Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Deadline Scheduling Class (SCHED_DEADLINE)
   4 *
   5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
   6 *
   7 * Tasks that periodically executes their instances for less than their
   8 * runtime won't miss any of their deadlines.
   9 * Tasks that are not periodic or sporadic or that tries to execute more
  10 * than their reserved bandwidth will be slowed down (and may potentially
  11 * miss some of their deadlines), and won't affect any other task.
  12 *
  13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
  14 *                    Juri Lelli <juri.lelli@gmail.com>,
  15 *                    Michael Trimarchi <michael@amarulasolutions.com>,
  16 *                    Fabio Checconi <fchecconi@gmail.com>
  17 */
  18#include "sched.h"
  19
  20struct dl_bandwidth def_dl_bandwidth;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  21
  22static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
  23{
 
  24	return container_of(dl_se, struct task_struct, dl);
  25}
  26
  27static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
  28{
  29	return container_of(dl_rq, struct rq, dl);
  30}
  31
  32static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
  33{
  34	struct task_struct *p = dl_task_of(dl_se);
  35	struct rq *rq = task_rq(p);
  36
  37	return &rq->dl;
 
 
 
 
 
 
 
 
  38}
  39
  40static inline int on_dl_rq(struct sched_dl_entity *dl_se)
  41{
  42	return !RB_EMPTY_NODE(&dl_se->rb_node);
  43}
  44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  45#ifdef CONFIG_SMP
  46static inline struct dl_bw *dl_bw_of(int i)
  47{
  48	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
  49			 "sched RCU must be held");
  50	return &cpu_rq(i)->rd->dl_bw;
  51}
  52
  53static inline int dl_bw_cpus(int i)
  54{
  55	struct root_domain *rd = cpu_rq(i)->rd;
  56	int cpus = 0;
  57
  58	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
  59			 "sched RCU must be held");
 
 
 
 
 
 
  60	for_each_cpu_and(i, rd->span, cpu_active_mask)
  61		cpus++;
  62
  63	return cpus;
  64}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  65#else
  66static inline struct dl_bw *dl_bw_of(int i)
  67{
  68	return &cpu_rq(i)->dl.dl_bw;
  69}
  70
  71static inline int dl_bw_cpus(int i)
  72{
  73	return 1;
  74}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  75#endif
  76
  77static inline
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  78void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
  79{
  80	u64 old = dl_rq->running_bw;
  81
  82	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
  83	dl_rq->running_bw += dl_bw;
  84	SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
  85	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
  86	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
  87	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
  88}
  89
  90static inline
  91void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
  92{
  93	u64 old = dl_rq->running_bw;
  94
  95	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
  96	dl_rq->running_bw -= dl_bw;
  97	SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
  98	if (dl_rq->running_bw > old)
  99		dl_rq->running_bw = 0;
 100	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
 101	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
 102}
 103
 104static inline
 105void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
 106{
 107	u64 old = dl_rq->this_bw;
 108
 109	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
 110	dl_rq->this_bw += dl_bw;
 111	SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
 112}
 113
 114static inline
 115void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
 116{
 117	u64 old = dl_rq->this_bw;
 118
 119	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
 120	dl_rq->this_bw -= dl_bw;
 121	SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
 122	if (dl_rq->this_bw > old)
 123		dl_rq->this_bw = 0;
 124	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
 125}
 126
 127static inline
 128void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 129{
 130	if (!dl_entity_is_special(dl_se))
 131		__add_rq_bw(dl_se->dl_bw, dl_rq);
 132}
 133
 134static inline
 135void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 136{
 137	if (!dl_entity_is_special(dl_se))
 138		__sub_rq_bw(dl_se->dl_bw, dl_rq);
 139}
 140
 141static inline
 142void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 143{
 144	if (!dl_entity_is_special(dl_se))
 145		__add_running_bw(dl_se->dl_bw, dl_rq);
 146}
 147
 148static inline
 149void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 150{
 151	if (!dl_entity_is_special(dl_se))
 152		__sub_running_bw(dl_se->dl_bw, dl_rq);
 153}
 154
 155void dl_change_utilization(struct task_struct *p, u64 new_bw)
 156{
 157	struct rq *rq;
 158
 159	BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV);
 160
 161	if (task_on_rq_queued(p))
 162		return;
 163
 164	rq = task_rq(p);
 165	if (p->dl.dl_non_contending) {
 166		sub_running_bw(&p->dl, &rq->dl);
 167		p->dl.dl_non_contending = 0;
 168		/*
 169		 * If the timer handler is currently running and the
 170		 * timer cannot be cancelled, inactive_task_timer()
 171		 * will see that dl_not_contending is not set, and
 172		 * will not touch the rq's active utilization,
 173		 * so we are still safe.
 174		 */
 175		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
 176			put_task_struct(p);
 
 
 177	}
 178	__sub_rq_bw(p->dl.dl_bw, &rq->dl);
 179	__add_rq_bw(new_bw, &rq->dl);
 180}
 181
 
 
 
 
 
 
 
 
 
 
 
 
 182/*
 183 * The utilization of a task cannot be immediately removed from
 184 * the rq active utilization (running_bw) when the task blocks.
 185 * Instead, we have to wait for the so called "0-lag time".
 186 *
 187 * If a task blocks before the "0-lag time", a timer (the inactive
 188 * timer) is armed, and running_bw is decreased when the timer
 189 * fires.
 190 *
 191 * If the task wakes up again before the inactive timer fires,
 192 * the timer is cancelled, whereas if the task wakes up after the
 193 * inactive timer fired (and running_bw has been decreased) the
 194 * task's utilization has to be added to running_bw again.
 195 * A flag in the deadline scheduling entity (dl_non_contending)
 196 * is used to avoid race conditions between the inactive timer handler
 197 * and task wakeups.
 198 *
 199 * The following diagram shows how running_bw is updated. A task is
 200 * "ACTIVE" when its utilization contributes to running_bw; an
 201 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
 202 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
 203 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
 204 * time already passed, which does not contribute to running_bw anymore.
 205 *                              +------------------+
 206 *             wakeup           |    ACTIVE        |
 207 *          +------------------>+   contending     |
 208 *          | add_running_bw    |                  |
 209 *          |                   +----+------+------+
 210 *          |                        |      ^
 211 *          |                dequeue |      |
 212 * +--------+-------+                |      |
 213 * |                |   t >= 0-lag   |      | wakeup
 214 * |    INACTIVE    |<---------------+      |
 215 * |                | sub_running_bw |      |
 216 * +--------+-------+                |      |
 217 *          ^                        |      |
 218 *          |              t < 0-lag |      |
 219 *          |                        |      |
 220 *          |                        V      |
 221 *          |                   +----+------+------+
 222 *          | sub_running_bw    |    ACTIVE        |
 223 *          +-------------------+                  |
 224 *            inactive timer    |  non contending  |
 225 *            fired             +------------------+
 226 *
 227 * The task_non_contending() function is invoked when a task
 228 * blocks, and checks if the 0-lag time already passed or
 229 * not (in the first case, it directly updates running_bw;
 230 * in the second case, it arms the inactive timer).
 231 *
 232 * The task_contending() function is invoked when a task wakes
 233 * up, and checks if the task is still in the "ACTIVE non contending"
 234 * state or not (in the second case, it updates running_bw).
 235 */
 236static void task_non_contending(struct task_struct *p)
 237{
 238	struct sched_dl_entity *dl_se = &p->dl;
 239	struct hrtimer *timer = &dl_se->inactive_timer;
 240	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 241	struct rq *rq = rq_of_dl_rq(dl_rq);
 242	s64 zerolag_time;
 243
 244	/*
 245	 * If this is a non-deadline task that has been boosted,
 246	 * do nothing
 247	 */
 248	if (dl_se->dl_runtime == 0)
 249		return;
 250
 251	if (dl_entity_is_special(dl_se))
 252		return;
 253
 254	WARN_ON(hrtimer_active(&dl_se->inactive_timer));
 255	WARN_ON(dl_se->dl_non_contending);
 256
 257	zerolag_time = dl_se->deadline -
 258		 div64_long((dl_se->runtime * dl_se->dl_period),
 259			dl_se->dl_runtime);
 260
 261	/*
 262	 * Using relative times instead of the absolute "0-lag time"
 263	 * allows to simplify the code
 264	 */
 265	zerolag_time -= rq_clock(rq);
 266
 267	/*
 268	 * If the "0-lag time" already passed, decrease the active
 269	 * utilization now, instead of starting a timer
 270	 */
 271	if (zerolag_time < 0) {
 272		if (dl_task(p))
 273			sub_running_bw(dl_se, dl_rq);
 274		if (!dl_task(p) || p->state == TASK_DEAD) {
 275			struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
 
 
 
 276
 277			if (p->state == TASK_DEAD)
 278				sub_rq_bw(&p->dl, &rq->dl);
 279			raw_spin_lock(&dl_b->lock);
 280			__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
 281			__dl_clear_params(p);
 282			raw_spin_unlock(&dl_b->lock);
 
 
 
 
 283		}
 284
 285		return;
 286	}
 287
 288	dl_se->dl_non_contending = 1;
 289	get_task_struct(p);
 290	hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL);
 
 
 291}
 292
 293static void task_contending(struct sched_dl_entity *dl_se, int flags)
 294{
 295	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 296
 297	/*
 298	 * If this is a non-deadline task that has been boosted,
 299	 * do nothing
 300	 */
 301	if (dl_se->dl_runtime == 0)
 302		return;
 303
 304	if (flags & ENQUEUE_MIGRATED)
 305		add_rq_bw(dl_se, dl_rq);
 306
 307	if (dl_se->dl_non_contending) {
 308		dl_se->dl_non_contending = 0;
 309		/*
 310		 * If the timer handler is currently running and the
 311		 * timer cannot be cancelled, inactive_task_timer()
 312		 * will see that dl_not_contending is not set, and
 313		 * will not touch the rq's active utilization,
 314		 * so we are still safe.
 315		 */
 316		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
 317			put_task_struct(dl_task_of(dl_se));
 
 
 318	} else {
 319		/*
 320		 * Since "dl_non_contending" is not set, the
 321		 * task's utilization has already been removed from
 322		 * active utilization (either when the task blocked,
 323		 * when the "inactive timer" fired).
 324		 * So, add it back.
 325		 */
 326		add_running_bw(dl_se, dl_rq);
 327	}
 328}
 329
 330static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
 331{
 332	struct sched_dl_entity *dl_se = &p->dl;
 333
 334	return dl_rq->root.rb_leftmost == &dl_se->rb_node;
 335}
 336
 337void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
 338{
 339	raw_spin_lock_init(&dl_b->dl_runtime_lock);
 340	dl_b->dl_period = period;
 341	dl_b->dl_runtime = runtime;
 342}
 343
 344void init_dl_bw(struct dl_bw *dl_b)
 345{
 346	raw_spin_lock_init(&dl_b->lock);
 347	raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
 348	if (global_rt_runtime() == RUNTIME_INF)
 349		dl_b->bw = -1;
 350	else
 351		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
 352	raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
 353	dl_b->total_bw = 0;
 354}
 355
 356void init_dl_rq(struct dl_rq *dl_rq)
 357{
 358	dl_rq->root = RB_ROOT_CACHED;
 359
 360#ifdef CONFIG_SMP
 361	/* zero means no -deadline tasks */
 362	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
 363
 364	dl_rq->dl_nr_migratory = 0;
 365	dl_rq->overloaded = 0;
 366	dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
 367#else
 368	init_dl_bw(&dl_rq->dl_bw);
 369#endif
 370
 371	dl_rq->running_bw = 0;
 372	dl_rq->this_bw = 0;
 373	init_dl_rq_bw_ratio(dl_rq);
 374}
 375
 376#ifdef CONFIG_SMP
 377
 378static inline int dl_overloaded(struct rq *rq)
 379{
 380	return atomic_read(&rq->rd->dlo_count);
 381}
 382
 383static inline void dl_set_overload(struct rq *rq)
 384{
 385	if (!rq->online)
 386		return;
 387
 388	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
 389	/*
 390	 * Must be visible before the overload count is
 391	 * set (as in sched_rt.c).
 392	 *
 393	 * Matched by the barrier in pull_dl_task().
 394	 */
 395	smp_wmb();
 396	atomic_inc(&rq->rd->dlo_count);
 397}
 398
 399static inline void dl_clear_overload(struct rq *rq)
 400{
 401	if (!rq->online)
 402		return;
 403
 404	atomic_dec(&rq->rd->dlo_count);
 405	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
 406}
 407
 408static void update_dl_migration(struct dl_rq *dl_rq)
 409{
 410	if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
 411		if (!dl_rq->overloaded) {
 412			dl_set_overload(rq_of_dl_rq(dl_rq));
 413			dl_rq->overloaded = 1;
 414		}
 415	} else if (dl_rq->overloaded) {
 416		dl_clear_overload(rq_of_dl_rq(dl_rq));
 417		dl_rq->overloaded = 0;
 418	}
 419}
 420
 421static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 422{
 423	struct task_struct *p = dl_task_of(dl_se);
 424
 425	if (p->nr_cpus_allowed > 1)
 426		dl_rq->dl_nr_migratory++;
 427
 428	update_dl_migration(dl_rq);
 429}
 430
 431static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 432{
 433	struct task_struct *p = dl_task_of(dl_se);
 434
 435	if (p->nr_cpus_allowed > 1)
 436		dl_rq->dl_nr_migratory--;
 437
 438	update_dl_migration(dl_rq);
 439}
 440
 441/*
 442 * The list of pushable -deadline task is not a plist, like in
 443 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
 444 */
 445static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 446{
 447	struct dl_rq *dl_rq = &rq->dl;
 448	struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_root.rb_node;
 449	struct rb_node *parent = NULL;
 450	struct task_struct *entry;
 451	bool leftmost = true;
 452
 453	BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
 454
 455	while (*link) {
 456		parent = *link;
 457		entry = rb_entry(parent, struct task_struct,
 458				 pushable_dl_tasks);
 459		if (dl_entity_preempt(&p->dl, &entry->dl))
 460			link = &parent->rb_left;
 461		else {
 462			link = &parent->rb_right;
 463			leftmost = false;
 464		}
 465	}
 466
 
 
 
 
 
 467	if (leftmost)
 468		dl_rq->earliest_dl.next = p->dl.deadline;
 469
 470	rb_link_node(&p->pushable_dl_tasks, parent, link);
 471	rb_insert_color_cached(&p->pushable_dl_tasks,
 472			       &dl_rq->pushable_dl_tasks_root, leftmost);
 
 473}
 474
 475static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 476{
 477	struct dl_rq *dl_rq = &rq->dl;
 
 
 478
 479	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
 480		return;
 481
 482	if (dl_rq->pushable_dl_tasks_root.rb_leftmost == &p->pushable_dl_tasks) {
 483		struct rb_node *next_node;
 484
 485		next_node = rb_next(&p->pushable_dl_tasks);
 486		if (next_node) {
 487			dl_rq->earliest_dl.next = rb_entry(next_node,
 488				struct task_struct, pushable_dl_tasks)->dl.deadline;
 489		}
 490	}
 491
 492	rb_erase_cached(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
 493	RB_CLEAR_NODE(&p->pushable_dl_tasks);
 494}
 495
 496static inline int has_pushable_dl_tasks(struct rq *rq)
 497{
 498	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
 
 499}
 500
 501static int push_dl_task(struct rq *rq);
 502
 503static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
 504{
 505	return dl_task(prev);
 506}
 507
 508static DEFINE_PER_CPU(struct callback_head, dl_push_head);
 509static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
 510
 511static void push_dl_tasks(struct rq *);
 512static void pull_dl_task(struct rq *);
 513
 514static inline void deadline_queue_push_tasks(struct rq *rq)
 515{
 516	if (!has_pushable_dl_tasks(rq))
 517		return;
 518
 519	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
 520}
 521
 522static inline void deadline_queue_pull_task(struct rq *rq)
 523{
 524	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
 525}
 526
 527static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
 528
 529static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
 530{
 531	struct rq *later_rq = NULL;
 
 532
 533	later_rq = find_lock_later_rq(p, rq);
 534	if (!later_rq) {
 535		int cpu;
 536
 537		/*
 538		 * If we cannot preempt any rq, fall back to pick any
 539		 * online CPU:
 540		 */
 541		cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
 542		if (cpu >= nr_cpu_ids) {
 543			/*
 544			 * Failed to find any suitable CPU.
 545			 * The task will never come back!
 546			 */
 547			BUG_ON(dl_bandwidth_enabled());
 548
 549			/*
 550			 * If admission control is disabled we
 551			 * try a little harder to let the task
 552			 * run.
 553			 */
 554			cpu = cpumask_any(cpu_active_mask);
 555		}
 556		later_rq = cpu_rq(cpu);
 557		double_lock_balance(rq, later_rq);
 558	}
 559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 560	set_task_cpu(p, later_rq->cpu);
 561	double_unlock_balance(later_rq, rq);
 562
 563	return later_rq;
 564}
 565
 566#else
 567
 568static inline
 569void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 570{
 571}
 572
 573static inline
 574void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 575{
 576}
 577
 578static inline
 579void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 580{
 581}
 582
 583static inline
 584void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 585{
 586}
 587
 588static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
 589{
 590	return false;
 591}
 592
 593static inline void pull_dl_task(struct rq *rq)
 594{
 595}
 596
 597static inline void deadline_queue_push_tasks(struct rq *rq)
 598{
 599}
 600
 601static inline void deadline_queue_pull_task(struct rq *rq)
 602{
 603}
 604#endif /* CONFIG_SMP */
 605
 
 
 606static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
 607static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
 608static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 609
 610/*
 611 * We are being explicitly informed that a new instance is starting,
 612 * and this means that:
 613 *  - the absolute deadline of the entity has to be placed at
 614 *    current time + relative deadline;
 615 *  - the runtime of the entity has to be set to the maximum value.
 616 *
 617 * The capability of specifying such event is useful whenever a -deadline
 618 * entity wants to (try to!) synchronize its behaviour with the scheduler's
 619 * one, and to (try to!) reconcile itself with its own scheduling
 620 * parameters.
 621 */
 622static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
 623{
 624	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 625	struct rq *rq = rq_of_dl_rq(dl_rq);
 626
 627	WARN_ON(dl_se->dl_boosted);
 628	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
 629
 630	/*
 631	 * We are racing with the deadline timer. So, do nothing because
 632	 * the deadline timer handler will take care of properly recharging
 633	 * the runtime and postponing the deadline
 634	 */
 635	if (dl_se->dl_throttled)
 636		return;
 637
 638	/*
 639	 * We use the regular wall clock time to set deadlines in the
 640	 * future; in fact, we must consider execution overheads (time
 641	 * spent on hardirq context, etc.).
 642	 */
 643	dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
 644	dl_se->runtime = dl_se->dl_runtime;
 645}
 646
 
 
 
 647/*
 648 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
 649 * possibility of a entity lasting more than what it declared, and thus
 650 * exhausting its runtime.
 651 *
 652 * Here we are interested in making runtime overrun possible, but we do
 653 * not want a entity which is misbehaving to affect the scheduling of all
 654 * other entities.
 655 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
 656 * is used, in order to confine each entity within its own bandwidth.
 657 *
 658 * This function deals exactly with that, and ensures that when the runtime
 659 * of a entity is replenished, its deadline is also postponed. That ensures
 660 * the overrunning entity can't interfere with other entity in the system and
 661 * can't make them miss their deadlines. Reasons why this kind of overruns
 662 * could happen are, typically, a entity voluntarily trying to overcome its
 663 * runtime, or it just underestimated it during sched_setattr().
 664 */
 665static void replenish_dl_entity(struct sched_dl_entity *dl_se,
 666				struct sched_dl_entity *pi_se)
 667{
 668	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 669	struct rq *rq = rq_of_dl_rq(dl_rq);
 670
 671	BUG_ON(pi_se->dl_runtime <= 0);
 672
 673	/*
 674	 * This could be the case for a !-dl task that is boosted.
 675	 * Just go with full inherited parameters.
 
 
 
 
 
 
 676	 */
 677	if (dl_se->dl_deadline == 0) {
 678		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 679		dl_se->runtime = pi_se->dl_runtime;
 
 680	}
 681
 682	if (dl_se->dl_yielded && dl_se->runtime > 0)
 683		dl_se->runtime = 0;
 684
 685	/*
 686	 * We keep moving the deadline away until we get some
 687	 * available runtime for the entity. This ensures correct
 688	 * handling of situations where the runtime overrun is
 689	 * arbitrary large.
 690	 */
 691	while (dl_se->runtime <= 0) {
 692		dl_se->deadline += pi_se->dl_period;
 693		dl_se->runtime += pi_se->dl_runtime;
 694	}
 695
 696	/*
 697	 * At this point, the deadline really should be "in
 698	 * the future" with respect to rq->clock. If it's
 699	 * not, we are, for some reason, lagging too much!
 700	 * Anyway, after having warn userspace abut that,
 701	 * we still try to keep the things running by
 702	 * resetting the deadline and the budget of the
 703	 * entity.
 704	 */
 705	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
 706		printk_deferred_once("sched: DL replenish lagged too much\n");
 707		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 708		dl_se->runtime = pi_se->dl_runtime;
 709	}
 710
 711	if (dl_se->dl_yielded)
 712		dl_se->dl_yielded = 0;
 713	if (dl_se->dl_throttled)
 714		dl_se->dl_throttled = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 715}
 716
 717/*
 718 * Here we check if --at time t-- an entity (which is probably being
 719 * [re]activated or, in general, enqueued) can use its remaining runtime
 720 * and its current deadline _without_ exceeding the bandwidth it is
 721 * assigned (function returns true if it can't). We are in fact applying
 722 * one of the CBS rules: when a task wakes up, if the residual runtime
 723 * over residual deadline fits within the allocated bandwidth, then we
 724 * can keep the current (absolute) deadline and residual budget without
 725 * disrupting the schedulability of the system. Otherwise, we should
 726 * refill the runtime and set the deadline a period in the future,
 727 * because keeping the current (absolute) deadline of the task would
 728 * result in breaking guarantees promised to other tasks (refer to
 729 * Documentation/scheduler/sched-deadline.txt for more informations).
 730 *
 731 * This function returns true if:
 732 *
 733 *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
 734 *
 735 * IOW we can't recycle current parameters.
 736 *
 737 * Notice that the bandwidth check is done against the deadline. For
 738 * task with deadline equal to period this is the same of using
 739 * dl_period instead of dl_deadline in the equation above.
 740 */
 741static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
 742			       struct sched_dl_entity *pi_se, u64 t)
 743{
 744	u64 left, right;
 745
 746	/*
 747	 * left and right are the two sides of the equation above,
 748	 * after a bit of shuffling to use multiplications instead
 749	 * of divisions.
 750	 *
 751	 * Note that none of the time values involved in the two
 752	 * multiplications are absolute: dl_deadline and dl_runtime
 753	 * are the relative deadline and the maximum runtime of each
 754	 * instance, runtime is the runtime left for the last instance
 755	 * and (deadline - t), since t is rq->clock, is the time left
 756	 * to the (absolute) deadline. Even if overflowing the u64 type
 757	 * is very unlikely to occur in both cases, here we scale down
 758	 * as we want to avoid that risk at all. Scaling down by 10
 759	 * means that we reduce granularity to 1us. We are fine with it,
 760	 * since this is only a true/false check and, anyway, thinking
 761	 * of anything below microseconds resolution is actually fiction
 762	 * (but still we want to give the user that illusion >;).
 763	 */
 764	left = (pi_se->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
 765	right = ((dl_se->deadline - t) >> DL_SCALE) *
 766		(pi_se->dl_runtime >> DL_SCALE);
 767
 768	return dl_time_before(right, left);
 769}
 770
 771/*
 772 * Revised wakeup rule [1]: For self-suspending tasks, rather then
 773 * re-initializing task's runtime and deadline, the revised wakeup
 774 * rule adjusts the task's runtime to avoid the task to overrun its
 775 * density.
 776 *
 777 * Reasoning: a task may overrun the density if:
 778 *    runtime / (deadline - t) > dl_runtime / dl_deadline
 779 *
 780 * Therefore, runtime can be adjusted to:
 781 *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
 782 *
 783 * In such way that runtime will be equal to the maximum density
 784 * the task can use without breaking any rule.
 785 *
 786 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
 787 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
 788 */
 789static void
 790update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
 791{
 792	u64 laxity = dl_se->deadline - rq_clock(rq);
 793
 794	/*
 795	 * If the task has deadline < period, and the deadline is in the past,
 796	 * it should already be throttled before this check.
 797	 *
 798	 * See update_dl_entity() comments for further details.
 799	 */
 800	WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
 801
 802	dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
 803}
 804
 805/*
 806 * Regarding the deadline, a task with implicit deadline has a relative
 807 * deadline == relative period. A task with constrained deadline has a
 808 * relative deadline <= relative period.
 809 *
 810 * We support constrained deadline tasks. However, there are some restrictions
 811 * applied only for tasks which do not have an implicit deadline. See
 812 * update_dl_entity() to know more about such restrictions.
 813 *
 814 * The dl_is_implicit() returns true if the task has an implicit deadline.
 815 */
 816static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
 817{
 818	return dl_se->dl_deadline == dl_se->dl_period;
 819}
 820
 821/*
 822 * When a deadline entity is placed in the runqueue, its runtime and deadline
 823 * might need to be updated. This is done by a CBS wake up rule. There are two
 824 * different rules: 1) the original CBS; and 2) the Revisited CBS.
 825 *
 826 * When the task is starting a new period, the Original CBS is used. In this
 827 * case, the runtime is replenished and a new absolute deadline is set.
 828 *
 829 * When a task is queued before the begin of the next period, using the
 830 * remaining runtime and deadline could make the entity to overflow, see
 831 * dl_entity_overflow() to find more about runtime overflow. When such case
 832 * is detected, the runtime and deadline need to be updated.
 833 *
 834 * If the task has an implicit deadline, i.e., deadline == period, the Original
 835 * CBS is applied. the runtime is replenished and a new absolute deadline is
 836 * set, as in the previous cases.
 837 *
 838 * However, the Original CBS does not work properly for tasks with
 839 * deadline < period, which are said to have a constrained deadline. By
 840 * applying the Original CBS, a constrained deadline task would be able to run
 841 * runtime/deadline in a period. With deadline < period, the task would
 842 * overrun the runtime/period allowed bandwidth, breaking the admission test.
 843 *
 844 * In order to prevent this misbehave, the Revisited CBS is used for
 845 * constrained deadline tasks when a runtime overflow is detected. In the
 846 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
 847 * the remaining runtime of the task is reduced to avoid runtime overflow.
 848 * Please refer to the comments update_dl_revised_wakeup() function to find
 849 * more about the Revised CBS rule.
 850 */
 851static void update_dl_entity(struct sched_dl_entity *dl_se,
 852			     struct sched_dl_entity *pi_se)
 853{
 854	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 855	struct rq *rq = rq_of_dl_rq(dl_rq);
 856
 857	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
 858	    dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
 859
 860		if (unlikely(!dl_is_implicit(dl_se) &&
 861			     !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
 862			     !dl_se->dl_boosted)){
 863			update_dl_revised_wakeup(dl_se, rq);
 864			return;
 865		}
 866
 867		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 868		dl_se->runtime = pi_se->dl_runtime;
 
