Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
   3 *
   4 * Copyright (c) 2003 Intracom S.A.
   5 *  by Pantelis Antoniou <panto@intracom.gr>
   6 *
   7 * 2005 (c) MontaVista Software, Inc.
   8 * Vitaly Bordug <vbordug@ru.mvista.com>
   9 *
  10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
  11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
  12 *
  13 * This file is licensed under the terms of the GNU General Public License
  14 * version 2. This program is licensed "as is" without any warranty of any
  15 * kind, whether express or implied.
  16 */
  17
  18#include <linux/module.h>
  19#include <linux/kernel.h>
  20#include <linux/types.h>
  21#include <linux/string.h>
  22#include <linux/ptrace.h>
  23#include <linux/errno.h>
  24#include <linux/ioport.h>
  25#include <linux/slab.h>
  26#include <linux/interrupt.h>
  27#include <linux/delay.h>
  28#include <linux/netdevice.h>
  29#include <linux/etherdevice.h>
  30#include <linux/skbuff.h>
  31#include <linux/spinlock.h>
  32#include <linux/mii.h>
  33#include <linux/ethtool.h>
  34#include <linux/bitops.h>
  35#include <linux/fs.h>
  36#include <linux/platform_device.h>
  37#include <linux/phy.h>
 
 
  38#include <linux/of.h>
  39#include <linux/of_mdio.h>
  40#include <linux/of_platform.h>
  41#include <linux/of_gpio.h>
  42#include <linux/of_net.h>
 
 
  43
  44#include <linux/vmalloc.h>
  45#include <asm/pgtable.h>
  46#include <asm/irq.h>
  47#include <linux/uaccess.h>
  48
  49#include "fs_enet.h"
  50
  51/*************************************************/
  52
  53MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
  54MODULE_DESCRIPTION("Freescale Ethernet Driver");
  55MODULE_LICENSE("GPL");
  56MODULE_VERSION(DRV_MODULE_VERSION);
  57
  58static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
  59module_param(fs_enet_debug, int, 0);
  60MODULE_PARM_DESC(fs_enet_debug,
  61		 "Freescale bitmapped debugging message enable value");
  62
  63#define RX_RING_SIZE	32
  64#define TX_RING_SIZE	64
  65
  66#ifdef CONFIG_NET_POLL_CONTROLLER
  67static void fs_enet_netpoll(struct net_device *dev);
  68#endif
  69
  70static void fs_set_multicast_list(struct net_device *dev)
  71{
  72	struct fs_enet_private *fep = netdev_priv(dev);
  73
  74	(*fep->ops->set_multicast_list)(dev);
  75}
  76
 
 
 
 
 
 
 
  77static void skb_align(struct sk_buff *skb, int align)
  78{
  79	int off = ((unsigned long)skb->data) & (align - 1);
  80
  81	if (off)
  82		skb_reserve(skb, align - off);
  83}
  84
  85/* NAPI function */
  86static int fs_enet_napi(struct napi_struct *napi, int budget)
  87{
  88	struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
  89	struct net_device *dev = fep->ndev;
  90	const struct fs_platform_info *fpi = fep->fpi;
  91	cbd_t __iomem *bdp;
 
 
 
  92	struct sk_buff *skb, *skbn;
  93	int received = 0;
  94	u16 pkt_len, sc;
  95	int curidx;
  96	int dirtyidx, do_wake, do_restart;
  97	int tx_left = TX_RING_SIZE;
  98
  99	spin_lock(&fep->tx_lock);
 100	bdp = fep->dirty_tx;
 101
 102	/* clear status bits for napi*/
 103	(*fep->ops->napi_clear_event)(dev);
 104
 105	do_wake = do_restart = 0;
 106	while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0 && tx_left) {
 107		dirtyidx = bdp - fep->tx_bd_base;
 108
 109		if (fep->tx_free == fep->tx_ring)
 110			break;
 111
 112		skb = fep->tx_skbuff[dirtyidx];
 113
 114		/*
 115		 * Check for errors.
 116		 */
 117		if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
 118			  BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
 119
 120			if (sc & BD_ENET_TX_HB)	/* No heartbeat */
 121				dev->stats.tx_heartbeat_errors++;
 122			if (sc & BD_ENET_TX_LC)	/* Late collision */
 123				dev->stats.tx_window_errors++;
 124			if (sc & BD_ENET_TX_RL)	/* Retrans limit */
 125				dev->stats.tx_aborted_errors++;
 126			if (sc & BD_ENET_TX_UN)	/* Underrun */
 127				dev->stats.tx_fifo_errors++;
 128			if (sc & BD_ENET_TX_CSL)	/* Carrier lost */
 129				dev->stats.tx_carrier_errors++;
 130
 131			if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
 132				dev->stats.tx_errors++;
 133				do_restart = 1;
 134			}
 135		} else
 136			dev->stats.tx_packets++;
 
 137
 138		if (sc & BD_ENET_TX_READY) {
 139			dev_warn(fep->dev,
 140				 "HEY! Enet xmit interrupt and TX_READY.\n");
 141		}
 142
 143		/*
 144		 * Deferred means some collisions occurred during transmit,
 145		 * but we eventually sent the packet OK.
 146		 */
 147		if (sc & BD_ENET_TX_DEF)
 148			dev->stats.collisions++;
 149
 150		/* unmap */
 151		if (fep->mapped_as_page[dirtyidx])
 152			dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp),
 153				       CBDR_DATLEN(bdp), DMA_TO_DEVICE);
 154		else
 155			dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
 156					 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
 157
 158		/*
 159		 * Free the sk buffer associated with this last transmit.
 160		 */
 161		if (skb) {
 162			dev_kfree_skb(skb);
 163			fep->tx_skbuff[dirtyidx] = NULL;
 164		}
 165
 166		/*
 167		 * Update pointer to next buffer descriptor to be transmitted.
 168		 */
 169		if ((sc & BD_ENET_TX_WRAP) == 0)
 170			bdp++;
 171		else
 172			bdp = fep->tx_bd_base;
 173
 174		/*
 175		 * Since we have freed up a buffer, the ring is no longer
 176		 * full.
 177		 */
 178		if (++fep->tx_free == MAX_SKB_FRAGS)
 179			do_wake = 1;
 180		tx_left--;
 181	}
 182
 183	fep->dirty_tx = bdp;
 184
 185	if (do_restart)
 186		(*fep->ops->tx_restart)(dev);
 187
 188	spin_unlock(&fep->tx_lock);
 189
 190	if (do_wake)
 191		netif_wake_queue(dev);
 192
 193	/*
 194	 * First, grab all of the stats for the incoming packet.
 195	 * These get messed up if we get called due to a busy condition.
 196	 */
 197	bdp = fep->cur_rx;
 198
 199	while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0 &&
 200	       received < budget) {
 201		curidx = bdp - fep->rx_bd_base;
 202
 203		/*
 204		 * Since we have allocated space to hold a complete frame,
 205		 * the last indicator should be set.
 206		 */
 207		if ((sc & BD_ENET_RX_LAST) == 0)
 208			dev_warn(fep->dev, "rcv is not +last\n");
 209
 210		/*
 211		 * Check for errors.
 212		 */
 213		if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
 214			  BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
 215			dev->stats.rx_errors++;
 216			/* Frame too long or too short. */
 217			if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
 218				dev->stats.rx_length_errors++;
 219			/* Frame alignment */
 220			if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
 221				dev->stats.rx_frame_errors++;
 222			/* CRC Error */
 223			if (sc & BD_ENET_RX_CR)
 224				dev->stats.rx_crc_errors++;
 225			/* FIFO overrun */
 226			if (sc & BD_ENET_RX_OV)
 227				dev->stats.rx_crc_errors++;
 228
 229			skbn = fep->rx_skbuff[curidx];
 230		} else {
 231			skb = fep->rx_skbuff[curidx];
 232
 233			/*
 234			 * Process the incoming frame.
 235			 */
 236			dev->stats.rx_packets++;
 237			pkt_len = CBDR_DATLEN(bdp) - 4;	/* remove CRC */
 238			dev->stats.rx_bytes += pkt_len + 4;
 239
 240			if (pkt_len <= fpi->rx_copybreak) {
 241				/* +2 to make IP header L1 cache aligned */
 242				skbn = netdev_alloc_skb(dev, pkt_len + 2);
 243				if (skbn != NULL) {
 244					skb_reserve(skbn, 2);	/* align IP header */
 245					skb_copy_from_linear_data(skb,
 246						      skbn->data, pkt_len);
 247					swap(skb, skbn);
 248					dma_sync_single_for_cpu(fep->dev,
 249						CBDR_BUFADDR(bdp),
 250						L1_CACHE_ALIGN(pkt_len),
 251						DMA_FROM_DEVICE);
 252				}
 253			} else {
 254				skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
 255
 256				if (skbn) {
 257					dma_addr_t dma;
 258
 259					skb_align(skbn, ENET_RX_ALIGN);
 260
 261					dma_unmap_single(fep->dev,
 262						CBDR_BUFADDR(bdp),
 263						L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 264						DMA_FROM_DEVICE);
 265
 266					dma = dma_map_single(fep->dev,
 267						skbn->data,
 268						L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 269						DMA_FROM_DEVICE);
 270					CBDW_BUFADDR(bdp, dma);
 271				}
 272			}
 273
 274			if (skbn != NULL) {
 275				skb_put(skb, pkt_len);	/* Make room */
 276				skb->protocol = eth_type_trans(skb, dev);
 277				received++;
 278				netif_receive_skb(skb);
 279			} else {
 280				dev->stats.rx_dropped++;
 281				skbn = skb;
 282			}
 283		}
 284
 285		fep->rx_skbuff[curidx] = skbn;
 286		CBDW_DATLEN(bdp, 0);
 287		CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
 288
 289		/*
 290		 * Update BD pointer to next entry.
 291		 */
 292		if ((sc & BD_ENET_RX_WRAP) == 0)
 293			bdp++;
 294		else
 295			bdp = fep->rx_bd_base;
 296
 297		(*fep->ops->rx_bd_done)(dev);
 298	}
 299
 300	fep->cur_rx = bdp;
 301
 302	if (received < budget && tx_left) {
 303		/* done */
 304		napi_complete_done(napi, received);
 305		(*fep->ops->napi_enable)(dev);
 306
 307		return received;
 308	}
 309
 310	return budget;
 311}
 312
 313/*
 314 * The interrupt handler.
 315 * This is called from the MPC core interrupt.
 316 */
 317static irqreturn_t
 318fs_enet_interrupt(int irq, void *dev_id)
 319{
 320	struct net_device *dev = dev_id;
 
