Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Filesystem-level keyring for fscrypt
   4 *
   5 * Copyright 2019 Google LLC
   6 */
   7
   8/*
   9 * This file implements management of fscrypt master keys in the
  10 * filesystem-level keyring, including the ioctls:
  11 *
  12 * - FS_IOC_ADD_ENCRYPTION_KEY
  13 * - FS_IOC_REMOVE_ENCRYPTION_KEY
  14 * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS
  15 * - FS_IOC_GET_ENCRYPTION_KEY_STATUS
  16 *
  17 * See the "User API" section of Documentation/filesystems/fscrypt.rst for more
  18 * information about these ioctls.
  19 */
  20
  21#include <linux/unaligned.h>
  22#include <crypto/skcipher.h>
  23#include <linux/key-type.h>
  24#include <linux/random.h>
  25#include <linux/once.h>
  26#include <linux/seq_file.h>
  27
  28#include "fscrypt_private.h"
  29
  30/* The master encryption keys for a filesystem (->s_master_keys) */
  31struct fscrypt_keyring {
  32	/*
  33	 * Lock that protects ->key_hashtable.  It does *not* protect the
  34	 * fscrypt_master_key structs themselves.
  35	 */
  36	spinlock_t lock;
  37
  38	/* Hash table that maps fscrypt_key_specifier to fscrypt_master_key */
  39	struct hlist_head key_hashtable[128];
  40};
  41
  42static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret)
  43{
  44	fscrypt_destroy_hkdf(&secret->hkdf);
  45	memzero_explicit(secret, sizeof(*secret));
  46}
  47
  48static void move_master_key_secret(struct fscrypt_master_key_secret *dst,
  49				   struct fscrypt_master_key_secret *src)
  50{
  51	memcpy(dst, src, sizeof(*dst));
  52	memzero_explicit(src, sizeof(*src));
  53}
  54
  55static void fscrypt_free_master_key(struct rcu_head *head)
  56{
  57	struct fscrypt_master_key *mk =
  58		container_of(head, struct fscrypt_master_key, mk_rcu_head);
  59	/*
  60	 * The master key secret and any embedded subkeys should have already
  61	 * been wiped when the last active reference to the fscrypt_master_key
  62	 * struct was dropped; doing it here would be unnecessarily late.
  63	 * Nevertheless, use kfree_sensitive() in case anything was missed.
  64	 */
  65	kfree_sensitive(mk);
  66}
  67
  68void fscrypt_put_master_key(struct fscrypt_master_key *mk)
  69{
  70	if (!refcount_dec_and_test(&mk->mk_struct_refs))
  71		return;
  72	/*
  73	 * No structural references left, so free ->mk_users, and also free the
  74	 * fscrypt_master_key struct itself after an RCU grace period ensures
  75	 * that concurrent keyring lookups can no longer find it.
  76	 */
  77	WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 0);
  78	if (mk->mk_users) {
  79		/* Clear the keyring so the quota gets released right away. */
  80		keyring_clear(mk->mk_users);
  81		key_put(mk->mk_users);
  82		mk->mk_users = NULL;
  83	}
  84	call_rcu(&mk->mk_rcu_head, fscrypt_free_master_key);
  85}
  86
  87void fscrypt_put_master_key_activeref(struct super_block *sb,
  88				      struct fscrypt_master_key *mk)
  89{
  90	size_t i;
  91
  92	if (!refcount_dec_and_test(&mk->mk_active_refs))
  93		return;
  94	/*
  95	 * No active references left, so complete the full removal of this
  96	 * fscrypt_master_key struct by removing it from the keyring and
  97	 * destroying any subkeys embedded in it.
  98	 */
  99
 100	if (WARN_ON_ONCE(!sb->s_master_keys))
 101		return;
 102	spin_lock(&sb->s_master_keys->lock);
 103	hlist_del_rcu(&mk->mk_node);
 104	spin_unlock(&sb->s_master_keys->lock);
 105
 106	/*
 107	 * ->mk_active_refs == 0 implies that ->mk_present is false and
 108	 * ->mk_decrypted_inodes is empty.
 109	 */
 110	WARN_ON_ONCE(mk->mk_present);
 111	WARN_ON_ONCE(!list_empty(&mk->mk_decrypted_inodes));
 112
 113	for (i = 0; i <= FSCRYPT_MODE_MAX; i++) {
 114		fscrypt_destroy_prepared_key(
 115				sb, &mk->mk_direct_keys[i]);
 116		fscrypt_destroy_prepared_key(
 117				sb, &mk->mk_iv_ino_lblk_64_keys[i]);
 118		fscrypt_destroy_prepared_key(
 119				sb, &mk->mk_iv_ino_lblk_32_keys[i]);
 120	}
 121	memzero_explicit(&mk->mk_ino_hash_key,
 122			 sizeof(mk->mk_ino_hash_key));
 123	mk->mk_ino_hash_key_initialized = false;
 124
 125	/* Drop the structural ref associated with the active refs. */
 126	fscrypt_put_master_key(mk);
 127}
 128
 129/*
 130 * This transitions the key state from present to incompletely removed, and then
 131 * potentially to absent (depending on whether inodes remain).
 132 */
 133static void fscrypt_initiate_key_removal(struct super_block *sb,
 134					 struct fscrypt_master_key *mk)
 135{
 136	WRITE_ONCE(mk->mk_present, false);
 137	wipe_master_key_secret(&mk->mk_secret);
 138	fscrypt_put_master_key_activeref(sb, mk);
 139}
 140
 141static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec)
 142{
 143	if (spec->__reserved)
 144		return false;
 145	return master_key_spec_len(spec) != 0;
 146}
 147
 148static int fscrypt_user_key_instantiate(struct key *key,
 149					struct key_preparsed_payload *prep)
 150{
 151	/*
 152	 * We just charge FSCRYPT_MAX_KEY_SIZE bytes to the user's key quota for
 153	 * each key, regardless of the exact key size.  The amount of memory
 154	 * actually used is greater than the size of the raw key anyway.