 
 
 
 
 
 
 
 869	}
 870}
 871
 872static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
 873{
 874	return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
 875}
 876
 877/*
 878 * If the entity depleted all its runtime, and if we want it to sleep
 879 * while waiting for some new execution time to become available, we
 880 * set the bandwidth replenishment timer to the replenishment instant
 881 * and try to activate it.
 882 *
 883 * Notice that it is important for the caller to know if the timer
 884 * actually started or not (i.e., the replenishment instant is in
 885 * the future or in the past).
 886 */
 887static int start_dl_timer(struct task_struct *p)
 888{
 889	struct sched_dl_entity *dl_se = &p->dl;
 890	struct hrtimer *timer = &dl_se->dl_timer;
 891	struct rq *rq = task_rq(p);
 
 892	ktime_t now, act;
 893	s64 delta;
 894
 895	lockdep_assert_held(&rq->lock);
 896
 897	/*
 898	 * We want the timer to fire at the deadline, but considering
 899	 * that it is actually coming from rq->clock and not from
 900	 * hrtimer's time base reading.
 901	 */
 902	act = ns_to_ktime(dl_next_period(dl_se));
 
 
 
 
 
 
 
 
 
 
 
 
 
 903	now = hrtimer_cb_get_time(timer);
 904	delta = ktime_to_ns(now) - rq_clock(rq);
 905	act = ktime_add_ns(act, delta);
 906
 907	/*
 908	 * If the expiry time already passed, e.g., because the value
 909	 * chosen as the deadline is too small, don't even try to
 910	 * start the timer in the past!
 911	 */
 912	if (ktime_us_delta(act, now) < 0)
 913		return 0;
 914
 915	/*
 916	 * !enqueued will guarantee another callback; even if one is already in
 917	 * progress. This ensures a balanced {get,put}_task_struct().
 918	 *
 919	 * The race against __run_timer() clearing the enqueued state is
 920	 * harmless because we're holding task_rq()->lock, therefore the timer
 921	 * expiring after we've done the check will wait on its task_rq_lock()
 922	 * and observe our state.
 923	 */
 924	if (!hrtimer_is_queued(timer)) {
 925		get_task_struct(p);
 926		hrtimer_start(timer, act, HRTIMER_MODE_ABS);
 
 927	}
 928
 929	return 1;
 930}
 931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 932/*
 933 * This is the bandwidth enforcement timer callback. If here, we know
 934 * a task is not on its dl_rq, since the fact that the timer was running
 935 * means the task is throttled and needs a runtime replenishment.
 936 *
 937 * However, what we actually do depends on the fact the task is active,
 938 * (it is on its rq) or has been removed from there by a call to
 939 * dequeue_task_dl(). In the former case we must issue the runtime
 940 * replenishment and add the task back to the dl_rq; in the latter, we just
 941 * do nothing but clearing dl_throttled, so that runtime and deadline
 942 * updating (and the queueing back to dl_rq) will be done by the
 943 * next call to enqueue_task_dl().
 944 */
 945static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
 946{
 947	struct sched_dl_entity *dl_se = container_of(timer,
 948						     struct sched_dl_entity,
 949						     dl_timer);
 950	struct task_struct *p = dl_task_of(dl_se);
 951	struct rq_flags rf;
 952	struct rq *rq;
 953
 
 
 
 
 954	rq = task_rq_lock(p, &rf);
 955
 956	/*
 957	 * The task might have changed its scheduling policy to something
 958	 * different than SCHED_DEADLINE (through switched_from_dl()).
 959	 */
 960	if (!dl_task(p))
 961		goto unlock;
 962
 963	/*
 964	 * The task might have been boosted by someone else and might be in the
 965	 * boosting/deboosting path, its not throttled.
 966	 */
 967	if (dl_se->dl_boosted)
 968		goto unlock;
 969
 970	/*
 971	 * Spurious timer due to start_dl_timer() race; or we already received
 972	 * a replenishment from rt_mutex_setprio().
 973	 */
 974	if (!dl_se->dl_throttled)
 975		goto unlock;
 976
 977	sched_clock_tick();
 978	update_rq_clock(rq);
 979
 980	/*
 981	 * If the throttle happened during sched-out; like:
 982	 *
 983	 *   schedule()
 984	 *     deactivate_task()
 985	 *       dequeue_task_dl()
 986	 *         update_curr_dl()
 987	 *           start_dl_timer()
 988	 *         __dequeue_task_dl()
 989	 *     prev->on_rq = 0;
 990	 *
 991	 * We can be both throttled and !queued. Replenish the counter
 992	 * but do not enqueue -- wait for our wakeup to do that.
 993	 */
 994	if (!task_on_rq_queued(p)) {
 995		replenish_dl_entity(dl_se, dl_se);
 996		goto unlock;
 997	}
 998
 999#ifdef CONFIG_SMP
1000	if (unlikely(!rq->online)) {
1001		/*
1002		 * If the runqueue is no longer available, migrate the
1003		 * task elsewhere. This necessarily changes rq.
1004		 */
1005		lockdep_unpin_lock(&rq->lock, rf.cookie);
1006		rq = dl_task_offline_migration(rq, p);
1007		rf.cookie = lockdep_pin_lock(&rq->lock);
1008		update_rq_clock(rq);
1009
1010		/*
1011		 * Now that the task has been migrated to the new RQ and we
1012		 * have that locked, proceed as normal and enqueue the task
1013		 * there.
1014		 */
1015	}
1016#endif
1017
1018	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1019	if (dl_task(rq->curr))
1020		check_preempt_curr_dl(rq, p, 0);
1021	else
1022		resched_curr(rq);
1023
1024#ifdef CONFIG_SMP
1025	/*
1026	 * Queueing this task back might have overloaded rq, check if we need
1027	 * to kick someone away.
1028	 */
1029	if (has_pushable_dl_tasks(rq)) {
1030		/*
1031		 * Nothing relies on rq->lock after this, so its safe to drop
1032		 * rq->lock.
1033		 */
1034		rq_unpin_lock(rq, &rf);
1035		push_dl_task(rq);
1036		rq_repin_lock(rq, &rf);
1037	}
1038#endif
1039
1040unlock:
1041	task_rq_unlock(rq, p, &rf);
1042
1043	/*
1044	 * This can free the task_struct, including this hrtimer, do not touch
1045	 * anything related to that after this.
1046	 */
1047	put_task_struct(p);
1048
1049	return HRTIMER_NORESTART;
1050}
1051
1052void init_dl_task_timer(struct sched_dl_entity *dl_se)
1053{
1054	struct hrtimer *timer = &dl_se->dl_timer;
1055
1056	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1057	timer->function = dl_task_timer;
1058}
1059
1060/*
1061 * During the activation, CBS checks if it can reuse the current task's
1062 * runtime and period. If the deadline of the task is in the past, CBS
1063 * cannot use the runtime, and so it replenishes the task. This rule
1064 * works fine for implicit deadline tasks (deadline == period), and the
1065 * CBS was designed for implicit deadline tasks. However, a task with
1066 * constrained deadline (deadine < period) might be awakened after the
1067 * deadline, but before the next period. In this case, replenishing the
1068 * task would allow it to run for runtime / deadline. As in this case
1069 * deadline < period, CBS enables a task to run for more than the
1070 * runtime / period. In a very loaded system, this can cause a domino
1071 * effect, making other tasks miss their deadlines.
1072 *
1073 * To avoid this problem, in the activation of a constrained deadline
1074 * task after the deadline but before the next period, throttle the
1075 * task and set the replenishing timer to the begin of the next period,
1076 * unless it is boosted.
1077 */
1078static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1079{
1080	struct task_struct *p = dl_task_of(dl_se);
1081	struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1082
1083	if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1084	    dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1085		if (unlikely(dl_se->dl_boosted || !start_dl_timer(p)))
1086			return;
1087		dl_se->dl_throttled = 1;
1088		if (dl_se->runtime > 0)
1089			dl_se->runtime = 0;
1090	}
1091}
1092
1093static
1094int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1095{
1096	return (dl_se->runtime <= 0);
1097}
1098
1099extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
1100
1101/*
1102 * This function implements the GRUB accounting rule:
1103 * according to the GRUB reclaiming algorithm, the runtime is
1104 * not decreased as "dq = -dt", but as
1105 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1106 * where u is the utilization of the task, Umax is the maximum reclaimable
1107 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1108 * as the difference between the "total runqueue utilization" and the
1109 * runqueue active utilization, and Uextra is the (per runqueue) extra
1110 * reclaimable utilization.
1111 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
1112 * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1113 * BW_SHIFT.
1114 * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT,
1115 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1116 * Since delta is a 64 bit variable, to have an overflow its value
1117 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1118 * So, overflow is not an issue here.
1119 */
1120static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1121{
1122	u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1123	u64 u_act;
1124	u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
1125
1126	/*
1127	 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1128	 * we compare u_inact + rq->dl.extra_bw with
1129	 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1130	 * u_inact + rq->dl.extra_bw can be larger than
1131	 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1132	 * leading to wrong results)
1133	 */
1134	if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
1135		u_act = u_act_min;
1136	else
1137		u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
1138
 
1139	return (delta * u_act) >> BW_SHIFT;
1140}
1141
1142/*
1143 * Update the current task's runtime statistics (provided it is still
1144 * a -deadline task and has not been removed from the dl_rq).
1145 */
1146static void update_curr_dl(struct rq *rq)
1147{
1148	struct task_struct *curr = rq->curr;
1149	struct sched_dl_entity *dl_se = &curr->dl;
1150	u64 delta_exec, scaled_delta_exec;
1151	int cpu = cpu_of(rq);
1152	u64 now;
1153
1154	if (!dl_task(curr) || !on_dl_rq(dl_se))
1155		return;
1156
1157	/*
1158	 * Consumed budget is computed considering the time as
1159	 * observed by schedulable tasks (excluding time spent
1160	 * in hardirq context, etc.). Deadlines are instead
1161	 * computed using hard walltime. This seems to be the more
1162	 * natural solution, but the full ramifications of this
1163	 * approach need further study.
1164	 */
1165	now = rq_clock_task(rq);
1166	delta_exec = now - curr->se.exec_start;
1167	if (unlikely((s64)delta_exec <= 0)) {
1168		if (unlikely(dl_se->dl_yielded))
1169			goto throttle;
1170		return;
1171	}
1172
1173	schedstat_set(curr->se.statistics.exec_max,
1174		      max(curr->se.statistics.exec_max, delta_exec));
1175
1176	curr->se.sum_exec_runtime += delta_exec;
1177	account_group_exec_runtime(curr, delta_exec);
1178
1179	curr->se.exec_start = now;
1180	cgroup_account_cputime(curr, delta_exec);
1181
1182	sched_rt_avg_update(rq, delta_exec);
1183
1184	if (dl_entity_is_special(dl_se))
1185		return;
1186
1187	/*
1188	 * For tasks that participate in GRUB, we implement GRUB-PA: the
1189	 * spare reclaimed bandwidth is used to clock down frequency.
1190	 *
1191	 * For the others, we still need to scale reservation parameters
1192	 * according to current frequency and CPU maximum capacity.
1193	 */
1194	if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1195		scaled_delta_exec = grub_reclaim(delta_exec,
1196						 rq,
1197						 &curr->dl);
1198	} else {
 
1199		unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1200		unsigned long scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
1201
1202		scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1203		scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1204	}
1205
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1206	dl_se->runtime -= scaled_delta_exec;
1207
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1208throttle:
1209	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1210		dl_se->dl_throttled = 1;
1211
1212		/* If requested, inform the user about runtime overruns. */
1213		if (dl_runtime_exceeded(dl_se) &&
1214		    (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1215			dl_se->dl_overrun = 1;
1216
1217		__dequeue_task_dl(rq, curr, 0);
1218		if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
1219			enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
 
 
 
 
 
 
 
 
 
1220
1221		if (!is_leftmost(curr, &rq->dl))
1222			resched_curr(rq);
1223	}
1224
1225	/*
 
 
 
 
 
 
 
 
1226	 * Because -- for now -- we share the rt bandwidth, we need to
1227	 * account our runtime there too, otherwise actual rt tasks
1228	 * would be able to exceed the shared quota.
1229	 *
1230	 * Account to the root rt group for now.
1231	 *
1232	 * The solution we're working towards is having the RT groups scheduled
1233	 * using deadline servers -- however there's a few nasties to figure
1234	 * out before that can happen.
1235	 */
1236	if (rt_bandwidth_enabled()) {
1237		struct rt_rq *rt_rq = &rq->rt;
1238
1239		raw_spin_lock(&rt_rq->rt_runtime_lock);
1240		/*
1241		 * We'll let actual RT tasks worry about the overflow here, we
1242		 * have our own CBS to keep us inline; only account when RT
1243		 * bandwidth is relevant.
1244		 */
1245		if (sched_rt_bandwidth_account(rt_rq))
1246			rt_rq->rt_time += delta_exec;
1247		raw_spin_unlock(&rt_rq->rt_runtime_lock);
1248	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1249}
1250
1251static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1252{
1253	struct sched_dl_entity *dl_se = container_of(timer,
1254						     struct sched_dl_entity,
1255						     inactive_timer);
1256	struct task_struct *p = dl_task_of(dl_se);
1257	struct rq_flags rf;
1258	struct rq *rq;
1259
1260	rq = task_rq_lock(p, &rf);
 
 
 
 
 
 
1261
1262	sched_clock_tick();
1263	update_rq_clock(rq);
1264
1265	if (!dl_task(p) || p->state == TASK_DEAD) {
 
 
 
1266		struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1267
1268		if (p->state == TASK_DEAD && dl_se->dl_non_contending) {
1269			sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1270			sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1271			dl_se->dl_non_contending = 0;
1272		}
1273
1274		raw_spin_lock(&dl_b->lock);
1275		__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1276		raw_spin_unlock(&dl_b->lock);
1277		__dl_clear_params(p);
1278
1279		goto unlock;
1280	}
 
 
1281	if (dl_se->dl_non_contending == 0)
1282		goto unlock;
1283
1284	sub_running_bw(dl_se, &rq->dl);
1285	dl_se->dl_non_contending = 0;
1286unlock:
1287	task_rq_unlock(rq, p, &rf);
1288	put_task_struct(p);
 
 
 
 
 
1289
1290	return HRTIMER_NORESTART;
1291}
1292
1293void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1294{
1295	struct hrtimer *timer = &dl_se->inactive_timer;
1296
1297	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1298	timer->function = inactive_task_timer;
1299}
1300
 
 
 
1301#ifdef CONFIG_SMP
1302
1303static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1304{
1305	struct rq *rq = rq_of_dl_rq(dl_rq);
1306
1307	if (dl_rq->earliest_dl.curr == 0 ||
1308	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
 
 
1309		dl_rq->earliest_dl.curr = deadline;
1310		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1311	}
1312}
1313
1314static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1315{
1316	struct rq *rq = rq_of_dl_rq(dl_rq);
1317
1318	/*
1319	 * Since we may have removed our earliest (and/or next earliest)
1320	 * task we must recompute them.
1321	 */
1322	if (!dl_rq->dl_nr_running) {
1323		dl_rq->earliest_dl.curr = 0;
1324		dl_rq->earliest_dl.next = 0;
1325		cpudl_clear(&rq->rd->cpudl, rq->cpu);
 
1326	} else {
1327		struct rb_node *leftmost = dl_rq->root.rb_leftmost;
1328		struct sched_dl_entity *entry;
1329
1330		entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
1331		dl_rq->earliest_dl.curr = entry->deadline;
1332		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1333	}
1334}
1335
1336#else
1337
1338static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1339static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1340
1341#endif /* CONFIG_SMP */
1342
1343static inline
1344void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1345{
1346	int prio = dl_task_of(dl_se)->prio;
1347	u64 deadline = dl_se->deadline;
1348
1349	WARN_ON(!dl_prio(prio));
1350	dl_rq->dl_nr_running++;
1351	add_nr_running(rq_of_dl_rq(dl_rq), 1);
1352
1353	inc_dl_deadline(dl_rq, deadline);
1354	inc_dl_migration(dl_se, dl_rq);
1355}
1356
1357static inline
1358void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1359{
1360	int prio = dl_task_of(dl_se)->prio;
1361
1362	WARN_ON(!dl_prio(prio));
1363	WARN_ON(!dl_rq->dl_nr_running);
1364	dl_rq->dl_nr_running--;
1365	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1366
1367	dec_dl_deadline(dl_rq, dl_se->deadline);
1368	dec_dl_migration(dl_se, dl_rq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1369}
1370
1371static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1372{
1373	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1374	struct rb_node **link = &dl_rq->root.rb_root.rb_node;
1375	struct rb_node *parent = NULL;
1376	struct sched_dl_entity *entry;
1377	int leftmost = 1;
1378
1379	BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
1380
1381	while (*link) {
1382		parent = *link;
1383		entry = rb_entry(parent, struct sched_dl_entity, rb_node);
1384		if (dl_time_before(dl_se->deadline, entry->deadline))
1385			link = &parent->rb_left;
1386		else {
1387			link = &parent->rb_right;
1388			leftmost = 0;
1389		}
1390	}
1391
1392	rb_link_node(&dl_se->rb_node, parent, link);
1393	rb_insert_color_cached(&dl_se->rb_node, &dl_rq->root, leftmost);
 
1394
1395	inc_dl_tasks(dl_se, dl_rq);
1396}
1397
1398static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1399{
1400	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1401
1402	if (RB_EMPTY_NODE(&dl_se->rb_node))
1403		return;
1404
1405	rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
 
1406	RB_CLEAR_NODE(&dl_se->rb_node);
1407
1408	dec_dl_tasks(dl_se, dl_rq);
1409}
1410
1411static void
1412enqueue_dl_entity(struct sched_dl_entity *dl_se,
1413		  struct sched_dl_entity *pi_se, int flags)
1414{
1415	BUG_ON(on_dl_rq(dl_se));
1416
1417	/*
1418	 * If this is a wakeup or a new instance, the scheduling
1419	 * parameters of the task might need updating. Otherwise,
1420	 * we want a replenishment of its runtime.
1421	 */
1422	if (flags & ENQUEUE_WAKEUP) {
1423		task_contending(dl_se, flags);
1424		update_dl_entity(dl_se, pi_se);
1425	} else if (flags & ENQUEUE_REPLENISH) {
1426		replenish_dl_entity(dl_se, pi_se);
1427	} else if ((flags & ENQUEUE_RESTORE) &&
1428		  dl_time_before(dl_se->deadline,
1429				 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
1430		setup_new_dl_entity(dl_se);
1431	}
1432
1433	__enqueue_dl_entity(dl_se);
1434}
1435
1436static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1437{
1438	__dequeue_dl_entity(dl_se);
1439}
1440
1441static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1442{
1443	struct task_struct *pi_task = rt_mutex_get_top_task(p);
1444	struct sched_dl_entity *pi_se = &p->dl;
1445
1446	/*
1447	 * Use the scheduling parameters of the top pi-waiter task if:
1448	 * - we have a top pi-waiter which is a SCHED_DEADLINE task AND
1449	 * - our dl_boosted is set (i.e. the pi-waiter's (absolute) deadline is
1450	 *   smaller than our deadline OR we are a !SCHED_DEADLINE task getting
1451	 *   boosted due to a SCHED_DEADLINE pi-waiter).
1452	 * Otherwise we keep our runtime and deadline.
1453	 */
1454	if (pi_task && dl_prio(pi_task->normal_prio) && p->dl.dl_boosted) {
1455		pi_se = &pi_task->dl;
1456	} else if (!dl_prio(p->normal_prio)) {
1457		/*
1458		 * Special case in which we have a !SCHED_DEADLINE task
1459		 * that is going to be deboosted, but exceeds its
1460		 * runtime while doing so. No point in replenishing
1461		 * it, as it's going to return back to its original
1462		 * scheduling class after this.
1463		 */
1464		BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
1465		return;
1466	}
1467
1468	/*
1469	 * Check if a constrained deadline task was activated
1470	 * after the deadline but before the next period.
1471	 * If that is the case, the task will be throttled and
1472	 * the replenishment timer will be set to the next period.
1473	 */
1474	if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
1475		dl_check_constrained_dl(&p->dl);
1476
1477	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
1478		add_rq_bw(&p->dl, &rq->dl);
1479		add_running_bw(&p->dl, &rq->dl);
 
 
1480	}
1481
1482	/*
1483	 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1484	 * its budget it needs a replenishment and, since it now is on
1485	 * its rq, the bandwidth timer callback (which clearly has not
1486	 * run yet) will take care of this.
1487	 * However, the active utilization does not depend on the fact
1488	 * that the task is on the runqueue or not (but depends on the
1489	 * task's state - in GRUB parlance, "inactive" vs "active contending").
1490	 * In other words, even if a task is throttled its utilization must
1491	 * be counted in the active utilization; hence, we need to call
1492	 * add_running_bw().
1493	 */
1494	if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1495		if (flags & ENQUEUE_WAKEUP)
1496			task_contending(&p->dl, flags);
1497
1498		return;
1499	}
1500
1501	enqueue_dl_entity(&p->dl, pi_se, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1502
1503	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1504		enqueue_pushable_dl_task(rq, p);
1505}
 
 
 
1506
1507static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1508{
1509	dequeue_dl_entity(&p->dl);
1510	dequeue_pushable_dl_task(rq, p);
 
 
 
 
 
 
 
 
 
1511}
1512
1513static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1514{
1515	update_curr_dl(rq);
1516	__dequeue_task_dl(rq, p, flags);
1517
1518	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
1519		sub_running_bw(&p->dl, &rq->dl);
1520		sub_rq_bw(&p->dl, &rq->dl);
 
 
1521	}
1522
1523	/*
1524	 * This check allows to start the inactive timer (or to immediately
1525	 * decrease the active utilization, if needed) in two cases:
1526	 * when the task blocks and when it is terminating
1527	 * (p->state == TASK_DEAD). We can handle the two cases in the same
1528	 * way, because from GRUB's point of view the same thing is happening
1529	 * (the task moves from "active contending" to "active non contending"
1530	 * or "inactive")
1531	 */
1532	if (flags & DEQUEUE_SLEEP)
1533		task_non_contending(p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1534}
1535
1536/*
1537 * Yield task semantic for -deadline tasks is:
1538 *
1539 *   get off from the CPU until our next instance, with
1540 *   a new runtime. This is of little use now, since we
1541 *   don't have a bandwidth reclaiming mechanism. Anyway,
1542 *   bandwidth reclaiming is planned for the future, and
1543 *   yield_task_dl will indicate that some spare budget
1544 *   is available for other task instances to use it.
1545 */
1546static void yield_task_dl(struct rq *rq)
1547{
1548	/*
1549	 * We make the task go to sleep until its current deadline by
1550	 * forcing its runtime to zero. This way, update_curr_dl() stops
1551	 * it and the bandwidth timer will wake it up and will give it
1552	 * new scheduling parameters (thanks to dl_yielded=1).
1553	 */
1554	rq->curr->dl.dl_yielded = 1;
1555
1556	update_rq_clock(rq);
1557	update_curr_dl(rq);
1558	/*
1559	 * Tell update_rq_clock() that we've just updated,
1560	 * so we don't do microscopic update in schedule()
1561	 * and double the fastpath cost.
1562	 */
1563	rq_clock_skip_update(rq);
1564}
1565
1566#ifdef CONFIG_SMP
1567
 