 321	struct fs_enet_private *fep;
 322	const struct fs_platform_info *fpi;
 323	u32 int_events;
 324	u32 int_clr_events;
 325	int nr, napi_ok;
 326	int handled;
 327
 328	fep = netdev_priv(dev);
 329	fpi = fep->fpi;
 330
 331	nr = 0;
 332	while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
 333		nr++;
 334
 335		int_clr_events = int_events;
 336		int_clr_events &= ~fep->ev_napi;
 337
 338		(*fep->ops->clear_int_events)(dev, int_clr_events);
 339
 340		if (int_events & fep->ev_err)
 341			(*fep->ops->ev_error)(dev, int_events);
 342
 343		if (int_events & fep->ev) {
 344			napi_ok = napi_schedule_prep(&fep->napi);
 345
 346			(*fep->ops->napi_disable)(dev);
 347			(*fep->ops->clear_int_events)(dev, fep->ev_napi);
 348
 349			/* NOTE: it is possible for FCCs in NAPI mode    */
 350			/* to submit a spurious interrupt while in poll  */
 
 351			if (napi_ok)
 352				__napi_schedule(&fep->napi);
 353		}
 354
 355	}
 356
 357	handled = nr > 0;
 358	return IRQ_RETVAL(handled);
 359}
 360
 361void fs_init_bds(struct net_device *dev)
 362{
 363	struct fs_enet_private *fep = netdev_priv(dev);
 364	cbd_t __iomem *bdp;
 365	struct sk_buff *skb;
 
 366	int i;
 367
 368	fs_cleanup_bds(dev);
 369
 370	fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
 
 371	fep->tx_free = fep->tx_ring;
 372	fep->cur_rx = fep->rx_bd_base;
 373
 374	/*
 375	 * Initialize the receive buffer descriptors.
 376	 */
 377	for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
 378		skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
 379		if (skb == NULL)
 380			break;
 381
 382		skb_align(skb, ENET_RX_ALIGN);
 383		fep->rx_skbuff[i] = skb;
 384		CBDW_BUFADDR(bdp,
 385			dma_map_single(fep->dev, skb->data,
 386				L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 387				DMA_FROM_DEVICE));
 388		CBDW_DATLEN(bdp, 0);	/* zero */
 389		CBDW_SC(bdp, BD_ENET_RX_EMPTY |
 390			((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
 391	}
 392	/*
 393	 * if we failed, fillup remainder
 394	 */
 395	for (; i < fep->rx_ring; i++, bdp++) {
 396		fep->rx_skbuff[i] = NULL;
 397		CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
 398	}
 399
 400	/*
 401	 * ...and the same for transmit.
 402	 */
 403	for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
 404		fep->tx_skbuff[i] = NULL;
 405		CBDW_BUFADDR(bdp, 0);
 406		CBDW_DATLEN(bdp, 0);
 407		CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
 408	}
 409}
 410
 411void fs_cleanup_bds(struct net_device *dev)
 412{
 413	struct fs_enet_private *fep = netdev_priv(dev);
 414	struct sk_buff *skb;
 415	cbd_t __iomem *bdp;
 416	int i;
 417
 418	/*
 419	 * Reset SKB transmit buffers.
 420	 */
 421	for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
 422		if ((skb = fep->tx_skbuff[i]) == NULL)
 
 423			continue;
 424
 425		/* unmap */
 426		dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
 427				skb->len, DMA_TO_DEVICE);
 428
 429		fep->tx_skbuff[i] = NULL;
 430		dev_kfree_skb(skb);
 431	}
 432
 433	/*
 434	 * Reset SKB receive buffers
 435	 */
 436	for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
 437		if ((skb = fep->rx_skbuff[i]) == NULL)
 
 438			continue;
 439
 440		/* unmap */
 441		dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
 442			L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 443			DMA_FROM_DEVICE);
 444
 445		fep->rx_skbuff[i] = NULL;
 446
 447		dev_kfree_skb(skb);
 448	}
 449}
 450
 451/**********************************************************************************/
 452
 453#ifdef CONFIG_FS_ENET_MPC5121_FEC
 454/*
 455 * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
 456 */
 457static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
 458					       struct sk_buff *skb)
 459{
 460	struct sk_buff *new_skb;
 461
 462	if (skb_linearize(skb))
 463		return NULL;
 464
 465	/* Alloc new skb */
 466	new_skb = netdev_alloc_skb(dev, skb->len + 4);
 467	if (!new_skb)
 468		return NULL;
 469
 470	/* Make sure new skb is properly aligned */
 471	skb_align(new_skb, 4);
 472
 473	/* Copy data to new skb ... */
 474	skb_copy_from_linear_data(skb, new_skb->data, skb->len);
 475	skb_put(new_skb, skb->len);
 476
 477	/* ... and free an old one */
 478	dev_kfree_skb_any(skb);
 479
 480	return new_skb;
 481}
 482#endif
 483
 484static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
 
 485{
 486	struct fs_enet_private *fep = netdev_priv(dev);
 
 487	cbd_t __iomem *bdp;
 488	int curidx;
 489	u16 sc;
 490	int nr_frags;
 491	skb_frag_t *frag;
 492	int len;
 493#ifdef CONFIG_FS_ENET_MPC5121_FEC
 494	int is_aligned = 1;
 495	int i;
 496
 497	if (!IS_ALIGNED((unsigned long)skb->data, 4)) {
 498		is_aligned = 0;
 499	} else {
 500		nr_frags = skb_shinfo(skb)->nr_frags;
 501		frag = skb_shinfo(skb)->frags;
 502		for (i = 0; i < nr_frags; i++, frag++) {
 503			if (!IS_ALIGNED(frag->page_offset, 4)) {
 504				is_aligned = 0;
 505				break;
 506			}
 507		}
 508	}
 509
 510	if (!is_aligned) {
 511		skb = tx_skb_align_workaround(dev, skb);
 512		if (!skb) {
 513			/*
 514			 * We have lost packet due to memory allocation error
 515			 * in tx_skb_align_workaround(). Hopefully original
 516			 * skb is still valid, so try transmit it later.
 517			 */
 518			return NETDEV_TX_BUSY;
 519		}
 520	}
 521#endif
 522
 523	spin_lock(&fep->tx_lock);
 524
 525	/*
 526	 * Fill in a Tx ring entry
 527	 */
 528	bdp = fep->cur_tx;
 529
 530	nr_frags = skb_shinfo(skb)->nr_frags;
 531	if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
 532		netif_stop_queue(dev);
 533		spin_unlock(&fep->tx_lock);
 534
 535		/*
 536		 * Ooops.  All transmit buffers are full.  Bail out.
 537		 * This should not happen, since the tx queue should be stopped.
 538		 */
 539		dev_warn(fep->dev, "tx queue full!.\n");
 540		return NETDEV_TX_BUSY;
 541	}
 542
 543	curidx = bdp - fep->tx_bd_base;
 544
 545	len = skb->len;
 546	dev->stats.tx_bytes += len;
 547	if (nr_frags)
 548		len -= skb->data_len;
 
 549	fep->tx_free -= nr_frags + 1;
 550	/*
 551	 * Push the data cache so the CPM does not get stale memory data.
 552	 */
 553	CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
 554				skb->data, len, DMA_TO_DEVICE));
 555	CBDW_DATLEN(bdp, len);
 556
 557	fep->mapped_as_page[curidx] = 0;
 558	frag = skb_shinfo(skb)->frags;
 559	while (nr_frags) {
 560		CBDC_SC(bdp,
 561			BD_ENET_TX_STATS | BD_ENET_TX_INTR | BD_ENET_TX_LAST |
 562			BD_ENET_TX_TC);
 563		CBDS_SC(bdp, BD_ENET_TX_READY);
 564
 565		if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
 566			bdp++, curidx++;
 567		else
 568			bdp = fep->tx_bd_base, curidx = 0;
 
 
 
