdate(&ip->i_iolock))
 219			goto out;
 220	} else if (lock_flags & XFS_IOLOCK_SHARED) {
 221		if (!mrtryaccess(&ip->i_iolock))
 222			goto out;
 223	}
 224
 225	if (lock_flags & XFS_MMAPLOCK_EXCL) {
 226		if (!mrtryupdate(&ip->i_mmaplock))
 227			goto out_undo_iolock;
 228	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
 229		if (!mrtryaccess(&ip->i_mmaplock))
 230			goto out_undo_iolock;
 231	}
 232
 233	if (lock_flags & XFS_ILOCK_EXCL) {
 234		if (!mrtryupdate(&ip->i_lock))
 235			goto out_undo_mmaplock;
 236	} else if (lock_flags & XFS_ILOCK_SHARED) {
 237		if (!mrtryaccess(&ip->i_lock))
 238			goto out_undo_mmaplock;
 239	}
 240	return 1;
 241
 242out_undo_mmaplock:
 243	if (lock_flags & XFS_MMAPLOCK_EXCL)
 244		mrunlock_excl(&ip->i_mmaplock);
 245	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 246		mrunlock_shared(&ip->i_mmaplock);
 247out_undo_iolock:
 248	if (lock_flags & XFS_IOLOCK_EXCL)
 249		mrunlock_excl(&ip->i_iolock);
 250	else if (lock_flags & XFS_IOLOCK_SHARED)
 251		mrunlock_shared(&ip->i_iolock);
 252out:
 253	return 0;
 254}
 255
 256/*
 257 * xfs_iunlock() is used to drop the inode locks acquired with
 258 * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
 259 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
 260 * that we know which locks to drop.
 261 *
 262 * ip -- the inode being unlocked
 263 * lock_flags -- this parameter indicates the inode's locks to be
 264 *       to be unlocked.  See the comment for xfs_ilock() for a list
 265 *	 of valid values for this parameter.
 266 *
 267 */
 268void
 269xfs_iunlock(
 270	xfs_inode_t		*ip,
 271	uint			lock_flags)
 272{
 273	/*
 274	 * You can't set both SHARED and EXCL for the same lock,
 275	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 276	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 277	 */
 278	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 279	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 280	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 281	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 282	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 283	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 284	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 285	ASSERT(lock_flags != 0);
 286
 287	if (lock_flags & XFS_IOLOCK_EXCL)
 288		mrunlock_excl(&ip->i_iolock);
 289	else if (lock_flags & XFS_IOLOCK_SHARED)
 290		mrunlock_shared(&ip->i_iolock);
 291
 292	if (lock_flags & XFS_MMAPLOCK_EXCL)
 293		mrunlock_excl(&ip->i_mmaplock);
 294	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 295		mrunlock_shared(&ip->i_mmaplock);
 296
 297	if (lock_flags & XFS_ILOCK_EXCL)
 298		mrunlock_excl(&ip->i_lock);
 299	else if (lock_flags & XFS_ILOCK_SHARED)
 300		mrunlock_shared(&ip->i_lock);
 301
 302	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
 303}
 304
 305/*
 306 * give up write locks.  the i/o lock cannot be held nested
 307 * if it is being demoted.
 308 */
 309void
 310xfs_ilock_demote(
 311	xfs_inode_t		*ip,
 312	uint			lock_flags)
 313{
 314	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
 315	ASSERT((lock_flags &
 316		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
 317
 318	if (lock_flags & XFS_ILOCK_EXCL)
 319		mrdemote(&ip->i_lock);
 320	if (lock_flags & XFS_MMAPLOCK_EXCL)
 321		mrdemote(&ip->i_mmaplock);
 322	if (lock_flags & XFS_IOLOCK_EXCL)
 323		mrdemote(&ip->i_iolock);
 324
 325	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
 326}
 327
 328#if defined(DEBUG) || defined(XFS_WARN)
 329int
 330xfs_isilocked(
 331	xfs_inode_t		*ip,
 332	uint			lock_flags)
 333{
 334	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
 335		if (!(lock_flags & XFS_ILOCK_SHARED))
 336			return !!ip->i_lock.mr_writer;
 337		return rwsem_is_locked(&ip->i_lock.mr_lock);
 338	}
 339
 340	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
 341		if (!(lock_flags & XFS_MMAPLOCK_SHARED))
 342			return !!ip->i_mmaplock.mr_writer;
 343		return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
 344	}
 345
 346	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
 347		if (!(lock_flags & XFS_IOLOCK_SHARED))
 348			return !!ip->i_iolock.mr_writer;
 349		return rwsem_is_locked(&ip->i_iolock.mr_lock);
 
 350	}
 351
 352	ASSERT(0);
 353	return 0;
 354}
 355#endif
 356
 357#ifdef DEBUG
 358int xfs_locked_n;
 359int xfs_small_retries;
 360int xfs_middle_retries;
 361int xfs_lots_retries;
 362int xfs_lock_delays;
 363#endif
 364
 365/*
 366 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
 367 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
 368 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
 369 * errors and warnings.
 370 */
 371#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
 372static bool
 373xfs_lockdep_subclass_ok(
 374	int subclass)
 375{
 376	return subclass < MAX_LOCKDEP_SUBCLASSES;
 377}
 378#else
 379#define xfs_lockdep_subclass_ok(subclass)	(true)
 380#endif
 381
 382/*
 383 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
 384 * value. This can be called for any type of inode lock combination, including
 385 * parent locking. Care must be taken to ensure we don't overrun the subclass
 386 * storage fields in the class mask we build.
 387 */
 388static inline int
 389xfs_lock_inumorder(int lock_mode, int subclass)
 390{
 391	int	class = 0;
 392
 393	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
 394			      XFS_ILOCK_RTSUM)));
 395	ASSERT(xfs_lockdep_subclass_ok(subclass));
 396
 397	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
 398		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
 399		ASSERT(xfs_lockdep_subclass_ok(subclass +
 400						XFS_IOLOCK_PARENT_VAL));
 401		class += subclass << XFS_IOLOCK_SHIFT;
 402		if (lock_mode & XFS_IOLOCK_PARENT)
 403			class += XFS_IOLOCK_PARENT_VAL << XFS_IOLOCK_SHIFT;
 404	}
 405
 406	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
 407		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
 408		class += subclass << XFS_MMAPLOCK_SHIFT;
 409	}
 410
 411	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
 412		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
 413		class += subclass << XFS_ILOCK_SHIFT;
 414	}
 415
 416	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
 417}
 418
 419/*
 420 * The following routine will lock n inodes in exclusive mode.  We assume the
 421 * caller calls us with the inodes in i_ino order.
 422 *
 423 * We need to detect deadlock where an inode that we lock is in the AIL and we
 424 * start waiting for another inode that is locked by a thread in a long running
 425 * transaction (such as truncate). This can result in deadlock since the long
 426 * running trans might need to wait for the inode we just locked in order to
 427 * push the tail and free space in the log.
 428 *
 429 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
 430 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
 431 * lock more than one at a time, lockdep will report false positives saying we
 432 * have violated locking orders.
 433 */
 434void
 435xfs_lock_inodes(
 436	xfs_inode_t	**ips,
 437	int		inodes,
 438	uint		lock_mode)
 439{
 440	int		attempts = 0, i, j, try_lock;
 441	xfs_log_item_t	*lp;
 442
 443	/*
 444	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
 445	 * support an arbitrary depth of locking here, but absolute limits on
 446	 * inodes depend on the the type of locking and the limits placed by
 447	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
 448	 * the asserts.
 449	 */
 450	ASSERT(ips && inodes >= 2 && inodes <= 5);
 451	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
 452			    XFS_ILOCK_EXCL));
 453	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
 454			      XFS_ILOCK_SHARED)));
 455	ASSERT(!(lock_mode & XFS_IOLOCK_EXCL) ||
 456		inodes <= XFS_IOLOCK_MAX_SUBCLASS + 1);
 457	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
 458		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
 459	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
 460		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
 461
 462	if (lock_mode & XFS_IOLOCK_EXCL) {
 463		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
 464	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
 465		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
 466
 467	try_lock = 0;
 468	i = 0;
 469again:
 470	for (; i < inodes; i++) {
 471		ASSERT(ips[i]);
 472
 473		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
 474			continue;
 475
 476		/*
 477		 * If try_lock is not set yet, make sure all locked inodes are
 478		 * not in the AIL.  If any are, set try_lock to be used later.
 479		 */
 480		if (!try_lock) {
 481			for (j = (i - 1); j >= 0 && !try_lock; j--) {
 482				lp = (xfs_log_item_t *)ips[j]->i_itemp;
 483				if (lp && (lp->li_flags & XFS_LI_IN_AIL))
 484					try_lock++;
 485			}
 486		}
 487
 488		/*
 489		 * If any of the previous locks we have locked is in the AIL,
 490		 * we must TRY to get the second and subsequent locks. If
 491		 * we can't get any, we must release all we have
 492		 * and try again.
 493		 */
 494		if (!try_lock) {
 495			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
 496			continue;
 497		}
 498
 499		/* try_lock means we have an inode locked that is in the AIL. */
 500		ASSERT(i != 0);
 501		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
 502			continue;
 503
 504		/*
 505		 * Unlock all previous guys and try again.  xfs_iunlock will try
 506		 * to push the tail if the inode is in the AIL.
 507		 */
 508		attempts++;
 509		for (j = i - 1; j >= 0; j--) {
 510			/*
 511			 * Check to see if we've already unlocked this one.  Not
 512			 * the first one going back, and the inode ptr is the
 513			 * same.
 514			 */
 515			if (j != (i - 1) && ips[j] == ips[j + 1])
 516				continue;
 517
 518			xfs_iunlock(ips[j], lock_mode);
 519		}
 520
 521		if ((attempts % 5) == 0) {
 522			delay(1); /* Don't just spin the CPU */
 523#ifdef DEBUG
 524			xfs_lock_delays++;
 525#endif
 526		}
 527		i = 0;
 528		try_lock = 0;
 529		goto again;
 530	}
 531
 532#ifdef DEBUG
 533	if (attempts) {
 534		if (attempts < 5) xfs_small_retries++;
 535		else if (attempts < 100) xfs_middle_retries++;
 536		else xfs_lots_retries++;
 537	} else {
 538		xfs_locked_n++;
 539	}
 540#endif
 541}
 542
 543/*
 544 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
 545 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
 546 * lock more than one at a time, lockdep will report false positives saying we
 547 * have violated locking orders.
 
 
 548 */
 549void
 550xfs_lock_two_inodes(
 551	xfs_inode_t		*ip0,
 552	xfs_inode_t		*ip1,
 553	uint			lock_mode)
 
 554{
 555	xfs_inode_t		*temp;
 
 556	int			attempts = 0;
 557	xfs_log_item_t		*lp;
 558
 559	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
 560		ASSERT(!(lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
 561		ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 562	} else if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))
 563		ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 
 
 
 
 
 
 
 564
 565	ASSERT(ip0->i_ino != ip1->i_ino);
 566
 567	if (ip0->i_ino > ip1->i_ino) {
 568		temp = ip0;
 569		ip0 = ip1;
 570		ip1 = temp;
 
 
 
 571	}
 572
 573 again:
 574	xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
 575
 576	/*
 577	 * If the first lock we have locked is in the AIL, we must TRY to get
 578	 * the second lock. If we can't get it, we must release the first one
 579	 * and try again.
 580	 */
 581	lp = (xfs_log_item_t *)ip0->i_itemp;
 582	if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
 583		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
 584			xfs_iunlock(ip0, lock_mode);
 585			if ((++attempts % 5) == 0)
 586				delay(1); /* Don't just spin the CPU */
 587			goto again;
 588		}
 589	} else {
 590		xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
 591	}
 592}
 593
 594
 595void
 596__xfs_iflock(
 597	struct xfs_inode	*ip)
 598{
 599	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
 600	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
 601
 602	do {
 603		prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
 604		if (xfs_isiflocked(ip))
 605			io_schedule();
 606	} while (!xfs_iflock_nowait(ip));
 607
 608	finish_wait(wq, &wait.wait);
 609}
 610
 611STATIC uint
 612_xfs_dic2xflags(
 613	__uint16_t		di_flags,
 614	uint64_t		di_flags2,
 615	bool			has_attr)
 616{
 617	uint			flags = 0;
 618
 619	if (di_flags & XFS_DIFLAG_ANY) {
 620		if (di_flags & XFS_DIFLAG_REALTIME)
 621			flags |= FS_XFLAG_REALTIME;
 622		if (di_flags & XFS_DIFLAG_PREALLOC)
 623			flags |= FS_XFLAG_PREALLOC;
 624		if (di_flags & XFS_DIFLAG_IMMUTABLE)
 625			flags |= FS_XFLAG_IMMUTABLE;
 626		if (di_flags & XFS_DIFLAG_APPEND)
 627			flags |= FS_XFLAG_APPEND;
 628		if (di_flags & XFS_DIFLAG_SYNC)
 629			flags |= FS_XFLAG_SYNC;
 630		if (di_flags & XFS_DIFLAG_NOATIME)
 631			flags |= FS_XFLAG_NOATIME;
 632		if (di_flags & XFS_DIFLAG_NODUMP)
 633			flags |= FS_XFLAG_NODUMP;
 634		if (di_flags & XFS_DIFLAG_RTINHERIT)
 635			flags |= FS_XFLAG_RTINHERIT;
 636		if (di_flags & XFS_DIFLAG_PROJINHERIT)
 637			flags |= FS_XFLAG_PROJINHERIT;
 638		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
 639			flags |= FS_XFLAG_NOSYMLINKS;
 640		if (di_flags & XFS_DIFLAG_EXTSIZE)
 641			flags |= FS_XFLAG_EXTSIZE;
 642		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
 643			flags |= FS_XFLAG_EXTSZINHERIT;
 644		if (di_flags & XFS_DIFLAG_NODEFRAG)
 645			flags |= FS_XFLAG_NODEFRAG;
 646		if (di_flags & XFS_DIFLAG_FILESTREAM)
 647			flags |= FS_XFLAG_FILESTREAM;
 648	}
 649
 650	if (di_flags2 & XFS_DIFLAG2_ANY) {
 651		if (di_flags2 & XFS_DIFLAG2_DAX)
 652			flags |= FS_XFLAG_DAX;
 