 155	 */
 156	return key_payload_reserve(key, FSCRYPT_MAX_KEY_SIZE);
 157}
 158
 159static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m)
 160{
 161	seq_puts(m, key->description);
 162}
 163
 164/*
 165 * Type of key in ->mk_users.  Each key of this type represents a particular
 166 * user who has added a particular master key.
 167 *
 168 * Note that the name of this key type really should be something like
 169 * ".fscrypt-user" instead of simply ".fscrypt".  But the shorter name is chosen
 170 * mainly for simplicity of presentation in /proc/keys when read by a non-root
 171 * user.  And it is expected to be rare that a key is actually added by multiple
 172 * users, since users should keep their encryption keys confidential.
 173 */
 174static struct key_type key_type_fscrypt_user = {
 175	.name			= ".fscrypt",
 176	.instantiate		= fscrypt_user_key_instantiate,
 177	.describe		= fscrypt_user_key_describe,
 178};
 179
 180#define FSCRYPT_MK_USERS_DESCRIPTION_SIZE	\
 181	(CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \
 182	 CONST_STRLEN("-users") + 1)
 183
 184#define FSCRYPT_MK_USER_DESCRIPTION_SIZE	\
 185	(2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1)
 186
 187static void format_mk_users_keyring_description(
 188			char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE],
 189			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
 190{
 191	sprintf(description, "fscrypt-%*phN-users",
 192		FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier);
 193}
 194
 195static void format_mk_user_description(
 196			char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE],
 197			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
 198{
 199
 200	sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE,
 201		mk_identifier, __kuid_val(current_fsuid()));
 202}
 203
 204/* Create ->s_master_keys if needed.  Synchronized by fscrypt_add_key_mutex. */
 205static int allocate_filesystem_keyring(struct super_block *sb)
 206{
 207	struct fscrypt_keyring *keyring;
 208
 209	if (sb->s_master_keys)
 210		return 0;
 211
 212	keyring = kzalloc(sizeof(*keyring), GFP_KERNEL);
 213	if (!keyring)
 214		return -ENOMEM;
 215	spin_lock_init(&keyring->lock);
 216	/*
 217	 * Pairs with the smp_load_acquire() in fscrypt_find_master_key().
 218	 * I.e., here we publish ->s_master_keys with a RELEASE barrier so that
 219	 * concurrent tasks can ACQUIRE it.
 220	 */
 221	smp_store_release(&sb->s_master_keys, keyring);
 222	return 0;
 223}
 224
 225/*
 226 * Release all encryption keys that have been added to the filesystem, along
 227 * with the keyring that contains them.
 228 *
 229 * This is called at unmount time, after all potentially-encrypted inodes have
 230 * been evicted.  The filesystem's underlying block device(s) are still
 231 * available at this time; this is important because after user file accesses
 232 * have been allowed, this function may need to evict keys from the keyslots of
 233 * an inline crypto engine, which requires the block device(s).
 234 */
 235void fscrypt_destroy_keyring(struct super_block *sb)
 236{
 237	struct fscrypt_keyring *keyring = sb->s_master_keys;
 238	size_t i;
 239
 240	if (!keyring)
 241		return;
 242
 243	for (i = 0; i < ARRAY_SIZE(keyring->key_hashtable); i++) {
 244		struct hlist_head *bucket = &keyring->key_hashtable[i];
 245		struct fscrypt_master_key *mk;
 246		struct hlist_node *tmp;
 247
 248		hlist_for_each_entry_safe(mk, tmp, bucket, mk_node) {
 249			/*
 250			 * Since all potentially-encrypted inodes were already
 251			 * evicted, every key remaining in the keyring should
 252			 * have an empty inode list, and should only still be in
 253			 * the keyring due to the single active ref associated
 254			 * with ->mk_present.  There should be no structural
 255			 * refs beyond the one associated with the active ref.
 256			 */
 257			WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 1);
 258			WARN_ON_ONCE(refcount_read(&mk->mk_struct_refs) != 1);
 259			WARN_ON_ONCE(!mk->mk_present);
 260			fscrypt_initiate_key_removal(sb, mk);
 261		}
 262	}
 263	kfree_sensitive(keyring);
 264	sb->s_master_keys = NULL;
 265}
 266
 267static struct hlist_head *
 268fscrypt_mk_hash_bucket(struct fscrypt_keyring *keyring,
 269		       const struct fscrypt_key_specifier *mk_spec)
 270{
 271	/*
 272	 * Since key specifiers should be "random" values, it is sufficient to
 273	 * use a trivial hash function that just takes the first several bits of
 274	 * the key specifier.
 275	 */
 276	unsigned long i = get_unaligned((unsigned long *)&mk_spec->u);
 277
 278	return &keyring->key_hashtable[i % ARRAY_SIZE(keyring->key_hashtable)];
 279}
 280
 281/*
 282 * Find the specified master key struct in ->s_master_keys and take a structural
 283 * ref to it.  The structural ref guarantees that the key struct continues to
 284 * exist, but it does *not* guarantee that ->s_master_keys continues to contain
 285 * the key struct.  The structural ref needs to be dropped by
 286 * fscrypt_put_master_key().  Returns NULL if the key struct is not found.
 287 */
 288struct fscrypt_master_key *
 289fscrypt_find_master_key(struct super_block *sb,
 290			const struct fscrypt_key_specifier *mk_spec)
 291{
 292	struct fscrypt_keyring *keyring;
 293	struct hlist_head *bucket;
 294	struct fscrypt_master_key *mk;
 295
 296	/*
 297	 * Pairs with the smp_store_release() in allocate_filesystem_keyring().
