Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
   3 *
   4 * Copyright (c) 2003 Intracom S.A.
   5 *  by Pantelis Antoniou <panto@intracom.gr>
   6 *
   7 * 2005 (c) MontaVista Software, Inc.
   8 * Vitaly Bordug <vbordug@ru.mvista.com>
   9 *
  10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
  11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
  12 *
  13 * This file is licensed under the terms of the GNU General Public License
  14 * version 2. This program is licensed "as is" without any warranty of any
  15 * kind, whether express or implied.
  16 */
  17
  18#include <linux/module.h>
  19#include <linux/kernel.h>
  20#include <linux/types.h>
  21#include <linux/string.h>
  22#include <linux/ptrace.h>
  23#include <linux/errno.h>
  24#include <linux/ioport.h>
  25#include <linux/slab.h>
  26#include <linux/interrupt.h>
  27#include <linux/delay.h>
  28#include <linux/netdevice.h>
  29#include <linux/etherdevice.h>
  30#include <linux/skbuff.h>
  31#include <linux/spinlock.h>
  32#include <linux/mii.h>
  33#include <linux/ethtool.h>
  34#include <linux/bitops.h>
  35#include <linux/fs.h>
  36#include <linux/platform_device.h>
  37#include <linux/phy.h>
  38#include <linux/of.h>
  39#include <linux/of_mdio.h>
  40#include <linux/of_platform.h>
  41#include <linux/of_gpio.h>
  42#include <linux/of_net.h>
  43
  44#include <linux/vmalloc.h>
  45#include <asm/pgtable.h>
  46#include <asm/irq.h>
  47#include <linux/uaccess.h>
  48
  49#include "fs_enet.h"
  50
  51/*************************************************/
  52
  53MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
  54MODULE_DESCRIPTION("Freescale Ethernet Driver");
  55MODULE_LICENSE("GPL");
  56MODULE_VERSION(DRV_MODULE_VERSION);
  57
  58static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
  59module_param(fs_enet_debug, int, 0);
  60MODULE_PARM_DESC(fs_enet_debug,
  61		 "Freescale bitmapped debugging message enable value");
  62
  63#define RX_RING_SIZE	32
  64#define TX_RING_SIZE	64
  65
  66#ifdef CONFIG_NET_POLL_CONTROLLER
  67static void fs_enet_netpoll(struct net_device *dev);
  68#endif
  69
  70static void fs_set_multicast_list(struct net_device *dev)
  71{
  72	struct fs_enet_private *fep = netdev_priv(dev);
  73
  74	(*fep->ops->set_multicast_list)(dev);
  75}
  76
  77static void skb_align(struct sk_buff *skb, int align)
  78{
  79	int off = ((unsigned long)skb->data) & (align - 1);
  80
  81	if (off)
  82		skb_reserve(skb, align - off);
  83}
  84
  85/* NAPI function */
  86static int fs_enet_napi(struct napi_struct *napi, int budget)
  87{
  88	struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
  89	struct net_device *dev = fep->ndev;
  90	const struct fs_platform_info *fpi = fep->fpi;
  91	cbd_t __iomem *bdp;
  92	struct sk_buff *skb, *skbn;
  93	int received = 0;
  94	u16 pkt_len, sc;
  95	int curidx;
  96	int dirtyidx, do_wake, do_restart;
  97	int tx_left = TX_RING_SIZE;
  98
  99	spin_lock(&fep->tx_lock);
 100	bdp = fep->dirty_tx;
 101
 102	/* clear status bits for napi*/
 103	(*fep->ops->napi_clear_event)(dev);
 104
 105	do_wake = do_restart = 0;
 106	while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0 && tx_left) {
 107		dirtyidx = bdp - fep->tx_bd_base;
 108
 109		if (fep->tx_free == fep->tx_ring)
 110			break;
 111
 112		skb = fep->tx_skbuff[dirtyidx];
 113
 114		/*
 115		 * Check for errors.
 116		 */
 117		if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
 118			  BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
 119
 120			if (sc & BD_ENET_TX_HB)	/* No heartbeat */
 121				dev->stats.tx_heartbeat_errors++;
 122			if (sc & BD_ENET_TX_LC)	/* Late collision */
 123				dev->stats.tx_window_errors++;
 124			if (sc & BD_ENET_TX_RL)	/* Retrans limit */
 125				dev->stats.tx_aborted_errors++;
 126			if (sc & BD_ENET_TX_UN)	/* Underrun */
 127				dev->stats.tx_fifo_errors++;
 128			if (sc & BD_ENET_TX_CSL)	/* Carrier lost */
 129				dev->stats.tx_carrier_errors++;
 130
 131			if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
 132				dev->stats.tx_errors++;
 133				do_restart = 1;
 134			}
 135		} else
 136			dev->stats.tx_packets++;
 137
 138		if (sc & BD_ENET_TX_READY) {
 139			dev_warn(fep->dev,
 140				 "HEY! Enet xmit interrupt and TX_READY.\n");
 141		}
 142
 143		/*
 144		 * Deferred means some collisions occurred during transmit,
 145		 * but we eventually sent the packet OK.
 146		 */
 147		if (sc & BD_ENET_TX_DEF)
 148			dev->stats.collisions++;
 149
 150		/* unmap */
 151		if (fep->mapped_as_page[dirtyidx])
 152			dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp),
 153				       CBDR_DATLEN(bdp), DMA_TO_DEVICE);
 154		else
 155			dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
 156					 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
 157
 158		/*
 159		 * Free the sk buffer associated with this last transmit.
 160		 */
 161		if (skb) {
 162			dev_kfree_skb(skb);
 163			fep->tx_skbuff[dirtyidx] = NULL;
 164		}
 165
 166		/*
 167		 * Update pointer to next buffer descriptor to be transmitted.
 168		 */
 169		if ((sc & BD_ENET_TX_WRAP) == 0)
 170			bdp++;
 171		else
 172			bdp = fep->tx_bd_base;
 173
 174		/*
 175		 * Since we have freed up a buffer, the ring is no longer
 176		 * full.
 177		 */
 178		if (++fep->tx_free == MAX_SKB_FRAGS)
 179			do_wake = 1;
 180		tx_left--;
 181	}
 182
 183	fep->dirty_tx = bdp;
 184
 185	if (do_restart)
 186		(*fep->ops->tx_restart)(dev);
 187
 188	spin_unlock(&fep->tx_lock);
 189
 190	if (do_wake)
 191		netif_wake_queue(dev);
 192
 193	/*
 194	 * First, grab all of the stats for the incoming packet.
 195	 * These get messed up if we get called due to a busy condition.
 196	 */
 197	bdp = fep->cur_rx;
 198
 199	while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0 &&
 200	       received < budget) {
 
 
 201		curidx = bdp - fep->rx_bd_base;
 202
 203		/*
 204		 * Since we have allocated space to hold a complete frame,
 205		 * the last indicator should be set.
 206		 */
 207		if ((sc & BD_ENET_RX_LAST) == 0)
 208			dev_warn(fep->dev, "rcv is not +last\n");
 209
 210		/*
 211		 * Check for errors.
 212		 */
 213		if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
 214			  BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
 215			dev->stats.rx_errors++;
 216			/* Frame too long or too short. */
 217			if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
 218				dev->stats.rx_length_errors++;
 219			/* Frame alignment */
 220			if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
 221				dev->stats.rx_frame_errors++;
 222			/* CRC Error */
 223			if (sc & BD_ENET_RX_CR)
 224				dev->stats.rx_crc_errors++;
 225			/* FIFO overrun */
 226			if (sc & BD_ENET_RX_OV)
 227				dev->stats.rx_crc_errors++;
 
 
 
 
 
 
 
 
 228
 229			skbn = fep->rx_skbuff[curidx];
 230		} else {
 231			skb = fep->rx_skbuff[curidx];
 232
 
 
 
 
 233			/*
 234			 * Process the incoming frame.
 235			 */
 236			dev->stats.rx_packets++;
 237			pkt_len = CBDR_DATLEN(bdp) - 4;	/* remove CRC */
 238			dev->stats.rx_bytes += pkt_len + 4;
 239
 240			if (pkt_len <= fpi->rx_copybreak) {
 241				/* +2 to make IP header L1 cache aligned */
 242				skbn = netdev_alloc_skb(dev, pkt_len + 2);
 243				if (skbn != NULL) {
 244					skb_reserve(skbn, 2);	/* align IP header */
 245					skb_copy_from_linear_data(skb,
 246						      skbn->data, pkt_len);
 247					swap(skb, skbn);
 248					dma_sync_single_for_cpu(fep->dev,
 249						CBDR_BUFADDR(bdp),
 250						L1_CACHE_ALIGN(pkt_len),
 251						DMA_FROM_DEVICE);
 252				}
 253			} else {
 254				skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
 255
 256				if (skbn) {
 257					dma_addr_t dma;
 258
 259					skb_align(skbn, ENET_RX_ALIGN);
 260
 261					dma_unmap_single(fep->dev,
 262						CBDR_BUFADDR(bdp),
 263						L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 264						DMA_FROM_DEVICE);
 265
 266					dma = dma_map_single(fep->dev,
 267						skbn->data,
 268						L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 269						DMA_FROM_DEVICE);
 270					CBDW_BUFADDR(bdp, dma);
 271				}
 272			}
 273
 274			if (skbn != NULL) {
 275				skb_put(skb, pkt_len);	/* Make room */
 276				skb->protocol = eth_type_trans(skb, dev);
 277				received++;
 278				netif_receive_skb(skb);
 279			} else {
 280				dev->stats.rx_dropped++;
 281				skbn = skb;
 282			}
 283		}
 284
 285		fep->rx_skbuff[curidx] = skbn;
 
