Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * Low level x86 E820 memory map handling functions.
   3 *
   4 * The firmware and bootloader passes us the "E820 table", which is the primary
   5 * physical memory layout description available about x86 systems.
   6 *
   7 * The kernel takes the E820 memory layout and optionally modifies it with
   8 * quirks and other tweaks, and feeds that into the generic Linux memory
   9 * allocation code routines via a platform independent interface (memblock, etc.).
  10 */
  11#include <linux/crash_dump.h>
  12#include <linux/bootmem.h>
  13#include <linux/suspend.h>
  14#include <linux/acpi.h>
  15#include <linux/firmware-map.h>
  16#include <linux/memblock.h>
  17#include <linux/sort.h>
 
  18
  19#include <asm/e820/api.h>
  20#include <asm/setup.h>
  21
  22/*
  23 * We organize the E820 table into three main data structures:
  24 *
  25 * - 'e820_table_firmware': the original firmware version passed to us by the
  26 *   bootloader - not modified by the kernel. It is composed of two parts:
  27 *   the first 128 E820 memory entries in boot_params.e820_table and the remaining
  28 *   (if any) entries of the SETUP_E820_EXT nodes. We use this to:
  29 *
  30 *       - inform the user about the firmware's notion of memory layout
  31 *         via /sys/firmware/memmap
  32 *
  33 *       - the hibernation code uses it to generate a kernel-independent MD5
  34 *         fingerprint of the physical memory layout of a system.
  35 *
  36 * - 'e820_table_kexec': a slightly modified (by the kernel) firmware version
  37 *   passed to us by the bootloader - the major difference between
  38 *   e820_table_firmware[] and this one is that, the latter marks the setup_data
  39 *   list created by the EFI boot stub as reserved, so that kexec can reuse the
  40 *   setup_data information in the second kernel. Besides, e820_table_kexec[]
  41 *   might also be modified by the kexec itself to fake a mptable.
  42 *   We use this to:
  43 *
  44 *       - kexec, which is a bootloader in disguise, uses the original E820
  45 *         layout to pass to the kexec-ed kernel. This way the original kernel
  46 *         can have a restricted E820 map while the kexec()-ed kexec-kernel
  47 *         can have access to full memory - etc.
  48 *
  49 * - 'e820_table': this is the main E820 table that is massaged by the
  50 *   low level x86 platform code, or modified by boot parameters, before
  51 *   passed on to higher level MM layers.
  52 *
  53 * Once the E820 map has been converted to the standard Linux memory layout
  54 * information its role stops - modifying it has no effect and does not get
  55 * re-propagated. So itsmain role is a temporary bootstrap storage of firmware
  56 * specific memory layout data during early bootup.
  57 */
  58static struct e820_table e820_table_init		__initdata;
  59static struct e820_table e820_table_kexec_init		__initdata;
  60static struct e820_table e820_table_firmware_init	__initdata;
  61
  62struct e820_table *e820_table __refdata			= &e820_table_init;
  63struct e820_table *e820_table_kexec __refdata		= &e820_table_kexec_init;
  64struct e820_table *e820_table_firmware __refdata	= &e820_table_firmware_init;
  65
  66/* For PCI or other memory-mapped resources */
  67unsigned long pci_mem_start = 0xaeedbabe;
  68#ifdef CONFIG_PCI
  69EXPORT_SYMBOL(pci_mem_start);
  70#endif
  71
  72/*
  73 * This function checks if any part of the range <start,end> is mapped
  74 * with type.
  75 */
  76bool e820__mapped_any(u64 start, u64 end, enum e820_type type)
 
  77{
  78	int i;
  79
  80	for (i = 0; i < e820_table->nr_entries; i++) {
  81		struct e820_entry *entry = &e820_table->entries[i];
  82
  83		if (type && entry->type != type)
  84			continue;
  85		if (entry->addr >= end || entry->addr + entry->size <= start)
  86			continue;
  87		return 1;
  88	}
  89	return 0;
 
 
 
 
 
 
 
 
 
 
 
  90}
  91EXPORT_SYMBOL_GPL(e820__mapped_any);
  92
  93/*
  94 * This function checks if the entire <start,end> range is mapped with 'type'.
  95 *
  96 * Note: this function only works correctly once the E820 table is sorted and
  97 * not-overlapping (at least for the range specified), which is the case normally.
  98 */
  99static struct e820_entry *__e820__mapped_all(u64 start, u64 end,
 100					     enum e820_type type)
 101{
 102	int i;
 103
 104	for (i = 0; i < e820_table->nr_entries; i++) {
 105		struct e820_entry *entry = &e820_table->entries[i];
 106
 107		if (type && entry->type != type)
 108			continue;
 109
 110		/* Is the region (part) in overlap with the current region? */
 111		if (entry->addr >= end || entry->addr + entry->size <= start)
 112			continue;
 113
 114		/*
 115		 * If the region is at the beginning of <start,end> we move
 116		 * 'start' to the end of the region since it's ok until there
 117		 */
 118		if (entry->addr <= start)
 119			start = entry->addr + entry->size;
 120
 121		/*
 122		 * If 'start' is now at or beyond 'end', we're done, full
 123		 * coverage of the desired range exists:
 124		 */
 125		if (start >= end)
 126			return entry;
 127	}
 128
 129	return NULL;
 130}
 131
 132/*
 133 * This function checks if the entire range <start,end> is mapped with type.
 134 */
 135bool __init e820__mapped_all(u64 start, u64 end, enum e820_type type)
 136{
 137	return __e820__mapped_all(start, end, type);
 138}
 139
 140/*
 141 * This function returns the type associated with the range <start,end>.
 142 */
 143int e820__get_entry_type(u64 start, u64 end)
 144{
 145	struct e820_entry *entry = __e820__mapped_all(start, end, 0);
 146
 147	return entry ? entry->type : -EINVAL;
 148}
 149
 150/*
 151 * Add a memory region to the kernel E820 map.
 152 */
 153static void __init __e820__range_add(struct e820_table *table, u64 start, u64 size, enum e820_type type)
 154{
 155	int x = table->nr_entries;
 156
 157	if (x >= ARRAY_SIZE(table->entries)) {
 158		pr_err("e820: too many entries; ignoring [mem %#010llx-%#010llx]\n", start, start + size - 1);
 
 159		return;
 160	}
 161
 162	table->entries[x].addr = start;
 163	table->entries[x].size = size;
 164	table->entries[x].type = type;
 165	table->nr_entries++;
 166}
 167
 168void __init e820__range_add(u64 start, u64 size, enum e820_type type)
 169{
 170	__e820__range_add(e820_table, start, size, type);
 171}
 172
 173static void __init e820_print_type(enum e820_type type)
 174{
 175	switch (type) {
 176	case E820_TYPE_RAM:		/* Fall through: */
 177	case E820_TYPE_RESERVED_KERN:	pr_cont("usable");			break;
 178	case E820_TYPE_RESERVED:	pr_cont("reserved");			break;
 
 179	case E820_TYPE_ACPI:		pr_cont("ACPI data");			break;
 180	case E820_TYPE_NVS:		pr_cont("ACPI NVS");			break;
 181	case E820_TYPE_UNUSABLE:	pr_cont("unusable");			break;
 182	case E820_TYPE_PMEM:		/* Fall through: */
 183	case E820_TYPE_PRAM:		pr_cont("persistent (type %u)", type);	break;
 184	default:			pr_cont("type %u", type);		break;
 185	}
 186}
 187
 188void __init e820__print_table(char *who)
 189{
 190	int i;
 191
 192	for (i = 0; i < e820_table->nr_entries; i++) {
 193		pr_info("%s: [mem %#018Lx-%#018Lx] ", who,
 194		       e820_table->entries[i].addr,
 195		       e820_table->entries[i].addr + e820_table->entries[i].size - 1);
 