 298	 * I.e., another task can publish ->s_master_keys concurrently,
 299	 * executing a RELEASE barrier.  We need to use smp_load_acquire() here
 300	 * to safely ACQUIRE the memory the other task published.
 301	 */
 302	keyring = smp_load_acquire(&sb->s_master_keys);
 303	if (keyring == NULL)
 304		return NULL; /* No keyring yet, so no keys yet. */
 305
 306	bucket = fscrypt_mk_hash_bucket(keyring, mk_spec);
 307	rcu_read_lock();
 308	switch (mk_spec->type) {
 309	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
 310		hlist_for_each_entry_rcu(mk, bucket, mk_node) {
 311			if (mk->mk_spec.type ==
 312				FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
 313			    memcmp(mk->mk_spec.u.descriptor,
 314				   mk_spec->u.descriptor,
 315				   FSCRYPT_KEY_DESCRIPTOR_SIZE) == 0 &&
 316			    refcount_inc_not_zero(&mk->mk_struct_refs))
 317				goto out;
 318		}
 319		break;
 320	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
 321		hlist_for_each_entry_rcu(mk, bucket, mk_node) {
 322			if (mk->mk_spec.type ==
 323				FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
 324			    memcmp(mk->mk_spec.u.identifier,
 325				   mk_spec->u.identifier,
 326				   FSCRYPT_KEY_IDENTIFIER_SIZE) == 0 &&
 327			    refcount_inc_not_zero(&mk->mk_struct_refs))
 328				goto out;
 329		}
 330		break;
 331	}
 332	mk = NULL;
 333out:
 334	rcu_read_unlock();
 335	return mk;
 336}
 337
 338static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk)
 339{
 340	char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE];
 341	struct key *keyring;
 342
 343	format_mk_users_keyring_description(description,
 344					    mk->mk_spec.u.identifier);
 345	keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
 346				current_cred(), KEY_POS_SEARCH |
 347				  KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW,
 348				KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
 349	if (IS_ERR(keyring))
 350		return PTR_ERR(keyring);
 351
 352	mk->mk_users = keyring;
 353	return 0;
 354}
 355
 356/*
 357 * Find the current user's "key" in the master key's ->mk_users.
 358 * Returns ERR_PTR(-ENOKEY) if not found.
 359 */
 360static struct key *find_master_key_user(struct fscrypt_master_key *mk)
 361{
 362	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
 363	key_ref_t keyref;
 364
 365	format_mk_user_description(description, mk->mk_spec.u.identifier);
 366
 367	/*
 368	 * We need to mark the keyring reference as "possessed" so that we
 369	 * acquire permission to search it, via the KEY_POS_SEARCH permission.
 370	 */
 371	keyref = keyring_search(make_key_ref(mk->mk_users, true /*possessed*/),
 372				&key_type_fscrypt_user, description, false);
 373	if (IS_ERR(keyref)) {
 374		if (PTR_ERR(keyref) == -EAGAIN || /* not found */
 375		    PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */
 376			keyref = ERR_PTR(-ENOKEY);
 377		return ERR_CAST(keyref);
 378	}
 379	return key_ref_to_ptr(keyref);
 380}
 381
 382/*
 383 * Give the current user a "key" in ->mk_users.  This charges the user's quota
 384 * and marks the master key as added by the current user, so that it cannot be
 385 * removed by another user with the key.  Either ->mk_sem must be held for
 386 * write, or the master key must be still undergoing initialization.
 387 */
 388static int add_master_key_user(struct fscrypt_master_key *mk)
 389{
 390	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
 391	struct key *mk_user;
 392	int err;
 393
 394	format_mk_user_description(description, mk->mk_spec.u.identifier);
 395	mk_user = key_alloc(&key_type_fscrypt_user, description,
 396			    current_fsuid(), current_gid(), current_cred(),
 397			    KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL);
 398	if (IS_ERR(mk_user))
 399		return PTR_ERR(mk_user);
 400
 401	err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL);
 402	key_put(mk_user);
 403	return err;
 404}
 405
 406/*
 407 * Remove the current user's "key" from ->mk_users.
 408 * ->mk_sem must be held for write.
 409 *
 410 * Returns 0 if removed, -ENOKEY if not found, or another -errno code.
 411 */
 412static int remove_master_key_user(struct fscrypt_master_key *mk)
 413{
 414	struct key *mk_user;
 415	int err;
 416
 417	mk_user = find_master_key_user(mk);
 418	if (IS_ERR(mk_user))
 419		return PTR_ERR(mk_user);
 420	err = key_unlink(mk->mk_users, mk_user);
 421	key_put(mk_user);
 422	return err;
 423}
 424
 425/*
 426 * Allocate a new fscrypt_master_key, transfer the given secret over to it, and
 427 * insert it into sb->s_master_keys.
