Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Deadline Scheduling Class (SCHED_DEADLINE)
   4 *
   5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
   6 *
   7 * Tasks that periodically executes their instances for less than their
   8 * runtime won't miss any of their deadlines.
   9 * Tasks that are not periodic or sporadic or that tries to execute more
  10 * than their reserved bandwidth will be slowed down (and may potentially
  11 * miss some of their deadlines), and won't affect any other task.
  12 *
  13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
  14 *                    Juri Lelli <juri.lelli@gmail.com>,
  15 *                    Michael Trimarchi <michael@amarulasolutions.com>,
  16 *                    Fabio Checconi <fchecconi@gmail.com>
  17 */
  18#include "sched.h"
 
  19
  20struct dl_bandwidth def_dl_bandwidth;
  21
  22static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
  23{
  24	return container_of(dl_se, struct task_struct, dl);
  25}
  26
  27static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
  28{
  29	return container_of(dl_rq, struct rq, dl);
  30}
  31
  32static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
  33{
  34	struct task_struct *p = dl_task_of(dl_se);
  35	struct rq *rq = task_rq(p);
  36
  37	return &rq->dl;
  38}
  39
  40static inline int on_dl_rq(struct sched_dl_entity *dl_se)
  41{
  42	return !RB_EMPTY_NODE(&dl_se->rb_node);
  43}
  44
  45#ifdef CONFIG_SMP
  46static inline struct dl_bw *dl_bw_of(int i)
  47{
  48	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
  49			 "sched RCU must be held");
  50	return &cpu_rq(i)->rd->dl_bw;
  51}
  52
  53static inline int dl_bw_cpus(int i)
  54{
  55	struct root_domain *rd = cpu_rq(i)->rd;
  56	int cpus = 0;
  57
  58	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
  59			 "sched RCU must be held");
 
 
 
 
 
 
  60	for_each_cpu_and(i, rd->span, cpu_active_mask)
  61		cpus++;
  62
  63	return cpus;
  64}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  65#else
  66static inline struct dl_bw *dl_bw_of(int i)
  67{
  68	return &cpu_rq(i)->dl.dl_bw;
  69}
  70
  71static inline int dl_bw_cpus(int i)
  72{
  73	return 1;
  74}
 
 
 
 
 
  75#endif
  76
  77static inline
  78void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
  79{
  80	u64 old = dl_rq->running_bw;
  81
  82	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
  83	dl_rq->running_bw += dl_bw;
  84	SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
  85	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
  86	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
  87	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
  88}
  89
  90static inline
  91void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
  92{
  93	u64 old = dl_rq->running_bw;
  94
  95	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
  96	dl_rq->running_bw -= dl_bw;
  97	SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
  98	if (dl_rq->running_bw > old)
  99		dl_rq->running_bw = 0;
 100	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
 101	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
 102}
 103
 104static inline
 105void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
 106{
 107	u64 old = dl_rq->this_bw;
 108
 109	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
 110	dl_rq->this_bw += dl_bw;
 111	SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
 112}
 113
 114static inline
 115void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
 116{
 117	u64 old = dl_rq->this_bw;
 118
 119	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
 120	dl_rq->this_bw -= dl_bw;
 121	SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
 122	if (dl_rq->this_bw > old)
 123		dl_rq->this_bw = 0;
 124	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
 125}
 126
 127static inline
 128void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 129{
 130	if (!dl_entity_is_special(dl_se))
 131		__add_rq_bw(dl_se->dl_bw, dl_rq);
 132}
 133
 134static inline
 135void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 136{
 137	if (!dl_entity_is_special(dl_se))
 138		__sub_rq_bw(dl_se->dl_bw, dl_rq);
 139}
 140
 141static inline
 142void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 143{
 144	if (!dl_entity_is_special(dl_se))
 145		__add_running_bw(dl_se->dl_bw, dl_rq);
 146}
 147
 148static inline
 149void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 150{
 151	if (!dl_entity_is_special(dl_se))
 152		__sub_running_bw(dl_se->dl_bw, dl_rq);
 153}
 154
 155void dl_change_utilization(struct task_struct *p, u64 new_bw)
 156{
 157	struct rq *rq;
 158
 159	BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV);
 160
 161	if (task_on_rq_queued(p))
 162		return;
 163
 164	rq = task_rq(p);
 165	if (p->dl.dl_non_contending) {
 166		sub_running_bw(&p->dl, &rq->dl);
 167		p->dl.dl_non_contending = 0;
 168		/*
 169		 * If the timer handler is currently running and the
 170		 * timer cannot be cancelled, inactive_task_timer()
 171		 * will see that dl_not_contending is not set, and
 172		 * will not touch the rq's active utilization,
 173		 * so we are still safe.
 174		 */
 175		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
 176			put_task_struct(p);
 177	}
 178	__sub_rq_bw(p->dl.dl_bw, &rq->dl);
 179	__add_rq_bw(new_bw, &rq->dl);
 180}
 181
 182/*
 183 * The utilization of a task cannot be immediately removed from
 184 * the rq active utilization (running_bw) when the task blocks.
 185 * Instead, we have to wait for the so called "0-lag time".
 186 *
 187 * If a task blocks before the "0-lag time", a timer (the inactive
 188 * timer) is armed, and running_bw is decreased when the timer
 189 * fires.
 190 *
 191 * If the task wakes up again before the inactive timer fires,
 192 * the timer is cancelled, whereas if the task wakes up after the
 193 * inactive timer fired (and running_bw has been decreased) the
 194 * task's utilization has to be added to running_bw again.
 195 * A flag in the deadline scheduling entity (dl_non_contending)
 196 * is used to avoid race conditions between the inactive timer handler
 197 * and task wakeups.
 198 *
 199 * The following diagram shows how running_bw is updated. A task is
 200 * "ACTIVE" when its utilization contributes to running_bw; an
 201 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
 202 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
 203 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
 204 * time already passed, which does not contribute to running_bw anymore.
 205 *                              +------------------+
 206 *             wakeup           |    ACTIVE        |
 207 *          +------------------>+   contending     |
 208 *          | add_running_bw    |                  |
 209 *          |                   +----+------+------+
 210 *          |                        |      ^
 211 *          |                dequeue |      |
 212 * +--------+-------+                |      |
 213 * |                |   t >= 0-lag   |      | wakeup
 214 * |    INACTIVE    |<---------------+      |
 215 * |                | sub_running_bw |      |
 216 * +--------+-------+                |      |
 217 *          ^                        |      |
 218 *          |              t < 0-lag |      |
 219 *          |                        |      |
 220 *          |                        V      |
 221 *          |                   +----+------+------+
 222 *          | sub_running_bw    |    ACTIVE        |
 223 *          +-------------------+                  |
 224 *            inactive timer    |  non contending  |
 225 *            fired             +------------------+
 226 *
 227 * The task_non_contending() function is invoked when a task
 228 * blocks, and checks if the 0-lag time already passed or
 229 * not (in the first case, it directly updates running_bw;
 230 * in the second case, it arms the inactive timer).
 231 *
 232 * The task_contending() function is invoked when a task wakes
 233 * up, and checks if the task is still in the "ACTIVE non contending"
 234 * state or not (in the second case, it updates running_bw).
 235 */
 236static void task_non_contending(struct task_struct *p)
 237{
 238	struct sched_dl_entity *dl_se = &p->dl;
 239	struct hrtimer *timer = &dl_se->inactive_timer;
 240	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 241	struct rq *rq = rq_of_dl_rq(dl_rq);
 242	s64 zerolag_time;
 243
 244	/*
 245	 * If this is a non-deadline task that has been boosted,
 246	 * do nothing
 247	 */
 248	if (dl_se->dl_runtime == 0)
 249		return;
 250
 251	if (dl_entity_is_special(dl_se))
 252		return;
 253
 254	WARN_ON(hrtimer_active(&dl_se->inactive_timer));
 255	WARN_ON(dl_se->dl_non_contending);
 256
 257	zerolag_time = dl_se->deadline -
 258		 div64_long((dl_se->runtime * dl_se->dl_period),
 259			dl_se->dl_runtime);
 260
 261	/*
 262	 * Using relative times instead of the absolute "0-lag time"
 263	 * allows to simplify the code
 264	 */
 265	zerolag_time -= rq_clock(rq);
 266
 267	/*
 268	 * If the "0-lag time" already passed, decrease the active
 269	 * utilization now, instead of starting a timer
 270	 */
 271	if (zerolag_time < 0) {
 272		if (dl_task(p))
 273			sub_running_bw(dl_se, dl_rq);
 274		if (!dl_task(p) || p->state == TASK_DEAD) {
 275			struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
 276
 277			if (p->state == TASK_DEAD)
 278				sub_rq_bw(&p->dl, &rq->dl);
 279			raw_spin_lock(&dl_b->lock);
 280			__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
 281			__dl_clear_params(p);
 282			raw_spin_unlock(&dl_b->lock);
 283		}
 284
 285		return;
 286	}
 287
 288	dl_se->dl_non_contending = 1;
 289	get_task_struct(p);
 290	hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL);
 291}
 292
 293static void task_contending(struct sched_dl_entity *dl_se, int flags)
 294{
 295	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 296
 297	/*
 298	 * If this is a non-deadline task that has been boosted,
 299	 * do nothing
 300	 */
 301	if (dl_se->dl_runtime == 0)
 302		return;
 303
 304	if (flags & ENQUEUE_MIGRATED)
 305		add_rq_bw(dl_se, dl_rq);
 306
 307	if (dl_se->dl_non_contending) {
 308		dl_se->dl_non_contending = 0;
 309		/*
 310		 * If the timer handler is currently running and the
 311		 * timer cannot be cancelled, inactive_task_timer()
 312		 * will see that dl_not_contending is not set, and
 313		 * will not touch the rq's active utilization,
 314		 * so we are still safe.
 315		 */
 316		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
 317			put_task_struct(dl_task_of(dl_se));
 318	} else {
 319		/*
 320		 * Since "dl_non_contending" is not set, the
 321		 * task's utilization has already been removed from
 322		 * active utilization (either when the task blocked,
 323		 * when the "inactive timer" fired).
 324		 * So, add it back.
 325		 */
 326		add_running_bw(dl_se, dl_rq);
 327	}
 328}
 329
 330static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
 331{
 332	struct sched_dl_entity *dl_se = &p->dl;
 333
 334	return dl_rq->root.rb_leftmost == &dl_se->rb_node;
 335}
 336
 