 
 653	}
 654
 655	if (has_attr)
 656		flags |= FS_XFLAG_HASATTR;
 657
 658	return flags;
 659}
 660
 661uint
 662xfs_ip2xflags(
 663	struct xfs_inode	*ip)
 664{
 665	struct xfs_icdinode	*dic = &ip->i_d;
 666
 667	return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
 668}
 669
 670uint
 671xfs_dic2xflags(
 672	struct xfs_dinode	*dip)
 673{
 674	return _xfs_dic2xflags(be16_to_cpu(dip->di_flags),
 675				be64_to_cpu(dip->di_flags2), XFS_DFORK_Q(dip));
 676}
 677
 678/*
 679 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
 680 * is allowed, otherwise it has to be an exact match. If a CI match is found,
 681 * ci_name->name will point to a the actual name (caller must free) or
 682 * will be set to NULL if an exact match is found.
 683 */
 684int
 685xfs_lookup(
 686	xfs_inode_t		*dp,
 687	struct xfs_name		*name,
 688	xfs_inode_t		**ipp,
 689	struct xfs_name		*ci_name)
 690{
 691	xfs_ino_t		inum;
 692	int			error;
 693
 694	trace_xfs_lookup(dp, name);
 695
 696	if (XFS_FORCED_SHUTDOWN(dp->i_mount))
 697		return -EIO;
 698
 699	xfs_ilock(dp, XFS_IOLOCK_SHARED);
 700	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
 701	if (error)
 702		goto out_unlock;
 703
 704	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
 705	if (error)
 706		goto out_free_name;
 707
 708	xfs_iunlock(dp, XFS_IOLOCK_SHARED);
 709	return 0;
 710
 711out_free_name:
 712	if (ci_name)
 713		kmem_free(ci_name->name);
 714out_unlock:
 715	xfs_iunlock(dp, XFS_IOLOCK_SHARED);
 716	*ipp = NULL;
 717	return error;
 718}
 719
 720/*
 721 * Allocate an inode on disk and return a copy of its in-core version.
 722 * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
 723 * appropriately within the inode.  The uid and gid for the inode are
 724 * set according to the contents of the given cred structure.
 725 *
 726 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
 727 * has a free inode available, call xfs_iget() to obtain the in-core
 728 * version of the allocated inode.  Finally, fill in the inode and
 729 * log its initial contents.  In this case, ialloc_context would be
 730 * set to NULL.
 731 *
 732 * If xfs_dialloc() does not have an available inode, it will replenish
 733 * its supply by doing an allocation. Since we can only do one
 734 * allocation within a transaction without deadlocks, we must commit
 735 * the current transaction before returning the inode itself.
 736 * In this case, therefore, we will set ialloc_context and return.
 737 * The caller should then commit the current transaction, start a new
 738 * transaction, and call xfs_ialloc() again to actually get the inode.
 739 *
 740 * To ensure that some other process does not grab the inode that
 741 * was allocated during the first call to xfs_ialloc(), this routine
 742 * also returns the [locked] bp pointing to the head of the freelist
 743 * as ialloc_context.  The caller should hold this buffer across
 744 * the commit and pass it back into this routine on the second call.
 745 *
 746 * If we are allocating quota inodes, we do not have a parent inode
 747 * to attach to or associate with (i.e. pip == NULL) because they
 748 * are not linked into the directory structure - they are attached
 749 * directly to the superblock - and so have no parent.
 750 */
 751int
 752xfs_ialloc(
 753	xfs_trans_t	*tp,
 754	xfs_inode_t	*pip,
 755	umode_t		mode,
 756	xfs_nlink_t	nlink,
 757	xfs_dev_t	rdev,
 758	prid_t		prid,
 759	int		okalloc,
 760	xfs_buf_t	**ialloc_context,
 761	xfs_inode_t	**ipp)
 762{
 763	struct xfs_mount *mp = tp->t_mountp;
 764	xfs_ino_t	ino;
 765	xfs_inode_t	*ip;
 766	uint		flags;
 767	int		error;
 768	struct timespec	tv;
 769	struct inode	*inode;
 770
 771	/*
 772	 * Call the space management code to pick
 773	 * the on-disk inode to be allocated.
 774	 */
 775	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
 776			    ialloc_context, &ino);
 777	if (error)
 778		return error;
 779	if (*ialloc_context || ino == NULLFSINO) {
 780		*ipp = NULL;
 781		return 0;
 782	}
 783	ASSERT(*ialloc_context == NULL);
 784
 785	/*
 786	 * Get the in-core inode with the lock held exclusively.
 787	 * This is because we're setting fields here we need
 788	 * to prevent others from looking at until we're done.
 789	 */
 790	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
 791			 XFS_ILOCK_EXCL, &ip);
 792	if (error)
 793		return error;
 794	ASSERT(ip != NULL);
 795	inode = VFS_I(ip);
 796
 797	/*
 798	 * We always convert v1 inodes to v2 now - we only support filesystems
 799	 * with >= v2 inode capability, so there is no reason for ever leaving
 800	 * an inode in v1 format.
 801	 */
 802	if (ip->i_d.di_version == 1)
 803		ip->i_d.di_version = 2;
 804
 805	inode->i_mode = mode;
 806	set_nlink(inode, nlink);
 807	ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
 808	ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
 
 809	xfs_set_projid(ip, prid);
 810
 811	if (pip && XFS_INHERIT_GID(pip)) {
 812		ip->i_d.di_gid = pip->i_d.di_gid;
 813		if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
 814			inode->i_mode |= S_ISGID;
 815	}
 816
 817	/*
 818	 * If the group ID of the new file does not match the effective group
 819	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
 820	 * (and only if the irix_sgid_inherit compatibility variable is set).
 821	 */
 822	if ((irix_sgid_inherit) &&
 823	    (inode->i_mode & S_ISGID) &&
 824	    (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
 825		inode->i_mode &= ~S_ISGID;
 826
 827	ip->i_d.di_size = 0;
 828	ip->i_d.di_nextents = 0;
 829	ASSERT(ip->i_d.di_nblocks == 0);
 830
 831	tv = current_fs_time(mp->m_super);
 832	inode->i_mtime = tv;
 833	inode->i_atime = tv;
 834	inode->i_ctime = tv;
 835
 836	ip->i_d.di_extsize = 0;
 837	ip->i_d.di_dmevmask = 0;
 838	ip->i_d.di_dmstate = 0;
 839	ip->i_d.di_flags = 0;
 840
 841	if (ip->i_d.di_version == 3) {
 842		inode->i_version = 1;
 843		ip->i_d.di_flags2 = 0;
 844		ip->i_d.di_crtime.t_sec = (__int32_t)tv.tv_sec;
 845		ip->i_d.di_crtime.t_nsec = (__int32_t)tv.tv_nsec;
 