 
 
 286		CBDW_DATLEN(bdp, 0);
 287		CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
 288
 289		/*
 290		 * Update BD pointer to next entry.
 291		 */
 292		if ((sc & BD_ENET_RX_WRAP) == 0)
 293			bdp++;
 294		else
 295			bdp = fep->rx_bd_base;
 296
 297		(*fep->ops->rx_bd_done)(dev);
 
 
 
 298	}
 299
 300	fep->cur_rx = bdp;
 301
 302	if (received < budget && tx_left) {
 303		/* done */
 304		napi_complete_done(napi, received);
 305		(*fep->ops->napi_enable)(dev);
 
 
 
 306
 307		return received;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 308	}
 309
 310	return budget;
 
 
 
 
 
 
 
 311}
 312
 313/*
 314 * The interrupt handler.
 315 * This is called from the MPC core interrupt.
 316 */
 317static irqreturn_t
 318fs_enet_interrupt(int irq, void *dev_id)
 319{
 320	struct net_device *dev = dev_id;
 321	struct fs_enet_private *fep;
 322	const struct fs_platform_info *fpi;
 323	u32 int_events;
 324	u32 int_clr_events;
 325	int nr, napi_ok;
 326	int handled;
 327
 328	fep = netdev_priv(dev);
 329	fpi = fep->fpi;
 330
 331	nr = 0;
 332	while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
 333		nr++;
 334
 335		int_clr_events = int_events;
 336		int_clr_events &= ~fep->ev_napi;
 337
 338		(*fep->ops->clear_int_events)(dev, int_clr_events);
 339
 340		if (int_events & fep->ev_err)
 341			(*fep->ops->ev_error)(dev, int_events);
 342
 343		if (int_events & fep->ev) {
 344			napi_ok = napi_schedule_prep(&fep->napi);
 345
 346			(*fep->ops->napi_disable)(dev);
 347			(*fep->ops->clear_int_events)(dev, fep->ev_napi);
 348
 349			/* NOTE: it is possible for FCCs in NAPI mode    */
 350			/* to submit a spurious interrupt while in poll  */
 351			if (napi_ok)
 352				__napi_schedule(&fep->napi);
 353		}
 354
 
 
 
 
 
 
 
 
 
 
 
 355	}
 356
 357	handled = nr > 0;
 358	return IRQ_RETVAL(handled);
 359}
 360
 361void fs_init_bds(struct net_device *dev)
 362{
 363	struct fs_enet_private *fep = netdev_priv(dev);
 364	cbd_t __iomem *bdp;
 365	struct sk_buff *skb;
 366	int i;
 367
 368	fs_cleanup_bds(dev);
 369
 370	fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
 371	fep->tx_free = fep->tx_ring;
 372	fep->cur_rx = fep->rx_bd_base;
 373
 374	/*
 375	 * Initialize the receive buffer descriptors.
 376	 */
 377	for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
 378		skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
 379		if (skb == NULL)
 380			break;
 381
 382		skb_align(skb, ENET_RX_ALIGN);
 383		fep->rx_skbuff[i] = skb;
 384		CBDW_BUFADDR(bdp,
 385			dma_map_single(fep->dev, skb->data,
 386				L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 387				DMA_FROM_DEVICE));
 388		CBDW_DATLEN(bdp, 0);	/* zero */
 389		CBDW_SC(bdp, BD_ENET_RX_EMPTY |
 390			((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
 391	}
 392	/*
 393	 * if we failed, fillup remainder
 394	 */
 395	for (; i < fep->rx_ring; i++, bdp++) {
 396		fep->rx_skbuff[i] = NULL;
 397		CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
 398	}
 399
 400	/*
 401	 * ...and the same for transmit.
 402	 */
 403	for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
 404		fep->tx_skbuff[i] = NULL;
 405		CBDW_BUFADDR(bdp, 0);
 406		CBDW_DATLEN(bdp, 0);
 407		CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
 408	}
 409}
 410
 411void fs_cleanup_bds(struct net_device *dev)
 412{
 413	struct fs_enet_private *fep = netdev_priv(dev);
 414	struct sk_buff *skb;
 415	cbd_t __iomem *bdp;
 416	int i;
 417
 418	/*
 419	 * Reset SKB transmit buffers.
 420	 */
 421	for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
 422		if ((skb = fep->tx_skbuff[i]) == NULL)
 423			continue;
 424
 425		/* unmap */
 426		dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
 427				skb->len, DMA_TO_DEVICE);
 428
 429		fep->tx_skbuff[i] = NULL;
 430		dev_kfree_skb(skb);
 431	}
 432
 433	/*
 434	 * Reset SKB receive buffers
 435	 */
 436	for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
 437		if ((skb = fep->rx_skbuff[i]) == NULL)
 438			continue;
 439
 440		/* unmap */
 441		dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
 442			L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 443			DMA_FROM_DEVICE);
 444
 445		fep->rx_skbuff[i] = NULL;
 446
 447		dev_kfree_skb(skb);
 448	}
 449}
 450
 451/**********************************************************************************/
 452
 453#ifdef CONFIG_FS_ENET_MPC5121_FEC
 454/*
 455 * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
 456 */
 457static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
 458					       struct sk_buff *skb)
 459{
 460	struct sk_buff *new_skb;
 461
 462	if (skb_linearize(skb))
 463		return NULL;
 464
 465	/* Alloc new skb */
 466	new_skb = netdev_alloc_skb(dev, skb->len + 4);
 467	if (!new_skb)
 468		return NULL;
 469
 470	/* Make sure new skb is properly aligned */
 471	skb_align(new_skb, 4);
 472
 473	/* Copy data to new skb ... */
 474	skb_copy_from_linear_data(skb, new_skb->data, skb->len);
 475	skb_put(new_skb, skb->len);
 476
 477	/* ... and free an old one */
 478	dev_kfree_skb_any(skb);
 479
 480	return new_skb;
 481}
 482#endif
 483
 484static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
 485{
 486	struct fs_enet_private *fep = netdev_priv(dev);
 487	cbd_t __iomem *bdp;
 488	int curidx;
 489	u16 sc;
 490	int nr_frags;
 491	skb_frag_t *frag;
 492	int len;
 493#ifdef CONFIG_FS_ENET_MPC5121_FEC
 494	int is_aligned = 1;
 495	int i;
 496
 497	if (!IS_ALIGNED((unsigned long)skb->data, 4)) {
 498		is_aligned = 0;
 499	} else {
 500		nr_frags = skb_shinfo(skb)->nr_frags;
 501		frag = skb_shinfo(skb)->frags;
 502		for (i = 0; i < nr_frags; i++, frag++) {
 503			if (!IS_ALIGNED(frag->page_offset, 4)) {
 504				is_aligned = 0;
 505				break;
 506			}
 507		}
 508	}
 509
 510	if (!is_aligned) {
 511		skb = tx_skb_align_workaround(dev, skb);
 512		if (!skb) {
 513			/*
 514			 * We have lost packet due to memory allocation error
 515			 * in tx_skb_align_workaround(). Hopefully original
 516			 * skb is still valid, so try transmit it later.
 517			 */
 518			return NETDEV_TX_BUSY;
 519		}
 520	}
 521#endif
 522
 523	spin_lock(&fep->tx_lock);
 524
 525	/*
 526	 * Fill in a Tx ring entry
 527	 */
 528	bdp = fep->cur_tx;
 529
 530	nr_frags = skb_shinfo(skb)->nr_frags;
 531	if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
 532		netif_stop_queue(dev);
 533		spin_unlock(&fep->tx_lock);
 534
 535		/*
 536		 * Ooops.  All transmit buffers are full.  Bail out.
 537		 * This should not happen, since the tx queue should be stopped.
 538		 */
 539		dev_warn(fep->dev, "tx queue full!.\n");
 540		return NETDEV_TX_BUSY;
 541	}
 542
 543	curidx = bdp - fep->tx_bd_base;
 544
 545	len = skb->len;
 546	dev->stats.tx_bytes += len;
 547	if (nr_frags)
 548		len -= skb->data_len;
 549	fep->tx_free -= nr_frags + 1;
 550	/*
 551	 * Push the data cache so the CPM does not get stale memory data.
 552	 */
 553	CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
 554				skb->data, len, DMA_TO_DEVICE));
 555	CBDW_DATLEN(bdp, len);
 556
 557	fep->mapped_as_page[curidx] = 0;
 558	frag = skb_shinfo(skb)->frags;
 559	while (nr_frags) {
 560		CBDC_SC(bdp,
 561			BD_ENET_TX_STATS | BD_ENET_TX_INTR | BD_ENET_TX_LAST |
 562			BD_ENET_TX_TC);
 563		CBDS_SC(bdp, BD_ENET_TX_READY);
 564
 565		if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
 566			bdp++, curidx++;
 567		else
 568			bdp = fep->tx_bd_base, curidx = 0;
 569
 570		len = skb_frag_size(frag);
 571		CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len,
 572						   DMA_TO_DEVICE));
 573		CBDW_DATLEN(bdp, len);
 574
 575		fep->tx_skbuff[curidx] = NULL;
 576		fep->mapped_as_page[curidx] = 1;
 577
 578		frag++;
 579		nr_frags--;
 580	}
 581
 582	/* Trigger transmission start */
 583	sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
 584	     BD_ENET_TX_LAST | BD_ENET_TX_TC;
 585
 586	/* note that while FEC does not have this bit
 587	 * it marks it as available for software use
 588	 * yay for hw reuse :) */
 589	if (skb->len <= 60)
 590		sc |= BD_ENET_TX_PAD;
 591	CBDC_SC(bdp, BD_ENET_TX_STATS);
 592	CBDS_SC(bdp, sc);
 593
 594	/* Save skb pointer. */
 595	fep->tx_skbuff[curidx] = skb;
 596
 597	/* If this was the last BD in the ring, start at the beginning again. */
 598	if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
 599		bdp++;
 600	else
 601		bdp = fep->tx_bd_base;
 602	fep->cur_tx = bdp;
 603
 604	if (fep->tx_free < MAX_SKB_FRAGS)
 605		netif_stop_queue(dev);
 606
 607	skb_tx_timestamp(skb);
 608
 609	(*fep->ops->tx_kickstart)(dev);
 610
 611	spin_unlock(&fep->tx_lock);
 612
 613	return NETDEV_TX_OK;
 614}
 615
 616static void fs_timeout_work(struct work_struct *work)
 617{
 618	struct fs_enet_private *fep = container_of(work, struct fs_enet_private,
 619						   timeout_work);
 620	struct net_device *dev = fep->ndev;
 621	unsigned long flags;
 622	int wake = 0;
 623
 624	dev->stats.tx_errors++;
 625
 626	spin_lock_irqsave(&fep->lock, flags);
 627
 628	if (dev->flags & IFF_UP) {
 629		phy_stop(dev->phydev);
 630		(*fep->ops->stop)(dev);
 631		(*fep->ops->restart)(dev);
 