 
 337void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
 338{
 339	raw_spin_lock_init(&dl_b->dl_runtime_lock);
 340	dl_b->dl_period = period;
 341	dl_b->dl_runtime = runtime;
 342}
 343
 344void init_dl_bw(struct dl_bw *dl_b)
 345{
 346	raw_spin_lock_init(&dl_b->lock);
 347	raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
 348	if (global_rt_runtime() == RUNTIME_INF)
 349		dl_b->bw = -1;
 350	else
 351		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
 352	raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
 353	dl_b->total_bw = 0;
 354}
 355
 356void init_dl_rq(struct dl_rq *dl_rq)
 357{
 358	dl_rq->root = RB_ROOT_CACHED;
 359
 360#ifdef CONFIG_SMP
 361	/* zero means no -deadline tasks */
 362	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
 363
 364	dl_rq->dl_nr_migratory = 0;
 365	dl_rq->overloaded = 0;
 366	dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
 367#else
 368	init_dl_bw(&dl_rq->dl_bw);
 369#endif
 370
 371	dl_rq->running_bw = 0;
 372	dl_rq->this_bw = 0;
 373	init_dl_rq_bw_ratio(dl_rq);
 374}
 375
 376#ifdef CONFIG_SMP
 377
 378static inline int dl_overloaded(struct rq *rq)
 379{
 380	return atomic_read(&rq->rd->dlo_count);
 381}
 382
 383static inline void dl_set_overload(struct rq *rq)
 384{
 385	if (!rq->online)
 386		return;
 387
 388	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
 389	/*
 390	 * Must be visible before the overload count is
 391	 * set (as in sched_rt.c).
 392	 *
 393	 * Matched by the barrier in pull_dl_task().
 394	 */
 395	smp_wmb();
 396	atomic_inc(&rq->rd->dlo_count);
 397}
 398
 399static inline void dl_clear_overload(struct rq *rq)
 400{
 401	if (!rq->online)
 402		return;
 403
 404	atomic_dec(&rq->rd->dlo_count);
 405	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
 406}
 407
 408static void update_dl_migration(struct dl_rq *dl_rq)
 409{
 410	if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
 411		if (!dl_rq->overloaded) {
 412			dl_set_overload(rq_of_dl_rq(dl_rq));
 413			dl_rq->overloaded = 1;
 414		}
 415	} else if (dl_rq->overloaded) {
 416		dl_clear_overload(rq_of_dl_rq(dl_rq));
 417		dl_rq->overloaded = 0;
 418	}
 419}
 420
 421static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 422{
 423	struct task_struct *p = dl_task_of(dl_se);
 424
 425	if (p->nr_cpus_allowed > 1)
 426		dl_rq->dl_nr_migratory++;
 427
 428	update_dl_migration(dl_rq);
 429}
 430
 431static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 432{
 433	struct task_struct *p = dl_task_of(dl_se);
 434
 435	if (p->nr_cpus_allowed > 1)
 436		dl_rq->dl_nr_migratory--;
 437
 438	update_dl_migration(dl_rq);
 439}
 440
 441/*
 442 * The list of pushable -deadline task is not a plist, like in
 443 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
 444 */
 445static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 446{
 447	struct dl_rq *dl_rq = &rq->dl;
 448	struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_root.rb_node;
 449	struct rb_node *parent = NULL;
 450	struct task_struct *entry;
 451	bool leftmost = true;
 452
 453	BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
 454
 455	while (*link) {
 456		parent = *link;
 457		entry = rb_entry(parent, struct task_struct,
 458				 pushable_dl_tasks);
 459		if (dl_entity_preempt(&p->dl, &entry->dl))
 460			link = &parent->rb_left;
 461		else {
 462			link = &parent->rb_right;
 463			leftmost = false;
 464		}
 465	}
 466
 467	if (leftmost)
 468		dl_rq->earliest_dl.next = p->dl.deadline;
 469
 470	rb_link_node(&p->pushable_dl_tasks, parent, link);
 471	rb_insert_color_cached(&p->pushable_dl_tasks,
 472			       &dl_rq->pushable_dl_tasks_root, leftmost);
 473}
 474
 475static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 476{
 477	struct dl_rq *dl_rq = &rq->dl;
 478
 479	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
 480		return;
 481
 482	if (dl_rq->pushable_dl_tasks_root.rb_leftmost == &p->pushable_dl_tasks) {
 483		struct rb_node *next_node;
 484
 485		next_node = rb_next(&p->pushable_dl_tasks);
 486		if (next_node) {
 487			dl_rq->earliest_dl.next = rb_entry(next_node,
 488				struct task_struct, pushable_dl_tasks)->dl.deadline;
 489		}
 490	}
 491
 492	rb_erase_cached(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
 493	RB_CLEAR_NODE(&p->pushable_dl_tasks);
 494}
 495
 496static inline int has_pushable_dl_tasks(struct rq *rq)
 497{
 498	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
 499}
 500
 501static int push_dl_task(struct rq *rq);
 502
 503static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
 504{
 505	return dl_task(prev);
 506}
 507
 508static DEFINE_PER_CPU(struct callback_head, dl_push_head);
 509static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
 510
 511static void push_dl_tasks(struct rq *);
 512static void pull_dl_task(struct rq *);
 513
 514static inline void deadline_queue_push_tasks(struct rq *rq)
 515{
 516	if (!has_pushable_dl_tasks(rq))
 517		return;
 518
 519	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
 520}
 521
 522static inline void deadline_queue_pull_task(struct rq *rq)
 523{
 524	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
 525}
 526
 527static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
 528
 529static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
 530{
 531	struct rq *later_rq = NULL;
 