 196
 197		e820_print_type(e820_table->entries[i].type);
 198		pr_cont("\n");
 199	}
 200}
 201
 202/*
 203 * Sanitize an E820 map.
 204 *
 205 * Some E820 layouts include overlapping entries. The following
 206 * replaces the original E820 map with a new one, removing overlaps,
 207 * and resolving conflicting memory types in favor of highest
 208 * numbered type.
 209 *
 210 * The input parameter 'entries' points to an array of 'struct
 211 * e820_entry' which on entry has elements in the range [0, *nr_entries)
 212 * valid, and which has space for up to max_nr_entries entries.
 213 * On return, the resulting sanitized E820 map entries will be in
 214 * overwritten in the same location, starting at 'entries'.
 215 *
 216 * The integer pointed to by nr_entries must be valid on entry (the
 217 * current number of valid entries located at 'entries'). If the
 218 * sanitizing succeeds the *nr_entries will be updated with the new
 219 * number of valid entries (something no more than max_nr_entries).
 220 *
 221 * The return value from e820__update_table() is zero if it
 222 * successfully 'sanitized' the map entries passed in, and is -1
 223 * if it did nothing, which can happen if either of (1) it was
 224 * only passed one map entry, or (2) any of the input map entries
 225 * were invalid (start + size < start, meaning that the size was
 226 * so big the described memory range wrapped around through zero.)
 227 *
 228 *	Visually we're performing the following
 229 *	(1,2,3,4 = memory types)...
 230 *
 231 *	Sample memory map (w/overlaps):
 232 *	   ____22__________________
 233 *	   ______________________4_
 234 *	   ____1111________________
 235 *	   _44_____________________
 236 *	   11111111________________
 237 *	   ____________________33__
 238 *	   ___________44___________
 239 *	   __________33333_________
 240 *	   ______________22________
 241 *	   ___________________2222_
 242 *	   _________111111111______
 243 *	   _____________________11_
 244 *	   _________________4______
 245 *
 246 *	Sanitized equivalent (no overlap):
 247 *	   1_______________________
 248 *	   _44_____________________
 249 *	   ___1____________________
 250 *	   ____22__________________
 251 *	   ______11________________
 252 *	   _________1______________
 253 *	   __________3_____________
 254 *	   ___________44___________
 255 *	   _____________33_________
 256 *	   _______________2________
 257 *	   ________________1_______
 258 *	   _________________4______
 259 *	   ___________________2____
 260 *	   ____________________33__
 261 *	   ______________________4_
 262 */
 263struct change_member {
 264	/* Pointer to the original entry: */
 265	struct e820_entry	*entry;
 266	/* Address for this change point: */
 267	unsigned long long	addr;
 268};
 269
 270static struct change_member	change_point_list[2*E820_MAX_ENTRIES]	__initdata;
 271static struct change_member	*change_point[2*E820_MAX_ENTRIES]	__initdata;
 272static struct e820_entry	*overlap_list[E820_MAX_ENTRIES]		__initdata;
 273static struct e820_entry	new_entries[E820_MAX_ENTRIES]		__initdata;
 274
 275static int __init cpcompare(const void *a, const void *b)
 276{
 277	struct change_member * const *app = a, * const *bpp = b;
 278	const struct change_member *ap = *app, *bp = *bpp;
 279
 280	/*
 281	 * Inputs are pointers to two elements of change_point[].  If their
 282	 * addresses are not equal, their difference dominates.  If the addresses
 283	 * are equal, then consider one that represents the end of its region
 284	 * to be greater than one that does not.
 285	 */
 286	if (ap->addr != bp->addr)
 287		return ap->addr > bp->addr ? 1 : -1;
 288
 289	return (ap->addr != ap->entry->addr) - (bp->addr != bp->entry->addr);
 290}
 291
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 292int __init e820__update_table(struct e820_table *table)
 293{
 294	struct e820_entry *entries = table->entries;
 295	u32 max_nr_entries = ARRAY_SIZE(table->entries);
 296	enum e820_type current_type, last_type;
 297	unsigned long long last_addr;
 298	u32 new_nr_entries, overlap_entries;
 299	u32 i, chg_idx, chg_nr;
 300
 301	/* If there's only one memory region, don't bother: */
 302	if (table->nr_entries < 2)
 303		return -1;
 304
 305	BUG_ON(table->nr_entries > max_nr_entries);
 306
 307	/* Bail out if we find any unreasonable addresses in the map: */
 308	for (i = 0; i < table->nr_entries; i++) {
 309		if (entries[i].addr + entries[i].size < entries[i].addr)
 310			return -1;
 311	}
 312
 313	/* Create pointers for initial change-point information (for sorting): */
 314	for (i = 0; i < 2 * table->nr_entries; i++)
 315		change_point[i] = &change_point_list[i];
 316
 317	/*
 318	 * Record all known change-points (starting and ending addresses),
 319	 * omitting empty memory regions:
 320	 */
 321	chg_idx = 0;
 322	for (i = 0; i < table->nr_entries; i++)	{
 323		if (entries[i].size != 0) {
 324			change_point[chg_idx]->addr	= entries[i].addr;
 325			change_point[chg_idx++]->entry	= &entries[i];
 326			change_point[chg_idx]->addr	= entries[i].addr + entries[i].size;
 327			change_point[chg_idx++]->entry	= &entries[i];
 328		}
 329	}
 330	chg_nr = chg_idx;
 331
 332	/* Sort change-point list by memory addresses (low -> high): */
 333	sort(change_point, chg_nr, sizeof(*change_point), cpcompare, NULL);
 334
 335	/* Create a new memory map, removing overlaps: */
 336	overlap_entries = 0;	 /* Number of entries in the overlap table */
 337	new_nr_entries = 0;	 /* Index for creating new map entries */
 338	last_type = 0;		 /* Start with undefined memory type */
 339	last_addr = 0;		 /* Start with 0 as last starting address */
 340
 341	/* Loop through change-points, determining effect on the new map: */
 342	for (chg_idx = 0; chg_idx < chg_nr; chg_idx++) {
 343		/* Keep track of all overlapping entries */
 344		if (change_point[chg_idx]->addr == change_point[chg_idx]->entry->addr) {
 345			/* Add map entry to overlap list (> 1 entry implies an overlap) */
 346			overlap_list[overlap_entries++] = change_point[chg_idx]->entry;
 347		} else {
 348			/* Remove entry from list (order independent, so swap with last): */
 349			for (i = 0; i < overlap_entries; i++) {
 350				if (overlap_list[i] == change_point[chg_idx]->entry)
 351					overlap_list[i] = overlap_list[overlap_entries-1];
 352			}
 353			overlap_entries--;
 354		}
 355		/*
 356		 * If there are overlapping entries, decide which
 357		 * "type" to use (larger value takes precedence --
 358		 * 1=usable, 2,3,4,4+=unusable)
 359		 */
 360		current_type = 0;
 361		for (i = 0; i < overlap_entries; i++) {
 362			if (overlap_list[i]->type > current_type)
 363				current_type = overlap_list[i]->type;
 364		}
 365
 366		/* Continue building up new map based on this information: */
 367		if (current_type != last_type || current_type == E820_TYPE_PRAM) {
 368			if (last_type != 0)	 {
 369				new_entries[new_nr_entries].size = change_point[chg_idx]->addr - last_addr;
 370				/* Move forward only if the new size was non-zero: */
 371				if (new_entries[new_nr_entries].size != 0)
 372					/* No more space left for new entries? */
 373					if (++new_nr_entries >= max_nr_entries)
 374						break;
 375			}
 376			if (current_type != 0)	{
 377				new_entries[new_nr_entries].addr = change_point[chg_idx]->addr;
 378				new_entries[new_nr_entries].type = current_type;
 379				last_addr = change_point[chg_idx]->addr;
 380			}
 381			last_type = current_type;
 382		}
 383	}
 384
 385	/* Copy the new entries into the original location: */
 386	memcpy(entries, new_entries, new_nr_entries*sizeof(*entries));
 387	table->nr_entries = new_nr_entries;
 388
 389	return 0;
 390}
 391
 392static int __init __append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
 393{
 394	struct boot_e820_entry *entry = entries;
 395
 396	while (nr_entries) {
 397		u64 start = entry->addr;
 398		u64 size = entry->size;
 399		u64 end = start + size - 1;
 400		u32 type = entry->type;
 401
 402		/* Ignore the entry on 64-bit overflow: */
 403		if (start > end && likely(size))
 404			return -1;
 405
 406		e820__range_add(start, size, type);
 407
 408		entry++;
 409		nr_entries--;
 410	}
 411	return 0;
 412}
 413
 414/*
 415 * Copy the BIOS E820 map into a safe place.
 416 *
 417 * Sanity-check it while we're at it..
 418 *
 419 * If we're lucky and live on a modern system, the setup code
 420 * will have given us a memory map that we can use to properly
 421 * set up memory.  If we aren't, we'll fake a memory map.
 422 */
 423static int __init append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
 424{
 425	/* Only one memory region (or negative)? Ignore it */
 426	if (nr_entries < 2)
 427		return -1;
 428
 429	return __append_e820_table(entries, nr_entries);
 430}
 431
 432static u64 __init
 433__e820__range_update(struct e820_table *table, u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
 434{
 435	u64 end;
 436	unsigned int i;
 437	u64 real_updated_size = 0;
 438
 439	BUG_ON(old_type == new_type);
 440
 441	if (size > (ULLONG_MAX - start))
 442		size = ULLONG_MAX - start;
 443
 444	end = start + size;
 445	printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] ", start, end - 1);
 446	e820_print_type(old_type);
 447	pr_cont(" ==> ");
 448	e820_print_type(new_type);
 449	pr_cont("\n");
 450
 451	for (i = 0; i < table->nr_entries; i++) {
 452		struct e820_entry *entry = &table->entries[i];
 453		u64 final_start, final_end;
 454		u64 entry_end;
 455
 456		if (entry->type != old_type)
 457			continue;
 458
 459		entry_end = entry->addr + entry->size;
 460
 461		/* Completely covered by new range? */
 462		if (entry->addr >= start && entry_end <= end) {
 463			entry->type = new_type;
 464			real_updated_size += entry->size;
 465			continue;
 466		}
 467
 468		/* New range is completely covered? */
 469		if (entry->addr < start && entry_end > end) {
 470			__e820__range_add(table, start, size, new_type);
 471			__e820__range_add(table, end, entry_end - end, entry->type);
 472			entry->size = start - entry->addr;
 473			real_updated_size += size;
 474			continue;
 475		}
 476
 477		/* Partially covered: */
 478		final_start = max(start, entry->addr);
 479		final_end = min(end, entry_end);
 480		if (final_start >= final_end)
 481			continue;
 482
 483		__e820__range_add(table, final_start, final_end - final_start, new_type);
 484
 485		real_updated_size += final_end - final_start;
 486
 487		/*
 488		 * Left range could be head or tail, so need to update
 489		 * its size first:
 490		 */
 491		entry->size -= final_end - final_start;
 492		if (entry->addr < final_start)
 493			continue;
 494
 495		entry->addr = final_end;
 496	}
 497	return real_updated_size;
 498}
 499
 500u64 __init e820__range_update(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
 501{
 502	return __e820__range_update(e820_table, start, size, old_type, new_type);
 503}
 504
 505static u64 __init e820__range_update_kexec(u64 start, u64 size, enum e820_type old_type, enum e820_type  new_type)
 
 506{
 507	return __e820__range_update(e820_table_kexec, start, size, old_type, new_type);
 508}
 509
 510/* Remove a range of memory from the E820 table: */
 511u64 __init e820__range_remove(u64 start, u64 size, enum e820_type old_type, bool check_type)
 512{
 513	int i;
 514	u64 end;
 515	u64 real_removed_size = 0;
 516
 517	if (size > (ULLONG_MAX - start))
 518		size = ULLONG_MAX - start;
 519
 520	end = start + size;
 521	printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] ", start, end - 1);
 522	if (check_type)
 523		e820_print_type(old_type);
 524	pr_cont("\n");
 525
 526	for (i = 0; i < e820_table->nr_entries; i++) {
 527		struct e820_entry *entry = &e820_table->entries[i];
 528		u64 final_start, final_end;
 529		u64 entry_end;
 530
 531		if (check_type && entry->type != old_type)
 532			continue;
 533
 534		entry_end = entry->addr + entry->size;
 535
 536		/* Completely covered? */
 537		if (entry->addr >= start && entry_end <= end) {
 538			real_removed_size += entry->size;
 539			memset(entry, 0, sizeof(*entry));
 540			continue;
 541		}
 542
 543		/* Is the new range completely covered? */
 544		if (entry->addr < start && entry_end > end) {
 545			e820__range_add(end, entry_end - end, entry->type);
 546			entry->size = start - entry->addr;
 547			real_removed_size += size;
 548			continue;
 549		}
 550
 551		/* Partially covered: */
 552		final_start = max(start, entry->addr);
 553		final_end = min(end, entry_end);
 554		if (final_start >= final_end)
 555			continue;
 556
 557		real_removed_size += final_end - final_start;
 558
 559		/*
 560		 * Left range could be head or tail, so need to update
 561		 * the size first:
 562		 */
 563		entry->size -= final_end - final_start;
 564		if (entry->addr < final_start)
 565			continue;
 566
 567		entry->addr = final_end;
 568	}
 569	return real_removed_size;
 570}
 571
 572void __init e820__update_table_print(void)
 573{
 574	if (e820__update_table(e820_table))
 575		return;
 576
 577	pr_info("e820: modified physical RAM map:\n");
 578	e820__print_table("modified");
 579}
 580
 581static void __init e820__update_table_kexec(void)
 582{
 583	e820__update_table(e820_table_kexec);
 584}
 585
 586#define MAX_GAP_END 0x100000000ull
 587
 588/*
 589 * Search for a gap in the E820 memory space from 0 to MAX_GAP_END (4GB).
 590 */
 591static int __init e820_search_gap(unsigned long *gapstart, unsigned long *gapsize)
 592{
 593	unsigned long long last = MAX_GAP_END;
 594	int i = e820_table->nr_entries;
 595	int found = 0;
 596
 597	while (--i >= 0) {
 598		unsigned long long start = e820_table->entries[i].addr;
 599		unsigned long long end = start + e820_table->entries[i].size;
 600
 601		/*
 602		 * Since "last" is at most 4GB, we know we'll
 603		 * fit in 32 bits if this condition is true:
 604		 */
 605		if (last > end) {
 606			unsigned long gap = last - end;
 607
 608			if (gap >= *gapsize) {
 609				*gapsize = gap;
 610				*gapstart = end;
 611				found = 1;
 612			}
 613		}
 614		if (start < last)
 615			last = start;
 616	}
 617	return found;
 618}
 619
 620/*
 621 * Search for the biggest gap in the low 32 bits of the E820
 622 * memory space. We pass this space to the PCI subsystem, so
 623 * that it can assign MMIO resources for hotplug or
 624 * unconfigured devices in.
 625 *
 626 * Hopefully the BIOS let enough space left.
 627 */
 628__init void e820__setup_pci_gap(void)
 629{
 630	unsigned long gapstart, gapsize;
 631	int found;
 632
 633	gapsize = 0x400000;
 634	found  = e820_search_gap(&gapstart, &gapsize);
 635
 636	if (!found) {
 637#ifdef CONFIG_X86_64
 638		gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
 639		pr_err(
 640			"e820: Cannot find an available gap in the 32-bit address range\n"
 641			"e820: PCI devices with unassigned 32-bit BARs may not work!\n");
 642#else
 643		gapstart = 0x10000000;
 644#endif
 645	}
 646
 647	/*
 648	 * e820__reserve_resources_late() protects stolen RAM already:
 649	 */
 650	pci_mem_start = gapstart;
 651
 652	pr_info("e820: [mem %#010lx-%#010lx] available for PCI devices\n", gapstart, gapstart + gapsize - 1);
 
