Linux Audio

Check our new training course

Linux BSP development engineering services

Need help to port Linux and bootloaders to your hardware?
Loading...
v4.17
   1/*
   2 * Low level x86 E820 memory map handling functions.
 
   3 *
   4 * The firmware and bootloader passes us the "E820 table", which is the primary
   5 * physical memory layout description available about x86 systems.
 
 
   6 *
   7 * The kernel takes the E820 memory layout and optionally modifies it with
   8 * quirks and other tweaks, and feeds that into the generic Linux memory
   9 * allocation code routines via a platform independent interface (memblock, etc.).
  10 */
 
 
 
  11#include <linux/crash_dump.h>
 
  12#include <linux/bootmem.h>
 
  13#include <linux/suspend.h>
  14#include <linux/acpi.h>
  15#include <linux/firmware-map.h>
  16#include <linux/memblock.h>
  17#include <linux/sort.h>
  18
  19#include <asm/e820/api.h>
 
  20#include <asm/setup.h>
 
  21
  22/*
  23 * We organize the E820 table into three main data structures:
  24 *
  25 * - 'e820_table_firmware': the original firmware version passed to us by the
  26 *   bootloader - not modified by the kernel. It is composed of two parts:
  27 *   the first 128 E820 memory entries in boot_params.e820_table and the remaining
  28 *   (if any) entries of the SETUP_E820_EXT nodes. We use this to:
  29 *
  30 *       - inform the user about the firmware's notion of memory layout
  31 *         via /sys/firmware/memmap
  32 *
  33 *       - the hibernation code uses it to generate a kernel-independent MD5
  34 *         fingerprint of the physical memory layout of a system.
  35 *
  36 * - 'e820_table_kexec': a slightly modified (by the kernel) firmware version
  37 *   passed to us by the bootloader - the major difference between
  38 *   e820_table_firmware[] and this one is that, the latter marks the setup_data
  39 *   list created by the EFI boot stub as reserved, so that kexec can reuse the
  40 *   setup_data information in the second kernel. Besides, e820_table_kexec[]
  41 *   might also be modified by the kexec itself to fake a mptable.
  42 *   We use this to:
  43 *
  44 *       - kexec, which is a bootloader in disguise, uses the original E820
  45 *         layout to pass to the kexec-ed kernel. This way the original kernel
  46 *         can have a restricted E820 map while the kexec()-ed kexec-kernel
  47 *         can have access to full memory - etc.
  48 *
  49 * - 'e820_table': this is the main E820 table that is massaged by the
  50 *   low level x86 platform code, or modified by boot parameters, before
  51 *   passed on to higher level MM layers.
  52 *
  53 * Once the E820 map has been converted to the standard Linux memory layout
  54 * information its role stops - modifying it has no effect and does not get
  55 * re-propagated. So itsmain role is a temporary bootstrap storage of firmware
  56 * specific memory layout data during early bootup.
  57 */
  58static struct e820_table e820_table_init		__initdata;
  59static struct e820_table e820_table_kexec_init		__initdata;
  60static struct e820_table e820_table_firmware_init	__initdata;
  61
  62struct e820_table *e820_table __refdata			= &e820_table_init;
  63struct e820_table *e820_table_kexec __refdata		= &e820_table_kexec_init;
  64struct e820_table *e820_table_firmware __refdata	= &e820_table_firmware_init;
  65
  66/* For PCI or other memory-mapped resources */
  67unsigned long pci_mem_start = 0xaeedbabe;
  68#ifdef CONFIG_PCI
  69EXPORT_SYMBOL(pci_mem_start);
  70#endif
  71
  72/*
  73 * This function checks if any part of the range <start,end> is mapped
  74 * with type.
  75 */
  76bool e820__mapped_any(u64 start, u64 end, enum e820_type type)
 
  77{
  78	int i;
  79
  80	for (i = 0; i < e820_table->nr_entries; i++) {
  81		struct e820_entry *entry = &e820_table->entries[i];
  82
  83		if (type && entry->type != type)
  84			continue;
  85		if (entry->addr >= end || entry->addr + entry->size <= start)
  86			continue;
  87		return 1;
  88	}
  89	return 0;
  90}
  91EXPORT_SYMBOL_GPL(e820__mapped_any);
  92
  93/*
  94 * This function checks if the entire <start,end> range is mapped with 'type'.
  95 *
  96 * Note: this function only works correctly once the E820 table is sorted and
  97 * not-overlapping (at least for the range specified), which is the case normally.
  98 */
  99static struct e820_entry *__e820__mapped_all(u64 start, u64 end,
 100					     enum e820_type type)
 101{
 102	int i;
 103
 104	for (i = 0; i < e820_table->nr_entries; i++) {
 105		struct e820_entry *entry = &e820_table->entries[i];
 106
 107		if (type && entry->type != type)
 108			continue;
 109
 110		/* Is the region (part) in overlap with the current region? */
 111		if (entry->addr >= end || entry->addr + entry->size <= start)
 112			continue;
 113
 114		/*
 115		 * If the region is at the beginning of <start,end> we move
 116		 * 'start' to the end of the region since it's ok until there
 117		 */
 118		if (entry->addr <= start)
 119			start = entry->addr + entry->size;
 120
 121		/*
 122		 * If 'start' is now at or beyond 'end', we're done, full
 123		 * coverage of the desired range exists:
 124		 */
 125		if (start >= end)
 126			return entry;
 127	}
 128
 129	return NULL;
 130}
 131
 132/*
 133 * This function checks if the entire range <start,end> is mapped with type.
 134 */
 135bool __init e820__mapped_all(u64 start, u64 end, enum e820_type type)
 136{
 137	return __e820__mapped_all(start, end, type);
 138}
 139
 140/*
 141 * This function returns the type associated with the range <start,end>.
 142 */
 143int e820__get_entry_type(u64 start, u64 end)
 144{
 145	struct e820_entry *entry = __e820__mapped_all(start, end, 0);
 146
 147	return entry ? entry->type : -EINVAL;
 148}
 149
 150/*
 151 * Add a memory region to the kernel E820 map.
 152 */
 153static void __init __e820__range_add(struct e820_table *table, u64 start, u64 size, enum e820_type type)
 
 154{
 155	int x = table->nr_entries;
 156
 157	if (x >= ARRAY_SIZE(table->entries)) {
 158		pr_err("e820: too many entries; ignoring [mem %#010llx-%#010llx]\n", start, start + size - 1);
 
 
 159		return;
 160	}
 161
 162	table->entries[x].addr = start;
 163	table->entries[x].size = size;
 164	table->entries[x].type = type;
 165	table->nr_entries++;
 166}
 167
 168void __init e820__range_add(u64 start, u64 size, enum e820_type type)
 169{
 170	__e820__range_add(e820_table, start, size, type);
 171}
 172
 173static void __init e820_print_type(enum e820_type type)
 174{
 175	switch (type) {
 176	case E820_TYPE_RAM:		/* Fall through: */
 177	case E820_TYPE_RESERVED_KERN:	pr_cont("usable");			break;
 178	case E820_TYPE_RESERVED:	pr_cont("reserved");			break;
 179	case E820_TYPE_ACPI:		pr_cont("ACPI data");			break;
 180	case E820_TYPE_NVS:		pr_cont("ACPI NVS");			break;
 181	case E820_TYPE_UNUSABLE:	pr_cont("unusable");			break;
 182	case E820_TYPE_PMEM:		/* Fall through: */
 183	case E820_TYPE_PRAM:		pr_cont("persistent (type %u)", type);	break;
 184	default:			pr_cont("type %u", type);		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 185	}
 186}
 187
 188void __init e820__print_table(char *who)
 189{
 190	int i;
 191
 192	for (i = 0; i < e820_table->nr_entries; i++) {
 193		pr_info("%s: [mem %#018Lx-%#018Lx] ", who,
 194		       e820_table->entries[i].addr,
 195		       e820_table->entries[i].addr + e820_table->entries[i].size - 1);
 196
 197		e820_print_type(e820_table->entries[i].type);
 198		pr_cont("\n");
 199	}
 200}
 201
 202/*
 203 * Sanitize an E820 map.
 204 *
 205 * Some E820 layouts include overlapping entries. The following
 206 * replaces the original E820 map with a new one, removing overlaps,
 207 * and resolving conflicting memory types in favor of highest
 208 * numbered type.
 209 *
 210 * The input parameter 'entries' points to an array of 'struct
 211 * e820_entry' which on entry has elements in the range [0, *nr_entries)
 212 * valid, and which has space for up to max_nr_entries entries.
 213 * On return, the resulting sanitized E820 map entries will be in
 214 * overwritten in the same location, starting at 'entries'.
 
 
 
 
 
 215 *
 216 * The integer pointed to by nr_entries must be valid on entry (the
 217 * current number of valid entries located at 'entries'). If the
 218 * sanitizing succeeds the *nr_entries will be updated with the new
 219 * number of valid entries (something no more than max_nr_entries).
 220 *
 221 * The return value from e820__update_table() is zero if it
 222 * successfully 'sanitized' the map entries passed in, and is -1
 223 * if it did nothing, which can happen if either of (1) it was
 224 * only passed one map entry, or (2) any of the input map entries
 225 * were invalid (start + size < start, meaning that the size was
 226 * so big the described memory range wrapped around through zero.)
 227 *
 228 *	Visually we're performing the following
 229 *	(1,2,3,4 = memory types)...
 230 *
 231 *	Sample memory map (w/overlaps):
 232 *	   ____22__________________
 233 *	   ______________________4_
 234 *	   ____1111________________
 235 *	   _44_____________________
 236 *	   11111111________________
 237 *	   ____________________33__
 238 *	   ___________44___________
 239 *	   __________33333_________
 240 *	   ______________22________
 241 *	   ___________________2222_
 242 *	   _________111111111______
 243 *	   _____________________11_
 244 *	   _________________4______
 245 *
 246 *	Sanitized equivalent (no overlap):
 247 *	   1_______________________
 248 *	   _44_____________________
 249 *	   ___1____________________
 250 *	   ____22__________________
 251 *	   ______11________________
 252 *	   _________1______________
 253 *	   __________3_____________
 254 *	   ___________44___________
 255 *	   _____________33_________
 256 *	   _______________2________
 257 *	   ________________1_______
 258 *	   _________________4______
 259 *	   ___________________2____
 260 *	   ____________________33__
 261 *	   ______________________4_
 262 */
 263struct change_member {
 264	/* Pointer to the original entry: */
 265	struct e820_entry	*entry;
 266	/* Address for this change point: */
 267	unsigned long long	addr;
 268};
 269
 270static struct change_member	change_point_list[2*E820_MAX_ENTRIES]	__initdata;
 271static struct change_member	*change_point[2*E820_MAX_ENTRIES]	__initdata;
 272static struct e820_entry	*overlap_list[E820_MAX_ENTRIES]		__initdata;
 273static struct e820_entry	new_entries[E820_MAX_ENTRIES]		__initdata;
 274
 275static int __init cpcompare(const void *a, const void *b)
 276{
 277	struct change_member * const *app = a, * const *bpp = b;
 278	const struct change_member *ap = *app, *bp = *bpp;
 279
 280	/*
 281	 * Inputs are pointers to two elements of change_point[].  If their
 282	 * addresses are not equal, their difference dominates.  If the addresses
 283	 * are equal, then consider one that represents the end of its region
 284	 * to be greater than one that does not.
 285	 */
 286	if (ap->addr != bp->addr)
 287		return ap->addr > bp->addr ? 1 : -1;
 288
 289	return (ap->addr != ap->entry->addr) - (bp->addr != bp->entry->addr);
 290}
 291
 292int __init e820__update_table(struct e820_table *table)
 