 846	}
 847
 848
 849	flags = XFS_ILOG_CORE;
 850	switch (mode & S_IFMT) {
 851	case S_IFIFO:
 852	case S_IFCHR:
 853	case S_IFBLK:
 854	case S_IFSOCK:
 855		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
 856		ip->i_df.if_u2.if_rdev = rdev;
 857		ip->i_df.if_flags = 0;
 858		flags |= XFS_ILOG_DEV;
 859		break;
 860	case S_IFREG:
 861	case S_IFDIR:
 862		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
 863			uint64_t	di_flags2 = 0;
 864			uint		di_flags = 0;
 865
 866			if (S_ISDIR(mode)) {
 867				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
 868					di_flags |= XFS_DIFLAG_RTINHERIT;
 869				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
 870					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
 871					ip->i_d.di_extsize = pip->i_d.di_extsize;
 872				}
 873				if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
 874					di_flags |= XFS_DIFLAG_PROJINHERIT;
 875			} else if (S_ISREG(mode)) {
 876				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
 877					di_flags |= XFS_DIFLAG_REALTIME;
 878				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
 879					di_flags |= XFS_DIFLAG_EXTSIZE;
 880					ip->i_d.di_extsize = pip->i_d.di_extsize;
 881				}
 882			}
 883			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
 884			    xfs_inherit_noatime)
 885				di_flags |= XFS_DIFLAG_NOATIME;
 886			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
 887			    xfs_inherit_nodump)
 888				di_flags |= XFS_DIFLAG_NODUMP;
 889			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
 890			    xfs_inherit_sync)
 891				di_flags |= XFS_DIFLAG_SYNC;
 892			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
 893			    xfs_inherit_nosymlinks)
 894				di_flags |= XFS_DIFLAG_NOSYMLINKS;
 895			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
 896			    xfs_inherit_nodefrag)
 897				di_flags |= XFS_DIFLAG_NODEFRAG;
 898			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
 899				di_flags |= XFS_DIFLAG_FILESTREAM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 900			if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
 901				di_flags2 |= XFS_DIFLAG2_DAX;
 902
 903			ip->i_d.di_flags |= di_flags;
 904			ip->i_d.di_flags2 |= di_flags2;
 905		}
 906		/* FALLTHROUGH */
 907	case S_IFLNK:
 908		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
 909		ip->i_df.if_flags = XFS_IFEXTENTS;
 910		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
 911		ip->i_df.if_u1.if_extents = NULL;
 912		break;
 913	default:
 914		ASSERT(0);
 915	}
 916	/*
 917	 * Attribute fork settings for new inode.
 918	 */
 919	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
 920	ip->i_d.di_anextents = 0;
 921
 922	/*
 923	 * Log the new values stuffed into the inode.
 924	 */
 925	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 926	xfs_trans_log_inode(tp, ip, flags);
 927
 928	/* now that we have an i_mode we can setup the inode structure */
 929	xfs_setup_inode(ip);
 930
 931	*ipp = ip;
 932	return 0;
 933}
 934
 935/*
 936 * Allocates a new inode from disk and return a pointer to the
 937 * incore copy. This routine will internally commit the current
 938 * transaction and allocate a new one if the Space Manager needed
 939 * to do an allocation to replenish the inode free-list.
 940 *
 941 * This routine is designed to be called from xfs_create and
 942 * xfs_create_dir.
 943 *
 944 */
 945int
 946xfs_dir_ialloc(
 947	xfs_trans_t	**tpp,		/* input: current transaction;
 948					   output: may be a new transaction. */
 949	xfs_inode_t	*dp,		/* directory within whose allocate
 950					   the inode. */
 951	umode_t		mode,
 952	xfs_nlink_t	nlink,
 953	xfs_dev_t	rdev,
 954	prid_t		prid,		/* project id */
 955	int		okalloc,	/* ok to allocate new space */
 956	xfs_inode_t	**ipp,		/* pointer to inode; it will be
 957					   locked. */
 958	int		*committed)
 959
 960{
 961	xfs_trans_t	*tp;
 962	xfs_inode_t	*ip;
 963	xfs_buf_t	*ialloc_context = NULL;
 964	int		code;
 965	void		*dqinfo;
 966	uint		tflags;
 967
 968	tp = *tpp;
 969	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
 970
 971	/*
 972	 * xfs_ialloc will return a pointer to an incore inode if
 973	 * the Space Manager has an available inode on the free
 974	 * list. Otherwise, it will do an allocation and replenish
 975	 * the freelist.  Since we can only do one allocation per
 976	 * transaction without deadlocks, we will need to commit the
 977	 * current transaction and start a new one.  We will then
 978	 * need to call xfs_ialloc again to get the inode.
 979	 *
 980	 * If xfs_ialloc did an allocation to replenish the freelist,
 981	 * it returns the bp containing the head of the freelist as
 982	 * ialloc_context. We will hold a lock on it across the
 983	 * transaction commit so that no other process can steal
 984	 * the inode(s) that we've just allocated.
 985	 */
 986	code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
 987			  &ialloc_context, &ip);
 988
 989	/*
 990	 * Return an error if we were unable to allocate a new inode.
 991	 * This should only happen if we run out of space on disk or
 992	 * encounter a disk error.
 993	 */
 994	if (code) {
 995		*ipp = NULL;
 996		return code;
 997	}
 998	if (!ialloc_context && !ip) {
 999		*ipp = NULL;
1000		return -ENOSPC;
1001	}
1002
1003	/*
1004	 * If the AGI buffer is non-NULL, then we were unable to get an
1005	 * inode in one operation.  We need to commit the current
1006	 * transaction and call xfs_ialloc() again.  It is guaranteed
1007	 * to succeed the second time.
1008	 */
1009	if (ialloc_context) {
1010		/*
1011		 * Normally, xfs_trans_commit releases all the locks.
1012		 * We call bhold to hang on to the ialloc_context across
1013		 * the commit.  Holding this buffer prevents any other
1014		 * processes from doing any allocations in this
1015		 * allocation group.
1016		 */
1017		xfs_trans_bhold(tp, ialloc_context);
1018
1019		/*
1020		 * We want the quota changes to be associated with the next
1021		 * transaction, NOT this one. So, detach the dqinfo from this
1022		 * and attach it to the next transaction.
1023		 */
1024		dqinfo = NULL;
1025		tflags = 0;
1026		if (tp->t_dqinfo) {
1027			dqinfo = (void *)tp->t_dqinfo;
1028			tp->t_dqinfo = NULL;
1029			tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1030			tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1031		}
1032
1033		code = xfs_trans_roll(&tp, 0);
1034		if (committed != NULL)
1035			*committed = 1;
1036
1037		/*
1038		 * Re-attach the quota info that we detached from prev trx.
1039		 */
1040		if (dqinfo) {
1041			tp->t_dqinfo = dqinfo;
1042			tp->t_flags |= tflags;
1043		}
1044
1045		if (code) {
1046			xfs_buf_relse(ialloc_context);
1047			*tpp = tp;
1048			*ipp = NULL;
1049			return code;
1050		}
1051		xfs_trans_bjoin(tp, ialloc_context);
1052
1053		/*
1054		 * Call ialloc again. Since we've locked out all
1055		 * other allocations in this allocation group,
1056		 * this call should always succeed.
1057		 */
1058		code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1059				  okalloc, &ialloc_context, &ip);
1060
1061		/*
1062		 * If we get an error at this point, return to the caller
1063		 * so that the current transaction can be aborted.
1064		 */
1065		if (code) {
1066			*tpp = tp;
1067			*ipp = NULL;
1068			return code;
1069		}
1070		ASSERT(!ialloc_context && ip);
1071
1072	} else {
1073		if (committed != NULL)
1074			*committed = 0;
1075	}
1076
1077	*ipp = ip;
1078	*tpp = tp;
1079
1080	return 0;
1081}
1082
1083/*
1084 * Decrement the link count on an inode & log the change.  If this causes the
1085 * link count to go to zero, move the inode to AGI unlinked list so that it can
1086 * be freed when the last active reference goes away via xfs_inactive().
1087 */
1088int				/* error */
1089xfs_droplink(
1090	xfs_trans_t *tp,
1091	xfs_inode_t *ip)
1092{
1093	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1094
1095	drop_nlink(VFS_I(ip));
1096	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1097
1098	if (VFS_I(ip)->i_nlink)
1099		return 0;
1100
1101	return xfs_iunlink(tp, ip);
1102}
1103
1104/*
1105 * Increment the link count on an inode & log the change.
1106 */
1107int
1108xfs_bumplink(
1109	xfs_trans_t *tp,
1110	xfs_inode_t *ip)
1111{
1112	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1113
1114	ASSERT(ip->i_d.di_version > 1);
1115	inc_nlink(VFS_I(ip));
1116	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1117	return 0;
1118}
1119
1120int
1121xfs_create(
1122	xfs_inode_t		*dp,
1123	struct xfs_name		*name,
1124	umode_t			mode,
1125	xfs_dev_t		rdev,
1126	xfs_inode_t		**ipp)
1127{
1128	int			is_dir = S_ISDIR(mode);
1129	struct xfs_mount	*mp = dp->i_mount;
1130	struct xfs_inode	*ip = NULL;
1131	struct xfs_trans	*tp = NULL;
1132	int			error;
1133	xfs_bmap_free_t		free_list;
1134	xfs_fsblock_t		first_block;
1135	bool                    unlock_dp_on_error = false;
1136	prid_t			prid;
1137	struct xfs_dquot	*udqp = NULL;
1138	struct xfs_dquot	*gdqp = NULL;
1139	struct xfs_dquot	*pdqp = NULL;
1140	struct xfs_trans_res	*tres;
1141	uint			resblks;
1142
1143	trace_xfs_create(dp, name);
1144
1145	if (XFS_FORCED_SHUTDOWN(mp))
1146		return -EIO;
1147
1148	prid = xfs_get_initial_prid(dp);
1149
1150	/*
1151	 * Make sure that we have allocated dquot(s) on disk.
1152	 */
1153	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1154					xfs_kgid_to_gid(current_fsgid()), prid,
1155					XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1156					&udqp, &gdqp, &pdqp);
1157	if (error)
1158		return error;
1159
1160	if (is_dir) {
1161		rdev = 0;
1162		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1163		tres = &M_RES(mp)->tr_mkdir;
1164		tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
1165	} else {
1166		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1167		tres = &M_RES(mp)->tr_create;
1168		tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
1169	}
1170
1171	/*
1172	 * Initially assume that the file does not exist and
1173	 * reserve the resources for that case.  If that is not
1174	 * the case we'll drop the one we have and get a more
1175	 * appropriate transaction later.
1176	 */
1177	error = xfs_trans_reserve(tp, tres, resblks, 0);
1178	if (error == -ENOSPC) {
1179		/* flush outstanding delalloc blocks and retry */
1180		xfs_flush_inodes(mp);
1181		error = xfs_trans_reserve(tp, tres, resblks, 0);
1182	}
1183	if (error == -ENOSPC) {
1184		/* No space at all so try a "no-allocation" reservation */
1185		resblks = 0;
1186		error = xfs_trans_reserve(tp, tres, 0, 0);
1187	}
1188	if (error)
1189		goto out_trans_cancel;
1190
1191
1192	xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL |
1193		      XFS_IOLOCK_PARENT | XFS_ILOCK_PARENT);
1194	unlock_dp_on_error = true;
1195
1196	xfs_bmap_init(&free_list, &first_block);
1197
1198	/*
1199	 * Reserve disk quota and the inode.
1200	 */
1201	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1202						pdqp, resblks, 1, 0);
1203	if (error)
1204		goto out_trans_cancel;
1205
1206	if (!resblks) {
1207		error = xfs_dir_canenter(tp, dp, name);
1208		if (error)
1209			goto out_trans_cancel;
1210	}
1211
1212	/*
1213	 * A newly created regular or special file just has one directory
1214	 * entry pointing to them, but a directory also the "." entry
1215	 * pointing to itself.
1216	 */
1217	error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1218			       prid, resblks > 0, &ip, NULL);
1219	if (error)
1220		goto out_trans_cancel;
1221
1222	/*
1223	 * Now we join the directory inode to the transaction.  We do not do it
1224	 * earlier because xfs_dir_ialloc might commit the previous transaction
1225	 * (and release all the locks).  An error from here on will result in
1226	 * the transaction cancel unlocking dp so don't do it explicitly in the
1227	 * error path.
1228	 */
1229	xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1230	unlock_dp_on_error = false;
1231
1232	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1233					&first_block, &free_list, resblks ?
1234					resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1235	if (error) {
1236		ASSERT(error != -ENOSPC);
1237		goto out_trans_cancel;
1238	}
1239	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1240	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1241
1242	if (is_dir) {
1243		error = xfs_dir_init(tp, ip, dp);
1244		if (error)
1245			goto out_bmap_cancel;
1246
1247		error = xfs_bumplink(tp, dp);
1248		if (error)
1249			goto out_bmap_cancel;
1250	}
1251
1252	/*
1253	 * If this is a synchronous mount, make sure that the
1254	 * create transaction goes to disk before returning to
1255	 * the user.
1256	 */
1257	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1258		xfs_trans_set_sync(tp);
1259
1260	/*
1261	 * Attach the dquot(s) to the inodes and modify them incore.
1262	 * These ids of the inode couldn't have changed since the new
1263	 * inode has been locked ever since it was created.
1264	 */
1265	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1266
1267	error = xfs_bmap_finish(&tp, &free_list, NULL);
1268	if (error)
1269		goto out_bmap_cancel;
1270
1271	error = xfs_trans_commit(tp);
1272	if (error)
1273		goto out_release_inode;
1274
1275	xfs_qm_dqrele(udqp);
1276	xfs_qm_dqrele(gdqp);
1277	xfs_qm_dqrele(pdqp);
1278
1279	*ipp = ip;
1280	return 0;
1281
1282 out_bmap_cancel:
1283	xfs_bmap_cancel(&free_list);
1284 out_trans_cancel:
1285	xfs_trans_cancel(tp);
1286 out_release_inode:
1287	/*
1288	 * Wait until after the current transaction is aborted to finish the
1289	 * setup of the inode and release the inode.  This prevents recursive
1290	 * transactions and deadlocks from xfs_inactive.
1291	 */
1292	if (ip) {
1293		xfs_finish_inode_setup(ip);
1294		IRELE(ip);
1295	}
1296
1297	xfs_qm_dqrele(udqp);
1298	xfs_qm_dqrele(gdqp);
1299	xfs_qm_dqrele(pdqp);
1300
1301	if (unlock_dp_on_error)
1302		xfs_iunlock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1303	return error;
1304}
1305
1306int
1307xfs_create_tmpfile(
1308	struct xfs_inode	*dp,
1309	struct dentry		*dentry,
1310	umode_t			mode,
1311	struct xfs_inode	**ipp)
1312{
1313	struct xfs_mount	*mp = dp->i_mount;
1314	struct xfs_inode	*ip = NULL;
1315	struct xfs_trans	*tp = NULL;
1316	int			error;
1317	prid_t                  prid;
1318	struct xfs_dquot	*udqp = NULL;
1319	struct xfs_dquot	*gdqp = NULL;
1320	struct xfs_dquot	*pdqp = NULL;
1321	struct xfs_trans_res	*tres;
1322	uint			resblks;
1323
1324	if (XFS_FORCED_SHUTDOWN(mp))
1325		return -EIO;
1326
1327	prid = xfs_get_initial_prid(dp);
1328
1329	/*
1330	 * Make sure that we have allocated dquot(s) on disk.
1331	 */
1332	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1333				xfs_kgid_to_gid(current_fsgid()), prid,
1334				XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1335				&udqp, &gdqp, &pdqp);
1336	if (error)
1337		return error;
1338
1339	resblks = XFS_IALLOC_SPACE_RES(mp);
1340	tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE_TMPFILE);
1341
1342	tres = &M_RES(mp)->tr_create_tmpfile;
1343	error = xfs_trans_reserve(tp, tres, resblks, 0);
1344	if (error == -ENOSPC) {
1345		/* No space at all so try a "no-allocation" reservation */
1346		resblks = 0;
1347		error = xfs_trans_reserve(tp, tres, 0, 0);
1348	}
1349	if (error)
1350		goto out_trans_cancel;
1351
1352	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1353						pdqp, resblks, 1, 0);
1354	if (error)
1355		goto out_trans_cancel;
1356
1357	error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1358				prid, resblks > 0, &ip, NULL);
1359	if (error)
1360		goto out_trans_cancel;
1361
1362	if (mp->m_flags & XFS_MOUNT_WSYNC)
1363		xfs_trans_set_sync(tp);
1364
1365	/*
1366	 * Attach the dquot(s) to the inodes and modify them incore.
1367	 * These ids of the inode couldn't have changed since the new
1368	 * inode has been locked ever since it was created.
1369	 */
1370	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1371
1372	error = xfs_iunlink(tp, ip);
1373	if (error)
1374		goto out_trans_cancel;
1375
1376	error = xfs_trans_commit(tp);
1377	if (error)
1378		goto out_release_inode;
1379
1380	xfs_qm_dqrele(udqp);
1381	xfs_qm_dqrele(gdqp);
1382	xfs_qm_dqrele(pdqp);
1383
1384	*ipp = ip;
1385	return 0;
1386
1387 out_trans_cancel:
1388	xfs_trans_cancel(tp);
1389 out_release_inode:
1390	/*
1391	 * Wait until after the current transaction is aborted to finish the
1392	 * setup of the inode and release the inode.  This prevents recursive
1393	 * transactions and deadlocks from xfs_inactive.
1394	 */
1395	if (ip) {
1396		xfs_finish_inode_setup(ip);
1397		IRELE(ip);
1398	}
1399
1400	xfs_qm_dqrele(udqp);
1401	xfs_qm_dqrele(gdqp);
1402	xfs_qm_dqrele(pdqp);
1403
1404	return error;
1405}
1406
1407int
1408xfs_link(
1409	xfs_inode_t		*tdp,
1410	xfs_inode_t		*sip,
1411	struct xfs_name		*target_name)
1412{
1413	xfs_mount_t		*mp = tdp->i_mount;
1414	xfs_trans_t		*tp;
1415	int			error;
1416	xfs_bmap_free_t         free_list;
1417	xfs_fsblock_t           first_block;
1418	int			resblks;
1419
1420	trace_xfs_link(tdp, target_name);
1421
1422	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1423
1424	if (XFS_FORCED_SHUTDOWN(mp))
1425		return -EIO;
1426
1427	error = xfs_qm_dqattach(sip, 0);
1428	if (error)
1429		goto std_return;
1430
1431	error = xfs_qm_dqattach(tdp, 0);
1432	if (error)
1433		goto std_return;
1434
1435	tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
1436	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1437	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0);
1438	if (error == -ENOSPC) {
1439		resblks = 0;
1440		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0);
1441	}
1442	if (error)
1443		goto error_return;
1444
1445	xfs_ilock(tdp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
1446	xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1447
1448	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1449	xfs_trans_ijoin(tp, tdp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1450
1451	/*
1452	 * If we are using project inheritance, we only allow hard link
1453	 * creation in our tree when the project IDs are the same; else
1454	 * the tree quota mechanism could be circumvented.
1455	 */
1456	if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1457		     (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1458		error = -EXDEV;
1459		goto error_return;
1460	}
1461
1462	if (!resblks) {
1463		error = xfs_dir_canenter(tp, tdp, target_name);
1464		if (error)
1465			goto error_return;
1466	}
1467
1468	xfs_bmap_init(&free_list, &first_block);
1469
1470	/*
1471	 * Handle initial link state of O_TMPFILE inode
1472	 */
1473	if (VFS_I(sip)->i_nlink == 0) {
1474		error = xfs_iunlink_remove(tp, sip);
1475		if (error)
1476			goto error_return;
1477	}
1478
1479	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1480					&first_block, &free_list, resblks);
1481	if (error)
1482		goto error_return;
1483	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1484	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1485
1486	error = xfs_bumplink(tp, sip);
1487	if (error)
1488		goto error_return;
1489
1490	/*
1491	 * If this is a synchronous mount, make sure that the
1492	 * link transaction goes to disk before returning to
1493	 * the user.
1494	 */
1495	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1496		xfs_trans_set_sync(tp);
1497
1498	error = xfs_bmap_finish(&tp, &free_list, NULL);
1499	if (error) {
1500		xfs_bmap_cancel(&free_list);
1501		goto error_return;
1502	}
1503
1504	return xfs_trans_commit(tp);
1505
1506 error_return:
1507	xfs_trans_cancel(tp);
1508 std_return:
1509	return error;
1510}
1511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1512/*
1513 * Free up the underlying blocks past new_size.  The new size must be smaller
1514 * than the current size.  This routine can be used both for the attribute and
1515 * data fork, and does not modify the inode size, which is left to the caller.
1516 *
1517 * The transaction passed to this routine must have made a permanent log
1518 * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1519 * given transaction and start new ones, so make sure everything involved in
1520 * the transaction is tidy before calling here.  Some transaction will be
1521 * returned to the caller to be committed.  The incoming transaction must
1522 * already include the inode, and both inode locks must be held exclusively.
1523 * The inode must also be "held" within the transaction.  On return the inode
1524 * will be "held" within the returned transaction.  This routine does NOT
1525 * require any disk space to be reserved for it within the transaction.
1526 *
1527 * If we get an error, we must return with the inode locked and linked into the
1528 * current transaction. This keeps things simple for the higher level code,
1529 * because it always knows that the inode is locked and held in the transaction
1530 * that returns to it whether errors occur or not.  We don't mark the inode
1531 * dirty on error so that transactions can be easily aborted if possible.
1532 */
1533int
1534xfs_itruncate_extents(
1535	struct xfs_trans	**tpp,
1536	struct xfs_inode	*ip,
1537	int			whichfork,
1538	xfs_fsize_t		new_size)
1539{
1540	struct xfs_mount	*mp = ip->i_mount;
1541	struct xfs_trans	*tp = *tpp;
1542	xfs_bmap_free_t		free_list;
1543	xfs_fsblock_t		first_block;
1544	xfs_fileoff_t		first_unmap_block;
1545	xfs_fileoff_t		last_block;
1546	xfs_filblks_t		unmap_len;
1547	int			error = 0;
1548	int			done = 0;
1549
1550	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1551	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1552	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1553	ASSERT(new_size <= XFS_ISIZE(ip));
1554	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1555	ASSERT(ip->i_itemp != NULL);
1556	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1557	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1558
1559	trace_xfs_itruncate_extents_start(ip, new_size);
1560
1561	/*
1562	 * Since it is possible for space to become allocated beyond
1563	 * the end of the file (in a crash where the space is allocated
1564	 * but the inode size is not yet updated), simply remove any
1565	 * blocks which show up between the new EOF and the maximum
1566	 * possible file size.  If the first block to be removed is
1567	 * beyond the maximum file size (ie it is the same as last_block),
1568	 * then there is nothing to do.
1569	 */
1570	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1571	last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1572	if (first_unmap_block == last_block)
1573		return 0;
1574
1575	ASSERT(first_unmap_block < last_block);
1576	unmap_len = last_block - first_unmap_block + 1;
1577	while (!done) {
1578		xfs_bmap_init(&free_list, &first_block);
1579		error = xfs_bunmapi(tp, ip,
1580				    first_unmap_block, unmap_len,
1581				    xfs_bmapi_aflag(whichfork),
1582				    XFS_ITRUNC_MAX_EXTENTS,
1583				    &first_block, &free_list,
1584				    &done);
1585		if (error)
1586			goto out_bmap_cancel;
1587
1588		/*
1589		 * Duplicate the transaction that has the permanent
1590		 * reservation and commit the old transaction.
1591		 */
1592		error = xfs_bmap_finish(&tp, &free_list, ip);
 