 532
 533	later_rq = find_lock_later_rq(p, rq);
 534	if (!later_rq) {
 535		int cpu;
 536
 537		/*
 538		 * If we cannot preempt any rq, fall back to pick any
 539		 * online CPU:
 540		 */
 541		cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
 542		if (cpu >= nr_cpu_ids) {
 543			/*
 544			 * Failed to find any suitable CPU.
 545			 * The task will never come back!
 546			 */
 547			BUG_ON(dl_bandwidth_enabled());
 548
 549			/*
 550			 * If admission control is disabled we
 551			 * try a little harder to let the task
 552			 * run.
 553			 */
 554			cpu = cpumask_any(cpu_active_mask);
 555		}
 556		later_rq = cpu_rq(cpu);
 557		double_lock_balance(rq, later_rq);
 558	}
 559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 560	set_task_cpu(p, later_rq->cpu);
 561	double_unlock_balance(later_rq, rq);
 562
 563	return later_rq;
 564}
 565
 566#else
 567
 568static inline
 569void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 570{
 571}
 572
 573static inline
 574void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 575{
 576}
 577
 578static inline
 579void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 580{
 581}
 582
 583static inline
 584void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 585{
 586}
 587
 588static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
 589{
 590	return false;
 591}
 592
 593static inline void pull_dl_task(struct rq *rq)
 594{
 595}
 596
 597static inline void deadline_queue_push_tasks(struct rq *rq)
 598{
 599}
 600
 601static inline void deadline_queue_pull_task(struct rq *rq)
 602{
 603}
 604#endif /* CONFIG_SMP */
 605
 606static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
 607static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
 608static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags);
 609
 610/*
 611 * We are being explicitly informed that a new instance is starting,
 612 * and this means that:
 613 *  - the absolute deadline of the entity has to be placed at
 614 *    current time + relative deadline;
 615 *  - the runtime of the entity has to be set to the maximum value.
 616 *
 617 * The capability of specifying such event is useful whenever a -deadline
 618 * entity wants to (try to!) synchronize its behaviour with the scheduler's
 619 * one, and to (try to!) reconcile itself with its own scheduling
 620 * parameters.
 621 */
 622static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
 623{
 624	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 625	struct rq *rq = rq_of_dl_rq(dl_rq);
 626
 627	WARN_ON(dl_se->dl_boosted);
 628	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
 629
 630	/*
 631	 * We are racing with the deadline timer. So, do nothing because
 632	 * the deadline timer handler will take care of properly recharging
 633	 * the runtime and postponing the deadline
 634	 */
 635	if (dl_se->dl_throttled)
 636		return;
 637
 638	/*
 639	 * We use the regular wall clock time to set deadlines in the
 640	 * future; in fact, we must consider execution overheads (time
 641	 * spent on hardirq context, etc.).
 642	 */
 643	dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
 644	dl_se->runtime = dl_se->dl_runtime;
 645}
 646
 647/*
 648 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
 649 * possibility of a entity lasting more than what it declared, and thus
 650 * exhausting its runtime.
 651 *
 652 * Here we are interested in making runtime overrun possible, but we do
 653 * not want a entity which is misbehaving to affect the scheduling of all
 654 * other entities.
 655 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
 656 * is used, in order to confine each entity within its own bandwidth.
 657 *
 658 * This function deals exactly with that, and ensures that when the runtime
 659 * of a entity is replenished, its deadline is also postponed. That ensures
 660 * the overrunning entity can't interfere with other entity in the system and
 661 * can't make them miss their deadlines. Reasons why this kind of overruns
 662 * could happen are, typically, a entity voluntarily trying to overcome its
 663 * runtime, or it just underestimated it during sched_setattr().
 664 */
 665static void replenish_dl_entity(struct sched_dl_entity *dl_se,
 666				struct sched_dl_entity *pi_se)
 667{
 668	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 669	struct rq *rq = rq_of_dl_rq(dl_rq);
 670
 671	BUG_ON(pi_se->dl_runtime <= 0);
 672
 673	/*
 674	 * This could be the case for a !-dl task that is boosted.
 675	 * Just go with full inherited parameters.
 676	 */
 677	if (dl_se->dl_deadline == 0) {
 678		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 679		dl_se->runtime = pi_se->dl_runtime;
 680	}
 681
 682	if (dl_se->dl_yielded && dl_se->runtime > 0)
 683		dl_se->runtime = 0;
 684
 685	/*
 686	 * We keep moving the deadline away until we get some
 687	 * available runtime for the entity. This ensures correct
 688	 * handling of situations where the runtime overrun is
 689	 * arbitrary large.
 690	 */
 691	while (dl_se->runtime <= 0) {
 692		dl_se->deadline += pi_se->dl_period;
 693		dl_se->runtime += pi_se->dl_runtime;
 694	}
 695
 696	/*
 697	 * At this point, the deadline really should be "in
 698	 * the future" with respect to rq->clock. If it's
 699	 * not, we are, for some reason, lagging too much!
 700	 * Anyway, after having warn userspace abut that,
 701	 * we still try to keep the things running by
 702	 * resetting the deadline and the budget of the
 703	 * entity.
 704	 */
 705	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
 706		printk_deferred_once("sched: DL replenish lagged too much\n");
 707		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 708		dl_se->runtime = pi_se->dl_runtime;
 709	}
 710
 711	if (dl_se->dl_yielded)
 712		dl_se->dl_yielded = 0;
 713	if (dl_se->dl_throttled)
 714		dl_se->dl_throttled = 0;
 715}
 716
 717/*
 718 * Here we check if --at time t-- an entity (which is probably being
 719 * [re]activated or, in general, enqueued) can use its remaining runtime
 720 * and its current deadline _without_ exceeding the bandwidth it is
 721 * assigned (function returns true if it can't). We are in fact applying
 722 * one of the CBS rules: when a task wakes up, if the residual runtime
 723 * over residual deadline fits within the allocated bandwidth, then we
 724 * can keep the current (absolute) deadline and residual budget without
 725 * disrupting the schedulability of the system. Otherwise, we should
 726 * refill the runtime and set the deadline a period in the future,
 727 * because keeping the current (absolute) deadline of the task would
 728 * result in breaking guarantees promised to other tasks (refer to
 729 * Documentation/scheduler/sched-deadline.txt for more informations).
 730 *
 731 * This function returns true if:
 732 *
 733 *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
 734 *
 735 * IOW we can't recycle current parameters.
 736 *
 737 * Notice that the bandwidth check is done against the deadline. For
 738 * task with deadline equal to period this is the same of using
 739 * dl_period instead of dl_deadline in the equation above.
 740 */
 741static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
 742			       struct sched_dl_entity *pi_se, u64 t)
 743{
 744	u64 left, right;
 745
 746	/*
 747	 * left and right are the two sides of the equation above,
 748	 * after a bit of shuffling to use multiplications instead
 749	 * of divisions.
 750	 *
 751	 * Note that none of the time values involved in the two
 752	 * multiplications are absolute: dl_deadline and dl_runtime
 753	 * are the relative deadline and the maximum runtime of each
 754	 * instance, runtime is the runtime left for the last instance
 755	 * and (deadline - t), since t is rq->clock, is the time left
 756	 * to the (absolute) deadline. Even if overflowing the u64 type
 757	 * is very unlikely to occur in both cases, here we scale down
 758	 * as we want to avoid that risk at all. Scaling down by 10
 759	 * means that we reduce granularity to 1us. We are fine with it,
 760	 * since this is only a true/false check and, anyway, thinking
 761	 * of anything below microseconds resolution is actually fiction
 762	 * (but still we want to give the user that illusion >;).
 763	 */
 764	left = (pi_se->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
 765	right = ((dl_se->deadline - t) >> DL_SCALE) *
 766		(pi_se->dl_runtime >> DL_SCALE);
 767
 768	return dl_time_before(right, left);
 769}
 770
 771/*
 772 * Revised wakeup rule [1]: For self-suspending tasks, rather then
 773 * re-initializing task's runtime and deadline, the revised wakeup
 774 * rule adjusts the task's runtime to avoid the task to overrun its
 775 * density.
 776 *
 777 * Reasoning: a task may overrun the density if:
 778 *    runtime / (deadline - t) > dl_runtime / dl_deadline
 779 *
 780 * Therefore, runtime can be adjusted to:
 781 *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
 782 *
 783 * In such way that runtime will be equal to the maximum density