 293{
 294	struct e820_entry *entries = table->entries;
 295	u32 max_nr_entries = ARRAY_SIZE(table->entries);
 296	enum e820_type current_type, last_type;
 
 
 297	unsigned long long last_addr;
 298	u32 new_nr_entries, overlap_entries;
 299	u32 i, chg_idx, chg_nr;
 
 
 
 300
 301	/* If there's only one memory region, don't bother: */
 302	if (table->nr_entries < 2)
 303		return -1;
 304
 305	BUG_ON(table->nr_entries > max_nr_entries);
 
 306
 307	/* Bail out if we find any unreasonable addresses in the map: */
 308	for (i = 0; i < table->nr_entries; i++) {
 309		if (entries[i].addr + entries[i].size < entries[i].addr)
 310			return -1;
 311	}
 312
 313	/* Create pointers for initial change-point information (for sorting): */
 314	for (i = 0; i < 2 * table->nr_entries; i++)
 315		change_point[i] = &change_point_list[i];
 316
 317	/*
 318	 * Record all known change-points (starting and ending addresses),
 319	 * omitting empty memory regions:
 320	 */
 321	chg_idx = 0;
 322	for (i = 0; i < table->nr_entries; i++)	{
 323		if (entries[i].size != 0) {
 324			change_point[chg_idx]->addr	= entries[i].addr;
 325			change_point[chg_idx++]->entry	= &entries[i];
 326			change_point[chg_idx]->addr	= entries[i].addr + entries[i].size;
 327			change_point[chg_idx++]->entry	= &entries[i];
 328		}
 329	}
 330	chg_nr = chg_idx;
 331
 332	/* Sort change-point list by memory addresses (low -> high): */
 333	sort(change_point, chg_nr, sizeof(*change_point), cpcompare, NULL);
 334
 335	/* Create a new memory map, removing overlaps: */
 336	overlap_entries = 0;	 /* Number of entries in the overlap table */
 337	new_nr_entries = 0;	 /* Index for creating new map entries */
 338	last_type = 0;		 /* Start with undefined memory type */
 339	last_addr = 0;		 /* Start with 0 as last starting address */
 340
 341	/* Loop through change-points, determining effect on the new map: */
 342	for (chg_idx = 0; chg_idx < chg_nr; chg_idx++) {
 343		/* Keep track of all overlapping entries */
 344		if (change_point[chg_idx]->addr == change_point[chg_idx]->entry->addr) {
 345			/* Add map entry to overlap list (> 1 entry implies an overlap) */
 346			overlap_list[overlap_entries++] = change_point[chg_idx]->entry;
 
 
 
 
 
 347		} else {
 348			/* Remove entry from list (order independent, so swap with last): */
 
 
 
 349			for (i = 0; i < overlap_entries; i++) {
 350				if (overlap_list[i] == change_point[chg_idx]->entry)
 351					overlap_list[i] = overlap_list[overlap_entries-1];
 
 
 352			}
 353			overlap_entries--;
 354		}
 355		/*
 356		 * If there are overlapping entries, decide which
 357		 * "type" to use (larger value takes precedence --
 358		 * 1=usable, 2,3,4,4+=unusable)
 359		 */
 360		current_type = 0;
 361		for (i = 0; i < overlap_entries; i++) {
 362			if (overlap_list[i]->type > current_type)
 363				current_type = overlap_list[i]->type;
 364		}
 365
 366		/* Continue building up new map based on this information: */
 367		if (current_type != last_type || current_type == E820_TYPE_PRAM) {
 
 368			if (last_type != 0)	 {
 369				new_entries[new_nr_entries].size = change_point[chg_idx]->addr - last_addr;
 370				/* Move forward only if the new size was non-zero: */
 371				if (new_entries[new_nr_entries].size != 0)
 372					/* No more space left for new entries? */
 373					if (++new_nr_entries >= max_nr_entries)
 
 
 
 
 
 
 
 374						break;
 375			}
 376			if (current_type != 0)	{
 377				new_entries[new_nr_entries].addr = change_point[chg_idx]->addr;
 378				new_entries[new_nr_entries].type = current_type;
 379				last_addr = change_point[chg_idx]->addr;
 
 380			}
 381			last_type = current_type;
 382		}
 383	}
 
 
 384
 385	/* Copy the new entries into the original location: */
 386	memcpy(entries, new_entries, new_nr_entries*sizeof(*entries));
 387	table->nr_entries = new_nr_entries;
 388
 389	return 0;
 390}
 391
 392static int __init __append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
 393{
 394	struct boot_e820_entry *entry = entries;
 395
 396	while (nr_entries) {
 397		u64 start = entry->addr;
 398		u64 size = entry->size;
 399		u64 end = start + size - 1;
 400		u32 type = entry->type;
 401
 402		/* Ignore the entry on 64-bit overflow: */
 403		if (start > end && likely(size))
 404			return -1;
 405
 406		e820__range_add(start, size, type);
 407
 408		entry++;
 409		nr_entries--;
 410	}
 411	return 0;
 412}
 413
 414/*
 415 * Copy the BIOS E820 map into a safe place.
 416 *
 417 * Sanity-check it while we're at it..
 418 *
 419 * If we're lucky and live on a modern system, the setup code
 420 * will have given us a memory map that we can use to properly
 421 * set up memory.  If we aren't, we'll fake a memory map.
 422 */
 423static int __init append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
 424{
 425	/* Only one memory region (or negative)? Ignore it */
 426	if (nr_entries < 2)
 427		return -1;
 428
 429	return __append_e820_table(entries, nr_entries);
 430}
 431
 432static u64 __init
 433__e820__range_update(struct e820_table *table, u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
 
 434{
 435	u64 end;
 436	unsigned int i;
 437	u64 real_updated_size = 0;
 438
 439	BUG_ON(old_type == new_type);
 440
 441	if (size > (ULLONG_MAX - start))
 442		size = ULLONG_MAX - start;
 443
 444	end = start + size;
 445	printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] ", start, end - 1);
 
 446	e820_print_type(old_type);
 447	pr_cont(" ==> ");
 448	e820_print_type(new_type);
 449	pr_cont("\n");
 450
 451	for (i = 0; i < table->nr_entries; i++) {
 452		struct e820_entry *entry = &table->entries[i];
 453		u64 final_start, final_end;
 454		u64 entry_end;
 455
 456		if (entry->type != old_type)
 457			continue;
 458
 459		entry_end = entry->addr + entry->size;
 460
 461		/* Completely covered by new range? */
 462		if (entry->addr >= start && entry_end <= end) {
 463			entry->type = new_type;
 464			real_updated_size += entry->size;
 465			continue;
 466		}
 467
 468		/* New range is completely covered? */
 469		if (entry->addr < start && entry_end > end) {
 470			__e820__range_add(table, start, size, new_type);
 471			__e820__range_add(table, end, entry_end - end, entry->type);
 472			entry->size = start - entry->addr;
 473			real_updated_size += size;
 474			continue;
 475		}
 476
 477		/* Partially covered: */
 478		final_start = max(start, entry->addr);
 479		final_end = min(end, entry_end);
 480		if (final_start >= final_end)
 481			continue;
 482
 483		__e820__range_add(table, final_start, final_end - final_start, new_type);
 
 484
 485		real_updated_size += final_end - final_start;
 486
 487		/*
 488		 * Left range could be head or tail, so need to update
 489		 * its size first:
 490		 */
 491		entry->size -= final_end - final_start;
 492		if (entry->addr < final_start)
 493			continue;
 494
 495		entry->addr = final_end;
 496	}
 497	return real_updated_size;
 498}
 499
 500u64 __init e820__range_update(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
 
 501{
 502	return __e820__range_update(e820_table, start, size, old_type, new_type);
 503}
 504
 505static u64 __init e820__range_update_kexec(u64 start, u64 size, enum e820_type old_type, enum e820_type  new_type)
 
 506{
 507	return __e820__range_update(e820_table_kexec, start, size, old_type, new_type);
 
 508}
 509
 510/* Remove a range of memory from the E820 table: */
 511u64 __init e820__range_remove(u64 start, u64 size, enum e820_type old_type, bool check_type)
 
 512{
 513	int i;
 514	u64 end;
 515	u64 real_removed_size = 0;
 516
 517	if (size > (ULLONG_MAX - start))
 518		size = ULLONG_MAX - start;
 519
 520	end = start + size;
 521	printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] ", start, end - 1);
 522	if (check_type)
 
 523		e820_print_type(old_type);
 524	pr_cont("\n");
 525
 526	for (i = 0; i < e820_table->nr_entries; i++) {
 527		struct e820_entry *entry = &e820_table->entries[i];
 528		u64 final_start, final_end;
 529		u64 entry_end;
 530
 531		if (check_type && entry->type != old_type)
 532			continue;
 533
 534		entry_end = entry->addr + entry->size;
 535
 536		/* Completely covered? */
 537		if (entry->addr >= start && entry_end <= end) {
 538			real_removed_size += entry->size;
 539			memset(entry, 0, sizeof(*entry));
 540			continue;
 541		}
 542
 543		/* Is the new range completely covered? */
 544		if (entry->addr < start && entry_end > end) {
 545			e820__range_add(end, entry_end - end, entry->type);
 546			entry->size = start - entry->addr;
 547			real_removed_size += size;
 548			continue;
 549		}
 550
 551		/* Partially covered: */
 552		final_start = max(start, entry->addr);
 553		final_end = min(end, entry_end);
 554		if (final_start >= final_end)
 555			continue;
 556
 557		real_removed_size += final_end - final_start;
 558
 559		/*
 560		 * Left range could be head or tail, so need to update
 561		 * the size first:
 562		 */
 563		entry->size -= final_end - final_start;
 564		if (entry->addr < final_start)
 565			continue;
 566
 567		entry->addr = final_end;
 568	}
 569	return real_removed_size;
 570}
 571
 572void __init e820__update_table_print(void)
 573{
 574	if (e820__update_table(e820_table))
 575		return;
 576
 577	pr_info("e820: modified physical RAM map:\n");
 578	e820__print_table("modified");
 579}
 580
 581static void __init e820__update_table_kexec(void)
 582{
 583	e820__update_table(e820_table_kexec);
 
 584}
 585
 586#define MAX_GAP_END 0x100000000ull
 587
 588/*
 589 * Search for a gap in the E820 memory space from 0 to MAX_GAP_END (4GB).
 590 */
 591static int __init e820_search_gap(unsigned long *gapstart, unsigned long *gapsize)
 