 632	}
 633
 634	phy_start(dev->phydev);
 635	wake = fep->tx_free >= MAX_SKB_FRAGS &&
 636	       !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
 637	spin_unlock_irqrestore(&fep->lock, flags);
 638
 639	if (wake)
 640		netif_wake_queue(dev);
 641}
 642
 643static void fs_timeout(struct net_device *dev)
 644{
 645	struct fs_enet_private *fep = netdev_priv(dev);
 646
 647	schedule_work(&fep->timeout_work);
 648}
 649
 650/*-----------------------------------------------------------------------------
 651 *  generic link-change handler - should be sufficient for most cases
 652 *-----------------------------------------------------------------------------*/
 653static void generic_adjust_link(struct  net_device *dev)
 654{
 655	struct fs_enet_private *fep = netdev_priv(dev);
 656	struct phy_device *phydev = dev->phydev;
 657	int new_state = 0;
 658
 659	if (phydev->link) {
 660		/* adjust to duplex mode */
 661		if (phydev->duplex != fep->oldduplex) {
 662			new_state = 1;
 663			fep->oldduplex = phydev->duplex;
 664		}
 665
 666		if (phydev->speed != fep->oldspeed) {
 667			new_state = 1;
 668			fep->oldspeed = phydev->speed;
 669		}
 670
 671		if (!fep->oldlink) {
 672			new_state = 1;
 673			fep->oldlink = 1;
 674		}
 675
 676		if (new_state)
 677			fep->ops->restart(dev);
 678	} else if (fep->oldlink) {
 679		new_state = 1;
 680		fep->oldlink = 0;
 681		fep->oldspeed = 0;
 682		fep->oldduplex = -1;
 683	}
 684
 685	if (new_state && netif_msg_link(fep))
 686		phy_print_status(phydev);
 687}
 688
 689
 690static void fs_adjust_link(struct net_device *dev)
 691{
 692	struct fs_enet_private *fep = netdev_priv(dev);
 693	unsigned long flags;
 694
 695	spin_lock_irqsave(&fep->lock, flags);
 696
 697	if(fep->ops->adjust_link)
 698		fep->ops->adjust_link(dev);
 699	else
 700		generic_adjust_link(dev);
 701
 702	spin_unlock_irqrestore(&fep->lock, flags);
 703}
 704
 705static int fs_init_phy(struct net_device *dev)
 706{
 707	struct fs_enet_private *fep = netdev_priv(dev);
 708	struct phy_device *phydev;
 709	phy_interface_t iface;
 710
 711	fep->oldlink = 0;
 712	fep->oldspeed = 0;
 713	fep->oldduplex = -1;
 714
 715	iface = fep->fpi->use_rmii ?
 716		PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII;
 717
 718	phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
 719				iface);
 720	if (!phydev) {
 721		dev_err(&dev->dev, "Could not attach to PHY\n");
 722		return -ENODEV;
 723	}
 724
 
 
 725	return 0;
 726}
 727
 728static int fs_enet_open(struct net_device *dev)
 729{
 730	struct fs_enet_private *fep = netdev_priv(dev);
 731	int r;
 732	int err;
 733
 734	/* to initialize the fep->cur_rx,... */
 735	/* not doing this, will cause a crash in fs_enet_napi */
 736	fs_init_bds(fep->ndev);
 737
 738	napi_enable(&fep->napi);
 
 739
 740	/* Install our interrupt handler. */
 741	r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
 742			"fs_enet-mac", dev);
 743	if (r != 0) {
 744		dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
 745		napi_disable(&fep->napi);
 
 746		return -EINVAL;
 747	}
 748
 749	err = fs_init_phy(dev);
 750	if (err) {
 751		free_irq(fep->interrupt, dev);
 752		napi_disable(&fep->napi);
 
 753		return err;
 754	}
 755	phy_start(dev->phydev);
 756
 757	netif_start_queue(dev);
 758
 759	return 0;
 760}
 761
 762static int fs_enet_close(struct net_device *dev)
 763{
 764	struct fs_enet_private *fep = netdev_priv(dev);
 765	unsigned long flags;
 766
 767	netif_stop_queue(dev);
 768	netif_carrier_off(dev);
 769	napi_disable(&fep->napi);
 770	cancel_work_sync(&fep->timeout_work);
 771	phy_stop(dev->phydev);
 772
 773	spin_lock_irqsave(&fep->lock, flags);
 774	spin_lock(&fep->tx_lock);
 775	(*fep->ops->stop)(dev);
 776	spin_unlock(&fep->tx_lock);
 777	spin_unlock_irqrestore(&fep->lock, flags);
 778
 779	/* release any irqs */
 780	phy_disconnect(dev->phydev);
 
 781	free_irq(fep->interrupt, dev);
 782
 783	return 0;
 784}
 785
 
 
 
 
 
 
 786/*************************************************************************/
 787
 788static void fs_get_drvinfo(struct net_device *dev,
 789			    struct ethtool_drvinfo *info)
 790{
 791	strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
 792	strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
 793}
 794
 795static int fs_get_regs_len(struct net_device *dev)
 796{
 797	struct fs_enet_private *fep = netdev_priv(dev);
 798
 799	return (*fep->ops->get_regs_len)(dev);
 800}
 801
 802static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
 803			 void *p)
 804{
 805	struct fs_enet_private *fep = netdev_priv(dev);
 806	unsigned long flags;
 807	int r, len;
 808
 809	len = regs->len;
 810
 811	spin_lock_irqsave(&fep->lock, flags);
 812	r = (*fep->ops->get_regs)(dev, p, &len);
 813	spin_unlock_irqrestore(&fep->lock, flags);
 814
 815	if (r == 0)
 816		regs->version = 0;
 817}
 818
 819static u32 fs_get_msglevel(struct net_device *dev)
 820{
 821	struct fs_enet_private *fep = netdev_priv(dev);
 822	return fep->msg_enable;
 823}
 824
 825static void fs_set_msglevel(struct net_device *dev, u32 value)
 826{
 827	struct fs_enet_private *fep = netdev_priv(dev);
 828	fep->msg_enable = value;
 829}
 830
 831static int fs_get_tunable(struct net_device *dev,
 832			  const struct ethtool_tunable *tuna, void *data)
 833{
 834	struct fs_enet_private *fep = netdev_priv(dev);
 835	struct fs_platform_info *fpi = fep->fpi;
 836	int ret = 0;
 837
 838	switch (tuna->id) {
 839	case ETHTOOL_RX_COPYBREAK:
 840		*(u32 *)data = fpi->rx_copybreak;
 841		break;
 842	default:
 843		ret = -EINVAL;
 844		break;
 845	}
 846
 847	return ret;
 848}
 849
 850static int fs_set_tunable(struct net_device *dev,
 851			  const struct ethtool_tunable *tuna, const void *data)
 852{
 853	struct fs_enet_private *fep = netdev_priv(dev);
 854	struct fs_platform_info *fpi = fep->fpi;
 855	int ret = 0;
 856
 857	switch (tuna->id) {
 858	case ETHTOOL_RX_COPYBREAK:
 859		fpi->rx_copybreak = *(u32 *)data;
 860		break;
 861	default:
 862		ret = -EINVAL;
 863		break;
 864	}
 865
 866	return ret;
 
 
 
 867}
 868
 869static const struct ethtool_ops fs_ethtool_ops = {
 870	.get_drvinfo = fs_get_drvinfo,
 871	.get_regs_len = fs_get_regs_len,
 872	.nway_reset = phy_ethtool_nway_reset,
 
 
 873	.get_link = ethtool_op_get_link,
 874	.get_msglevel = fs_get_msglevel,
 875	.set_msglevel = fs_set_msglevel,
 876	.get_regs = fs_get_regs,
 877	.get_ts_info = ethtool_op_get_ts_info,
 878	.get_link_ksettings = phy_ethtool_get_link_ksettings,
 879	.set_link_ksettings = phy_ethtool_set_link_ksettings,
 880	.get_tunable = fs_get_tunable,
 881	.set_tunable = fs_set_tunable,
 882};
 883
 884static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
 885{
 