 569
 570		len = skb_frag_size(frag);
 571		CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len,
 572						   DMA_TO_DEVICE));
 573		CBDW_DATLEN(bdp, len);
 574
 575		fep->tx_skbuff[curidx] = NULL;
 576		fep->mapped_as_page[curidx] = 1;
 577
 578		frag++;
 579		nr_frags--;
 580	}
 581
 582	/* Trigger transmission start */
 583	sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
 584	     BD_ENET_TX_LAST | BD_ENET_TX_TC;
 585
 586	/* note that while FEC does not have this bit
 587	 * it marks it as available for software use
 588	 * yay for hw reuse :) */
 
 589	if (skb->len <= 60)
 590		sc |= BD_ENET_TX_PAD;
 
 591	CBDC_SC(bdp, BD_ENET_TX_STATS);
 592	CBDS_SC(bdp, sc);
 593
 594	/* Save skb pointer. */
 595	fep->tx_skbuff[curidx] = skb;
 596
 597	/* If this was the last BD in the ring, start at the beginning again. */
 598	if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
 599		bdp++;
 600	else
 601		bdp = fep->tx_bd_base;
 
 602	fep->cur_tx = bdp;
 603
 604	if (fep->tx_free < MAX_SKB_FRAGS)
 605		netif_stop_queue(dev);
 606
 607	skb_tx_timestamp(skb);
 608
 609	(*fep->ops->tx_kickstart)(dev);
 610
 611	spin_unlock(&fep->tx_lock);
 612
 613	return NETDEV_TX_OK;
 614}
 615
 616static void fs_timeout_work(struct work_struct *work)
 617{
 618	struct fs_enet_private *fep = container_of(work, struct fs_enet_private,
 619						   timeout_work);
 620	struct net_device *dev = fep->ndev;
 621	unsigned long flags;
 622	int wake = 0;
 623
 624	dev->stats.tx_errors++;
 625
 626	spin_lock_irqsave(&fep->lock, flags);
 
 
 
 
 
 
 
 627
 628	if (dev->flags & IFF_UP) {
 629		phy_stop(dev->phydev);
 630		(*fep->ops->stop)(dev);
 631		(*fep->ops->restart)(dev);
 632	}
 633
 634	phy_start(dev->phydev);
 635	wake = fep->tx_free >= MAX_SKB_FRAGS &&
 636	       !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
 637	spin_unlock_irqrestore(&fep->lock, flags);
 638
 639	if (wake)
 640		netif_wake_queue(dev);
 641}
 642
 643static void fs_timeout(struct net_device *dev)
 644{
 645	struct fs_enet_private *fep = netdev_priv(dev);
 646
 647	schedule_work(&fep->timeout_work);
 648}
 649
 650/*-----------------------------------------------------------------------------
 651 *  generic link-change handler - should be sufficient for most cases
 652 *-----------------------------------------------------------------------------*/
 653static void generic_adjust_link(struct  net_device *dev)
 
 654{
 655	struct fs_enet_private *fep = netdev_priv(dev);
 656	struct phy_device *phydev = dev->phydev;
 657	int new_state = 0;
 658
 659	if (phydev->link) {
 660		/* adjust to duplex mode */
 661		if (phydev->duplex != fep->oldduplex) {
 662			new_state = 1;
 663			fep->oldduplex = phydev->duplex;
 664		}
 665
 666		if (phydev->speed != fep->oldspeed) {
 667			new_state = 1;
 668			fep->oldspeed = phydev->speed;
 669		}
 670
 671		if (!fep->oldlink) {
 672			new_state = 1;
 673			fep->oldlink = 1;
 674		}
 675
 676		if (new_state)
 677			fep->ops->restart(dev);
 678	} else if (fep->oldlink) {
 679		new_state = 1;
 680		fep->oldlink = 0;
 681		fep->oldspeed = 0;
 682		fep->oldduplex = -1;
 683	}
 684
 685	if (new_state && netif_msg_link(fep))
 686		phy_print_status(phydev);
 
 687}
 688
 689
 690static void fs_adjust_link(struct net_device *dev)
 691{
 692	struct fs_enet_private *fep = netdev_priv(dev);
 
 693	unsigned long flags;
 694
 695	spin_lock_irqsave(&fep->lock, flags);
 696
 697	if(fep->ops->adjust_link)
 698		fep->ops->adjust_link(dev);
 699	else
 700		generic_adjust_link(dev);
 701
 702	spin_unlock_irqrestore(&fep->lock, flags);
 703}
 704
 705static int fs_init_phy(struct net_device *dev)
 
 706{
 707	struct fs_enet_private *fep = netdev_priv(dev);
 708	struct phy_device *phydev;
 709	phy_interface_t iface;
 710
 711	fep->oldlink = 0;
 712	fep->oldspeed = 0;
 713	fep->oldduplex = -1;
 714
 715	iface = fep->fpi->use_rmii ?
 716		PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII;
 717
 718	phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
 719				iface);
 720	if (!phydev) {
 721		dev_err(&dev->dev, "Could not attach to PHY\n");
 722		return -ENODEV;
 723	}
 724
 725	return 0;
 726}
 727
 728static int fs_enet_open(struct net_device *dev)
 729{
 730	struct fs_enet_private *fep = netdev_priv(dev);
 731	int r;
 732	int err;
 733
 734	/* to initialize the fep->cur_rx,... */
 735	/* not doing this, will cause a crash in fs_enet_napi */
 
 736	fs_init_bds(fep->ndev);
 737
 738	napi_enable(&fep->napi);
 739
 740	/* Install our interrupt handler. */
 741	r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
 742			"fs_enet-mac", dev);
 743	if (r != 0) {
 744		dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
 745		napi_disable(&fep->napi);
 746		return -EINVAL;
 747	}
 748
 749	err = fs_init_phy(dev);
 750	if (err) {
 751		free_irq(fep->interrupt, dev);
 752		napi_disable(&fep->napi);
 753		return err;
 754	}
 755	phy_start(dev->phydev);
 756
 757	netif_start_queue(dev);
 758
 759	return 0;
 760}
 761
 762static int fs_enet_close(struct net_device *dev)
 763{
 764	struct fs_enet_private *fep = netdev_priv(dev);
 765	unsigned long flags;
 766
 767	netif_stop_queue(dev);
 768	netif_carrier_off(dev);
 769	napi_disable(&fep->napi);
 770	cancel_work_sync(&fep->timeout_work);
 771	phy_stop(dev->phydev);
 772
 773	spin_lock_irqsave(&fep->lock, flags);
 774	spin_lock(&fep->tx_lock);
 775	(*fep->ops->stop)(dev);
 776	spin_unlock(&fep->tx_lock);
 777	spin_unlock_irqrestore(&fep->lock, flags);
 
 778
 779	/* release any irqs */
 780	phy_disconnect(dev->phydev);
 781	free_irq(fep->interrupt, dev);
 782
 783	return 0;
 784}
 785
 786/*************************************************************************/
 787
 788static void fs_get_drvinfo(struct net_device *dev,
 789			    struct ethtool_drvinfo *info)
 790{
 791	strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
 792	strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
 793}
 794
 795static int fs_get_regs_len(struct net_device *dev)
 796{
 797	struct fs_enet_private *fep = netdev_priv(dev);
 798
 799	return (*fep->ops->get_regs_len)(dev);
 800}
 801
 802static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
 803			 void *p)
 804{
 805	struct fs_enet_private *fep = netdev_priv(dev);
 806	unsigned long flags;
 807	int r, len;
 808
 809	len = regs->len;
 810
 811	spin_lock_irqsave(&fep->lock, flags);
 812	r = (*fep->ops->get_regs)(dev, p, &len);
 813	spin_unlock_irqrestore(&fep->lock, flags);
 814
 815	if (r == 0)
 816		regs->version = 0;
 817}
 818
 819static u32 fs_get_msglevel(struct net_device *dev)
 820{
 821	struct fs_enet_private *fep = netdev_priv(dev);
 
 822	return fep->msg_enable;
 823}
 824
 825static void fs_set_msglevel(struct net_device *dev, u32 value)
 826{
 827	struct fs_enet_private *fep = netdev_priv(dev);
 