 784 * the task can use without breaking any rule.
 785 *
 786 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
 787 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
 788 */
 789static void
 790update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
 791{
 792	u64 laxity = dl_se->deadline - rq_clock(rq);
 793
 794	/*
 795	 * If the task has deadline < period, and the deadline is in the past,
 796	 * it should already be throttled before this check.
 797	 *
 798	 * See update_dl_entity() comments for further details.
 799	 */
 800	WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
 801
 802	dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
 803}
 804
 805/*
 806 * Regarding the deadline, a task with implicit deadline has a relative
 807 * deadline == relative period. A task with constrained deadline has a
 808 * relative deadline <= relative period.
 809 *
 810 * We support constrained deadline tasks. However, there are some restrictions
 811 * applied only for tasks which do not have an implicit deadline. See
 812 * update_dl_entity() to know more about such restrictions.
 813 *
 814 * The dl_is_implicit() returns true if the task has an implicit deadline.
 815 */
 816static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
 817{
 818	return dl_se->dl_deadline == dl_se->dl_period;
 819}
 820
 821/*
 822 * When a deadline entity is placed in the runqueue, its runtime and deadline
 823 * might need to be updated. This is done by a CBS wake up rule. There are two
 824 * different rules: 1) the original CBS; and 2) the Revisited CBS.
 825 *
 826 * When the task is starting a new period, the Original CBS is used. In this
 827 * case, the runtime is replenished and a new absolute deadline is set.
 828 *
 829 * When a task is queued before the begin of the next period, using the
 830 * remaining runtime and deadline could make the entity to overflow, see
 831 * dl_entity_overflow() to find more about runtime overflow. When such case
 832 * is detected, the runtime and deadline need to be updated.
 833 *
 834 * If the task has an implicit deadline, i.e., deadline == period, the Original
 835 * CBS is applied. the runtime is replenished and a new absolute deadline is
 836 * set, as in the previous cases.
 837 *
 838 * However, the Original CBS does not work properly for tasks with
 839 * deadline < period, which are said to have a constrained deadline. By
 840 * applying the Original CBS, a constrained deadline task would be able to run
 841 * runtime/deadline in a period. With deadline < period, the task would
 842 * overrun the runtime/period allowed bandwidth, breaking the admission test.
 843 *
 844 * In order to prevent this misbehave, the Revisited CBS is used for
 845 * constrained deadline tasks when a runtime overflow is detected. In the
 846 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
 847 * the remaining runtime of the task is reduced to avoid runtime overflow.
 848 * Please refer to the comments update_dl_revised_wakeup() function to find
 849 * more about the Revised CBS rule.
 850 */
 851static void update_dl_entity(struct sched_dl_entity *dl_se,
 852			     struct sched_dl_entity *pi_se)
 853{
 854	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 855	struct rq *rq = rq_of_dl_rq(dl_rq);
 856
 857	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
 858	    dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
 859
 860		if (unlikely(!dl_is_implicit(dl_se) &&
 861			     !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
 862			     !dl_se->dl_boosted)){
 863			update_dl_revised_wakeup(dl_se, rq);
 864			return;
 865		}
 866
 867		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 868		dl_se->runtime = pi_se->dl_runtime;
 869	}
 870}
 871
 872static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
 873{
 874	return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
 875}
 876
 877/*
 878 * If the entity depleted all its runtime, and if we want it to sleep
 879 * while waiting for some new execution time to become available, we
 880 * set the bandwidth replenishment timer to the replenishment instant
 881 * and try to activate it.
 882 *
 883 * Notice that it is important for the caller to know if the timer
 884 * actually started or not (i.e., the replenishment instant is in
 885 * the future or in the past).
 886 */
 887static int start_dl_timer(struct task_struct *p)
 888{
 889	struct sched_dl_entity *dl_se = &p->dl;
 890	struct hrtimer *timer = &dl_se->dl_timer;
 891	struct rq *rq = task_rq(p);
 892	ktime_t now, act;
 893	s64 delta;
 894
 895	lockdep_assert_held(&rq->lock);
 896
 897	/*
 898	 * We want the timer to fire at the deadline, but considering
 899	 * that it is actually coming from rq->clock and not from
 900	 * hrtimer's time base reading.
 901	 */
 902	act = ns_to_ktime(dl_next_period(dl_se));
 903	now = hrtimer_cb_get_time(timer);
 904	delta = ktime_to_ns(now) - rq_clock(rq);
 905	act = ktime_add_ns(act, delta);
 906
 907	/*
 908	 * If the expiry time already passed, e.g., because the value
 909	 * chosen as the deadline is too small, don't even try to
 910	 * start the timer in the past!
 911	 */
 912	if (ktime_us_delta(act, now) < 0)
 913		return 0;
 914
 915	/*
 916	 * !enqueued will guarantee another callback; even if one is already in
 917	 * progress. This ensures a balanced {get,put}_task_struct().
 918	 *
 919	 * The race against __run_timer() clearing the enqueued state is
 920	 * harmless because we're holding task_rq()->lock, therefore the timer
 921	 * expiring after we've done the check will wait on its task_rq_lock()
 922	 * and observe our state.
 923	 */
 924	if (!hrtimer_is_queued(timer)) {
 925		get_task_struct(p);
 926		hrtimer_start(timer, act, HRTIMER_MODE_ABS);
 927	}
 928
 929	return 1;
 930}
 931
 932/*
 933 * This is the bandwidth enforcement timer callback. If here, we know
 934 * a task is not on its dl_rq, since the fact that the timer was running
 935 * means the task is throttled and needs a runtime replenishment.
 936 *
 937 * However, what we actually do depends on the fact the task is active,
 938 * (it is on its rq) or has been removed from there by a call to
 939 * dequeue_task_dl(). In the former case we must issue the runtime
 940 * replenishment and add the task back to the dl_rq; in the latter, we just
 941 * do nothing but clearing dl_throttled, so that runtime and deadline
 942 * updating (and the queueing back to dl_rq) will be done by the
 943 * next call to enqueue_task_dl().
 944 */
 945static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
 946{
 947	struct sched_dl_entity *dl_se = container_of(timer,
 948						     struct sched_dl_entity,
 949						     dl_timer);
 950	struct task_struct *p = dl_task_of(dl_se);
 951	struct rq_flags rf;
 952	struct rq *rq;
 953
 954	rq = task_rq_lock(p, &rf);
 955
 956	/*
 957	 * The task might have changed its scheduling policy to something
 958	 * different than SCHED_DEADLINE (through switched_from_dl()).
 959	 */
 960	if (!dl_task(p))
 961		goto unlock;
 962
 963	/*
 964	 * The task might have been boosted by someone else and might be in the
 965	 * boosting/deboosting path, its not throttled.
 966	 */
 967	if (dl_se->dl_boosted)
 968		goto unlock;
 969
 970	/*
 971	 * Spurious timer due to start_dl_timer() race; or we already received
 972	 * a replenishment from rt_mutex_setprio().
 973	 */
 974	if (!dl_se->dl_throttled)
 975		goto unlock;
 976
 977	sched_clock_tick();
 978	update_rq_clock(rq);
 979
 980	/*
 981	 * If the throttle happened during sched-out; like:
 982	 *
 983	 *   schedule()
 984	 *     deactivate_task()
 985	 *       dequeue_task_dl()
 986	 *         update_curr_dl()
 987	 *           start_dl_timer()
 988	 *         __dequeue_task_dl()
 989	 *     prev->on_rq = 0;
 990	 *
 991	 * We can be both throttled and !queued. Replenish the counter
 992	 * but do not enqueue -- wait for our wakeup to do that.
 993	 */
 994	if (!task_on_rq_queued(p)) {
 995		replenish_dl_entity(dl_se, dl_se);
 996		goto unlock;
 997	}
 998
 999#ifdef CONFIG_SMP
1000	if (unlikely(!rq->online)) {
1001		/*
1002		 * If the runqueue is no longer available, migrate the
1003		 * task elsewhere. This necessarily changes rq.
1004		 */
1005		lockdep_unpin_lock(&rq->lock, rf.cookie);
1006		rq = dl_task_offline_migration(rq, p);
1007		rf.cookie = lockdep_pin_lock(&rq->lock);
1008		update_rq_clock(rq);
1009
1010		/*
1011		 * Now that the task has been migrated to the new RQ and we
1012		 * have that locked, proceed as normal and enqueue the task
1013		 * there.
1014		 */
1015	}
1016#endif
1017
1018	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1019	if (dl_task(rq->curr))
1020		check_preempt_curr_dl(rq, p, 0);
1021	else
1022		resched_curr(rq);
1023
1024#ifdef CONFIG_SMP
1025	/*
1026	 * Queueing this task back might have overloaded rq, check if we need
1027	 * to kick someone away.
1028	 */
1029	if (has_pushable_dl_tasks(rq)) {
1030		/*
1031		 * Nothing relies on rq->lock after this, so its safe to drop