 
 886	if (!netif_running(dev))
 887		return -EINVAL;
 888
 889	return phy_mii_ioctl(dev->phydev, rq, cmd);
 890}
 891
 892extern int fs_mii_connect(struct net_device *dev);
 893extern void fs_mii_disconnect(struct net_device *dev);
 894
 895/**************************************************************************************/
 896
 897#ifdef CONFIG_FS_ENET_HAS_FEC
 898#define IS_FEC(match) ((match)->data == &fs_fec_ops)
 899#else
 900#define IS_FEC(match) 0
 901#endif
 902
 903static const struct net_device_ops fs_enet_netdev_ops = {
 904	.ndo_open		= fs_enet_open,
 905	.ndo_stop		= fs_enet_close,
 
 906	.ndo_start_xmit		= fs_enet_start_xmit,
 907	.ndo_tx_timeout		= fs_timeout,
 908	.ndo_set_rx_mode	= fs_set_multicast_list,
 909	.ndo_do_ioctl		= fs_ioctl,
 910	.ndo_validate_addr	= eth_validate_addr,
 911	.ndo_set_mac_address	= eth_mac_addr,
 
 912#ifdef CONFIG_NET_POLL_CONTROLLER
 913	.ndo_poll_controller	= fs_enet_netpoll,
 914#endif
 915};
 916
 917static const struct of_device_id fs_enet_match[];
 918static int fs_enet_probe(struct platform_device *ofdev)
 919{
 920	const struct of_device_id *match;
 921	struct net_device *ndev;
 922	struct fs_enet_private *fep;
 923	struct fs_platform_info *fpi;
 924	const u32 *data;
 925	struct clk *clk;
 926	int err;
 927	const u8 *mac_addr;
 928	const char *phy_connection_type;
 929	int privsize, len, ret = -ENODEV;
 930
 931	match = of_match_device(fs_enet_match, &ofdev->dev);
 932	if (!match)
 933		return -EINVAL;
 934
 935	fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
 936	if (!fpi)
 937		return -ENOMEM;
 938
 939	if (!IS_FEC(match)) {
 940		data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
 941		if (!data || len != 4)
 942			goto out_free_fpi;
 943
 944		fpi->cp_command = *data;
 945	}
 946
 947	fpi->rx_ring = RX_RING_SIZE;
 948	fpi->tx_ring = TX_RING_SIZE;
 949	fpi->rx_copybreak = 240;
 950	fpi->napi_weight = 17;
 951	fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0);
 952	if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) {
 953		err = of_phy_register_fixed_link(ofdev->dev.of_node);
 954		if (err)
 955			goto out_free_fpi;
 956
 957		/* In the case of a fixed PHY, the DT node associated
 958		 * to the PHY is the Ethernet MAC DT node.
 959		 */
 960		fpi->phy_node = of_node_get(ofdev->dev.of_node);
 961	}
 962
 963	if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) {
 964		phy_connection_type = of_get_property(ofdev->dev.of_node,
 965						"phy-connection-type", NULL);
 966		if (phy_connection_type && !strcmp("rmii", phy_connection_type))
 967			fpi->use_rmii = 1;
 968	}
 969
 970	/* make clock lookup non-fatal (the driver is shared among platforms),
 971	 * but require enable to succeed when a clock was specified/found,
 972	 * keep a reference to the clock upon successful acquisition
 973	 */
 974	clk = devm_clk_get(&ofdev->dev, "per");
 975	if (!IS_ERR(clk)) {
 976		ret = clk_prepare_enable(clk);
 977		if (ret)
 978			goto out_deregister_fixed_link;
 979
 
 980		fpi->clk_per = clk;
 981	}
 982
 983	privsize = sizeof(*fep) +
 984	           sizeof(struct sk_buff **) *
 985		     (fpi->rx_ring + fpi->tx_ring) +
 986		   sizeof(char) * fpi->tx_ring;
 987
 988	ndev = alloc_etherdev(privsize);
 989	if (!ndev) {
 990		ret = -ENOMEM;
 991		goto out_put;
 992	}
 993
 994	SET_NETDEV_DEV(ndev, &ofdev->dev);
 995	platform_set_drvdata(ofdev, ndev);
 996
 997	fep = netdev_priv(ndev);
 998	fep->dev = &ofdev->dev;
 999	fep->ndev = ndev;
1000	fep->fpi = fpi;
1001	fep->ops = match->data;
1002
1003	ret = fep->ops->setup_data(ndev);
1004	if (ret)
1005		goto out_free_dev;
1006
1007	fep->rx_skbuff = (struct sk_buff **)&fep[1];
1008	fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1009	fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring +
1010				       fpi->tx_ring);
1011
1012	spin_lock_init(&fep->lock);
1013	spin_lock_init(&fep->tx_lock);
1014
1015	mac_addr = of_get_mac_address(ofdev->dev.of_node);
1016	if (mac_addr)
1017		memcpy(ndev->dev_addr, mac_addr, ETH_ALEN);
1018
1019	ret = fep->ops->allocate_bd(ndev);
1020	if (ret)
1021		goto out_cleanup_data;
1022
1023	fep->rx_bd_base = fep->ring_base;
1024	fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1025
1026	fep->tx_ring = fpi->tx_ring;
1027	fep->rx_ring = fpi->rx_ring;
1028
1029	ndev->netdev_ops = &fs_enet_netdev_ops;
1030	ndev->watchdog_timeo = 2 * HZ;
1031	INIT_WORK(&fep->timeout_work, fs_timeout_work);
1032	netif_napi_add(ndev, &fep->napi, fs_enet_napi, fpi->napi_weight);
1033
1034	ndev->ethtool_ops = &fs_ethtool_ops;
1035
 
 
1036	netif_carrier_off(ndev);
1037
1038	ndev->features |= NETIF_F_SG;
1039
1040	ret = register_netdev(ndev);
1041	if (ret)
1042		goto out_free_bd;
1043
1044	pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1045
1046	return 0;
1047
1048out_free_bd:
1049	fep->ops->free_bd(ndev);
1050out_cleanup_data:
1051	fep->ops->cleanup_data(ndev);
1052out_free_dev:
1053	free_netdev(ndev);
1054out_put:
 
1055	if (fpi->clk_per)
1056		clk_disable_unprepare(fpi->clk_per);
1057out_deregister_fixed_link:
1058	of_node_put(fpi->phy_node);
1059	if (of_phy_is_fixed_link(ofdev->dev.of_node))
1060		of_phy_deregister_fixed_link(ofdev->dev.of_node);
1061out_free_fpi:
1062	kfree(fpi);
1063	return ret;
1064}
1065
1066static int fs_enet_remove(struct platform_device *ofdev)
1067{
1068	struct net_device *ndev = platform_get_drvdata(ofdev);
1069	struct fs_enet_private *fep = netdev_priv(ndev);
1070
1071	unregister_netdev(ndev);
1072
1073	fep->ops->free_bd(ndev);
1074	fep->ops->cleanup_data(ndev);
1075	dev_set_drvdata(fep->dev, NULL);
1076	of_node_put(fep->fpi->phy_node);
1077	if (fep->fpi->clk_per)
1078		clk_disable_unprepare(fep->fpi->clk_per);
1079	if (of_phy_is_fixed_link(ofdev->dev.of_node))
1080		of_phy_deregister_fixed_link(ofdev->dev.of_node);
1081	free_netdev(ndev);
1082	return 0;
1083}
1084
1085static const struct of_device_id fs_enet_match[] = {
1086#ifdef CONFIG_FS_ENET_HAS_SCC
1087	{
1088		.compatible = "fsl,cpm1-scc-enet",
1089		.data = (void *)&fs_scc_ops,
1090	},
1091	{
1092		.compatible = "fsl,cpm2-scc-enet",
1093		.data = (void *)&fs_scc_ops,
1094	},
1095#endif
1096#ifdef CONFIG_FS_ENET_HAS_FCC
1097	{
1098		.compatible = "fsl,cpm2-fcc-enet",
1099		.data = (void *)&fs_fcc_ops,
1100	},
1101#endif
1102#ifdef CONFIG_FS_ENET_HAS_FEC
1103#ifdef CONFIG_FS_ENET_MPC5121_FEC
1104	{
1105		.compatible = "fsl,mpc5121-fec",
1106		.data = (void *)&fs_fec_ops,
1107	},
1108	{
1109		.compatible = "fsl,mpc5125-fec",
1110		.data = (void *)&fs_fec_ops,
1111	},
1112#else
1113	{
1114		.compatible = "fsl,pq1-fec-enet",
1115		.data = (void *)&fs_fec_ops,
1116	},
1117#endif
1118#endif
1119	{}
1120};
1121MODULE_DEVICE_TABLE(of, fs_enet_match);
1122
1123static struct platform_driver fs_enet_driver = {
1124	.driver = {
1125		.name = "fs_enet",
1126		.of_match_table = fs_enet_match,
1127	},
1128	.probe = fs_enet_probe,
1129	.remove = fs_enet_remove,
1130};
1131
1132#ifdef CONFIG_NET_POLL_CONTROLLER
1133static void fs_enet_netpoll(struct net_device *dev)
1134{
1135       disable_irq(dev->irq);
1136       fs_enet_interrupt(dev->irq, dev);
1137       enable_irq(dev->irq);
1138}
1139#endif
1140
1141module_platform_driver(fs_enet_driver);
v4.6
   1/*
   2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
   3 *
   4 * Copyright (c) 2003 Intracom S.A.
   5 *  by Pantelis Antoniou <panto@intracom.gr>
   6 *
   7 * 2005 (c) MontaVista Software, Inc.
   8 * Vitaly Bordug <vbordug@ru.mvista.com>
   9 *
  10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
  11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
  12 *
  13 * This file is licensed under the terms of the GNU General Public License
  14 * version 2. This program is licensed "as is" without any warranty of any
  15 * kind, whether express or implied.
  16 */
  17
  18#include <linux/module.h>
  19#include <linux/kernel.h>
  20#include <linux/types.h>
  21#include <linux/string.h>
  22#include <linux/ptrace.h>
  23#include <linux/errno.h>
  24#include <linux/ioport.h>
  25#include <linux/slab.h>
  26#include <linux/interrupt.h>
  27#include <linux/delay.h>
  28#include <linux/netdevice.h>
  29#include <linux/etherdevice.h>
  30#include <linux/skbuff.h>
  31#include <linux/spinlock.h>
  32#include <linux/mii.h>
  33#include <linux/ethtool.h>
  34#include <linux/bitops.h>
  35#include <linux/fs.h>
  36#include <linux/platform_device.h>
  37#include <linux/phy.h>
  38#include <linux/of.h>
  39#include <linux/of_mdio.h>
  40#include <linux/of_platform.h>
  41#include <linux/of_gpio.h>
  42#include <linux/of_net.h>
  43
  44#include <linux/vmalloc.h>
  45#include <asm/pgtable.h>
  46#include <asm/irq.h>
  47#include <asm/uaccess.h>
  48
  49#include "fs_enet.h"
  50
  51/*************************************************/
  52
  53MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
  54MODULE_DESCRIPTION("Freescale Ethernet Driver");
  55MODULE_LICENSE("GPL");
  56MODULE_VERSION(DRV_MODULE_VERSION);
  57
  58static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
  59module_param(fs_enet_debug, int, 0);
  60MODULE_PARM_DESC(fs_enet_debug,
  61		 "Freescale bitmapped debugging message enable value");
  62
 