 653}
 654
 655/*
 656 * Called late during init, in free_initmem().
 657 *
 658 * Initial e820_table and e820_table_kexec are largish __initdata arrays.
 659 *
 660 * Copy them to a (usually much smaller) dynamically allocated area that is
 661 * sized precisely after the number of e820 entries.
 662 *
 663 * This is done after we've performed all the fixes and tweaks to the tables.
 664 * All functions which modify them are __init functions, which won't exist
 665 * after free_initmem().
 666 */
 667__init void e820__reallocate_tables(void)
 668{
 669	struct e820_table *n;
 670	int size;
 671
 672	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table->nr_entries;
 673	n = kmalloc(size, GFP_KERNEL);
 674	BUG_ON(!n);
 675	memcpy(n, e820_table, size);
 676	e820_table = n;
 677
 678	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_kexec->nr_entries;
 679	n = kmalloc(size, GFP_KERNEL);
 680	BUG_ON(!n);
 681	memcpy(n, e820_table_kexec, size);
 682	e820_table_kexec = n;
 683
 684	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_firmware->nr_entries;
 685	n = kmalloc(size, GFP_KERNEL);
 686	BUG_ON(!n);
 687	memcpy(n, e820_table_firmware, size);
 688	e820_table_firmware = n;
 689}
 690
 691/*
 692 * Because of the small fixed size of struct boot_params, only the first
 693 * 128 E820 memory entries are passed to the kernel via boot_params.e820_table,
 694 * the remaining (if any) entries are passed via the SETUP_E820_EXT node of
 695 * struct setup_data, which is parsed here.
 696 */
 697void __init e820__memory_setup_extended(u64 phys_addr, u32 data_len)
 698{
 699	int entries;
 700	struct boot_e820_entry *extmap;
 701	struct setup_data *sdata;
 702
 703	sdata = early_memremap(phys_addr, data_len);
 704	entries = sdata->len / sizeof(*extmap);
 705	extmap = (struct boot_e820_entry *)(sdata->data);
 706
 707	__append_e820_table(extmap, entries);
 708	e820__update_table(e820_table);
 709
 710	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
 711	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
 712
 713	early_memunmap(sdata, data_len);
 714	pr_info("e820: extended physical RAM map:\n");
 715	e820__print_table("extended");
 716}
 717
 718/*
 719 * Find the ranges of physical addresses that do not correspond to
 720 * E820 RAM areas and register the corresponding pages as 'nosave' for
 721 * hibernation (32-bit) or software suspend and suspend to RAM (64-bit).
 722 *
 723 * This function requires the E820 map to be sorted and without any
 724 * overlapping entries.
 725 */
 726void __init e820__register_nosave_regions(unsigned long limit_pfn)
 727{
 728	int i;
 729	unsigned long pfn = 0;
 730
 731	for (i = 0; i < e820_table->nr_entries; i++) {
 732		struct e820_entry *entry = &e820_table->entries[i];
 733
 734		if (pfn < PFN_UP(entry->addr))
 735			register_nosave_region(pfn, PFN_UP(entry->addr));
 736
 737		pfn = PFN_DOWN(entry->addr + entry->size);
 738
 739		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
 740			register_nosave_region(PFN_UP(entry->addr), pfn);
 741
 742		if (pfn >= limit_pfn)
 743			break;
 744	}
 745}
 746
 747#ifdef CONFIG_ACPI
 748/*
 749 * Register ACPI NVS memory regions, so that we can save/restore them during
 750 * hibernation and the subsequent resume:
 751 */
 752static int __init e820__register_nvs_regions(void)
 753{
 754	int i;
 755
 756	for (i = 0; i < e820_table->nr_entries; i++) {
 757		struct e820_entry *entry = &e820_table->entries[i];
 758
 759		if (entry->type == E820_TYPE_NVS)
 760			acpi_nvs_register(entry->addr, entry->size);
 761	}
 762
 763	return 0;
 764}
 765core_initcall(e820__register_nvs_regions);
 766#endif
 767
 768/*
 769 * Allocate the requested number of bytes with the requsted alignment
 770 * and return (the physical address) to the caller. Also register this
 771 * range in the 'kexec' E820 table as a reserved range.
 772 *
 773 * This allows kexec to fake a new mptable, as if it came from the real
 774 * system.
 775 */
 776u64 __init e820__memblock_alloc_reserved(u64 size, u64 align)
 777{
 778	u64 addr;
 779
 780	addr = __memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
 781	if (addr) {
 782		e820__range_update_kexec(addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED);
 783		pr_info("e820: update e820_table_kexec for e820__memblock_alloc_reserved()\n");
 784		e820__update_table_kexec();
 785	}
 786
 787	return addr;
 788}
 789
 790#ifdef CONFIG_X86_32
 791# ifdef CONFIG_X86_PAE
 792#  define MAX_ARCH_PFN		(1ULL<<(36-PAGE_SHIFT))
 793# else
 794#  define MAX_ARCH_PFN		(1ULL<<(32-PAGE_SHIFT))
 795# endif
 796#else /* CONFIG_X86_32 */
 797# define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
 798#endif
 799
 800/*
 801 * Find the highest page frame number we have available
 802 */
 803static unsigned long __init e820_end_pfn(unsigned long limit_pfn, enum e820_type type)
 804{
 805	int i;
 806	unsigned long last_pfn = 0;
 807	unsigned long max_arch_pfn = MAX_ARCH_PFN;
 808
 809	for (i = 0; i < e820_table->nr_entries; i++) {
 810		struct e820_entry *entry = &e820_table->entries[i];
 811		unsigned long start_pfn;
 812		unsigned long end_pfn;
 813
 814		if (entry->type != type)
 
 815			continue;
 816
 817		start_pfn = entry->addr >> PAGE_SHIFT;
 818		end_pfn = (entry->addr + entry->size) >> PAGE_SHIFT;
 819
 820		if (start_pfn >= limit_pfn)
 821			continue;
 822		if (end_pfn > limit_pfn) {
 823			last_pfn = limit_pfn;
 824			break;
 825		}
 826		if (end_pfn > last_pfn)
 827			last_pfn = end_pfn;
 828	}
 829
 830	if (last_pfn > max_arch_pfn)
 831		last_pfn = max_arch_pfn;
 832
 833	pr_info("e820: last_pfn = %#lx max_arch_pfn = %#lx\n",
 834			 last_pfn, max_arch_pfn);
 835	return last_pfn;
 836}
 837
 838unsigned long __init e820__end_of_ram_pfn(void)
 839{
 840	return e820_end_pfn(MAX_ARCH_PFN, E820_TYPE_RAM);
 841}
 842
 843unsigned long __init e820__end_of_low_ram_pfn(void)
 844{
 845	return e820_end_pfn(1UL << (32 - PAGE_SHIFT), E820_TYPE_RAM);
 846}
 847
 848static void __init early_panic(char *msg)
 849{
 850	early_printk(msg);
 851	panic(msg);
 852}
 853
 854static int userdef __initdata;
 855
 856/* The "mem=nopentium" boot option disables 4MB page tables on 32-bit kernels: */
 857static int __init parse_memopt(char *p)
 858{
 859	u64 mem_size;
 860
 861	if (!p)
 862		return -EINVAL;
 863
 864	if (!strcmp(p, "nopentium")) {
 865#ifdef CONFIG_X86_32
 866		setup_clear_cpu_cap(X86_FEATURE_PSE);
 867		return 0;
 868#else
 869		pr_warn("mem=nopentium ignored! (only supported on x86_32)\n");
 870		return -EINVAL;
 871#endif
 872	}
 873
 874	userdef = 1;
 875	mem_size = memparse(p, &p);
 876
 877	/* Don't remove all memory when getting "mem={invalid}" parameter: */
 878	if (mem_size == 0)
 879		return -EINVAL;
 880
 881	e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
 882
 
 
 
 
 883	return 0;
 884}
 885early_param("mem", parse_memopt);
 886
 887static int __init parse_memmap_one(char *p)
 888{
 889	char *oldp;
 890	u64 start_at, mem_size;
 891
 892	if (!p)
 893		return -EINVAL;
 894
 895	if (!strncmp(p, "exactmap", 8)) {
 896#ifdef CONFIG_CRASH_DUMP
 897		/*
 898		 * If we are doing a crash dump, we still need to know
 899		 * the real memory size before the original memory map is
 900		 * reset.
 901		 */
 902		saved_max_pfn = e820__end_of_ram_pfn();
 903#endif
 904		e820_table->nr_entries = 0;
 905		userdef = 1;
 906		return 0;
 907	}
 908
 909	oldp = p;
 910	mem_size = memparse(p, &p);
 911	if (p == oldp)
 912		return -EINVAL;
 913
 914	userdef = 1;
 915	if (*p == '@') {
 916		start_at = memparse(p+1, &p);
 917		e820__range_add(start_at, mem_size, E820_TYPE_RAM);
 918	} else if (*p == '#') {
 919		start_at = memparse(p+1, &p);
 920		e820__range_add(start_at, mem_size, E820_TYPE_ACPI);
 921	} else if (*p == '$') {
 922		start_at = memparse(p+1, &p);
 923		e820__range_add(start_at, mem_size, E820_TYPE_RESERVED);
 924	} else if (*p == '!') {
 925		start_at = memparse(p+1, &p);
 926		e820__range_add(start_at, mem_size, E820_TYPE_PRAM);
 927	} else if (*p == '%') {
 928		enum e820_type from = 0, to = 0;
 929
 930		start_at = memparse(p + 1, &p);
 931		if (*p == '-')
 932			from = simple_strtoull(p + 1, &p, 0);
 933		if (*p == '+')
 934			to = simple_strtoull(p + 1, &p, 0);
 935		if (*p != '\0')
 936			return -EINVAL;
 937		if (from && to)
 938			e820__range_update(start_at, mem_size, from, to);
 939		else if (to)
 940			e820__range_add(start_at, mem_size, to);
 941		else if (from)
 942			e820__range_remove(start_at, mem_size, from, 1);
 943		else
 944			e820__range_remove(start_at, mem_size, 0, 0);
 945	} else {
 946		e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
 947	}
 948
 949	return *p == '\0' ? 0 : -EINVAL;
 950}
 951
 952static int __init parse_memmap_opt(char *str)
 953{
 954	while (str) {
 955		char *k = strchr(str, ',');
 956
 957		if (k)
 958			*k++ = 0;
 959
 960		parse_memmap_one(str);
 961		str = k;
 962	}
 963
 964	return 0;
 965}
 966early_param("memmap", parse_memmap_opt);
 967
 968/*
 969 * Reserve all entries from the bootloader's extensible data nodes list,
 970 * because if present we are going to use it later on to fetch e820
 971 * entries from it:
 972 */
 973void __init e820__reserve_setup_data(void)
 974{
 
 975	struct setup_data *data;
 976	u64 pa_data;
 
 977
 978	pa_data = boot_params.hdr.setup_data;
 979	if (!pa_data)
 980		return;
 981
 982	while (pa_data) {
 983		data = early_memremap(pa_data, sizeof(*data));
 
 
 
 
 
 
 