1593		if (error)
1594			goto out_bmap_cancel;
1595
1596		error = xfs_trans_roll(&tp, ip);
 
 
 
 
 
 
 
 
1597		if (error)
1598			goto out;
 
 
1599	}
1600
1601	/*
1602	 * Always re-log the inode so that our permanent transaction can keep
1603	 * on rolling it forward in the log.
1604	 */
1605	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1606
1607	trace_xfs_itruncate_extents_end(ip, new_size);
1608
1609out:
1610	*tpp = tp;
1611	return error;
1612out_bmap_cancel:
1613	/*
1614	 * If the bunmapi call encounters an error, return to the caller where
1615	 * the transaction can be properly aborted.  We just need to make sure
1616	 * we're not holding any resources that we were not when we came in.
1617	 */
1618	xfs_bmap_cancel(&free_list);
1619	goto out;
1620}
1621
1622int
1623xfs_release(
1624	xfs_inode_t	*ip)
1625{
1626	xfs_mount_t	*mp = ip->i_mount;
1627	int		error;
1628
1629	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1630		return 0;
1631
1632	/* If this is a read-only mount, don't do this (would generate I/O) */
1633	if (mp->m_flags & XFS_MOUNT_RDONLY)
1634		return 0;
1635
1636	if (!XFS_FORCED_SHUTDOWN(mp)) {
1637		int truncated;
1638
1639		/*
1640		 * If we previously truncated this file and removed old data
1641		 * in the process, we want to initiate "early" writeout on
1642		 * the last close.  This is an attempt to combat the notorious
1643		 * NULL files problem which is particularly noticeable from a
1644		 * truncate down, buffered (re-)write (delalloc), followed by
1645		 * a crash.  What we are effectively doing here is
1646		 * significantly reducing the time window where we'd otherwise
1647		 * be exposed to that problem.
1648		 */
1649		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1650		if (truncated) {
1651			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1652			if (ip->i_delayed_blks > 0) {
1653				error = filemap_flush(VFS_I(ip)->i_mapping);
1654				if (error)
1655					return error;
1656			}
1657		}
1658	}
1659
1660	if (VFS_I(ip)->i_nlink == 0)
1661		return 0;
1662
1663	if (xfs_can_free_eofblocks(ip, false)) {
1664
1665		/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1666		 * If we can't get the iolock just skip truncating the blocks
1667		 * past EOF because we could deadlock with the mmap_sem
1668		 * otherwise.  We'll get another chance to drop them once the
1669		 * last reference to the inode is dropped, so we'll never leak
1670		 * blocks permanently.
1671		 *
1672		 * Further, check if the inode is being opened, written and
1673		 * closed frequently and we have delayed allocation blocks
1674		 * outstanding (e.g. streaming writes from the NFS server),
1675		 * truncating the blocks past EOF will cause fragmentation to
1676		 * occur.
1677		 *
1678		 * In this case don't do the truncation, either, but we have to
1679		 * be careful how we detect this case. Blocks beyond EOF show
1680		 * up as i_delayed_blks even when the inode is clean, so we
1681		 * need to truncate them away first before checking for a dirty
1682		 * release. Hence on the first dirty close we will still remove
1683		 * the speculative allocation, but after that we will leave it
1684		 * in place.
1685		 */
1686		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1687			return 0;
1688
1689		error = xfs_free_eofblocks(mp, ip, true);
1690		if (error && error != -EAGAIN)
1691			return error;
1692
1693		/* delalloc blocks after truncation means it really is dirty */
1694		if (ip->i_delayed_blks)
1695			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1696	}
1697	return 0;
1698}
1699
1700/*
1701 * xfs_inactive_truncate
1702 *
1703 * Called to perform a truncate when an inode becomes unlinked.
1704 */
1705STATIC int
1706xfs_inactive_truncate(
1707	struct xfs_inode *ip)
1708{
1709	struct xfs_mount	*mp = ip->i_mount;
1710	struct xfs_trans	*tp;
1711	int			error;
1712
1713	tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1714	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1715	if (error) {
1716		ASSERT(XFS_FORCED_SHUTDOWN(mp));
1717		xfs_trans_cancel(tp);
1718		return error;
1719	}
1720
1721	xfs_ilock(ip, XFS_ILOCK_EXCL);
1722	xfs_trans_ijoin(tp, ip, 0);
1723
1724	/*
1725	 * Log the inode size first to prevent stale data exposure in the event
1726	 * of a system crash before the truncate completes. See the related
1727	 * comment in xfs_setattr_size() for details.
1728	 */
1729	ip->i_d.di_size = 0;
1730	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1731
1732	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1733	if (error)
1734		goto error_trans_cancel;
1735
1736	ASSERT(ip->i_d.di_nextents == 0);
1737
1738	error = xfs_trans_commit(tp);
1739	if (error)
1740		goto error_unlock;
1741
1742	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1743	return 0;
1744
1745error_trans_cancel:
1746	xfs_trans_cancel(tp);
1747error_unlock:
1748	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1749	return error;
1750}
1751
1752/*
1753 * xfs_inactive_ifree()
1754 *
1755 * Perform the inode free when an inode is unlinked.
1756 */
1757STATIC int
1758xfs_inactive_ifree(
1759	struct xfs_inode *ip)
1760{
1761	xfs_bmap_free_t		free_list;
1762	xfs_fsblock_t		first_block;
1763	struct xfs_mount	*mp = ip->i_mount;
1764	struct xfs_trans	*tp;
1765	int			error;
1766
1767	tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1768
1769	/*
1770	 * The ifree transaction might need to allocate blocks for record
1771	 * insertion to the finobt. We don't want to fail here at ENOSPC, so
1772	 * allow ifree to dip into the reserved block pool if necessary.
1773	 *
1774	 * Freeing large sets of inodes generally means freeing inode chunks,
1775	 * directory and file data blocks, so this should be relatively safe.
1776	 * Only under severe circumstances should it be possible to free enough
1777	 * inodes to exhaust the reserve block pool via finobt expansion while
1778	 * at the same time not creating free space in the filesystem.
1779	 *
1780	 * Send a warning if the reservation does happen to fail, as the inode
1781	 * now remains allocated and sits on the unlinked list until the fs is
1782	 * repaired.
1783	 */
1784	tp->t_flags |= XFS_TRANS_RESERVE;
1785	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree,
1786				  XFS_IFREE_SPACE_RES(mp), 0);
 
 
 
 
1787	if (error) {
1788		if (error == -ENOSPC) {
1789			xfs_warn_ratelimited(mp,
1790			"Failed to remove inode(s) from unlinked list. "
1791			"Please free space, unmount and run xfs_repair.");
1792		} else {
1793			ASSERT(XFS_FORCED_SHUTDOWN(mp));
1794		}
1795		xfs_trans_cancel(tp);
1796		return error;
1797	}
1798
1799	xfs_ilock(ip, XFS_ILOCK_EXCL);
1800	xfs_trans_ijoin(tp, ip, 0);
1801
1802	xfs_bmap_init(&free_list, &first_block);
1803	error = xfs_ifree(tp, ip, &free_list);
1804	if (error) {
1805		/*
1806		 * If we fail to free the inode, shut down.  The cancel
1807		 * might do that, we need to make sure.  Otherwise the
1808		 * inode might be lost for a long time or forever.
1809		 */
1810		if (!XFS_FORCED_SHUTDOWN(mp)) {
1811			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1812				__func__, error);
1813			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1814		}
1815		xfs_trans_cancel(tp);
1816		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1817		return error;
1818	}
1819
1820	/*
1821	 * Credit the quota account(s). The inode is gone.
1822	 */
1823	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1824
1825	/*
1826	 * Just ignore errors at this point.  There is nothing we can do except
1827	 * to try to keep going. Make sure it's not a silent error.
1828	 */
1829	error = xfs_bmap_finish(&tp, &free_list, NULL);
1830	if (error) {
1831		xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1832			__func__, error);
1833		xfs_bmap_cancel(&free_list);
1834	}
1835	error = xfs_trans_commit(tp);
1836	if (error)
1837		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1838			__func__, error);
1839
1840	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1841	return 0;
1842}
1843
1844/*
1845 * xfs_inactive
1846 *
1847 * This is called when the vnode reference count for the vnode
1848 * goes to zero.  If the file has been unlinked, then it must
1849 * now be truncated.  Also, we clear all of the read-ahead state
1850 * kept for the inode here since the file is now closed.
1851 */
1852void
1853xfs_inactive(
1854	xfs_inode_t	*ip)
1855{
1856	struct xfs_mount	*mp;
 
1857	int			error;
1858	int			truncate = 0;
1859
1860	/*
1861	 * If the inode is already free, then there can be nothing
1862	 * to clean up here.
1863	 */
1864	if (VFS_I(ip)->i_mode == 0) {
1865		ASSERT(ip->i_df.if_real_bytes == 0);
1866		ASSERT(ip->i_df.if_broot_bytes == 0);
1867		return;
1868	}
1869
1870	mp = ip->i_mount;
 
1871
1872	/* If this is a read-only mount, don't do this (would generate I/O) */
1873	if (mp->m_flags & XFS_MOUNT_RDONLY)
1874		return;
1875
 
 
 
 
1876	if (VFS_I(ip)->i_nlink != 0) {
1877		/*
1878		 * force is true because we are evicting an inode from the
1879		 * cache. Post-eof blocks must be freed, lest we end up with
1880		 * broken free space accounting.
 