1032		 * rq->lock.
1033		 */
1034		rq_unpin_lock(rq, &rf);
1035		push_dl_task(rq);
1036		rq_repin_lock(rq, &rf);
1037	}
1038#endif
1039
1040unlock:
1041	task_rq_unlock(rq, p, &rf);
1042
1043	/*
1044	 * This can free the task_struct, including this hrtimer, do not touch
1045	 * anything related to that after this.
1046	 */
1047	put_task_struct(p);
1048
1049	return HRTIMER_NORESTART;
1050}
1051
1052void init_dl_task_timer(struct sched_dl_entity *dl_se)
1053{
1054	struct hrtimer *timer = &dl_se->dl_timer;
1055
1056	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1057	timer->function = dl_task_timer;
1058}
1059
1060/*
1061 * During the activation, CBS checks if it can reuse the current task's
1062 * runtime and period. If the deadline of the task is in the past, CBS
1063 * cannot use the runtime, and so it replenishes the task. This rule
1064 * works fine for implicit deadline tasks (deadline == period), and the
1065 * CBS was designed for implicit deadline tasks. However, a task with
1066 * constrained deadline (deadine < period) might be awakened after the
1067 * deadline, but before the next period. In this case, replenishing the
1068 * task would allow it to run for runtime / deadline. As in this case
1069 * deadline < period, CBS enables a task to run for more than the
1070 * runtime / period. In a very loaded system, this can cause a domino
1071 * effect, making other tasks miss their deadlines.
1072 *
1073 * To avoid this problem, in the activation of a constrained deadline
1074 * task after the deadline but before the next period, throttle the
1075 * task and set the replenishing timer to the begin of the next period,
1076 * unless it is boosted.
1077 */
1078static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1079{
1080	struct task_struct *p = dl_task_of(dl_se);
1081	struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1082
1083	if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1084	    dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1085		if (unlikely(dl_se->dl_boosted || !start_dl_timer(p)))
1086			return;
1087		dl_se->dl_throttled = 1;
1088		if (dl_se->runtime > 0)
1089			dl_se->runtime = 0;
1090	}
1091}
1092
1093static
1094int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1095{
1096	return (dl_se->runtime <= 0);
1097}
1098
1099extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
1100
1101/*
1102 * This function implements the GRUB accounting rule:
1103 * according to the GRUB reclaiming algorithm, the runtime is
1104 * not decreased as "dq = -dt", but as
1105 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1106 * where u is the utilization of the task, Umax is the maximum reclaimable
1107 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1108 * as the difference between the "total runqueue utilization" and the
1109 * runqueue active utilization, and Uextra is the (per runqueue) extra
1110 * reclaimable utilization.
1111 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
1112 * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1113 * BW_SHIFT.
1114 * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT,
1115 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1116 * Since delta is a 64 bit variable, to have an overflow its value
1117 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1118 * So, overflow is not an issue here.
1119 */
1120static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1121{
1122	u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1123	u64 u_act;
1124	u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
1125
1126	/*
1127	 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1128	 * we compare u_inact + rq->dl.extra_bw with
1129	 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1130	 * u_inact + rq->dl.extra_bw can be larger than
1131	 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1132	 * leading to wrong results)
1133	 */
1134	if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
1135		u_act = u_act_min;
1136	else
1137		u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
1138
1139	return (delta * u_act) >> BW_SHIFT;
1140}
1141
1142/*
1143 * Update the current task's runtime statistics (provided it is still
1144 * a -deadline task and has not been removed from the dl_rq).
1145 */
1146static void update_curr_dl(struct rq *rq)
1147{
1148	struct task_struct *curr = rq->curr;
1149	struct sched_dl_entity *dl_se = &curr->dl;
1150	u64 delta_exec, scaled_delta_exec;
1151	int cpu = cpu_of(rq);
1152	u64 now;
1153
1154	if (!dl_task(curr) || !on_dl_rq(dl_se))
1155		return;
1156
1157	/*
1158	 * Consumed budget is computed considering the time as
1159	 * observed by schedulable tasks (excluding time spent
1160	 * in hardirq context, etc.). Deadlines are instead
1161	 * computed using hard walltime. This seems to be the more
1162	 * natural solution, but the full ramifications of this
1163	 * approach need further study.
1164	 */
1165	now = rq_clock_task(rq);
1166	delta_exec = now - curr->se.exec_start;
1167	if (unlikely((s64)delta_exec <= 0)) {
1168		if (unlikely(dl_se->dl_yielded))
1169			goto throttle;
1170		return;
1171	}
1172
1173	schedstat_set(curr->se.statistics.exec_max,
1174		      max(curr->se.statistics.exec_max, delta_exec));
1175
1176	curr->se.sum_exec_runtime += delta_exec;
1177	account_group_exec_runtime(curr, delta_exec);
1178
1179	curr->se.exec_start = now;
1180	cgroup_account_cputime(curr, delta_exec);
1181
1182	sched_rt_avg_update(rq, delta_exec);
1183
1184	if (dl_entity_is_special(dl_se))
1185		return;
1186
1187	/*
1188	 * For tasks that participate in GRUB, we implement GRUB-PA: the
1189	 * spare reclaimed bandwidth is used to clock down frequency.
1190	 *
1191	 * For the others, we still need to scale reservation parameters
1192	 * according to current frequency and CPU maximum capacity.
1193	 */
1194	if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1195		scaled_delta_exec = grub_reclaim(delta_exec,
1196						 rq,
1197						 &curr->dl);
1198	} else {
1199		unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1200		unsigned long scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
1201
1202		scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1203		scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1204	}
1205
1206	dl_se->runtime -= scaled_delta_exec;
1207
1208throttle:
1209	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1210		dl_se->dl_throttled = 1;
1211
1212		/* If requested, inform the user about runtime overruns. */
1213		if (dl_runtime_exceeded(dl_se) &&
1214		    (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1215			dl_se->dl_overrun = 1;
1216
1217		__dequeue_task_dl(rq, curr, 0);
1218		if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
1219			enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
1220
1221		if (!is_leftmost(curr, &rq->dl))
1222			resched_curr(rq);
1223	}
1224
1225	/*
1226	 * Because -- for now -- we share the rt bandwidth, we need to
1227	 * account our runtime there too, otherwise actual rt tasks
1228	 * would be able to exceed the shared quota.
1229	 *
1230	 * Account to the root rt group for now.
1231	 *
1232	 * The solution we're working towards is having the RT groups scheduled
1233	 * using deadline servers -- however there's a few nasties to figure
1234	 * out before that can happen.
1235	 */
1236	if (rt_bandwidth_enabled()) {
1237		struct rt_rq *rt_rq = &rq->rt;
1238
1239		raw_spin_lock(&rt_rq->rt_runtime_lock);
1240		/*
1241		 * We'll let actual RT tasks worry about the overflow here, we
1242		 * have our own CBS to keep us inline; only account when RT
1243		 * bandwidth is relevant.
1244		 */
1245		if (sched_rt_bandwidth_account(rt_rq))
1246			rt_rq->rt_time += delta_exec;
1247		raw_spin_unlock(&rt_rq->rt_runtime_lock);
1248	}
1249}
1250
1251static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1252{
1253	struct sched_dl_entity *dl_se = container_of(timer,
1254						     struct sched_dl_entity,
1255						     inactive_timer);
1256	struct task_struct *p = dl_task_of(dl_se);
1257	struct rq_flags rf;
1258	struct rq *rq;
1259
1260	rq = task_rq_lock(p, &rf);
1261
1262	sched_clock_tick();
1263	update_rq_clock(rq);
1264
1265	if (!dl_task(p) || p->state == TASK_DEAD) {
1266		struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1267
1268		if (p->state == TASK_DEAD && dl_se->dl_non_contending) {
1269			sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1270			sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1271			dl_se->dl_non_contending = 0;
1272		}
1273
1274		raw_spin_lock(&dl_b->lock);
1275		__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1276		raw_spin_unlock(&dl_b->lock);
1277		__dl_clear_params(p);
1278
1279		goto unlock;
1280	}
1281	if (dl_se->dl_non_contending == 0)
1282		goto unlock;
1283
1284	sub_running_bw(dl_se, &rq->dl);
1285	dl_se->dl_non_contending = 0;
1286unlock:
1287	task_rq_unlock(rq, p, &rf);
1288	put_task_struct(p);
1289
1290	return HRTIMER_NORESTART;
1291}
1292
1293void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1294{