 428 */
 429static int add_new_master_key(struct super_block *sb,
 430			      struct fscrypt_master_key_secret *secret,
 431			      const struct fscrypt_key_specifier *mk_spec)
 432{
 433	struct fscrypt_keyring *keyring = sb->s_master_keys;
 434	struct fscrypt_master_key *mk;
 435	int err;
 436
 437	mk = kzalloc(sizeof(*mk), GFP_KERNEL);
 438	if (!mk)
 439		return -ENOMEM;
 440
 441	init_rwsem(&mk->mk_sem);
 442	refcount_set(&mk->mk_struct_refs, 1);
 443	mk->mk_spec = *mk_spec;
 444
 445	INIT_LIST_HEAD(&mk->mk_decrypted_inodes);
 446	spin_lock_init(&mk->mk_decrypted_inodes_lock);
 447
 448	if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
 449		err = allocate_master_key_users_keyring(mk);
 450		if (err)
 451			goto out_put;
 452		err = add_master_key_user(mk);
 453		if (err)
 454			goto out_put;
 455	}
 456
 457	move_master_key_secret(&mk->mk_secret, secret);
 458	mk->mk_present = true;
 459	refcount_set(&mk->mk_active_refs, 1); /* ->mk_present is true */
 460
 461	spin_lock(&keyring->lock);
 462	hlist_add_head_rcu(&mk->mk_node,
 463			   fscrypt_mk_hash_bucket(keyring, mk_spec));
 464	spin_unlock(&keyring->lock);
 465	return 0;
 466
 467out_put:
 468	fscrypt_put_master_key(mk);
 469	return err;
 470}
 471
 472#define KEY_DEAD	1
 473
 474static int add_existing_master_key(struct fscrypt_master_key *mk,
 475				   struct fscrypt_master_key_secret *secret)
 476{
 477	int err;
 478
 479	/*
 480	 * If the current user is already in ->mk_users, then there's nothing to
 481	 * do.  Otherwise, we need to add the user to ->mk_users.  (Neither is
 482	 * applicable for v1 policy keys, which have NULL ->mk_users.)
 483	 */
 484	if (mk->mk_users) {
 485		struct key *mk_user = find_master_key_user(mk);
 486
 487		if (mk_user != ERR_PTR(-ENOKEY)) {
 488			if (IS_ERR(mk_user))
 489				return PTR_ERR(mk_user);
 490			key_put(mk_user);
 491			return 0;
 492		}
 493		err = add_master_key_user(mk);
 494		if (err)
 495			return err;
 496	}
 497
 498	/* If the key is incompletely removed, make it present again. */
 499	if (!mk->mk_present) {
 500		if (!refcount_inc_not_zero(&mk->mk_active_refs)) {
 501			/*
 502			 * Raced with the last active ref being dropped, so the
 503			 * key has become, or is about to become, "absent".
 504			 * Therefore, we need to allocate a new key struct.
 505			 */
 506			return KEY_DEAD;
 507		}
 508		move_master_key_secret(&mk->mk_secret, secret);
 509		WRITE_ONCE(mk->mk_present, true);
 510	}
 511
 512	return 0;
 513}
 514
 515static int do_add_master_key(struct super_block *sb,
 516			     struct fscrypt_master_key_secret *secret,
 517			     const struct fscrypt_key_specifier *mk_spec)
 518{
 519	static DEFINE_MUTEX(fscrypt_add_key_mutex);
 520	struct fscrypt_master_key *mk;
 521	int err;
 522
 523	mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */
 524
 525	mk = fscrypt_find_master_key(sb, mk_spec);
 526	if (!mk) {
 527		/* Didn't find the key in ->s_master_keys.  Add it. */
 528		err = allocate_filesystem_keyring(sb);
 529		if (!err)
 530			err = add_new_master_key(sb, secret, mk_spec);
 531	} else {
 532		/*
 533		 * Found the key in ->s_master_keys.  Add the user to ->mk_users
 534		 * if needed, and make the key "present" again if possible.
 535		 */
 536		down_write(&mk->mk_sem);
 537		err = add_existing_master_key(mk, secret);
 538		up_write(&mk->mk_sem);
 539		if (err == KEY_DEAD) {
 540			/*
 541			 * We found a key struct, but it's already been fully
 542			 * removed.  Ignore the old struct and add a new one.
 543			 * fscrypt_add_key_mutex means we don't need to worry
 544			 * about concurrent adds.
 545			 */
 546			err = add_new_master_key(sb, secret, mk_spec);
 547		}
 548		fscrypt_put_master_key(mk);
 549	}
 550	mutex_unlock(&fscrypt_add_key_mutex);
 551	return err;
 552}
 553
 554static int add_master_key(struct super_block *sb,
 555			  struct fscrypt_master_key_secret *secret,
 556			  struct fscrypt_key_specifier *key_spec)
 557{
 558	int err;
 559
 560	if (key_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
 561		err = fscrypt_init_hkdf(&secret->hkdf, secret->raw,
 562					secret->size);
 563		if (err)
 564			return err;
 565
 566		/*
 567		 * Now that the HKDF context is initialized, the raw key is no
 568		 * longer needed.
 569		 */
 570		memzero_explicit(secret->raw, secret->size);
 571
 572		/* Calculate the key identifier */
 573		err = fscrypt_hkdf_expand(&secret->hkdf,
 574					  HKDF_CONTEXT_KEY_IDENTIFIER, NULL, 0,
 575					  key_spec->u.identifier,
 576					  FSCRYPT_KEY_IDENTIFIER_SIZE);
 577		if (err)
 578			return err;
 579	}
 580	return do_add_master_key(sb, secret, key_spec);
 581}
 582
 583static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload *prep)
 584{
 585	const struct fscrypt_provisioning_key_payload *payload = prep->data;
 586
 587	if (prep->datalen < sizeof(*payload) + FSCRYPT_MIN_KEY_SIZE ||
 588	    prep->datalen > sizeof(*payload) + FSCRYPT_MAX_KEY_SIZE)
 589		return -EINVAL;
 590
 591	if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
 592	    payload->type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER)
 593		return -EINVAL;
 594
 595	if (payload->__reserved)
 596		return -EINVAL;
 597
 598	prep->payload.data[0] = kmemdup(payload, prep->datalen, GFP_KERNEL);
 599	if (!prep->payload.data[0])
 600		return -ENOMEM;
 601
 602	prep->quotalen = prep->datalen;
 603	return 0;
 604}
 605
 606static void fscrypt_provisioning_key_free_preparse(
 607					struct key_preparsed_payload *prep)
 608{
 609	kfree_sensitive(prep->payload.data[0]);
 610}
 611
 612static void fscrypt_provisioning_key_describe(const struct key *key,
 613					      struct seq_file *m)
 614{
 615	seq_puts(m, key->description);
 616	if (key_is_positive(key)) {
 617		const struct fscrypt_provisioning_key_payload *payload =
 618			key->payload.data[0];
 619
 620		seq_printf(m, ": %u [%u]", key->datalen, payload->type);
 621	}
 622}
 623
 624static void fscrypt_provisioning_key_destroy(struct key *key)
 625{
 626	kfree_sensitive(key->payload.data[0]);
 627}
 628
 629static struct key_type key_type_fscrypt_provisioning = {
 630	.name			= "fscrypt-provisioning",
 631	.preparse		= fscrypt_provisioning_key_preparse,
 632	.free_preparse		= fscrypt_provisioning_key_free_preparse,
 633	.instantiate		= generic_key_instantiate,
 634	.describe		= fscrypt_provisioning_key_describe,
 635	.destroy		= fscrypt_provisioning_key_destroy,
 636};
 637
 638/*
 639 * Retrieve the raw key from the Linux keyring key specified by 'key_id', and
 640 * store it into 'secret'.