 828	fep->msg_enable = value;
 829}
 830
 831static int fs_get_tunable(struct net_device *dev,
 832			  const struct ethtool_tunable *tuna, void *data)
 833{
 834	struct fs_enet_private *fep = netdev_priv(dev);
 835	struct fs_platform_info *fpi = fep->fpi;
 836	int ret = 0;
 837
 838	switch (tuna->id) {
 839	case ETHTOOL_RX_COPYBREAK:
 840		*(u32 *)data = fpi->rx_copybreak;
 841		break;
 842	default:
 843		ret = -EINVAL;
 844		break;
 845	}
 846
 847	return ret;
 848}
 849
 850static int fs_set_tunable(struct net_device *dev,
 851			  const struct ethtool_tunable *tuna, const void *data)
 852{
 853	struct fs_enet_private *fep = netdev_priv(dev);
 854	struct fs_platform_info *fpi = fep->fpi;
 855	int ret = 0;
 856
 857	switch (tuna->id) {
 858	case ETHTOOL_RX_COPYBREAK:
 859		fpi->rx_copybreak = *(u32 *)data;
 860		break;
 861	default:
 862		ret = -EINVAL;
 863		break;
 864	}
 865
 866	return ret;
 867}
 868
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 869static const struct ethtool_ops fs_ethtool_ops = {
 870	.get_drvinfo = fs_get_drvinfo,
 871	.get_regs_len = fs_get_regs_len,
 872	.nway_reset = phy_ethtool_nway_reset,
 873	.get_link = ethtool_op_get_link,
 874	.get_msglevel = fs_get_msglevel,
 875	.set_msglevel = fs_set_msglevel,
 876	.get_regs = fs_get_regs,
 877	.get_ts_info = ethtool_op_get_ts_info,
 878	.get_link_ksettings = phy_ethtool_get_link_ksettings,
 879	.set_link_ksettings = phy_ethtool_set_link_ksettings,
 880	.get_tunable = fs_get_tunable,
 881	.set_tunable = fs_set_tunable,
 882};
 883
 884static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
 885{
 886	if (!netif_running(dev))
 887		return -EINVAL;
 888
 889	return phy_mii_ioctl(dev->phydev, rq, cmd);
 890}
 891
 892extern int fs_mii_connect(struct net_device *dev);
 893extern void fs_mii_disconnect(struct net_device *dev);
 894
 895/**************************************************************************************/
 896
 897#ifdef CONFIG_FS_ENET_HAS_FEC
 898#define IS_FEC(match) ((match)->data == &fs_fec_ops)
 899#else
 900#define IS_FEC(match) 0
 901#endif
 902
 903static const struct net_device_ops fs_enet_netdev_ops = {
 904	.ndo_open		= fs_enet_open,
 905	.ndo_stop		= fs_enet_close,
 906	.ndo_start_xmit		= fs_enet_start_xmit,
 907	.ndo_tx_timeout		= fs_timeout,
 908	.ndo_set_rx_mode	= fs_set_multicast_list,
 909	.ndo_do_ioctl		= fs_ioctl,
 910	.ndo_validate_addr	= eth_validate_addr,
 911	.ndo_set_mac_address	= eth_mac_addr,
 912#ifdef CONFIG_NET_POLL_CONTROLLER
 913	.ndo_poll_controller	= fs_enet_netpoll,
 914#endif
 915};
 916
 917static const struct of_device_id fs_enet_match[];
 
 
 
 
 
 918static int fs_enet_probe(struct platform_device *ofdev)
 919{
 920	const struct of_device_id *match;
 921	struct net_device *ndev;
 922	struct fs_enet_private *fep;
 923	struct fs_platform_info *fpi;
 
 
 
 
 
 924	const u32 *data;
 925	struct clk *clk;
 926	int err;
 927	const u8 *mac_addr;
 928	const char *phy_connection_type;
 929	int privsize, len, ret = -ENODEV;
 930
 931	match = of_match_device(fs_enet_match, &ofdev->dev);
 932	if (!match)
 933		return -EINVAL;
 934
 935	fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
 936	if (!fpi)
 937		return -ENOMEM;
 938
 939	if (!IS_FEC(match)) {
 940		data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
 941		if (!data || len != 4)
 942			goto out_free_fpi;
 943
 944		fpi->cp_command = *data;
 945	}
 946
 
 
 
 
 
 
 
 
 947	fpi->rx_ring = RX_RING_SIZE;
 948	fpi->tx_ring = TX_RING_SIZE;
 949	fpi->rx_copybreak = 240;
 950	fpi->napi_weight = 17;
 951	fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0);
 952	if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) {
 953		err = of_phy_register_fixed_link(ofdev->dev.of_node);
 954		if (err)
 955			goto out_free_fpi;
 956
 957		/* In the case of a fixed PHY, the DT node associated
 958		 * to the PHY is the Ethernet MAC DT node.
 959		 */
 960		fpi->phy_node = of_node_get(ofdev->dev.of_node);
 961	}
 962
 963	if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) {
 964		phy_connection_type = of_get_property(ofdev->dev.of_node,
 965						"phy-connection-type", NULL);
 966		if (phy_connection_type && !strcmp("rmii", phy_connection_type))
 967			fpi->use_rmii = 1;
 968	}
 969
 970	/* make clock lookup non-fatal (the driver is shared among platforms),
 971	 * but require enable to succeed when a clock was specified/found,
 972	 * keep a reference to the clock upon successful acquisition
 973	 */
 974	clk = devm_clk_get(&ofdev->dev, "per");
 975	if (!IS_ERR(clk)) {
 976		ret = clk_prepare_enable(clk);
 977		if (ret)
 978			goto out_deregister_fixed_link;
 979
 980		fpi->clk_per = clk;
 981	}
 982
 983	privsize = sizeof(*fep) +
 984	           sizeof(struct sk_buff **) *
 985		     (fpi->rx_ring + fpi->tx_ring) +
 986		   sizeof(char) * fpi->tx_ring;
 987
 988	ndev = alloc_etherdev(privsize);
 989	if (!ndev) {
 990		ret = -ENOMEM;
 991		goto out_put;
 992	}
 993
 994	SET_NETDEV_DEV(ndev, &ofdev->dev);
 995	platform_set_drvdata(ofdev, ndev);
 996
 997	fep = netdev_priv(ndev);
 998	fep->dev = &ofdev->dev;
 999	fep->ndev = ndev;
1000	fep->fpi = fpi;
1001	fep->ops = match->data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1002
1003	ret = fep->ops->setup_data(ndev);
1004	if (ret)
1005		goto out_free_dev;
1006
1007	fep->rx_skbuff = (struct sk_buff **)&fep[1];
1008	fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1009	fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring +
1010				       fpi->tx_ring);
1011
1012	spin_lock_init(&fep->lock);
1013	spin_lock_init(&fep->tx_lock);
1014
1015	mac_addr = of_get_mac_address(ofdev->dev.of_node);
1016	if (mac_addr)
1017		memcpy(ndev->dev_addr, mac_addr, ETH_ALEN);
1018
1019	ret = fep->ops->allocate_bd(ndev);
1020	if (ret)
1021		goto out_cleanup_data;
1022
1023	fep->rx_bd_base = fep->ring_base;
1024	fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1025
1026	fep->tx_ring = fpi->tx_ring;
1027	fep->rx_ring = fpi->rx_ring;
1028
1029	ndev->netdev_ops = &fs_enet_netdev_ops;
1030	ndev->watchdog_timeo = 2 * HZ;
1031	INIT_WORK(&fep->timeout_work, fs_timeout_work);
1032	netif_napi_add(ndev, &fep->napi, fs_enet_napi, fpi->napi_weight);
 
1033
1034	ndev->ethtool_ops = &fs_ethtool_ops;
1035
1036	netif_carrier_off(ndev);
1037
1038	ndev->features |= NETIF_F_SG;
1039
1040	ret = register_netdev(ndev);
1041	if (ret)
1042		goto out_free_bd;
1043
1044	pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1045
1046	return 0;
1047
1048out_free_bd:
1049	fep->ops->free_bd(ndev);
1050out_cleanup_data:
1051	fep->ops->cleanup_data(ndev);
 
 
1052out_free_dev:
1053	free_netdev(ndev);
1054out_put:
1055	if (fpi->clk_per)
1056		clk_disable_unprepare(fpi->clk_per);
1057out_deregister_fixed_link:
1058	of_node_put(fpi->phy_node);
1059	if (of_phy_is_fixed_link(ofdev->dev.of_node))
1060		of_phy_deregister_fixed_link(ofdev->dev.of_node);
1061out_free_fpi:
1062	kfree(fpi);
1063	return ret;
1064}
1065
1066static int fs_enet_remove(struct platform_device *ofdev)
1067{
1068	struct net_device *ndev = platform_get_drvdata(ofdev);
1069	struct fs_enet_private *fep = netdev_priv(ndev);
1070
1071	unregister_netdev(ndev);
1072
1073	fep->ops->free_bd(ndev);
1074	fep->ops->cleanup_data(ndev);
1075	dev_set_drvdata(fep->dev, NULL);
1076	of_node_put(fep->fpi->phy_node);
1077	if (fep->fpi->clk_per)
1078		clk_disable_unprepare(fep->fpi->clk_per);
1079	if (of_phy_is_fixed_link(ofdev->dev.of_node))
1080		of_phy_deregister_fixed_link(ofdev->dev.of_node);
1081	free_netdev(ndev);
1082	return 0;
1083}
1084
1085static const struct of_device_id fs_enet_match[] = {
1086#ifdef CONFIG_FS_ENET_HAS_SCC
1087	{
1088		.compatible = "fsl,cpm1-scc-enet",
1089		.data = (void *)&fs_scc_ops,
1090	},
1091	{
1092		.compatible = "fsl,cpm2-scc-enet",
1093		.data = (void *)&fs_scc_ops,
1094	},
1095#endif
1096#ifdef CONFIG_FS_ENET_HAS_FCC
1097	{
1098		.compatible = "fsl,cpm2-fcc-enet",
1099		.data = (void *)&fs_fcc_ops,
1100	},
1101#endif
1102#ifdef CONFIG_FS_ENET_HAS_FEC
1103#ifdef CONFIG_FS_ENET_MPC5121_FEC
1104	{
1105		.compatible = "fsl,mpc5121-fec",
1106		.data = (void *)&fs_fec_ops,
1107	},
1108	{
1109		.compatible = "fsl,mpc5125-fec",
1110		.data = (void *)&fs_fec_ops,
1111	},
1112#else
1113	{
1114		.compatible = "fsl,pq1-fec-enet",
1115		.data = (void *)&fs_fec_ops,
1116	},
1117#endif
1118#endif
1119	{}
1120};
1121MODULE_DEVICE_TABLE(of, fs_enet_match);
1122
1123static struct platform_driver fs_enet_driver = {
1124	.driver = {
1125		.name = "fs_enet",
1126		.of_match_table = fs_enet_match,
1127	},
1128	.probe = fs_enet_probe,
1129	.remove = fs_enet_remove,
1130};
1131
1132#ifdef CONFIG_NET_POLL_CONTROLLER
1133static void fs_enet_netpoll(struct net_device *dev)
1134{
1135       disable_irq(dev->irq);
1136       fs_enet_interrupt(dev->irq, dev);
1137       enable_irq(dev->irq);
1138}
1139#endif
1140
1141module_platform_driver(fs_enet_driver);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
   4 *
   5 * Copyright (c) 2003 Intracom S.A.
   6 *  by Pantelis Antoniou <panto@intracom.gr>
   7 *
   8 * 2005 (c) MontaVista Software, Inc.
   9 * Vitaly Bordug <vbordug@ru.mvista.com>
  10 *
  11 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
  12 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
 