1295	struct hrtimer *timer = &dl_se->inactive_timer;
1296
1297	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1298	timer->function = inactive_task_timer;
1299}
1300
1301#ifdef CONFIG_SMP
1302
1303static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1304{
1305	struct rq *rq = rq_of_dl_rq(dl_rq);
1306
1307	if (dl_rq->earliest_dl.curr == 0 ||
1308	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1309		dl_rq->earliest_dl.curr = deadline;
1310		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1311	}
1312}
1313
1314static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1315{
1316	struct rq *rq = rq_of_dl_rq(dl_rq);
1317
1318	/*
1319	 * Since we may have removed our earliest (and/or next earliest)
1320	 * task we must recompute them.
1321	 */
1322	if (!dl_rq->dl_nr_running) {
1323		dl_rq->earliest_dl.curr = 0;
1324		dl_rq->earliest_dl.next = 0;
1325		cpudl_clear(&rq->rd->cpudl, rq->cpu);
1326	} else {
1327		struct rb_node *leftmost = dl_rq->root.rb_leftmost;
1328		struct sched_dl_entity *entry;
1329
1330		entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
1331		dl_rq->earliest_dl.curr = entry->deadline;
1332		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1333	}
1334}
1335
1336#else
1337
1338static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1339static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1340
1341#endif /* CONFIG_SMP */
1342
1343static inline
1344void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1345{
1346	int prio = dl_task_of(dl_se)->prio;
1347	u64 deadline = dl_se->deadline;
1348
1349	WARN_ON(!dl_prio(prio));
1350	dl_rq->dl_nr_running++;
1351	add_nr_running(rq_of_dl_rq(dl_rq), 1);
1352
1353	inc_dl_deadline(dl_rq, deadline);
1354	inc_dl_migration(dl_se, dl_rq);
1355}
1356
1357static inline
1358void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1359{
1360	int prio = dl_task_of(dl_se)->prio;
1361
1362	WARN_ON(!dl_prio(prio));
1363	WARN_ON(!dl_rq->dl_nr_running);
1364	dl_rq->dl_nr_running--;
1365	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1366
1367	dec_dl_deadline(dl_rq, dl_se->deadline);
1368	dec_dl_migration(dl_se, dl_rq);
1369}
1370
1371static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1372{
1373	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1374	struct rb_node **link = &dl_rq->root.rb_root.rb_node;
1375	struct rb_node *parent = NULL;
1376	struct sched_dl_entity *entry;
1377	int leftmost = 1;
1378
1379	BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
1380
1381	while (*link) {
1382		parent = *link;
1383		entry = rb_entry(parent, struct sched_dl_entity, rb_node);
1384		if (dl_time_before(dl_se->deadline, entry->deadline))
1385			link = &parent->rb_left;
1386		else {
1387			link = &parent->rb_right;
1388			leftmost = 0;
1389		}
1390	}
1391
1392	rb_link_node(&dl_se->rb_node, parent, link);
1393	rb_insert_color_cached(&dl_se->rb_node, &dl_rq->root, leftmost);
1394
1395	inc_dl_tasks(dl_se, dl_rq);
1396}
1397
1398static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1399{
1400	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1401
1402	if (RB_EMPTY_NODE(&dl_se->rb_node))
1403		return;
1404
1405	rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1406	RB_CLEAR_NODE(&dl_se->rb_node);
1407
1408	dec_dl_tasks(dl_se, dl_rq);
1409}
1410
1411static void
1412enqueue_dl_entity(struct sched_dl_entity *dl_se,
1413		  struct sched_dl_entity *pi_se, int flags)
1414{
1415	BUG_ON(on_dl_rq(dl_se));
1416
1417	/*
1418	 * If this is a wakeup or a new instance, the scheduling
1419	 * parameters of the task might need updating. Otherwise,
1420	 * we want a replenishment of its runtime.
1421	 */
1422	if (flags & ENQUEUE_WAKEUP) {
1423		task_contending(dl_se, flags);
1424		update_dl_entity(dl_se, pi_se);
1425	} else if (flags & ENQUEUE_REPLENISH) {
1426		replenish_dl_entity(dl_se, pi_se);
1427	} else if ((flags & ENQUEUE_RESTORE) &&
1428		  dl_time_before(dl_se->deadline,
1429				 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
1430		setup_new_dl_entity(dl_se);
1431	}
1432
1433	__enqueue_dl_entity(dl_se);
1434}
1435
1436static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1437{
1438	__dequeue_dl_entity(dl_se);
1439}
1440
1441static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1442{
1443	struct task_struct *pi_task = rt_mutex_get_top_task(p);
1444	struct sched_dl_entity *pi_se = &p->dl;
1445
1446	/*
1447	 * Use the scheduling parameters of the top pi-waiter task if:
1448	 * - we have a top pi-waiter which is a SCHED_DEADLINE task AND
1449	 * - our dl_boosted is set (i.e. the pi-waiter's (absolute) deadline is
1450	 *   smaller than our deadline OR we are a !SCHED_DEADLINE task getting
1451	 *   boosted due to a SCHED_DEADLINE pi-waiter).
1452	 * Otherwise we keep our runtime and deadline.
1453	 */
1454	if (pi_task && dl_prio(pi_task->normal_prio) && p->dl.dl_boosted) {
1455		pi_se = &pi_task->dl;
1456	} else if (!dl_prio(p->normal_prio)) {
1457		/*
1458		 * Special case in which we have a !SCHED_DEADLINE task
1459		 * that is going to be deboosted, but exceeds its
1460		 * runtime while doing so. No point in replenishing
1461		 * it, as it's going to return back to its original
1462		 * scheduling class after this.
1463		 */
1464		BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
1465		return;
1466	}
1467
1468	/*
1469	 * Check if a constrained deadline task was activated
1470	 * after the deadline but before the next period.
1471	 * If that is the case, the task will be throttled and
1472	 * the replenishment timer will be set to the next period.
1473	 */
1474	if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
1475		dl_check_constrained_dl(&p->dl);
1476
1477	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
1478		add_rq_bw(&p->dl, &rq->dl);
1479		add_running_bw(&p->dl, &rq->dl);
1480	}
1481
1482	/*
1483	 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1484	 * its budget it needs a replenishment and, since it now is on
1485	 * its rq, the bandwidth timer callback (which clearly has not
1486	 * run yet) will take care of this.
1487	 * However, the active utilization does not depend on the fact
1488	 * that the task is on the runqueue or not (but depends on the
1489	 * task's state - in GRUB parlance, "inactive" vs "active contending").
1490	 * In other words, even if a task is throttled its utilization must
1491	 * be counted in the active utilization; hence, we need to call
1492	 * add_running_bw().
1493	 */
1494	if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1495		if (flags & ENQUEUE_WAKEUP)
1496			task_contending(&p->dl, flags);
1497
1498		return;
1499	}
1500
1501	enqueue_dl_entity(&p->dl, pi_se, flags);
1502
1503	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1504		enqueue_pushable_dl_task(rq, p);
1505}
1506
1507static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1508{
1509	dequeue_dl_entity(&p->dl);
1510	dequeue_pushable_dl_task(rq, p);
1511}
1512
1513static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1514{
1515	update_curr_dl(rq);
1516	__dequeue_task_dl(rq, p, flags);
1517
1518	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
1519		sub_running_bw(&p->dl, &rq->dl);
1520		sub_rq_bw(&p->dl, &rq->dl);
1521	}
1522
1523	/*
1524	 * This check allows to start the inactive timer (or to immediately
1525	 * decrease the active utilization, if needed) in two cases:
1526	 * when the task blocks and when it is terminating
1527	 * (p->state == TASK_DEAD). We can handle the two cases in the same
1528	 * way, because from GRUB's point of view the same thing is happening
1529	 * (the task moves from "active contending" to "active non contending"
1530	 * or "inactive")
1531	 */
1532	if (flags & DEQUEUE_SLEEP)
1533		task_non_contending(p);
1534}
1535
1536/*
1537 * Yield task semantic for -deadline tasks is:
1538 *
1539 *   get off from the CPU until our next instance, with
1540 *   a new runtime. This is of little use now, since we
1541 *   don't have a bandwidth reclaiming mechanism. Anyway,
1542 *   bandwidth reclaiming is planned for the future, and
1543 *   yield_task_dl will indicate that some spare budget
1544 *   is available for other task instances to use it.
1545 */
1546static void yield_task_dl(struct rq *rq)
1547{
1548	/*
1549	 * We make the task go to sleep until its current deadline by
1550	 * forcing its runtime to zero. This way, update_curr_dl() stops
1551	 * it and the bandwidth timer will wake it up and will give it
1552	 * new scheduling parameters (thanks to dl_yielded=1).
1553	 */
1554	rq->curr->dl.dl_yielded = 1;
1555
1556	update_rq_clock(rq);
1557	update_curr_dl(rq);
1558	/*
1559	 * Tell update_rq_clock() that we've just updated,
1560	 * so we don't do microscopic update in schedule()
1561	 * and double the fastpath cost.
1562	 */
1563	rq_clock_skip_update(rq);
1564}
1565
1566#ifdef CONFIG_SMP
1567
1568static int find_later_rq(struct task_struct *task);
1569
1570static int
1571select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1572{
1573	struct task_struct *curr;
 