 
 
  63#ifdef CONFIG_NET_POLL_CONTROLLER
  64static void fs_enet_netpoll(struct net_device *dev);
  65#endif
  66
  67static void fs_set_multicast_list(struct net_device *dev)
  68{
  69	struct fs_enet_private *fep = netdev_priv(dev);
  70
  71	(*fep->ops->set_multicast_list)(dev);
  72}
  73
  74static void skb_align(struct sk_buff *skb, int align)
  75{
  76	int off = ((unsigned long)skb->data) & (align - 1);
  77
  78	if (off)
  79		skb_reserve(skb, align - off);
  80}
  81
  82/* NAPI receive function */
  83static int fs_enet_rx_napi(struct napi_struct *napi, int budget)
  84{
  85	struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
  86	struct net_device *dev = fep->ndev;
  87	const struct fs_platform_info *fpi = fep->fpi;
  88	cbd_t __iomem *bdp;
  89	struct sk_buff *skb, *skbn;
  90	int received = 0;
  91	u16 pkt_len, sc;
  92	int curidx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  93
  94	if (budget <= 0)
  95		return received;
 
 
 
 
 
 
 
  96
  97	/*
  98	 * First, grab all of the stats for the incoming packet.
  99	 * These get messed up if we get called due to a busy condition.
 100	 */
 101	bdp = fep->cur_rx;
 102
 103	/* clear RX status bits for napi*/
 104	(*fep->ops->napi_clear_rx_event)(dev);
 105
 106	while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
 107		curidx = bdp - fep->rx_bd_base;
 108
 109		/*
 110		 * Since we have allocated space to hold a complete frame,
 111		 * the last indicator should be set.
 112		 */
 113		if ((sc & BD_ENET_RX_LAST) == 0)
 114			dev_warn(fep->dev, "rcv is not +last\n");
 115
 116		/*
 117		 * Check for errors.
 118		 */
 119		if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
 120			  BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
 121			fep->stats.rx_errors++;
 122			/* Frame too long or too short. */
 123			if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
 124				fep->stats.rx_length_errors++;
 125			/* Frame alignment */
 126			if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
 127				fep->stats.rx_frame_errors++;
 128			/* CRC Error */
 129			if (sc & BD_ENET_RX_CR)
 130				fep->stats.rx_crc_errors++;
 131			/* FIFO overrun */
 132			if (sc & BD_ENET_RX_OV)
 133				fep->stats.rx_crc_errors++;
 134
 135			skb = fep->rx_skbuff[curidx];
 136
 137			dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
 138				L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 139				DMA_FROM_DEVICE);
 140
 141			skbn = skb;
 142
 
 143		} else {
 144			skb = fep->rx_skbuff[curidx];
 145
 146			dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
 147				L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 148				DMA_FROM_DEVICE);
 149
 150			/*
 151			 * Process the incoming frame.
 152			 */
 153			fep->stats.rx_packets++;
 154			pkt_len = CBDR_DATLEN(bdp) - 4;	/* remove CRC */
 155			fep->stats.rx_bytes += pkt_len + 4;
 156
 157			if (pkt_len <= fpi->rx_copybreak) {
 158				/* +2 to make IP header L1 cache aligned */
 159				skbn = netdev_alloc_skb(dev, pkt_len + 2);
 160				if (skbn != NULL) {
 161					skb_reserve(skbn, 2);	/* align IP header */
 162					skb_copy_from_linear_data(skb,
 163						      skbn->data, pkt_len);
 164					swap(skb, skbn);
 
 
 
 
 165				}
 166			} else {
 167				skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
 168
 169				if (skbn)
 
 
 170					skb_align(skbn, ENET_RX_ALIGN);
 
 
 
 
 
 
 
 
 
 
 