 
 
 
 
 
 
 
1568static int find_later_rq(struct task_struct *task);
1569
1570static int
1571select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1572{
1573	struct task_struct *curr;
 
1574	struct rq *rq;
1575
1576	if (sd_flag != SD_BALANCE_WAKE)
1577		goto out;
1578
1579	rq = cpu_rq(cpu);
1580
1581	rcu_read_lock();
1582	curr = READ_ONCE(rq->curr); /* unlocked access */
 
1583
1584	/*
1585	 * If we are dealing with a -deadline task, we must
1586	 * decide where to wake it up.
1587	 * If it has a later deadline and the current task
1588	 * on this rq can't move (provided the waking task
1589	 * can!) we prefer to send it somewhere else. On the
1590	 * other hand, if it has a shorter deadline, we
1591	 * try to make it stay here, it might be important.
1592	 */
1593	if (unlikely(dl_task(curr)) &&
1594	    (curr->nr_cpus_allowed < 2 ||
1595	     !dl_entity_preempt(&p->dl, &curr->dl)) &&
1596	    (p->nr_cpus_allowed > 1)) {
 
 
 
 
 
 
 
 
 
1597		int target = find_later_rq(p);
1598
1599		if (target != -1 &&
1600				(dl_time_before(p->dl.deadline,
1601					cpu_rq(target)->dl.earliest_dl.curr) ||
1602				(cpu_rq(target)->dl.dl_nr_running == 0)))
1603			cpu = target;
1604	}
1605	rcu_read_unlock();
1606
1607out:
1608	return cpu;
1609}
1610
1611static void migrate_task_rq_dl(struct task_struct *p)
1612{
 
1613	struct rq *rq;
1614
1615	if (p->state != TASK_WAKING)
1616		return;
1617
1618	rq = task_rq(p);
1619	/*
1620	 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1621	 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1622	 * rq->lock is not... So, lock it
1623	 */
1624	raw_spin_lock(&rq->lock);
1625	if (p->dl.dl_non_contending) {
 
1626		sub_running_bw(&p->dl, &rq->dl);
1627		p->dl.dl_non_contending = 0;
1628		/*
1629		 * If the timer handler is currently running and the
1630		 * timer cannot be cancelled, inactive_task_timer()
1631		 * will see that dl_not_contending is not set, and
1632		 * will not touch the rq's active utilization,
1633		 * so we are still safe.
1634		 */
1635		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1636			put_task_struct(p);
1637	}
1638	sub_rq_bw(&p->dl, &rq->dl);
1639	raw_spin_unlock(&rq->lock);
1640}
1641
1642static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1643{
1644	/*
1645	 * Current can't be migrated, useless to reschedule,
1646	 * let's hope p can move out.
1647	 */
1648	if (rq->curr->nr_cpus_allowed == 1 ||
1649	    !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1650		return;
1651
1652	/*
1653	 * p is migratable, so let's not schedule it and
1654	 * see if it is pushed or pulled somewhere else.
1655	 */
1656	if (p->nr_cpus_allowed != 1 &&
1657	    cpudl_find(&rq->rd->cpudl, p, NULL))
1658		return;
1659
1660	resched_curr(rq);
1661}
1662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1663#endif /* CONFIG_SMP */
1664
1665/*
1666 * Only called when both the current and waking task are -deadline
1667 * tasks.
1668 */
1669static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1670				  int flags)
1671{
1672	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1673		resched_curr(rq);
1674		return;
1675	}
1676
1677#ifdef CONFIG_SMP
1678	/*
1679	 * In the unlikely case current and p have the same deadline
1680	 * let us try to decide what's the best thing to do...
1681	 */
1682	if ((p->dl.deadline == rq->curr->dl.deadline) &&
1683	    !test_tsk_need_resched(rq->curr))
1684		check_preempt_equal_dl(rq, p);
1685#endif /* CONFIG_SMP */
1686}
1687
1688#ifdef CONFIG_SCHED_HRTICK
1689static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1690{
1691	hrtick_start(rq, p->dl.runtime);
1692}
1693#else /* !CONFIG_SCHED_HRTICK */
1694static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1695{
1696}
1697#endif
1698
1699static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1700						   struct dl_rq *dl_rq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1701{
1702	struct rb_node *left = rb_first_cached(&dl_rq->root);
1703
1704	if (!left)
1705		return NULL;
1706
1707	return rb_entry(left, struct sched_dl_entity, rb_node);
1708}
1709
1710static struct task_struct *
1711pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
 
 
 
1712{
1713	struct sched_dl_entity *dl_se;
 
1714	struct task_struct *p;
1715	struct dl_rq *dl_rq;
1716
1717	dl_rq = &rq->dl;
1718
1719	if (need_pull_dl_task(rq, prev)) {
1720		/*
1721		 * This is OK, because current is on_cpu, which avoids it being
1722		 * picked for load-balance and preemption/IRQs are still
1723		 * disabled avoiding further scheduler activity on it and we're
1724		 * being very careful to re-start the picking loop.
1725		 */
1726		rq_unpin_lock(rq, rf);
1727		pull_dl_task(rq);
1728		rq_repin_lock(rq, rf);
1729		/*
1730		 * pull_dl_task() can drop (and re-acquire) rq->lock; this
1731		 * means a stop task can slip in, in which case we need to
1732		 * re-start task selection.
1733		 */
1734		if (rq->stop && task_on_rq_queued(rq->stop))
1735			return RETRY_TASK;
1736	}
1737
1738	/*
1739	 * When prev is DL, we may throttle it in put_prev_task().
1740	 * So, we update time before we check for dl_nr_running.
1741	 */
1742	if (prev->sched_class == &dl_sched_class)
1743		update_curr_dl(rq);
1744
1745	if (unlikely(!dl_rq->dl_nr_running))
1746		return NULL;
1747
1748	put_prev_task(rq, prev);
 
1749
1750	dl_se = pick_next_dl_entity(rq, dl_rq);
1751	BUG_ON(!dl_se);
1752
1753	p = dl_task_of(dl_se);
1754	p->se.exec_start = rq_clock_task(rq);
1755
1756	/* Running task will never be pushed. */
1757       dequeue_pushable_dl_task(rq, p);
1758
1759	if (hrtick_enabled(rq))
1760		start_hrtick_dl(rq, p);
1761
1762	deadline_queue_push_tasks(rq);
1763
1764	return p;
1765}
1766
1767static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
 
 
 
 
 
1768{
 
 
 
 
 
 
1769	update_curr_dl(rq);
1770
 
1771	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1772		enqueue_pushable_dl_task(rq, p);
1773}
1774
1775/*
1776 * scheduler tick hitting a task of our scheduling class.
1777 *
1778 * NOTE: This function can be called remotely by the tick offload that
1779 * goes along full dynticks. Therefore no local assumption can be made
1780 * and everything must be accessed through the @rq and @curr passed in
1781 * parameters.
1782 */
1783static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1784{
1785	update_curr_dl(rq);
1786
 
1787	/*
1788	 * Even when we have runtime, update_curr_dl() might have resulted in us
1789	 * not being the leftmost task anymore. In that case NEED_RESCHED will
1790	 * be set and schedule() will start a new hrtick for the next task.
1791	 */
1792	if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1793	    is_leftmost(p, &rq->dl))
1794		start_hrtick_dl(rq, p);
1795}
1796
1797static void task_fork_dl(struct task_struct *p)
1798{
1799	/*
1800	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1801	 * sched_fork()
1802	 */
1803}
1804
1805static void set_curr_task_dl(struct rq *rq)
1806{
1807	struct task_struct *p = rq->curr;
1808
1809	p->se.exec_start = rq_clock_task(rq);
1810
1811	/* You can't push away the running task */
1812	dequeue_pushable_dl_task(rq, p);
1813}
1814
1815#ifdef CONFIG_SMP
1816
1817/* Only try algorithms three times */
1818#define DL_MAX_TRIES 3
1819
1820static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1821{
1822	if (!task_running(rq, p) &&
1823	    cpumask_test_cpu(cpu, &p->cpus_allowed))
1824		return 1;
1825	return 0;
1826}
1827
1828/*
1829 * Return the earliest pushable rq's task, which is suitable to be executed
1830 * on the CPU, NULL otherwise:
1831 */
1832static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1833{
1834	struct rb_node *next_node = rq->dl.pushable_dl_tasks_root.rb_leftmost;
1835	struct task_struct *p = NULL;
 
1836
1837	if (!has_pushable_dl_tasks(rq))
1838		return NULL;
1839
 
 
1840next_node:
1841	if (next_node) {
1842		p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1843
1844		if (pick_dl_task(rq, p, cpu))
1845			return p;
1846
1847		next_node = rb_next(next_node);
1848		goto next_node;
1849	}
1850
1851	return NULL;
1852}
1853
1854static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1855
1856static int find_later_rq(struct task_struct *task)
1857{
1858	struct sched_domain *sd;
1859	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1860	int this_cpu = smp_processor_id();
1861	int cpu = task_cpu(task);
1862
1863	/* Make sure the mask is initialized first */
1864	if (unlikely(!later_mask))
1865		return -1;
1866
1867	if (task->nr_cpus_allowed == 1)
1868		return -1;
1869
1870	/*
1871	 * We have to consider system topology and task affinity
1872	 * first, then we can look for a suitable CPU.
1873	 */
1874	if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
1875		return -1;
1876
1877	/*
1878	 * If we are here, some targets have been found, including
1879	 * the most suitable which is, among the runqueues where the
1880	 * current tasks have later deadlines than the task's one, the
1881	 * rq with the latest possible one.
1882	 *
1883	 * Now we check how well this matches with task's
1884	 * affinity and system topology.
1885	 *
1886	 * The last CPU where the task run is our first
1887	 * guess, since it is most likely cache-hot there.
1888	 */
1889	if (cpumask_test_cpu(cpu, later_mask))
1890		return cpu;
1891	/*
1892	 * Check if this_cpu is to be skipped (i.e., it is
1893	 * not in the mask) or not.
1894	 */
1895	if (!cpumask_test_cpu(this_cpu, later_mask))
1896		this_cpu = -1;
1897
1898	rcu_read_lock();
1899	for_each_domain(cpu, sd) {
1900		if (sd->flags & SD_WAKE_AFFINE) {
1901			int best_cpu;
1902
1903			/*
1904			 * If possible, preempting this_cpu is
1905			 * cheaper than migrating.
1906			 */
1907			if (this_cpu != -1 &&
1908			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1909				rcu_read_unlock();
1910				return this_cpu;
1911			}
1912
1913			best_cpu = cpumask_first_and(later_mask,
1914							sched_domain_span(sd));
1915			/*
1916			 * Last chance: if a CPU being in both later_mask
1917			 * and current sd span is valid, that becomes our
1918			 * choice. Of course, the latest possible CPU is
1919			 * already under consideration through later_mask.
1920			 */
1921			if (best_cpu < nr_cpu_ids) {
1922				rcu_read_unlock();
1923				return best_cpu;
1924			}
1925		}
1926	}
1927	rcu_read_unlock();
1928
1929	/*
1930	 * At this point, all our guesses failed, we just return
1931	 * 'something', and let the caller sort the things out.
1932	 */
1933	if (this_cpu != -1)
1934		return this_cpu;
1935
1936	cpu = cpumask_any(later_mask);
1937	if (cpu < nr_cpu_ids)
1938		return cpu;
1939
1940	return -1;
1941}
1942
1943/* Locks the rq it finds */
1944static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1945{
1946	struct rq *later_rq = NULL;
1947	int tries;
1948	int cpu;
1949
1950	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1951		cpu = find_later_rq(task);
1952
1953		if ((cpu == -1) || (cpu == rq->cpu))
1954			break;
1955
1956		later_rq = cpu_rq(cpu);
1957
1958		if (later_rq->dl.dl_nr_running &&
1959		    !dl_time_before(task->dl.deadline,
1960					later_rq->dl.earliest_dl.curr)) {
1961			/*
1962			 * Target rq has tasks of equal or earlier deadline,
1963			 * retrying does not release any lock and is unlikely
1964			 * to yield a different result.
1965			 */
1966			later_rq = NULL;
1967			break;
1968		}
1969
1970		/* Retry if something changed. */
1971		if (double_lock_balance(rq, later_rq)) {
1972			if (unlikely(task_rq(task) != rq ||
1973				     !cpumask_test_cpu(later_rq->cpu, &task->cpus_allowed) ||
1974				     task_running(rq, task) ||
1975				     !dl_task(task) ||
 
1976				     !task_on_rq_queued(task))) {
1977				double_unlock_balance(rq, later_rq);
1978				later_rq = NULL;
1979				break;
1980			}
1981		}
1982
1983		/*
1984		 * If the rq we found has no -deadline task, or
1985		 * its earliest one has a later deadline than our
1986		 * task, the rq is a good one.
1987		 */
1988		if (!later_rq->dl.dl_nr_running ||
1989		    dl_time_before(task->dl.deadline,
1990				   later_rq->dl.earliest_dl.curr))
1991			break;
1992
1993		/* Otherwise we try again. */
1994		double_unlock_balance(rq, later_rq);
1995		later_rq = NULL;
1996	}
1997
1998	return later_rq;
1999}
2000
2001static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2002{
2003	struct task_struct *p;
2004
2005	if (!has_pushable_dl_tasks(rq))
2006		return NULL;
2007
2008	p = rb_entry(rq->dl.pushable_dl_tasks_root.rb_leftmost,
2009		     struct task_struct, pushable_dl_tasks);
2010
2011	BUG_ON(rq->cpu != task_cpu(p));
2012	BUG_ON(task_current(rq, p));
2013	BUG_ON(p->nr_cpus_allowed <= 1);
2014
2015	BUG_ON(!task_on_rq_queued(p));
2016	BUG_ON(!dl_task(p));
2017
2018	return p;
2019}
2020
2021/*
2022 * See if the non running -deadline tasks on this rq
2023 * can be sent to some other CPU where they can preempt
2024 * and start executing.
2025 */
2026static int push_dl_task(struct rq *rq)
2027{
2028	struct task_struct *next_task;
2029	struct rq *later_rq;
2030	int ret = 0;
2031
2032	if (!rq->dl.overloaded)
2033		return 0;
2034
2035	next_task = pick_next_pushable_dl_task(rq);
2036	if (!next_task)
2037		return 0;
2038
2039retry:
2040	if (unlikely(next_task == rq->curr)) {
2041		WARN_ON(1);
2042		return 0;
2043	}
2044
2045	/*
2046	 * If next_task preempts rq->curr, and rq->curr
2047	 * can move away, it makes sense to just reschedule
2048	 * without going further in pushing next_task.
2049	 */
2050	if (dl_task(rq->curr) &&
2051	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2052	    rq->curr->nr_cpus_allowed > 1) {
2053		resched_curr(rq);
2054		return 0;
2055	}
2056
 
 
 
 
 
 
2057	/* We might release rq lock */
2058	get_task_struct(next_task);
2059
2060	/* Will lock the rq it'll find */
2061	later_rq = find_lock_later_rq(next_task, rq);
2062	if (!later_rq) {
2063		struct task_struct *task;
2064
2065		/*
2066		 * We must check all this again, since
2067		 * find_lock_later_rq releases rq->lock and it is
2068		 * then possible that next_task has migrated.
2069		 */
2070		task = pick_next_pushable_dl_task(rq);
2071		if (task == next_task) {
2072			/*
2073			 * The task is still there. We don't try
2074			 * again, some other CPU will pull it when ready.
2075			 */
2076			goto out;
2077		}
2078
2079		if (!task)
2080			/* No more tasks */
2081			goto out;
2082
2083		put_task_struct(next_task);
2084		next_task = task;
2085		goto retry;
2086	}
2087
2088	deactivate_task(rq, next_task, 0);
2089	sub_running_bw(&next_task->dl, &rq->dl);
2090	sub_rq_bw(&next_task->dl, &rq->dl);
2091	set_task_cpu(next_task, later_rq->cpu);
2092	add_rq_bw(&next_task->dl, &later_rq->dl);
2093	add_running_bw(&next_task->dl, &later_rq->dl);
2094	activate_task(later_rq, next_task, 0);
2095	ret = 1;
2096
2097	resched_curr(later_rq);
2098
2099	double_unlock_balance(rq, later_rq);
2100
2101out:
2102	put_task_struct(next_task);
2103
2104	return ret;
2105}
2106
2107static void push_dl_tasks(struct rq *rq)
2108{
2109	/* push_dl_task() will return true if it moved a -deadline task */
2110	while (push_dl_task(rq))
2111		;
2112}
2113
2114static void pull_dl_task(struct rq *this_rq)
2115{
2116	int this_cpu = this_rq->cpu, cpu;
2117	struct task_struct *p;
2118	bool resched = false;
2119	struct rq *src_rq;
2120	u64 dmin = LONG_MAX;
2121
2122	if (likely(!dl_overloaded(this_rq)))
2123		return;
2124
2125	/*
2126	 * Match the barrier from dl_set_overloaded; this guarantees that if we
2127	 * see overloaded we must also see the dlo_mask bit.
2128	 */
2129	smp_rmb();
2130
2131	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2132		if (this_cpu == cpu)
2133			continue;
2134
2135		src_rq = cpu_rq(cpu);
2136
2137		/*
2138		 * It looks racy, abd it is! However, as in sched_rt.c,
2139		 * we are fine with this.
2140		 */
2141		if (this_rq->dl.dl_nr_running &&
2142		    dl_time_before(this_rq->dl.earliest_dl.curr,
2143				   src_rq->dl.earliest_dl.next))
2144			continue;
2145
2146		/* Might drop this_rq->lock */
 
2147		double_lock_balance(this_rq, src_rq);
2148
2149		/*
2150		 * If there are no more pullable tasks on the
2151		 * rq, we're done with it.
2152		 */
2153		if (src_rq->dl.dl_nr_running <= 1)
2154			goto skip;
2155
2156		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2157
2158		/*
2159		 * We found a task to be pulled if:
2160		 *  - it preempts our current (if there's one),
2161		 *  - it will preempt the last one we pulled (if any).
2162		 */
2163		if (p && dl_time_before(p->dl.deadline, dmin) &&
2164		    (!this_rq->dl.dl_nr_running ||
2165		     dl_time_before(p->dl.deadline,
2166				    this_rq->dl.earliest_dl.curr))) {
2167			WARN_ON(p == src_rq->curr);
2168			WARN_ON(!task_on_rq_queued(p));
2169
2170			/*
2171			 * Then we pull iff p has actually an earlier
2172			 * deadline than the current task of its runqueue.
2173			 */
2174			if (dl_time_before(p->dl.deadline,
2175					   src_rq->curr->dl.deadline))
2176				goto skip;
2177
2178			resched = true;
2179
2180			deactivate_task(src_rq, p, 0);
2181			sub_running_bw(&p->dl, &src_rq->dl);
2182			sub_rq_bw(&p->dl, &src_rq->dl);
2183			set_task_cpu(p, this_cpu);
2184			add_rq_bw(&p->dl, &this_rq->dl);
2185			add_running_bw(&p->dl, &this_rq->dl);
2186			activate_task(this_rq, p, 0);
2187			dmin = p->dl.deadline;
2188
2189			/* Is there any other task even earlier? */
2190		}
2191skip:
2192		double_unlock_balance(this_rq, src_rq);
 
 
 
 
 
 
 
 
 
2193	}
2194
2195	if (resched)
2196		resched_curr(this_rq);
2197}
2198
2199/*
2200 * Since the task is not running and a reschedule is not going to happen
2201 * anytime soon on its runqueue, we try pushing it away now.
2202 */
2203static void task_woken_dl(struct rq *rq, struct task_struct *p)
2204{
2205	if (!task_running(rq, p) &&
2206	    !test_tsk_need_resched(rq->curr) &&
2207	    p->nr_cpus_allowed > 1 &&
2208	    dl_task(rq->curr) &&
2209	    (rq->curr->nr_cpus_allowed < 2 ||
2210	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2211		push_dl_tasks(rq);
2212	}
2213}
2214
2215static void set_cpus_allowed_dl(struct task_struct *p,
2216				const struct cpumask *new_mask)
2217{
2218	struct root_domain *src_rd;
2219	struct rq *rq;
2220
2221	BUG_ON(!dl_task(p));
2222
2223	rq = task_rq(p);
2224	src_rd = rq->rd;
2225	/*
2226	 * Migrating a SCHED_DEADLINE task between exclusive
2227	 * cpusets (different root_domains) entails a bandwidth
2228	 * update. We already made space for us in the destination
2229	 * domain (see cpuset_can_attach()).
2230	 */
2231	if (!cpumask_intersects(src_rd->span, new_mask)) {
2232		struct dl_bw *src_dl_b;
2233
2234		src_dl_b = dl_bw_of(cpu_of(rq));
2235		/*
2236		 * We now free resources of the root_domain we are migrating
2237		 * off. In the worst case, sched_setattr() may temporary fail
2238		 * until we complete the update.
2239		 */
2240		raw_spin_lock(&src_dl_b->lock);
2241		__dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2242		raw_spin_unlock(&src_dl_b->lock);
2243	}
2244
2245	set_cpus_allowed_common(p, new_mask);
2246}
2247
2248/* Assumes rq->lock is held */
2249static void rq_online_dl(struct rq *rq)
2250{
2251	if (rq->dl.overloaded)
2252		dl_set_overload(rq);
2253
2254	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2255	if (rq->dl.dl_nr_running > 0)
2256		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2257}
2258
2259/* Assumes rq->lock is held */
2260static void rq_offline_dl(struct rq *rq)
2261{
2262	if (rq->dl.overloaded)
2263		dl_clear_overload(rq);
2264
2265	cpudl_clear(&rq->rd->cpudl, rq->cpu);
2266	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2267}
2268
2269void __init init_sched_dl_class(void)
2270{
2271	unsigned int i;
2272
2273	for_each_possible_cpu(i)
2274		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2275					GFP_KERNEL, cpu_to_node(i));
2276}
2277
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2278#endif /* CONFIG_SMP */
2279
2280static void switched_from_dl(struct rq *rq, struct task_struct *p)
2281{
2282	/*
2283	 * task_non_contending() can start the "inactive timer" (if the 0-lag
2284	 * time is in the future). If the task switches back to dl before
2285	 * the "inactive timer" fires, it can continue to consume its current
2286	 * runtime using its current deadline. If it stays outside of
2287	 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2288	 * will reset the task parameters.
2289	 */
2290	if (task_on_rq_queued(p) && p->dl.dl_runtime)
2291		task_non_contending(p);
2292
2293	if (!task_on_rq_queued(p))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2294		sub_rq_bw(&p->dl, &rq->dl);
 
2295
2296	/*
2297	 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2298	 * at the 0-lag time, because the task could have been migrated
2299	 * while SCHED_OTHER in the meanwhile.
2300	 */
2301	if (p->dl.dl_non_contending)
2302		p->dl.dl_non_contending = 0;
2303
2304	/*
2305	 * Since this might be the only -deadline task on the rq,
2306	 * this is the right place to try to pull some other one
2307	 * from an overloaded CPU, if any.
2308	 */
2309	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2310		return;
2311
2312	deadline_queue_pull_task(rq);
2313}
2314
2315/*
2316 * When switching to -deadline, we may overload the rq, then
2317 * we try to push someone off, if possible.
2318 */
2319static void switched_to_dl(struct rq *rq, struct task_struct *p)
2320{
2321	if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2322		put_task_struct(p);
2323
 
 
 
 
 
 
2324	/* If p is not queued we will update its parameters at next wakeup. */
2325	if (!task_on_rq_queued(p)) {
2326		add_rq_bw(&p->dl, &rq->dl);
2327
2328		return;
2329	}
2330
2331	if (rq->curr != p) {
2332#ifdef CONFIG_SMP
2333		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2334			deadline_queue_push_tasks(rq);
2335#endif
2336		if (dl_task(rq->curr))
2337			check_preempt_curr_dl(rq, p, 0);
2338		else
2339			resched_curr(rq);
 
 
2340	}
2341}
2342
2343/*
2344 * If the scheduling parameters of a -deadline task changed,
2345 * a push or pull operation might be needed.
2346 */
2347static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2348			    int oldprio)
2349{
2350	if (task_on_rq_queued(p) || rq->curr == p) {
 
 
2351#ifdef CONFIG_SMP
2352		/*
2353		 * This might be too much, but unfortunately
2354		 * we don't have the old deadline value, and
2355		 * we can't argue if the task is increasing
2356		 * or lowering its prio, so...
2357		 */
2358		if (!rq->dl.overloaded)
2359			deadline_queue_pull_task(rq);
2360
 
2361		/*
2362		 * If we now have a earlier deadline task than p,
2363		 * then reschedule, provided p is still on this
2364		 * runqueue.
2365		 */
2366		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2367			resched_curr(rq);
2368#else
2369		/*
2370		 * Again, we don't know if p has a earlier
2371		 * or later deadline, so let's blindly set a
2372		 * (maybe not needed) rescheduling point.
 