1574	struct rq *rq;
1575
1576	if (sd_flag != SD_BALANCE_WAKE)
1577		goto out;
1578
1579	rq = cpu_rq(cpu);
1580
1581	rcu_read_lock();
1582	curr = READ_ONCE(rq->curr); /* unlocked access */
1583
1584	/*
1585	 * If we are dealing with a -deadline task, we must
1586	 * decide where to wake it up.
1587	 * If it has a later deadline and the current task
1588	 * on this rq can't move (provided the waking task
1589	 * can!) we prefer to send it somewhere else. On the
1590	 * other hand, if it has a shorter deadline, we
1591	 * try to make it stay here, it might be important.
1592	 */
1593	if (unlikely(dl_task(curr)) &&
1594	    (curr->nr_cpus_allowed < 2 ||
1595	     !dl_entity_preempt(&p->dl, &curr->dl)) &&
1596	    (p->nr_cpus_allowed > 1)) {
 
 
 
 
 
 
 
 
 
1597		int target = find_later_rq(p);
1598
1599		if (target != -1 &&
1600				(dl_time_before(p->dl.deadline,
1601					cpu_rq(target)->dl.earliest_dl.curr) ||
1602				(cpu_rq(target)->dl.dl_nr_running == 0)))
1603			cpu = target;
1604	}
1605	rcu_read_unlock();
1606
1607out:
1608	return cpu;
1609}
1610
1611static void migrate_task_rq_dl(struct task_struct *p)
1612{
1613	struct rq *rq;
1614
1615	if (p->state != TASK_WAKING)
1616		return;
1617
1618	rq = task_rq(p);
1619	/*
1620	 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1621	 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1622	 * rq->lock is not... So, lock it
1623	 */
1624	raw_spin_lock(&rq->lock);
1625	if (p->dl.dl_non_contending) {
1626		sub_running_bw(&p->dl, &rq->dl);
1627		p->dl.dl_non_contending = 0;
1628		/*
1629		 * If the timer handler is currently running and the
1630		 * timer cannot be cancelled, inactive_task_timer()
1631		 * will see that dl_not_contending is not set, and
1632		 * will not touch the rq's active utilization,
1633		 * so we are still safe.
1634		 */
1635		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1636			put_task_struct(p);
1637	}
1638	sub_rq_bw(&p->dl, &rq->dl);
1639	raw_spin_unlock(&rq->lock);
1640}
1641
1642static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1643{
1644	/*
1645	 * Current can't be migrated, useless to reschedule,
1646	 * let's hope p can move out.
1647	 */
1648	if (rq->curr->nr_cpus_allowed == 1 ||
1649	    !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1650		return;
1651
1652	/*
1653	 * p is migratable, so let's not schedule it and
1654	 * see if it is pushed or pulled somewhere else.
1655	 */
1656	if (p->nr_cpus_allowed != 1 &&
1657	    cpudl_find(&rq->rd->cpudl, p, NULL))
1658		return;
1659
1660	resched_curr(rq);
1661}
1662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1663#endif /* CONFIG_SMP */
1664
1665/*
1666 * Only called when both the current and waking task are -deadline
1667 * tasks.
1668 */
1669static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1670				  int flags)
1671{
1672	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1673		resched_curr(rq);
1674		return;
1675	}
1676
1677#ifdef CONFIG_SMP
1678	/*
1679	 * In the unlikely case current and p have the same deadline
1680	 * let us try to decide what's the best thing to do...
1681	 */
1682	if ((p->dl.deadline == rq->curr->dl.deadline) &&
1683	    !test_tsk_need_resched(rq->curr))
1684		check_preempt_equal_dl(rq, p);
1685#endif /* CONFIG_SMP */
1686}
1687
1688#ifdef CONFIG_SCHED_HRTICK
1689static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1690{
1691	hrtick_start(rq, p->dl.runtime);
1692}
1693#else /* !CONFIG_SCHED_HRTICK */
1694static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1695{
1696}
1697#endif
1698
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1699static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1700						   struct dl_rq *dl_rq)
1701{
1702	struct rb_node *left = rb_first_cached(&dl_rq->root);
1703
1704	if (!left)
1705		return NULL;
1706
1707	return rb_entry(left, struct sched_dl_entity, rb_node);
1708}
1709
1710static struct task_struct *
1711pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1712{
1713	struct sched_dl_entity *dl_se;
 
1714	struct task_struct *p;
1715	struct dl_rq *dl_rq;
1716
1717	dl_rq = &rq->dl;
1718
1719	if (need_pull_dl_task(rq, prev)) {
1720		/*
1721		 * This is OK, because current is on_cpu, which avoids it being
1722		 * picked for load-balance and preemption/IRQs are still
1723		 * disabled avoiding further scheduler activity on it and we're
1724		 * being very careful to re-start the picking loop.
1725		 */
1726		rq_unpin_lock(rq, rf);
1727		pull_dl_task(rq);
1728		rq_repin_lock(rq, rf);
1729		/*
1730		 * pull_dl_task() can drop (and re-acquire) rq->lock; this
1731		 * means a stop task can slip in, in which case we need to
1732		 * re-start task selection.
1733		 */
1734		if (rq->stop && task_on_rq_queued(rq->stop))
1735			return RETRY_TASK;
1736	}
1737
1738	/*
1739	 * When prev is DL, we may throttle it in put_prev_task().
1740	 * So, we update time before we check for dl_nr_running.
1741	 */
1742	if (prev->sched_class == &dl_sched_class)
1743		update_curr_dl(rq);
1744
1745	if (unlikely(!dl_rq->dl_nr_running))
1746		return NULL;
1747
1748	put_prev_task(rq, prev);
1749
1750	dl_se = pick_next_dl_entity(rq, dl_rq);
1751	BUG_ON(!dl_se);
1752
1753	p = dl_task_of(dl_se);
1754	p->se.exec_start = rq_clock_task(rq);
1755
1756	/* Running task will never be pushed. */
1757       dequeue_pushable_dl_task(rq, p);
1758
1759	if (hrtick_enabled(rq))
1760		start_hrtick_dl(rq, p);
1761
1762	deadline_queue_push_tasks(rq);
1763
1764	return p;
1765}
1766
1767static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1768{
1769	update_curr_dl(rq);
1770
 
1771	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1772		enqueue_pushable_dl_task(rq, p);
1773}
1774
1775/*
1776 * scheduler tick hitting a task of our scheduling class.
1777 *
1778 * NOTE: This function can be called remotely by the tick offload that
1779 * goes along full dynticks. Therefore no local assumption can be made
1780 * and everything must be accessed through the @rq and @curr passed in
1781 * parameters.
1782 */
1783static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1784{
1785	update_curr_dl(rq);
1786
 