 
 171			}
 172
 173			if (skbn != NULL) {
 174				skb_put(skb, pkt_len);	/* Make room */
 175				skb->protocol = eth_type_trans(skb, dev);
 176				received++;
 177				netif_receive_skb(skb);
 178			} else {
 179				fep->stats.rx_dropped++;
 180				skbn = skb;
 181			}
 182		}
 183
 184		fep->rx_skbuff[curidx] = skbn;
 185		CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
 186			     L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 187			     DMA_FROM_DEVICE));
 188		CBDW_DATLEN(bdp, 0);
 189		CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
 190
 191		/*
 192		 * Update BD pointer to next entry.
 193		 */
 194		if ((sc & BD_ENET_RX_WRAP) == 0)
 195			bdp++;
 196		else
 197			bdp = fep->rx_bd_base;
 198
 199		(*fep->ops->rx_bd_done)(dev);
 200
 201		if (received >= budget)
 202			break;
 203	}
 204
 205	fep->cur_rx = bdp;
 206
 207	if (received < budget) {
 208		/* done */
 209		napi_complete(napi);
 210		(*fep->ops->napi_enable_rx)(dev);
 211	}
 212	return received;
 213}
 214
 215static int fs_enet_tx_napi(struct napi_struct *napi, int budget)
 216{
 217	struct fs_enet_private *fep = container_of(napi, struct fs_enet_private,
 218						   napi_tx);
 219	struct net_device *dev = fep->ndev;
 220	cbd_t __iomem *bdp;
 221	struct sk_buff *skb;
 222	int dirtyidx, do_wake, do_restart;
 223	u16 sc;
 224	int has_tx_work = 0;
 225
 226	spin_lock(&fep->tx_lock);
 227	bdp = fep->dirty_tx;
 228
 229	/* clear TX status bits for napi*/
 230	(*fep->ops->napi_clear_tx_event)(dev);
 231
 232	do_wake = do_restart = 0;
 233	while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
 234		dirtyidx = bdp - fep->tx_bd_base;
 235
 236		if (fep->tx_free == fep->tx_ring)
 237			break;
 238
 239		skb = fep->tx_skbuff[dirtyidx];
 240
 241		/*
 242		 * Check for errors.
 243		 */
 244		if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
 245			  BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
 246
 247			if (sc & BD_ENET_TX_HB)	/* No heartbeat */
 248				fep->stats.tx_heartbeat_errors++;
 249			if (sc & BD_ENET_TX_LC)	/* Late collision */
 250				fep->stats.tx_window_errors++;
 251			if (sc & BD_ENET_TX_RL)	/* Retrans limit */
 252				fep->stats.tx_aborted_errors++;
 253			if (sc & BD_ENET_TX_UN)	/* Underrun */
 254				fep->stats.tx_fifo_errors++;
 255			if (sc & BD_ENET_TX_CSL)	/* Carrier lost */
 256				fep->stats.tx_carrier_errors++;
 257
 258			if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
 259				fep->stats.tx_errors++;
 260				do_restart = 1;
 261			}
 262		} else
 263			fep->stats.tx_packets++;
 264
 265		if (sc & BD_ENET_TX_READY) {
 266			dev_warn(fep->dev,
 267				 "HEY! Enet xmit interrupt and TX_READY.\n");
 268		}
 269
 270		/*
 271		 * Deferred means some collisions occurred during transmit,
 272		 * but we eventually sent the packet OK.
 273		 */
 274		if (sc & BD_ENET_TX_DEF)
 275			fep->stats.collisions++;
 276
 277		/* unmap */
 278		if (fep->mapped_as_page[dirtyidx])
 279			dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp),
 280				       CBDR_DATLEN(bdp), DMA_TO_DEVICE);
 281		else
 282			dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
 283					 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
 284
 285		/*
 286		 * Free the sk buffer associated with this last transmit.
 287		 */
 288		if (skb) {
 289			dev_kfree_skb(skb);
 290			fep->tx_skbuff[dirtyidx] = NULL;
 291		}
 292
 293		/*
 294		 * Update pointer to next buffer descriptor to be transmitted.
 295		 */
 296		if ((sc & BD_ENET_TX_WRAP) == 0)
 297			bdp++;
 298		else
 299			bdp = fep->tx_bd_base;
 300
 301		/*
 302		 * Since we have freed up a buffer, the ring is no longer
 303		 * full.
 304		 */
 305		if (++fep->tx_free >= MAX_SKB_FRAGS)
 306			do_wake = 1;
 307		has_tx_work = 1;
 308	}
 309
 310	fep->dirty_tx = bdp;
 311
 312	if (do_restart)
 313		(*fep->ops->tx_restart)(dev);
 314
 315	if (!has_tx_work) {
 316		napi_complete(napi);
 317		(*fep->ops->napi_enable_tx)(dev);
 318	}
 319
 320	spin_unlock(&fep->tx_lock);
 321
 322	if (do_wake)
 323		netif_wake_queue(dev);
 324
 325	if (has_tx_work)
 326		return budget;
 327	return 0;
 328}
 329
 330/*
 331 * The interrupt handler.
 332 * This is called from the MPC core interrupt.
 333 */
 334static irqreturn_t
 335fs_enet_interrupt(int irq, void *dev_id)
 336{
 337	struct net_device *dev = dev_id;
 338	struct fs_enet_private *fep;
 339	const struct fs_platform_info *fpi;
 340	u32 int_events;
 341	u32 int_clr_events;
 342	int nr, napi_ok;
 343	int handled;
 344
 345	fep = netdev_priv(dev);
 346	fpi = fep->fpi;
 347
 348	nr = 0;
 349	while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
 350		nr++;
 351
 352		int_clr_events = int_events;
 353		int_clr_events &= ~fep->ev_napi_rx;
 354
 355		(*fep->ops->clear_int_events)(dev, int_clr_events);
 356
 357		if (int_events & fep->ev_err)
 358			(*fep->ops->ev_error)(dev, int_events);
 359
 360		if (int_events & fep->ev_rx) {
 361			napi_ok = napi_schedule_prep(&fep->napi);
 362
 363			(*fep->ops->napi_disable_rx)(dev);
 364			(*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
 365
 366			/* NOTE: it is possible for FCCs in NAPI mode    */
 367			/* to submit a spurious interrupt while in poll  */
 368			if (napi_ok)
 369				__napi_schedule(&fep->napi);
 370		}
 371
 372		if (int_events & fep->ev_tx) {
 373			napi_ok = napi_schedule_prep(&fep->napi_tx);
 374
 375			(*fep->ops->napi_disable_tx)(dev);
 376			(*fep->ops->clear_int_events)(dev, fep->ev_napi_tx);
 377
 378			/* NOTE: it is possible for FCCs in NAPI mode    */
 379			/* to submit a spurious interrupt while in poll  */
 380			if (napi_ok)
 381				__napi_schedule(&fep->napi_tx);
 382		}
 383	}
 384
 385	handled = nr > 0;
 386	return IRQ_RETVAL(handled);
 387}
 388
 389void fs_init_bds(struct net_device *dev)
 390{
 391	struct fs_enet_private *fep = netdev_priv(dev);
 392	cbd_t __iomem *bdp;
 393	struct sk_buff *skb;
 394	int i;
 395
 396	fs_cleanup_bds(dev);
 397
 398	fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
 399	fep->tx_free = fep->tx_ring;
 400	fep->cur_rx = fep->rx_bd_base;
 401
 402	/*
 403	 * Initialize the receive buffer descriptors.
 404	 */
 405	for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
 406		skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
 407		if (skb == NULL)
 408			break;
 409
 410		skb_align(skb, ENET_RX_ALIGN);
 411		fep->rx_skbuff[i] = skb;
 412		CBDW_BUFADDR(bdp,
 413			dma_map_single(fep->dev, skb->data,
 414				L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 415				DMA_FROM_DEVICE));
 416		CBDW_DATLEN(bdp, 0);	/* zero */
 417		CBDW_SC(bdp, BD_ENET_RX_EMPTY |
 418			((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
 419	}
 420	/*
 421	 * if we failed, fillup remainder
 422	 */
 423	for (; i < fep->rx_ring; i++, bdp++) {
 424		fep->rx_skbuff[i] = NULL;
 425		CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
 426	}
 427
 428	/*
 429	 * ...and the same for transmit.
 430	 */
 431	for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
 432		fep->tx_skbuff[i] = NULL;
 433		CBDW_BUFADDR(bdp, 0);
 434		CBDW_DATLEN(bdp, 0);
 435		CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
 436	}
 437}
 438
 439void fs_cleanup_bds(struct net_device *dev)
 440{
 441	struct fs_enet_private *fep = netdev_priv(dev);
 442	struct sk_buff *skb;
 443	cbd_t __iomem *bdp;
 444	int i;
 445
 446	/*
 447	 * Reset SKB transmit buffers.
 448	 */
 449	for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
 450		if ((skb = fep->tx_skbuff[i]) == NULL)
 451			continue;
 452
 453		/* unmap */
 454		dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
 455				skb->len, DMA_TO_DEVICE);
 456
 457		fep->tx_skbuff[i] = NULL;
 458		dev_kfree_skb(skb);
 459	}
 460
 461	/*
 462	 * Reset SKB receive buffers
 463	 */
 464	for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
 465		if ((skb = fep->rx_skbuff[i]) == NULL)
 466			continue;
 467
 468		/* unmap */
 469		dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
 470			L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 471			DMA_FROM_DEVICE);
 472
 473		fep->rx_skbuff[i] = NULL;
 474
 475		dev_kfree_skb(skb);
 476	}
 477}
 478
 479/**********************************************************************************/
 480
 481#ifdef CONFIG_FS_ENET_MPC5121_FEC
 482/*
 483 * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
 484 */
 485static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
 486					       struct sk_buff *skb)
 487{
 488	struct sk_buff *new_skb;
 489
 490	if (skb_linearize(skb))
 491		return NULL;
 492
 493	/* Alloc new skb */
 494	new_skb = netdev_alloc_skb(dev, skb->len + 4);
 495	if (!new_skb)
 496		return NULL;
 497
 498	/* Make sure new skb is properly aligned */
 499	skb_align(new_skb, 4);
 500
 501	/* Copy data to new skb ... */
 502	skb_copy_from_linear_data(skb, new_skb->data, skb->len);
 503	skb_put(new_skb, skb->len);
 504
 505	/* ... and free an old one */
 506	dev_kfree_skb_any(skb);
 507
 508	return new_skb;
 509}
 510#endif
 511
 512static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
 513{
 514	struct fs_enet_private *fep = netdev_priv(dev);
 515	cbd_t __iomem *bdp;
 516	int curidx;
 517	u16 sc;
 518	int nr_frags;
 519	skb_frag_t *frag;
 520	int len;
 521#ifdef CONFIG_FS_ENET_MPC5121_FEC
 522	int is_aligned = 1;
 523	int i;
 524
 525	if (!IS_ALIGNED((unsigned long)skb->data, 4)) {
 526		is_aligned = 0;
 527	} else {
 528		nr_frags = skb_shinfo(skb)->nr_frags;
 529		frag = skb_shinfo(skb)->frags;
 530		for (i = 0; i < nr_frags; i++, frag++) {
 531			if (!IS_ALIGNED(frag->page_offset, 4)) {
 532				is_aligned = 0;
 533				break;
 534			}
 535		}
 536	}
 537
 538	if (!is_aligned) {
 539		skb = tx_skb_align_workaround(dev, skb);
 540		if (!skb) {
 541			/*
 542			 * We have lost packet due to memory allocation error
 543			 * in tx_skb_align_workaround(). Hopefully original
 544			 * skb is still valid, so try transmit it later.
 545			 */
 546			return NETDEV_TX_BUSY;
 547		}
 548	}
 549#endif
 550
 551	spin_lock(&fep->tx_lock);
 552
 553	/*
 554	 * Fill in a Tx ring entry
 555	 */
 556	bdp = fep->cur_tx;
 557
 558	nr_frags = skb_shinfo(skb)->nr_frags;
 559	if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
 560		netif_stop_queue(dev);
 561		spin_unlock(&fep->tx_lock);
 562
 563		/*
 564		 * Ooops.  All transmit buffers are full.  Bail out.
 565		 * This should not happen, since the tx queue should be stopped.
 566		 */
 567		dev_warn(fep->dev, "tx queue full!.\n");
 568		return NETDEV_TX_BUSY;
 569	}
 570
 571	curidx = bdp - fep->tx_bd_base;
 572
 573	len = skb->len;
 574	fep->stats.tx_bytes += len;
 575	if (nr_frags)
 576		len -= skb->data_len;
 577	fep->tx_free -= nr_frags + 1;
 578	/*
 579	 * Push the data cache so the CPM does not get stale memory data.
 580	 */
 581	CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
 582				skb->data, len, DMA_TO_DEVICE));
 583	CBDW_DATLEN(bdp, len);
 584
 585	fep->mapped_as_page[curidx] = 0;
 586	frag = skb_shinfo(skb)->frags;
 587	while (nr_frags) {
 588		CBDC_SC(bdp,
 589			BD_ENET_TX_STATS | BD_ENET_TX_INTR | BD_ENET_TX_LAST |
 590			BD_ENET_TX_TC);
 591		CBDS_SC(bdp, BD_ENET_TX_READY);
 592
 593		if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
 594			bdp++, curidx++;
 595		else
 596			bdp = fep->tx_bd_base, curidx = 0;
 597
 598		len = skb_frag_size(frag);
 599		CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len,
 600						   DMA_TO_DEVICE));
 601		CBDW_DATLEN(bdp, len);
 602
 603		fep->tx_skbuff[curidx] = NULL;
 604		fep->mapped_as_page[curidx] = 1;
 605
 606		frag++;
 607		nr_frags--;
 608	}
 609
 610	/* Trigger transmission start */
 611	sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
 612	     BD_ENET_TX_LAST | BD_ENET_TX_TC;
 613
 614	/* note that while FEC does not have this bit
 615	 * it marks it as available for software use
 616	 * yay for hw reuse :) */
 617	if (skb->len <= 60)
 618		sc |= BD_ENET_TX_PAD;
 619	CBDC_SC(bdp, BD_ENET_TX_STATS);
 620	CBDS_SC(bdp, sc);
 621
 622	/* Save skb pointer. */
 623	fep->tx_skbuff[curidx] = skb;
 624
 625	/* If this was the last BD in the ring, start at the beginning again. */
 626	if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
 627		bdp++;
 628	else
 629		bdp = fep->tx_bd_base;
 630	fep->cur_tx = bdp;
 631
 632	if (fep->tx_free < MAX_SKB_FRAGS)
 633		netif_stop_queue(dev);
 634
 635	skb_tx_timestamp(skb);
 636
 637	(*fep->ops->tx_kickstart)(dev);
 638
 639	spin_unlock(&fep->tx_lock);
 640
 641	return NETDEV_TX_OK;
 642}
 643
 644static void fs_timeout(struct net_device *dev)
 645{
 646	struct fs_enet_private *fep = netdev_priv(dev);
 