 
 
 
1881		 */
1882		if (xfs_can_free_eofblocks(ip, true))
1883			xfs_free_eofblocks(mp, ip, false);
1884
1885		return;
1886	}
1887
1888	if (S_ISREG(VFS_I(ip)->i_mode) &&
1889	    (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1890	     ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1891		truncate = 1;
1892
1893	error = xfs_qm_dqattach(ip, 0);
1894	if (error)
1895		return;
1896
1897	if (S_ISLNK(VFS_I(ip)->i_mode))
1898		error = xfs_inactive_symlink(ip);
1899	else if (truncate)
1900		error = xfs_inactive_truncate(ip);
1901	if (error)
1902		return;
1903
1904	/*
1905	 * If there are attributes associated with the file then blow them away
1906	 * now.  The code calls a routine that recursively deconstructs the
1907	 * attribute fork. If also blows away the in-core attribute fork.
1908	 */
1909	if (XFS_IFORK_Q(ip)) {
1910		error = xfs_attr_inactive(ip);
1911		if (error)
1912			return;
1913	}
1914
1915	ASSERT(!ip->i_afp);
1916	ASSERT(ip->i_d.di_anextents == 0);
1917	ASSERT(ip->i_d.di_forkoff == 0);
1918
1919	/*
1920	 * Free the inode.
1921	 */
1922	error = xfs_inactive_ifree(ip);
1923	if (error)
1924		return;
1925
1926	/*
1927	 * Release the dquots held by inode, if any.
1928	 */
1929	xfs_qm_dqdetach(ip);
1930}
1931
1932/*
1933 * This is called when the inode's link count goes to 0 or we are creating a
1934 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1935 * set to true as the link count is dropped to zero by the VFS after we've
1936 * created the file successfully, so we have to add it to the unlinked list
1937 * while the link count is non-zero.
1938 *
1939 * We place the on-disk inode on a list in the AGI.  It will be pulled from this
1940 * list when the inode is freed.
1941 */
1942STATIC int
1943xfs_iunlink(
1944	struct xfs_trans *tp,
1945	struct xfs_inode *ip)
1946{
1947	xfs_mount_t	*mp = tp->t_mountp;
1948	xfs_agi_t	*agi;
1949	xfs_dinode_t	*dip;
1950	xfs_buf_t	*agibp;
1951	xfs_buf_t	*ibp;
1952	xfs_agino_t	agino;
1953	short		bucket_index;
1954	int		offset;
1955	int		error;
1956
1957	ASSERT(VFS_I(ip)->i_mode != 0);
1958
1959	/*
1960	 * Get the agi buffer first.  It ensures lock ordering
1961	 * on the list.
1962	 */
1963	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1964	if (error)
1965		return error;
1966	agi = XFS_BUF_TO_AGI(agibp);
1967
1968	/*
1969	 * Get the index into the agi hash table for the
1970	 * list this inode will go on.
1971	 */
1972	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1973	ASSERT(agino != 0);
1974	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1975	ASSERT(agi->agi_unlinked[bucket_index]);
1976	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1977
1978	if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1979		/*
1980		 * There is already another inode in the bucket we need
1981		 * to add ourselves to.  Add us at the front of the list.
1982		 * Here we put the head pointer into our next pointer,
1983		 * and then we fall through to point the head at us.
1984		 */
1985		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1986				       0, 0);
1987		if (error)
1988			return error;
1989
1990		ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1991		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1992		offset = ip->i_imap.im_boffset +
1993			offsetof(xfs_dinode_t, di_next_unlinked);
1994
1995		/* need to recalc the inode CRC if appropriate */
1996		xfs_dinode_calc_crc(mp, dip);
1997
1998		xfs_trans_inode_buf(tp, ibp);
1999		xfs_trans_log_buf(tp, ibp, offset,
2000				  (offset + sizeof(xfs_agino_t) - 1));
2001		xfs_inobp_check(mp, ibp);
2002	}
2003
2004	/*
2005	 * Point the bucket head pointer at the inode being inserted.
2006	 */
2007	ASSERT(agino != 0);
2008	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
2009	offset = offsetof(xfs_agi_t, agi_unlinked) +
2010		(sizeof(xfs_agino_t) * bucket_index);
2011	xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
2012	xfs_trans_log_buf(tp, agibp, offset,
2013			  (offset + sizeof(xfs_agino_t) - 1));
2014	return 0;
2015}
2016
2017/*
2018 * Pull the on-disk inode from the AGI unlinked list.
2019 */
2020STATIC int
2021xfs_iunlink_remove(
2022	xfs_trans_t	*tp,
2023	xfs_inode_t	*ip)
2024{
2025	xfs_ino_t	next_ino;
2026	xfs_mount_t	*mp;
2027	xfs_agi_t	*agi;
2028	xfs_dinode_t	*dip;
2029	xfs_buf_t	*agibp;
2030	xfs_buf_t	*ibp;
2031	xfs_agnumber_t	agno;
2032	xfs_agino_t	agino;
2033	xfs_agino_t	next_agino;
2034	xfs_buf_t	*last_ibp;
2035	xfs_dinode_t	*last_dip = NULL;
2036	short		bucket_index;
2037	int		offset, last_offset = 0;
2038	int		error;
2039
2040	mp = tp->t_mountp;
2041	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2042
2043	/*
2044	 * Get the agi buffer first.  It ensures lock ordering
2045	 * on the list.
2046	 */
2047	error = xfs_read_agi(mp, tp, agno, &agibp);
2048	if (error)
2049		return error;
2050
2051	agi = XFS_BUF_TO_AGI(agibp);
2052
2053	/*
2054	 * Get the index into the agi hash table for the
2055	 * list this inode will go on.
2056	 */
2057	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2058	ASSERT(agino != 0);
2059	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2060	ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2061	ASSERT(agi->agi_unlinked[bucket_index]);
2062
2063	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2064		/*
2065		 * We're at the head of the list.  Get the inode's on-disk
2066		 * buffer to see if there is anyone after us on the list.
2067		 * Only modify our next pointer if it is not already NULLAGINO.
2068		 * This saves us the overhead of dealing with the buffer when
2069		 * there is no need to change it.
2070		 */
2071		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2072				       0, 0);
2073		if (error) {
2074			xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2075				__func__, error);
2076			return error;
2077		}
2078		next_agino = be32_to_cpu(dip->di_next_unlinked);
2079		ASSERT(next_agino != 0);
2080		if (next_agino != NULLAGINO) {
2081			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2082			offset = ip->i_imap.im_boffset +
2083				offsetof(xfs_dinode_t, di_next_unlinked);
2084
2085			/* need to recalc the inode CRC if appropriate */
2086			xfs_dinode_calc_crc(mp, dip);
2087
2088			xfs_trans_inode_buf(tp, ibp);
2089			xfs_trans_log_buf(tp, ibp, offset,
2090					  (offset + sizeof(xfs_agino_t) - 1));
2091			xfs_inobp_check(mp, ibp);
2092		} else {
2093			xfs_trans_brelse(tp, ibp);
2094		}
2095		/*
2096		 * Point the bucket head pointer at the next inode.
2097		 */
2098		ASSERT(next_agino != 0);
2099		ASSERT(next_agino != agino);
2100		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2101		offset = offsetof(xfs_agi_t, agi_unlinked) +
2102			(sizeof(xfs_agino_t) * bucket_index);
2103		xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
2104		xfs_trans_log_buf(tp, agibp, offset,
2105				  (offset + sizeof(xfs_agino_t) - 1));
2106	} else {
2107		/*
2108		 * We need to search the list for the inode being freed.
2109		 */
2110		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2111		last_ibp = NULL;
2112		while (next_agino != agino) {
2113			struct xfs_imap	imap;
2114
2115			if (last_ibp)
2116				xfs_trans_brelse(tp, last_ibp);
2117
2118			imap.im_blkno = 0;
2119			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2120
2121			error = xfs_imap(mp, tp, next_ino, &imap, 0);
2122			if (error) {
2123				xfs_warn(mp,
2124	"%s: xfs_imap returned error %d.",
2125					 __func__, error);
2126				return error;
2127			}
2128
2129			error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2130					       &last_ibp, 0, 0);
2131			if (error) {
2132				xfs_warn(mp,
2133	"%s: xfs_imap_to_bp returned error %d.",
2134					__func__, error);
2135				return error;
2136			}
2137
2138			last_offset = imap.im_boffset;
2139			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2140			ASSERT(next_agino != NULLAGINO);
2141			ASSERT(next_agino != 0);
2142		}
2143
2144		/*
2145		 * Now last_ibp points to the buffer previous to us on the
2146		 * unlinked list.  Pull us from the list.
2147		 */
2148		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2149				       0, 0);
2150		if (error) {
2151			xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2152				__func__, error);
2153			return error;
2154		}
2155		next_agino = be32_to_cpu(dip->di_next_unlinked);
2156		ASSERT(next_agino != 0);
2157		ASSERT(next_agino != agino);
2158		if (next_agino != NULLAGINO) {
2159			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2160			offset = ip->i_imap.im_boffset +
2161				offsetof(xfs_dinode_t, di_next_unlinked);
2162
2163			/* need to recalc the inode CRC if appropriate */
2164			xfs_dinode_calc_crc(mp, dip);
2165
2166			xfs_trans_inode_buf(tp, ibp);
2167			xfs_trans_log_buf(tp, ibp, offset,
2168					  (offset + sizeof(xfs_agino_t) - 1));
2169			xfs_inobp_check(mp, ibp);
2170		} else {
2171			xfs_trans_brelse(tp, ibp);
2172		}
2173		/*
2174		 * Point the previous inode on the list to the next inode.
2175		 */
2176		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2177		ASSERT(next_agino != 0);
2178		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2179
2180		/* need to recalc the inode CRC if appropriate */
2181		xfs_dinode_calc_crc(mp, last_dip);
2182
2183		xfs_trans_inode_buf(tp, last_ibp);
2184		xfs_trans_log_buf(tp, last_ibp, offset,
2185				  (offset + sizeof(xfs_agino_t) - 1));
2186		xfs_inobp_check(mp, last_ibp);
2187	}
2188	return 0;
2189}
2190
2191/*
2192 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2193 * inodes that are in memory - they all must be marked stale and attached to
2194 * the cluster buffer.
2195 */
2196STATIC int
2197xfs_ifree_cluster(
2198	xfs_inode_t		*free_ip,
2199	xfs_trans_t		*tp,
2200	struct xfs_icluster	*xic)
2201{
2202	xfs_mount_t		*mp = free_ip->i_mount;
2203	int			blks_per_cluster;
2204	int			inodes_per_cluster;
2205	int			nbufs;
2206	int			i, j;
2207	int			ioffset;
2208	xfs_daddr_t		blkno;
2209	xfs_buf_t		*bp;
2210	xfs_inode_t		*ip;
2211	xfs_inode_log_item_t	*iip;
2212	xfs_log_item_t		*lip;
2213	struct xfs_perag	*pag;
2214	xfs_ino_t		inum;
2215
2216	inum = xic->first_ino;
2217	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2218	blks_per_cluster = xfs_icluster_size_fsb(mp);
2219	inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2220	nbufs = mp->m_ialloc_blks / blks_per_cluster;
2221
2222	for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2223		/*
2224		 * The allocation bitmap tells us which inodes of the chunk were
2225		 * physically allocated. Skip the cluster if an inode falls into
2226		 * a sparse region.
2227		 */
2228		ioffset = inum - xic->first_ino;
2229		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2230			ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
2231			continue;
2232		}
2233
2234		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2235					 XFS_INO_TO_AGBNO(mp, inum));
2236
2237		/*
2238		 * We obtain and lock the backing buffer first in the process
2239		 * here, as we have to ensure that any dirty inode that we
2240		 * can't get the flush lock on is attached to the buffer.
2241		 * If we scan the in-memory inodes first, then buffer IO can
2242		 * complete before we get a lock on it, and hence we may fail
2243		 * to mark all the active inodes on the buffer stale.
2244		 */
2245		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2246					mp->m_bsize * blks_per_cluster,
2247					XBF_UNMAPPED);
2248
2249		if (!bp)
2250			return -ENOMEM;
2251
2252		/*
2253		 * This buffer may not have been correctly initialised as we
2254		 * didn't read it from disk. That's not important because we are
2255		 * only using to mark the buffer as stale in the log, and to
2256		 * attach stale cached inodes on it. That means it will never be
2257		 * dispatched for IO. If it is, we want to know about it, and we
2258		 * want it to fail. We can acheive this by adding a write
2259		 * verifier to the buffer.
2260		 */
2261		 bp->b_ops = &xfs_inode_buf_ops;
2262
2263		/*
2264		 * Walk the inodes already attached to the buffer and mark them
2265		 * stale. These will all have the flush locks held, so an
2266		 * in-memory inode walk can't lock them. By marking them all
2267		 * stale first, we will not attempt to lock them in the loop
2268		 * below as the XFS_ISTALE flag will be set.
2269		 */
2270		lip = bp->b_fspriv;
2271		while (lip) {
2272			if (lip->li_type == XFS_LI_INODE) {
2273				iip = (xfs_inode_log_item_t *)lip;
2274				ASSERT(iip->ili_logged == 1);
2275				lip->li_cb = xfs_istale_done;
2276				xfs_trans_ail_copy_lsn(mp->m_ail,
2277							&iip->ili_flush_lsn,
2278							&iip->ili_item.li_lsn);
2279				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2280			}
2281			lip = lip->li_bio_list;
2282		}
2283
2284
2285		/*
2286		 * For each inode in memory attempt to add it to the inode
2287		 * buffer and set it up for being staled on buffer IO
2288		 * completion.  This is safe as we've locked out tail pushing
2289		 * and flushing by locking the buffer.
2290		 *
2291		 * We have already marked every inode that was part of a
2292		 * transaction stale above, which means there is no point in
2293		 * even trying to lock them.
2294		 */
2295		for (i = 0; i < inodes_per_cluster; i++) {
2296retry:
2297			rcu_read_lock();
2298			ip = radix_tree_lookup(&pag->pag_ici_root,
2299					XFS_INO_TO_AGINO(mp, (inum + i)));
2300
2301			/* Inode not in memory, nothing to do */
2302			if (!ip) {
2303				rcu_read_unlock();
2304				continue;
2305			}
2306
2307			/*
2308			 * because this is an RCU protected lookup, we could
2309			 * find a recently freed or even reallocated inode
2310			 * during the lookup. We need to check under the
2311			 * i_flags_lock for a valid inode here. Skip it if it
2312			 * is not valid, the wrong inode or stale.
2313			 */
2314			spin_lock(&ip->i_flags_lock);
2315			if (ip->i_ino != inum + i ||
2316			    __xfs_iflags_test(ip, XFS_ISTALE)) {
2317				spin_unlock(&ip->i_flags_lock);
2318				rcu_read_unlock();
2319				continue;
2320			}
2321			spin_unlock(&ip->i_flags_lock);
2322
2323			/*
2324			 * Don't try to lock/unlock the current inode, but we
2325			 * _cannot_ skip the other inodes that we did not find
2326			 * in the list attached to the buffer and are not
2327			 * already marked stale. If we can't lock it, back off
2328			 * and retry.
2329			 */
2330			if (ip != free_ip &&
2331			    !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2332				rcu_read_unlock();
2333				delay(1);
2334				goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2335			}
2336			rcu_read_unlock();
2337
2338			xfs_iflock(ip);
2339			xfs_iflags_set(ip, XFS_ISTALE);
2340
2341			/*
2342			 * we don't need to attach clean inodes or those only
2343			 * with unlogged changes (which we throw away, anyway).
2344			 */
2345			iip = ip->i_itemp;
2346			if (!iip || xfs_inode_clean(ip)) {
2347				ASSERT(ip != free_ip);
2348				xfs_ifunlock(ip);
2349				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2350				continue;
2351			}
2352
2353			iip->ili_last_fields = iip->ili_fields;
2354			iip->ili_fields = 0;
2355			iip->ili_fsync_fields = 0;
2356			iip->ili_logged = 1;
2357			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2358						&iip->ili_item.li_lsn);
2359
2360			xfs_buf_attach_iodone(bp, xfs_istale_done,
2361						  &iip->ili_item);
2362
2363			if (ip != free_ip)
2364				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2365		}
2366
2367		xfs_trans_stale_inode_buf(tp, bp);
2368		xfs_trans_binval(tp, bp);
2369	}
2370
2371	xfs_perag_put(pag);
2372	return 0;
2373}
2374
2375/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2376 * This is called to return an inode to the inode free list.
2377 * The inode should already be truncated to 0 length and have
2378 * no pages associated with it.  This routine also assumes that
2379 * the inode is already a part of the transaction.
2380 *
2381 * The on-disk copy of the inode will have been added to the list
2382 * of unlinked inodes in the AGI. We need to remove the inode from
2383 * that list atomically with respect to freeing it here.
2384 */
2385int
2386xfs_ifree(
2387	xfs_trans_t	*tp,
2388	xfs_inode_t	*ip,
2389	xfs_bmap_free_t	*flist)
2390{
2391	int			error;
2392	struct xfs_icluster	xic = { 0 };
2393
2394	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2395	ASSERT(VFS_I(ip)->i_nlink == 0);
2396	ASSERT(ip->i_d.di_nextents == 0);
2397	ASSERT(ip->i_d.di_anextents == 0);
2398	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2399	ASSERT(ip->i_d.di_nblocks == 0);
2400
2401	/*
2402	 * Pull the on-disk inode from the AGI unlinked list.
2403	 */
2404	error = xfs_iunlink_remove(tp, ip);
2405	if (error)
2406		return error;
2407
2408	error = xfs_difree(tp, ip->i_ino, flist, &xic);
2409	if (error)
2410		return error;
2411
 