 592{
 593	unsigned long long last = MAX_GAP_END;
 594	int i = e820_table->nr_entries;
 595	int found = 0;
 596
 
 
 597	while (--i >= 0) {
 598		unsigned long long start = e820_table->entries[i].addr;
 599		unsigned long long end = start + e820_table->entries[i].size;
 
 
 
 600
 601		/*
 602		 * Since "last" is at most 4GB, we know we'll
 603		 * fit in 32 bits if this condition is true:
 604		 */
 605		if (last > end) {
 606			unsigned long gap = last - end;
 607
 608			if (gap >= *gapsize) {
 609				*gapsize = gap;
 610				*gapstart = end;
 611				found = 1;
 612			}
 613		}
 614		if (start < last)
 615			last = start;
 616	}
 617	return found;
 618}
 619
 620/*
 621 * Search for the biggest gap in the low 32 bits of the E820
 622 * memory space. We pass this space to the PCI subsystem, so
 623 * that it can assign MMIO resources for hotplug or
 624 * unconfigured devices in.
 625 *
 626 * Hopefully the BIOS let enough space left.
 627 */
 628__init void e820__setup_pci_gap(void)
 629{
 630	unsigned long gapstart, gapsize;
 631	int found;
 632
 
 633	gapsize = 0x400000;
 634	found  = e820_search_gap(&gapstart, &gapsize);
 635
 636	if (!found) {
 637#ifdef CONFIG_X86_64
 
 638		gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
 639		pr_err(
 640			"e820: Cannot find an available gap in the 32-bit address range\n"
 641			"e820: PCI devices with unassigned 32-bit BARs may not work!\n");
 642#else
 643		gapstart = 0x10000000;
 644#endif
 645	}
 
 646
 647	/*
 648	 * e820__reserve_resources_late() protects stolen RAM already:
 649	 */
 650	pci_mem_start = gapstart;
 651
 652	pr_info("e820: [mem %#010lx-%#010lx] available for PCI devices\n", gapstart, gapstart + gapsize - 1);
 
 
 653}
 654
 655/*
 656 * Called late during init, in free_initmem().
 657 *
 658 * Initial e820_table and e820_table_kexec are largish __initdata arrays.
 659 *
 660 * Copy them to a (usually much smaller) dynamically allocated area that is
 661 * sized precisely after the number of e820 entries.
 662 *
 663 * This is done after we've performed all the fixes and tweaks to the tables.
 664 * All functions which modify them are __init functions, which won't exist
 665 * after free_initmem().
 666 */
 667__init void e820__reallocate_tables(void)
 668{
 669	struct e820_table *n;
 670	int size;
 671
 672	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table->nr_entries;
 673	n = kmalloc(size, GFP_KERNEL);
 674	BUG_ON(!n);
 675	memcpy(n, e820_table, size);
 676	e820_table = n;
 677
 678	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_kexec->nr_entries;
 679	n = kmalloc(size, GFP_KERNEL);
 680	BUG_ON(!n);
 681	memcpy(n, e820_table_kexec, size);
 682	e820_table_kexec = n;
 683
 684	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_firmware->nr_entries;
 685	n = kmalloc(size, GFP_KERNEL);
 686	BUG_ON(!n);
 687	memcpy(n, e820_table_firmware, size);
 688	e820_table_firmware = n;
 689}
 690
 691/*
 692 * Because of the small fixed size of struct boot_params, only the first
 693 * 128 E820 memory entries are passed to the kernel via boot_params.e820_table,
 694 * the remaining (if any) entries are passed via the SETUP_E820_EXT node of
 695 * struct setup_data, which is parsed here.
 696 */
 697void __init e820__memory_setup_extended(u64 phys_addr, u32 data_len)
 698{
 699	int entries;
 700	struct boot_e820_entry *extmap;
 701	struct setup_data *sdata;
 702
 703	sdata = early_memremap(phys_addr, data_len);
 704	entries = sdata->len / sizeof(*extmap);
 705	extmap = (struct boot_e820_entry *)(sdata->data);
 706
 707	__append_e820_table(extmap, entries);
 708	e820__update_table(e820_table);
 709
 710	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
 711	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
 712
 713	early_memunmap(sdata, data_len);
 714	pr_info("e820: extended physical RAM map:\n");
 715	e820__print_table("extended");
 716}
 717
 718/*
 
 
 719 * Find the ranges of physical addresses that do not correspond to
 720 * E820 RAM areas and register the corresponding pages as 'nosave' for
 721 * hibernation (32-bit) or software suspend and suspend to RAM (64-bit).
 722 *
 723 * This function requires the E820 map to be sorted and without any
 724 * overlapping entries.
 725 */
 726void __init e820__register_nosave_regions(unsigned long limit_pfn)
 727{
 728	int i;
 729	unsigned long pfn = 0;
 730
 731	for (i = 0; i < e820_table->nr_entries; i++) {
 732		struct e820_entry *entry = &e820_table->entries[i];
 733
 734		if (pfn < PFN_UP(entry->addr))
 735			register_nosave_region(pfn, PFN_UP(entry->addr));
 736
 737		pfn = PFN_DOWN(entry->addr + entry->size);
 738
 739		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
 740			register_nosave_region(PFN_UP(entry->addr), pfn);
 741
 742		if (pfn >= limit_pfn)
 743			break;
 744	}
 745}
 
 746
 747#ifdef CONFIG_ACPI
 748/*
 749 * Register ACPI NVS memory regions, so that we can save/restore them during
 750 * hibernation and the subsequent resume:
 751 */
 752static int __init e820__register_nvs_regions(void)
 753{
 754	int i;
 755
 756	for (i = 0; i < e820_table->nr_entries; i++) {
 757		struct e820_entry *entry = &e820_table->entries[i];
 758
 759		if (entry->type == E820_TYPE_NVS)
 760			acpi_nvs_register(entry->addr, entry->size);
 761	}
 762
 763	return 0;
 764}
 765core_initcall(e820__register_nvs_regions);
 766#endif
 767
 768/*
 769 * Allocate the requested number of bytes with the requsted alignment
 770 * and return (the physical address) to the caller. Also register this
 771 * range in the 'kexec' E820 table as a reserved range.
 772 *
 773 * This allows kexec to fake a new mptable, as if it came from the real
 774 * system.
 775 */
 776u64 __init e820__memblock_alloc_reserved(u64 size, u64 align)
 777{
 778	u64 addr;
 779
 780	addr = __memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
 781	if (addr) {
 782		e820__range_update_kexec(addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED);
 783		pr_info("e820: update e820_table_kexec for e820__memblock_alloc_reserved()\n");
 784		e820__update_table_kexec();
 785	}
 786
 787	return addr;
 788}
 789
 790#ifdef CONFIG_X86_32
 791# ifdef CONFIG_X86_PAE
 792#  define MAX_ARCH_PFN		(1ULL<<(36-PAGE_SHIFT))
 793# else
 794#  define MAX_ARCH_PFN		(1ULL<<(32-PAGE_SHIFT))
 795# endif
 796#else /* CONFIG_X86_32 */
 797# define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
 798#endif
 799
 800/*
 801 * Find the highest page frame number we have available
 802 */
 803static unsigned long __init e820_end_pfn(unsigned long limit_pfn, enum e820_type type)
 804{
 805	int i;
 806	unsigned long last_pfn = 0;
 807	unsigned long max_arch_pfn = MAX_ARCH_PFN;
 808
 809	for (i = 0; i < e820_table->nr_entries; i++) {
 810		struct e820_entry *entry = &e820_table->entries[i];
 811		unsigned long start_pfn;
 812		unsigned long end_pfn;
 813
 814		if (entry->type != type)
 815			continue;
 816
 817		start_pfn = entry->addr >> PAGE_SHIFT;
 818		end_pfn = (entry->addr + entry->size) >> PAGE_SHIFT;
 819
 820		if (start_pfn >= limit_pfn)
 821			continue;
 822		if (end_pfn > limit_pfn) {
 823			last_pfn = limit_pfn;
 824			break;
 825		}
 826		if (end_pfn > last_pfn)
 827			last_pfn = end_pfn;
 828	}
 829
 830	if (last_pfn > max_arch_pfn)
 831		last_pfn = max_arch_pfn;
 832
 833	pr_info("e820: last_pfn = %#lx max_arch_pfn = %#lx\n",
 834			 last_pfn, max_arch_pfn);
 835	return last_pfn;
 836}
 837
 838unsigned long __init e820__end_of_ram_pfn(void)
 839{
 840	return e820_end_pfn(MAX_ARCH_PFN, E820_TYPE_RAM);
 841}
 842
 843unsigned long __init e820__end_of_low_ram_pfn(void)
 844{
 845	return e820_end_pfn(1UL << (32 - PAGE_SHIFT), E820_TYPE_RAM);
 846}
 847
 848static void __init early_panic(char *msg)
 849{
 850	early_printk(msg);
 851	panic(msg);
 852}
 853
 854static int userdef __initdata;
 855
 856/* The "mem=nopentium" boot option disables 4MB page tables on 32-bit kernels: */
 857static int __init parse_memopt(char *p)
 858{
 859	u64 mem_size;
 860
 861	if (!p)
 862		return -EINVAL;
 863
 864	if (!strcmp(p, "nopentium")) {
 865#ifdef CONFIG_X86_32
 866		setup_clear_cpu_cap(X86_FEATURE_PSE);
 867		return 0;
 868#else
 869		pr_warn("mem=nopentium ignored! (only supported on x86_32)\n");
 870		return -EINVAL;
 871#endif
 872	}
 873
 874	userdef = 1;
 875	mem_size = memparse(p, &p);
 876
 877	/* Don't remove all memory when getting "mem={invalid}" parameter: */
 878	if (mem_size == 0)
 879		return -EINVAL;
 880
 881	e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
 882
 883	return 0;
 884}
 885early_param("mem", parse_memopt);
 886
 887static int __init parse_memmap_one(char *p)
 888{
 889	char *oldp;
 890	u64 start_at, mem_size;
 891
 892	if (!p)
 893		return -EINVAL;
 894
 895	if (!strncmp(p, "exactmap", 8)) {
 896#ifdef CONFIG_CRASH_DUMP
 897		/*
 898		 * If we are doing a crash dump, we still need to know
 899		 * the real memory size before the original memory map is
 900		 * reset.
 901		 */
 902		saved_max_pfn = e820__end_of_ram_pfn();
 903#endif
 904		e820_table->nr_entries = 0;
 905		userdef = 1;
 906		return 0;
 907	}
 908
 909	oldp = p;
 910	mem_size = memparse(p, &p);
 911	if (p == oldp)
 912		return -EINVAL;
 913
 914	userdef = 1;
 915	if (*p == '@') {
 916		start_at = memparse(p+1, &p);
 917		e820__range_add(start_at, mem_size, E820_TYPE_RAM);
 918	} else if (*p == '#') {
 919		start_at = memparse(p+1, &p);
 920		e820__range_add(start_at, mem_size, E820_TYPE_ACPI);
 921	} else if (*p == '$') {
 922		start_at = memparse(p+1, &p);
 923		e820__range_add(start_at, mem_size, E820_TYPE_RESERVED);
 924	} else if (*p == '!') {
 925		start_at = memparse(p+1, &p);
 926		e820__range_add(start_at, mem_size, E820_TYPE_PRAM);
 927	} else if (*p == '%') {
 928		enum e820_type from = 0, to = 0;
 929
 930		start_at = memparse(p + 1, &p);
 931		if (*p == '-')
 932			from = simple_strtoull(p + 1, &p, 0);
 933		if (*p == '+')
 934			to = simple_strtoull(p + 1, &p, 0);
 935		if (*p != '\0')
 936			return -EINVAL;
 937		if (from && to)
 938			e820__range_update(start_at, mem_size, from, to);
 939		else if (to)
 940			e820__range_add(start_at, mem_size, to);
 941		else if (from)
 942			e820__range_remove(start_at, mem_size, from, 1);
 943		else
 944			e820__range_remove(start_at, mem_size, 0, 0);
 945	} else {
 946		e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
 947	}
 948
 949	return *p == '\0' ? 0 : -EINVAL;
 950}
 951
 952static int __init parse_memmap_opt(char *str)
 953{
 954	while (str) {
 955		char *k = strchr(str, ',');
 956
 957		if (k)
 958			*k++ = 0;
 959
 960		parse_memmap_one(str);
 961		str = k;
 962	}
 963
 964	return 0;
 965}
 966early_param("memmap", parse_memmap_opt);
 967
 968/*
 969 * Reserve all entries from the bootloader's extensible data nodes list,
 970 * because if present we are going to use it later on to fetch e820
 971 * entries from it:
 972 */
 973void __init e820__reserve_setup_data(void)
 974{
 975	struct setup_data *data;
 976	u64 pa_data;
 977
 978	pa_data = boot_params.hdr.setup_data;
 979	if (!pa_data)
 980		return;
 981
 982	while (pa_data) {
 983		data = early_memremap(pa_data, sizeof(*data));
 984		e820__range_update(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
 985		e820__range_update_kexec(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
 986		pa_data = data->next;
 987		early_memunmap(data, sizeof(*data));
 988	}
 989
 990	e820__update_table(e820_table);
 991	e820__update_table(e820_table_kexec);
 992
 993	pr_info("extended physical RAM map:\n");
 994	e820__print_table("reserve setup_data");
 995}
 996
 997/*
 998 * Called after parse_early_param(), after early parameters (such as mem=)
 999 * have been processed, in which case we already have an E820 table filled in
1000 * via the parameter callback function(s), but it's not sorted and printed yet:
1001 */
1002void __init e820__finish_early_params(void)
1003{
1004	if (userdef) {
1005		if (e820__update_table(e820_table) < 0)
 