2373		 */
2374		resched_curr(rq);
2375#endif /* CONFIG_SMP */
 
2376	}
 
 
 
 
 
 
 
2377}
2378
2379const struct sched_class dl_sched_class = {
2380	.next			= &rt_sched_class,
 
 
 
 
 
 
 
2381	.enqueue_task		= enqueue_task_dl,
2382	.dequeue_task		= dequeue_task_dl,
2383	.yield_task		= yield_task_dl,
2384
2385	.check_preempt_curr	= check_preempt_curr_dl,
2386
2387	.pick_next_task		= pick_next_task_dl,
2388	.put_prev_task		= put_prev_task_dl,
 
2389
2390#ifdef CONFIG_SMP
 
2391	.select_task_rq		= select_task_rq_dl,
2392	.migrate_task_rq	= migrate_task_rq_dl,
2393	.set_cpus_allowed       = set_cpus_allowed_dl,
2394	.rq_online              = rq_online_dl,
2395	.rq_offline             = rq_offline_dl,
2396	.task_woken		= task_woken_dl,
 
2397#endif
2398
2399	.set_curr_task		= set_curr_task_dl,
2400	.task_tick		= task_tick_dl,
2401	.task_fork              = task_fork_dl,
2402
2403	.prio_changed           = prio_changed_dl,
2404	.switched_from		= switched_from_dl,
2405	.switched_to		= switched_to_dl,
2406
2407	.update_curr		= update_curr_dl,
 
 
 
2408};
2409
 
 
 
2410int sched_dl_global_validate(void)
2411{
2412	u64 runtime = global_rt_runtime();
2413	u64 period = global_rt_period();
2414	u64 new_bw = to_ratio(period, runtime);
 
2415	struct dl_bw *dl_b;
2416	int cpu, ret = 0;
2417	unsigned long flags;
2418
2419	/*
2420	 * Here we want to check the bandwidth not being set to some
2421	 * value smaller than the currently allocated bandwidth in
2422	 * any of the root_domains.
2423	 *
2424	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
2425	 * cycling on root_domains... Discussion on different/better
2426	 * solutions is welcome!
2427	 */
2428	for_each_possible_cpu(cpu) {
2429		rcu_read_lock_sched();
 
 
 
 
2430		dl_b = dl_bw_of(cpu);
 
2431
2432		raw_spin_lock_irqsave(&dl_b->lock, flags);
2433		if (new_bw < dl_b->total_bw)
2434			ret = -EBUSY;
2435		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2436
 
2437		rcu_read_unlock_sched();
2438
2439		if (ret)
2440			break;
2441	}
2442
2443	return ret;
2444}
2445
2446void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2447{
2448	if (global_rt_runtime() == RUNTIME_INF) {
2449		dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2450		dl_rq->extra_bw = 1 << BW_SHIFT;
2451	} else {
2452		dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2453			  global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2454		dl_rq->extra_bw = to_ratio(global_rt_period(),
2455						    global_rt_runtime());
2456	}
2457}
2458
2459void sched_dl_do_global(void)
2460{
2461	u64 new_bw = -1;
 
2462	struct dl_bw *dl_b;
2463	int cpu;
2464	unsigned long flags;
2465
2466	def_dl_bandwidth.dl_period = global_rt_period();
2467	def_dl_bandwidth.dl_runtime = global_rt_runtime();
2468
2469	if (global_rt_runtime() != RUNTIME_INF)
2470		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2471
2472	/*
2473	 * FIXME: As above...
2474	 */
2475	for_each_possible_cpu(cpu) {
2476		rcu_read_lock_sched();
 
 
 
 
 
 
2477		dl_b = dl_bw_of(cpu);
2478
2479		raw_spin_lock_irqsave(&dl_b->lock, flags);
2480		dl_b->bw = new_bw;
2481		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2482
2483		rcu_read_unlock_sched();
2484		init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2485	}
2486}
2487
2488/*
2489 * We must be sure that accepting a new task (or allowing changing the
2490 * parameters of an existing one) is consistent with the bandwidth
2491 * constraints. If yes, this function also accordingly updates the currently
2492 * allocated bandwidth to reflect the new situation.
2493 *
2494 * This function is called while holding p's rq->lock.
2495 */
2496int sched_dl_overflow(struct task_struct *p, int policy,
2497		      const struct sched_attr *attr)
2498{
2499	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2500	u64 period = attr->sched_period ?: attr->sched_deadline;
2501	u64 runtime = attr->sched_runtime;
2502	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2503	int cpus, err = -1;
 
 
2504
2505	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2506		return 0;
2507
2508	/* !deadline task may carry old deadline bandwidth */
2509	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2510		return 0;
2511
2512	/*
2513	 * Either if a task, enters, leave, or stays -deadline but changes
2514	 * its parameters, we may need to update accordingly the total
2515	 * allocated bandwidth of the container.
2516	 */
2517	raw_spin_lock(&dl_b->lock);
2518	cpus = dl_bw_cpus(task_cpu(p));
 
 
2519	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2520	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2521		if (hrtimer_active(&p->dl.inactive_timer))
2522			__dl_sub(dl_b, p->dl.dl_bw, cpus);
2523		__dl_add(dl_b, new_bw, cpus);
2524		err = 0;
2525	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2526		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2527		/*
2528		 * XXX this is slightly incorrect: when the task
2529		 * utilization decreases, we should delay the total
2530		 * utilization change until the task's 0-lag point.
2531		 * But this would require to set the task's "inactive
2532		 * timer" when the task is not inactive.
2533		 */
2534		__dl_sub(dl_b, p->dl.dl_bw, cpus);
2535		__dl_add(dl_b, new_bw, cpus);
2536		dl_change_utilization(p, new_bw);
2537		err = 0;
2538	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2539		/*
2540		 * Do not decrease the total deadline utilization here,
2541		 * switched_from_dl() will take care to do it at the correct
2542		 * (0-lag) time.
2543		 */
2544		err = 0;
2545	}
2546	raw_spin_unlock(&dl_b->lock);
2547
2548	return err;
2549}
2550
2551/*
2552 * This function initializes the sched_dl_entity of a newly becoming
2553 * SCHED_DEADLINE task.
2554 *
2555 * Only the static values are considered here, the actual runtime and the
2556 * absolute deadline will be properly calculated when the task is enqueued
2557 * for the first time with its new policy.
2558 */
2559void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2560{
2561	struct sched_dl_entity *dl_se = &p->dl;
2562
2563	dl_se->dl_runtime = attr->sched_runtime;
2564	dl_se->dl_deadline = attr->sched_deadline;
2565	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2566	dl_se->flags = attr->sched_flags;
2567	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2568	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2569}
2570
2571void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2572{
2573	struct sched_dl_entity *dl_se = &p->dl;
2574
2575	attr->sched_priority = p->rt_priority;
2576	attr->sched_runtime = dl_se->dl_runtime;
2577	attr->sched_deadline = dl_se->dl_deadline;
2578	attr->sched_period = dl_se->dl_period;
2579	attr->sched_flags = dl_se->flags;
 
2580}
2581
2582/*
2583 * This function validates the new parameters of a -deadline task.
2584 * We ask for the deadline not being zero, and greater or equal
2585 * than the runtime, as well as the period of being zero or
2586 * greater than deadline. Furthermore, we have to be sure that
2587 * user parameters are above the internal resolution of 1us (we
2588 * check sched_runtime only since it is always the smaller one) and
2589 * below 2^63 ns (we have to check both sched_deadline and
2590 * sched_period, as the latter can be zero).
2591 */
2592bool __checkparam_dl(const struct sched_attr *attr)
2593{
 
 
2594	/* special dl tasks don't actually use any parameter */
2595	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2596		return true;
2597
2598	/* deadline != 0 */
2599	if (attr->sched_deadline == 0)
2600		return false;
2601
2602	/*
2603	 * Since we truncate DL_SCALE bits, make sure we're at least
2604	 * that big.
2605	 */
2606	if (attr->sched_runtime < (1ULL << DL_SCALE))
2607		return false;
2608
2609	/*
2610	 * Since we use the MSB for wrap-around and sign issues, make
2611	 * sure it's not set (mind that period can be equal to zero).
2612	 */
2613	if (attr->sched_deadline & (1ULL << 63) ||
2614	    attr->sched_period & (1ULL << 63))
2615		return false;
2616
 
 
 
 
2617	/* runtime <= deadline <= period (if period != 0) */
2618	if ((attr->sched_period != 0 &&
2619	     attr->sched_period < attr->sched_deadline) ||
2620	    attr->sched_deadline < attr->sched_runtime)
2621		return false;
2622
 
 
 
 
 
 
2623	return true;
2624}
2625
2626/*
2627 * This function clears the sched_dl_entity static params.
2628 */
2629void __dl_clear_params(struct task_struct *p)
2630{
2631	struct sched_dl_entity *dl_se = &p->dl;
2632
2633	dl_se->dl_runtime		= 0;
2634	dl_se->dl_deadline		= 0;
2635	dl_se->dl_period		= 0;
2636	dl_se->flags			= 0;
2637	dl_se->dl_bw			= 0;
2638	dl_se->dl_density		= 0;
2639
2640	dl_se->dl_throttled		= 0;
2641	dl_se->dl_yielded		= 0;
2642	dl_se->dl_non_contending	= 0;
2643	dl_se->dl_overrun		= 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
2644}
2645
2646bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
2647{
2648	struct sched_dl_entity *dl_se = &p->dl;
2649
2650	if (dl_se->dl_runtime != attr->sched_runtime ||
2651	    dl_se->dl_deadline != attr->sched_deadline ||
2652	    dl_se->dl_period != attr->sched_period ||
2653	    dl_se->flags != attr->sched_flags)
2654		return true;
2655
2656	return false;
2657}
2658
2659#ifdef CONFIG_SMP
2660int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed)
2661{
2662	unsigned int dest_cpu;
2663	struct dl_bw *dl_b;
2664	bool overflow;
2665	int cpus, ret;
2666	unsigned long flags;
2667
2668	dest_cpu = cpumask_any_and(cpu_active_mask, cs_cpus_allowed);
2669
2670	rcu_read_lock_sched();
2671	dl_b = dl_bw_of(dest_cpu);
2672	raw_spin_lock_irqsave(&dl_b->lock, flags);
2673	cpus = dl_bw_cpus(dest_cpu);
2674	overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
2675	if (overflow) {
2676		ret = -EBUSY;
2677	} else {
2678		/*
2679		 * We reserve space for this task in the destination
2680		 * root_domain, as we can't fail after this point.
2681		 * We will free resources in the source root_domain
2682		 * later on (see set_cpus_allowed_dl()).
2683		 */
2684		__dl_add(dl_b, p->dl.dl_bw, cpus);
2685		ret = 0;
2686	}
2687	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2688	rcu_read_unlock_sched();
2689
2690	return ret;
2691}
2692
2693int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
2694				 const struct cpumask *trial)
2695{
2696	int ret = 1, trial_cpus;
2697	struct dl_bw *cur_dl_b;
2698	unsigned long flags;
2699
2700	rcu_read_lock_sched();
2701	cur_dl_b = dl_bw_of(cpumask_any(cur));
2702	trial_cpus = cpumask_weight(trial);
2703
2704	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
2705	if (cur_dl_b->bw != -1 &&
2706	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
2707		ret = 0;
2708	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
2709	rcu_read_unlock_sched();
2710
2711	return ret;
2712}
2713
2714bool dl_cpu_busy(unsigned int cpu)
 
 
 
 
 
 
2715{
2716	unsigned long flags;
2717	struct dl_bw *dl_b;
2718	bool overflow;
2719	int cpus;
2720
2721	rcu_read_lock_sched();
2722	dl_b = dl_bw_of(cpu);
2723	raw_spin_lock_irqsave(&dl_b->lock, flags);
2724	cpus = dl_bw_cpus(cpu);
2725	overflow = __dl_overflow(dl_b, cpus, 0, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2726	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2727	rcu_read_unlock_sched();
2728
2729	return overflow;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2730}
2731#endif
2732
2733#ifdef CONFIG_SCHED_DEBUG
2734void print_dl_stats(struct seq_file *m, int cpu)
2735{
2736	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
2737}
2738#endif /* CONFIG_SCHED_DEBUG */
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Deadline Scheduling Class (SCHED_DEADLINE)
   4 *
   5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
   6 *
   7 * Tasks that periodically executes their instances for less than their
   8 * runtime won't miss any of their deadlines.
   9 * Tasks that are not periodic or sporadic or that tries to execute more
  10 * than their reserved bandwidth will be slowed down (and may potentially
  11 * miss some of their deadlines), and won't affect any other task.
  12 *
  13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
  14 *                    Juri Lelli <juri.lelli@gmail.com>,
  15 *                    Michael Trimarchi <michael@amarulasolutions.com>,
  16 *                    Fabio Checconi <fchecconi@gmail.com>
  17 */
 
  18
  19#include <linux/cpuset.h>
  20
  21/*
  22 * Default limits for DL period; on the top end we guard against small util
  23 * tasks still getting ridiculously long effective runtimes, on the bottom end we
  24 * guard against timer DoS.
  25 */
  26static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
  27static unsigned int sysctl_sched_dl_period_min = 100;     /* 100 us */
  28#ifdef CONFIG_SYSCTL
  29static struct ctl_table sched_dl_sysctls[] = {
  30	{
  31		.procname       = "sched_deadline_period_max_us",
  32		.data           = &sysctl_sched_dl_period_max,
  33		.maxlen         = sizeof(unsigned int),
  34		.mode           = 0644,
  35		.proc_handler   = proc_douintvec_minmax,
  36		.extra1         = (void *)&sysctl_sched_dl_period_min,
  37	},
  38	{
  39		.procname       = "sched_deadline_period_min_us",
  40		.data           = &sysctl_sched_dl_period_min,
  41		.maxlen         = sizeof(unsigned int),
  42		.mode           = 0644,
  43		.proc_handler   = proc_douintvec_minmax,
  44		.extra2         = (void *)&sysctl_sched_dl_period_max,
  45	},
  46};
  47
  48static int __init sched_dl_sysctl_init(void)
  49{
  50	register_sysctl_init("kernel", sched_dl_sysctls);
  51	return 0;
  52}
  53late_initcall(sched_dl_sysctl_init);
  54#endif
  55
  56static bool dl_server(struct sched_dl_entity *dl_se)
  57{
  58	return dl_se->dl_server;
  59}
  60
  61static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
  62{
  63	BUG_ON(dl_server(dl_se));
  64	return container_of(dl_se, struct task_struct, dl);
  65}
  66
  67static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
  68{
  69	return container_of(dl_rq, struct rq, dl);
  70}
  71
  72static inline struct rq *rq_of_dl_se(struct sched_dl_entity *dl_se)
  73{
  74	struct rq *rq = dl_se->rq;
 
  75
  76	if (!dl_server(dl_se))
  77		rq = task_rq(dl_task_of(dl_se));
  78
  79	return rq;
  80}
  81
  82static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
  83{
  84	return &rq_of_dl_se(dl_se)->dl;
  85}
  86
  87static inline int on_dl_rq(struct sched_dl_entity *dl_se)
  88{
  89	return !RB_EMPTY_NODE(&dl_se->rb_node);
  90}
  91
  92#ifdef CONFIG_RT_MUTEXES
  93static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
  94{
  95	return dl_se->pi_se;
  96}
  97
  98static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
  99{
 100	return pi_of(dl_se) != dl_se;
 101}
 102#else
 103static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
 104{
 105	return dl_se;
 106}
 107
 108static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
 109{
 110	return false;
 111}
 112#endif
 113
 114#ifdef CONFIG_SMP
 115static inline struct dl_bw *dl_bw_of(int i)
 116{
 117	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
 118			 "sched RCU must be held");
 119	return &cpu_rq(i)->rd->dl_bw;
 120}
 121
 122static inline int dl_bw_cpus(int i)
 123{
 124	struct root_domain *rd = cpu_rq(i)->rd;
 125	int cpus;
 126
 127	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
 128			 "sched RCU must be held");
 129
 130	if (cpumask_subset(rd->span, cpu_active_mask))
 131		return cpumask_weight(rd->span);
 132
 133	cpus = 0;
 134
 135	for_each_cpu_and(i, rd->span, cpu_active_mask)
 136		cpus++;
 137
 138	return cpus;
 139}
 140
 141static inline unsigned long __dl_bw_capacity(const struct cpumask *mask)
 142{
 143	unsigned long cap = 0;
 144	int i;
 145
 146	for_each_cpu_and(i, mask, cpu_active_mask)
 147		cap += arch_scale_cpu_capacity(i);
 148
 149	return cap;
 150}
 151
 152/*
 153 * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
 154 * of the CPU the task is running on rather rd's \Sum CPU capacity.
 155 */
 156static inline unsigned long dl_bw_capacity(int i)
 157{
 158	if (!sched_asym_cpucap_active() &&
 159	    arch_scale_cpu_capacity(i) == SCHED_CAPACITY_SCALE) {
 160		return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
 161	} else {
 162		RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
 163				 "sched RCU must be held");
 164
 165		return __dl_bw_capacity(cpu_rq(i)->rd->span);
 166	}
 167}
 168
 169static inline bool dl_bw_visited(int cpu, u64 gen)
 170{
 171	struct root_domain *rd = cpu_rq(cpu)->rd;
 172
 173	if (rd->visit_gen == gen)
 174		return true;
 175
 176	rd->visit_gen = gen;
 177	return false;
 178}
 179
 180static inline
 181void __dl_update(struct dl_bw *dl_b, s64 bw)
 182{
 183	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
 184	int i;
 185
 186	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
 187			 "sched RCU must be held");
 188	for_each_cpu_and(i, rd->span, cpu_active_mask) {
 189		struct rq *rq = cpu_rq(i);
 190
 191		rq->dl.extra_bw += bw;
 192	}
 193}
 194#else
 195static inline struct dl_bw *dl_bw_of(int i)
 196{
 197	return &cpu_rq(i)->dl.dl_bw;
 198}
 199
 200static inline int dl_bw_cpus(int i)
 201{
 202	return 1;
 203}
 204
 205static inline unsigned long dl_bw_capacity(int i)
 206{
 207	return SCHED_CAPACITY_SCALE;
 208}
 209
 210static inline bool dl_bw_visited(int cpu, u64 gen)
 211{
 212	return false;
 213}
 214
 215static inline
 216void __dl_update(struct dl_bw *dl_b, s64 bw)
 217{
 218	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
 219
 220	dl->extra_bw += bw;
 221}
 222#endif
 223
 224static inline
 225void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
 226{
 227	dl_b->total_bw -= tsk_bw;
 228	__dl_update(dl_b, (s32)tsk_bw / cpus);
 229}
 230
 231static inline
 232void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
 233{
 234	dl_b->total_bw += tsk_bw;
 235	__dl_update(dl_b, -((s32)tsk_bw / cpus));
 236}
 237
 238static inline bool
 239__dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw)
 240{
 241	return dl_b->bw != -1 &&
 242	       cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
 243}
 244
 245static inline
 246void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
 247{
 248	u64 old = dl_rq->running_bw;
 249
 250	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
 251	dl_rq->running_bw += dl_bw;
 252	SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
 253	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
 254	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
 255	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
 256}
 257
 258static inline
 259void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
 260{
 261	u64 old = dl_rq->running_bw;
 262
 263	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
 264	dl_rq->running_bw -= dl_bw;
 265	SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
 266	if (dl_rq->running_bw > old)
 267		dl_rq->running_bw = 0;
 268	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
 269	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
 270}
 271
 272static inline
 273void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
 274{
 275	u64 old = dl_rq->this_bw;
 276
 277	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
 278	dl_rq->this_bw += dl_bw;
 279	SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
 280}
 281
 282static inline
 283void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
 284{
 285	u64 old = dl_rq->this_bw;
 286
 287	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
 288	dl_rq->this_bw -= dl_bw;
 289	SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
 290	if (dl_rq->this_bw > old)
 291		dl_rq->this_bw = 0;
 292	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
 293}
 294
 295static inline
 296void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 297{
 298	if (!dl_entity_is_special(dl_se))
 299		__add_rq_bw(dl_se->dl_bw, dl_rq);
 300}
 301
 302static inline
 303void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 304{
 305	if (!dl_entity_is_special(dl_se))
 306		__sub_rq_bw(dl_se->dl_bw, dl_rq);
 307}
 308
 309static inline
 310void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 311{
 312	if (!dl_entity_is_special(dl_se))
 313		__add_running_bw(dl_se->dl_bw, dl_rq);
 314}
 315
 316static inline
 317void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 318{
 319	if (!dl_entity_is_special(dl_se))
 320		__sub_running_bw(dl_se->dl_bw, dl_rq);
 321}
 322
 323static void dl_rq_change_utilization(struct rq *rq, struct sched_dl_entity *dl_se, u64 new_bw)
 324{
 325	if (dl_se->dl_non_contending) {
 326		sub_running_bw(dl_se, &rq->dl);
 327		dl_se->dl_non_contending = 0;
 
 
 
 328
 
 
 
 
 329		/*
 330		 * If the timer handler is currently running and the
 331		 * timer cannot be canceled, inactive_task_timer()
 332		 * will see that dl_not_contending is not set, and
 333		 * will not touch the rq's active utilization,
 334		 * so we are still safe.
 335		 */
 336		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) {
 337			if (!dl_server(dl_se))
 338				put_task_struct(dl_task_of(dl_se));
 339		}
 340	}
 341	__sub_rq_bw(dl_se->dl_bw, &rq->dl);
 342	__add_rq_bw(new_bw, &rq->dl);
 343}
 344
 345static void dl_change_utilization(struct task_struct *p, u64 new_bw)
 346{
 347	WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV);
 348
 349	if (task_on_rq_queued(p))
 350		return;
 351
 352	dl_rq_change_utilization(task_rq(p), &p->dl, new_bw);
 353}
 354
 355static void __dl_clear_params(struct sched_dl_entity *dl_se);
 356
 357/*
 358 * The utilization of a task cannot be immediately removed from
 359 * the rq active utilization (running_bw) when the task blocks.
 360 * Instead, we have to wait for the so called "0-lag time".
 361 *
 362 * If a task blocks before the "0-lag time", a timer (the inactive
 363 * timer) is armed, and running_bw is decreased when the timer
 364 * fires.
 365 *
 366 * If the task wakes up again before the inactive timer fires,
 367 * the timer is canceled, whereas if the task wakes up after the
 368 * inactive timer fired (and running_bw has been decreased) the
 369 * task's utilization has to be added to running_bw again.
 370 * A flag in the deadline scheduling entity (dl_non_contending)
 371 * is used to avoid race conditions between the inactive timer handler
 372 * and task wakeups.
 373 *
 374 * The following diagram shows how running_bw is updated. A task is
 375 * "ACTIVE" when its utilization contributes to running_bw; an
 376 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
 377 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
 378 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
 379 * time already passed, which does not contribute to running_bw anymore.
 380 *                              +------------------+
 381 *             wakeup           |    ACTIVE        |
 382 *          +------------------>+   contending     |
 383 *          | add_running_bw    |                  |
 384 *          |                   +----+------+------+
 385 *          |                        |      ^
 386 *          |                dequeue |      |
 387 * +--------+-------+                |      |
 388 * |                |   t >= 0-lag   |      | wakeup
 389 * |    INACTIVE    |<---------------+      |
 390 * |                | sub_running_bw |      |
 391 * +--------+-------+                |      |
 392 *          ^                        |      |
 393 *          |              t < 0-lag |      |
 394 *          |                        |      |
 395 *          |                        V      |
 396 *          |                   +----+------+------+
 397 *          | sub_running_bw    |    ACTIVE        |
 398 *          +-------------------+                  |
 399 *            inactive timer    |  non contending  |
 400 *            fired             +------------------+
 401 *
 402 * The task_non_contending() function is invoked when a task
 403 * blocks, and checks if the 0-lag time already passed or
 404 * not (in the first case, it directly updates running_bw;
 405 * in the second case, it arms the inactive timer).
 406 *
 407 * The task_contending() function is invoked when a task wakes
 408 * up, and checks if the task is still in the "ACTIVE non contending"
 409 * state or not (in the second case, it updates running_bw).
 410 */
 411static void task_non_contending(struct sched_dl_entity *dl_se)
 412{
 
 413	struct hrtimer *timer = &dl_se->inactive_timer;
 414	struct rq *rq = rq_of_dl_se(dl_se);
 415	struct dl_rq *dl_rq = &rq->dl;
 416	s64 zerolag_time;
 417
 418	/*
 419	 * If this is a non-deadline task that has been boosted,
 420	 * do nothing
 421	 */
 422	if (dl_se->dl_runtime == 0)
 423		return;
 424
 425	if (dl_entity_is_special(dl_se))
 426		return;
 427
 