 
 984		e820__range_update(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
 985		e820__range_update_kexec(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
 986		pa_data = data->next;
 987		early_memunmap(data, sizeof(*data));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 988	}
 989
 990	e820__update_table(e820_table);
 991	e820__update_table(e820_table_kexec);
 992
 993	pr_info("extended physical RAM map:\n");
 994	e820__print_table("reserve setup_data");
 995}
 996
 997/*
 998 * Called after parse_early_param(), after early parameters (such as mem=)
 999 * have been processed, in which case we already have an E820 table filled in
1000 * via the parameter callback function(s), but it's not sorted and printed yet:
1001 */
1002void __init e820__finish_early_params(void)
1003{
1004	if (userdef) {
1005		if (e820__update_table(e820_table) < 0)
1006			early_panic("Invalid user supplied memory map");
1007
1008		pr_info("e820: user-defined physical RAM map:\n");
1009		e820__print_table("user");
1010	}
1011}
1012
1013static const char *__init e820_type_to_string(struct e820_entry *entry)
1014{
1015	switch (entry->type) {
1016	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1017	case E820_TYPE_RAM:		return "System RAM";
1018	case E820_TYPE_ACPI:		return "ACPI Tables";
1019	case E820_TYPE_NVS:		return "ACPI Non-volatile Storage";
1020	case E820_TYPE_UNUSABLE:	return "Unusable memory";
1021	case E820_TYPE_PRAM:		return "Persistent Memory (legacy)";
1022	case E820_TYPE_PMEM:		return "Persistent Memory";
1023	case E820_TYPE_RESERVED:	return "Reserved";
 
1024	default:			return "Unknown E820 type";
1025	}
1026}
1027
1028static unsigned long __init e820_type_to_iomem_type(struct e820_entry *entry)
1029{
1030	switch (entry->type) {
1031	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1032	case E820_TYPE_RAM:		return IORESOURCE_SYSTEM_RAM;
1033	case E820_TYPE_ACPI:		/* Fall-through: */
1034	case E820_TYPE_NVS:		/* Fall-through: */
1035	case E820_TYPE_UNUSABLE:	/* Fall-through: */
1036	case E820_TYPE_PRAM:		/* Fall-through: */
1037	case E820_TYPE_PMEM:		/* Fall-through: */
1038	case E820_TYPE_RESERVED:	/* Fall-through: */
 
1039	default:			return IORESOURCE_MEM;
1040	}
1041}
1042
1043static unsigned long __init e820_type_to_iores_desc(struct e820_entry *entry)
1044{
1045	switch (entry->type) {
1046	case E820_TYPE_ACPI:		return IORES_DESC_ACPI_TABLES;
1047	case E820_TYPE_NVS:		return IORES_DESC_ACPI_NV_STORAGE;
1048	case E820_TYPE_PMEM:		return IORES_DESC_PERSISTENT_MEMORY;
1049	case E820_TYPE_PRAM:		return IORES_DESC_PERSISTENT_MEMORY_LEGACY;
 
 
1050	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1051	case E820_TYPE_RAM:		/* Fall-through: */
1052	case E820_TYPE_UNUSABLE:	/* Fall-through: */
1053	case E820_TYPE_RESERVED:	/* Fall-through: */
1054	default:			return IORES_DESC_NONE;
1055	}
1056}
1057
1058static bool __init do_mark_busy(enum e820_type type, struct resource *res)
1059{
1060	/* this is the legacy bios/dos rom-shadow + mmio region */
1061	if (res->start < (1ULL<<20))
1062		return true;
1063
1064	/*
1065	 * Treat persistent memory like device memory, i.e. reserve it
1066	 * for exclusive use of a driver
1067	 */
1068	switch (type) {
1069	case E820_TYPE_RESERVED:
 
1070	case E820_TYPE_PRAM:
1071	case E820_TYPE_PMEM:
1072		return false;
1073	case E820_TYPE_RESERVED_KERN:
1074	case E820_TYPE_RAM:
1075	case E820_TYPE_ACPI:
1076	case E820_TYPE_NVS:
1077	case E820_TYPE_UNUSABLE:
1078	default:
1079		return true;
1080	}
1081}
1082
1083/*
1084 * Mark E820 reserved areas as busy for the resource manager:
1085 */
1086
1087static struct resource __initdata *e820_res;
1088
1089void __init e820__reserve_resources(void)
1090{
1091	int i;
1092	struct resource *res;
1093	u64 end;
1094
1095	res = alloc_bootmem(sizeof(*res) * e820_table->nr_entries);
 
 
 
 
1096	e820_res = res;
1097
1098	for (i = 0; i < e820_table->nr_entries; i++) {
1099		struct e820_entry *entry = e820_table->entries + i;
1100
1101		end = entry->addr + entry->size - 1;
1102		if (end != (resource_size_t)end) {
1103			res++;
1104			continue;
1105		}
1106		res->start = entry->addr;
1107		res->end   = end;
1108		res->name  = e820_type_to_string(entry);
1109		res->flags = e820_type_to_iomem_type(entry);
1110		res->desc  = e820_type_to_iores_desc(entry);
1111
1112		/*
1113		 * Don't register the region that could be conflicted with
1114		 * PCI device BAR resources and insert them later in
1115		 * pcibios_resource_survey():
1116		 */
1117		if (do_mark_busy(entry->type, res)) {
1118			res->flags |= IORESOURCE_BUSY;
1119			insert_resource(&iomem_resource, res);
1120		}
1121		res++;
1122	}
1123
1124	/* Expose the bootloader-provided memory layout to the sysfs. */
1125	for (i = 0; i < e820_table_firmware->nr_entries; i++) {
1126		struct e820_entry *entry = e820_table_firmware->entries + i;
1127
1128		firmware_map_add_early(entry->addr, entry->addr + entry->size, e820_type_to_string(entry));
1129	}
1130}
1131
1132/*
1133 * How much should we pad the end of RAM, depending on where it is?
1134 */
1135static unsigned long __init ram_alignment(resource_size_t pos)
1136{
1137	unsigned long mb = pos >> 20;
1138
1139	/* To 64kB in the first megabyte */
1140	if (!mb)
1141		return 64*1024;
1142
1143	/* To 1MB in the first 16MB */
1144	if (mb < 16)
1145		return 1024*1024;
1146
1147	/* To 64MB for anything above that */
1148	return 64*1024*1024;
1149}
1150
1151#define MAX_RESOURCE_SIZE ((resource_size_t)-1)
1152
1153void __init e820__reserve_resources_late(void)
1154{
1155	int i;
1156	struct resource *res;
1157
1158	res = e820_res;
1159	for (i = 0; i < e820_table->nr_entries; i++) {
1160		if (!res->parent && res->end)
1161			insert_resource_expand_to_fit(&iomem_resource, res);
1162		res++;
1163	}
1164
1165	/*
1166	 * Try to bump up RAM regions to reasonable boundaries, to
1167	 * avoid stolen RAM:
1168	 */
1169	for (i = 0; i < e820_table->nr_entries; i++) {
1170		struct e820_entry *entry = &e820_table->entries[i];
1171		u64 start, end;
1172
1173		if (entry->type != E820_TYPE_RAM)
1174			continue;
1175
1176		start = entry->addr + entry->size;
1177		end = round_up(start, ram_alignment(start)) - 1;
1178		if (end > MAX_RESOURCE_SIZE)
1179			end = MAX_RESOURCE_SIZE;
1180		if (start >= end)
1181			continue;
1182
1183		printk(KERN_DEBUG "e820: reserve RAM buffer [mem %#010llx-%#010llx]\n", start, end);
1184		reserve_region_with_split(&iomem_resource, start, end, "RAM buffer");
1185	}
1186}
1187
1188/*
1189 * Pass the firmware (bootloader) E820 map to the kernel and process it:
1190 */
1191char *__init e820__memory_setup_default(void)
1192{
1193	char *who = "BIOS-e820";
1194
1195	/*
1196	 * Try to copy the BIOS-supplied E820-map.
1197	 *
1198	 * Otherwise fake a memory map; one section from 0k->640k,
1199	 * the next section from 1mb->appropriate_mem_k
1200	 */
1201	if (append_e820_table(boot_params.e820_table, boot_params.e820_entries) < 0) {
1202		u64 mem_size;
1203
1204		/* Compare results from other methods and take the one that gives more RAM: */
1205		if (boot_params.alt_mem_k < boot_params.screen_info.ext_mem_k) {
1206			mem_size = boot_params.screen_info.ext_mem_k;
1207			who = "BIOS-88";
1208		} else {
1209			mem_size = boot_params.alt_mem_k;
1210			who = "BIOS-e801";
1211		}
1212
1213		e820_table->nr_entries = 0;
1214		e820__range_add(0, LOWMEMSIZE(), E820_TYPE_RAM);
1215		e820__range_add(HIGH_MEMORY, mem_size << 10, E820_TYPE_RAM);
1216	}
1217
1218	/* We just appended a lot of ranges, sanitize the table: */
1219	e820__update_table(e820_table);
1220
1221	return who;
1222}
1223
1224/*
1225 * Calls e820__memory_setup_default() in essence to pick up the firmware/bootloader
1226 * E820 map - with an optional platform quirk available for virtual platforms
1227 * to override this method of boot environment processing:
1228 */
1229void __init e820__memory_setup(void)
1230{
1231	char *who;
1232
1233	/* This is a firmware interface ABI - make sure we don't break it: */
1234	BUILD_BUG_ON(sizeof(struct boot_e820_entry) != 20);
1235
1236	who = x86_init.resources.memory_setup();
1237
1238	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
1239	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
1240
1241	pr_info("e820: BIOS-provided physical RAM map:\n");
1242	e820__print_table(who);
1243}
1244
1245void __init e820__memblock_setup(void)
1246{
1247	int i;
1248	u64 end;
1249
1250	/*
1251	 * The bootstrap memblock region count maximum is 128 entries
1252	 * (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries
1253	 * than that - so allow memblock resizing.
1254	 *
1255	 * This is safe, because this call happens pretty late during x86 setup,
1256	 * so we know about reserved memory regions already. (This is important
1257	 * so that memblock resizing does no stomp over reserved areas.)
1258	 */
1259	memblock_allow_resize();
1260
1261	for (i = 0; i < e820_table->nr_entries; i++) {
1262		struct e820_entry *entry = &e820_table->entries[i];
1263
1264		end = entry->addr + entry->size;
1265		if (end != (resource_size_t)end)
1266			continue;
 
 
 
1267
1268		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
1269			continue;
1270
1271		memblock_add(entry->addr, entry->size);
1272	}
1273
1274	/* Throw away partial pages: */
1275	memblock_trim_memory(PAGE_SIZE);
1276
1277	memblock_dump_all();
1278}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Low level x86 E820 memory map handling functions.
   4 *
   5 * The firmware and bootloader passes us the "E820 table", which is the primary
   6 * physical memory layout description available about x86 systems.
   7 *
   8 * The kernel takes the E820 memory layout and optionally modifies it with
   9 * quirks and other tweaks, and feeds that into the generic Linux memory
  10 * allocation code routines via a platform independent interface (memblock, etc.).
  11 */
  12#include <linux/crash_dump.h>
  13#include <linux/memblock.h>
  14#include <linux/suspend.h>
  15#include <linux/acpi.h>
  16#include <linux/firmware-map.h>
 