1006			early_panic("Invalid user supplied memory map");
1007
1008		pr_info("e820: user-defined physical RAM map:\n");
1009		e820__print_table("user");
1010	}
1011}
1012
1013static const char *__init e820_type_to_string(struct e820_entry *entry)
1014{
1015	switch (entry->type) {
1016	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1017	case E820_TYPE_RAM:		return "System RAM";
1018	case E820_TYPE_ACPI:		return "ACPI Tables";
1019	case E820_TYPE_NVS:		return "ACPI Non-volatile Storage";
1020	case E820_TYPE_UNUSABLE:	return "Unusable memory";
1021	case E820_TYPE_PRAM:		return "Persistent Memory (legacy)";
1022	case E820_TYPE_PMEM:		return "Persistent Memory";
1023	case E820_TYPE_RESERVED:	return "Reserved";
1024	default:			return "Unknown E820 type";
1025	}
1026}
1027
1028static unsigned long __init e820_type_to_iomem_type(struct e820_entry *entry)
1029{
1030	switch (entry->type) {
1031	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1032	case E820_TYPE_RAM:		return IORESOURCE_SYSTEM_RAM;
1033	case E820_TYPE_ACPI:		/* Fall-through: */
1034	case E820_TYPE_NVS:		/* Fall-through: */
1035	case E820_TYPE_UNUSABLE:	/* Fall-through: */
1036	case E820_TYPE_PRAM:		/* Fall-through: */
1037	case E820_TYPE_PMEM:		/* Fall-through: */
1038	case E820_TYPE_RESERVED:	/* Fall-through: */
1039	default:			return IORESOURCE_MEM;
 
1040	}
1041}
1042
1043static unsigned long __init e820_type_to_iores_desc(struct e820_entry *entry)
1044{
1045	switch (entry->type) {
1046	case E820_TYPE_ACPI:		return IORES_DESC_ACPI_TABLES;
1047	case E820_TYPE_NVS:		return IORES_DESC_ACPI_NV_STORAGE;
1048	case E820_TYPE_PMEM:		return IORES_DESC_PERSISTENT_MEMORY;
1049	case E820_TYPE_PRAM:		return IORES_DESC_PERSISTENT_MEMORY_LEGACY;
1050	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1051	case E820_TYPE_RAM:		/* Fall-through: */
1052	case E820_TYPE_UNUSABLE:	/* Fall-through: */
1053	case E820_TYPE_RESERVED:	/* Fall-through: */
1054	default:			return IORES_DESC_NONE;
 
 
 
 
1055	}
1056}
1057
1058static bool __init do_mark_busy(enum e820_type type, struct resource *res)
1059{
1060	/* this is the legacy bios/dos rom-shadow + mmio region */
1061	if (res->start < (1ULL<<20))
1062		return true;
1063
1064	/*
1065	 * Treat persistent memory like device memory, i.e. reserve it
1066	 * for exclusive use of a driver
1067	 */
1068	switch (type) {
1069	case E820_TYPE_RESERVED:
1070	case E820_TYPE_PRAM:
1071	case E820_TYPE_PMEM:
1072		return false;
1073	case E820_TYPE_RESERVED_KERN:
1074	case E820_TYPE_RAM:
1075	case E820_TYPE_ACPI:
1076	case E820_TYPE_NVS:
1077	case E820_TYPE_UNUSABLE:
1078	default:
1079		return true;
1080	}
1081}
1082
1083/*
1084 * Mark E820 reserved areas as busy for the resource manager:
1085 */
1086
1087static struct resource __initdata *e820_res;
1088
1089void __init e820__reserve_resources(void)
1090{
1091	int i;
1092	struct resource *res;
1093	u64 end;
1094
1095	res = alloc_bootmem(sizeof(*res) * e820_table->nr_entries);
1096	e820_res = res;
1097
1098	for (i = 0; i < e820_table->nr_entries; i++) {
1099		struct e820_entry *entry = e820_table->entries + i;
1100
1101		end = entry->addr + entry->size - 1;
1102		if (end != (resource_size_t)end) {
1103			res++;
1104			continue;
1105		}
1106		res->start = entry->addr;
1107		res->end   = end;
1108		res->name  = e820_type_to_string(entry);
1109		res->flags = e820_type_to_iomem_type(entry);
1110		res->desc  = e820_type_to_iores_desc(entry);
 
1111
1112		/*
1113		 * Don't register the region that could be conflicted with
1114		 * PCI device BAR resources and insert them later in
1115		 * pcibios_resource_survey():
1116		 */
1117		if (do_mark_busy(entry->type, res)) {
1118			res->flags |= IORESOURCE_BUSY;
1119			insert_resource(&iomem_resource, res);
1120		}
1121		res++;
1122	}
1123
1124	/* Expose the bootloader-provided memory layout to the sysfs. */
1125	for (i = 0; i < e820_table_firmware->nr_entries; i++) {
1126		struct e820_entry *entry = e820_table_firmware->entries + i;
1127
1128		firmware_map_add_early(entry->addr, entry->addr + entry->size, e820_type_to_string(entry));
1129	}
1130}
1131
1132/*
1133 * How much should we pad the end of RAM, depending on where it is?
1134 */
1135static unsigned long __init ram_alignment(resource_size_t pos)
1136{
1137	unsigned long mb = pos >> 20;
1138
1139	/* To 64kB in the first megabyte */
1140	if (!mb)
1141		return 64*1024;
1142
1143	/* To 1MB in the first 16MB */
1144	if (mb < 16)
1145		return 1024*1024;
1146
1147	/* To 64MB for anything above that */
1148	return 64*1024*1024;
1149}
1150
1151#define MAX_RESOURCE_SIZE ((resource_size_t)-1)
1152
1153void __init e820__reserve_resources_late(void)
1154{
1155	int i;
1156	struct resource *res;
1157
1158	res = e820_res;
1159	for (i = 0; i < e820_table->nr_entries; i++) {
1160		if (!res->parent && res->end)
1161			insert_resource_expand_to_fit(&iomem_resource, res);
1162		res++;
1163	}
1164
1165	/*
1166	 * Try to bump up RAM regions to reasonable boundaries, to
1167	 * avoid stolen RAM:
1168	 */
1169	for (i = 0; i < e820_table->nr_entries; i++) {
1170		struct e820_entry *entry = &e820_table->entries[i];
1171		u64 start, end;
1172
1173		if (entry->type != E820_TYPE_RAM)
1174			continue;
1175
1176		start = entry->addr + entry->size;
1177		end = round_up(start, ram_alignment(start)) - 1;
1178		if (end > MAX_RESOURCE_SIZE)
1179			end = MAX_RESOURCE_SIZE;
1180		if (start >= end)
1181			continue;
1182
1183		printk(KERN_DEBUG "e820: reserve RAM buffer [mem %#010llx-%#010llx]\n", start, end);
1184		reserve_region_with_split(&iomem_resource, start, end, "RAM buffer");
 
 
1185	}
1186}
1187
1188/*
1189 * Pass the firmware (bootloader) E820 map to the kernel and process it:
1190 */
1191char *__init e820__memory_setup_default(void)
1192{
1193	char *who = "BIOS-e820";
1194
1195	/*
1196	 * Try to copy the BIOS-supplied E820-map.
1197	 *
1198	 * Otherwise fake a memory map; one section from 0k->640k,
1199	 * the next section from 1mb->appropriate_mem_k
1200	 */
1201	if (append_e820_table(boot_params.e820_table, boot_params.e820_entries) < 0) {
 
 
 
 
 
 
1202		u64 mem_size;
1203
1204		/* Compare results from other methods and take the one that gives more RAM: */
1205		if (boot_params.alt_mem_k < boot_params.screen_info.ext_mem_k) {
 