 
 647	unsigned long flags;
 648	int wake = 0;
 649
 650	fep->stats.tx_errors++;
 651
 652	spin_lock_irqsave(&fep->lock, flags);
 653
 654	if (dev->flags & IFF_UP) {
 655		phy_stop(fep->phydev);
 656		(*fep->ops->stop)(dev);
 657		(*fep->ops->restart)(dev);
 658		phy_start(fep->phydev);
 659	}
 660
 661	phy_start(fep->phydev);
 662	wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
 
 663	spin_unlock_irqrestore(&fep->lock, flags);
 664
 665	if (wake)
 666		netif_wake_queue(dev);
 667}
 668
 
 
 
 
 
 
 
 669/*-----------------------------------------------------------------------------
 670 *  generic link-change handler - should be sufficient for most cases
 671 *-----------------------------------------------------------------------------*/
 672static void generic_adjust_link(struct  net_device *dev)
 673{
 674	struct fs_enet_private *fep = netdev_priv(dev);
 675	struct phy_device *phydev = fep->phydev;
 676	int new_state = 0;
 677
 678	if (phydev->link) {
 679		/* adjust to duplex mode */
 680		if (phydev->duplex != fep->oldduplex) {
 681			new_state = 1;
 682			fep->oldduplex = phydev->duplex;
 683		}
 684
 685		if (phydev->speed != fep->oldspeed) {
 686			new_state = 1;
 687			fep->oldspeed = phydev->speed;
 688		}
 689
 690		if (!fep->oldlink) {
 691			new_state = 1;
 692			fep->oldlink = 1;
 693		}
 694
 695		if (new_state)
 696			fep->ops->restart(dev);
 697	} else if (fep->oldlink) {
 698		new_state = 1;
 699		fep->oldlink = 0;
 700		fep->oldspeed = 0;
 701		fep->oldduplex = -1;
 702	}
 703
 704	if (new_state && netif_msg_link(fep))
 705		phy_print_status(phydev);
 706}
 707
 708
 709static void fs_adjust_link(struct net_device *dev)
 710{
 711	struct fs_enet_private *fep = netdev_priv(dev);
 712	unsigned long flags;
 713
 714	spin_lock_irqsave(&fep->lock, flags);
 715
 716	if(fep->ops->adjust_link)
 717		fep->ops->adjust_link(dev);
 718	else
 719		generic_adjust_link(dev);
 720
 721	spin_unlock_irqrestore(&fep->lock, flags);
 722}
 723
 724static int fs_init_phy(struct net_device *dev)
 725{
 726	struct fs_enet_private *fep = netdev_priv(dev);
 727	struct phy_device *phydev;
 728	phy_interface_t iface;
 729
 730	fep->oldlink = 0;
 731	fep->oldspeed = 0;
 732	fep->oldduplex = -1;
 733
 734	iface = fep->fpi->use_rmii ?
 735		PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII;
 736
 737	phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
 738				iface);
 739	if (!phydev) {
 740		dev_err(&dev->dev, "Could not attach to PHY\n");
 741		return -ENODEV;
 742	}
 743
 744	fep->phydev = phydev;
 745
 746	return 0;
 747}
 748
 749static int fs_enet_open(struct net_device *dev)
 750{
 751	struct fs_enet_private *fep = netdev_priv(dev);
 752	int r;
 753	int err;
 754
 755	/* to initialize the fep->cur_rx,... */
 756	/* not doing this, will cause a crash in fs_enet_rx_napi */
 757	fs_init_bds(fep->ndev);
 758
 759	napi_enable(&fep->napi);
 760	napi_enable(&fep->napi_tx);
 761
 762	/* Install our interrupt handler. */
 763	r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
 764			"fs_enet-mac", dev);
 765	if (r != 0) {
 766		dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
 767		napi_disable(&fep->napi);
 768		napi_disable(&fep->napi_tx);
 769		return -EINVAL;
 770	}
 771
 772	err = fs_init_phy(dev);
 773	if (err) {
 774		free_irq(fep->interrupt, dev);
 775		napi_disable(&fep->napi);
 776		napi_disable(&fep->napi_tx);
 777		return err;
 778	}
 779	phy_start(fep->phydev);
 780
 781	netif_start_queue(dev);
 782
 783	return 0;
 784}
 785
 786static int fs_enet_close(struct net_device *dev)
 787{
 788	struct fs_enet_private *fep = netdev_priv(dev);
 789	unsigned long flags;
 790
 791	netif_stop_queue(dev);
 792	netif_carrier_off(dev);
 793	napi_disable(&fep->napi);
 794	napi_disable(&fep->napi_tx);
 795	phy_stop(fep->phydev);
 796
 797	spin_lock_irqsave(&fep->lock, flags);
 798	spin_lock(&fep->tx_lock);
 799	(*fep->ops->stop)(dev);
 800	spin_unlock(&fep->tx_lock);
 801	spin_unlock_irqrestore(&fep->lock, flags);
 802
 803	/* release any irqs */
 804	phy_disconnect(fep->phydev);
 805	fep->phydev = NULL;
 806	free_irq(fep->interrupt, dev);
 807
 808	return 0;
 809}
 810
 811static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
 812{
 813	struct fs_enet_private *fep = netdev_priv(dev);
 814	return &fep->stats;
 815}
 816
 817/*************************************************************************/
 818
 819static void fs_get_drvinfo(struct net_device *dev,
 820			    struct ethtool_drvinfo *info)
 821{
 822	strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
 823	strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
 824}
 825
 826static int fs_get_regs_len(struct net_device *dev)
 827{
 828	struct fs_enet_private *fep = netdev_priv(dev);
 829
 830	return (*fep->ops->get_regs_len)(dev);
 831}
 832
 833static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
 834			 void *p)
 835{
 836	struct fs_enet_private *fep = netdev_priv(dev);
 837	unsigned long flags;
 838	int r, len;
 839
 840	len = regs->len;
 841
 842	spin_lock_irqsave(&fep->lock, flags);
 843	r = (*fep->ops->get_regs)(dev, p, &len);
 844	spin_unlock_irqrestore(&fep->lock, flags);
 845
 846	if (r == 0)
 847		regs->version = 0;
 848}
 849
 850static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
 851{
 852	struct fs_enet_private *fep = netdev_priv(dev);
 
 
 853
 854	if (!fep->phydev)
 855		return -ENODEV;
 856
 857	return phy_ethtool_gset(fep->phydev, cmd);
 858}
 859
 860static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
 
 861{
 862	struct fs_enet_private *fep = netdev_priv(dev);
 
 
 863
 864	if (!fep->phydev)
 865		return -ENODEV;
 
 
 
 
 
 
 866
 867	return phy_ethtool_sset(fep->phydev, cmd);
 868}
 869
 870static int fs_nway_reset(struct net_device *dev)
 
 871{
 872	return 0;
 873}
 
 874
 875static u32 fs_get_msglevel(struct net_device *dev)
 876{
 877	struct fs_enet_private *fep = netdev_priv(dev);
 878	return fep->msg_enable;
 879}
 
 
 
 880
 881static void fs_set_msglevel(struct net_device *dev, u32 value)
 882{
 883	struct fs_enet_private *fep = netdev_priv(dev);
 884	fep->msg_enable = value;
 885}
 886
 887static const struct ethtool_ops fs_ethtool_ops = {
 888	.get_drvinfo = fs_get_drvinfo,
 889	.get_regs_len = fs_get_regs_len,
 890	.get_settings = fs_get_settings,
 891	.set_settings = fs_set_settings,
 892	.nway_reset = fs_nway_reset,
 893	.get_link = ethtool_op_get_link,
 894	.get_msglevel = fs_get_msglevel,
 895	.set_msglevel = fs_set_msglevel,
 896	.get_regs = fs_get_regs,
 897	.get_ts_info = ethtool_op_get_ts_info,
 