  17#include <linux/sort.h>
  18#include <linux/memory_hotplug.h>
  19
  20#include <asm/e820/api.h>
  21#include <asm/setup.h>
  22
  23/*
  24 * We organize the E820 table into three main data structures:
  25 *
  26 * - 'e820_table_firmware': the original firmware version passed to us by the
  27 *   bootloader - not modified by the kernel. It is composed of two parts:
  28 *   the first 128 E820 memory entries in boot_params.e820_table and the remaining
  29 *   (if any) entries of the SETUP_E820_EXT nodes. We use this to:
  30 *
  31 *       - inform the user about the firmware's notion of memory layout
  32 *         via /sys/firmware/memmap
  33 *
  34 *       - the hibernation code uses it to generate a kernel-independent CRC32
  35 *         checksum of the physical memory layout of a system.
  36 *
  37 * - 'e820_table_kexec': a slightly modified (by the kernel) firmware version
  38 *   passed to us by the bootloader - the major difference between
  39 *   e820_table_firmware[] and this one is that, the latter marks the setup_data
  40 *   list created by the EFI boot stub as reserved, so that kexec can reuse the
  41 *   setup_data information in the second kernel. Besides, e820_table_kexec[]
  42 *   might also be modified by the kexec itself to fake a mptable.
  43 *   We use this to:
  44 *
  45 *       - kexec, which is a bootloader in disguise, uses the original E820
  46 *         layout to pass to the kexec-ed kernel. This way the original kernel
  47 *         can have a restricted E820 map while the kexec()-ed kexec-kernel
  48 *         can have access to full memory - etc.
  49 *
  50 * - 'e820_table': this is the main E820 table that is massaged by the
  51 *   low level x86 platform code, or modified by boot parameters, before
  52 *   passed on to higher level MM layers.
  53 *
  54 * Once the E820 map has been converted to the standard Linux memory layout
  55 * information its role stops - modifying it has no effect and does not get
  56 * re-propagated. So its main role is a temporary bootstrap storage of firmware
  57 * specific memory layout data during early bootup.
  58 */
  59static struct e820_table e820_table_init		__initdata;
  60static struct e820_table e820_table_kexec_init		__initdata;
  61static struct e820_table e820_table_firmware_init	__initdata;
  62
  63struct e820_table *e820_table __refdata			= &e820_table_init;
  64struct e820_table *e820_table_kexec __refdata		= &e820_table_kexec_init;
  65struct e820_table *e820_table_firmware __refdata	= &e820_table_firmware_init;
  66
  67/* For PCI or other memory-mapped resources */
  68unsigned long pci_mem_start = 0xaeedbabe;
  69#ifdef CONFIG_PCI
  70EXPORT_SYMBOL(pci_mem_start);
  71#endif
  72
  73/*
  74 * This function checks if any part of the range <start,end> is mapped
  75 * with type.
  76 */
  77static bool _e820__mapped_any(struct e820_table *table,
  78			      u64 start, u64 end, enum e820_type type)
  79{
  80	int i;
  81
  82	for (i = 0; i < table->nr_entries; i++) {
  83		struct e820_entry *entry = &table->entries[i];
  84
  85		if (type && entry->type != type)
  86			continue;
  87		if (entry->addr >= end || entry->addr + entry->size <= start)
  88			continue;
  89		return true;
  90	}
  91	return false;
  92}
  93
  94bool e820__mapped_raw_any(u64 start, u64 end, enum e820_type type)
  95{
  96	return _e820__mapped_any(e820_table_firmware, start, end, type);
  97}
  98EXPORT_SYMBOL_GPL(e820__mapped_raw_any);
  99
 100bool e820__mapped_any(u64 start, u64 end, enum e820_type type)
 101{
 102	return _e820__mapped_any(e820_table, start, end, type);
 103}
 104EXPORT_SYMBOL_GPL(e820__mapped_any);
 105
 106/*
 107 * This function checks if the entire <start,end> range is mapped with 'type'.
 108 *
 109 * Note: this function only works correctly once the E820 table is sorted and
 110 * not-overlapping (at least for the range specified), which is the case normally.
 111 */
 112static struct e820_entry *__e820__mapped_all(u64 start, u64 end,
 113					     enum e820_type type)
 114{
 115	int i;
 116
 117	for (i = 0; i < e820_table->nr_entries; i++) {
 118		struct e820_entry *entry = &e820_table->entries[i];
 119
 120		if (type && entry->type != type)
 121			continue;
 122
 123		/* Is the region (part) in overlap with the current region? */
 124		if (entry->addr >= end || entry->addr + entry->size <= start)
 125			continue;
 126
 127		/*
 128		 * If the region is at the beginning of <start,end> we move
 129		 * 'start' to the end of the region since it's ok until there
 130		 */
 131		if (entry->addr <= start)
 132			start = entry->addr + entry->size;
 133
 134		/*
 135		 * If 'start' is now at or beyond 'end', we're done, full
 136		 * coverage of the desired range exists:
 137		 */
 138		if (start >= end)
 139			return entry;
 140	}
 141
 142	return NULL;
 143}
 144
 145/*
 146 * This function checks if the entire range <start,end> is mapped with type.
 147 */
 148bool __init e820__mapped_all(u64 start, u64 end, enum e820_type type)
 149{
 150	return __e820__mapped_all(start, end, type);
 151}
 152
 153/*
 154 * This function returns the type associated with the range <start,end>.
 155 */
 156int e820__get_entry_type(u64 start, u64 end)
 157{
 158	struct e820_entry *entry = __e820__mapped_all(start, end, 0);
 159
 160	return entry ? entry->type : -EINVAL;
 161}
 162
 163/*
 164 * Add a memory region to the kernel E820 map.
 165 */
 166static void __init __e820__range_add(struct e820_table *table, u64 start, u64 size, enum e820_type type)
 167{
 168	int x = table->nr_entries;
 169
 170	if (x >= ARRAY_SIZE(table->entries)) {
 171		pr_err("too many entries; ignoring [mem %#010llx-%#010llx]\n",
 172		       start, start + size - 1);
 173		return;
 174	}
 175
 176	table->entries[x].addr = start;
 177	table->entries[x].size = size;
 178	table->entries[x].type = type;
 179	table->nr_entries++;
 180}
 181
 182void __init e820__range_add(u64 start, u64 size, enum e820_type type)
 183{
 184	__e820__range_add(e820_table, start, size, type);
 185}
 186
 187static void __init e820_print_type(enum e820_type type)
 188{
 189	switch (type) {
 190	case E820_TYPE_RAM:		/* Fall through: */
 191	case E820_TYPE_RESERVED_KERN:	pr_cont("usable");			break;
 192	case E820_TYPE_RESERVED:	pr_cont("reserved");			break;
 193	case E820_TYPE_SOFT_RESERVED:	pr_cont("soft reserved");		break;
 194	case E820_TYPE_ACPI:		pr_cont("ACPI data");			break;
 195	case E820_TYPE_NVS:		pr_cont("ACPI NVS");			break;
 196	case E820_TYPE_UNUSABLE:	pr_cont("unusable");			break;
 197	case E820_TYPE_PMEM:		/* Fall through: */
 198	case E820_TYPE_PRAM:		pr_cont("persistent (type %u)", type);	break;
 199	default:			pr_cont("type %u", type);		break;
 200	}
 201}
 202
 203void __init e820__print_table(char *who)
 204{
 205	int i;
 206
 207	for (i = 0; i < e820_table->nr_entries; i++) {
 208		pr_info("%s: [mem %#018Lx-%#018Lx] ",
 209			who,
 210			e820_table->entries[i].addr,
 211			e820_table->entries[i].addr + e820_table->entries[i].size - 1);
 212
 213		e820_print_type(e820_table->entries[i].type);
 214		pr_cont("\n");
 215	}
 216}
 217
 218/*
 219 * Sanitize an E820 map.
 220 *
 221 * Some E820 layouts include overlapping entries. The following
 222 * replaces the original E820 map with a new one, removing overlaps,
 223 * and resolving conflicting memory types in favor of highest
 224 * numbered type.
 225 *
 226 * The input parameter 'entries' points to an array of 'struct
 227 * e820_entry' which on entry has elements in the range [0, *nr_entries)
 228 * valid, and which has space for up to max_nr_entries entries.
 229 * On return, the resulting sanitized E820 map entries will be in
 230 * overwritten in the same location, starting at 'entries'.
 231 *
 232 * The integer pointed to by nr_entries must be valid on entry (the
 233 * current number of valid entries located at 'entries'). If the
 234 * sanitizing succeeds the *nr_entries will be updated with the new
 235 * number of valid entries (something no more than max_nr_entries).
 236 *
 237 * The return value from e820__update_table() is zero if it
 238 * successfully 'sanitized' the map entries passed in, and is -1
 239 * if it did nothing, which can happen if either of (1) it was
 240 * only passed one map entry, or (2) any of the input map entries
 241 * were invalid (start + size < start, meaning that the size was
 242 * so big the described memory range wrapped around through zero.)
 243 *
 244 *	Visually we're performing the following
 245 *	(1,2,3,4 = memory types)...
 246 *
 247 *	Sample memory map (w/overlaps):
 248 *	   ____22__________________
 249 *	   ______________________4_
 250 *	   ____1111________________
 251 *	   _44_____________________
 252 *	   11111111________________
 253 *	   ____________________33__
 254 *	   ___________44___________
 255 *	   __________33333_________
 256 *	   ______________22________
 257 *	   ___________________2222_
 258 *	   _________111111111______
 259 *	   _____________________11_
 260 *	   _________________4______
 261 *
 262 *	Sanitized equivalent (no overlap):
 263 *	   1_______________________
 264 *	   _44_____________________
 265 *	   ___1____________________
 266 *	   ____22__________________
 267 *	   ______11________________
 268 *	   _________1______________
 269 *	   __________3_____________
 270 *	   ___________44___________
 271 *	   _____________33_________
 272 *	   _______________2________
 273 *	   ________________1_______
 274 *	   _________________4______
 275 *	   ___________________2____
 276 *	   ____________________33__
 277 *	   ______________________4_
 278 */
 279struct change_member {
 280	/* Pointer to the original entry: */
 281	struct e820_entry	*entry;
 282	/* Address for this change point: */
 283	unsigned long long	addr;
 284};
 285
 286static struct change_member	change_point_list[2*E820_MAX_ENTRIES]	__initdata;
 287static struct change_member	*change_point[2*E820_MAX_ENTRIES]	__initdata;
 288static struct e820_entry	*overlap_list[E820_MAX_ENTRIES]		__initdata;
 289static struct e820_entry	new_entries[E820_MAX_ENTRIES]		__initdata;
 290
 291static int __init cpcompare(const void *a, const void *b)
 292{
 293	struct change_member * const *app = a, * const *bpp = b;
 294	const struct change_member *ap = *app, *bp = *bpp;
 295
 296	/*
 297	 * Inputs are pointers to two elements of change_point[].  If their
 298	 * addresses are not equal, their difference dominates.  If the addresses
 299	 * are equal, then consider one that represents the end of its region
 300	 * to be greater than one that does not.
 301	 */
 302	if (ap->addr != bp->addr)
 303		return ap->addr > bp->addr ? 1 : -1;
 304
 305	return (ap->addr != ap->entry->addr) - (bp->addr != bp->entry->addr);
 306}
 307
 308static bool e820_nomerge(enum e820_type type)
 309{
 310	/*
 311	 * These types may indicate distinct platform ranges aligned to
 312	 * numa node, protection domain, performance domain, or other
 313	 * boundaries. Do not merge them.
 314	 */
 315	if (type == E820_TYPE_PRAM)
 316		return true;
 317	if (type == E820_TYPE_SOFT_RESERVED)