1206			mem_size = boot_params.screen_info.ext_mem_k;
1207			who = "BIOS-88";
1208		} else {
1209			mem_size = boot_params.alt_mem_k;
1210			who = "BIOS-e801";
1211		}
1212
1213		e820_table->nr_entries = 0;
1214		e820__range_add(0, LOWMEMSIZE(), E820_TYPE_RAM);
1215		e820__range_add(HIGH_MEMORY, mem_size << 10, E820_TYPE_RAM);
1216	}
1217
1218	/* We just appended a lot of ranges, sanitize the table: */
1219	e820__update_table(e820_table);
1220
1221	return who;
1222}
1223
1224/*
1225 * Calls e820__memory_setup_default() in essence to pick up the firmware/bootloader
1226 * E820 map - with an optional platform quirk available for virtual platforms
1227 * to override this method of boot environment processing:
1228 */
1229void __init e820__memory_setup(void)
1230{
1231	char *who;
1232
1233	/* This is a firmware interface ABI - make sure we don't break it: */
1234	BUILD_BUG_ON(sizeof(struct boot_e820_entry) != 20);
1235
1236	who = x86_init.resources.memory_setup();
1237
1238	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
1239	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
1240
1241	pr_info("e820: BIOS-provided physical RAM map:\n");
1242	e820__print_table(who);
1243}
1244
1245void __init e820__memblock_setup(void)
1246{
1247	int i;
1248	u64 end;
1249
1250	/*
1251	 * The bootstrap memblock region count maximum is 128 entries
1252	 * (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries
1253	 * than that - so allow memblock resizing.
1254	 *
1255	 * This is safe, because this call happens pretty late during x86 setup,
1256	 * so we know about reserved memory regions already. (This is important
1257	 * so that memblock resizing does no stomp over reserved areas.)
1258	 */
1259	memblock_allow_resize();
1260
1261	for (i = 0; i < e820_table->nr_entries; i++) {
1262		struct e820_entry *entry = &e820_table->entries[i];
1263
1264		end = entry->addr + entry->size;
1265		if (end != (resource_size_t)end)
1266			continue;
1267
1268		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
1269			continue;
1270
1271		memblock_add(entry->addr, entry->size);
1272	}
1273
1274	/* Throw away partial pages: */
1275	memblock_trim_memory(PAGE_SIZE);
1276
1277	memblock_dump_all();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1278}
v4.10.11
   1/*
   2 * Handle the memory map.
   3 * The functions here do the job until bootmem takes over.
   4 *
   5 *  Getting sanitize_e820_map() in sync with i386 version by applying change:
   6 *  -  Provisions for empty E820 memory regions (reported by certain BIOSes).
   7 *     Alex Achenbach <xela@slit.de>, December 2002.
   8 *  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
   9 *
 
 
 
  10 */
  11#include <linux/kernel.h>
  12#include <linux/types.h>
  13#include <linux/init.h>
  14#include <linux/crash_dump.h>
  15#include <linux/export.h>
  16#include <linux/bootmem.h>
  17#include <linux/pfn.h>
  18#include <linux/suspend.h>
  19#include <linux/acpi.h>
  20#include <linux/firmware-map.h>
  21#include <linux/memblock.h>
  22#include <linux/sort.h>
  23
  24#include <asm/e820.h>
  25#include <asm/proto.h>
  26#include <asm/setup.h>
  27#include <asm/cpufeature.h>
  28
  29/*
  30 * The e820 map is the map that gets modified e.g. with command line parameters
  31 * and that is also registered with modifications in the kernel resource tree
  32 * with the iomem_resource as parent.
  33 *
  34 * The e820_saved is directly saved after the BIOS-provided memory map is
  35 * copied. It doesn't get modified afterwards. It's registered for the
  36 * /sys/firmware/memmap interface.
  37 *
  38 * That memory map is not modified and is used as base for kexec. The kexec'd
  39 * kernel should get the same memory map as the firmware provides. Then the
  40 * user can e.g. boot the original kernel with mem=1G while still booting the
  41 * next kernel with full memory.
  42 */
  43static struct e820map initial_e820  __initdata;
  44static struct e820map initial_e820_saved  __initdata;
  45struct e820map *e820 __refdata = &initial_e820;
  46struct e820map *e820_saved __refdata = &initial_e820_saved;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  47
  48/* For PCI or other memory-mapped resources */
  49unsigned long pci_mem_start = 0xaeedbabe;
  50#ifdef CONFIG_PCI
  51EXPORT_SYMBOL(pci_mem_start);
  52#endif
  53
  54/*
  55 * This function checks if any part of the range <start,end> is mapped
  56 * with type.
  57 */
  58int
  59e820_any_mapped(u64 start, u64 end, unsigned type)
  60{
  61	int i;
  62
  63	for (i = 0; i < e820->nr_map; i++) {
  64		struct e820entry *ei = &e820->map[i];
  65
  66		if (type && ei->type != type)
  67			continue;
  68		if (ei->addr >= end || ei->addr + ei->size <= start)
  69			continue;
  70		return 1;
  71	}
  72	return 0;
  73}
  74EXPORT_SYMBOL_GPL(e820_any_mapped);
  75
  76/*
  77 * This function checks if the entire range <start,end> is mapped with type.
  78 *
  79 * Note: this function only works correct if the e820 table is sorted and
  80 * not-overlapping, which is the case
  81 */
  82int __init e820_all_mapped(u64 start, u64 end, unsigned type)
 
  83{
  84	int i;
  85
  86	for (i = 0; i < e820->nr_map; i++) {
  87		struct e820entry *ei = &e820->map[i];
  88
  89		if (type && ei->type != type)
  90			continue;
  91		/* is the region (part) in overlap with the current region ?*/
  92		if (ei->addr >= end || ei->addr + ei->size <= start)
 
  93			continue;
  94
  95		/* if the region is at the beginning of <start,end> we move
  96		 * start to the end of the region since it's ok until there
 
  97		 */
  98		if (ei->addr <= start)
  99			start = ei->addr + ei->size;
 
 100		/*
 101		 * if start is now at or beyond end, we're done, full
 102		 * coverage
 103		 */
 104		if (start >= end)
 105			return 1;
 106	}
 107	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 108}
 109
 110/*
 111 * Add a memory region to the kernel e820 map.
 112 */
 113static void __init __e820_add_region(struct e820map *e820x, u64 start, u64 size,
 114					 int type)
 115{
 116	int x = e820x->nr_map;
 117
 118	if (x >= ARRAY_SIZE(e820x->map)) {
 119		printk(KERN_ERR "e820: too many entries; ignoring [mem %#010llx-%#010llx]\n",
 120		       (unsigned long long) start,
 121		       (unsigned long long) (start + size - 1));
 122		return;
 123	}
 124
 125	e820x->map[x].addr = start;
 126	e820x->map[x].size = size;
 127	e820x->map[x].type = type;
 128	e820x->nr_map++;
 129}
 130
 131void __init e820_add_region(u64 start, u64 size, int type)
 132{
 133	__e820_add_region(e820, start, size, type);
 134}
 135
 136static void __init e820_print_type(u32 type)
 137{
 138	switch (type) {
 139	case E820_RAM:
 140	case E820_RESERVED_KERN:
 141		printk(KERN_CONT "usable");
 142		break;
 143	case E820_RESERVED:
 144		printk(KERN_CONT "reserved");
 145		break;
 146	case E820_ACPI:
 147		printk(KERN_CONT "ACPI data");
 148		break;
 149	case E820_NVS:
 150		printk(KERN_CONT "ACPI NVS");
 151		break;
 152	case E820_UNUSABLE:
 153		printk(KERN_CONT "unusable");
 154		break;
 155	case E820_PMEM:
 156	case E820_PRAM:
 157		printk(KERN_CONT "persistent (type %u)", type);
 158		break;
 159	default:
 160		printk(KERN_CONT "type %u", type);
 161		break;
 162	}
 163}
 164
 165void __init e820_print_map(char *who)
 166{
 167	int i;
 168
 169	for (i = 0; i < e820->nr_map; i++) {
 170		printk(KERN_INFO "%s: [mem %#018Lx-%#018Lx] ", who,
 171		       (unsigned long long) e820->map[i].addr,
 172		       (unsigned long long)
 173		       (e820->map[i].addr + e820->map[i].size - 1));
 174		e820_print_type(e820->map[i].type);
 175		printk(KERN_CONT "\n");
 176	}
 177}
 178
 179/*
 180 * Sanitize the BIOS e820 map.
 181 *
 182 * Some e820 responses include overlapping entries. The following
 183 * replaces the original e820 map with a new one, removing overlaps,
 184 * and resolving conflicting memory types in favor of highest
 185 * numbered type.
 186 *
 187 * The input parameter biosmap points to an array of 'struct
 188 * e820entry' which on entry has elements in the range [0, *pnr_map)
 189 * valid, and which has space for up to max_nr_map entries.
 190 * On return, the resulting sanitized e820 map entries will be in
 191 * overwritten in the same location, starting at biosmap.
 192 *
 193 * The integer pointed to by pnr_map must be valid on entry (the
 194 * current number of valid entries located at biosmap). If the
 195 * sanitizing succeeds the *pnr_map will be updated with the new
 196 * number of valid entries (something no more than max_nr_map).
 197 *
 198 * The return value from sanitize_e820_map() is zero if it
 
 
 
 
 
 199 * successfully 'sanitized' the map entries passed in, and is -1
 200 * if it did nothing, which can happen if either of (1) it was
 201 * only passed one map entry, or (2) any of the input map entries
 202 * were invalid (start + size < start, meaning that the size was
 203 * so big the described memory range wrapped around through zero.)
 204 *
 205 *	Visually we're performing the following
 206 *	(1,2,3,4 = memory types)...
 207 *
 208 *	Sample memory map (w/overlaps):
 209 *	   ____22__________________
 210 *	   ______________________4_
 211 *	   ____1111________________
 212 *	   _44_____________________
 213 *	   11111111________________
 214 *	   ____________________33__
 215 *	   ___________44___________
 216 *	   __________33333_________
 217 *	   ______________22________
 218 *	   ___________________2222_
 219 *	   _________111111111______
 220 *	   _____________________11_
 221 *	   _________________4______
 222 *
 223 *	Sanitized equivalent (no overlap):
 224 *	   1_______________________
 225 *	   _44_____________________
 226 *	   ___1____________________
 227 *	   ____22__________________
 228 *	   ______11________________
 229 *	   _________1______________
 230 *	   __________3_____________
 231 *	   ___________44___________
 232 *	   _____________33_________
 233 *	   _______________2________
 234 *	   ________________1_______
 235 *	   _________________4______
 236 *	   ___________________2____
 237 *	   ____________________33__
 238 *	   ______________________4_
 239 */
 240struct change_member {
 241	struct e820entry *pbios; /* pointer to original bios entry */
 242	unsigned long long addr; /* address for this change point */
 
 
 243};
 244
 
 
 
 
 