 
 
 
  13 */
  14
  15#include <linux/module.h>
  16#include <linux/kernel.h>
  17#include <linux/types.h>
  18#include <linux/string.h>
  19#include <linux/ptrace.h>
  20#include <linux/errno.h>
  21#include <linux/ioport.h>
  22#include <linux/slab.h>
  23#include <linux/interrupt.h>
  24#include <linux/delay.h>
  25#include <linux/netdevice.h>
  26#include <linux/etherdevice.h>
  27#include <linux/skbuff.h>
  28#include <linux/spinlock.h>
 
  29#include <linux/ethtool.h>
  30#include <linux/bitops.h>
  31#include <linux/fs.h>
  32#include <linux/platform_device.h>
  33#include <linux/phy.h>
  34#include <linux/phylink.h>
  35#include <linux/property.h>
  36#include <linux/of.h>
  37#include <linux/of_mdio.h>
 
 
  38#include <linux/of_net.h>
  39#include <linux/pgtable.h>
  40#include <linux/rtnetlink.h>
  41
  42#include <linux/vmalloc.h>
 
  43#include <asm/irq.h>
  44#include <linux/uaccess.h>
  45
  46#include "fs_enet.h"
  47
  48/*************************************************/
  49
  50MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
  51MODULE_DESCRIPTION("Freescale Ethernet Driver");
  52MODULE_LICENSE("GPL");
 
  53
  54static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
  55module_param(fs_enet_debug, int, 0);
  56MODULE_PARM_DESC(fs_enet_debug,
  57		 "Freescale bitmapped debugging message enable value");
  58
  59#define RX_RING_SIZE	32
  60#define TX_RING_SIZE	64
  61
  62#ifdef CONFIG_NET_POLL_CONTROLLER
  63static void fs_enet_netpoll(struct net_device *dev);
  64#endif
  65
  66static void fs_set_multicast_list(struct net_device *dev)
  67{
  68	struct fs_enet_private *fep = netdev_priv(dev);
  69
  70	(*fep->ops->set_multicast_list)(dev);
  71}
  72
  73static int fs_eth_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  74{
  75	struct fs_enet_private *fep = netdev_priv(dev);
  76
  77	return phylink_mii_ioctl(fep->phylink, ifr, cmd);
  78}
  79
  80static void skb_align(struct sk_buff *skb, int align)
  81{
  82	int off = ((unsigned long)skb->data) & (align - 1);
  83
  84	if (off)
  85		skb_reserve(skb, align - off);
  86}
  87
  88/* NAPI function */
  89static int fs_enet_napi(struct napi_struct *napi, int budget)
  90{
  91	struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
 
  92	const struct fs_platform_info *fpi = fep->fpi;
  93	struct net_device *dev = fep->ndev;
  94	int curidx, dirtyidx, received = 0;
  95	int do_wake = 0, do_restart = 0;
  96	int tx_left = TX_RING_SIZE;
  97	struct sk_buff *skb, *skbn;
  98	cbd_t __iomem *bdp;
  99	u16 pkt_len, sc;
 
 
 
 100
 101	spin_lock(&fep->tx_lock);
 102	bdp = fep->dirty_tx;
 103
 104	/* clear status bits for napi*/
 105	(*fep->ops->napi_clear_event)(dev);
 106
 
 107	while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0 && tx_left) {
 108		dirtyidx = bdp - fep->tx_bd_base;
 109
 110		if (fep->tx_free == fep->tx_ring)
 111			break;
 112
 113		skb = fep->tx_skbuff[dirtyidx];
 114
 115		 /* Check for errors. */
 
 
 116		if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
 117			  BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
 
 118			if (sc & BD_ENET_TX_HB)	/* No heartbeat */
 119				dev->stats.tx_heartbeat_errors++;
 120			if (sc & BD_ENET_TX_LC)	/* Late collision */
 121				dev->stats.tx_window_errors++;
 122			if (sc & BD_ENET_TX_RL)	/* Retrans limit */
 123				dev->stats.tx_aborted_errors++;
 124			if (sc & BD_ENET_TX_UN)	/* Underrun */
 125				dev->stats.tx_fifo_errors++;
 126			if (sc & BD_ENET_TX_CSL)	/* Carrier lost */
 127				dev->stats.tx_carrier_errors++;
 128
 129			if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
 130				dev->stats.tx_errors++;
 131				do_restart = 1;
 132			}
 133		} else {
 134			dev->stats.tx_packets++;
 135		}
 136
 137		if (sc & BD_ENET_TX_READY) {
 138			dev_warn(fep->dev,
 139				 "HEY! Enet xmit interrupt and TX_READY.\n");
 140		}
 141
 142		/* Deferred means some collisions occurred during transmit,
 
 143		 * but we eventually sent the packet OK.
 144		 */
 145		if (sc & BD_ENET_TX_DEF)
 146			dev->stats.collisions++;
 147
 148		/* unmap */
 149		if (fep->mapped_as_page[dirtyidx])
 150			dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp),
 151				       CBDR_DATLEN(bdp), DMA_TO_DEVICE);
 152		else
 153			dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
 154					 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
 155
 156		/* Free the sk buffer associated with this last transmit. */
 
 
 157		if (skb) {
 158			dev_kfree_skb(skb);
 159			fep->tx_skbuff[dirtyidx] = NULL;
 160		}
 161
 162		/* Update pointer to next buffer descriptor to be transmitted.
 
 163		 */
 164		if ((sc & BD_ENET_TX_WRAP) == 0)
 165			bdp++;
 166		else
 167			bdp = fep->tx_bd_base;
 168
 169		/* Since we have freed up a buffer, the ring is no longer full.
 
 
 170		 */
 171		if (++fep->tx_free == MAX_SKB_FRAGS)
 172			do_wake = 1;
 173		tx_left--;
 174	}
 175
 176	fep->dirty_tx = bdp;
 177
 178	if (do_restart)
 179		(*fep->ops->tx_restart)(dev);
 180
 181	spin_unlock(&fep->tx_lock);
 182
 183	if (do_wake)
 184		netif_wake_queue(dev);
 185
 186	/* First, grab all of the stats for the incoming packet.
 
 187	 * These get messed up if we get called due to a busy condition.
 188	 */
 189	bdp = fep->cur_rx;
 190
 191	while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0 &&
 192	       received < budget) {
 193		curidx = bdp - fep->rx_bd_base;
 194
 195		/* Since we have allocated space to hold a complete frame,
 
 196		 * the last indicator should be set.
 197		 */
 198		if ((sc & BD_ENET_RX_LAST) == 0)
 199			dev_warn(fep->dev, "rcv is not +last\n");
 200
 201		/* Check for errors. */
 
 
 202		if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
 203			  BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
 204			dev->stats.rx_errors++;
 205			/* Frame too long or too short. */
 206			if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
 207				dev->stats.rx_length_errors++;
 208			/* Frame alignment */
 209			if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
 210				dev->stats.rx_frame_errors++;
 211			/* CRC Error */
 212			if (sc & BD_ENET_RX_CR)
 213				dev->stats.rx_crc_errors++;
 214			/* FIFO overrun */
 215			if (sc & BD_ENET_RX_OV)
 216				dev->stats.rx_crc_errors++;
 217
 218			skbn = fep->rx_skbuff[curidx];
 219		} else {
 220			skb = fep->rx_skbuff[curidx];
 221
 222			/* Process the incoming frame */
 
 
 223			dev->stats.rx_packets++;
 224			pkt_len = CBDR_DATLEN(bdp) - 4;	/* remove CRC */
 225			dev->stats.rx_bytes += pkt_len + 4;
 226
 227			if (pkt_len <= fpi->rx_copybreak) {
 228				/* +2 to make IP header L1 cache aligned */
 229				skbn = netdev_alloc_skb(dev, pkt_len + 2);
 230				if (skbn) {
 231					skb_reserve(skbn, 2);	/* align IP header */
 232					skb_copy_from_linear_data(skb, skbn->data,
 233								  pkt_len);
 234					swap(skb, skbn);
 235					dma_sync_single_for_cpu(fep->dev,
 236								CBDR_BUFADDR(bdp),
 237								L1_CACHE_ALIGN(pkt_len),
 238								DMA_FROM_DEVICE);
 239				}
 240			} else {
 241				skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
 242
 243				if (skbn) {
 244					dma_addr_t dma;
 245
 246					skb_align(skbn, ENET_RX_ALIGN);
 247
 248					dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
 249							 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 250							 DMA_FROM_DEVICE);
 251
 252					dma = dma_map_single(fep->dev, skbn->data,
 253							     L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 254							     DMA_FROM_DEVICE);
 
 
 255					CBDW_BUFADDR(bdp, dma);
 256				}
 257			}
 258
 259			if (skbn) {
 260				skb_put(skb, pkt_len);	/* Make room */
 261				skb->protocol = eth_type_trans(skb, dev);
 262				received++;
 263				netif_receive_skb(skb);
 264			} else {
 265				dev->stats.rx_dropped++;
 266				skbn = skb;
 267			}
 268		}
 269
 270		fep->rx_skbuff[curidx] = skbn;
 271		CBDW_DATLEN(bdp, 0);
 272		CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
 273
 274		/* Update BD pointer to next entry */
 
 
 275		if ((sc & BD_ENET_RX_WRAP) == 0)
 276			bdp++;
 277		else
 278			bdp = fep->rx_bd_base;
 279
 280		(*fep->ops->rx_bd_done)(dev);
 281	}
 282
 283	fep->cur_rx = bdp;
 284
 285	if (received < budget && tx_left) {
 286		/* done */
 287		napi_complete_done(napi, received);
 288		(*fep->ops->napi_enable)(dev);
 289
 290		return received;
 291	}
 292
 293	return budget;
 294}
 295
 296/* The interrupt handler.
 