 641 *
 642 * The key must be of type "fscrypt-provisioning" and must have the field
 643 * fscrypt_provisioning_key_payload::type set to 'type', indicating that it's
 644 * only usable with fscrypt with the particular KDF version identified by
 645 * 'type'.  We don't use the "logon" key type because there's no way to
 646 * completely restrict the use of such keys; they can be used by any kernel API
 647 * that accepts "logon" keys and doesn't require a specific service prefix.
 648 *
 649 * The ability to specify the key via Linux keyring key is intended for cases
 650 * where userspace needs to re-add keys after the filesystem is unmounted and
 651 * re-mounted.  Most users should just provide the raw key directly instead.
 652 */
 653static int get_keyring_key(u32 key_id, u32 type,
 654			   struct fscrypt_master_key_secret *secret)
 655{
 656	key_ref_t ref;
 657	struct key *key;
 658	const struct fscrypt_provisioning_key_payload *payload;
 659	int err;
 660
 661	ref = lookup_user_key(key_id, 0, KEY_NEED_SEARCH);
 662	if (IS_ERR(ref))
 663		return PTR_ERR(ref);
 664	key = key_ref_to_ptr(ref);
 665
 666	if (key->type != &key_type_fscrypt_provisioning)
 667		goto bad_key;
 668	payload = key->payload.data[0];
 669
 670	/* Don't allow fscrypt v1 keys to be used as v2 keys and vice versa. */
 671	if (payload->type != type)
 672		goto bad_key;
 673
 674	secret->size = key->datalen - sizeof(*payload);
 675	memcpy(secret->raw, payload->raw, secret->size);
 676	err = 0;
 677	goto out_put;
 678
 679bad_key:
 680	err = -EKEYREJECTED;
 681out_put:
 682	key_ref_put(ref);
 683	return err;
 684}
 685
 686/*
 687 * Add a master encryption key to the filesystem, causing all files which were
 688 * encrypted with it to appear "unlocked" (decrypted) when accessed.
 689 *
 690 * When adding a key for use by v1 encryption policies, this ioctl is
 691 * privileged, and userspace must provide the 'key_descriptor'.
 692 *
 693 * When adding a key for use by v2+ encryption policies, this ioctl is
 694 * unprivileged.  This is needed, in general, to allow non-root users to use
 695 * encryption without encountering the visibility problems of process-subscribed
 696 * keyrings and the inability to properly remove keys.  This works by having
 697 * each key identified by its cryptographically secure hash --- the
 698 * 'key_identifier'.  The cryptographic hash ensures that a malicious user
 699 * cannot add the wrong key for a given identifier.  Furthermore, each added key
 700 * is charged to the appropriate user's quota for the keyrings service, which
 701 * prevents a malicious user from adding too many keys.  Finally, we forbid a
 702 * user from removing a key while other users have added it too, which prevents
 703 * a user who knows another user's key from causing a denial-of-service by
 704 * removing it at an inopportune time.  (We tolerate that a user who knows a key
 705 * can prevent other users from removing it.)
 706 *
 707 * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of
 708 * Documentation/filesystems/fscrypt.rst.
 709 */
 710int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg)
 711{
 712	struct super_block *sb = file_inode(filp)->i_sb;
 713	struct fscrypt_add_key_arg __user *uarg = _uarg;
 714	struct fscrypt_add_key_arg arg;
 715	struct fscrypt_master_key_secret secret;
 716	int err;
 717
 718	if (copy_from_user(&arg, uarg, sizeof(arg)))
 719		return -EFAULT;
 720
 721	if (!valid_key_spec(&arg.key_spec))
 722		return -EINVAL;
 723
 724	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
 725		return -EINVAL;
 726
 727	/*
 728	 * Only root can add keys that are identified by an arbitrary descriptor
 729	 * rather than by a cryptographic hash --- since otherwise a malicious
 730	 * user could add the wrong key.