 
 
2412	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2413	ip->i_d.di_flags = 0;
 
2414	ip->i_d.di_dmevmask = 0;
2415	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2416	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2417	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
 
 
 
 
2418	/*
2419	 * Bump the generation count so no one will be confused
2420	 * by reincarnations of this inode.
2421	 */
2422	VFS_I(ip)->i_generation++;
2423	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2424
2425	if (xic.deleted)
2426		error = xfs_ifree_cluster(ip, tp, &xic);
2427
2428	return error;
2429}
2430
2431/*
2432 * This is called to unpin an inode.  The caller must have the inode locked
2433 * in at least shared mode so that the buffer cannot be subsequently pinned
2434 * once someone is waiting for it to be unpinned.
2435 */
2436static void
2437xfs_iunpin(
2438	struct xfs_inode	*ip)
2439{
2440	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2441
2442	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2443
2444	/* Give the log a push to start the unpinning I/O */
2445	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2446
2447}
2448
2449static void
2450__xfs_iunpin_wait(
2451	struct xfs_inode	*ip)
2452{
2453	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2454	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2455
2456	xfs_iunpin(ip);
2457
2458	do {
2459		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2460		if (xfs_ipincount(ip))
2461			io_schedule();
2462	} while (xfs_ipincount(ip));
2463	finish_wait(wq, &wait.wait);
2464}
2465
2466void
2467xfs_iunpin_wait(
2468	struct xfs_inode	*ip)
2469{
2470	if (xfs_ipincount(ip))
2471		__xfs_iunpin_wait(ip);
2472}
2473
2474/*
2475 * Removing an inode from the namespace involves removing the directory entry
2476 * and dropping the link count on the inode. Removing the directory entry can
2477 * result in locking an AGF (directory blocks were freed) and removing a link
2478 * count can result in placing the inode on an unlinked list which results in
2479 * locking an AGI.
2480 *
2481 * The big problem here is that we have an ordering constraint on AGF and AGI
2482 * locking - inode allocation locks the AGI, then can allocate a new extent for
2483 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2484 * removes the inode from the unlinked list, requiring that we lock the AGI
2485 * first, and then freeing the inode can result in an inode chunk being freed
2486 * and hence freeing disk space requiring that we lock an AGF.
2487 *
2488 * Hence the ordering that is imposed by other parts of the code is AGI before
2489 * AGF. This means we cannot remove the directory entry before we drop the inode
2490 * reference count and put it on the unlinked list as this results in a lock
2491 * order of AGF then AGI, and this can deadlock against inode allocation and
2492 * freeing. Therefore we must drop the link counts before we remove the
2493 * directory entry.
2494 *
2495 * This is still safe from a transactional point of view - it is not until we
2496 * get to xfs_bmap_finish() that we have the possibility of multiple
2497 * transactions in this operation. Hence as long as we remove the directory
2498 * entry and drop the link count in the first transaction of the remove
2499 * operation, there are no transactional constraints on the ordering here.
2500 */
2501int
2502xfs_remove(
2503	xfs_inode_t             *dp,
2504	struct xfs_name		*name,
2505	xfs_inode_t		*ip)
2506{
2507	xfs_mount_t		*mp = dp->i_mount;
2508	xfs_trans_t             *tp = NULL;
2509	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2510	int                     error = 0;
2511	xfs_bmap_free_t         free_list;
2512	xfs_fsblock_t           first_block;
2513	uint			resblks;
2514
2515	trace_xfs_remove(dp, name);
2516
2517	if (XFS_FORCED_SHUTDOWN(mp))
2518		return -EIO;
2519
2520	error = xfs_qm_dqattach(dp, 0);
2521	if (error)
2522		goto std_return;
2523
2524	error = xfs_qm_dqattach(ip, 0);
2525	if (error)
2526		goto std_return;
2527
2528	if (is_dir)
2529		tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
2530	else
2531		tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
2532
2533	/*
2534	 * We try to get the real space reservation first,
2535	 * allowing for directory btree deletion(s) implying
2536	 * possible bmap insert(s).  If we can't get the space
2537	 * reservation then we use 0 instead, and avoid the bmap
2538	 * btree insert(s) in the directory code by, if the bmap
2539	 * insert tries to happen, instead trimming the LAST
2540	 * block from the directory.
2541	 */
2542	resblks = XFS_REMOVE_SPACE_RES(mp);
2543	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0);
2544	if (error == -ENOSPC) {
2545		resblks = 0;
2546		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0);
 
2547	}
2548	if (error) {
2549		ASSERT(error != -ENOSPC);
2550		goto out_trans_cancel;
2551	}
2552
2553	xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2554	xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2555
2556	xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2557	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2558
2559	/*
2560	 * If we're removing a directory perform some additional validation.
2561	 */
2562	if (is_dir) {
2563		ASSERT(VFS_I(ip)->i_nlink >= 2);
2564		if (VFS_I(ip)->i_nlink != 2) {
2565			error = -ENOTEMPTY;
2566			goto out_trans_cancel;
2567		}
2568		if (!xfs_dir_isempty(ip)) {
2569			error = -ENOTEMPTY;
2570			goto out_trans_cancel;
2571		}
2572
2573		/* Drop the link from ip's "..".  */
2574		error = xfs_droplink(tp, dp);
2575		if (error)
2576			goto out_trans_cancel;
2577
2578		/* Drop the "." link from ip to self.  */
2579		error = xfs_droplink(tp, ip);
2580		if (error)
2581			goto out_trans_cancel;
2582	} else {
2583		/*
2584		 * When removing a non-directory we need to log the parent
2585		 * inode here.  For a directory this is done implicitly
2586		 * by the xfs_droplink call for the ".." entry.
2587		 */
2588		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2589	}
2590	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2591
2592	/* Drop the link from dp to ip. */
2593	error = xfs_droplink(tp, ip);
2594	if (error)
2595		goto out_trans_cancel;
2596
2597	xfs_bmap_init(&free_list, &first_block);
2598	error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2599					&first_block, &free_list, resblks);
2600	if (error) {
2601		ASSERT(error != -ENOENT);
2602		goto out_bmap_cancel;
2603	}
2604
2605	/*
2606	 * If this is a synchronous mount, make sure that the
2607	 * remove transaction goes to disk before returning to
2608	 * the user.
2609	 */
2610	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2611		xfs_trans_set_sync(tp);
2612
2613	error = xfs_bmap_finish(&tp, &free_list, NULL);
2614	if (error)
2615		goto out_bmap_cancel;
2616
2617	error = xfs_trans_commit(tp);
2618	if (error)
2619		goto std_return;
2620
2621	if (is_dir && xfs_inode_is_filestream(ip))
2622		xfs_filestream_deassociate(ip);
2623
2624	return 0;
2625
2626 out_bmap_cancel:
2627	xfs_bmap_cancel(&free_list);
2628 out_trans_cancel:
2629	xfs_trans_cancel(tp);
2630 std_return:
2631	return error;
2632}
2633
2634/*
2635 * Enter all inodes for a rename transaction into a sorted array.
2636 */
2637#define __XFS_SORT_INODES	5
2638STATIC void
2639xfs_sort_for_rename(
2640	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2641	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2642	struct xfs_inode	*ip1,	/* in: inode of old entry */
2643	struct xfs_inode	*ip2,	/* in: inode of new entry */
2644	struct xfs_inode	*wip,	/* in: whiteout inode */
2645	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2646	int			*num_inodes)  /* in/out: inodes in array */
2647{
2648	int			i, j;
2649
2650	ASSERT(*num_inodes == __XFS_SORT_INODES);
2651	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2652
2653	/*
2654	 * i_tab contains a list of pointers to inodes.  We initialize
2655	 * the table here & we'll sort it.  We will then use it to
2656	 * order the acquisition of the inode locks.
2657	 *
2658	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2659	 */
2660	i = 0;
2661	i_tab[i++] = dp1;
2662	i_tab[i++] = dp2;
2663	i_tab[i++] = ip1;
2664	if (ip2)
2665		i_tab[i++] = ip2;
2666	if (wip)
2667		i_tab[i++] = wip;
2668	*num_inodes = i;
2669
2670	/*
2671	 * Sort the elements via bubble sort.  (Remember, there are at
2672	 * most 5 elements to sort, so this is adequate.)
2673	 */
2674	for (i = 0; i < *num_inodes; i++) {
2675		for (j = 1; j < *num_inodes; j++) {
2676			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2677				struct xfs_inode *temp = i_tab[j];
2678				i_tab[j] = i_tab[j-1];
2679				i_tab[j-1] = temp;
2680			}
2681		}
2682	}
2683}
2684
2685static int
2686xfs_finish_rename(
2687	struct xfs_trans	*tp,
2688	struct xfs_bmap_free	*free_list)
2689{
2690	int			error;
2691
2692	/*
2693	 * If this is a synchronous mount, make sure that the rename transaction
2694	 * goes to disk before returning to the user.
2695	 */
2696	if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2697		xfs_trans_set_sync(tp);
2698
2699	error = xfs_bmap_finish(&tp, free_list, NULL);
2700	if (error) {
2701		xfs_bmap_cancel(free_list);
2702		xfs_trans_cancel(tp);
2703		return error;
2704	}
2705
2706	return xfs_trans_commit(tp);
2707}
2708
2709/*
2710 * xfs_cross_rename()
2711 *
2712 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2713 */
2714STATIC int
2715xfs_cross_rename(
2716	struct xfs_trans	*tp,
2717	struct xfs_inode	*dp1,
2718	struct xfs_name		*name1,
2719	struct xfs_inode	*ip1,
2720	struct xfs_inode	*dp2,
2721	struct xfs_name		*name2,
2722	struct xfs_inode	*ip2,
2723	struct xfs_bmap_free	*free_list,
2724	xfs_fsblock_t		*first_block,
2725	int			spaceres)
2726{
2727	int		error = 0;
2728	int		ip1_flags = 0;
2729	int		ip2_flags = 0;
2730	int		dp2_flags = 0;
2731
2732	/* Swap inode number for dirent in first parent */
2733	error = xfs_dir_replace(tp, dp1, name1,
2734				ip2->i_ino,
2735				first_block, free_list, spaceres);
2736	if (error)
2737		goto out_trans_abort;
2738
2739	/* Swap inode number for dirent in second parent */
2740	error = xfs_dir_replace(tp, dp2, name2,
2741				ip1->i_ino,
2742				first_block, free_list, spaceres);
2743	if (error)
2744		goto out_trans_abort;
2745
2746	/*
2747	 * If we're renaming one or more directories across different parents,
2748	 * update the respective ".." entries (and link counts) to match the new
2749	 * parents.
2750	 */
2751	if (dp1 != dp2) {
2752		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2753
2754		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2755			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2756						dp1->i_ino, first_block,
2757						free_list, spaceres);
2758			if (error)
2759				goto out_trans_abort;
2760
2761			/* transfer ip2 ".." reference to dp1 */
2762			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2763				error = xfs_droplink(tp, dp2);
2764				if (error)
2765					goto out_trans_abort;
2766				error = xfs_bumplink(tp, dp1);
2767				if (error)
2768					goto out_trans_abort;
2769			}
2770
2771			/*
2772			 * Although ip1 isn't changed here, userspace needs
2773			 * to be warned about the change, so that applications
2774			 * relying on it (like backup ones), will properly
2775			 * notify the change
2776			 */
2777			ip1_flags |= XFS_ICHGTIME_CHG;
2778			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2779		}
2780
2781		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2782			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2783						dp2->i_ino, first_block,
2784						free_list, spaceres);
2785			if (error)
2786				goto out_trans_abort;
2787
2788			/* transfer ip1 ".." reference to dp2 */
2789			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2790				error = xfs_droplink(tp, dp1);
2791				if (error)
2792					goto out_trans_abort;
2793				error = xfs_bumplink(tp, dp2);
2794				if (error)
2795					goto out_trans_abort;
2796			}
2797
2798			/*
2799			 * Although ip2 isn't changed here, userspace needs
2800			 * to be warned about the change, so that applications
2801			 * relying on it (like backup ones), will properly
2802			 * notify the change
2803			 */
2804			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2805			ip2_flags |= XFS_ICHGTIME_CHG;
2806		}
2807	}
2808
2809	if (ip1_flags) {
2810		xfs_trans_ichgtime(tp, ip1, ip1_flags);
2811		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2812	}
2813	if (ip2_flags) {
2814		xfs_trans_ichgtime(tp, ip2, ip2_flags);
2815		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2816	}
2817	if (dp2_flags) {
2818		xfs_trans_ichgtime(tp, dp2, dp2_flags);
2819		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2820	}
2821	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2822	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2823	return xfs_finish_rename(tp, free_list);
2824
2825out_trans_abort:
2826	xfs_bmap_cancel(free_list);
2827	xfs_trans_cancel(tp);
2828	return error;
2829}
2830
2831/*
2832 * xfs_rename_alloc_whiteout()
2833 *
2834 * Return a referenced, unlinked, unlocked inode that that can be used as a
2835 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2836 * crash between allocating the inode and linking it into the rename transaction
2837 * recovery will free the inode and we won't leak it.
2838 */
2839static int
2840xfs_rename_alloc_whiteout(
2841	struct xfs_inode	*dp,
2842	struct xfs_inode	**wip)
2843{
2844	struct xfs_inode	*tmpfile;
2845	int			error;
2846
2847	error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2848	if (error)
2849		return error;
2850
2851	/*
2852	 * Prepare the tmpfile inode as if it were created through the VFS.
2853	 * Otherwise, the link increment paths will complain about nlink 0->1.
2854	 * Drop the link count as done by d_tmpfile(), complete the inode setup
2855	 * and flag it as linkable.
2856	 */
2857	drop_nlink(VFS_I(tmpfile));
 