 318		return true;
 319	return false;
 320}
 321
 322int __init e820__update_table(struct e820_table *table)
 323{
 324	struct e820_entry *entries = table->entries;
 325	u32 max_nr_entries = ARRAY_SIZE(table->entries);
 326	enum e820_type current_type, last_type;
 327	unsigned long long last_addr;
 328	u32 new_nr_entries, overlap_entries;
 329	u32 i, chg_idx, chg_nr;
 330
 331	/* If there's only one memory region, don't bother: */
 332	if (table->nr_entries < 2)
 333		return -1;
 334
 335	BUG_ON(table->nr_entries > max_nr_entries);
 336
 337	/* Bail out if we find any unreasonable addresses in the map: */
 338	for (i = 0; i < table->nr_entries; i++) {
 339		if (entries[i].addr + entries[i].size < entries[i].addr)
 340			return -1;
 341	}
 342
 343	/* Create pointers for initial change-point information (for sorting): */
 344	for (i = 0; i < 2 * table->nr_entries; i++)
 345		change_point[i] = &change_point_list[i];
 346
 347	/*
 348	 * Record all known change-points (starting and ending addresses),
 349	 * omitting empty memory regions:
 350	 */
 351	chg_idx = 0;
 352	for (i = 0; i < table->nr_entries; i++)	{
 353		if (entries[i].size != 0) {
 354			change_point[chg_idx]->addr	= entries[i].addr;
 355			change_point[chg_idx++]->entry	= &entries[i];
 356			change_point[chg_idx]->addr	= entries[i].addr + entries[i].size;
 357			change_point[chg_idx++]->entry	= &entries[i];
 358		}
 359	}
 360	chg_nr = chg_idx;
 361
 362	/* Sort change-point list by memory addresses (low -> high): */
 363	sort(change_point, chg_nr, sizeof(*change_point), cpcompare, NULL);
 364
 365	/* Create a new memory map, removing overlaps: */
 366	overlap_entries = 0;	 /* Number of entries in the overlap table */
 367	new_nr_entries = 0;	 /* Index for creating new map entries */
 368	last_type = 0;		 /* Start with undefined memory type */
 369	last_addr = 0;		 /* Start with 0 as last starting address */
 370
 371	/* Loop through change-points, determining effect on the new map: */
 372	for (chg_idx = 0; chg_idx < chg_nr; chg_idx++) {
 373		/* Keep track of all overlapping entries */
 374		if (change_point[chg_idx]->addr == change_point[chg_idx]->entry->addr) {
 375			/* Add map entry to overlap list (> 1 entry implies an overlap) */
 376			overlap_list[overlap_entries++] = change_point[chg_idx]->entry;
 377		} else {
 378			/* Remove entry from list (order independent, so swap with last): */
 379			for (i = 0; i < overlap_entries; i++) {
 380				if (overlap_list[i] == change_point[chg_idx]->entry)
 381					overlap_list[i] = overlap_list[overlap_entries-1];
 382			}
 383			overlap_entries--;
 384		}
 385		/*
 386		 * If there are overlapping entries, decide which
 387		 * "type" to use (larger value takes precedence --
 388		 * 1=usable, 2,3,4,4+=unusable)
 389		 */
 390		current_type = 0;
 391		for (i = 0; i < overlap_entries; i++) {
 392			if (overlap_list[i]->type > current_type)
 393				current_type = overlap_list[i]->type;
 394		}
 395
 396		/* Continue building up new map based on this information: */
 397		if (current_type != last_type || e820_nomerge(current_type)) {
 398			if (last_type) {
 399				new_entries[new_nr_entries].size = change_point[chg_idx]->addr - last_addr;
 400				/* Move forward only if the new size was non-zero: */
 401				if (new_entries[new_nr_entries].size != 0)
 402					/* No more space left for new entries? */
 403					if (++new_nr_entries >= max_nr_entries)
 404						break;
 405			}
 406			if (current_type) {
 407				new_entries[new_nr_entries].addr = change_point[chg_idx]->addr;
 408				new_entries[new_nr_entries].type = current_type;
 409				last_addr = change_point[chg_idx]->addr;
 410			}
 411			last_type = current_type;
 412		}
 413	}
 414
 415	/* Copy the new entries into the original location: */
 416	memcpy(entries, new_entries, new_nr_entries*sizeof(*entries));
 417	table->nr_entries = new_nr_entries;
 418
 419	return 0;
 420}
 421
 422static int __init __append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
 423{
 424	struct boot_e820_entry *entry = entries;
 425
 426	while (nr_entries) {
 427		u64 start = entry->addr;
 428		u64 size = entry->size;
 429		u64 end = start + size - 1;
 430		u32 type = entry->type;
 431
 432		/* Ignore the entry on 64-bit overflow: */
 433		if (start > end && likely(size))
 434			return -1;
 435
 436		e820__range_add(start, size, type);
 437
 438		entry++;
 439		nr_entries--;
 440	}
 441	return 0;
 442}
 443
 444/*
 445 * Copy the BIOS E820 map into a safe place.
 446 *
 447 * Sanity-check it while we're at it..
 448 *
 449 * If we're lucky and live on a modern system, the setup code
 450 * will have given us a memory map that we can use to properly
 451 * set up memory.  If we aren't, we'll fake a memory map.
 452 */
 453static int __init append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
 454{
 455	/* Only one memory region (or negative)? Ignore it */
 456	if (nr_entries < 2)
 457		return -1;
 458
 459	return __append_e820_table(entries, nr_entries);
 460}
 461
 462static u64 __init
 463__e820__range_update(struct e820_table *table, u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
 464{
 465	u64 end;
 466	unsigned int i;
 467	u64 real_updated_size = 0;
 468
 469	BUG_ON(old_type == new_type);
 470
 471	if (size > (ULLONG_MAX - start))
 472		size = ULLONG_MAX - start;
 473
 474	end = start + size;
 475	printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] ", start, end - 1);
 476	e820_print_type(old_type);
 477	pr_cont(" ==> ");
 478	e820_print_type(new_type);
 479	pr_cont("\n");
 480
 481	for (i = 0; i < table->nr_entries; i++) {
 482		struct e820_entry *entry = &table->entries[i];
 483		u64 final_start, final_end;
 484		u64 entry_end;
 485
 486		if (entry->type != old_type)
 487			continue;
 488
 489		entry_end = entry->addr + entry->size;
 490
 491		/* Completely covered by new range? */
 492		if (entry->addr >= start && entry_end <= end) {
 493			entry->type = new_type;
 494			real_updated_size += entry->size;
 495			continue;
 496		}
 497
 498		/* New range is completely covered? */
 499		if (entry->addr < start && entry_end > end) {
 500			__e820__range_add(table, start, size, new_type);
 501			__e820__range_add(table, end, entry_end - end, entry->type);
 502			entry->size = start - entry->addr;
 503			real_updated_size += size;
 504			continue;
 505		}
 506
 507		/* Partially covered: */
 508		final_start = max(start, entry->addr);
 509		final_end = min(end, entry_end);
 510		if (final_start >= final_end)
 511			continue;
 512
 513		__e820__range_add(table, final_start, final_end - final_start, new_type);
 514
 515		real_updated_size += final_end - final_start;
 516
 517		/*
 518		 * Left range could be head or tail, so need to update
 519		 * its size first:
 520		 */
 521		entry->size -= final_end - final_start;
 522		if (entry->addr < final_start)
 523			continue;
 524
 525		entry->addr = final_end;
 526	}
 527	return real_updated_size;
 528}
 529
 530u64 __init e820__range_update(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
 531{
 532	return __e820__range_update(e820_table, start, size, old_type, new_type);
 533}
 534
 535u64 __init e820__range_update_table(struct e820_table *t, u64 start, u64 size,
 536				    enum e820_type old_type, enum e820_type new_type)
 537{
 538	return __e820__range_update(t, start, size, old_type, new_type);
 539}
 540
 541/* Remove a range of memory from the E820 table: */
 542u64 __init e820__range_remove(u64 start, u64 size, enum e820_type old_type, bool check_type)
 543{
 544	int i;
 545	u64 end;
 546	u64 real_removed_size = 0;
 547
 548	if (size > (ULLONG_MAX - start))
 549		size = ULLONG_MAX - start;
 550
 551	end = start + size;
 552	printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] ", start, end - 1);
 553	if (check_type)
 554		e820_print_type(old_type);
 555	pr_cont("\n");
 556
 557	for (i = 0; i < e820_table->nr_entries; i++) {
 558		struct e820_entry *entry = &e820_table->entries[i];
 559		u64 final_start, final_end;
 560		u64 entry_end;
 561
 562		if (check_type && entry->type != old_type)
 563			continue;
 564
 565		entry_end = entry->addr + entry->size;
 566
 567		/* Completely covered? */
 568		if (entry->addr >= start && entry_end <= end) {
 569			real_removed_size += entry->size;
 570			memset(entry, 0, sizeof(*entry));
 571			continue;
 572		}
 573
 574		/* Is the new range completely covered? */
 575		if (entry->addr < start && entry_end > end) {
 576			e820__range_add(end, entry_end - end, entry->type);
 577			entry->size = start - entry->addr;
 578			real_removed_size += size;
 579			continue;
 580		}
 581
 582		/* Partially covered: */
 583		final_start = max(start, entry->addr);
 584		final_end = min(end, entry_end);
 585		if (final_start >= final_end)
 586			continue;
 587
 588		real_removed_size += final_end - final_start;
 589
 590		/*
 591		 * Left range could be head or tail, so need to update
 592		 * the size first:
 593		 */
 594		entry->size -= final_end - final_start;
 595		if (entry->addr < final_start)
 596			continue;
 597
 598		entry->addr = final_end;
 599	}
 600	return real_removed_size;
 601}
 602
 603void __init e820__update_table_print(void)
 604{
 605	if (e820__update_table(e820_table))
 606		return;
 607
 608	pr_info("modified physical RAM map:\n");
 609	e820__print_table("modified");
 610}
 611
 612static void __init e820__update_table_kexec(void)
 613{
 614	e820__update_table(e820_table_kexec);
 615}
 616
 617#define MAX_GAP_END 0x100000000ull
 618
 619/*
 620 * Search for a gap in the E820 memory space from 0 to MAX_GAP_END (4GB).
 621 */
 622static int __init e820_search_gap(unsigned long *gapstart, unsigned long *gapsize)
 623{
 624	unsigned long long last = MAX_GAP_END;
 625	int i = e820_table->nr_entries;
 626	int found = 0;
 627
 628	while (--i >= 0) {
 629		unsigned long long start = e820_table->entries[i].addr;
 630		unsigned long long end = start + e820_table->entries[i].size;
 631
 632		/*
 633		 * Since "last" is at most 4GB, we know we'll
 634		 * fit in 32 bits if this condition is true:
 635		 */
 636		if (last > end) {
 637			unsigned long gap = last - end;
 638
 639			if (gap >= *gapsize) {
 640				*gapsize = gap;
 641				*gapstart = end;
 642				found = 1;
 643			}
 644		}
 645		if (start < last)
 646			last = start;
 647	}
 648	return found;
 649}
 650
 651/*
 652 * Search for the biggest gap in the low 32 bits of the E820
 653 * memory space. We pass this space to the PCI subsystem, so
 654 * that it can assign MMIO resources for hotplug or
 655 * unconfigured devices in.
 656 *
 657 * Hopefully the BIOS let enough space left.
 658 */
 659__init void e820__setup_pci_gap(void)
 660{
 661	unsigned long gapstart, gapsize;
 662	int found;
 663
 664	gapsize = 0x400000;
 665	found  = e820_search_gap(&gapstart, &gapsize);
 666
 667	if (!found) {
 668#ifdef CONFIG_X86_64
 669		gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
 670		pr_err("Cannot find an available gap in the 32-bit address range\n");
 671		pr_err("PCI devices with unassigned 32-bit BARs may not work!\n");
 