 297 * This is called from the MPC core interrupt.
 298 */
 299static irqreturn_t
 300fs_enet_interrupt(int irq, void *dev_id)
 301{
 302	struct net_device *dev = dev_id;
 303	u32 int_events, int_clr_events;
 304	struct fs_enet_private *fep;
 305	int nr, napi_ok, handled;
 
 
 
 
 306
 307	fep = netdev_priv(dev);
 
 308
 309	nr = 0;
 310	while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
 311		nr++;
 312
 313		int_clr_events = int_events;
 314		int_clr_events &= ~fep->ev_napi;
 315
 316		(*fep->ops->clear_int_events)(dev, int_clr_events);
 317
 318		if (int_events & fep->ev_err)
 319			(*fep->ops->ev_error)(dev, int_events);
 320
 321		if (int_events & fep->ev) {
 322			napi_ok = napi_schedule_prep(&fep->napi);
 323
 324			(*fep->ops->napi_disable)(dev);
 325			(*fep->ops->clear_int_events)(dev, fep->ev_napi);
 326
 327			/* NOTE: it is possible for FCCs in NAPI mode
 328			 * to submit a spurious interrupt while in poll
 329			 */
 330			if (napi_ok)
 331				__napi_schedule(&fep->napi);
 332		}
 
 333	}
 334
 335	handled = nr > 0;
 336	return IRQ_RETVAL(handled);
 337}
 338
 339void fs_init_bds(struct net_device *dev)
 340{
 341	struct fs_enet_private *fep = netdev_priv(dev);
 
 342	struct sk_buff *skb;
 343	cbd_t __iomem *bdp;
 344	int i;
 345
 346	fs_cleanup_bds(dev);
 347
 348	fep->dirty_tx = fep->tx_bd_base;
 349	fep->cur_tx = fep->tx_bd_base;
 350	fep->tx_free = fep->tx_ring;
 351	fep->cur_rx = fep->rx_bd_base;
 352
 353	/* Initialize the receive buffer descriptors */
 
 
 354	for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
 355		skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
 356		if (!skb)
 357			break;
 358
 359		skb_align(skb, ENET_RX_ALIGN);
 360		fep->rx_skbuff[i] = skb;
 361		CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skb->data,
 362						 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 363						 DMA_FROM_DEVICE));
 
 364		CBDW_DATLEN(bdp, 0);	/* zero */
 365		CBDW_SC(bdp, BD_ENET_RX_EMPTY |
 366			((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
 367	}
 368
 369	/* if we failed, fillup remainder */
 
 370	for (; i < fep->rx_ring; i++, bdp++) {
 371		fep->rx_skbuff[i] = NULL;
 372		CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
 373	}
 374
 375	/* ...and the same for transmit. */
 
 
 376	for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
 377		fep->tx_skbuff[i] = NULL;
 378		CBDW_BUFADDR(bdp, 0);
 379		CBDW_DATLEN(bdp, 0);
 380		CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
 381	}
 382}
 383
 384void fs_cleanup_bds(struct net_device *dev)
 385{
 386	struct fs_enet_private *fep = netdev_priv(dev);
 387	struct sk_buff *skb;
 388	cbd_t __iomem *bdp;
 389	int i;
 390
 391	/* Reset SKB transmit buffers. */
 
 
 392	for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
 393		skb = fep->tx_skbuff[i];
 394		if (!skb)
 395			continue;
 396
 397		/* unmap */
 398		dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
 399				 skb->len, DMA_TO_DEVICE);
 400
 401		fep->tx_skbuff[i] = NULL;
 402		dev_kfree_skb(skb);
 403	}
 404
 405	/* Reset SKB receive buffers */
 
 
 406	for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
 407		skb = fep->rx_skbuff[i];
 408		if (!skb)
 409			continue;
 410
 411		/* unmap */
 412		dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
 413				 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 414				 DMA_FROM_DEVICE);
 415
 416		fep->rx_skbuff[i] = NULL;
 417
 418		dev_kfree_skb(skb);
 419	}
 420}
 421
 
 
 422#ifdef CONFIG_FS_ENET_MPC5121_FEC
 423/* MPC5121 FEC requires 4-byte alignment for TX data buffer! */
 
 
 424static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
 425					       struct sk_buff *skb)
 426{
 427	struct sk_buff *new_skb;
 428
 429	if (skb_linearize(skb))
 430		return NULL;
 431
 432	/* Alloc new skb */
 433	new_skb = netdev_alloc_skb(dev, skb->len + 4);
 434	if (!new_skb)
 435		return NULL;
 436
 437	/* Make sure new skb is properly aligned */
 438	skb_align(new_skb, 4);
 439
 440	/* Copy data to new skb ... */
 441	skb_copy_from_linear_data(skb, new_skb->data, skb->len);
 442	skb_put(new_skb, skb->len);
 443
 444	/* ... and free an old one */
 445	dev_kfree_skb_any(skb);
 446
 447	return new_skb;
 448}
 449#endif
 450
 451static netdev_tx_t
 452fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
 453{
 454	struct fs_enet_private *fep = netdev_priv(dev);
 455	int curidx, nr_frags, len;
 456	cbd_t __iomem *bdp;
 
 
 
 457	skb_frag_t *frag;
 458	u16 sc;
 459#ifdef CONFIG_FS_ENET_MPC5121_FEC
 460	int i, is_aligned = 1;
 
 461
 462	if (!IS_ALIGNED((unsigned long)skb->data, 4)) {
 463		is_aligned = 0;
 464	} else {
 465		nr_frags = skb_shinfo(skb)->nr_frags;
 466		frag = skb_shinfo(skb)->frags;
 467		for (i = 0; i < nr_frags; i++, frag++) {
 468			if (!IS_ALIGNED(skb_frag_off(frag), 4)) {
 469				is_aligned = 0;
 470				break;
 471			}
 472		}
 473	}
 474
 475	if (!is_aligned) {
 476		skb = tx_skb_align_workaround(dev, skb);
 477		if (!skb) {
 478			/* We have lost packet due to memory allocation error
 
 479			 * in tx_skb_align_workaround(). Hopefully original
 480			 * skb is still valid, so try transmit it later.
 481			 */
 482			return NETDEV_TX_BUSY;
 483		}
 484	}
 485#endif
 486
 487	spin_lock(&fep->tx_lock);
 488
 489	/* Fill in a Tx ring entry */
 
 
 490	bdp = fep->cur_tx;
 491
 492	nr_frags = skb_shinfo(skb)->nr_frags;
 493	if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
 494		netif_stop_queue(dev);
 495		spin_unlock(&fep->tx_lock);
 496
 497		/* Ooops.  All transmit buffers are full.  Bail out.
 
 498		 * This should not happen, since the tx queue should be stopped.
 499		 */
 500		dev_warn(fep->dev, "tx queue full!.\n");
 501		return NETDEV_TX_BUSY;
 502	}
 503
 504	curidx = bdp - fep->tx_bd_base;
 505
 506	len = skb->len;
 507	dev->stats.tx_bytes += len;
 508	if (nr_frags)
 509		len -= skb->data_len;
 510
 511	fep->tx_free -= nr_frags + 1;
 512	/* Push the data cache so the CPM does not get stale memory data.
 