2858	xfs_finish_inode_setup(tmpfile);
2859	VFS_I(tmpfile)->i_state |= I_LINKABLE;
2860
2861	*wip = tmpfile;
2862	return 0;
2863}
2864
2865/*
2866 * xfs_rename
2867 */
2868int
2869xfs_rename(
2870	struct xfs_inode	*src_dp,
2871	struct xfs_name		*src_name,
2872	struct xfs_inode	*src_ip,
2873	struct xfs_inode	*target_dp,
2874	struct xfs_name		*target_name,
2875	struct xfs_inode	*target_ip,
2876	unsigned int		flags)
2877{
2878	struct xfs_mount	*mp = src_dp->i_mount;
2879	struct xfs_trans	*tp;
2880	struct xfs_bmap_free	free_list;
2881	xfs_fsblock_t		first_block;
2882	struct xfs_inode	*wip = NULL;		/* whiteout inode */
2883	struct xfs_inode	*inodes[__XFS_SORT_INODES];
2884	int			num_inodes = __XFS_SORT_INODES;
2885	bool			new_parent = (src_dp != target_dp);
2886	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2887	int			spaceres;
2888	int			error;
2889
2890	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2891
2892	if ((flags & RENAME_EXCHANGE) && !target_ip)
2893		return -EINVAL;
2894
2895	/*
2896	 * If we are doing a whiteout operation, allocate the whiteout inode
2897	 * we will be placing at the target and ensure the type is set
2898	 * appropriately.
2899	 */
2900	if (flags & RENAME_WHITEOUT) {
2901		ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2902		error = xfs_rename_alloc_whiteout(target_dp, &wip);
2903		if (error)
2904			return error;
2905
2906		/* setup target dirent info as whiteout */
2907		src_name->type = XFS_DIR3_FT_CHRDEV;
2908	}
2909
2910	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2911				inodes, &num_inodes);
2912
2913	tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME);
2914	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2915	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0);
2916	if (error == -ENOSPC) {
2917		spaceres = 0;
2918		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0);
 
2919	}
2920	if (error)
2921		goto out_trans_cancel;
2922
2923	/*
2924	 * Attach the dquots to the inodes
2925	 */
2926	error = xfs_qm_vop_rename_dqattach(inodes);
2927	if (error)
2928		goto out_trans_cancel;
2929
2930	/*
2931	 * Lock all the participating inodes. Depending upon whether
2932	 * the target_name exists in the target directory, and
2933	 * whether the target directory is the same as the source
2934	 * directory, we can lock from 2 to 4 inodes.
2935	 */
2936	if (!new_parent)
2937		xfs_ilock(src_dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2938	else
2939		xfs_lock_two_inodes(src_dp, target_dp,
2940				    XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2941
2942	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2943
2944	/*
2945	 * Join all the inodes to the transaction. From this point on,
2946	 * we can rely on either trans_commit or trans_cancel to unlock
2947	 * them.
2948	 */
2949	xfs_trans_ijoin(tp, src_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2950	if (new_parent)
2951		xfs_trans_ijoin(tp, target_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2952	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2953	if (target_ip)
2954		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2955	if (wip)
2956		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
2957
2958	/*
2959	 * If we are using project inheritance, we only allow renames
2960	 * into our tree when the project IDs are the same; else the
2961	 * tree quota mechanism would be circumvented.
2962	 */
2963	if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2964		     (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2965		error = -EXDEV;
2966		goto out_trans_cancel;
2967	}
2968
2969	xfs_bmap_init(&free_list, &first_block);
2970
2971	/* RENAME_EXCHANGE is unique from here on. */
2972	if (flags & RENAME_EXCHANGE)
2973		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2974					target_dp, target_name, target_ip,
2975					&free_list, &first_block, spaceres);
2976
2977	/*
2978	 * Set up the target.
2979	 */
2980	if (target_ip == NULL) {
2981		/*
2982		 * If there's no space reservation, check the entry will
2983		 * fit before actually inserting it.
2984		 */
2985		if (!spaceres) {
2986			error = xfs_dir_canenter(tp, target_dp, target_name);
2987			if (error)
2988				goto out_trans_cancel;
2989		}
2990		/*
2991		 * If target does not exist and the rename crosses
2992		 * directories, adjust the target directory link count
2993		 * to account for the ".." reference from the new entry.
2994		 */
2995		error = xfs_dir_createname(tp, target_dp, target_name,
2996						src_ip->i_ino, &first_block,
2997						&free_list, spaceres);
2998		if (error)
2999			goto out_bmap_cancel;
3000
3001		xfs_trans_ichgtime(tp, target_dp,
3002					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3003
3004		if (new_parent && src_is_directory) {
3005			error = xfs_bumplink(tp, target_dp);
3006			if (error)
3007				goto out_bmap_cancel;
3008		}
3009	} else { /* target_ip != NULL */
3010		/*
3011		 * If target exists and it's a directory, check that both
3012		 * target and source are directories and that target can be
3013		 * destroyed, or that neither is a directory.
3014		 */
3015		if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
3016			/*
3017			 * Make sure target dir is empty.
3018			 */
3019			if (!(xfs_dir_isempty(target_ip)) ||
3020			    (VFS_I(target_ip)->i_nlink > 2)) {
3021				error = -EEXIST;
3022				goto out_trans_cancel;
3023			}
3024		}
3025
3026		/*
3027		 * Link the source inode under the target name.
3028		 * If the source inode is a directory and we are moving
3029		 * it across directories, its ".." entry will be
3030		 * inconsistent until we replace that down below.
3031		 *
3032		 * In case there is already an entry with the same
3033		 * name at the destination directory, remove it first.
3034		 */
3035		error = xfs_dir_replace(tp, target_dp, target_name,
3036					src_ip->i_ino,
3037					&first_block, &free_list, spaceres);
3038		if (error)
3039			goto out_bmap_cancel;
3040
3041		xfs_trans_ichgtime(tp, target_dp,
3042					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3043
3044		/*
3045		 * Decrement the link count on the target since the target
3046		 * dir no longer points to it.
3047		 */
3048		error = xfs_droplink(tp, target_ip);
3049		if (error)
3050			goto out_bmap_cancel;
3051
3052		if (src_is_directory) {
3053			/*
3054			 * Drop the link from the old "." entry.
3055			 */
3056			error = xfs_droplink(tp, target_ip);
3057			if (error)
3058				goto out_bmap_cancel;
3059		}
3060	} /* target_ip != NULL */
3061
3062	/*
3063	 * Remove the source.
3064	 */
3065	if (new_parent && src_is_directory) {
3066		/*
3067		 * Rewrite the ".." entry to point to the new
3068		 * directory.
3069		 */
3070		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3071					target_dp->i_ino,
3072					&first_block, &free_list, spaceres);
3073		ASSERT(error != -EEXIST);
3074		if (error)
3075			goto out_bmap_cancel;
3076	}
3077
3078	/*
3079	 * We always want to hit the ctime on the source inode.
3080	 *
3081	 * This isn't strictly required by the standards since the source
3082	 * inode isn't really being changed, but old unix file systems did
3083	 * it and some incremental backup programs won't work without it.
3084	 */
3085	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3086	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3087
3088	/*
3089	 * Adjust the link count on src_dp.  This is necessary when
3090	 * renaming a directory, either within one parent when
3091	 * the target existed, or across two parent directories.
3092	 */
3093	if (src_is_directory && (new_parent || target_ip != NULL)) {
3094
3095		/*
3096		 * Decrement link count on src_directory since the
3097		 * entry that's moved no longer points to it.
3098		 */
3099		error = xfs_droplink(tp, src_dp);
3100		if (error)
3101			goto out_bmap_cancel;
3102	}
3103
3104	/*
3105	 * For whiteouts, we only need to update the source dirent with the
3106	 * inode number of the whiteout inode rather than removing it
3107	 * altogether.
3108	 */
3109	if (wip) {
3110		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3111					&first_block, &free_list, spaceres);
3112	} else
3113		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3114					   &first_block, &free_list, spaceres);
3115	if (error)
3116		goto out_bmap_cancel;
3117
3118	/*
3119	 * For whiteouts, we need to bump the link count on the whiteout inode.
3120	 * This means that failures all the way up to this point leave the inode
3121	 * on the unlinked list and so cleanup is a simple matter of dropping
3122	 * the remaining reference to it. If we fail here after bumping the link
3123	 * count, we're shutting down the filesystem so we'll never see the
3124	 * intermediate state on disk.
3125	 */
3126	if (wip) {
3127		ASSERT(VFS_I(wip)->i_nlink == 0);
3128		error = xfs_bumplink(tp, wip);
3129		if (error)
3130			goto out_bmap_cancel;
3131		error = xfs_iunlink_remove(tp, wip);
3132		if (error)
3133			goto out_bmap_cancel;
3134		xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3135
3136		/*
3137		 * Now we have a real link, clear the "I'm a tmpfile" state
3138		 * flag from the inode so it doesn't accidentally get misused in
3139		 * future.
3140		 */
3141		VFS_I(wip)->i_state &= ~I_LINKABLE;
3142	}
3143
3144	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3145	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3146	if (new_parent)
3147		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3148
3149	error = xfs_finish_rename(tp, &free_list);
3150	if (wip)
3151		IRELE(wip);
3152	return error;
3153
3154out_bmap_cancel:
3155	xfs_bmap_cancel(&free_list);
3156out_trans_cancel:
3157	xfs_trans_cancel(tp);
 