 245static int __init cpcompare(const void *a, const void *b)
 246{
 247	struct change_member * const *app = a, * const *bpp = b;
 248	const struct change_member *ap = *app, *bp = *bpp;
 249
 250	/*
 251	 * Inputs are pointers to two elements of change_point[].  If their
 252	 * addresses are unequal, their difference dominates.  If the addresses
 253	 * are equal, then consider one that represents the end of its region
 254	 * to be greater than one that does not.
 255	 */
 256	if (ap->addr != bp->addr)
 257		return ap->addr > bp->addr ? 1 : -1;
 258
 259	return (ap->addr != ap->pbios->addr) - (bp->addr != bp->pbios->addr);
 260}
 261
 262int __init sanitize_e820_map(struct e820entry *biosmap, int max_nr_map,
 263			     u32 *pnr_map)
 264{
 265	static struct change_member change_point_list[2*E820_X_MAX] __initdata;
 266	static struct change_member *change_point[2*E820_X_MAX] __initdata;
 267	static struct e820entry *overlap_list[E820_X_MAX] __initdata;
 268	static struct e820entry new_bios[E820_X_MAX] __initdata;
 269	unsigned long current_type, last_type;
 270	unsigned long long last_addr;
 271	int chgidx;
 272	int overlap_entries;
 273	int new_bios_entry;
 274	int old_nr, new_nr, chg_nr;
 275	int i;
 276
 277	/* if there's only one memory region, don't bother */
 278	if (*pnr_map < 2)
 279		return -1;
 280
 281	old_nr = *pnr_map;
 282	BUG_ON(old_nr > max_nr_map);
 283
 284	/* bail out if we find any unreasonable addresses in bios map */
 285	for (i = 0; i < old_nr; i++)
 286		if (biosmap[i].addr + biosmap[i].size < biosmap[i].addr)
 287			return -1;
 
 288
 289	/* create pointers for initial change-point information (for sorting) */
 290	for (i = 0; i < 2 * old_nr; i++)
 291		change_point[i] = &change_point_list[i];
 292
 293	/* record all known change-points (starting and ending addresses),
 294	   omitting those that are for empty memory regions */
 295	chgidx = 0;
 296	for (i = 0; i < old_nr; i++)	{
 297		if (biosmap[i].size != 0) {
 298			change_point[chgidx]->addr = biosmap[i].addr;
 299			change_point[chgidx++]->pbios = &biosmap[i];
 300			change_point[chgidx]->addr = biosmap[i].addr +
 301				biosmap[i].size;
 302			change_point[chgidx++]->pbios = &biosmap[i];
 
 303		}
 304	}
 305	chg_nr = chgidx;
 306
 307	/* sort change-point list by memory addresses (low -> high) */
 308	sort(change_point, chg_nr, sizeof *change_point, cpcompare, NULL);
 309
 310	/* create a new bios memory map, removing overlaps */
 311	overlap_entries = 0;	 /* number of entries in the overlap table */
 312	new_bios_entry = 0;	 /* index for creating new bios map entries */
 313	last_type = 0;		 /* start with undefined memory type */
 314	last_addr = 0;		 /* start with 0 as last starting address */
 315
 316	/* loop through change-points, determining affect on the new bios map */
 317	for (chgidx = 0; chgidx < chg_nr; chgidx++) {
 318		/* keep track of all overlapping bios entries */
 319		if (change_point[chgidx]->addr ==
 320		    change_point[chgidx]->pbios->addr) {
 321			/*
 322			 * add map entry to overlap list (> 1 entry
 323			 * implies an overlap)
 324			 */
 325			overlap_list[overlap_entries++] =
 326				change_point[chgidx]->pbios;
 327		} else {
 328			/*
 329			 * remove entry from list (order independent,
 330			 * so swap with last)
 331			 */
 332			for (i = 0; i < overlap_entries; i++) {
 333				if (overlap_list[i] ==
 334				    change_point[chgidx]->pbios)
 335					overlap_list[i] =
 336						overlap_list[overlap_entries-1];
 337			}
 338			overlap_entries--;
 339		}
 340		/*
 341		 * if there are overlapping entries, decide which
 342		 * "type" to use (larger value takes precedence --
 343		 * 1=usable, 2,3,4,4+=unusable)
 344		 */
 345		current_type = 0;
 346		for (i = 0; i < overlap_entries; i++)
 347			if (overlap_list[i]->type > current_type)
 348				current_type = overlap_list[i]->type;
 349		/*
 350		 * continue building up new bios map based on this
 351		 * information
 352		 */
 353		if (current_type != last_type || current_type == E820_PRAM) {
 354			if (last_type != 0)	 {
 355				new_bios[new_bios_entry].size =
 356					change_point[chgidx]->addr - last_addr;
 357				/*
 358				 * move forward only if the new size
 359				 * was non-zero
 360				 */
 361				if (new_bios[new_bios_entry].size != 0)
 362					/*
 363					 * no more space left for new
 364					 * bios entries ?
 365					 */
 366					if (++new_bios_entry >= max_nr_map)
 367						break;
 368			}
 369			if (current_type != 0)	{
 370				new_bios[new_bios_entry].addr =
 371					change_point[chgidx]->addr;
 372				new_bios[new_bios_entry].type = current_type;
 373				last_addr = change_point[chgidx]->addr;
 374			}
 375			last_type = current_type;
 376		}
 377	}
 378	/* retain count for new bios entries */
 379	new_nr = new_bios_entry;
 380
 381	/* copy new bios mapping into original location */
 382	memcpy(biosmap, new_bios, new_nr * sizeof(struct e820entry));
 383	*pnr_map = new_nr;
 384
 385	return 0;
 386}
 387
 388static int __init __append_e820_map(struct e820entry *biosmap, int nr_map)
 389{
 390	while (nr_map) {
 391		u64 start = biosmap->addr;
 392		u64 size = biosmap->size;
 
 
 393		u64 end = start + size - 1;
 394		u32 type = biosmap->type;
 395
 396		/* Overflow in 64 bits? Ignore the memory map. */
 397		if (start > end && likely(size))
 398			return -1;
 399
 400		e820_add_region(start, size, type);
 401
 402		biosmap++;
 403		nr_map--;
 404	}
 405	return 0;
 406}
 407
 408/*
 409 * Copy the BIOS e820 map into a safe place.
 410 *
 411 * Sanity-check it while we're at it..
 412 *
 413 * If we're lucky and live on a modern system, the setup code
 414 * will have given us a memory map that we can use to properly
 415 * set up memory.  If we aren't, we'll fake a memory map.
 416 */
 417static int __init append_e820_map(struct e820entry *biosmap, int nr_map)
 418{
 419	/* Only one memory region (or negative)? Ignore it */
 420	if (nr_map < 2)
 421		return -1;
 422
 423	return __append_e820_map(biosmap, nr_map);
 424}
 425
 426static u64 __init __e820_update_range(struct e820map *e820x, u64 start,
 427					u64 size, unsigned old_type,
 428					unsigned new_type)
 429{
 430	u64 end;
 431	unsigned int i;
 432	u64 real_updated_size = 0;
 433
 434	BUG_ON(old_type == new_type);
 435
 436	if (size > (ULLONG_MAX - start))
 437		size = ULLONG_MAX - start;
 438
 439	end = start + size;
 440	printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] ",
 441	       (unsigned long long) start, (unsigned long long) (end - 1));
 442	e820_print_type(old_type);
 443	printk(KERN_CONT " ==> ");
 444	e820_print_type(new_type);
 445	printk(KERN_CONT "\n");
 446
 447	for (i = 0; i < e820x->nr_map; i++) {
 448		struct e820entry *ei = &e820x->map[i];
 449		u64 final_start, final_end;
 450		u64 ei_end;
 451
 452		if (ei->type != old_type)
 453			continue;
 454
 455		ei_end = ei->addr + ei->size;
 456		/* totally covered by new range? */
 457		if (ei->addr >= start && ei_end <= end) {
 458			ei->type = new_type;
 459			real_updated_size += ei->size;
 
 460			continue;
 461		}
 462
 463		/* new range is totally covered? */
 464		if (ei->addr < start && ei_end > end) {
 465			__e820_add_region(e820x, start, size, new_type);
 466			__e820_add_region(e820x, end, ei_end - end, ei->type);
 467			ei->size = start - ei->addr;
 468			real_updated_size += size;
 469			continue;
 470		}
 471
 472		/* partially covered */
 473		final_start = max(start, ei->addr);
 474		final_end = min(end, ei_end);
 475		if (final_start >= final_end)
 476			continue;
 477
 478		__e820_add_region(e820x, final_start, final_end - final_start,
 479				  new_type);
 480
 481		real_updated_size += final_end - final_start;
 482
 483		/*
 484		 * left range could be head or tail, so need to update
 485		 * size at first.
 486		 */
 487		ei->size -= final_end - final_start;
 488		if (ei->addr < final_start)
 489			continue;
 490		ei->addr = final_end;
 
 491	}
 492	return real_updated_size;
 493}
 494
 495u64 __init e820_update_range(u64 start, u64 size, unsigned old_type,
 496			     unsigned new_type)
 497{
 498	return __e820_update_range(e820, start, size, old_type, new_type);
 499}
 500
 501static u64 __init e820_update_range_saved(u64 start, u64 size,
 502					  unsigned old_type, unsigned new_type)
 503{
 504	return __e820_update_range(e820_saved, start, size, old_type,
 505				     new_type);
 506}
 507
 508/* make e820 not cover the range */
 509u64 __init e820_remove_range(u64 start, u64 size, unsigned old_type,
 510			     int checktype)
 511{
 512	int i;
 513	u64 end;
 514	u64 real_removed_size = 0;
 515
 516	if (size > (ULLONG_MAX - start))
 517		size = ULLONG_MAX - start;
 518
 519	end = start + size;
 520	printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] ",
 521	       (unsigned long long) start, (unsigned long long) (end - 1));
 522	if (checktype)
 523		e820_print_type(old_type);
 524	printk(KERN_CONT "\n");
 525
 526	for (i = 0; i < e820->nr_map; i++) {
 527		struct e820entry *ei = &e820->map[i];
 528		u64 final_start, final_end;
 529		u64 ei_end;
 530
 531		if (checktype && ei->type != old_type)
 532			continue;
 533
 534		ei_end = ei->addr + ei->size;
 535		/* totally covered? */
 536		if (ei->addr >= start && ei_end <= end) {
 537			real_removed_size += ei->size;
 538			memset(ei, 0, sizeof(struct e820entry));
 
 539			continue;
 540		}
 541
 542		/* new range is totally covered? */
 543		if (ei->addr < start && ei_end > end) {
 544			e820_add_region(end, ei_end - end, ei->type);
 545			ei->size = start - ei->addr;
 546			real_removed_size += size;
 547			continue;
 548		}
 549
 550		/* partially covered */
 551		final_start = max(start, ei->addr);
 552		final_end = min(end, ei_end);
 553		if (final_start >= final_end)
 554			continue;
 
 555		real_removed_size += final_end - final_start;
 556
 557		/*
 558		 * left range could be head or tail, so need to update
 559		 * size at first.
 560		 */
 561		ei->size -= final_end - final_start;
 562		if (ei->addr < final_start)
 563			continue;
 564		ei->addr = final_end;
 
 565	}
 566	return real_removed_size;
 567}
 568
 569void __init update_e820(void)
 570{
 571	if (sanitize_e820_map(e820->map, ARRAY_SIZE(e820->map), &e820->nr_map))
 572		return;
 573	printk(KERN_INFO "e820: modified physical RAM map:\n");
 574	e820_print_map("modified");
 
 575}
 576static void __init update_e820_saved(void)
 
 577{
 578	sanitize_e820_map(e820_saved->map, ARRAY_SIZE(e820_saved->map),
 579				&e820_saved->nr_map);
 580}
 
 581#define MAX_GAP_END 0x100000000ull
 
 582/*
 583 * Search for a gap in the e820 memory space from start_addr to end_addr.
 584 */
 585__init int e820_search_gap(unsigned long *gapstart, unsigned long *gapsize,
 586		unsigned long start_addr, unsigned long long end_addr)
 587{
 588	unsigned long long last;
 589	int i = e820->nr_map;
 590	int found = 0;
 591
 592	last = (end_addr && end_addr < MAX_GAP_END) ? end_addr : MAX_GAP_END;
 593
 594	while (--i >= 0) {
 595		unsigned long long start = e820->map[i].addr;
 596		unsigned long long end = start + e820->map[i].size;
 597
 598		if (end < start_addr)
 599			continue;
 600
 601		/*
 602		 * Since "last" is at most 4GB, we know we'll
 603		 * fit in 32 bits if this condition is true
 604		 */
 605		if (last > end) {
 606			unsigned long gap = last - end;
 607
 608			if (gap >= *gapsize) {
 609				*gapsize = gap;
 610				*gapstart = end;
 611				found = 1;
 612			}
 613		}
 614		if (start < last)
 615			last = start;
 616	}
 617	return found;
 618}
 619
 620/*
 621 * Search for the biggest gap in the low 32 bits of the e820
 622 * memory space.  We pass this space to PCI to assign MMIO resources
 623 * for hotplug or unconfigured devices in.
 