 731	 */
 732	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
 733	    !capable(CAP_SYS_ADMIN))
 734		return -EACCES;
 735
 736	memset(&secret, 0, sizeof(secret));
 737	if (arg.key_id) {
 738		if (arg.raw_size != 0)
 739			return -EINVAL;
 740		err = get_keyring_key(arg.key_id, arg.key_spec.type, &secret);
 741		if (err)
 742			goto out_wipe_secret;
 743	} else {
 744		if (arg.raw_size < FSCRYPT_MIN_KEY_SIZE ||
 745		    arg.raw_size > FSCRYPT_MAX_KEY_SIZE)
 746			return -EINVAL;
 747		secret.size = arg.raw_size;
 748		err = -EFAULT;
 749		if (copy_from_user(secret.raw, uarg->raw, secret.size))
 750			goto out_wipe_secret;
 751	}
 752
 753	err = add_master_key(sb, &secret, &arg.key_spec);
 754	if (err)
 755		goto out_wipe_secret;
 756
 757	/* Return the key identifier to userspace, if applicable */
 758	err = -EFAULT;
 759	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
 760	    copy_to_user(uarg->key_spec.u.identifier, arg.key_spec.u.identifier,
 761			 FSCRYPT_KEY_IDENTIFIER_SIZE))
 762		goto out_wipe_secret;
 763	err = 0;
 764out_wipe_secret:
 765	wipe_master_key_secret(&secret);
 766	return err;
 767}
 768EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key);
 769
 770static void
 771fscrypt_get_test_dummy_secret(struct fscrypt_master_key_secret *secret)
 772{
 773	static u8 test_key[FSCRYPT_MAX_KEY_SIZE];
 774
 775	get_random_once(test_key, FSCRYPT_MAX_KEY_SIZE);
 776
 777	memset(secret, 0, sizeof(*secret));
 778	secret->size = FSCRYPT_MAX_KEY_SIZE;
 779	memcpy(secret->raw, test_key, FSCRYPT_MAX_KEY_SIZE);
 780}
 781
 782int fscrypt_get_test_dummy_key_identifier(
 783				u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
 784{
 785	struct fscrypt_master_key_secret secret;
 786	int err;
 787
 788	fscrypt_get_test_dummy_secret(&secret);
 789
 790	err = fscrypt_init_hkdf(&secret.hkdf, secret.raw, secret.size);
 791	if (err)
 792		goto out;
 793	err = fscrypt_hkdf_expand(&secret.hkdf, HKDF_CONTEXT_KEY_IDENTIFIER,
 794				  NULL, 0, key_identifier,
 795				  FSCRYPT_KEY_IDENTIFIER_SIZE);
 796out:
 797	wipe_master_key_secret(&secret);
 798	return err;
 799}
 800
 801/**
 802 * fscrypt_add_test_dummy_key() - add the test dummy encryption key
 803 * @sb: the filesystem instance to add the key to
 804 * @key_spec: the key specifier of the test dummy encryption key
 805 *
 806 * Add the key for the test_dummy_encryption mount option to the filesystem.  To
 807 * prevent misuse of this mount option, a per-boot random key is used instead of
 808 * a hardcoded one.  This makes it so that any encrypted files created using
 809 * this option won't be accessible after a reboot.
 810 *
 811 * Return: 0 on success, -errno on failure
 812 */
 813int fscrypt_add_test_dummy_key(struct super_block *sb,
 814			       struct fscrypt_key_specifier *key_spec)
 815{
 816	struct fscrypt_master_key_secret secret;
 817	int err;
 818
 819	fscrypt_get_test_dummy_secret(&secret);
 820	err = add_master_key(sb, &secret, key_spec);
 821	wipe_master_key_secret(&secret);
 822	return err;
 823}
 824
 825/*
 826 * Verify that the current user has added a master key with the given identifier
 827 * (returns -ENOKEY if not).  This is needed to prevent a user from encrypting
 828 * their files using some other user's key which they don't actually know.
 829 * Cryptographically this isn't much of a problem, but the semantics of this
 830 * would be a bit weird, so it's best to just forbid it.
 831 *
 832 * The system administrator (CAP_FOWNER) can override this, which should be
 833 * enough for any use cases where encryption policies are being set using keys
 834 * that were chosen ahead of time but aren't available at the moment.
 835 *
 836 * Note that the key may have already removed by the time this returns, but
 837 * that's okay; we just care whether the key was there at some point.
 838 *
 839 * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code
 840 */
 841int fscrypt_verify_key_added(struct super_block *sb,
 842			     const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
 843{
 844	struct fscrypt_key_specifier mk_spec;
 845	struct fscrypt_master_key *mk;
 846	struct key *mk_user;
 847	int err;
 848
 849	mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
 850	memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE);
 851
 852	mk = fscrypt_find_master_key(sb, &mk_spec);
 853	if (!mk) {
 854		err = -ENOKEY;
 855		goto out;
 856	}
 857	down_read(&mk->mk_sem);
 858	mk_user = find_master_key_user(mk);
 859	if (IS_ERR(mk_user)) {
 860		err = PTR_ERR(mk_user);
 861	} else {
 862		key_put(mk_user);
 863		err = 0;
 864	}
 865	up_read(&mk->mk_sem);
 866	fscrypt_put_master_key(mk);
 867out:
 868	if (err == -ENOKEY && capable(CAP_FOWNER))
 869		err = 0;
 870	return err;
 871}
 872
 873/*
 874 * Try to evict the inode's dentries from the dentry cache.  If the inode is a
 875 * directory, then it can have at most one dentry; however, that dentry may be
 876 * pinned by child dentries, so first try to evict the children too.