 428	WARN_ON(dl_se->dl_non_contending);
 429
 430	zerolag_time = dl_se->deadline -
 431		 div64_long((dl_se->runtime * dl_se->dl_period),
 432			dl_se->dl_runtime);
 433
 434	/*
 435	 * Using relative times instead of the absolute "0-lag time"
 436	 * allows to simplify the code
 437	 */
 438	zerolag_time -= rq_clock(rq);
 439
 440	/*
 441	 * If the "0-lag time" already passed, decrease the active
 442	 * utilization now, instead of starting a timer
 443	 */
 444	if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
 445		if (dl_server(dl_se)) {
 446			sub_running_bw(dl_se, dl_rq);
 447		} else {
 448			struct task_struct *p = dl_task_of(dl_se);
 449
 450			if (dl_task(p))
 451				sub_running_bw(dl_se, dl_rq);
 452
 453			if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
 454				struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
 455
 456				if (READ_ONCE(p->__state) == TASK_DEAD)
 457					sub_rq_bw(dl_se, &rq->dl);
 458				raw_spin_lock(&dl_b->lock);
 459				__dl_sub(dl_b, dl_se->dl_bw, dl_bw_cpus(task_cpu(p)));
 460				raw_spin_unlock(&dl_b->lock);
 461				__dl_clear_params(dl_se);
 462			}
 463		}
 464
 465		return;
 466	}
 467
 468	dl_se->dl_non_contending = 1;
 469	if (!dl_server(dl_se))
 470		get_task_struct(dl_task_of(dl_se));
 471
 472	hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
 473}
 474
 475static void task_contending(struct sched_dl_entity *dl_se, int flags)
 476{
 477	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 478
 479	/*
 480	 * If this is a non-deadline task that has been boosted,
 481	 * do nothing
 482	 */
 483	if (dl_se->dl_runtime == 0)
 484		return;
 485
 486	if (flags & ENQUEUE_MIGRATED)
 487		add_rq_bw(dl_se, dl_rq);
 488
 489	if (dl_se->dl_non_contending) {
 490		dl_se->dl_non_contending = 0;
 491		/*
 492		 * If the timer handler is currently running and the
 493		 * timer cannot be canceled, inactive_task_timer()
 494		 * will see that dl_not_contending is not set, and
 495		 * will not touch the rq's active utilization,
 496		 * so we are still safe.
 497		 */
 498		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) {
 499			if (!dl_server(dl_se))
 500				put_task_struct(dl_task_of(dl_se));
 501		}
 502	} else {
 503		/*
 504		 * Since "dl_non_contending" is not set, the
 505		 * task's utilization has already been removed from
 506		 * active utilization (either when the task blocked,
 507		 * when the "inactive timer" fired).
 508		 * So, add it back.
 509		 */
 510		add_running_bw(dl_se, dl_rq);
 511	}
 512}
 513
 514static inline int is_leftmost(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 515{
 516	return rb_first_cached(&dl_rq->root) == &dl_se->rb_node;
 
 
 517}
 518
 519static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
 
 
 
 
 
 520
 521void init_dl_bw(struct dl_bw *dl_b)
 522{
 523	raw_spin_lock_init(&dl_b->lock);
 
 524	if (global_rt_runtime() == RUNTIME_INF)
 525		dl_b->bw = -1;
 526	else
 527		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
 
 528	dl_b->total_bw = 0;
 529}
 530
 531void init_dl_rq(struct dl_rq *dl_rq)
 532{
 533	dl_rq->root = RB_ROOT_CACHED;
 534
 535#ifdef CONFIG_SMP
 536	/* zero means no -deadline tasks */
 537	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
 538
 
 539	dl_rq->overloaded = 0;
 540	dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
 541#else
 542	init_dl_bw(&dl_rq->dl_bw);
 543#endif
 544
 545	dl_rq->running_bw = 0;
 546	dl_rq->this_bw = 0;
 547	init_dl_rq_bw_ratio(dl_rq);
 548}
 549
 550#ifdef CONFIG_SMP
 551
 552static inline int dl_overloaded(struct rq *rq)
 553{
 554	return atomic_read(&rq->rd->dlo_count);
 555}
 556
 557static inline void dl_set_overload(struct rq *rq)
 558{
 559	if (!rq->online)
 560		return;
 561
 562	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
 563	/*
 564	 * Must be visible before the overload count is
 565	 * set (as in sched_rt.c).
 566	 *
 567	 * Matched by the barrier in pull_dl_task().
 568	 */
 569	smp_wmb();
 570	atomic_inc(&rq->rd->dlo_count);
 571}
 572
 573static inline void dl_clear_overload(struct rq *rq)
 574{
 575	if (!rq->online)
 576		return;
 577
 578	atomic_dec(&rq->rd->dlo_count);
 579	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
 580}
 581
 582#define __node_2_pdl(node) \
 583	rb_entry((node), struct task_struct, pushable_dl_tasks)
 
 
 
 
 
 
 
 
 
 
 584
 585static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b)
 586{
 587	return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl);
 
 
 
 
 
 588}
 589
 590static inline int has_pushable_dl_tasks(struct rq *rq)
 591{
 592	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
 
 
 
 
 
 593}
 594
 595/*
 596 * The list of pushable -deadline task is not a plist, like in
 597 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
 598 */
 599static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 600{
 601	struct rb_node *leftmost;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 602
 603	WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
 604
 605	leftmost = rb_add_cached(&p->pushable_dl_tasks,
 606				 &rq->dl.pushable_dl_tasks_root,
 607				 __pushable_less);
 608	if (leftmost)
 609		rq->dl.earliest_dl.next = p->dl.deadline;
 610
 611	if (!rq->dl.overloaded) {
 612		dl_set_overload(rq);
 613		rq->dl.overloaded = 1;
 614	}
 615}
 616
 617static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 618{
 619	struct dl_rq *dl_rq = &rq->dl;
 620	struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root;
 621	struct rb_node *leftmost;
 622
 623	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
 624		return;
 625
 626	leftmost = rb_erase_cached(&p->pushable_dl_tasks, root);
 627	if (leftmost)
 628		dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline;
 
 
 
 
 
 
 629
 
 630	RB_CLEAR_NODE(&p->pushable_dl_tasks);
 
 631
 632	if (!has_pushable_dl_tasks(rq) && rq->dl.overloaded) {
 633		dl_clear_overload(rq);
 634		rq->dl.overloaded = 0;
 635	}
 636}
 637
 638static int push_dl_task(struct rq *rq);
 639
 640static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
 641{
 642	return rq->online && dl_task(prev);
 643}
 644
 645static DEFINE_PER_CPU(struct balance_callback, dl_push_head);
 646static DEFINE_PER_CPU(struct balance_callback, dl_pull_head);
 647
 648static void push_dl_tasks(struct rq *);
 649static void pull_dl_task(struct rq *);
 650
 651static inline void deadline_queue_push_tasks(struct rq *rq)
 652{
 653	if (!has_pushable_dl_tasks(rq))
 654		return;
 655
 656	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
 657}
 658
 659static inline void deadline_queue_pull_task(struct rq *rq)
 660{
 661	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
 662}
 663
 664static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
 665
 666static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
 667{
 668	struct rq *later_rq = NULL;
 669	struct dl_bw *dl_b;
 670
 671	later_rq = find_lock_later_rq(p, rq);
 672	if (!later_rq) {
 673		int cpu;
 674
 675		/*
 676		 * If we cannot preempt any rq, fall back to pick any
 677		 * online CPU:
 678		 */
 679		cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
 680		if (cpu >= nr_cpu_ids) {
 681			/*
 682			 * Failed to find any suitable CPU.
 683			 * The task will never come back!
 684			 */
 685			WARN_ON_ONCE(dl_bandwidth_enabled());
 686
 687			/*
 688			 * If admission control is disabled we
 689			 * try a little harder to let the task
 690			 * run.
 691			 */
 692			cpu = cpumask_any(cpu_active_mask);
 693		}
 694		later_rq = cpu_rq(cpu);
 695		double_lock_balance(rq, later_rq);
 696	}
 697
 698	if (p->dl.dl_non_contending || p->dl.dl_throttled) {
 699		/*
 700		 * Inactive timer is armed (or callback is running, but
 701		 * waiting for us to release rq locks). In any case, when it
 702		 * will fire (or continue), it will see running_bw of this
 703		 * task migrated to later_rq (and correctly handle it).
 704		 */
 705		sub_running_bw(&p->dl, &rq->dl);
 706		sub_rq_bw(&p->dl, &rq->dl);
 707
 708		add_rq_bw(&p->dl, &later_rq->dl);
 709		add_running_bw(&p->dl, &later_rq->dl);
 710	} else {
 711		sub_rq_bw(&p->dl, &rq->dl);
 712		add_rq_bw(&p->dl, &later_rq->dl);
 713	}
 714
 715	/*
 716	 * And we finally need to fix up root_domain(s) bandwidth accounting,
 717	 * since p is still hanging out in the old (now moved to default) root
 718	 * domain.
 719	 */
 720	dl_b = &rq->rd->dl_bw;
 721	raw_spin_lock(&dl_b->lock);
 722	__dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
 723	raw_spin_unlock(&dl_b->lock);
 724
 725	dl_b = &later_rq->rd->dl_bw;
 726	raw_spin_lock(&dl_b->lock);
 727	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
 728	raw_spin_unlock(&dl_b->lock);
 729
 730	set_task_cpu(p, later_rq->cpu);
 731	double_unlock_balance(later_rq, rq);
 732
 733	return later_rq;
 734}
 735
 736#else
 737
 738static inline
 739void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 740{
 741}
 742
 743static inline
 744void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 745{
 746}
 747
 748static inline
 749void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 750{
 751}
 752
 753static inline
 754void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 755{
 756}
 757
 
 
 
 
 
 
 
 
 
 758static inline void deadline_queue_push_tasks(struct rq *rq)
 759{
 760}
 761
 762static inline void deadline_queue_pull_task(struct rq *rq)
 763{
 764}
 765#endif /* CONFIG_SMP */
 766
 767static void
 768enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags);
 769static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
 770static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags);
 771static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, int flags);
 772
 773static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se,
 774					    struct rq *rq)
 775{
 776	/* for non-boosted task, pi_of(dl_se) == dl_se */
 777	dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
 778	dl_se->runtime = pi_of(dl_se)->dl_runtime;
 779
 780	/*
 781	 * If it is a deferred reservation, and the server
 782	 * is not handling an starvation case, defer it.
 783	 */
 784	if (dl_se->dl_defer && !dl_se->dl_defer_running) {
 785		dl_se->dl_throttled = 1;
 786		dl_se->dl_defer_armed = 1;
 787	}
 788}
 789
 790/*
 791 * We are being explicitly informed that a new instance is starting,
 792 * and this means that:
 793 *  - the absolute deadline of the entity has to be placed at
 794 *    current time + relative deadline;
 795 *  - the runtime of the entity has to be set to the maximum value.
 796 *
 797 * The capability of specifying such event is useful whenever a -deadline
 798 * entity wants to (try to!) synchronize its behaviour with the scheduler's
 799 * one, and to (try to!) reconcile itself with its own scheduling
 800 * parameters.
 801 */
 802static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
 803{
 804	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 805	struct rq *rq = rq_of_dl_rq(dl_rq);
 806
 807	WARN_ON(is_dl_boosted(dl_se));
 808	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
 809
 810	/*
 811	 * We are racing with the deadline timer. So, do nothing because
 812	 * the deadline timer handler will take care of properly recharging
 813	 * the runtime and postponing the deadline
 814	 */
 815	if (dl_se->dl_throttled)
 816		return;
 817
 818	/*
 819	 * We use the regular wall clock time to set deadlines in the
 820	 * future; in fact, we must consider execution overheads (time
 821	 * spent on hardirq context, etc.).
 822	 */
 823	replenish_dl_new_period(dl_se, rq);
 
 824}
 825
 826static int start_dl_timer(struct sched_dl_entity *dl_se);
 827static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t);
 828
 829/*
 830 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
 831 * possibility of a entity lasting more than what it declared, and thus
 832 * exhausting its runtime.
 833 *
 834 * Here we are interested in making runtime overrun possible, but we do
 835 * not want a entity which is misbehaving to affect the scheduling of all
 836 * other entities.
 837 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
 838 * is used, in order to confine each entity within its own bandwidth.
 839 *
 840 * This function deals exactly with that, and ensures that when the runtime
 841 * of a entity is replenished, its deadline is also postponed. That ensures
 842 * the overrunning entity can't interfere with other entity in the system and
 843 * can't make them miss their deadlines. Reasons why this kind of overruns
 844 * could happen are, typically, a entity voluntarily trying to overcome its
 845 * runtime, or it just underestimated it during sched_setattr().
 846 */
 847static void replenish_dl_entity(struct sched_dl_entity *dl_se)
 
 848{
 849	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 850	struct rq *rq = rq_of_dl_rq(dl_rq);
 851
 852	WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0);
 853
 854	/*
 855	 * This could be the case for a !-dl task that is boosted.
 856	 * Just go with full inherited parameters.
 857	 *
 858	 * Or, it could be the case of a deferred reservation that
 859	 * was not able to consume its runtime in background and
 860	 * reached this point with current u > U.
 861	 *
 862	 * In both cases, set a new period.
 863	 */
 864	if (dl_se->dl_deadline == 0 ||
 865	    (dl_se->dl_defer_armed && dl_entity_overflow(dl_se, rq_clock(rq)))) {
 866		dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
 867		dl_se->runtime = pi_of(dl_se)->dl_runtime;
 868	}
 869
 870	if (dl_se->dl_yielded && dl_se->runtime > 0)
 871		dl_se->runtime = 0;
 872
 873	/*
 874	 * We keep moving the deadline away until we get some
 875	 * available runtime for the entity. This ensures correct
 876	 * handling of situations where the runtime overrun is
 877	 * arbitrary large.
 878	 */
 879	while (dl_se->runtime <= 0) {
 880		dl_se->deadline += pi_of(dl_se)->dl_period;
 881		dl_se->runtime += pi_of(dl_se)->dl_runtime;
 882	}
 883
 884	/*
 885	 * At this point, the deadline really should be "in
 886	 * the future" with respect to rq->clock. If it's
 887	 * not, we are, for some reason, lagging too much!
 888	 * Anyway, after having warn userspace abut that,
 889	 * we still try to keep the things running by
 890	 * resetting the deadline and the budget of the
 891	 * entity.
 892	 */
 893	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
 894		printk_deferred_once("sched: DL replenish lagged too much\n");
 895		replenish_dl_new_period(dl_se, rq);
 
 896	}
 897
 898	if (dl_se->dl_yielded)
 899		dl_se->dl_yielded = 0;
 900	if (dl_se->dl_throttled)
 901		dl_se->dl_throttled = 0;
 902
 903	/*
 904	 * If this is the replenishment of a deferred reservation,
 905	 * clear the flag and return.
 906	 */
 907	if (dl_se->dl_defer_armed) {
 908		dl_se->dl_defer_armed = 0;
 909		return;
 910	}
 911
 912	/*
 913	 * A this point, if the deferred server is not armed, and the deadline
 914	 * is in the future, if it is not running already, throttle the server
 915	 * and arm the defer timer.
 916	 */
 917	if (dl_se->dl_defer && !dl_se->dl_defer_running &&
 918	    dl_time_before(rq_clock(dl_se->rq), dl_se->deadline - dl_se->runtime)) {
 919		if (!is_dl_boosted(dl_se) && dl_se->server_has_tasks(dl_se)) {
 920
 921			/*
 922			 * Set dl_se->dl_defer_armed and dl_throttled variables to
 923			 * inform the start_dl_timer() that this is a deferred
 924			 * activation.
 925			 */
 926			dl_se->dl_defer_armed = 1;
 927			dl_se->dl_throttled = 1;
 928			if (!start_dl_timer(dl_se)) {
 929				/*
 930				 * If for whatever reason (delays), a previous timer was
 931				 * queued but not serviced, cancel it and clean the
 932				 * deferrable server variables intended for start_dl_timer().
 933				 */
 934				hrtimer_try_to_cancel(&dl_se->dl_timer);
 935				dl_se->dl_defer_armed = 0;
 936				dl_se->dl_throttled = 0;
 937			}
 938		}
 939	}
 940}
 941
 942/*
 943 * Here we check if --at time t-- an entity (which is probably being
 944 * [re]activated or, in general, enqueued) can use its remaining runtime
 945 * and its current deadline _without_ exceeding the bandwidth it is
 946 * assigned (function returns true if it can't). We are in fact applying
 947 * one of the CBS rules: when a task wakes up, if the residual runtime
 948 * over residual deadline fits within the allocated bandwidth, then we
 949 * can keep the current (absolute) deadline and residual budget without
 950 * disrupting the schedulability of the system. Otherwise, we should
 951 * refill the runtime and set the deadline a period in the future,
 952 * because keeping the current (absolute) deadline of the task would
 953 * result in breaking guarantees promised to other tasks (refer to
 954 * Documentation/scheduler/sched-deadline.rst for more information).
 955 *
 956 * This function returns true if:
 957 *
 958 *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
 959 *
 960 * IOW we can't recycle current parameters.
 961 *
 962 * Notice that the bandwidth check is done against the deadline. For
 963 * task with deadline equal to period this is the same of using
 964 * dl_period instead of dl_deadline in the equation above.
 965 */
 966static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
 
 967{
 968	u64 left, right;
 969
 970	/*
 971	 * left and right are the two sides of the equation above,
 972	 * after a bit of shuffling to use multiplications instead
 973	 * of divisions.
 974	 *
 975	 * Note that none of the time values involved in the two
 976	 * multiplications are absolute: dl_deadline and dl_runtime
 977	 * are the relative deadline and the maximum runtime of each
 978	 * instance, runtime is the runtime left for the last instance
 979	 * and (deadline - t), since t is rq->clock, is the time left
 980	 * to the (absolute) deadline. Even if overflowing the u64 type
 981	 * is very unlikely to occur in both cases, here we scale down
 982	 * as we want to avoid that risk at all. Scaling down by 10
 983	 * means that we reduce granularity to 1us. We are fine with it,
 984	 * since this is only a true/false check and, anyway, thinking
 985	 * of anything below microseconds resolution is actually fiction
 986	 * (but still we want to give the user that illusion >;).
 987	 */
 988	left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
 989	right = ((dl_se->deadline - t) >> DL_SCALE) *
 990		(pi_of(dl_se)->dl_runtime >> DL_SCALE);
 991
 992	return dl_time_before(right, left);
 993}
 994
 995/*
 996 * Revised wakeup rule [1]: For self-suspending tasks, rather then
 997 * re-initializing task's runtime and deadline, the revised wakeup
 998 * rule adjusts the task's runtime to avoid the task to overrun its
 999 * density.
1000 *
1001 * Reasoning: a task may overrun the density if:
1002 *    runtime / (deadline - t) > dl_runtime / dl_deadline
1003 *
1004 * Therefore, runtime can be adjusted to:
1005 *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
1006 *
1007 * In such way that runtime will be equal to the maximum density
1008 * the task can use without breaking any rule.
1009 *
1010 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
1011 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
1012 */
1013static void
1014update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
1015{
1016	u64 laxity = dl_se->deadline - rq_clock(rq);
1017
1018	/*
1019	 * If the task has deadline < period, and the deadline is in the past,
1020	 * it should already be throttled before this check.
1021	 *
1022	 * See update_dl_entity() comments for further details.
1023	 */
1024	WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
1025
1026	dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
1027}
1028
1029/*
1030 * Regarding the deadline, a task with implicit deadline has a relative
1031 * deadline == relative period. A task with constrained deadline has a
1032 * relative deadline <= relative period.
1033 *
1034 * We support constrained deadline tasks. However, there are some restrictions
1035 * applied only for tasks which do not have an implicit deadline. See
1036 * update_dl_entity() to know more about such restrictions.
1037 *
1038 * The dl_is_implicit() returns true if the task has an implicit deadline.
1039 */
1040static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
1041{
1042	return dl_se->dl_deadline == dl_se->dl_period;
1043}
1044
1045/*
1046 * When a deadline entity is placed in the runqueue, its runtime and deadline
1047 * might need to be updated. This is done by a CBS wake up rule. There are two
1048 * different rules: 1) the original CBS; and 2) the Revisited CBS.
1049 *
1050 * When the task is starting a new period, the Original CBS is used. In this
1051 * case, the runtime is replenished and a new absolute deadline is set.
1052 *
1053 * When a task is queued before the begin of the next period, using the
1054 * remaining runtime and deadline could make the entity to overflow, see
1055 * dl_entity_overflow() to find more about runtime overflow. When such case
1056 * is detected, the runtime and deadline need to be updated.
1057 *
1058 * If the task has an implicit deadline, i.e., deadline == period, the Original
1059 * CBS is applied. The runtime is replenished and a new absolute deadline is
1060 * set, as in the previous cases.
1061 *
1062 * However, the Original CBS does not work properly for tasks with
1063 * deadline < period, which are said to have a constrained deadline. By
1064 * applying the Original CBS, a constrained deadline task would be able to run
1065 * runtime/deadline in a period. With deadline < period, the task would
1066 * overrun the runtime/period allowed bandwidth, breaking the admission test.
1067 *
1068 * In order to prevent this misbehave, the Revisited CBS is used for
1069 * constrained deadline tasks when a runtime overflow is detected. In the
1070 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
1071 * the remaining runtime of the task is reduced to avoid runtime overflow.
1072 * Please refer to the comments update_dl_revised_wakeup() function to find
1073 * more about the Revised CBS rule.
1074 */
1075static void update_dl_entity(struct sched_dl_entity *dl_se)
 
1076{
1077	struct rq *rq = rq_of_dl_se(dl_se);
 
1078
1079	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
1080	    dl_entity_overflow(dl_se, rq_clock(rq))) {
1081
1082		if (unlikely(!dl_is_implicit(dl_se) &&
1083			     !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1084			     !is_dl_boosted(dl_se))) {
1085			update_dl_revised_wakeup(dl_se, rq);
1086			return;
1087		}
1088
1089		replenish_dl_new_period(dl_se, rq);
1090	} else if (dl_server(dl_se) && dl_se->dl_defer) {
1091		/*
1092		 * The server can still use its previous deadline, so check if
1093		 * it left the dl_defer_running state.
1094		 */
1095		if (!dl_se->dl_defer_running) {
1096			dl_se->dl_defer_armed = 1;
1097			dl_se->dl_throttled = 1;
1098		}
1099	}
1100}
1101
1102static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
1103{
1104	return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
1105}
1106
1107/*
1108 * If the entity depleted all its runtime, and if we want it to sleep
1109 * while waiting for some new execution time to become available, we
1110 * set the bandwidth replenishment timer to the replenishment instant
1111 * and try to activate it.
1112 *
1113 * Notice that it is important for the caller to know if the timer
1114 * actually started or not (i.e., the replenishment instant is in
1115 * the future or in the past).
1116 */
1117static int start_dl_timer(struct sched_dl_entity *dl_se)
1118{
 