 
 624 * Hopefully the BIOS let enough space left.
 625 */
 626__init void e820_setup_gap(void)
 627{
 628	unsigned long gapstart, gapsize;
 629	int found;
 630
 631	gapstart = 0x10000000;
 632	gapsize = 0x400000;
 633	found  = e820_search_gap(&gapstart, &gapsize, 0, MAX_GAP_END);
 634
 
 635#ifdef CONFIG_X86_64
 636	if (!found) {
 637		gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
 638		printk(KERN_ERR
 639	"e820: cannot find a gap in the 32bit address range\n"
 640	"e820: PCI devices with unassigned 32bit BARs may break!\n");
 
 
 
 641	}
 642#endif
 643
 644	/*
 645	 * e820_reserve_resources_late protect stolen RAM already
 646	 */
 647	pci_mem_start = gapstart;
 648
 649	printk(KERN_INFO
 650	       "e820: [mem %#010lx-%#010lx] available for PCI devices\n",
 651	       gapstart, gapstart + gapsize - 1);
 652}
 653
 654/*
 655 * Called late during init, in free_initmem().
 656 *
 657 * Initial e820 and e820_saved are largish __initdata arrays.
 658 * Copy them to (usually much smaller) dynamically allocated area.
 659 * This is done after all tweaks we ever do to them:
 660 * all functions which modify them are __init functions,
 661 * they won't exist after this point.
 
 
 
 662 */
 663__init void e820_reallocate_tables(void)
 664{
 665	struct e820map *n;
 666	int size;
 667
 668	size = offsetof(struct e820map, map) + sizeof(struct e820entry) * e820->nr_map;
 
 
 
 
 
 
 669	n = kmalloc(size, GFP_KERNEL);
 670	BUG_ON(!n);
 671	memcpy(n, e820, size);
 672	e820 = n;
 673
 674	size = offsetof(struct e820map, map) + sizeof(struct e820entry) * e820_saved->nr_map;
 675	n = kmalloc(size, GFP_KERNEL);
 676	BUG_ON(!n);
 677	memcpy(n, e820_saved, size);
 678	e820_saved = n;
 679}
 680
 681/**
 682 * Because of the size limitation of struct boot_params, only first
 683 * 128 E820 memory entries are passed to kernel via
 684 * boot_params.e820_map, others are passed via SETUP_E820_EXT node of
 685 * linked list of struct setup_data, which is parsed here.
 686 */
 687void __init parse_e820_ext(u64 phys_addr, u32 data_len)
 688{
 689	int entries;
 690	struct e820entry *extmap;
 691	struct setup_data *sdata;
 692
 693	sdata = early_memremap(phys_addr, data_len);
 694	entries = sdata->len / sizeof(struct e820entry);
 695	extmap = (struct e820entry *)(sdata->data);
 696	__append_e820_map(extmap, entries);
 697	sanitize_e820_map(e820->map, ARRAY_SIZE(e820->map), &e820->nr_map);
 
 
 
 
 
 698	early_memunmap(sdata, data_len);
 699	printk(KERN_INFO "e820: extended physical RAM map:\n");
 700	e820_print_map("extended");
 701}
 702
 703#if defined(CONFIG_X86_64) || \
 704	(defined(CONFIG_X86_32) && defined(CONFIG_HIBERNATION))
 705/**
 706 * Find the ranges of physical addresses that do not correspond to
 707 * e820 RAM areas and mark the corresponding pages as nosave for
 708 * hibernation (32 bit) or software suspend and suspend to RAM (64 bit).
 709 *
 710 * This function requires the e820 map to be sorted and without any
 711 * overlapping entries.
 712 */
 713void __init e820_mark_nosave_regions(unsigned long limit_pfn)
 714{
 715	int i;
 716	unsigned long pfn = 0;
 717
 718	for (i = 0; i < e820->nr_map; i++) {
 719		struct e820entry *ei = &e820->map[i];
 720
 721		if (pfn < PFN_UP(ei->addr))
 722			register_nosave_region(pfn, PFN_UP(ei->addr));
 723
 724		pfn = PFN_DOWN(ei->addr + ei->size);
 725
 726		if (ei->type != E820_RAM && ei->type != E820_RESERVED_KERN)
 727			register_nosave_region(PFN_UP(ei->addr), pfn);
 728
 729		if (pfn >= limit_pfn)
 730			break;
 731	}
 732}
 733#endif
 734
 735#ifdef CONFIG_ACPI
 736/**
 737 * Mark ACPI NVS memory region, so that we can save/restore it during
 738 * hibernation and the subsequent resume.
 739 */
 740static int __init e820_mark_nvs_memory(void)
 741{
 742	int i;
 743
 744	for (i = 0; i < e820->nr_map; i++) {
 745		struct e820entry *ei = &e820->map[i];
 746
 747		if (ei->type == E820_NVS)
 748			acpi_nvs_register(ei->addr, ei->size);
 749	}
 750
 751	return 0;
 752}
 753core_initcall(e820_mark_nvs_memory);
 754#endif
 755
 756/*
 757 * pre allocated 4k and reserved it in memblock and e820_saved
 
 
 
 
 
 758 */
 759u64 __init early_reserve_e820(u64 size, u64 align)
 760{
 761	u64 addr;
 762
 763	addr = __memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
 764	if (addr) {
 765		e820_update_range_saved(addr, size, E820_RAM, E820_RESERVED);
 766		printk(KERN_INFO "e820: update e820_saved for early_reserve_e820\n");
 767		update_e820_saved();
 768	}
 769
 770	return addr;
 771}
 772
 773#ifdef CONFIG_X86_32
 774# ifdef CONFIG_X86_PAE
 775#  define MAX_ARCH_PFN		(1ULL<<(36-PAGE_SHIFT))
 776# else
 777#  define MAX_ARCH_PFN		(1ULL<<(32-PAGE_SHIFT))
 778# endif
 779#else /* CONFIG_X86_32 */
 780# define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
 781#endif
 782
 783/*
 784 * Find the highest page frame number we have available
 785 */
 786static unsigned long __init e820_end_pfn(unsigned long limit_pfn, unsigned type)
 787{
 788	int i;
 789	unsigned long last_pfn = 0;
 790	unsigned long max_arch_pfn = MAX_ARCH_PFN;
 791
 792	for (i = 0; i < e820->nr_map; i++) {
 793		struct e820entry *ei = &e820->map[i];
 794		unsigned long start_pfn;
 795		unsigned long end_pfn;
 796
 797		if (ei->type != type)
 798			continue;
 799
 800		start_pfn = ei->addr >> PAGE_SHIFT;
 801		end_pfn = (ei->addr + ei->size) >> PAGE_SHIFT;
 802
 803		if (start_pfn >= limit_pfn)
 804			continue;
 805		if (end_pfn > limit_pfn) {
 806			last_pfn = limit_pfn;
 807			break;
 808		}
 809		if (end_pfn > last_pfn)
 810			last_pfn = end_pfn;
 811	}
 812
 813	if (last_pfn > max_arch_pfn)
 814		last_pfn = max_arch_pfn;
 815
 816	printk(KERN_INFO "e820: last_pfn = %#lx max_arch_pfn = %#lx\n",
 817			 last_pfn, max_arch_pfn);
 818	return last_pfn;
 819}
 820unsigned long __init e820_end_of_ram_pfn(void)
 
 821{
 822	return e820_end_pfn(MAX_ARCH_PFN, E820_RAM);
 823}
 824
 825unsigned long __init e820_end_of_low_ram_pfn(void)
 826{
 827	return e820_end_pfn(1UL << (32 - PAGE_SHIFT), E820_RAM);
 828}
 829
 830static void __init early_panic(char *msg)
 831{
 832	early_printk(msg);
 833	panic(msg);
 834}
 835
 836static int userdef __initdata;
 837
 838/* "mem=nopentium" disables the 4MB page tables. */
 839static int __init parse_memopt(char *p)
 840{
 841	u64 mem_size;
 842
 843	if (!p)
 844		return -EINVAL;
 845
 846	if (!strcmp(p, "nopentium")) {
 847#ifdef CONFIG_X86_32
 848		setup_clear_cpu_cap(X86_FEATURE_PSE);
 849		return 0;
 850#else
 851		printk(KERN_WARNING "mem=nopentium ignored! (only supported on x86_32)\n");
 852		return -EINVAL;
 853#endif
 854	}
 855
 856	userdef = 1;
 857	mem_size = memparse(p, &p);
 858	/* don't remove all of memory when handling "mem={invalid}" param */
 
 859	if (mem_size == 0)
 860		return -EINVAL;
 861	e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1);
 
 862
 863	return 0;
 864}
 865early_param("mem", parse_memopt);
 866
 867static int __init parse_memmap_one(char *p)
 868{
 869	char *oldp;
 870	u64 start_at, mem_size;
 871
 872	if (!p)
 873		return -EINVAL;
 874
 875	if (!strncmp(p, "exactmap", 8)) {
 876#ifdef CONFIG_CRASH_DUMP
 877		/*
 878		 * If we are doing a crash dump, we still need to know
 879		 * the real mem size before original memory map is
 880		 * reset.
 881		 */
 882		saved_max_pfn = e820_end_of_ram_pfn();
 883#endif
 884		e820->nr_map = 0;
 885		userdef = 1;
 886		return 0;
 887	}
 888
 889	oldp = p;
 890	mem_size = memparse(p, &p);
 891	if (p == oldp)
 892		return -EINVAL;
 893
 894	userdef = 1;
 895	if (*p == '@') {
 896		start_at = memparse(p+1, &p);
 897		e820_add_region(start_at, mem_size, E820_RAM);
 898	} else if (*p == '#') {
 899		start_at = memparse(p+1, &p);
 900		e820_add_region(start_at, mem_size, E820_ACPI);
 901	} else if (*p == '$') {
 902		start_at = memparse(p+1, &p);
 903		e820_add_region(start_at, mem_size, E820_RESERVED);
 904	} else if (*p == '!') {
 905		start_at = memparse(p+1, &p);
 906		e820_add_region(start_at, mem_size, E820_PRAM);
 907	} else
 908		e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 909
 910	return *p == '\0' ? 0 : -EINVAL;
 911}
 