 877 */
 878static void shrink_dcache_inode(struct inode *inode)
 879{
 880	struct dentry *dentry;
 881
 882	if (S_ISDIR(inode->i_mode)) {
 883		dentry = d_find_any_alias(inode);
 884		if (dentry) {
 885			shrink_dcache_parent(dentry);
 886			dput(dentry);
 887		}
 888	}
 889	d_prune_aliases(inode);
 890}
 891
 892static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk)
 893{
 894	struct fscrypt_inode_info *ci;
 895	struct inode *inode;
 896	struct inode *toput_inode = NULL;
 897
 898	spin_lock(&mk->mk_decrypted_inodes_lock);
 899
 900	list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) {
 901		inode = ci->ci_inode;
 902		spin_lock(&inode->i_lock);
 903		if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) {
 904			spin_unlock(&inode->i_lock);
 905			continue;
 906		}
 907		__iget(inode);
 908		spin_unlock(&inode->i_lock);
 909		spin_unlock(&mk->mk_decrypted_inodes_lock);
 910
 911		shrink_dcache_inode(inode);
 912		iput(toput_inode);
 913		toput_inode = inode;
 914
 915		spin_lock(&mk->mk_decrypted_inodes_lock);
 916	}
 917
 918	spin_unlock(&mk->mk_decrypted_inodes_lock);
 919	iput(toput_inode);
 920}
 921
 922static int check_for_busy_inodes(struct super_block *sb,
 923				 struct fscrypt_master_key *mk)
 924{
 925	struct list_head *pos;
 926	size_t busy_count = 0;
 927	unsigned long ino;
 928	char ino_str[50] = "";
 929
 930	spin_lock(&mk->mk_decrypted_inodes_lock);
 931
 932	list_for_each(pos, &mk->mk_decrypted_inodes)
 933		busy_count++;
 934
 935	if (busy_count == 0) {
 936		spin_unlock(&mk->mk_decrypted_inodes_lock);
 937		return 0;
 938	}
 939
 940	{
 941		/* select an example file to show for debugging purposes */
 942		struct inode *inode =
 943			list_first_entry(&mk->mk_decrypted_inodes,
 944					 struct fscrypt_inode_info,
 945					 ci_master_key_link)->ci_inode;
 946		ino = inode->i_ino;
 947	}
 948	spin_unlock(&mk->mk_decrypted_inodes_lock);
 949
 950	/* If the inode is currently being created, ino may still be 0. */
 951	if (ino)
 952		snprintf(ino_str, sizeof(ino_str), ", including ino %lu", ino);
 953
 954	fscrypt_warn(NULL,
 955		     "%s: %zu inode(s) still busy after removing key with %s %*phN%s",
 956		     sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec),
 957		     master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u,
 958		     ino_str);
 959	return -EBUSY;
 960}
 961
 962static int try_to_lock_encrypted_files(struct super_block *sb,
 963				       struct fscrypt_master_key *mk)
 964{
 965	int err1;
 966	int err2;
 967
 968	/*
 969	 * An inode can't be evicted while it is dirty or has dirty pages.
 970	 * Thus, we first have to clean the inodes in ->mk_decrypted_inodes.
 971	 *
 972	 * Just do it the easy way: call sync_filesystem().  It's overkill, but
 973	 * it works, and it's more important to minimize the amount of caches we
 974	 * drop than the amount of data we sync.  Also, unprivileged users can
 975	 * already call sync_filesystem() via sys_syncfs() or sys_sync().
 976	 */
 977	down_read(&sb->s_umount);
 978	err1 = sync_filesystem(sb);
 979	up_read(&sb->s_umount);
 980	/* If a sync error occurs, still try to evict as much as possible. */
 981
 982	/*
 983	 * Inodes are pinned by their dentries, so we have to evict their
 984	 * dentries.  shrink_dcache_sb() would suffice, but would be overkill
 985	 * and inappropriate for use by unprivileged users.  So instead go
 986	 * through the inodes' alias lists and try to evict each dentry.
 987	 */
 988	evict_dentries_for_decrypted_inodes(mk);
 989
 990	/*
 991	 * evict_dentries_for_decrypted_inodes() already iput() each inode in
 992	 * the list; any inodes for which that dropped the last reference will
 993	 * have been evicted due to fscrypt_drop_inode() detecting the key
 994	 * removal and telling the VFS to evict the inode.  So to finish, we
 995	 * just need to check whether any inodes couldn't be evicted.
 996	 */
 997	err2 = check_for_busy_inodes(sb, mk);
 998
 999	return err1 ?: err2;
1000}
1001
1002/*
1003 * Try to remove an fscrypt master encryption key.
1004 *
1005 * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's
1006 * claim to the key, then removes the key itself if no other users have claims.
1007 * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the
1008 * key itself.
1009 *
1010 * To "remove the key itself", first we transition the key to the "incompletely
1011 * removed" state, so that no more inodes can be unlocked with it.  Then we try
1012 * to evict all cached inodes that had been unlocked with the key.
1013 *
1014 * If all inodes were evicted, then we unlink the fscrypt_master_key from the
1015 * keyring.  Otherwise it remains in the keyring in the "incompletely removed"
1016 * state where it tracks the list of remaining inodes.  Userspace can execute
1017 * the ioctl again later to retry eviction, or alternatively can re-add the key.
1018 *
1019 * For more details, see the "Removing keys" section of
1020 * Documentation/filesystems/fscrypt.rst.
1021 */
1022static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users)
1023{
1024	struct super_block *sb = file_inode(filp)->i_sb;
1025	struct fscrypt_remove_key_arg __user *uarg = _uarg;
1026	struct fscrypt_remove_key_arg arg;
1027	struct fscrypt_master_key *mk;
1028	u32 status_flags = 0;
1029	int err;
1030	bool inodes_remain;
1031
1032	if (copy_from_user(&arg, uarg, sizeof(arg)))
1033		return -EFAULT;
1034
1035	if (!valid_key_spec(&arg.key_spec))
1036		return -EINVAL;
1037
1038	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
1039		return -EINVAL;
1040
1041	/*
1042	 * Only root can add and remove keys that are identified by an arbitrary
1043	 * descriptor rather than by a cryptographic hash.
1044	 */
1045	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
1046	    !capable(CAP_SYS_ADMIN))
1047		return -EACCES;
1048
1049	/* Find the key being removed. */
1050	mk = fscrypt_find_master_key(sb, &arg.key_spec);
1051	if (!mk)
1052		return -ENOKEY;
1053	down_write(&mk->mk_sem);
1054
1055	/* If relevant, remove current user's (or all users) claim to the key */
1056	if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) {
1057		if (all_users)
1058			err = keyring_clear(mk->mk_users);
1059		else
1060			err = remove_master_key_user(mk);
1061		if (err) {
1062			up_write(&mk->mk_sem);
1063			goto out_put_key;
1064		}
1065		if (mk->mk_users->keys.nr_leaves_on_tree != 0) {
1066			/*
1067			 * Other users have still added the key too.  We removed
1068			 * the current user's claim to the key, but we still
1069			 * can't remove the key itself.