1119	struct hrtimer *timer = &dl_se->dl_timer;
1120	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1121	struct rq *rq = rq_of_dl_rq(dl_rq);
1122	ktime_t now, act;
1123	s64 delta;
1124
1125	lockdep_assert_rq_held(rq);
1126
1127	/*
1128	 * We want the timer to fire at the deadline, but considering
1129	 * that it is actually coming from rq->clock and not from
1130	 * hrtimer's time base reading.
1131	 *
1132	 * The deferred reservation will have its timer set to
1133	 * (deadline - runtime). At that point, the CBS rule will decide
1134	 * if the current deadline can be used, or if a replenishment is
1135	 * required to avoid add too much pressure on the system
1136	 * (current u > U).
1137	 */
1138	if (dl_se->dl_defer_armed) {
1139		WARN_ON_ONCE(!dl_se->dl_throttled);
1140		act = ns_to_ktime(dl_se->deadline - dl_se->runtime);
1141	} else {
1142		/* act = deadline - rel-deadline + period */
1143		act = ns_to_ktime(dl_next_period(dl_se));
1144	}
1145
1146	now = hrtimer_cb_get_time(timer);
1147	delta = ktime_to_ns(now) - rq_clock(rq);
1148	act = ktime_add_ns(act, delta);
1149
1150	/*
1151	 * If the expiry time already passed, e.g., because the value
1152	 * chosen as the deadline is too small, don't even try to
1153	 * start the timer in the past!
1154	 */
1155	if (ktime_us_delta(act, now) < 0)
1156		return 0;
1157
1158	/*
1159	 * !enqueued will guarantee another callback; even if one is already in
1160	 * progress. This ensures a balanced {get,put}_task_struct().
1161	 *
1162	 * The race against __run_timer() clearing the enqueued state is
1163	 * harmless because we're holding task_rq()->lock, therefore the timer
1164	 * expiring after we've done the check will wait on its task_rq_lock()
1165	 * and observe our state.
1166	 */
1167	if (!hrtimer_is_queued(timer)) {
1168		if (!dl_server(dl_se))
1169			get_task_struct(dl_task_of(dl_se));
1170		hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1171	}
1172
1173	return 1;
1174}
1175
1176static void __push_dl_task(struct rq *rq, struct rq_flags *rf)
1177{
1178#ifdef CONFIG_SMP
1179	/*
1180	 * Queueing this task back might have overloaded rq, check if we need
1181	 * to kick someone away.
1182	 */
1183	if (has_pushable_dl_tasks(rq)) {
1184		/*
1185		 * Nothing relies on rq->lock after this, so its safe to drop
1186		 * rq->lock.
1187		 */
1188		rq_unpin_lock(rq, rf);
1189		push_dl_task(rq);
1190		rq_repin_lock(rq, rf);
1191	}
1192#endif
1193}
1194
1195/* a defer timer will not be reset if the runtime consumed was < dl_server_min_res */
1196static const u64 dl_server_min_res = 1 * NSEC_PER_MSEC;
1197
1198static enum hrtimer_restart dl_server_timer(struct hrtimer *timer, struct sched_dl_entity *dl_se)
1199{
1200	struct rq *rq = rq_of_dl_se(dl_se);
1201	u64 fw;
1202
1203	scoped_guard (rq_lock, rq) {
1204		struct rq_flags *rf = &scope.rf;
1205
1206		if (!dl_se->dl_throttled || !dl_se->dl_runtime)
1207			return HRTIMER_NORESTART;
1208
1209		sched_clock_tick();
1210		update_rq_clock(rq);
1211
1212		if (!dl_se->dl_runtime)
1213			return HRTIMER_NORESTART;
1214
1215		if (!dl_se->server_has_tasks(dl_se)) {
1216			replenish_dl_entity(dl_se);
1217			return HRTIMER_NORESTART;
1218		}
1219
1220		if (dl_se->dl_defer_armed) {
1221			/*
1222			 * First check if the server could consume runtime in background.
1223			 * If so, it is possible to push the defer timer for this amount
1224			 * of time. The dl_server_min_res serves as a limit to avoid
1225			 * forwarding the timer for a too small amount of time.
1226			 */
1227			if (dl_time_before(rq_clock(dl_se->rq),
1228					   (dl_se->deadline - dl_se->runtime - dl_server_min_res))) {
1229
1230				/* reset the defer timer */
1231				fw = dl_se->deadline - rq_clock(dl_se->rq) - dl_se->runtime;
1232
1233				hrtimer_forward_now(timer, ns_to_ktime(fw));
1234				return HRTIMER_RESTART;
1235			}
1236
1237			dl_se->dl_defer_running = 1;
1238		}
1239
1240		enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH);
1241
1242		if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &dl_se->rq->curr->dl))
1243			resched_curr(rq);
1244
1245		__push_dl_task(rq, rf);
1246	}
1247
1248	return HRTIMER_NORESTART;
1249}
1250
1251/*
1252 * This is the bandwidth enforcement timer callback. If here, we know
1253 * a task is not on its dl_rq, since the fact that the timer was running
1254 * means the task is throttled and needs a runtime replenishment.
1255 *
1256 * However, what we actually do depends on the fact the task is active,
1257 * (it is on its rq) or has been removed from there by a call to
1258 * dequeue_task_dl(). In the former case we must issue the runtime
1259 * replenishment and add the task back to the dl_rq; in the latter, we just
1260 * do nothing but clearing dl_throttled, so that runtime and deadline
1261 * updating (and the queueing back to dl_rq) will be done by the
1262 * next call to enqueue_task_dl().
1263 */
1264static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1265{
1266	struct sched_dl_entity *dl_se = container_of(timer,
1267						     struct sched_dl_entity,
1268						     dl_timer);
1269	struct task_struct *p;
1270	struct rq_flags rf;
1271	struct rq *rq;
1272
1273	if (dl_server(dl_se))
1274		return dl_server_timer(timer, dl_se);
1275
1276	p = dl_task_of(dl_se);
1277	rq = task_rq_lock(p, &rf);
1278
1279	/*
1280	 * The task might have changed its scheduling policy to something
1281	 * different than SCHED_DEADLINE (through switched_from_dl()).
1282	 */
1283	if (!dl_task(p))
1284		goto unlock;
1285
1286	/*
1287	 * The task might have been boosted by someone else and might be in the
1288	 * boosting/deboosting path, its not throttled.
1289	 */
1290	if (is_dl_boosted(dl_se))
1291		goto unlock;
1292
1293	/*
1294	 * Spurious timer due to start_dl_timer() race; or we already received
1295	 * a replenishment from rt_mutex_setprio().
1296	 */
1297	if (!dl_se->dl_throttled)
1298		goto unlock;
1299
1300	sched_clock_tick();
1301	update_rq_clock(rq);
1302
1303	/*
1304	 * If the throttle happened during sched-out; like:
1305	 *
1306	 *   schedule()
1307	 *     deactivate_task()
1308	 *       dequeue_task_dl()
1309	 *         update_curr_dl()
1310	 *           start_dl_timer()
1311	 *         __dequeue_task_dl()
1312	 *     prev->on_rq = 0;
1313	 *
1314	 * We can be both throttled and !queued. Replenish the counter
1315	 * but do not enqueue -- wait for our wakeup to do that.
1316	 */
1317	if (!task_on_rq_queued(p)) {
1318		replenish_dl_entity(dl_se);
1319		goto unlock;
1320	}
1321
1322#ifdef CONFIG_SMP
1323	if (unlikely(!rq->online)) {
1324		/*
1325		 * If the runqueue is no longer available, migrate the
1326		 * task elsewhere. This necessarily changes rq.
1327		 */
1328		lockdep_unpin_lock(__rq_lockp(rq), rf.cookie);
1329		rq = dl_task_offline_migration(rq, p);
1330		rf.cookie = lockdep_pin_lock(__rq_lockp(rq));
1331		update_rq_clock(rq);
1332
1333		/*
1334		 * Now that the task has been migrated to the new RQ and we
1335		 * have that locked, proceed as normal and enqueue the task
1336		 * there.
1337		 */
1338	}
1339#endif
1340
1341	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1342	if (dl_task(rq->donor))
1343		wakeup_preempt_dl(rq, p, 0);
1344	else
1345		resched_curr(rq);
1346
1347	__push_dl_task(rq, &rf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1348
1349unlock:
1350	task_rq_unlock(rq, p, &rf);
1351
1352	/*
1353	 * This can free the task_struct, including this hrtimer, do not touch
1354	 * anything related to that after this.
1355	 */
1356	put_task_struct(p);
1357
1358	return HRTIMER_NORESTART;
1359}
1360
1361static void init_dl_task_timer(struct sched_dl_entity *dl_se)
1362{
1363	struct hrtimer *timer = &dl_se->dl_timer;
1364
1365	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1366	timer->function = dl_task_timer;
1367}
1368
1369/*
1370 * During the activation, CBS checks if it can reuse the current task's
1371 * runtime and period. If the deadline of the task is in the past, CBS
1372 * cannot use the runtime, and so it replenishes the task. This rule
1373 * works fine for implicit deadline tasks (deadline == period), and the
1374 * CBS was designed for implicit deadline tasks. However, a task with
1375 * constrained deadline (deadline < period) might be awakened after the
1376 * deadline, but before the next period. In this case, replenishing the
1377 * task would allow it to run for runtime / deadline. As in this case
1378 * deadline < period, CBS enables a task to run for more than the
1379 * runtime / period. In a very loaded system, this can cause a domino
1380 * effect, making other tasks miss their deadlines.
1381 *
1382 * To avoid this problem, in the activation of a constrained deadline
1383 * task after the deadline but before the next period, throttle the
1384 * task and set the replenishing timer to the begin of the next period,
1385 * unless it is boosted.
1386 */
1387static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1388{
1389	struct rq *rq = rq_of_dl_se(dl_se);
 
1390
1391	if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1392	    dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1393		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se)))
1394			return;
1395		dl_se->dl_throttled = 1;
1396		if (dl_se->runtime > 0)
1397			dl_se->runtime = 0;
1398	}
1399}
1400
1401static
1402int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1403{
1404	return (dl_se->runtime <= 0);
1405}
1406
 
 
1407/*
1408 * This function implements the GRUB accounting rule. According to the
1409 * GRUB reclaiming algorithm, the runtime is not decreased as "dq = -dt",
1410 * but as "dq = -(max{u, (Umax - Uinact - Uextra)} / Umax) dt",
 
1411 * where u is the utilization of the task, Umax is the maximum reclaimable
1412 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1413 * as the difference between the "total runqueue utilization" and the
1414 * "runqueue active utilization", and Uextra is the (per runqueue) extra
1415 * reclaimable utilization.
1416 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations multiplied
1417 * by 2^BW_SHIFT, the result has to be shifted right by BW_SHIFT.
1418 * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT, dl_bw
1419 * is multiplied by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1420 * Since delta is a 64 bit variable, to have an overflow its value should be
1421 * larger than 2^(64 - 20 - 8), which is more than 64 seconds. So, overflow is
1422 * not an issue here.
 
1423 */
1424static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1425{
 
1426	u64 u_act;
1427	u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1428
1429	/*
1430	 * Instead of computing max{u, (u_max - u_inact - u_extra)}, we
1431	 * compare u_inact + u_extra with u_max - u, because u_inact + u_extra
1432	 * can be larger than u_max. So, u_max - u_inact - u_extra would be
1433	 * negative leading to wrong results.
 
 
1434	 */
1435	if (u_inact + rq->dl.extra_bw > rq->dl.max_bw - dl_se->dl_bw)
1436		u_act = dl_se->dl_bw;
1437	else
1438		u_act = rq->dl.max_bw - u_inact - rq->dl.extra_bw;
1439
1440	u_act = (u_act * rq->dl.bw_ratio) >> RATIO_SHIFT;
1441	return (delta * u_act) >> BW_SHIFT;
1442}
1443
1444s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
 
 
 
 
1445{
1446	s64 scaled_delta_exec;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1447
1448	/*
1449	 * For tasks that participate in GRUB, we implement GRUB-PA: the
1450	 * spare reclaimed bandwidth is used to clock down frequency.
1451	 *
1452	 * For the others, we still need to scale reservation parameters
1453	 * according to current frequency and CPU maximum capacity.
1454	 */
1455	if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1456		scaled_delta_exec = grub_reclaim(delta_exec, rq, dl_se);
 
 
1457	} else {
1458		int cpu = cpu_of(rq);
1459		unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1460		unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1461
1462		scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1463		scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1464	}
1465
1466	return scaled_delta_exec;
1467}
1468
1469static inline void
1470update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1471			int flags);
1472static void update_curr_dl_se(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
1473{
1474	s64 scaled_delta_exec;
1475
1476	if (unlikely(delta_exec <= 0)) {
1477		if (unlikely(dl_se->dl_yielded))
1478			goto throttle;
1479		return;
1480	}
1481
1482	if (dl_server(dl_se) && dl_se->dl_throttled && !dl_se->dl_defer)
1483		return;
1484
1485	if (dl_entity_is_special(dl_se))
1486		return;
1487
1488	scaled_delta_exec = dl_scaled_delta_exec(rq, dl_se, delta_exec);
1489
1490	dl_se->runtime -= scaled_delta_exec;
1491
1492	/*
1493	 * The fair server can consume its runtime while throttled (not queued/
1494	 * running as regular CFS).
1495	 *
1496	 * If the server consumes its entire runtime in this state. The server
1497	 * is not required for the current period. Thus, reset the server by
1498	 * starting a new period, pushing the activation.
1499	 */
1500	if (dl_se->dl_defer && dl_se->dl_throttled && dl_runtime_exceeded(dl_se)) {
1501		/*
1502		 * If the server was previously activated - the starving condition
1503		 * took place, it this point it went away because the fair scheduler
1504		 * was able to get runtime in background. So return to the initial
1505		 * state.
1506		 */
1507		dl_se->dl_defer_running = 0;
1508
1509		hrtimer_try_to_cancel(&dl_se->dl_timer);
1510
1511		replenish_dl_new_period(dl_se, dl_se->rq);
1512
1513		/*
1514		 * Not being able to start the timer seems problematic. If it could not
1515		 * be started for whatever reason, we need to "unthrottle" the DL server
1516		 * and queue right away. Otherwise nothing might queue it. That's similar
1517		 * to what enqueue_dl_entity() does on start_dl_timer==0. For now, just warn.
1518		 */
1519		WARN_ON_ONCE(!start_dl_timer(dl_se));
1520
1521		return;
1522	}
1523
1524throttle:
1525	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1526		dl_se->dl_throttled = 1;
1527
1528		/* If requested, inform the user about runtime overruns. */
1529		if (dl_runtime_exceeded(dl_se) &&
1530		    (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1531			dl_se->dl_overrun = 1;
1532
1533		dequeue_dl_entity(dl_se, 0);
1534		if (!dl_server(dl_se)) {
1535			update_stats_dequeue_dl(&rq->dl, dl_se, 0);
1536			dequeue_pushable_dl_task(rq, dl_task_of(dl_se));
1537		}
1538
1539		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se))) {
1540			if (dl_server(dl_se))
1541				enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH);
1542			else
1543				enqueue_task_dl(rq, dl_task_of(dl_se), ENQUEUE_REPLENISH);
1544		}
1545
1546		if (!is_leftmost(dl_se, &rq->dl))
1547			resched_curr(rq);
1548	}
1549
1550	/*
1551	 * The fair server (sole dl_server) does not account for real-time
1552	 * workload because it is running fair work.
1553	 */
1554	if (dl_se == &rq->fair_server)
1555		return;
1556
1557#ifdef CONFIG_RT_GROUP_SCHED
1558	/*
1559	 * Because -- for now -- we share the rt bandwidth, we need to
1560	 * account our runtime there too, otherwise actual rt tasks
1561	 * would be able to exceed the shared quota.
1562	 *
1563	 * Account to the root rt group for now.
1564	 *
1565	 * The solution we're working towards is having the RT groups scheduled
1566	 * using deadline servers -- however there's a few nasties to figure
1567	 * out before that can happen.
1568	 */
1569	if (rt_bandwidth_enabled()) {
1570		struct rt_rq *rt_rq = &rq->rt;
1571
1572		raw_spin_lock(&rt_rq->rt_runtime_lock);
1573		/*
1574		 * We'll let actual RT tasks worry about the overflow here, we
1575		 * have our own CBS to keep us inline; only account when RT
1576		 * bandwidth is relevant.
1577		 */
1578		if (sched_rt_bandwidth_account(rt_rq))
1579			rt_rq->rt_time += delta_exec;
1580		raw_spin_unlock(&rt_rq->rt_runtime_lock);
1581	}
1582#endif
1583}
1584
1585/*
1586 * In the non-defer mode, the idle time is not accounted, as the
1587 * server provides a guarantee.
1588 *
1589 * If the dl_server is in defer mode, the idle time is also considered
1590 * as time available for the fair server, avoiding a penalty for the
1591 * rt scheduler that did not consumed that time.
1592 */
1593void dl_server_update_idle_time(struct rq *rq, struct task_struct *p)
1594{
1595	s64 delta_exec, scaled_delta_exec;
1596
1597	if (!rq->fair_server.dl_defer)
1598		return;
1599
1600	/* no need to discount more */
1601	if (rq->fair_server.runtime < 0)
1602		return;
1603
1604	delta_exec = rq_clock_task(rq) - p->se.exec_start;
1605	if (delta_exec < 0)
1606		return;
1607
1608	scaled_delta_exec = dl_scaled_delta_exec(rq, &rq->fair_server, delta_exec);
1609
1610	rq->fair_server.runtime -= scaled_delta_exec;
1611
1612	if (rq->fair_server.runtime < 0) {
1613		rq->fair_server.dl_defer_running = 0;
1614		rq->fair_server.runtime = 0;
1615	}
1616
1617	p->se.exec_start = rq_clock_task(rq);
1618}
1619
1620void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec)
1621{
1622	/* 0 runtime = fair server disabled */
1623	if (dl_se->dl_runtime)
1624		update_curr_dl_se(dl_se->rq, dl_se, delta_exec);
1625}
1626
1627void dl_server_start(struct sched_dl_entity *dl_se)
1628{
1629	struct rq *rq = dl_se->rq;
1630
1631	/*
1632	 * XXX: the apply do not work fine at the init phase for the
1633	 * fair server because things are not yet set. We need to improve
1634	 * this before getting generic.
1635	 */
1636	if (!dl_server(dl_se)) {
1637		u64 runtime =  50 * NSEC_PER_MSEC;
1638		u64 period = 1000 * NSEC_PER_MSEC;
1639
1640		dl_server_apply_params(dl_se, runtime, period, 1);
1641
1642		dl_se->dl_server = 1;
1643		dl_se->dl_defer = 1;
1644		setup_new_dl_entity(dl_se);
1645	}
1646
1647	if (!dl_se->dl_runtime)
1648		return;
1649
1650	dl_se->dl_server_active = 1;
1651	enqueue_dl_entity(dl_se, ENQUEUE_WAKEUP);
1652	if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &rq->curr->dl))
1653		resched_curr(dl_se->rq);
1654}
1655
1656void dl_server_stop(struct sched_dl_entity *dl_se)
1657{
1658	if (!dl_se->dl_runtime)
1659		return;
1660
1661	dequeue_dl_entity(dl_se, DEQUEUE_SLEEP);
1662	hrtimer_try_to_cancel(&dl_se->dl_timer);
1663	dl_se->dl_defer_armed = 0;
1664	dl_se->dl_throttled = 0;
1665	dl_se->dl_server_active = 0;
1666}
1667
1668void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
1669		    dl_server_has_tasks_f has_tasks,
1670		    dl_server_pick_f pick_task)
1671{
1672	dl_se->rq = rq;
1673	dl_se->server_has_tasks = has_tasks;
1674	dl_se->server_pick_task = pick_task;
1675}
1676
1677void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq)
1678{
1679	u64 new_bw = dl_se->dl_bw;
1680	int cpu = cpu_of(rq);
1681	struct dl_bw *dl_b;
1682
1683	dl_b = dl_bw_of(cpu_of(rq));
1684	guard(raw_spinlock)(&dl_b->lock);
1685
1686	if (!dl_bw_cpus(cpu))
1687		return;
1688
1689	__dl_add(dl_b, new_bw, dl_bw_cpus(cpu));
1690}
1691
1692int dl_server_apply_params(struct sched_dl_entity *dl_se, u64 runtime, u64 period, bool init)
1693{
1694	u64 old_bw = init ? 0 : to_ratio(dl_se->dl_period, dl_se->dl_runtime);
1695	u64 new_bw = to_ratio(period, runtime);
1696	struct rq *rq = dl_se->rq;
1697	int cpu = cpu_of(rq);
1698	struct dl_bw *dl_b;
1699	unsigned long cap;
1700	int retval = 0;
1701	int cpus;
1702
1703	dl_b = dl_bw_of(cpu);
1704	guard(raw_spinlock)(&dl_b->lock);
1705
1706	cpus = dl_bw_cpus(cpu);
1707	cap = dl_bw_capacity(cpu);
1708
1709	if (__dl_overflow(dl_b, cap, old_bw, new_bw))
1710		return -EBUSY;
1711
1712	if (init) {
1713		__add_rq_bw(new_bw, &rq->dl);
1714		__dl_add(dl_b, new_bw, cpus);
1715	} else {
1716		__dl_sub(dl_b, dl_se->dl_bw, cpus);
1717		__dl_add(dl_b, new_bw, cpus);
1718
1719		dl_rq_change_utilization(rq, dl_se, new_bw);
1720	}
1721
1722	dl_se->dl_runtime = runtime;
1723	dl_se->dl_deadline = period;
1724	dl_se->dl_period = period;
1725
1726	dl_se->runtime = 0;
1727	dl_se->deadline = 0;
1728
1729	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
1730	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
1731
1732	return retval;
1733}
1734
1735/*
1736 * Update the current task's runtime statistics (provided it is still
1737 * a -deadline task and has not been removed from the dl_rq).
1738 */
1739static void update_curr_dl(struct rq *rq)
1740{
1741	struct task_struct *donor = rq->donor;
1742	struct sched_dl_entity *dl_se = &donor->dl;
1743	s64 delta_exec;
1744
1745	if (!dl_task(donor) || !on_dl_rq(dl_se))
1746		return;
1747
1748	/*
1749	 * Consumed budget is computed considering the time as
1750	 * observed by schedulable tasks (excluding time spent
1751	 * in hardirq context, etc.). Deadlines are instead
1752	 * computed using hard walltime. This seems to be the more
1753	 * natural solution, but the full ramifications of this
1754	 * approach need further study.
1755	 */
1756	delta_exec = update_curr_common(rq);
1757	update_curr_dl_se(rq, dl_se, delta_exec);
1758}
1759
1760static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1761{
1762	struct sched_dl_entity *dl_se = container_of(timer,
1763						     struct sched_dl_entity,
1764						     inactive_timer);
1765	struct task_struct *p = NULL;
1766	struct rq_flags rf;
1767	struct rq *rq;
1768
1769	if (!dl_server(dl_se)) {
1770		p = dl_task_of(dl_se);
1771		rq = task_rq_lock(p, &rf);
1772	} else {
1773		rq = dl_se->rq;
1774		rq_lock(rq, &rf);
1775	}
1776
1777	sched_clock_tick();
1778	update_rq_clock(rq);
1779
1780	if (dl_server(dl_se))
1781		goto no_task;
1782
1783	if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
1784		struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1785
1786		if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) {
1787			sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1788			sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1789			dl_se->dl_non_contending = 0;
1790		}
1791
1792		raw_spin_lock(&dl_b->lock);
1793		__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1794		raw_spin_unlock(&dl_b->lock);
1795		__dl_clear_params(dl_se);
1796
1797		goto unlock;
1798	}
1799
1800no_task:
1801	if (dl_se->dl_non_contending == 0)
1802		goto unlock;
1803
1804	sub_running_bw(dl_se, &rq->dl);
1805	dl_se->dl_non_contending = 0;
1806unlock:
1807
1808	if (!dl_server(dl_se)) {
1809		task_rq_unlock(rq, p, &rf);
1810		put_task_struct(p);
1811	} else {
1812		rq_unlock(rq, &rf);
1813	}
1814
1815	return HRTIMER_NORESTART;
1816}
1817
1818static void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1819{
1820	struct hrtimer *timer = &dl_se->inactive_timer;
1821
1822	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1823	timer->function = inactive_task_timer;
1824}
1825
1826#define __node_2_dle(node) \
1827	rb_entry((node), struct sched_dl_entity, rb_node)
1828
1829#ifdef CONFIG_SMP
1830
1831static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1832{
1833	struct rq *rq = rq_of_dl_rq(dl_rq);
1834
1835	if (dl_rq->earliest_dl.curr == 0 ||
1836	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1837		if (dl_rq->earliest_dl.curr == 0)
1838			cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER);
1839		dl_rq->earliest_dl.curr = deadline;
1840		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1841	}
1842}
1843
1844static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1845{
1846	struct rq *rq = rq_of_dl_rq(dl_rq);
1847
1848	/*
1849	 * Since we may have removed our earliest (and/or next earliest)
1850	 * task we must recompute them.
1851	 */
1852	if (!dl_rq->dl_nr_running) {
1853		dl_rq->earliest_dl.curr = 0;
1854		dl_rq->earliest_dl.next = 0;
1855		cpudl_clear(&rq->rd->cpudl, rq->cpu);
1856		cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1857	} else {
1858		struct rb_node *leftmost = rb_first_cached(&dl_rq->root);
1859		struct sched_dl_entity *entry = __node_2_dle(leftmost);
1860
 
1861		dl_rq->earliest_dl.curr = entry->deadline;
1862		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1863	}
1864}
1865
1866#else
1867
1868static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1869static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1870
1871#endif /* CONFIG_SMP */
1872
1873static inline
1874void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1875{
 
1876	u64 deadline = dl_se->deadline;
1877
 
1878	dl_rq->dl_nr_running++;
1879	add_nr_running(rq_of_dl_rq(dl_rq), 1);
1880
1881	inc_dl_deadline(dl_rq, deadline);
 
1882}
1883
1884static inline
1885void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1886{
 
 
 
1887	WARN_ON(!dl_rq->dl_nr_running);
1888	dl_rq->dl_nr_running--;
1889	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1890
1891	dec_dl_deadline(dl_rq, dl_se->deadline);
1892}
1893
1894static inline bool __dl_less(struct rb_node *a, const struct rb_node *b)
1895{
1896	return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline);
1897}
1898
1899static __always_inline struct sched_statistics *
1900__schedstats_from_dl_se(struct sched_dl_entity *dl_se)
1901{
1902	if (!schedstat_enabled())
1903		return NULL;
1904
1905	if (dl_server(dl_se))
1906		return NULL;
1907
1908	return &dl_task_of(dl_se)->stats;
1909}
1910
1911static inline void
1912update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1913{
1914	struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
1915	if (stats)
1916		__update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1917}
1918
1919static inline void
1920update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1921{
1922	struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
1923	if (stats)
1924		__update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1925}
1926
1927static inline void
1928update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1929{
1930	struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
1931	if (stats)
1932		__update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1933}
1934
1935static inline void
1936update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1937			int flags)
1938{
1939	if (!schedstat_enabled())
1940		return;
1941
1942	if (flags & ENQUEUE_WAKEUP)
1943		update_stats_enqueue_sleeper_dl(dl_rq, dl_se);
1944}
1945
1946static inline void
1947update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1948			int flags)
1949{
1950	struct task_struct *p = dl_task_of(dl_se);
1951
1952	if (!schedstat_enabled())
1953		return;
1954
1955	if ((flags & DEQUEUE_SLEEP)) {
1956		unsigned int state;
1957
1958		state = READ_ONCE(p->__state);
1959		if (state & TASK_INTERRUPTIBLE)
1960			__schedstat_set(p->stats.sleep_start,
1961					rq_clock(rq_of_dl_rq(dl_rq)));
1962
1963		if (state & TASK_UNINTERRUPTIBLE)
1964			__schedstat_set(p->stats.block_start,
1965					rq_clock(rq_of_dl_rq(dl_rq)));
1966	}
1967}
1968
1969static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1970{
1971	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1972
1973	WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node));
1974
1975	rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less);
1976
1977	inc_dl_tasks(dl_se, dl_rq);
1978}
1979
1980static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1981{
1982	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1983
1984	if (RB_EMPTY_NODE(&dl_se->rb_node))
1985		return;
1986
1987	rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1988
1989	RB_CLEAR_NODE(&dl_se->rb_node);
1990
1991	dec_dl_tasks(dl_se, dl_rq);
1992}
1993
1994static void
1995enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
 