 513	 */
 514	CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
 515					 skb->data, len, DMA_TO_DEVICE));
 516	CBDW_DATLEN(bdp, len);
 517
 518	fep->mapped_as_page[curidx] = 0;
 519	frag = skb_shinfo(skb)->frags;
 520	while (nr_frags) {
 521		CBDC_SC(bdp,
 522			BD_ENET_TX_STATS | BD_ENET_TX_INTR | BD_ENET_TX_LAST |
 523			BD_ENET_TX_TC);
 524		CBDS_SC(bdp, BD_ENET_TX_READY);
 525
 526		if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0) {
 527			bdp++;
 528			curidx++;
 529		} else {
 530			bdp = fep->tx_bd_base;
 531			curidx = 0;
 532		}
 533
 534		len = skb_frag_size(frag);
 535		CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len,
 536						   DMA_TO_DEVICE));
 537		CBDW_DATLEN(bdp, len);
 538
 539		fep->tx_skbuff[curidx] = NULL;
 540		fep->mapped_as_page[curidx] = 1;
 541
 542		frag++;
 543		nr_frags--;
 544	}
 545
 546	/* Trigger transmission start */
 547	sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
 548	     BD_ENET_TX_LAST | BD_ENET_TX_TC;
 549
 550	/* note that while FEC does not have this bit
 551	 * it marks it as available for software use
 552	 * yay for hw reuse :)
 553	 */
 554	if (skb->len <= 60)
 555		sc |= BD_ENET_TX_PAD;
 556
 557	CBDC_SC(bdp, BD_ENET_TX_STATS);
 558	CBDS_SC(bdp, sc);
 559
 560	/* Save skb pointer. */
 561	fep->tx_skbuff[curidx] = skb;
 562
 563	/* If this was the last BD in the ring, start at the beginning again. */
 564	if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
 565		bdp++;
 566	else
 567		bdp = fep->tx_bd_base;
 568
 569	fep->cur_tx = bdp;
 570
 571	if (fep->tx_free < MAX_SKB_FRAGS)
 572		netif_stop_queue(dev);
 573
 574	skb_tx_timestamp(skb);
 575
 576	(*fep->ops->tx_kickstart)(dev);
 577
 578	spin_unlock(&fep->tx_lock);
 579
 580	return NETDEV_TX_OK;
 581}
 582
 583static void fs_timeout_work(struct work_struct *work)
 584{
 585	struct fs_enet_private *fep = container_of(work, struct fs_enet_private,
 586						   timeout_work);
 587	struct net_device *dev = fep->ndev;
 588	unsigned long flags;
 589	int wake = 0;
 590
 591	dev->stats.tx_errors++;
 592
 593	/* In the event a timeout was detected, but the netdev is brought down
 594	 * shortly after, it no longer makes sense to try to recover from the
 595	 * timeout. netif_running() will return false when called from the
 596	 * .ndo_close() callback. Calling the following recovery code while
 597	 * called from .ndo_close() could deadlock on rtnl.
 598	 */
 599	if (!netif_running(dev))
 600		return;
 601
 602	rtnl_lock();
 603	phylink_stop(fep->phylink);
 604	phylink_start(fep->phylink);
 605	rtnl_unlock();
 
 606
 607	spin_lock_irqsave(&fep->lock, flags);
 608	wake = fep->tx_free >= MAX_SKB_FRAGS &&
 609	       !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
 610	spin_unlock_irqrestore(&fep->lock, flags);
 611
 612	if (wake)
 613		netif_wake_queue(dev);
 614}
 615
 616static void fs_timeout(struct net_device *dev, unsigned int txqueue)
 617{
 618	struct fs_enet_private *fep = netdev_priv(dev);
 619
 620	schedule_work(&fep->timeout_work);
 621}
 622
 623static void fs_mac_link_up(struct phylink_config *config,
 624			   struct phy_device *phy,
 625			   unsigned int mode, phy_interface_t interface,
 626			   int speed, int duplex,
 627			   bool tx_pause, bool rx_pause)
 628{
 629	struct net_device *ndev = to_net_dev(config->dev);
 630	struct fs_enet_private *fep = netdev_priv(ndev);
 631	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 632
 633	spin_lock_irqsave(&fep->lock, flags);
 634	fep->ops->restart(ndev, interface, speed, duplex);
 635	spin_unlock_irqrestore(&fep->lock, flags);
 636}
 637
 638static void fs_mac_link_down(struct phylink_config *config,
 639			     unsigned int mode, phy_interface_t interface)
 640{
 641	struct net_device *ndev = to_net_dev(config->dev);
 642	struct fs_enet_private *fep = netdev_priv(ndev);
 643	unsigned long flags;
 644
 645	spin_lock_irqsave(&fep->lock, flags);
 646	fep->ops->stop(ndev);
 
 
 
 
 
 647	spin_unlock_irqrestore(&fep->lock, flags);
 648}
 649
 650static void fs_mac_config(struct phylink_config *config, unsigned int mode,
 651			  const struct phylink_link_state *state)
 652{
 653	/* Nothing to do */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 654}
 655
 656static int fs_enet_open(struct net_device *dev)
 657{
 658	struct fs_enet_private *fep = netdev_priv(dev);
 659	int r;
 660	int err;
 661
 662	/* to initialize the fep->cur_rx,...
 663	 * not doing this, will cause a crash in fs_enet_napi
 664	 */
 665	fs_init_bds(fep->ndev);
 666
 667	napi_enable(&fep->napi);
 668
 669	/* Install our interrupt handler. */
 670	r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
 671			"fs_enet-mac", dev);
 672	if (r != 0) {
 673		dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
 674		napi_disable(&fep->napi);
 675		return -EINVAL;
 676	}
 677
 678	err = phylink_of_phy_connect(fep->phylink, fep->dev->of_node, 0);
 679	if (err) {
 680		free_irq(fep->interrupt, dev);
 681		napi_disable(&fep->napi);
 682		return err;
 683	}
 684	phylink_start(fep->phylink);
 685
 686	netif_start_queue(dev);
 687
 688	return 0;
 689}
 690
 691static int fs_enet_close(struct net_device *dev)
 692{
 693	struct fs_enet_private *fep = netdev_priv(dev);
 694	unsigned long flags;
 695
 696	netif_stop_queue(dev);
 
 697	napi_disable(&fep->napi);
 698	cancel_work(&fep->timeout_work);
 699	phylink_stop(fep->phylink);
 700
 701	spin_lock_irqsave(&fep->lock, flags);
 702	spin_lock(&fep->tx_lock);
 703	(*fep->ops->stop)(dev);
 704	spin_unlock(&fep->tx_lock);
 705	spin_unlock_irqrestore(&fep->lock, flags);
 706	phylink_disconnect_phy(fep->phylink);
 707
 708	/* release any irqs */
 
 709	free_irq(fep->interrupt, dev);
 710
 711	return 0;
 712}
 713
 
 
 714static void fs_get_drvinfo(struct net_device *dev,
 715			   struct ethtool_drvinfo *info)
 716{
 717	strscpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
 
 718}
 719
 720static int fs_get_regs_len(struct net_device *dev)
 721{
 722	struct fs_enet_private *fep = netdev_priv(dev);
 723
 724	return (*fep->ops->get_regs_len)(dev);
 725}
 726
 727static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
 728			void *p)
 729{
 730	struct fs_enet_private *fep = netdev_priv(dev);
 731	unsigned long flags;
 732	int r, len;
 733
 734	len = regs->len;
 735
 736	spin_lock_irqsave(&fep->lock, flags);
 737	r = (*fep->ops->get_regs)(dev, p, &len);
 738	spin_unlock_irqrestore(&fep->lock, flags);
 739
 740	if (r == 0)
 741		regs->version = 0;
 742}
 743
 744static u32 fs_get_msglevel(struct net_device *dev)
 745{
 746	struct fs_enet_private *fep = netdev_priv(dev);
 747
 748	return fep->msg_enable;
 749}
 750
 751static void fs_set_msglevel(struct net_device *dev, u32 value)
 752{
 753	struct fs_enet_private *fep = netdev_priv(dev);
 754
 755	fep->msg_enable = value;
 756}
 757
 758static int fs_get_tunable(struct net_device *dev,
 759			  const struct ethtool_tunable *tuna, void *data)
 760{
 761	struct fs_enet_private *fep = netdev_priv(dev);
 762	struct fs_platform_info *fpi = fep->fpi;
 763	int ret = 0;
 764
 765	switch (tuna->id) {
 766	case ETHTOOL_RX_COPYBREAK:
 767		*(u32 *)data = fpi->rx_copybreak;
 768		break;
 769	default:
 770		ret = -EINVAL;
 771		break;
 772	}
 773
 774	return ret;
 775}
 776
 777static int fs_set_tunable(struct net_device *dev,
 778			  const struct ethtool_tunable *tuna, const void *data)
 779{
 780	struct fs_enet_private *fep = netdev_priv(dev);
 781	struct fs_platform_info *fpi = fep->fpi;
 782	int ret = 0;
 783
 784	switch (tuna->id) {
 785	case ETHTOOL_RX_COPYBREAK:
 786		fpi->rx_copybreak = *(u32 *)data;
 787		break;
 788	default:
 789		ret = -EINVAL;
 790		break;
 791	}
 792
 793	return ret;
 794}
 795
 796static int fs_ethtool_set_link_ksettings(struct net_device *dev,
 797					 const struct ethtool_link_ksettings *cmd)
 798{
 799	struct fs_enet_private *fep = netdev_priv(dev);
 800
 801	return phylink_ethtool_ksettings_set(fep->phylink, cmd);
 802}
 803
 804static int fs_ethtool_get_link_ksettings(struct net_device *dev,
 805					 struct ethtool_link_ksettings *cmd)
 806{
 807	struct fs_enet_private *fep = netdev_priv(dev);
 808
 809	return phylink_ethtool_ksettings_get(fep->phylink, cmd);
 810}
 811
 812static const struct ethtool_ops fs_ethtool_ops = {
 813	.get_drvinfo = fs_get_drvinfo,
 814	.get_regs_len = fs_get_regs_len,
 815	.nway_reset = phy_ethtool_nway_reset,
 816	.get_link = ethtool_op_get_link,
 817	.get_msglevel = fs_get_msglevel,
 818	.set_msglevel = fs_set_msglevel,
 819	.get_regs = fs_get_regs,
 820	.get_ts_info = ethtool_op_get_ts_info,
 821	.get_link_ksettings = fs_ethtool_get_link_ksettings,
 822	.set_link_ksettings = fs_ethtool_set_link_ksettings,
 823	.get_tunable = fs_get_tunable,
 824	.set_tunable = fs_set_tunable,
 825};
 826
 