 672#else
 673		gapstart = 0x10000000;
 674#endif
 675	}
 676
 677	/*
 678	 * e820__reserve_resources_late() protects stolen RAM already:
 679	 */
 680	pci_mem_start = gapstart;
 681
 682	pr_info("[mem %#010lx-%#010lx] available for PCI devices\n",
 683		gapstart, gapstart + gapsize - 1);
 684}
 685
 686/*
 687 * Called late during init, in free_initmem().
 688 *
 689 * Initial e820_table and e820_table_kexec are largish __initdata arrays.
 690 *
 691 * Copy them to a (usually much smaller) dynamically allocated area that is
 692 * sized precisely after the number of e820 entries.
 693 *
 694 * This is done after we've performed all the fixes and tweaks to the tables.
 695 * All functions which modify them are __init functions, which won't exist
 696 * after free_initmem().
 697 */
 698__init void e820__reallocate_tables(void)
 699{
 700	struct e820_table *n;
 701	int size;
 702
 703	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table->nr_entries;
 704	n = kmemdup(e820_table, size, GFP_KERNEL);
 705	BUG_ON(!n);
 
 706	e820_table = n;
 707
 708	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_kexec->nr_entries;
 709	n = kmemdup(e820_table_kexec, size, GFP_KERNEL);
 710	BUG_ON(!n);
 
 711	e820_table_kexec = n;
 712
 713	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_firmware->nr_entries;
 714	n = kmemdup(e820_table_firmware, size, GFP_KERNEL);
 715	BUG_ON(!n);
 
 716	e820_table_firmware = n;
 717}
 718
 719/*
 720 * Because of the small fixed size of struct boot_params, only the first
 721 * 128 E820 memory entries are passed to the kernel via boot_params.e820_table,
 722 * the remaining (if any) entries are passed via the SETUP_E820_EXT node of
 723 * struct setup_data, which is parsed here.
 724 */
 725void __init e820__memory_setup_extended(u64 phys_addr, u32 data_len)
 726{
 727	int entries;
 728	struct boot_e820_entry *extmap;
 729	struct setup_data *sdata;
 730
 731	sdata = early_memremap(phys_addr, data_len);
 732	entries = sdata->len / sizeof(*extmap);
 733	extmap = (struct boot_e820_entry *)(sdata->data);
 734
 735	__append_e820_table(extmap, entries);
 736	e820__update_table(e820_table);
 737
 738	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
 739	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
 740
 741	early_memunmap(sdata, data_len);
 742	pr_info("extended physical RAM map:\n");
 743	e820__print_table("extended");
 744}
 745
 746/*
 747 * Find the ranges of physical addresses that do not correspond to
 748 * E820 RAM areas and register the corresponding pages as 'nosave' for
 749 * hibernation (32-bit) or software suspend and suspend to RAM (64-bit).
 750 *
 751 * This function requires the E820 map to be sorted and without any
 752 * overlapping entries.
 753 */
 754void __init e820__register_nosave_regions(unsigned long limit_pfn)
 755{
 756	int i;
 757	unsigned long pfn = 0;
 758
 759	for (i = 0; i < e820_table->nr_entries; i++) {
 760		struct e820_entry *entry = &e820_table->entries[i];
 761
 762		if (pfn < PFN_UP(entry->addr))
 763			register_nosave_region(pfn, PFN_UP(entry->addr));
 764
 765		pfn = PFN_DOWN(entry->addr + entry->size);
 766
 767		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
 768			register_nosave_region(PFN_UP(entry->addr), pfn);
 769
 770		if (pfn >= limit_pfn)
 771			break;
 772	}
 773}
 774
 775#ifdef CONFIG_ACPI
 776/*
 777 * Register ACPI NVS memory regions, so that we can save/restore them during
 778 * hibernation and the subsequent resume:
 779 */
 780static int __init e820__register_nvs_regions(void)
 781{
 782	int i;
 783
 784	for (i = 0; i < e820_table->nr_entries; i++) {
 785		struct e820_entry *entry = &e820_table->entries[i];
 786
 787		if (entry->type == E820_TYPE_NVS)
 788			acpi_nvs_register(entry->addr, entry->size);
 789	}
 790
 791	return 0;
 792}
 793core_initcall(e820__register_nvs_regions);
 794#endif
 795
 796/*
 797 * Allocate the requested number of bytes with the requested alignment
 798 * and return (the physical address) to the caller. Also register this
 799 * range in the 'kexec' E820 table as a reserved range.
 800 *
 801 * This allows kexec to fake a new mptable, as if it came from the real
 802 * system.
 803 */
 804u64 __init e820__memblock_alloc_reserved(u64 size, u64 align)
 805{
 806	u64 addr;
 807
 808	addr = memblock_phys_alloc(size, align);
 809	if (addr) {
 810		e820__range_update_table(e820_table_kexec, addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED);
 811		pr_info("update e820_table_kexec for e820__memblock_alloc_reserved()\n");
 812		e820__update_table_kexec();
 813	}
 814
 815	return addr;
 816}
 817
 818#ifdef CONFIG_X86_32
 819# ifdef CONFIG_X86_PAE
 820#  define MAX_ARCH_PFN		(1ULL<<(36-PAGE_SHIFT))
 821# else
 822#  define MAX_ARCH_PFN		(1ULL<<(32-PAGE_SHIFT))
 823# endif
 824#else /* CONFIG_X86_32 */
 825# define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
 826#endif
 827
 828/*
 829 * Find the highest page frame number we have available
 830 */
 831static unsigned long __init e820__end_ram_pfn(unsigned long limit_pfn)
 832{
 833	int i;
 834	unsigned long last_pfn = 0;
 835	unsigned long max_arch_pfn = MAX_ARCH_PFN;
 836
 837	for (i = 0; i < e820_table->nr_entries; i++) {
 838		struct e820_entry *entry = &e820_table->entries[i];
 839		unsigned long start_pfn;
 840		unsigned long end_pfn;
 841
 842		if (entry->type != E820_TYPE_RAM &&
 843		    entry->type != E820_TYPE_ACPI)
 844			continue;
 845
 846		start_pfn = entry->addr >> PAGE_SHIFT;
 847		end_pfn = (entry->addr + entry->size) >> PAGE_SHIFT;
 848
 849		if (start_pfn >= limit_pfn)
 850			continue;
 851		if (end_pfn > limit_pfn) {
 852			last_pfn = limit_pfn;
 853			break;
 854		}
 855		if (end_pfn > last_pfn)
 856			last_pfn = end_pfn;
 857	}
 858
 859	if (last_pfn > max_arch_pfn)
 860		last_pfn = max_arch_pfn;
 861
 862	pr_info("last_pfn = %#lx max_arch_pfn = %#lx\n",
 863		last_pfn, max_arch_pfn);
 864	return last_pfn;
 865}
 866
 867unsigned long __init e820__end_of_ram_pfn(void)
 868{
 869	return e820__end_ram_pfn(MAX_ARCH_PFN);
 870}
 871
 872unsigned long __init e820__end_of_low_ram_pfn(void)
 873{
 874	return e820__end_ram_pfn(1UL << (32 - PAGE_SHIFT));
 875}
 876
 877static void __init early_panic(char *msg)
 878{
 879	early_printk(msg);
 880	panic(msg);
 881}
 882
 883static int userdef __initdata;
 884
 885/* The "mem=nopentium" boot option disables 4MB page tables on 32-bit kernels: */
 886static int __init parse_memopt(char *p)
 887{
 888	u64 mem_size;
 889
 890	if (!p)
 891		return -EINVAL;
 892
 893	if (!strcmp(p, "nopentium")) {
 894#ifdef CONFIG_X86_32
 895		setup_clear_cpu_cap(X86_FEATURE_PSE);
 896		return 0;
 897#else
 898		pr_warn("mem=nopentium ignored! (only supported on x86_32)\n");
 899		return -EINVAL;
 900#endif
 901	}
 902
 903	userdef = 1;
 904	mem_size = memparse(p, &p);
 905
 906	/* Don't remove all memory when getting "mem={invalid}" parameter: */
 907	if (mem_size == 0)
 908		return -EINVAL;
 909
 910	e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
 911
 912#ifdef CONFIG_MEMORY_HOTPLUG
 913	max_mem_size = mem_size;
 914#endif
 915
 916	return 0;
 917}
 918early_param("mem", parse_memopt);
 919
 920static int __init parse_memmap_one(char *p)
 921{
 922	char *oldp;
 923	u64 start_at, mem_size;
 924
 925	if (!p)
 926		return -EINVAL;
 927
 928	if (!strncmp(p, "exactmap", 8)) {
 
 
 
 
 
 
 
 
 929		e820_table->nr_entries = 0;
 930		userdef = 1;
 931		return 0;
 932	}
 933
 934	oldp = p;
 935	mem_size = memparse(p, &p);
 936	if (p == oldp)
 937		return -EINVAL;
 938
 939	userdef = 1;
 940	if (*p == '@') {
 941		start_at = memparse(p+1, &p);
 942		e820__range_add(start_at, mem_size, E820_TYPE_RAM);
 943	} else if (*p == '#') {
 944		start_at = memparse(p+1, &p);
 945		e820__range_add(start_at, mem_size, E820_TYPE_ACPI);
 946	} else if (*p == '$') {
 947		start_at = memparse(p+1, &p);
 948		e820__range_add(start_at, mem_size, E820_TYPE_RESERVED);
 949	} else if (*p == '!') {
 950		start_at = memparse(p+1, &p);
 951		e820__range_add(start_at, mem_size, E820_TYPE_PRAM);
 952	} else if (*p == '%') {
 953		enum e820_type from = 0, to = 0;
 954
 955		start_at = memparse(p + 1, &p);
 956		if (*p == '-')
 957			from = simple_strtoull(p + 1, &p, 0);
 958		if (*p == '+')
 959			to = simple_strtoull(p + 1, &p, 0);
 960		if (*p != '\0')
 961			return -EINVAL;
 962		if (from && to)
 963			e820__range_update(start_at, mem_size, from, to);
 964		else if (to)
 965			e820__range_add(start_at, mem_size, to);
 966		else if (from)
 967			e820__range_remove(start_at, mem_size, from, 1);
 968		else
 969			e820__range_remove(start_at, mem_size, 0, 0);
 970	} else {
 971		e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
 972	}
 973
 974	return *p == '\0' ? 0 : -EINVAL;
 975}
 976
 977static int __init parse_memmap_opt(char *str)
 978{
 979	while (str) {
 980		char *k = strchr(str, ',');
 981
 982		if (k)
 983			*k++ = 0;
 984
 985		parse_memmap_one(str);
 986		str = k;
 987	}
 988
 989	return 0;
 990}
 991early_param("memmap", parse_memmap_opt);
 992
 993/*
 994 * Reserve all entries from the bootloader's extensible data nodes list,
 995 * because if present we are going to use it later on to fetch e820
 996 * entries from it:
 997 */
 998void __init e820__reserve_setup_data(void)
 999{
1000	struct setup_indirect *indirect;
1001	struct setup_data *data;
1002	u64 pa_data, pa_next;
1003	u32 len;
1004
1005	pa_data = boot_params.hdr.setup_data;
1006	if (!pa_data)
1007		return;
1008
1009	while (pa_data) {
1010		data = early_memremap(pa_data, sizeof(*data));
1011		if (!data) {
1012			pr_warn("e820: failed to memremap setup_data entry\n");
1013			return;
1014		}
1015
1016		len = sizeof(*data);
1017		pa_next = data->next;
1018
1019		e820__range_update(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
1020
1021		if (data->type == SETUP_INDIRECT) {
1022			len += data->len;
1023			early_memunmap(data, sizeof(*data));
1024			data = early_memremap(pa_data, len);
1025			if (!data) {
1026				pr_warn("e820: failed to memremap indirect setup_data\n");
1027				return;
1028			}
1029
1030			indirect = (struct setup_indirect *)data->data;
1031
1032			if (indirect->type != SETUP_INDIRECT)
1033				e820__range_update(indirect->addr, indirect->len,
1034						   E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
1035		}
1036
1037		pa_data = pa_next;
1038		early_memunmap(data, len);
1039	}
1040
1041	e820__update_table(e820_table);
 