1996{
1997	WARN_ON_ONCE(on_dl_rq(dl_se));
1998
1999	update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2000
2001	/*
2002	 * Check if a constrained deadline task was activated
2003	 * after the deadline but before the next period.
2004	 * If that is the case, the task will be throttled and
2005	 * the replenishment timer will be set to the next period.
2006	 */
2007	if (!dl_se->dl_throttled && !dl_is_implicit(dl_se))
2008		dl_check_constrained_dl(dl_se);
2009
2010	if (flags & (ENQUEUE_RESTORE|ENQUEUE_MIGRATING)) {
2011		struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
2012
2013		add_rq_bw(dl_se, dl_rq);
2014		add_running_bw(dl_se, dl_rq);
2015	}
2016
2017	/*
2018	 * If p is throttled, we do not enqueue it. In fact, if it exhausted
2019	 * its budget it needs a replenishment and, since it now is on
2020	 * its rq, the bandwidth timer callback (which clearly has not
2021	 * run yet) will take care of this.
2022	 * However, the active utilization does not depend on the fact
2023	 * that the task is on the runqueue or not (but depends on the
2024	 * task's state - in GRUB parlance, "inactive" vs "active contending").
2025	 * In other words, even if a task is throttled its utilization must
2026	 * be counted in the active utilization; hence, we need to call
2027	 * add_running_bw().
2028	 */
2029	if (!dl_se->dl_defer && dl_se->dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
2030		if (flags & ENQUEUE_WAKEUP)
2031			task_contending(dl_se, flags);
2032
2033		return;
2034	}
2035
2036	/*
2037	 * If this is a wakeup or a new instance, the scheduling
2038	 * parameters of the task might need updating. Otherwise,
2039	 * we want a replenishment of its runtime.
2040	 */
2041	if (flags & ENQUEUE_WAKEUP) {
2042		task_contending(dl_se, flags);
2043		update_dl_entity(dl_se);
2044	} else if (flags & ENQUEUE_REPLENISH) {
2045		replenish_dl_entity(dl_se);
2046	} else if ((flags & ENQUEUE_RESTORE) &&
2047		   !is_dl_boosted(dl_se) &&
2048		   dl_time_before(dl_se->deadline, rq_clock(rq_of_dl_se(dl_se)))) {
2049		setup_new_dl_entity(dl_se);
2050	}
2051
2052	/*
2053	 * If the reservation is still throttled, e.g., it got replenished but is a
2054	 * deferred task and still got to wait, don't enqueue.
2055	 */
2056	if (dl_se->dl_throttled && start_dl_timer(dl_se))
2057		return;
2058
2059	/*
2060	 * We're about to enqueue, make sure we're not ->dl_throttled!
2061	 * In case the timer was not started, say because the defer time
2062	 * has passed, mark as not throttled and mark unarmed.
2063	 * Also cancel earlier timers, since letting those run is pointless.
2064	 */
2065	if (dl_se->dl_throttled) {
2066		hrtimer_try_to_cancel(&dl_se->dl_timer);
2067		dl_se->dl_defer_armed = 0;
2068		dl_se->dl_throttled = 0;
2069	}
2070
2071	__enqueue_dl_entity(dl_se);
2072}
2073
2074static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags)
2075{
2076	__dequeue_dl_entity(dl_se);
 
2077
2078	if (flags & (DEQUEUE_SAVE|DEQUEUE_MIGRATING)) {
2079		struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
2080
2081		sub_running_bw(dl_se, dl_rq);
2082		sub_rq_bw(dl_se, dl_rq);
2083	}
2084
2085	/*
2086	 * This check allows to start the inactive timer (or to immediately
2087	 * decrease the active utilization, if needed) in two cases:
2088	 * when the task blocks and when it is terminating
2089	 * (p->state == TASK_DEAD). We can handle the two cases in the same
2090	 * way, because from GRUB's point of view the same thing is happening
2091	 * (the task moves from "active contending" to "active non contending"
2092	 * or "inactive")
2093	 */
2094	if (flags & DEQUEUE_SLEEP)
2095		task_non_contending(dl_se);
2096}
2097
2098static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
2099{
2100	if (is_dl_boosted(&p->dl)) {
2101		/*
2102		 * Because of delays in the detection of the overrun of a
2103		 * thread's runtime, it might be the case that a thread
2104		 * goes to sleep in a rt mutex with negative runtime. As
2105		 * a consequence, the thread will be throttled.
2106		 *
2107		 * While waiting for the mutex, this thread can also be
2108		 * boosted via PI, resulting in a thread that is throttled
2109		 * and boosted at the same time.
2110		 *
2111		 * In this case, the boost overrides the throttle.
2112		 */
2113		if (p->dl.dl_throttled) {
2114			/*
2115			 * The replenish timer needs to be canceled. No
2116			 * problem if it fires concurrently: boosted threads
2117			 * are ignored in dl_task_timer().
2118			 *
2119			 * If the timer callback was running (hrtimer_try_to_cancel == -1),
2120			 * it will eventually call put_task_struct().
2121			 */
2122			if (hrtimer_try_to_cancel(&p->dl.dl_timer) == 1 &&
2123			    !dl_server(&p->dl))
2124				put_task_struct(p);
2125			p->dl.dl_throttled = 0;
2126		}
2127	} else if (!dl_prio(p->normal_prio)) {
2128		/*
2129		 * Special case in which we have a !SCHED_DEADLINE task that is going
2130		 * to be deboosted, but exceeds its runtime while doing so. No point in
2131		 * replenishing it, as it's going to return back to its original
2132		 * scheduling class after this. If it has been throttled, we need to
2133		 * clear the flag, otherwise the task may wake up as throttled after
2134		 * being boosted again with no means to replenish the runtime and clear
2135		 * the throttle.
2136		 */
2137		p->dl.dl_throttled = 0;
2138		if (!(flags & ENQUEUE_REPLENISH))
2139			printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n",
2140					     task_pid_nr(p));
2141
2142		return;
2143	}
2144
2145	check_schedstat_required();
2146	update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl);
2147
2148	if (p->on_rq == TASK_ON_RQ_MIGRATING)
2149		flags |= ENQUEUE_MIGRATING;
2150
2151	enqueue_dl_entity(&p->dl, flags);
2152
2153	if (dl_server(&p->dl))
2154		return;
2155
2156	if (!task_current(rq, p) && !p->dl.dl_throttled && p->nr_cpus_allowed > 1)
2157		enqueue_pushable_dl_task(rq, p);
2158}
2159
2160static bool dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
2161{
2162	update_curr_dl(rq);
2163
2164	if (p->on_rq == TASK_ON_RQ_MIGRATING)
2165		flags |= DEQUEUE_MIGRATING;
2166
2167	dequeue_dl_entity(&p->dl, flags);
2168	if (!p->dl.dl_throttled && !dl_server(&p->dl))
2169		dequeue_pushable_dl_task(rq, p);
2170
2171	return true;
2172}
2173
2174/*
2175 * Yield task semantic for -deadline tasks is:
2176 *
2177 *   get off from the CPU until our next instance, with
2178 *   a new runtime. This is of little use now, since we
2179 *   don't have a bandwidth reclaiming mechanism. Anyway,
2180 *   bandwidth reclaiming is planned for the future, and
2181 *   yield_task_dl will indicate that some spare budget
2182 *   is available for other task instances to use it.
2183 */
2184static void yield_task_dl(struct rq *rq)
2185{
2186	/*
2187	 * We make the task go to sleep until its current deadline by
2188	 * forcing its runtime to zero. This way, update_curr_dl() stops
2189	 * it and the bandwidth timer will wake it up and will give it
2190	 * new scheduling parameters (thanks to dl_yielded=1).
2191	 */
2192	rq->curr->dl.dl_yielded = 1;
2193
2194	update_rq_clock(rq);
2195	update_curr_dl(rq);
2196	/*
2197	 * Tell update_rq_clock() that we've just updated,
2198	 * so we don't do microscopic update in schedule()
2199	 * and double the fastpath cost.
2200	 */
2201	rq_clock_skip_update(rq);
2202}
2203
2204#ifdef CONFIG_SMP
2205
2206static inline bool dl_task_is_earliest_deadline(struct task_struct *p,
2207						 struct rq *rq)
2208{
2209	return (!rq->dl.dl_nr_running ||
2210		dl_time_before(p->dl.deadline,
2211			       rq->dl.earliest_dl.curr));
2212}
2213
2214static int find_later_rq(struct task_struct *task);
2215
2216static int
2217select_task_rq_dl(struct task_struct *p, int cpu, int flags)
2218{
2219	struct task_struct *curr, *donor;
2220	bool select_rq;
2221	struct rq *rq;
2222
2223	if (!(flags & WF_TTWU))
2224		goto out;
2225
2226	rq = cpu_rq(cpu);
2227
2228	rcu_read_lock();
2229	curr = READ_ONCE(rq->curr); /* unlocked access */
2230	donor = READ_ONCE(rq->donor);
2231
2232	/*
2233	 * If we are dealing with a -deadline task, we must
2234	 * decide where to wake it up.
2235	 * If it has a later deadline and the current task
2236	 * on this rq can't move (provided the waking task
2237	 * can!) we prefer to send it somewhere else. On the
2238	 * other hand, if it has a shorter deadline, we
2239	 * try to make it stay here, it might be important.
2240	 */
2241	select_rq = unlikely(dl_task(donor)) &&
2242		    (curr->nr_cpus_allowed < 2 ||
2243		     !dl_entity_preempt(&p->dl, &donor->dl)) &&
2244		    p->nr_cpus_allowed > 1;
2245
2246	/*
2247	 * Take the capacity of the CPU into account to
2248	 * ensure it fits the requirement of the task.
2249	 */
2250	if (sched_asym_cpucap_active())
2251		select_rq |= !dl_task_fits_capacity(p, cpu);
2252
2253	if (select_rq) {
2254		int target = find_later_rq(p);
2255
2256		if (target != -1 &&
2257		    dl_task_is_earliest_deadline(p, cpu_rq(target)))
 
 
2258			cpu = target;
2259	}
2260	rcu_read_unlock();
2261
2262out:
2263	return cpu;
2264}
2265
2266static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
2267{
2268	struct rq_flags rf;
2269	struct rq *rq;
2270
2271	if (READ_ONCE(p->__state) != TASK_WAKING)
2272		return;
2273
2274	rq = task_rq(p);
2275	/*
2276	 * Since p->state == TASK_WAKING, set_task_cpu() has been called
2277	 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
2278	 * rq->lock is not... So, lock it
2279	 */
2280	rq_lock(rq, &rf);
2281	if (p->dl.dl_non_contending) {
2282		update_rq_clock(rq);
2283		sub_running_bw(&p->dl, &rq->dl);
2284		p->dl.dl_non_contending = 0;
2285		/*
2286		 * If the timer handler is currently running and the
2287		 * timer cannot be canceled, inactive_task_timer()
2288		 * will see that dl_not_contending is not set, and
2289		 * will not touch the rq's active utilization,
2290		 * so we are still safe.
2291		 */
2292		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2293			put_task_struct(p);
2294	}
2295	sub_rq_bw(&p->dl, &rq->dl);
2296	rq_unlock(rq, &rf);
2297}
2298
2299static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
2300{
2301	/*
2302	 * Current can't be migrated, useless to reschedule,
2303	 * let's hope p can move out.
2304	 */
2305	if (rq->curr->nr_cpus_allowed == 1 ||
2306	    !cpudl_find(&rq->rd->cpudl, rq->donor, NULL))
2307		return;
2308
2309	/*
2310	 * p is migratable, so let's not schedule it and
2311	 * see if it is pushed or pulled somewhere else.
2312	 */
2313	if (p->nr_cpus_allowed != 1 &&
2314	    cpudl_find(&rq->rd->cpudl, p, NULL))
2315		return;
2316
2317	resched_curr(rq);
2318}
2319
2320static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
2321{
2322	if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
2323		/*
2324		 * This is OK, because current is on_cpu, which avoids it being
2325		 * picked for load-balance and preemption/IRQs are still
2326		 * disabled avoiding further scheduler activity on it and we've
2327		 * not yet started the picking loop.
2328		 */
2329		rq_unpin_lock(rq, rf);
2330		pull_dl_task(rq);
2331		rq_repin_lock(rq, rf);
2332	}
2333
2334	return sched_stop_runnable(rq) || sched_dl_runnable(rq);
2335}
2336#endif /* CONFIG_SMP */
2337
2338/*
2339 * Only called when both the current and waking task are -deadline
2340 * tasks.
2341 */
2342static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p,
2343				  int flags)
2344{
2345	if (dl_entity_preempt(&p->dl, &rq->donor->dl)) {
2346		resched_curr(rq);
2347		return;
2348	}
2349
2350#ifdef CONFIG_SMP
2351	/*
2352	 * In the unlikely case current and p have the same deadline
2353	 * let us try to decide what's the best thing to do...
2354	 */
2355	if ((p->dl.deadline == rq->donor->dl.deadline) &&
2356	    !test_tsk_need_resched(rq->curr))
2357		check_preempt_equal_dl(rq, p);
2358#endif /* CONFIG_SMP */
2359}
2360
2361#ifdef CONFIG_SCHED_HRTICK
2362static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
2363{
2364	hrtick_start(rq, dl_se->runtime);
2365}
2366#else /* !CONFIG_SCHED_HRTICK */
2367static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
2368{
2369}
2370#endif
2371
2372static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
2373{
2374	struct sched_dl_entity *dl_se = &p->dl;
2375	struct dl_rq *dl_rq = &rq->dl;
2376
2377	p->se.exec_start = rq_clock_task(rq);
2378	if (on_dl_rq(&p->dl))
2379		update_stats_wait_end_dl(dl_rq, dl_se);
2380
2381	/* You can't push away the running task */
2382	dequeue_pushable_dl_task(rq, p);
2383
2384	if (!first)
2385		return;
2386
2387	if (rq->donor->sched_class != &dl_sched_class)
2388		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2389
2390	deadline_queue_push_tasks(rq);
2391
2392	if (hrtick_enabled_dl(rq))
2393		start_hrtick_dl(rq, &p->dl);
2394}
2395
2396static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq)
2397{
2398	struct rb_node *left = rb_first_cached(&dl_rq->root);
2399
2400	if (!left)
2401		return NULL;
2402
2403	return __node_2_dle(left);
2404}
2405
2406/*
2407 * __pick_next_task_dl - Helper to pick the next -deadline task to run.
2408 * @rq: The runqueue to pick the next task from.
2409 */
2410static struct task_struct *__pick_task_dl(struct rq *rq)
2411{
2412	struct sched_dl_entity *dl_se;
2413	struct dl_rq *dl_rq = &rq->dl;
2414	struct task_struct *p;
 
2415
2416again:
2417	if (!sched_dl_runnable(rq))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2418		return NULL;
2419
2420	dl_se = pick_next_dl_entity(dl_rq);
2421	WARN_ON_ONCE(!dl_se);
2422
2423	if (dl_server(dl_se)) {
2424		p = dl_se->server_pick_task(dl_se);
2425		if (!p) {
2426			if (dl_server_active(dl_se)) {
2427				dl_se->dl_yielded = 1;
2428				update_curr_dl_se(rq, dl_se, 0);
2429			}
2430			goto again;
2431		}
2432		rq->dl_server = dl_se;
2433	} else {
2434		p = dl_task_of(dl_se);
2435	}
2436
2437	return p;
2438}
2439
2440static struct task_struct *pick_task_dl(struct rq *rq)
2441{
2442	return __pick_task_dl(rq);
2443}
2444
2445static void put_prev_task_dl(struct rq *rq, struct task_struct *p, struct task_struct *next)
2446{
2447	struct sched_dl_entity *dl_se = &p->dl;
2448	struct dl_rq *dl_rq = &rq->dl;
2449
2450	if (on_dl_rq(&p->dl))
2451		update_stats_wait_start_dl(dl_rq, dl_se);
2452
2453	update_curr_dl(rq);
2454
2455	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2456	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
2457		enqueue_pushable_dl_task(rq, p);
2458}
2459
2460/*
2461 * scheduler tick hitting a task of our scheduling class.
2462 *
2463 * NOTE: This function can be called remotely by the tick offload that
2464 * goes along full dynticks. Therefore no local assumption can be made
2465 * and everything must be accessed through the @rq and @curr passed in
2466 * parameters.
2467 */
2468static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
2469{
2470	update_curr_dl(rq);
2471
2472	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2473	/*
2474	 * Even when we have runtime, update_curr_dl() might have resulted in us
2475	 * not being the leftmost task anymore. In that case NEED_RESCHED will
2476	 * be set and schedule() will start a new hrtick for the next task.
2477	 */
2478	if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 &&
2479	    is_leftmost(&p->dl, &rq->dl))
2480		start_hrtick_dl(rq, &p->dl);
2481}
2482
2483static void task_fork_dl(struct task_struct *p)
2484{
2485	/*
2486	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
2487	 * sched_fork()
2488	 */
2489}
2490
 
 
 
 
 
 
 
 
 
 
2491#ifdef CONFIG_SMP
2492
2493/* Only try algorithms three times */
2494#define DL_MAX_TRIES 3
2495
 
 
 
 
 
 
 
 
2496/*
2497 * Return the earliest pushable rq's task, which is suitable to be executed
2498 * on the CPU, NULL otherwise:
2499 */
2500static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
2501{
 
2502	struct task_struct *p = NULL;
2503	struct rb_node *next_node;
2504
2505	if (!has_pushable_dl_tasks(rq))
2506		return NULL;
2507
2508	next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root);
2509
2510next_node:
2511	if (next_node) {
2512		p = __node_2_pdl(next_node);
2513
2514		if (task_is_pushable(rq, p, cpu))
2515			return p;
2516
2517		next_node = rb_next(next_node);
2518		goto next_node;
2519	}
2520
2521	return NULL;
2522}
2523
2524static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
2525
2526static int find_later_rq(struct task_struct *task)
2527{
2528	struct sched_domain *sd;
2529	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
2530	int this_cpu = smp_processor_id();
2531	int cpu = task_cpu(task);
2532
2533	/* Make sure the mask is initialized first */
2534	if (unlikely(!later_mask))
2535		return -1;
2536
2537	if (task->nr_cpus_allowed == 1)
2538		return -1;
2539
2540	/*
2541	 * We have to consider system topology and task affinity
2542	 * first, then we can look for a suitable CPU.
2543	 */
2544	if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
2545		return -1;
2546
2547	/*
2548	 * If we are here, some targets have been found, including
2549	 * the most suitable which is, among the runqueues where the
2550	 * current tasks have later deadlines than the task's one, the
2551	 * rq with the latest possible one.
2552	 *
2553	 * Now we check how well this matches with task's
2554	 * affinity and system topology.
2555	 *
2556	 * The last CPU where the task run is our first
2557	 * guess, since it is most likely cache-hot there.
2558	 */
2559	if (cpumask_test_cpu(cpu, later_mask))
2560		return cpu;
2561	/*
2562	 * Check if this_cpu is to be skipped (i.e., it is
2563	 * not in the mask) or not.
2564	 */
2565	if (!cpumask_test_cpu(this_cpu, later_mask))
2566		this_cpu = -1;
2567
2568	rcu_read_lock();
2569	for_each_domain(cpu, sd) {
2570		if (sd->flags & SD_WAKE_AFFINE) {
2571			int best_cpu;
2572
2573			/*
2574			 * If possible, preempting this_cpu is
2575			 * cheaper than migrating.
2576			 */
2577			if (this_cpu != -1 &&
2578			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2579				rcu_read_unlock();
2580				return this_cpu;
2581			}
2582
2583			best_cpu = cpumask_any_and_distribute(later_mask,
2584							      sched_domain_span(sd));
2585			/*
2586			 * Last chance: if a CPU being in both later_mask
2587			 * and current sd span is valid, that becomes our
2588			 * choice. Of course, the latest possible CPU is
2589			 * already under consideration through later_mask.
2590			 */
2591			if (best_cpu < nr_cpu_ids) {
2592				rcu_read_unlock();
2593				return best_cpu;
2594			}
2595		}
2596	}
2597	rcu_read_unlock();
2598
2599	/*
2600	 * At this point, all our guesses failed, we just return
2601	 * 'something', and let the caller sort the things out.
2602	 */
2603	if (this_cpu != -1)
2604		return this_cpu;
2605
2606	cpu = cpumask_any_distribute(later_mask);
2607	if (cpu < nr_cpu_ids)
2608		return cpu;
2609
2610	return -1;
2611}
2612
2613/* Locks the rq it finds */
2614static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2615{
2616	struct rq *later_rq = NULL;
2617	int tries;
2618	int cpu;
2619
2620	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2621		cpu = find_later_rq(task);
2622
2623		if ((cpu == -1) || (cpu == rq->cpu))
2624			break;
2625
2626		later_rq = cpu_rq(cpu);
2627
2628		if (!dl_task_is_earliest_deadline(task, later_rq)) {
 
 
2629			/*
2630			 * Target rq has tasks of equal or earlier deadline,
2631			 * retrying does not release any lock and is unlikely
2632			 * to yield a different result.
2633			 */
2634			later_rq = NULL;
2635			break;
2636		}
2637
2638		/* Retry if something changed. */
2639		if (double_lock_balance(rq, later_rq)) {
2640			if (unlikely(task_rq(task) != rq ||
2641				     !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) ||
2642				     task_on_cpu(rq, task) ||
2643				     !dl_task(task) ||
2644				     is_migration_disabled(task) ||
2645				     !task_on_rq_queued(task))) {
2646				double_unlock_balance(rq, later_rq);
2647				later_rq = NULL;
2648				break;
2649			}
2650		}
2651
2652		/*
2653		 * If the rq we found has no -deadline task, or
2654		 * its earliest one has a later deadline than our
2655		 * task, the rq is a good one.
2656		 */
2657		if (dl_task_is_earliest_deadline(task, later_rq))
 
 
2658			break;
2659
2660		/* Otherwise we try again. */
2661		double_unlock_balance(rq, later_rq);
2662		later_rq = NULL;
2663	}
2664
2665	return later_rq;
2666}
2667
2668static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2669{
2670	struct task_struct *p;
2671
2672	if (!has_pushable_dl_tasks(rq))
2673		return NULL;
2674
2675	p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root));
 
2676
2677	WARN_ON_ONCE(rq->cpu != task_cpu(p));
2678	WARN_ON_ONCE(task_current(rq, p));
2679	WARN_ON_ONCE(p->nr_cpus_allowed <= 1);
2680
2681	WARN_ON_ONCE(!task_on_rq_queued(p));
2682	WARN_ON_ONCE(!dl_task(p));
2683
2684	return p;
2685}
2686
2687/*
2688 * See if the non running -deadline tasks on this rq
2689 * can be sent to some other CPU where they can preempt
2690 * and start executing.
2691 */
2692static int push_dl_task(struct rq *rq)
2693{
2694	struct task_struct *next_task;
2695	struct rq *later_rq;
2696	int ret = 0;
2697
 
 
 
2698	next_task = pick_next_pushable_dl_task(rq);
2699	if (!next_task)
2700		return 0;
2701
2702retry:
 
 
 
 
 
2703	/*
2704	 * If next_task preempts rq->curr, and rq->curr
2705	 * can move away, it makes sense to just reschedule
2706	 * without going further in pushing next_task.
2707	 */
2708	if (dl_task(rq->donor) &&
2709	    dl_time_before(next_task->dl.deadline, rq->donor->dl.deadline) &&
2710	    rq->curr->nr_cpus_allowed > 1) {
2711		resched_curr(rq);
2712		return 0;
2713	}
2714
2715	if (is_migration_disabled(next_task))
2716		return 0;
2717
2718	if (WARN_ON(next_task == rq->curr))
2719		return 0;
2720
2721	/* We might release rq lock */
2722	get_task_struct(next_task);
2723
2724	/* Will lock the rq it'll find */
2725	later_rq = find_lock_later_rq(next_task, rq);
2726	if (!later_rq) {
2727		struct task_struct *task;
2728
2729		/*
2730		 * We must check all this again, since
2731		 * find_lock_later_rq releases rq->lock and it is
2732		 * then possible that next_task has migrated.
2733		 */
2734		task = pick_next_pushable_dl_task(rq);
2735		if (task == next_task) {
2736			/*
2737			 * The task is still there. We don't try
2738			 * again, some other CPU will pull it when ready.
2739			 */
2740			goto out;
2741		}
2742
2743		if (!task)
2744			/* No more tasks */
2745			goto out;
2746
2747		put_task_struct(next_task);
2748		next_task = task;
2749		goto retry;
2750	}
2751
2752	move_queued_task_locked(rq, later_rq, next_task);
 