 
 
 
 
 
 
 
 
 
 
 
 
 827#ifdef CONFIG_FS_ENET_HAS_FEC
 828#define IS_FEC(ops) ((ops) == &fs_fec_ops)
 829#else
 830#define IS_FEC(ops) 0
 831#endif
 832
 833static const struct net_device_ops fs_enet_netdev_ops = {
 834	.ndo_open		= fs_enet_open,
 835	.ndo_stop		= fs_enet_close,
 836	.ndo_start_xmit		= fs_enet_start_xmit,
 837	.ndo_tx_timeout		= fs_timeout,
 838	.ndo_set_rx_mode	= fs_set_multicast_list,
 839	.ndo_eth_ioctl		= fs_eth_ioctl,
 840	.ndo_validate_addr	= eth_validate_addr,
 841	.ndo_set_mac_address	= eth_mac_addr,
 842#ifdef CONFIG_NET_POLL_CONTROLLER
 843	.ndo_poll_controller	= fs_enet_netpoll,
 844#endif
 845};
 846
 847static const struct phylink_mac_ops fs_enet_phylink_mac_ops = {
 848	.mac_config = fs_mac_config,
 849	.mac_link_down = fs_mac_link_down,
 850	.mac_link_up = fs_mac_link_up,
 851};
 852
 853static int fs_enet_probe(struct platform_device *ofdev)
 854{
 855	int privsize, len, ret = -ENODEV;
 
 
 856	struct fs_platform_info *fpi;
 857	struct fs_enet_private *fep;
 858	phy_interface_t phy_mode;
 859	const struct fs_ops *ops;
 860	struct net_device *ndev;
 861	struct phylink *phylink;
 862	const u32 *data;
 863	struct clk *clk;
 
 
 
 
 864
 865	ops = device_get_match_data(&ofdev->dev);
 866	if (!ops)
 867		return -EINVAL;
 868
 869	fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
 870	if (!fpi)
 871		return -ENOMEM;
 872
 873	if (!IS_FEC(ops)) {
 874		data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
 875		if (!data || len != 4)
 876			goto out_free_fpi;
 877
 878		fpi->cp_command = *data;
 879	}
 880
 881	ret = of_get_phy_mode(ofdev->dev.of_node, &phy_mode);
 882	if (ret) {
 883		/* For compatibility, if the mode isn't specified in DT,
 884		 * assume MII
 885		 */
 886		phy_mode = PHY_INTERFACE_MODE_MII;
 887	}
 888
 889	fpi->rx_ring = RX_RING_SIZE;
 890	fpi->tx_ring = TX_RING_SIZE;
 891	fpi->rx_copybreak = 240;
 892	fpi->napi_weight = 17;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 893
 894	/* make clock lookup non-fatal (the driver is shared among platforms),
 895	 * but require enable to succeed when a clock was specified/found,
 896	 * keep a reference to the clock upon successful acquisition
 897	 */
 898	clk = devm_clk_get_optional_enabled(&ofdev->dev, "per");
 899	if (IS_ERR(clk))
 900		goto out_free_fpi;
 
 
 
 
 
 901
 902	privsize = sizeof(*fep) +
 903		   sizeof(struct sk_buff **) *
 904		     (fpi->rx_ring + fpi->tx_ring) +
 905		   sizeof(char) * fpi->tx_ring;
 906
 907	ndev = alloc_etherdev(privsize);
 908	if (!ndev) {
 909		ret = -ENOMEM;
 910		goto out_free_fpi;
 911	}
 912
 913	SET_NETDEV_DEV(ndev, &ofdev->dev);
 914	platform_set_drvdata(ofdev, ndev);
 915
 916	fep = netdev_priv(ndev);
 917	fep->dev = &ofdev->dev;
 918	fep->ndev = ndev;
 919	fep->fpi = fpi;
 920	fep->ops = ops;
 921
 922	fep->phylink_config.dev = &ndev->dev;
 923	fep->phylink_config.type = PHYLINK_NETDEV;
 924	fep->phylink_config.mac_capabilities = MAC_10 | MAC_100;
 925
 926	__set_bit(PHY_INTERFACE_MODE_MII,
 927		  fep->phylink_config.supported_interfaces);
 928
 929	if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec"))
 930		__set_bit(PHY_INTERFACE_MODE_RMII,
 931			  fep->phylink_config.supported_interfaces);
 932
 933	phylink = phylink_create(&fep->phylink_config, dev_fwnode(fep->dev),
 934				 phy_mode, &fs_enet_phylink_mac_ops);
 935	if (IS_ERR(phylink)) {
 936		ret = PTR_ERR(phylink);
 937		goto out_free_dev;
 938	}
 939
 940	fep->phylink = phylink;
 941
 942	ret = fep->ops->setup_data(ndev);
 943	if (ret)
 944		goto out_phylink;
 945
 946	fep->rx_skbuff = (struct sk_buff **)&fep[1];
 947	fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
 948	fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring +
 949				       fpi->tx_ring);
 950
 951	spin_lock_init(&fep->lock);
 952	spin_lock_init(&fep->tx_lock);
 953
 954	of_get_ethdev_address(ofdev->dev.of_node, ndev);
 
 
 955
 956	ret = fep->ops->allocate_bd(ndev);
 957	if (ret)
 958		goto out_cleanup_data;
 959
 960	fep->rx_bd_base = fep->ring_base;
 961	fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
 962
 963	fep->tx_ring = fpi->tx_ring;
 964	fep->rx_ring = fpi->rx_ring;
 965
 966	ndev->netdev_ops = &fs_enet_netdev_ops;
 967	ndev->watchdog_timeo = 2 * HZ;
 968	INIT_WORK(&fep->timeout_work, fs_timeout_work);
 969	netif_napi_add_weight(ndev, &fep->napi, fs_enet_napi,
 970			      fpi->napi_weight);
 971
 972	ndev->ethtool_ops = &fs_ethtool_ops;
 973
 
 
 974	ndev->features |= NETIF_F_SG;
 975
 976	ret = register_netdev(ndev);
 977	if (ret)
 978		goto out_free_bd;
 979
 980	pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
 981
 982	return 0;
 983
 984out_free_bd:
 985	fep->ops->free_bd(ndev);
 986out_cleanup_data:
 987	fep->ops->cleanup_data(ndev);
 988out_phylink:
 989	phylink_destroy(fep->phylink);
 990out_free_dev:
 991	free_netdev(ndev);
 
 
 
 
 
 
 
 992out_free_fpi:
 993	kfree(fpi);
 994	return ret;
 995}
 996
 997static void fs_enet_remove(struct platform_device *ofdev)
 998{
 999	struct net_device *ndev = platform_get_drvdata(ofdev);
1000	struct fs_enet_private *fep = netdev_priv(ndev);
1001
1002	unregister_netdev(ndev);
1003
1004	fep->ops->free_bd(ndev);
1005	fep->ops->cleanup_data(ndev);
1006	dev_set_drvdata(fep->dev, NULL);
1007	phylink_destroy(fep->phylink);
 
 
 
 
1008	free_netdev(ndev);
 
1009}
1010
1011static const struct of_device_id fs_enet_match[] = {
1012#ifdef CONFIG_FS_ENET_HAS_SCC
1013	{
1014		.compatible = "fsl,cpm1-scc-enet",
1015		.data = (void *)&fs_scc_ops,
1016	},
1017	{
1018		.compatible = "fsl,cpm2-scc-enet",
1019		.data = (void *)&fs_scc_ops,
1020	},
1021#endif
1022#ifdef CONFIG_FS_ENET_HAS_FCC
1023	{
1024		.compatible = "fsl,cpm2-fcc-enet",
1025		.data = (void *)&fs_fcc_ops,
1026	},
1027#endif
1028#ifdef CONFIG_FS_ENET_HAS_FEC
1029#ifdef CONFIG_FS_ENET_MPC5121_FEC
1030	{
1031		.compatible = "fsl,mpc5121-fec",
1032		.data = (void *)&fs_fec_ops,
1033	},
1034	{
1035		.compatible = "fsl,mpc5125-fec",
1036		.data = (void *)&fs_fec_ops,
1037	},
1038#else
1039	{
1040		.compatible = "fsl,pq1-fec-enet",
1041		.data = (void *)&fs_fec_ops,
1042	},
1043#endif
1044#endif
1045	{}
1046};
1047MODULE_DEVICE_TABLE(of, fs_enet_match);
1048
1049static struct platform_driver fs_enet_driver = {
1050	.driver = {
1051		.name = "fs_enet",
1052		.of_match_table = fs_enet_match,
1053	},
1054	.probe = fs_enet_probe,
1055	.remove = fs_enet_remove,
1056};
1057
1058#ifdef CONFIG_NET_POLL_CONTROLLER
1059static void fs_enet_netpoll(struct net_device *dev)
1060{
1061	disable_irq(dev->irq);
1062	fs_enet_interrupt(dev->irq, dev);
1063	enable_irq(dev->irq);
1064}
1065#endif
1066
1067module_platform_driver(fs_enet_driver);