 
 
 
 898};
 899
 900static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
 901{
 902	struct fs_enet_private *fep = netdev_priv(dev);
 903
 904	if (!netif_running(dev))
 905		return -EINVAL;
 906
 907	return phy_mii_ioctl(fep->phydev, rq, cmd);
 908}
 909
 910extern int fs_mii_connect(struct net_device *dev);
 911extern void fs_mii_disconnect(struct net_device *dev);
 912
 913/**************************************************************************************/
 914
 915#ifdef CONFIG_FS_ENET_HAS_FEC
 916#define IS_FEC(match) ((match)->data == &fs_fec_ops)
 917#else
 918#define IS_FEC(match) 0
 919#endif
 920
 921static const struct net_device_ops fs_enet_netdev_ops = {
 922	.ndo_open		= fs_enet_open,
 923	.ndo_stop		= fs_enet_close,
 924	.ndo_get_stats		= fs_enet_get_stats,
 925	.ndo_start_xmit		= fs_enet_start_xmit,
 926	.ndo_tx_timeout		= fs_timeout,
 927	.ndo_set_rx_mode	= fs_set_multicast_list,
 928	.ndo_do_ioctl		= fs_ioctl,
 929	.ndo_validate_addr	= eth_validate_addr,
 930	.ndo_set_mac_address	= eth_mac_addr,
 931	.ndo_change_mtu		= eth_change_mtu,
 932#ifdef CONFIG_NET_POLL_CONTROLLER
 933	.ndo_poll_controller	= fs_enet_netpoll,
 934#endif
 935};
 936
 937static const struct of_device_id fs_enet_match[];
 938static int fs_enet_probe(struct platform_device *ofdev)
 939{
 940	const struct of_device_id *match;
 941	struct net_device *ndev;
 942	struct fs_enet_private *fep;
 943	struct fs_platform_info *fpi;
 944	const u32 *data;
 945	struct clk *clk;
 946	int err;
 947	const u8 *mac_addr;
 948	const char *phy_connection_type;
 949	int privsize, len, ret = -ENODEV;
 950
 951	match = of_match_device(fs_enet_match, &ofdev->dev);
 952	if (!match)
 953		return -EINVAL;
 954
 955	fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
 956	if (!fpi)
 957		return -ENOMEM;
 958
 959	if (!IS_FEC(match)) {
 960		data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
 961		if (!data || len != 4)
 962			goto out_free_fpi;
 963
 964		fpi->cp_command = *data;
 965	}
 966
 967	fpi->rx_ring = 32;
 968	fpi->tx_ring = 64;
 969	fpi->rx_copybreak = 240;
 970	fpi->napi_weight = 17;
 971	fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0);
 972	if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) {
 973		err = of_phy_register_fixed_link(ofdev->dev.of_node);
 974		if (err)
 975			goto out_free_fpi;
 976
 977		/* In the case of a fixed PHY, the DT node associated
 978		 * to the PHY is the Ethernet MAC DT node.
 979		 */
 980		fpi->phy_node = of_node_get(ofdev->dev.of_node);
 981	}
 982
 983	if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) {
 984		phy_connection_type = of_get_property(ofdev->dev.of_node,
 985						"phy-connection-type", NULL);
 986		if (phy_connection_type && !strcmp("rmii", phy_connection_type))
 987			fpi->use_rmii = 1;
 988	}
 989
 990	/* make clock lookup non-fatal (the driver is shared among platforms),
 991	 * but require enable to succeed when a clock was specified/found,
 992	 * keep a reference to the clock upon successful acquisition
 993	 */
 994	clk = devm_clk_get(&ofdev->dev, "per");
 995	if (!IS_ERR(clk)) {
 996		err = clk_prepare_enable(clk);
 997		if (err) {
 998			ret = err;
 999			goto out_free_fpi;
1000		}
1001		fpi->clk_per = clk;
1002	}
1003
1004	privsize = sizeof(*fep) +
1005	           sizeof(struct sk_buff **) *
1006		     (fpi->rx_ring + fpi->tx_ring) +
1007		   sizeof(char) * fpi->tx_ring;
1008
1009	ndev = alloc_etherdev(privsize);
1010	if (!ndev) {
1011		ret = -ENOMEM;
1012		goto out_put;
1013	}
1014
1015	SET_NETDEV_DEV(ndev, &ofdev->dev);
1016	platform_set_drvdata(ofdev, ndev);
1017
1018	fep = netdev_priv(ndev);
1019	fep->dev = &ofdev->dev;
1020	fep->ndev = ndev;
1021	fep->fpi = fpi;
1022	fep->ops = match->data;
1023
1024	ret = fep->ops->setup_data(ndev);
1025	if (ret)
1026		goto out_free_dev;
1027
1028	fep->rx_skbuff = (struct sk_buff **)&fep[1];
1029	fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1030	fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring +
1031				       fpi->tx_ring);
1032
1033	spin_lock_init(&fep->lock);
1034	spin_lock_init(&fep->tx_lock);
1035
1036	mac_addr = of_get_mac_address(ofdev->dev.of_node);
1037	if (mac_addr)
1038		memcpy(ndev->dev_addr, mac_addr, ETH_ALEN);
1039
1040	ret = fep->ops->allocate_bd(ndev);
1041	if (ret)
1042		goto out_cleanup_data;
1043
1044	fep->rx_bd_base = fep->ring_base;
1045	fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1046
1047	fep->tx_ring = fpi->tx_ring;
1048	fep->rx_ring = fpi->rx_ring;
1049
1050	ndev->netdev_ops = &fs_enet_netdev_ops;
1051	ndev->watchdog_timeo = 2 * HZ;
1052	netif_napi_add(ndev, &fep->napi, fs_enet_rx_napi, fpi->napi_weight);
1053	netif_tx_napi_add(ndev, &fep->napi_tx, fs_enet_tx_napi, 2);
1054
1055	ndev->ethtool_ops = &fs_ethtool_ops;
1056
1057	init_timer(&fep->phy_timer_list);
1058
1059	netif_carrier_off(ndev);
1060
1061	ndev->features |= NETIF_F_SG;
1062
1063	ret = register_netdev(ndev);
1064	if (ret)
1065		goto out_free_bd;
1066
1067	pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1068
1069	return 0;
1070
1071out_free_bd:
1072	fep->ops->free_bd(ndev);
1073out_cleanup_data:
1074	fep->ops->cleanup_data(ndev);
1075out_free_dev:
1076	free_netdev(ndev);
1077out_put:
1078	of_node_put(fpi->phy_node);
1079	if (fpi->clk_per)
1080		clk_disable_unprepare(fpi->clk_per);
 
 
 
 
1081out_free_fpi:
1082	kfree(fpi);
1083	return ret;
1084}
1085
1086static int fs_enet_remove(struct platform_device *ofdev)
1087{
1088	struct net_device *ndev = platform_get_drvdata(ofdev);
1089	struct fs_enet_private *fep = netdev_priv(ndev);
1090
1091	unregister_netdev(ndev);
1092
1093	fep->ops->free_bd(ndev);
1094	fep->ops->cleanup_data(ndev);
1095	dev_set_drvdata(fep->dev, NULL);
1096	of_node_put(fep->fpi->phy_node);
1097	if (fep->fpi->clk_per)
1098		clk_disable_unprepare(fep->fpi->clk_per);
 
 
1099	free_netdev(ndev);
1100	return 0;
1101}
1102
1103static const struct of_device_id fs_enet_match[] = {
1104#ifdef CONFIG_FS_ENET_HAS_SCC
1105	{
1106		.compatible = "fsl,cpm1-scc-enet",
1107		.data = (void *)&fs_scc_ops,
1108	},
1109	{
1110		.compatible = "fsl,cpm2-scc-enet",
1111		.data = (void *)&fs_scc_ops,
1112	},
1113#endif
1114#ifdef CONFIG_FS_ENET_HAS_FCC
1115	{
1116		.compatible = "fsl,cpm2-fcc-enet",
1117		.data = (void *)&fs_fcc_ops,
1118	},
1119#endif
1120#ifdef CONFIG_FS_ENET_HAS_FEC
1121#ifdef CONFIG_FS_ENET_MPC5121_FEC
1122	{
1123		.compatible = "fsl,mpc5121-fec",
1124		.data = (void *)&fs_fec_ops,
1125	},
1126	{
1127		.compatible = "fsl,mpc5125-fec",
1128		.data = (void *)&fs_fec_ops,
1129	},
1130#else
1131	{
1132		.compatible = "fsl,pq1-fec-enet",
1133		.data = (void *)&fs_fec_ops,
1134	},
1135#endif
1136#endif
1137	{}
1138};
1139MODULE_DEVICE_TABLE(of, fs_enet_match);
1140
1141static struct platform_driver fs_enet_driver = {
1142	.driver = {
1143		.name = "fs_enet",
1144		.of_match_table = fs_enet_match,
1145	},
1146	.probe = fs_enet_probe,
1147	.remove = fs_enet_remove,
1148};
1149
1150#ifdef CONFIG_NET_POLL_CONTROLLER
1151static void fs_enet_netpoll(struct net_device *dev)
1152{
1153       disable_irq(dev->irq);
1154       fs_enet_interrupt(dev->irq, dev);
1155       enable_irq(dev->irq);
1156}
1157#endif
1158
1159module_platform_driver(fs_enet_driver);