 
 
 
 
 
2753	ret = 1;
2754
2755	resched_curr(later_rq);
2756
2757	double_unlock_balance(rq, later_rq);
2758
2759out:
2760	put_task_struct(next_task);
2761
2762	return ret;
2763}
2764
2765static void push_dl_tasks(struct rq *rq)
2766{
2767	/* push_dl_task() will return true if it moved a -deadline task */
2768	while (push_dl_task(rq))
2769		;
2770}
2771
2772static void pull_dl_task(struct rq *this_rq)
2773{
2774	int this_cpu = this_rq->cpu, cpu;
2775	struct task_struct *p, *push_task;
2776	bool resched = false;
2777	struct rq *src_rq;
2778	u64 dmin = LONG_MAX;
2779
2780	if (likely(!dl_overloaded(this_rq)))
2781		return;
2782
2783	/*
2784	 * Match the barrier from dl_set_overloaded; this guarantees that if we
2785	 * see overloaded we must also see the dlo_mask bit.
2786	 */
2787	smp_rmb();
2788
2789	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2790		if (this_cpu == cpu)
2791			continue;
2792
2793		src_rq = cpu_rq(cpu);
2794
2795		/*
2796		 * It looks racy, and it is! However, as in sched_rt.c,
2797		 * we are fine with this.
2798		 */
2799		if (this_rq->dl.dl_nr_running &&
2800		    dl_time_before(this_rq->dl.earliest_dl.curr,
2801				   src_rq->dl.earliest_dl.next))
2802			continue;
2803
2804		/* Might drop this_rq->lock */
2805		push_task = NULL;
2806		double_lock_balance(this_rq, src_rq);
2807
2808		/*
2809		 * If there are no more pullable tasks on the
2810		 * rq, we're done with it.
2811		 */
2812		if (src_rq->dl.dl_nr_running <= 1)
2813			goto skip;
2814
2815		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2816
2817		/*
2818		 * We found a task to be pulled if:
2819		 *  - it preempts our current (if there's one),
2820		 *  - it will preempt the last one we pulled (if any).
2821		 */
2822		if (p && dl_time_before(p->dl.deadline, dmin) &&
2823		    dl_task_is_earliest_deadline(p, this_rq)) {
 
 
2824			WARN_ON(p == src_rq->curr);
2825			WARN_ON(!task_on_rq_queued(p));
2826
2827			/*
2828			 * Then we pull iff p has actually an earlier
2829			 * deadline than the current task of its runqueue.
2830			 */
2831			if (dl_time_before(p->dl.deadline,
2832					   src_rq->donor->dl.deadline))
2833				goto skip;
2834
2835			if (is_migration_disabled(p)) {
2836				push_task = get_push_task(src_rq);
2837			} else {
2838				move_queued_task_locked(src_rq, this_rq, p);
2839				dmin = p->dl.deadline;
2840				resched = true;
2841			}
 
 
 
2842
2843			/* Is there any other task even earlier? */
2844		}
2845skip:
2846		double_unlock_balance(this_rq, src_rq);
2847
2848		if (push_task) {
2849			preempt_disable();
2850			raw_spin_rq_unlock(this_rq);
2851			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2852					    push_task, &src_rq->push_work);
2853			preempt_enable();
2854			raw_spin_rq_lock(this_rq);
2855		}
2856	}
2857
2858	if (resched)
2859		resched_curr(this_rq);
2860}
2861
2862/*
2863 * Since the task is not running and a reschedule is not going to happen
2864 * anytime soon on its runqueue, we try pushing it away now.
2865 */
2866static void task_woken_dl(struct rq *rq, struct task_struct *p)
2867{
2868	if (!task_on_cpu(rq, p) &&
2869	    !test_tsk_need_resched(rq->curr) &&
2870	    p->nr_cpus_allowed > 1 &&
2871	    dl_task(rq->donor) &&
2872	    (rq->curr->nr_cpus_allowed < 2 ||
2873	     !dl_entity_preempt(&p->dl, &rq->donor->dl))) {
2874		push_dl_tasks(rq);
2875	}
2876}
2877
2878static void set_cpus_allowed_dl(struct task_struct *p,
2879				struct affinity_context *ctx)
2880{
2881	struct root_domain *src_rd;
2882	struct rq *rq;
2883
2884	WARN_ON_ONCE(!dl_task(p));
2885
2886	rq = task_rq(p);
2887	src_rd = rq->rd;
2888	/*
2889	 * Migrating a SCHED_DEADLINE task between exclusive
2890	 * cpusets (different root_domains) entails a bandwidth
2891	 * update. We already made space for us in the destination
2892	 * domain (see cpuset_can_attach()).
2893	 */
2894	if (!cpumask_intersects(src_rd->span, ctx->new_mask)) {
2895		struct dl_bw *src_dl_b;
2896
2897		src_dl_b = dl_bw_of(cpu_of(rq));
2898		/*
2899		 * We now free resources of the root_domain we are migrating
2900		 * off. In the worst case, sched_setattr() may temporary fail
2901		 * until we complete the update.
2902		 */
2903		raw_spin_lock(&src_dl_b->lock);
2904		__dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2905		raw_spin_unlock(&src_dl_b->lock);
2906	}
2907
2908	set_cpus_allowed_common(p, ctx);
2909}
2910
2911/* Assumes rq->lock is held */
2912static void rq_online_dl(struct rq *rq)
2913{
2914	if (rq->dl.overloaded)
2915		dl_set_overload(rq);
2916
2917	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2918	if (rq->dl.dl_nr_running > 0)
2919		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2920}
2921
2922/* Assumes rq->lock is held */
2923static void rq_offline_dl(struct rq *rq)
2924{
2925	if (rq->dl.overloaded)
2926		dl_clear_overload(rq);
2927
2928	cpudl_clear(&rq->rd->cpudl, rq->cpu);
2929	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2930}
2931
2932void __init init_sched_dl_class(void)
2933{
2934	unsigned int i;
2935
2936	for_each_possible_cpu(i)
2937		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2938					GFP_KERNEL, cpu_to_node(i));
2939}
2940
2941void dl_add_task_root_domain(struct task_struct *p)
2942{
2943	struct rq_flags rf;
2944	struct rq *rq;
2945	struct dl_bw *dl_b;
2946
2947	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2948	if (!dl_task(p)) {
2949		raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2950		return;
2951	}
2952
2953	rq = __task_rq_lock(p, &rf);
2954
2955	dl_b = &rq->rd->dl_bw;
2956	raw_spin_lock(&dl_b->lock);
2957
2958	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2959
2960	raw_spin_unlock(&dl_b->lock);
2961
2962	task_rq_unlock(rq, p, &rf);
2963}
2964
2965void dl_clear_root_domain(struct root_domain *rd)
2966{
2967	unsigned long flags;
2968
2969	raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
2970	rd->dl_bw.total_bw = 0;
2971	raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
2972}
2973
2974#endif /* CONFIG_SMP */
2975
2976static void switched_from_dl(struct rq *rq, struct task_struct *p)
2977{
2978	/*
2979	 * task_non_contending() can start the "inactive timer" (if the 0-lag
2980	 * time is in the future). If the task switches back to dl before
2981	 * the "inactive timer" fires, it can continue to consume its current
2982	 * runtime using its current deadline. If it stays outside of
2983	 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2984	 * will reset the task parameters.
2985	 */
2986	if (task_on_rq_queued(p) && p->dl.dl_runtime)
2987		task_non_contending(&p->dl);
2988
2989	/*
2990	 * In case a task is setscheduled out from SCHED_DEADLINE we need to
2991	 * keep track of that on its cpuset (for correct bandwidth tracking).
2992	 */
2993	dec_dl_tasks_cs(p);
2994
2995	if (!task_on_rq_queued(p)) {
2996		/*
2997		 * Inactive timer is armed. However, p is leaving DEADLINE and
2998		 * might migrate away from this rq while continuing to run on
2999		 * some other class. We need to remove its contribution from
3000		 * this rq running_bw now, or sub_rq_bw (below) will complain.
3001		 */
3002		if (p->dl.dl_non_contending)
3003			sub_running_bw(&p->dl, &rq->dl);
3004		sub_rq_bw(&p->dl, &rq->dl);
3005	}
3006
3007	/*
3008	 * We cannot use inactive_task_timer() to invoke sub_running_bw()
3009	 * at the 0-lag time, because the task could have been migrated
3010	 * while SCHED_OTHER in the meanwhile.
3011	 */
3012	if (p->dl.dl_non_contending)
3013		p->dl.dl_non_contending = 0;
3014
3015	/*
3016	 * Since this might be the only -deadline task on the rq,
3017	 * this is the right place to try to pull some other one
3018	 * from an overloaded CPU, if any.
3019	 */
3020	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
3021		return;
3022
3023	deadline_queue_pull_task(rq);
3024}
3025
3026/*
3027 * When switching to -deadline, we may overload the rq, then
3028 * we try to push someone off, if possible.
3029 */
3030static void switched_to_dl(struct rq *rq, struct task_struct *p)
3031{
3032	if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
3033		put_task_struct(p);
3034
3035	/*
3036	 * In case a task is setscheduled to SCHED_DEADLINE we need to keep
3037	 * track of that on its cpuset (for correct bandwidth tracking).
3038	 */
3039	inc_dl_tasks_cs(p);
3040
3041	/* If p is not queued we will update its parameters at next wakeup. */
3042	if (!task_on_rq_queued(p)) {
3043		add_rq_bw(&p->dl, &rq->dl);
3044
3045		return;
3046	}
3047
3048	if (rq->donor != p) {
3049#ifdef CONFIG_SMP
3050		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
3051			deadline_queue_push_tasks(rq);
3052#endif
3053		if (dl_task(rq->donor))
3054			wakeup_preempt_dl(rq, p, 0);
3055		else
3056			resched_curr(rq);
3057	} else {
3058		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
3059	}
3060}
3061
3062/*
3063 * If the scheduling parameters of a -deadline task changed,
3064 * a push or pull operation might be needed.
3065 */
3066static void prio_changed_dl(struct rq *rq, struct task_struct *p,
3067			    int oldprio)
3068{
3069	if (!task_on_rq_queued(p))
3070		return;
3071
3072#ifdef CONFIG_SMP
3073	/*
3074	 * This might be too much, but unfortunately
3075	 * we don't have the old deadline value, and
3076	 * we can't argue if the task is increasing
3077	 * or lowering its prio, so...
3078	 */
3079	if (!rq->dl.overloaded)
3080		deadline_queue_pull_task(rq);
3081
3082	if (task_current_donor(rq, p)) {
3083		/*
3084		 * If we now have a earlier deadline task than p,
3085		 * then reschedule, provided p is still on this
3086		 * runqueue.
3087		 */
3088		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
3089			resched_curr(rq);
3090	} else {
3091		/*
3092		 * Current may not be deadline in case p was throttled but we
3093		 * have just replenished it (e.g. rt_mutex_setprio()).
3094		 *
3095		 * Otherwise, if p was given an earlier deadline, reschedule.
3096		 */
3097		if (!dl_task(rq->curr) ||
3098		    dl_time_before(p->dl.deadline, rq->curr->dl.deadline))
3099			resched_curr(rq);
3100	}
3101#else
3102	/*
3103	 * We don't know if p has a earlier or later deadline, so let's blindly
3104	 * set a (maybe not needed) rescheduling point.
3105	 */
3106	resched_curr(rq);
3107#endif
3108}
3109
3110#ifdef CONFIG_SCHED_CORE
3111static int task_is_throttled_dl(struct task_struct *p, int cpu)
3112{
3113	return p->dl.dl_throttled;
3114}
3115#endif
3116
3117DEFINE_SCHED_CLASS(dl) = {
3118
3119	.enqueue_task		= enqueue_task_dl,
3120	.dequeue_task		= dequeue_task_dl,
3121	.yield_task		= yield_task_dl,
3122
3123	.wakeup_preempt		= wakeup_preempt_dl,
3124
3125	.pick_task		= pick_task_dl,
3126	.put_prev_task		= put_prev_task_dl,
3127	.set_next_task		= set_next_task_dl,
3128
3129#ifdef CONFIG_SMP
3130	.balance		= balance_dl,
3131	.select_task_rq		= select_task_rq_dl,
3132	.migrate_task_rq	= migrate_task_rq_dl,
3133	.set_cpus_allowed       = set_cpus_allowed_dl,
3134	.rq_online              = rq_online_dl,
3135	.rq_offline             = rq_offline_dl,
3136	.task_woken		= task_woken_dl,
3137	.find_lock_rq		= find_lock_later_rq,
3138#endif
3139
 
3140	.task_tick		= task_tick_dl,
3141	.task_fork              = task_fork_dl,
3142
3143	.prio_changed           = prio_changed_dl,
3144	.switched_from		= switched_from_dl,
3145	.switched_to		= switched_to_dl,
3146
3147	.update_curr		= update_curr_dl,
3148#ifdef CONFIG_SCHED_CORE
3149	.task_is_throttled	= task_is_throttled_dl,
3150#endif
3151};
3152
3153/* Used for dl_bw check and update, used under sched_rt_handler()::mutex */
3154static u64 dl_generation;
3155
3156int sched_dl_global_validate(void)
3157{
3158	u64 runtime = global_rt_runtime();
3159	u64 period = global_rt_period();
3160	u64 new_bw = to_ratio(period, runtime);
3161	u64 gen = ++dl_generation;
3162	struct dl_bw *dl_b;
3163	int cpu, cpus, ret = 0;
3164	unsigned long flags;
3165
3166	/*
3167	 * Here we want to check the bandwidth not being set to some
3168	 * value smaller than the currently allocated bandwidth in
3169	 * any of the root_domains.
 
 
 
 
3170	 */
3171	for_each_possible_cpu(cpu) {
3172		rcu_read_lock_sched();
3173
3174		if (dl_bw_visited(cpu, gen))
3175			goto next;
3176
3177		dl_b = dl_bw_of(cpu);
3178		cpus = dl_bw_cpus(cpu);
3179
3180		raw_spin_lock_irqsave(&dl_b->lock, flags);
3181		if (new_bw * cpus < dl_b->total_bw)
3182			ret = -EBUSY;
3183		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3184
3185next:
3186		rcu_read_unlock_sched();
3187
3188		if (ret)
3189			break;
3190	}
3191
3192	return ret;
3193}
3194
3195static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
3196{
3197	if (global_rt_runtime() == RUNTIME_INF) {
3198		dl_rq->bw_ratio = 1 << RATIO_SHIFT;
3199		dl_rq->max_bw = dl_rq->extra_bw = 1 << BW_SHIFT;
3200	} else {
3201		dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
3202			  global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
3203		dl_rq->max_bw = dl_rq->extra_bw =
3204			to_ratio(global_rt_period(), global_rt_runtime());
3205	}
3206}
3207
3208void sched_dl_do_global(void)
3209{
3210	u64 new_bw = -1;
3211	u64 gen = ++dl_generation;
3212	struct dl_bw *dl_b;
3213	int cpu;
3214	unsigned long flags;
3215
 
 
 
3216	if (global_rt_runtime() != RUNTIME_INF)
3217		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
3218
 
 
 
3219	for_each_possible_cpu(cpu) {
3220		rcu_read_lock_sched();
3221
3222		if (dl_bw_visited(cpu, gen)) {
3223			rcu_read_unlock_sched();
3224			continue;
3225		}
3226
3227		dl_b = dl_bw_of(cpu);
3228
3229		raw_spin_lock_irqsave(&dl_b->lock, flags);
3230		dl_b->bw = new_bw;
3231		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3232
3233		rcu_read_unlock_sched();
3234		init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
3235	}
3236}
3237
3238/*
3239 * We must be sure that accepting a new task (or allowing changing the
3240 * parameters of an existing one) is consistent with the bandwidth
3241 * constraints. If yes, this function also accordingly updates the currently
3242 * allocated bandwidth to reflect the new situation.
3243 *
3244 * This function is called while holding p's rq->lock.
3245 */
3246int sched_dl_overflow(struct task_struct *p, int policy,
3247		      const struct sched_attr *attr)
3248{
 
3249	u64 period = attr->sched_period ?: attr->sched_deadline;
3250	u64 runtime = attr->sched_runtime;
3251	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
3252	int cpus, err = -1, cpu = task_cpu(p);
3253	struct dl_bw *dl_b = dl_bw_of(cpu);
3254	unsigned long cap;
3255
3256	if (attr->sched_flags & SCHED_FLAG_SUGOV)
3257		return 0;
3258
3259	/* !deadline task may carry old deadline bandwidth */
3260	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
3261		return 0;
3262
3263	/*
3264	 * Either if a task, enters, leave, or stays -deadline but changes
3265	 * its parameters, we may need to update accordingly the total
3266	 * allocated bandwidth of the container.
3267	 */
3268	raw_spin_lock(&dl_b->lock);
3269	cpus = dl_bw_cpus(cpu);
3270	cap = dl_bw_capacity(cpu);
3271
3272	if (dl_policy(policy) && !task_has_dl_policy(p) &&
3273	    !__dl_overflow(dl_b, cap, 0, new_bw)) {
3274		if (hrtimer_active(&p->dl.inactive_timer))
3275			__dl_sub(dl_b, p->dl.dl_bw, cpus);
3276		__dl_add(dl_b, new_bw, cpus);
3277		err = 0;
3278	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
3279		   !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
3280		/*
3281		 * XXX this is slightly incorrect: when the task
3282		 * utilization decreases, we should delay the total
3283		 * utilization change until the task's 0-lag point.
3284		 * But this would require to set the task's "inactive
3285		 * timer" when the task is not inactive.
3286		 */
3287		__dl_sub(dl_b, p->dl.dl_bw, cpus);
3288		__dl_add(dl_b, new_bw, cpus);
3289		dl_change_utilization(p, new_bw);
3290		err = 0;
3291	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
3292		/*
3293		 * Do not decrease the total deadline utilization here,
3294		 * switched_from_dl() will take care to do it at the correct
3295		 * (0-lag) time.
3296		 */
3297		err = 0;
3298	}
3299	raw_spin_unlock(&dl_b->lock);
3300
3301	return err;
3302}
3303
3304/*
3305 * This function initializes the sched_dl_entity of a newly becoming
3306 * SCHED_DEADLINE task.
3307 *
3308 * Only the static values are considered here, the actual runtime and the
3309 * absolute deadline will be properly calculated when the task is enqueued
3310 * for the first time with its new policy.
3311 */
3312void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3313{
3314	struct sched_dl_entity *dl_se = &p->dl;
3315
3316	dl_se->dl_runtime = attr->sched_runtime;
3317	dl_se->dl_deadline = attr->sched_deadline;
3318	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3319	dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
3320	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3321	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
3322}
3323
3324void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3325{
3326	struct sched_dl_entity *dl_se = &p->dl;
3327
3328	attr->sched_priority = p->rt_priority;
3329	attr->sched_runtime = dl_se->dl_runtime;
3330	attr->sched_deadline = dl_se->dl_deadline;
3331	attr->sched_period = dl_se->dl_period;
3332	attr->sched_flags &= ~SCHED_DL_FLAGS;
3333	attr->sched_flags |= dl_se->flags;
3334}
3335
3336/*
3337 * This function validates the new parameters of a -deadline task.
3338 * We ask for the deadline not being zero, and greater or equal
3339 * than the runtime, as well as the period of being zero or
3340 * greater than deadline. Furthermore, we have to be sure that
3341 * user parameters are above the internal resolution of 1us (we
3342 * check sched_runtime only since it is always the smaller one) and
3343 * below 2^63 ns (we have to check both sched_deadline and
3344 * sched_period, as the latter can be zero).
3345 */
3346bool __checkparam_dl(const struct sched_attr *attr)
3347{
3348	u64 period, max, min;
3349
3350	/* special dl tasks don't actually use any parameter */
3351	if (attr->sched_flags & SCHED_FLAG_SUGOV)
3352		return true;
3353
3354	/* deadline != 0 */
3355	if (attr->sched_deadline == 0)
3356		return false;
3357
3358	/*
3359	 * Since we truncate DL_SCALE bits, make sure we're at least
3360	 * that big.
3361	 */
3362	if (attr->sched_runtime < (1ULL << DL_SCALE))
3363		return false;
3364
3365	/*
3366	 * Since we use the MSB for wrap-around and sign issues, make
3367	 * sure it's not set (mind that period can be equal to zero).
3368	 */
3369	if (attr->sched_deadline & (1ULL << 63) ||
3370	    attr->sched_period & (1ULL << 63))
3371		return false;
3372
3373	period = attr->sched_period;
3374	if (!period)
3375		period = attr->sched_deadline;
3376
3377	/* runtime <= deadline <= period (if period != 0) */
3378	if (period < attr->sched_deadline ||
 
3379	    attr->sched_deadline < attr->sched_runtime)
3380		return false;
3381
3382	max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
3383	min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
3384
3385	if (period < min || period > max)
3386		return false;
3387
3388	return true;
3389}
3390
3391/*
3392 * This function clears the sched_dl_entity static params.
3393 */
3394static void __dl_clear_params(struct sched_dl_entity *dl_se)
3395{
 
 
3396	dl_se->dl_runtime		= 0;
3397	dl_se->dl_deadline		= 0;
3398	dl_se->dl_period		= 0;
3399	dl_se->flags			= 0;
3400	dl_se->dl_bw			= 0;
3401	dl_se->dl_density		= 0;
3402
3403	dl_se->dl_throttled		= 0;
3404	dl_se->dl_yielded		= 0;
3405	dl_se->dl_non_contending	= 0;
3406	dl_se->dl_overrun		= 0;
3407	dl_se->dl_server		= 0;
3408
3409#ifdef CONFIG_RT_MUTEXES
3410	dl_se->pi_se			= dl_se;
3411#endif
3412}
3413
3414void init_dl_entity(struct sched_dl_entity *dl_se)
3415{
3416	RB_CLEAR_NODE(&dl_se->rb_node);
3417	init_dl_task_timer(dl_se);
3418	init_dl_inactive_task_timer(dl_se);
3419	__dl_clear_params(dl_se);
3420}
3421
3422bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
3423{
3424	struct sched_dl_entity *dl_se = &p->dl;
3425
3426	if (dl_se->dl_runtime != attr->sched_runtime ||
3427	    dl_se->dl_deadline != attr->sched_deadline ||
3428	    dl_se->dl_period != attr->sched_period ||
3429	    dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
3430		return true;
3431
3432	return false;
3433}
3434
3435#ifdef CONFIG_SMP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3436int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
3437				 const struct cpumask *trial)
3438{
3439	unsigned long flags, cap;
3440	struct dl_bw *cur_dl_b;
3441	int ret = 1;
3442
3443	rcu_read_lock_sched();
3444	cur_dl_b = dl_bw_of(cpumask_any(cur));
3445	cap = __dl_bw_capacity(trial);
 
3446	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
3447	if (__dl_overflow(cur_dl_b, cap, 0, 0))
 
3448		ret = 0;
3449	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
3450	rcu_read_unlock_sched();
3451
3452	return ret;
3453}
3454
3455enum dl_bw_request {
3456	dl_bw_req_check_overflow = 0,
3457	dl_bw_req_alloc,
3458	dl_bw_req_free
3459};
3460
3461static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw)
3462{
3463	unsigned long flags;
3464	struct dl_bw *dl_b;
3465	bool overflow = 0;
 
3466
3467	rcu_read_lock_sched();
3468	dl_b = dl_bw_of(cpu);
3469	raw_spin_lock_irqsave(&dl_b->lock, flags);
3470
3471	if (req == dl_bw_req_free) {
3472		__dl_sub(dl_b, dl_bw, dl_bw_cpus(cpu));
3473	} else {
3474		unsigned long cap = dl_bw_capacity(cpu);
3475
3476		overflow = __dl_overflow(dl_b, cap, 0, dl_bw);
3477
3478		if (req == dl_bw_req_alloc && !overflow) {
3479			/*
3480			 * We reserve space in the destination
3481			 * root_domain, as we can't fail after this point.
3482			 * We will free resources in the source root_domain
3483			 * later on (see set_cpus_allowed_dl()).
3484			 */
3485			__dl_add(dl_b, dl_bw, dl_bw_cpus(cpu));
3486		}
3487	}
3488
3489	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3490	rcu_read_unlock_sched();
3491
3492	return overflow ? -EBUSY : 0;
3493}
3494
3495int dl_bw_check_overflow(int cpu)
3496{
3497	return dl_bw_manage(dl_bw_req_check_overflow, cpu, 0);
3498}
3499
3500int dl_bw_alloc(int cpu, u64 dl_bw)
3501{
3502	return dl_bw_manage(dl_bw_req_alloc, cpu, dl_bw);
3503}
3504
3505void dl_bw_free(int cpu, u64 dl_bw)
3506{
3507	dl_bw_manage(dl_bw_req_free, cpu, dl_bw);
3508}
3509#endif
3510
3511#ifdef CONFIG_SCHED_DEBUG
3512void print_dl_stats(struct seq_file *m, int cpu)
3513{
3514	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
3515}
3516#endif /* CONFIG_SCHED_DEBUG */