3158	if (wip)
3159		IRELE(wip);
3160	return error;
3161}
3162
3163STATIC int
3164xfs_iflush_cluster(
3165	xfs_inode_t	*ip,
3166	xfs_buf_t	*bp)
3167{
3168	xfs_mount_t		*mp = ip->i_mount;
3169	struct xfs_perag	*pag;
3170	unsigned long		first_index, mask;
3171	unsigned long		inodes_per_cluster;
3172	int			ilist_size;
3173	xfs_inode_t		**ilist;
3174	xfs_inode_t		*iq;
3175	int			nr_found;
3176	int			clcount = 0;
3177	int			bufwasdelwri;
3178	int			i;
3179
3180	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3181
3182	inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3183	ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3184	ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
3185	if (!ilist)
3186		goto out_put;
3187
3188	mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3189	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3190	rcu_read_lock();
3191	/* really need a gang lookup range call here */
3192	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
3193					first_index, inodes_per_cluster);
3194	if (nr_found == 0)
3195		goto out_free;
3196
3197	for (i = 0; i < nr_found; i++) {
3198		iq = ilist[i];
3199		if (iq == ip)
3200			continue;
3201
3202		/*
3203		 * because this is an RCU protected lookup, we could find a
3204		 * recently freed or even reallocated inode during the lookup.
3205		 * We need to check under the i_flags_lock for a valid inode
3206		 * here. Skip it if it is not valid or the wrong inode.
3207		 */
3208		spin_lock(&ip->i_flags_lock);
3209		if (!ip->i_ino ||
3210		    (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
3211			spin_unlock(&ip->i_flags_lock);
3212			continue;
3213		}
3214		spin_unlock(&ip->i_flags_lock);
 
 
 
 
 
 
 
 
 
 
3215
3216		/*
3217		 * Do an un-protected check to see if the inode is dirty and
3218		 * is a candidate for flushing.  These checks will be repeated
3219		 * later after the appropriate locks are acquired.
3220		 */
3221		if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
3222			continue;
3223
3224		/*
3225		 * Try to get locks.  If any are unavailable or it is pinned,
3226		 * then this inode cannot be flushed and is skipped.
3227		 */
3228
3229		if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
3230			continue;
3231		if (!xfs_iflock_nowait(iq)) {
3232			xfs_iunlock(iq, XFS_ILOCK_SHARED);
3233			continue;
3234		}
3235		if (xfs_ipincount(iq)) {
3236			xfs_ifunlock(iq);
3237			xfs_iunlock(iq, XFS_ILOCK_SHARED);
 
 
 
 
 
 
 
 
 
 
 
 
 
3238			continue;
3239		}
3240
3241		/*
3242		 * arriving here means that this inode can be flushed.  First
3243		 * re-check that it's dirty before flushing.
3244		 */
3245		if (!xfs_inode_clean(iq)) {
3246			int	error;
3247			error = xfs_iflush_int(iq, bp);
3248			if (error) {
3249				xfs_iunlock(iq, XFS_ILOCK_SHARED);
3250				goto cluster_corrupt_out;
3251			}
3252			clcount++;
3253		} else {
3254			xfs_ifunlock(iq);
3255		}
3256		xfs_iunlock(iq, XFS_ILOCK_SHARED);
3257	}
3258
3259	if (clcount) {
3260		XFS_STATS_INC(mp, xs_icluster_flushcnt);
3261		XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3262	}
3263
3264out_free:
3265	rcu_read_unlock();
3266	kmem_free(ilist);
3267out_put:
3268	xfs_perag_put(pag);
3269	return 0;
3270
3271
3272cluster_corrupt_out:
3273	/*
3274	 * Corruption detected in the clustering loop.  Invalidate the
3275	 * inode buffer and shut down the filesystem.
3276	 */
3277	rcu_read_unlock();
3278	/*
3279	 * Clean up the buffer.  If it was delwri, just release it --
3280	 * brelse can handle it with no problems.  If not, shut down the
3281	 * filesystem before releasing the buffer.
3282	 */
3283	bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3284	if (bufwasdelwri)
3285		xfs_buf_relse(bp);
3286
3287	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3288
3289	if (!bufwasdelwri) {
3290		/*
3291		 * Just like incore_relse: if we have b_iodone functions,
3292		 * mark the buffer as an error and call them.  Otherwise
3293		 * mark it as stale and brelse.
3294		 */
3295		if (bp->b_iodone) {
3296			bp->b_flags &= ~XBF_DONE;
3297			xfs_buf_stale(bp);
3298			xfs_buf_ioerror(bp, -EIO);
3299			xfs_buf_ioend(bp);
3300		} else {
3301			xfs_buf_stale(bp);
3302			xfs_buf_relse(bp);
3303		}
3304	}
3305
3306	/*
3307	 * Unlocks the flush lock
3308	 */
3309	xfs_iflush_abort(iq, false);
3310	kmem_free(ilist);
3311	xfs_perag_put(pag);
3312	return -EFSCORRUPTED;
3313}
3314
3315/*
3316 * Flush dirty inode metadata into the backing buffer.
3317 *
3318 * The caller must have the inode lock and the inode flush lock held.  The
3319 * inode lock will still be held upon return to the caller, and the inode
3320 * flush lock will be released after the inode has reached the disk.
3321 *
3322 * The caller must write out the buffer returned in *bpp and release it.
3323 */
3324int
3325xfs_iflush(
3326	struct xfs_inode	*ip,
3327	struct xfs_buf		**bpp)
3328{
3329	struct xfs_mount	*mp = ip->i_mount;
3330	struct xfs_buf		*bp;
3331	struct xfs_dinode	*dip;
3332	int			error;
3333
3334	XFS_STATS_INC(mp, xs_iflush_count);
3335
3336	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3337	ASSERT(xfs_isiflocked(ip));
3338	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3339	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3340
3341	*bpp = NULL;
3342
3343	xfs_iunpin_wait(ip);
3344
3345	/*
3346	 * For stale inodes we cannot rely on the backing buffer remaining
3347	 * stale in cache for the remaining life of the stale inode and so
3348	 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3349	 * inodes below. We have to check this after ensuring the inode is
3350	 * unpinned so that it is safe to reclaim the stale inode after the
3351	 * flush call.
3352	 */
3353	if (xfs_iflags_test(ip, XFS_ISTALE)) {
3354		xfs_ifunlock(ip);
3355		return 0;
3356	}
3357
3358	/*
3359	 * This may have been unpinned because the filesystem is shutting
3360	 * down forcibly. If that's the case we must not write this inode
3361	 * to disk, because the log record didn't make it to disk.
3362	 *
3363	 * We also have to remove the log item from the AIL in this case,
3364	 * as we wait for an empty AIL as part of the unmount process.
3365	 */
3366	if (XFS_FORCED_SHUTDOWN(mp)) {
3367		error = -EIO;
3368		goto abort_out;
3369	}
3370
3371	/*
3372	 * Get the buffer containing the on-disk inode.
 
 
 
 
 
 
3373	 */
3374	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3375			       0);
3376	if (error || !bp) {
3377		xfs_ifunlock(ip);
3378		return error;
3379	}
 
 
3380
3381	/*
3382	 * First flush out the inode that xfs_iflush was called with.
3383	 */
3384	error = xfs_iflush_int(ip, bp);
3385	if (error)
3386		goto corrupt_out;
3387
3388	/*
3389	 * If the buffer is pinned then push on the log now so we won't
3390	 * get stuck waiting in the write for too long.
3391	 */
3392	if (xfs_buf_ispinned(bp))
3393		xfs_log_force(mp, 0);
3394
3395	/*
3396	 * inode clustering:
3397	 * see if other inodes can be gathered into this write
3398	 */
3399	error = xfs_iflush_cluster(ip, bp);
3400	if (error)
3401		goto cluster_corrupt_out;
3402
3403	*bpp = bp;
3404	return 0;
3405
3406corrupt_out:
3407	xfs_buf_relse(bp);
 
3408	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3409cluster_corrupt_out:
3410	error = -EFSCORRUPTED;
3411abort_out:
3412	/*
3413	 * Unlocks the flush lock
3414	 */
3415	xfs_iflush_abort(ip, false);
3416	return error;
3417}
3418
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3419STATIC int
3420xfs_iflush_int(
3421	struct xfs_inode	*ip,
3422	struct xfs_buf		*bp)
3423{
3424	struct xfs_inode_log_item *iip = ip->i_itemp;
3425	struct xfs_dinode	*dip;
3426	struct xfs_mount	*mp = ip->i_mount;
3427
3428	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3429	ASSERT(xfs_isiflocked(ip));
3430	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3431	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3432	ASSERT(iip != NULL && iip->ili_fields != 0);
3433	ASSERT(ip->i_d.di_version > 1);
3434
3435	/* set *dip = inode's place in the buffer */
3436	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3437
3438	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3439			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3440		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3441			"%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3442			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3443		goto corrupt_out;
3444	}
3445	if (S_ISREG(VFS_I(ip)->i_mode)) {
3446		if (XFS_TEST_ERROR(
3447		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3448		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3449		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3450			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3451				"%s: Bad regular inode %Lu, ptr 0x%p",
3452				__func__, ip->i_ino, ip);
3453			goto corrupt_out;
3454		}
3455	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3456		if (XFS_TEST_ERROR(
3457		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3458		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3459		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3460		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3461			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3462				"%s: Bad directory inode %Lu, ptr 0x%p",
3463				__func__, ip->i_ino, ip);
3464			goto corrupt_out;
3465		}
3466	}
3467	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3468				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3469				XFS_RANDOM_IFLUSH_5)) {
3470		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3471			"%s: detected corrupt incore inode %Lu, "
3472			"total extents = %d, nblocks = %Ld, ptr 0x%p",
3473			__func__, ip->i_ino,
3474			ip->i_d.di_nextents + ip->i_d.di_anextents,
3475			ip->i_d.di_nblocks, ip);
3476		goto corrupt_out;
3477	}
3478	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3479				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3480		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3481			"%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3482			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3483		goto corrupt_out;
3484	}
3485
3486	/*
3487	 * Inode item log recovery for v2 inodes are dependent on the
3488	 * di_flushiter count for correct sequencing. We bump the flush
3489	 * iteration count so we can detect flushes which postdate a log record
3490	 * during recovery. This is redundant as we now log every change and
3491	 * hence this can't happen but we need to still do it to ensure
3492	 * backwards compatibility with old kernels that predate logging all
3493	 * inode changes.
3494	 */
3495	if (ip->i_d.di_version < 3)
3496		ip->i_d.di_flushiter++;
3497
 
 
 
 
3498	/*
3499	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3500	 * copy out the core of the inode, because if the inode is dirty at all
3501	 * the core must be.
3502	 */
3503	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3504
3505	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3506	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3507		ip->i_d.di_flushiter = 0;
3508
3509	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3510	if (XFS_IFORK_Q(ip))
3511		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3512	xfs_inobp_check(mp, bp);
3513
3514	/*
3515	 * We've recorded everything logged in the inode, so we'd like to clear
3516	 * the ili_fields bits so we don't log and flush things unnecessarily.
3517	 * However, we can't stop logging all this information until the data
3518	 * we've copied into the disk buffer is written to disk.  If we did we
3519	 * might overwrite the copy of the inode in the log with all the data
3520	 * after re-logging only part of it, and in the face of a crash we
3521	 * wouldn't have all the data we need to recover.
3522	 *
3523	 * What we do is move the bits to the ili_last_fields field.  When
3524	 * logging the inode, these bits are moved back to the ili_fields field.
3525	 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3526	 * know that the information those bits represent is permanently on
3527	 * disk.  As long as the flush completes before the inode is logged
3528	 * again, then both ili_fields and ili_last_fields will be cleared.
3529	 *
3530	 * We can play with the ili_fields bits here, because the inode lock
3531	 * must be held exclusively in order to set bits there and the flush
3532	 * lock protects the ili_last_fields bits.  Set ili_logged so the flush
3533	 * done routine can tell whether or not to look in the AIL.  Also, store
3534	 * the current LSN of the inode so that we can tell whether the item has
3535	 * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
3536	 * need the AIL lock, because it is a 64 bit value that cannot be read
3537	 * atomically.
3538	 */
3539	iip->ili_last_fields = iip->ili_fields;
3540	iip->ili_fields = 0;
3541	iip->ili_fsync_fields = 0;
3542	iip->ili_logged = 1;
3543
3544	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3545				&iip->ili_item.li_lsn);
3546
3547	/*
3548	 * Attach the function xfs_iflush_done to the inode's
3549	 * buffer.  This will remove the inode from the AIL
3550	 * and unlock the inode's flush lock when the inode is
3551	 * completely written to disk.
3552	 */
3553	xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3554
3555	/* generate the checksum. */
3556	xfs_dinode_calc_crc(mp, dip);
3557
3558	ASSERT(bp->b_fspriv != NULL);
3559	ASSERT(bp->b_iodone != NULL);
3560	return 0;
3561
3562corrupt_out:
3563	return -EFSCORRUPTED;
3564}