1070			 */
1071			status_flags |=
1072				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS;
1073			err = 0;
1074			up_write(&mk->mk_sem);
1075			goto out_put_key;
1076		}
1077	}
1078
1079	/* No user claims remaining.  Initiate removal of the key. */
1080	err = -ENOKEY;
1081	if (mk->mk_present) {
1082		fscrypt_initiate_key_removal(sb, mk);
1083		err = 0;
1084	}
1085	inodes_remain = refcount_read(&mk->mk_active_refs) > 0;
1086	up_write(&mk->mk_sem);
1087
1088	if (inodes_remain) {
1089		/* Some inodes still reference this key; try to evict them. */
1090		err = try_to_lock_encrypted_files(sb, mk);
1091		if (err == -EBUSY) {
1092			status_flags |=
1093				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY;
1094			err = 0;
1095		}
1096	}
1097	/*
1098	 * We return 0 if we successfully did something: removed a claim to the
1099	 * key, initiated removal of the key, or tried locking the files again.
1100	 * Users need to check the informational status flags if they care
1101	 * whether the key has been fully removed including all files locked.
1102	 */
1103out_put_key:
1104	fscrypt_put_master_key(mk);
1105	if (err == 0)
1106		err = put_user(status_flags, &uarg->removal_status_flags);
1107	return err;
1108}
1109
1110int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg)
1111{
1112	return do_remove_key(filp, uarg, false);
1113}
1114EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key);
1115
1116int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg)
1117{
1118	if (!capable(CAP_SYS_ADMIN))
1119		return -EACCES;
1120	return do_remove_key(filp, uarg, true);
1121}
1122EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users);
1123
1124/*
1125 * Retrieve the status of an fscrypt master encryption key.
1126 *
1127 * We set ->status to indicate whether the key is absent, present, or
1128 * incompletely removed.  (For an explanation of what these statuses mean and
1129 * how they are represented internally, see struct fscrypt_master_key.)  This
1130 * field allows applications to easily determine the status of an encrypted
1131 * directory without using a hack such as trying to open a regular file in it
1132 * (which can confuse the "incompletely removed" status with absent or present).
1133 *
1134 * In addition, for v2 policy keys we allow applications to determine, via
1135 * ->status_flags and ->user_count, whether the key has been added by the
1136 * current user, by other users, or by both.  Most applications should not need
1137 * this, since ordinarily only one user should know a given key.  However, if a
1138 * secret key is shared by multiple users, applications may wish to add an
1139 * already-present key to prevent other users from removing it.  This ioctl can
1140 * be used to check whether that really is the case before the work is done to
1141 * add the key --- which might e.g. require prompting the user for a passphrase.
1142 *
1143 * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of
1144 * Documentation/filesystems/fscrypt.rst.
1145 */
1146int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg)
1147{
1148	struct super_block *sb = file_inode(filp)->i_sb;
1149	struct fscrypt_get_key_status_arg arg;
1150	struct fscrypt_master_key *mk;
1151	int err;
1152
1153	if (copy_from_user(&arg, uarg, sizeof(arg)))
1154		return -EFAULT;
1155
1156	if (!valid_key_spec(&arg.key_spec))
1157		return -EINVAL;
1158
1159	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
1160		return -EINVAL;
1161
1162	arg.status_flags = 0;
1163	arg.user_count = 0;
1164	memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved));
1165
1166	mk = fscrypt_find_master_key(sb, &arg.key_spec);
1167	if (!mk) {
1168		arg.status = FSCRYPT_KEY_STATUS_ABSENT;
1169		err = 0;
1170		goto out;
1171	}
1172	down_read(&mk->mk_sem);
1173
1174	if (!mk->mk_present) {
1175		arg.status = refcount_read(&mk->mk_active_refs) > 0 ?
1176			FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED :
1177			FSCRYPT_KEY_STATUS_ABSENT /* raced with full removal */;
1178		err = 0;
1179		goto out_release_key;
1180	}
1181
1182	arg.status = FSCRYPT_KEY_STATUS_PRESENT;
1183	if (mk->mk_users) {
1184		struct key *mk_user;
1185
1186		arg.user_count = mk->mk_users->keys.nr_leaves_on_tree;
1187		mk_user = find_master_key_user(mk);
1188		if (!IS_ERR(mk_user)) {
1189			arg.status_flags |=
1190				FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF;
1191			key_put(mk_user);
1192		} else if (mk_user != ERR_PTR(-ENOKEY)) {
1193			err = PTR_ERR(mk_user);
1194			goto out_release_key;
1195		}
1196	}
1197	err = 0;
1198out_release_key:
1199	up_read(&mk->mk_sem);
1200	fscrypt_put_master_key(mk);
1201out:
1202	if (!err && copy_to_user(uarg, &arg, sizeof(arg)))
1203		err = -EFAULT;
1204	return err;
1205}
1206EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status);
1207
1208int __init fscrypt_init_keyring(void)
1209{
1210	int err;
1211
1212	err = register_key_type(&key_type_fscrypt_user);
1213	if (err)
1214		return err;
1215
1216	err = register_key_type(&key_type_fscrypt_provisioning);
1217	if (err)
1218		goto err_unregister_fscrypt_user;
1219
1220	return 0;
1221
1222err_unregister_fscrypt_user:
1223	unregister_key_type(&key_type_fscrypt_user);
1224	return err;
1225}