 912static int __init parse_memmap_opt(char *str)
 913{
 914	while (str) {
 915		char *k = strchr(str, ',');
 916
 917		if (k)
 918			*k++ = 0;
 919
 920		parse_memmap_one(str);
 921		str = k;
 922	}
 923
 924	return 0;
 925}
 926early_param("memmap", parse_memmap_opt);
 927
 928void __init finish_e820_parsing(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 929{
 930	if (userdef) {
 931		if (sanitize_e820_map(e820->map, ARRAY_SIZE(e820->map),
 932					&e820->nr_map) < 0)
 933			early_panic("Invalid user supplied memory map");
 934
 935		printk(KERN_INFO "e820: user-defined physical RAM map:\n");
 936		e820_print_map("user");
 937	}
 938}
 939
 940static const char *__init e820_type_to_string(int e820_type)
 941{
 942	switch (e820_type) {
 943	case E820_RESERVED_KERN:
 944	case E820_RAM:	return "System RAM";
 945	case E820_ACPI:	return "ACPI Tables";
 946	case E820_NVS:	return "ACPI Non-volatile Storage";
 947	case E820_UNUSABLE:	return "Unusable memory";
 948	case E820_PRAM: return "Persistent Memory (legacy)";
 949	case E820_PMEM: return "Persistent Memory";
 950	default:	return "reserved";
 
 951	}
 952}
 953
 954static unsigned long __init e820_type_to_iomem_type(int e820_type)
 955{
 956	switch (e820_type) {
 957	case E820_RESERVED_KERN:
 958	case E820_RAM:
 959		return IORESOURCE_SYSTEM_RAM;
 960	case E820_ACPI:
 961	case E820_NVS:
 962	case E820_UNUSABLE:
 963	case E820_PRAM:
 964	case E820_PMEM:
 965	default:
 966		return IORESOURCE_MEM;
 967	}
 968}
 969
 970static unsigned long __init e820_type_to_iores_desc(int e820_type)
 971{
 972	switch (e820_type) {
 973	case E820_ACPI:
 974		return IORES_DESC_ACPI_TABLES;
 975	case E820_NVS:
 976		return IORES_DESC_ACPI_NV_STORAGE;
 977	case E820_PMEM:
 978		return IORES_DESC_PERSISTENT_MEMORY;
 979	case E820_PRAM:
 980		return IORES_DESC_PERSISTENT_MEMORY_LEGACY;
 981	case E820_RESERVED_KERN:
 982	case E820_RAM:
 983	case E820_UNUSABLE:
 984	default:
 985		return IORES_DESC_NONE;
 986	}
 987}
 988
 989static bool __init do_mark_busy(u32 type, struct resource *res)
 990{
 991	/* this is the legacy bios/dos rom-shadow + mmio region */
 992	if (res->start < (1ULL<<20))
 993		return true;
 994
 995	/*
 996	 * Treat persistent memory like device memory, i.e. reserve it
 997	 * for exclusive use of a driver
 998	 */
 999	switch (type) {
1000	case E820_RESERVED:
1001	case E820_PRAM:
1002	case E820_PMEM:
1003		return false;
 
 
 
 
 
1004	default:
1005		return true;
1006	}
1007}
1008
1009/*
1010 * Mark e820 reserved areas as busy for the resource manager.
1011 */
 
1012static struct resource __initdata *e820_res;
1013void __init e820_reserve_resources(void)
 
1014{
1015	int i;
1016	struct resource *res;
1017	u64 end;
1018
1019	res = alloc_bootmem(sizeof(struct resource) * e820->nr_map);
1020	e820_res = res;
1021	for (i = 0; i < e820->nr_map; i++) {
1022		end = e820->map[i].addr + e820->map[i].size - 1;
 
 
 
1023		if (end != (resource_size_t)end) {
1024			res++;
1025			continue;
1026		}
1027		res->name = e820_type_to_string(e820->map[i].type);
1028		res->start = e820->map[i].addr;
1029		res->end = end;
1030
1031		res->flags = e820_type_to_iomem_type(e820->map[i].type);
1032		res->desc = e820_type_to_iores_desc(e820->map[i].type);
1033
1034		/*
1035		 * don't register the region that could be conflicted with
1036		 * pci device BAR resource and insert them later in
1037		 * pcibios_resource_survey()
1038		 */
1039		if (do_mark_busy(e820->map[i].type, res)) {
1040			res->flags |= IORESOURCE_BUSY;
1041			insert_resource(&iomem_resource, res);
1042		}
1043		res++;
1044	}
1045
1046	for (i = 0; i < e820_saved->nr_map; i++) {
1047		struct e820entry *entry = &e820_saved->map[i];
1048		firmware_map_add_early(entry->addr,
1049			entry->addr + entry->size,
1050			e820_type_to_string(entry->type));
1051	}
1052}
1053
1054/* How much should we pad RAM ending depending on where it is? */
 
 
1055static unsigned long __init ram_alignment(resource_size_t pos)
1056{
1057	unsigned long mb = pos >> 20;
1058
1059	/* To 64kB in the first megabyte */
1060	if (!mb)
1061		return 64*1024;
1062
1063	/* To 1MB in the first 16MB */
1064	if (mb < 16)
1065		return 1024*1024;
1066
1067	/* To 64MB for anything above that */
1068	return 64*1024*1024;
1069}
1070
1071#define MAX_RESOURCE_SIZE ((resource_size_t)-1)
1072
1073void __init e820_reserve_resources_late(void)
1074{
1075	int i;
1076	struct resource *res;
1077
1078	res = e820_res;
1079	for (i = 0; i < e820->nr_map; i++) {
1080		if (!res->parent && res->end)
1081			insert_resource_expand_to_fit(&iomem_resource, res);
1082		res++;
1083	}
1084
1085	/*
1086	 * Try to bump up RAM regions to reasonable boundaries to
1087	 * avoid stolen RAM:
1088	 */
1089	for (i = 0; i < e820->nr_map; i++) {
1090		struct e820entry *entry = &e820->map[i];
1091		u64 start, end;
1092
1093		if (entry->type != E820_RAM)
1094			continue;
 
1095		start = entry->addr + entry->size;
1096		end = round_up(start, ram_alignment(start)) - 1;
1097		if (end > MAX_RESOURCE_SIZE)
1098			end = MAX_RESOURCE_SIZE;
1099		if (start >= end)
1100			continue;
1101		printk(KERN_DEBUG
1102		       "e820: reserve RAM buffer [mem %#010llx-%#010llx]\n",
1103		       start, end);
1104		reserve_region_with_split(&iomem_resource, start, end,
1105					  "RAM buffer");
1106	}
1107}
1108
1109char *__init default_machine_specific_memory_setup(void)
 
 
 
1110{
1111	char *who = "BIOS-e820";
1112	u32 new_nr;
1113	/*
1114	 * Try to copy the BIOS-supplied E820-map.
1115	 *
1116	 * Otherwise fake a memory map; one section from 0k->640k,
1117	 * the next section from 1mb->appropriate_mem_k
1118	 */
1119	new_nr = boot_params.e820_entries;
1120	sanitize_e820_map(boot_params.e820_map,
1121			ARRAY_SIZE(boot_params.e820_map),
1122			&new_nr);
1123	boot_params.e820_entries = new_nr;
1124	if (append_e820_map(boot_params.e820_map, boot_params.e820_entries)
1125	  < 0) {
1126		u64 mem_size;
1127
1128		/* compare results from other methods and take the greater */
1129		if (boot_params.alt_mem_k
1130		    < boot_params.screen_info.ext_mem_k) {
1131			mem_size = boot_params.screen_info.ext_mem_k;
1132			who = "BIOS-88";
1133		} else {
1134			mem_size = boot_params.alt_mem_k;
1135			who = "BIOS-e801";
1136		}
1137
1138		e820->nr_map = 0;
1139		e820_add_region(0, LOWMEMSIZE(), E820_RAM);
1140		e820_add_region(HIGH_MEMORY, mem_size << 10, E820_RAM);
1141	}
1142
1143	/* In case someone cares... */
 
 
1144	return who;
1145}
1146
1147void __init setup_memory_map(void)
 
 
 
 
 
1148{
1149	char *who;
1150
 
 
 
1151	who = x86_init.resources.memory_setup();
1152	memcpy(e820_saved, e820, sizeof(struct e820map));
1153	printk(KERN_INFO "e820: BIOS-provided physical RAM map:\n");
1154	e820_print_map(who);
 
 
 
1155}
1156
1157void __init memblock_x86_fill(void)
1158{
1159	int i;
1160	u64 end;
1161
1162	/*
1163	 * EFI may have more than 128 entries
1164	 * We are safe to enable resizing, beause memblock_x86_fill()
1165	 * is rather later for x86
 
 
 
 
1166	 */
1167	memblock_allow_resize();
1168
1169	for (i = 0; i < e820->nr_map; i++) {
1170		struct e820entry *ei = &e820->map[i];
1171
1172		end = ei->addr + ei->size;
1173		if (end != (resource_size_t)end)
1174			continue;
1175
1176		if (ei->type != E820_RAM && ei->type != E820_RESERVED_KERN)
1177			continue;
1178
1179		memblock_add(ei->addr, ei->size);
1180	}
1181
1182	/* throw away partial pages */
1183	memblock_trim_memory(PAGE_SIZE);
1184
1185	memblock_dump_all();
1186}
1187
1188void __init memblock_find_dma_reserve(void)
1189{
1190#ifdef CONFIG_X86_64
1191	u64 nr_pages = 0, nr_free_pages = 0;
1192	unsigned long start_pfn, end_pfn;
1193	phys_addr_t start, end;
1194	int i;
1195	u64 u;
1196
1197	/*
1198	 * need to find out used area below MAX_DMA_PFN
1199	 * need to use memblock to get free size in [0, MAX_DMA_PFN]
1200	 * at first, and assume boot_mem will not take below MAX_DMA_PFN
1201	 */
1202	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
1203		start_pfn = min(start_pfn, MAX_DMA_PFN);
1204		end_pfn = min(end_pfn, MAX_DMA_PFN);
1205		nr_pages += end_pfn - start_pfn;
1206	}
1207
1208	for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
1209				NULL) {
1210		start_pfn = min_t(unsigned long, PFN_UP(start), MAX_DMA_PFN);
1211		end_pfn = min_t(unsigned long, PFN_DOWN(end), MAX_DMA_PFN);
1212		if (start_pfn < end_pfn)
1213			nr_free_pages += end_pfn - start_pfn;
1214	}
1215
1216	set_dma_reserve(nr_pages - nr_free_pages);
1217#endif
1218}