1042
1043	pr_info("extended physical RAM map:\n");
1044	e820__print_table("reserve setup_data");
1045}
1046
1047/*
1048 * Called after parse_early_param(), after early parameters (such as mem=)
1049 * have been processed, in which case we already have an E820 table filled in
1050 * via the parameter callback function(s), but it's not sorted and printed yet:
1051 */
1052void __init e820__finish_early_params(void)
1053{
1054	if (userdef) {
1055		if (e820__update_table(e820_table) < 0)
1056			early_panic("Invalid user supplied memory map");
1057
1058		pr_info("user-defined physical RAM map:\n");
1059		e820__print_table("user");
1060	}
1061}
1062
1063static const char *__init e820_type_to_string(struct e820_entry *entry)
1064{
1065	switch (entry->type) {
1066	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1067	case E820_TYPE_RAM:		return "System RAM";
1068	case E820_TYPE_ACPI:		return "ACPI Tables";
1069	case E820_TYPE_NVS:		return "ACPI Non-volatile Storage";
1070	case E820_TYPE_UNUSABLE:	return "Unusable memory";
1071	case E820_TYPE_PRAM:		return "Persistent Memory (legacy)";
1072	case E820_TYPE_PMEM:		return "Persistent Memory";
1073	case E820_TYPE_RESERVED:	return "Reserved";
1074	case E820_TYPE_SOFT_RESERVED:	return "Soft Reserved";
1075	default:			return "Unknown E820 type";
1076	}
1077}
1078
1079static unsigned long __init e820_type_to_iomem_type(struct e820_entry *entry)
1080{
1081	switch (entry->type) {
1082	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1083	case E820_TYPE_RAM:		return IORESOURCE_SYSTEM_RAM;
1084	case E820_TYPE_ACPI:		/* Fall-through: */
1085	case E820_TYPE_NVS:		/* Fall-through: */
1086	case E820_TYPE_UNUSABLE:	/* Fall-through: */
1087	case E820_TYPE_PRAM:		/* Fall-through: */
1088	case E820_TYPE_PMEM:		/* Fall-through: */
1089	case E820_TYPE_RESERVED:	/* Fall-through: */
1090	case E820_TYPE_SOFT_RESERVED:	/* Fall-through: */
1091	default:			return IORESOURCE_MEM;
1092	}
1093}
1094
1095static unsigned long __init e820_type_to_iores_desc(struct e820_entry *entry)
1096{
1097	switch (entry->type) {
1098	case E820_TYPE_ACPI:		return IORES_DESC_ACPI_TABLES;
1099	case E820_TYPE_NVS:		return IORES_DESC_ACPI_NV_STORAGE;
1100	case E820_TYPE_PMEM:		return IORES_DESC_PERSISTENT_MEMORY;
1101	case E820_TYPE_PRAM:		return IORES_DESC_PERSISTENT_MEMORY_LEGACY;
1102	case E820_TYPE_RESERVED:	return IORES_DESC_RESERVED;
1103	case E820_TYPE_SOFT_RESERVED:	return IORES_DESC_SOFT_RESERVED;
1104	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1105	case E820_TYPE_RAM:		/* Fall-through: */
1106	case E820_TYPE_UNUSABLE:	/* Fall-through: */
 
1107	default:			return IORES_DESC_NONE;
1108	}
1109}
1110
1111static bool __init do_mark_busy(enum e820_type type, struct resource *res)
1112{
1113	/* this is the legacy bios/dos rom-shadow + mmio region */
1114	if (res->start < (1ULL<<20))
1115		return true;
1116
1117	/*
1118	 * Treat persistent memory and other special memory ranges like
1119	 * device memory, i.e. reserve it for exclusive use of a driver
1120	 */
1121	switch (type) {
1122	case E820_TYPE_RESERVED:
1123	case E820_TYPE_SOFT_RESERVED:
1124	case E820_TYPE_PRAM:
1125	case E820_TYPE_PMEM:
1126		return false;
1127	case E820_TYPE_RESERVED_KERN:
1128	case E820_TYPE_RAM:
1129	case E820_TYPE_ACPI:
1130	case E820_TYPE_NVS:
1131	case E820_TYPE_UNUSABLE:
1132	default:
1133		return true;
1134	}
1135}
1136
1137/*
1138 * Mark E820 reserved areas as busy for the resource manager:
1139 */
1140
1141static struct resource __initdata *e820_res;
1142
1143void __init e820__reserve_resources(void)
1144{
1145	int i;
1146	struct resource *res;
1147	u64 end;
1148
1149	res = memblock_alloc(sizeof(*res) * e820_table->nr_entries,
1150			     SMP_CACHE_BYTES);
1151	if (!res)
1152		panic("%s: Failed to allocate %zu bytes\n", __func__,
1153		      sizeof(*res) * e820_table->nr_entries);
1154	e820_res = res;
1155
1156	for (i = 0; i < e820_table->nr_entries; i++) {
1157		struct e820_entry *entry = e820_table->entries + i;
1158
1159		end = entry->addr + entry->size - 1;
1160		if (end != (resource_size_t)end) {
1161			res++;
1162			continue;
1163		}
1164		res->start = entry->addr;
1165		res->end   = end;
1166		res->name  = e820_type_to_string(entry);
1167		res->flags = e820_type_to_iomem_type(entry);
1168		res->desc  = e820_type_to_iores_desc(entry);
1169
1170		/*
1171		 * Don't register the region that could be conflicted with
1172		 * PCI device BAR resources and insert them later in
1173		 * pcibios_resource_survey():
1174		 */
1175		if (do_mark_busy(entry->type, res)) {
1176			res->flags |= IORESOURCE_BUSY;
1177			insert_resource(&iomem_resource, res);
1178		}
1179		res++;
1180	}
1181
1182	/* Expose the bootloader-provided memory layout to the sysfs. */
1183	for (i = 0; i < e820_table_firmware->nr_entries; i++) {
1184		struct e820_entry *entry = e820_table_firmware->entries + i;
1185
1186		firmware_map_add_early(entry->addr, entry->addr + entry->size, e820_type_to_string(entry));
1187	}
1188}
1189
1190/*
1191 * How much should we pad the end of RAM, depending on where it is?
1192 */
1193static unsigned long __init ram_alignment(resource_size_t pos)
1194{
1195	unsigned long mb = pos >> 20;
1196
1197	/* To 64kB in the first megabyte */
1198	if (!mb)
1199		return 64*1024;
1200
1201	/* To 1MB in the first 16MB */
1202	if (mb < 16)
1203		return 1024*1024;
1204
1205	/* To 64MB for anything above that */
1206	return 64*1024*1024;
1207}
1208
1209#define MAX_RESOURCE_SIZE ((resource_size_t)-1)
1210
1211void __init e820__reserve_resources_late(void)
1212{
1213	int i;
1214	struct resource *res;
1215
1216	res = e820_res;
1217	for (i = 0; i < e820_table->nr_entries; i++) {
1218		if (!res->parent && res->end)
1219			insert_resource_expand_to_fit(&iomem_resource, res);
1220		res++;
1221	}
1222
1223	/*
1224	 * Try to bump up RAM regions to reasonable boundaries, to
1225	 * avoid stolen RAM:
1226	 */
1227	for (i = 0; i < e820_table->nr_entries; i++) {
1228		struct e820_entry *entry = &e820_table->entries[i];
1229		u64 start, end;
1230
1231		if (entry->type != E820_TYPE_RAM)
1232			continue;
1233
1234		start = entry->addr + entry->size;
1235		end = round_up(start, ram_alignment(start)) - 1;
1236		if (end > MAX_RESOURCE_SIZE)
1237			end = MAX_RESOURCE_SIZE;
1238		if (start >= end)
1239			continue;
1240
1241		printk(KERN_DEBUG "e820: reserve RAM buffer [mem %#010llx-%#010llx]\n", start, end);
1242		reserve_region_with_split(&iomem_resource, start, end, "RAM buffer");
1243	}
1244}
1245
1246/*
1247 * Pass the firmware (bootloader) E820 map to the kernel and process it:
1248 */
1249char *__init e820__memory_setup_default(void)
1250{
1251	char *who = "BIOS-e820";
1252
1253	/*
1254	 * Try to copy the BIOS-supplied E820-map.
1255	 *
1256	 * Otherwise fake a memory map; one section from 0k->640k,
1257	 * the next section from 1mb->appropriate_mem_k
1258	 */
1259	if (append_e820_table(boot_params.e820_table, boot_params.e820_entries) < 0) {
1260		u64 mem_size;
1261
1262		/* Compare results from other methods and take the one that gives more RAM: */
1263		if (boot_params.alt_mem_k < boot_params.screen_info.ext_mem_k) {
1264			mem_size = boot_params.screen_info.ext_mem_k;
1265			who = "BIOS-88";
1266		} else {
1267			mem_size = boot_params.alt_mem_k;
1268			who = "BIOS-e801";
1269		}
1270
1271		e820_table->nr_entries = 0;
1272		e820__range_add(0, LOWMEMSIZE(), E820_TYPE_RAM);
1273		e820__range_add(HIGH_MEMORY, mem_size << 10, E820_TYPE_RAM);
1274	}
1275
1276	/* We just appended a lot of ranges, sanitize the table: */
1277	e820__update_table(e820_table);
1278
1279	return who;
1280}
1281
1282/*
1283 * Calls e820__memory_setup_default() in essence to pick up the firmware/bootloader
1284 * E820 map - with an optional platform quirk available for virtual platforms
1285 * to override this method of boot environment processing:
1286 */
1287void __init e820__memory_setup(void)
1288{
1289	char *who;
1290
1291	/* This is a firmware interface ABI - make sure we don't break it: */
1292	BUILD_BUG_ON(sizeof(struct boot_e820_entry) != 20);
1293
1294	who = x86_init.resources.memory_setup();
1295
1296	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
1297	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
1298
1299	pr_info("BIOS-provided physical RAM map:\n");
1300	e820__print_table(who);
1301}
1302
1303void __init e820__memblock_setup(void)
1304{
1305	int i;
1306	u64 end;
1307
1308	/*
1309	 * The bootstrap memblock region count maximum is 128 entries
1310	 * (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries
1311	 * than that - so allow memblock resizing.
1312	 *
1313	 * This is safe, because this call happens pretty late during x86 setup,
1314	 * so we know about reserved memory regions already. (This is important
1315	 * so that memblock resizing does no stomp over reserved areas.)
1316	 */
1317	memblock_allow_resize();
1318
1319	for (i = 0; i < e820_table->nr_entries; i++) {
1320		struct e820_entry *entry = &e820_table->entries[i];
1321
1322		end = entry->addr + entry->size;
1323		if (end != (resource_size_t)end)
1324			continue;
1325
1326		if (entry->type == E820_TYPE_SOFT_RESERVED)
1327			memblock_reserve(entry->addr, entry->size);
1328
1329		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
1330			continue;
1331
1332		memblock_add(entry->addr, entry->size);
1333	}
1334
1335	/* Throw away partial pages: */
1336	memblock_trim_memory(PAGE_SIZE);
1337
1338	memblock_dump_all();
1339}