1787	/*
1788	 * Even when we have runtime, update_curr_dl() might have resulted in us
1789	 * not being the leftmost task anymore. In that case NEED_RESCHED will
1790	 * be set and schedule() will start a new hrtick for the next task.
1791	 */
1792	if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1793	    is_leftmost(p, &rq->dl))
1794		start_hrtick_dl(rq, p);
1795}
1796
1797static void task_fork_dl(struct task_struct *p)
1798{
1799	/*
1800	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1801	 * sched_fork()
1802	 */
1803}
1804
1805static void set_curr_task_dl(struct rq *rq)
1806{
1807	struct task_struct *p = rq->curr;
1808
1809	p->se.exec_start = rq_clock_task(rq);
1810
1811	/* You can't push away the running task */
1812	dequeue_pushable_dl_task(rq, p);
1813}
1814
1815#ifdef CONFIG_SMP
1816
1817/* Only try algorithms three times */
1818#define DL_MAX_TRIES 3
1819
1820static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1821{
1822	if (!task_running(rq, p) &&
1823	    cpumask_test_cpu(cpu, &p->cpus_allowed))
1824		return 1;
1825	return 0;
1826}
1827
1828/*
1829 * Return the earliest pushable rq's task, which is suitable to be executed
1830 * on the CPU, NULL otherwise:
1831 */
1832static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1833{
1834	struct rb_node *next_node = rq->dl.pushable_dl_tasks_root.rb_leftmost;
1835	struct task_struct *p = NULL;
1836
1837	if (!has_pushable_dl_tasks(rq))
1838		return NULL;
1839
1840next_node:
1841	if (next_node) {
1842		p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1843
1844		if (pick_dl_task(rq, p, cpu))
1845			return p;
1846
1847		next_node = rb_next(next_node);
1848		goto next_node;
1849	}
1850
1851	return NULL;
1852}
1853
1854static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1855
1856static int find_later_rq(struct task_struct *task)
1857{
1858	struct sched_domain *sd;
1859	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1860	int this_cpu = smp_processor_id();
1861	int cpu = task_cpu(task);
1862
1863	/* Make sure the mask is initialized first */
1864	if (unlikely(!later_mask))
1865		return -1;
1866
1867	if (task->nr_cpus_allowed == 1)
1868		return -1;
1869
1870	/*
1871	 * We have to consider system topology and task affinity
1872	 * first, then we can look for a suitable CPU.
1873	 */
1874	if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
1875		return -1;
1876
1877	/*
1878	 * If we are here, some targets have been found, including
1879	 * the most suitable which is, among the runqueues where the
1880	 * current tasks have later deadlines than the task's one, the
1881	 * rq with the latest possible one.
1882	 *
1883	 * Now we check how well this matches with task's
1884	 * affinity and system topology.
1885	 *
1886	 * The last CPU where the task run is our first
1887	 * guess, since it is most likely cache-hot there.
1888	 */
1889	if (cpumask_test_cpu(cpu, later_mask))
1890		return cpu;
1891	/*
1892	 * Check if this_cpu is to be skipped (i.e., it is
1893	 * not in the mask) or not.
1894	 */
1895	if (!cpumask_test_cpu(this_cpu, later_mask))
1896		this_cpu = -1;
1897
1898	rcu_read_lock();
1899	for_each_domain(cpu, sd) {
1900		if (sd->flags & SD_WAKE_AFFINE) {
1901			int best_cpu;
1902
1903			/*
1904			 * If possible, preempting this_cpu is
1905			 * cheaper than migrating.
1906			 */
1907			if (this_cpu != -1 &&
1908			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1909				rcu_read_unlock();
1910				return this_cpu;
1911			}
1912
1913			best_cpu = cpumask_first_and(later_mask,
1914							sched_domain_span(sd));
1915			/*
1916			 * Last chance: if a CPU being in both later_mask
1917			 * and current sd span is valid, that becomes our
1918			 * choice. Of course, the latest possible CPU is
1919			 * already under consideration through later_mask.
1920			 */
1921			if (best_cpu < nr_cpu_ids) {
1922				rcu_read_unlock();
1923				return best_cpu;
1924			}
1925		}
1926	}
1927	rcu_read_unlock();
1928
1929	/*
1930	 * At this point, all our guesses failed, we just return
1931	 * 'something', and let the caller sort the things out.
1932	 */
1933	if (this_cpu != -1)
1934		return this_cpu;
1935
1936	cpu = cpumask_any(later_mask);
1937	if (cpu < nr_cpu_ids)
1938		return cpu;
1939
1940	return -1;
1941}
1942
1943/* Locks the rq it finds */
1944static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1945{
1946	struct rq *later_rq = NULL;
1947	int tries;
1948	int cpu;
1949
1950	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1951		cpu = find_later_rq(task);
1952
1953		if ((cpu == -1) || (cpu == rq->cpu))
1954			break;
1955
1956		later_rq = cpu_rq(cpu);
1957
1958		if (later_rq->dl.dl_nr_running &&
1959		    !dl_time_before(task->dl.deadline,
1960					later_rq->dl.earliest_dl.curr)) {
1961			/*
1962			 * Target rq has tasks of equal or earlier deadline,
1963			 * retrying does not release any lock and is unlikely
1964			 * to yield a different result.
1965			 */
1966			later_rq = NULL;
1967			break;
1968		}
1969
1970		/* Retry if something changed. */
1971		if (double_lock_balance(rq, later_rq)) {
1972			if (unlikely(task_rq(task) != rq ||
1973				     !cpumask_test_cpu(later_rq->cpu, &task->cpus_allowed) ||
1974				     task_running(rq, task) ||
1975				     !dl_task(task) ||
1976				     !task_on_rq_queued(task))) {
1977				double_unlock_balance(rq, later_rq);
1978				later_rq = NULL;
1979				break;
1980			}
1981		}
1982
1983		/*
1984		 * If the rq we found has no -deadline task, or
1985		 * its earliest one has a later deadline than our
1986		 * task, the rq is a good one.
1987		 */
1988		if (!later_rq->dl.dl_nr_running ||
1989		    dl_time_before(task->dl.deadline,
1990				   later_rq->dl.earliest_dl.curr))
1991			break;
1992
1993		/* Otherwise we try again. */
1994		double_unlock_balance(rq, later_rq);
1995		later_rq = NULL;
1996	}
1997
1998	return later_rq;
1999}
2000
2001static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2002{
2003	struct task_struct *p;
2004
2005	if (!has_pushable_dl_tasks(rq))
2006		return NULL;
2007
2008	p = rb_entry(rq->dl.pushable_dl_tasks_root.rb_leftmost,
2009		     struct task_struct, pushable_dl_tasks);
2010
2011	BUG_ON(rq->cpu != task_cpu(p));
2012	BUG_ON(task_current(rq, p));
2013	BUG_ON(p->nr_cpus_allowed <= 1);
2014
2015	BUG_ON(!task_on_rq_queued(p));
2016	BUG_ON(!dl_task(p));
2017
2018	return p;
2019}
2020
2021/*
2022 * See if the non running -deadline tasks on this rq
2023 * can be sent to some other CPU where they can preempt
2024 * and start executing.
2025 */
2026static int push_dl_task(struct rq *rq)
2027{
2028	struct task_struct *next_task;
2029	struct rq *later_rq;
2030	int ret = 0;
2031
2032	if (!rq->dl.overloaded)
2033		return 0;
2034
2035	next_task = pick_next_pushable_dl_task(rq);
2036	if (!next_task)
2037		return 0;
2038
2039retry:
2040	if (unlikely(next_task == rq->curr)) {
2041		WARN_ON(1);
2042		return 0;
2043	}
2044
2045	/*
2046	 * If next_task preempts rq->curr, and rq->curr
2047	 * can move away, it makes sense to just reschedule
2048	 * without going further in pushing next_task.
2049	 */
2050	if (dl_task(rq->curr) &&
2051	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2052	    rq->curr->nr_cpus_allowed > 1) {
2053		resched_curr(rq);
2054		return 0;
2055	}
2056
2057	/* We might release rq lock */
2058	get_task_struct(next_task);
2059
2060	/* Will lock the rq it'll find */
2061	later_rq = find_lock_later_rq(next_task, rq);
2062	if (!later_rq) {
2063		struct task_struct *task;
2064
2065		/*
2066		 * We must check all this again, since
2067		 * find_lock_later_rq releases rq->lock and it is
2068		 * then possible that next_task has migrated.
2069		 */
2070		task = pick_next_pushable_dl_task(rq);
2071		if (task == next_task) {
2072			/*
2073			 * The task is still there. We don't try
2074			 * again, some other CPU will pull it when ready.
2075			 */
2076			goto out;
2077		}
2078
2079		if (!task)
2080			/* No more tasks */
2081			goto out;
2082
2083		put_task_struct(next_task);
2084		next_task = task;
2085		goto retry;
2086	}
2087
2088	deactivate_task(rq, next_task, 0);
2089	sub_running_bw(&next_task->dl, &rq->dl);
2090	sub_rq_bw(&next_task->dl, &rq->dl);
2091	set_task_cpu(next_task, later_rq->cpu);
2092	add_rq_bw(&next_task->dl, &later_rq->dl);
2093	add_running_bw(&next_task->dl, &later_rq->dl);
2094	activate_task(later_rq, next_task, 0);
 
 
 
 
2095	ret = 1;
2096
2097	resched_curr(later_rq);
2098
2099	double_unlock_balance(rq, later_rq);
2100
2101out:
2102	put_task_struct(next_task);
2103
2104	return ret;
2105}
2106
2107static void push_dl_tasks(struct rq *rq)
2108{
2109	/* push_dl_task() will return true if it moved a -deadline task */
2110	while (push_dl_task(rq))
2111		;
2112}
2113
2114static void pull_dl_task(struct rq *this_rq)
2115{
2116	int this_cpu = this_rq->cpu, cpu;
2117	struct task_struct *p;
2118	bool resched = false;
2119	struct rq *src_rq;
2120	u64 dmin = LONG_MAX;
2121
2122	if (likely(!dl_overloaded(this_rq)))
2123		return;
2124
2125	/*
2126	 * Match the barrier from dl_set_overloaded; this guarantees that if we
2127	 * see overloaded we must also see the dlo_mask bit.
2128	 */
2129	smp_rmb();
2130
2131	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2132		if (this_cpu == cpu)
2133			continue;
2134
2135		src_rq = cpu_rq(cpu);
2136
2137		/*
2138		 * It looks racy, abd it is! However, as in sched_rt.c,
2139		 * we are fine with this.
2140		 */
2141		if (this_rq->dl.dl_nr_running &&
2142		    dl_time_before(this_rq->dl.earliest_dl.curr,
2143				   src_rq->dl.earliest_dl.next))
2144			continue;
2145
2146		/* Might drop this_rq->lock */
2147		double_lock_balance(this_rq, src_rq);
2148
2149		/*
2150		 * If there are no more pullable tasks on the
2151		 * rq, we're done with it.
2152		 */
2153		if (src_rq->dl.dl_nr_running <= 1)
2154			goto skip;
2155
2156		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2157
2158		/*
2159		 * We found a task to be pulled if:
2160		 *  - it preempts our current (if there's one),
2161		 *  - it will preempt the last one we pulled (if any).
2162		 */
2163		if (p && dl_time_before(p->dl.deadline, dmin) &&
2164		    (!this_rq->dl.dl_nr_running ||
2165		     dl_time_before(p->dl.deadline,
2166				    this_rq->dl.earliest_dl.curr))) {
2167			WARN_ON(p == src_rq->curr);
2168			WARN_ON(!task_on_rq_queued(p));
2169
2170			/*
2171			 * Then we pull iff p has actually an earlier
2172			 * deadline than the current task of its runqueue.
2173			 */
2174			if (dl_time_before(p->dl.deadline,
2175					   src_rq->curr->dl.deadline))
2176				goto skip;
2177
2178			resched = true;
2179
2180			deactivate_task(src_rq, p, 0);
2181			sub_running_bw(&p->dl, &src_rq->dl);
2182			sub_rq_bw(&p->dl, &src_rq->dl);
2183			set_task_cpu(p, this_cpu);
2184			add_rq_bw(&p->dl, &this_rq->dl);
2185			add_running_bw(&p->dl, &this_rq->dl);
2186			activate_task(this_rq, p, 0);
2187			dmin = p->dl.deadline;
2188
2189			/* Is there any other task even earlier? */
2190		}
2191skip:
2192		double_unlock_balance(this_rq, src_rq);
2193	}
2194
2195	if (resched)
2196		resched_curr(this_rq);
2197}
2198
2199/*
2200 * Since the task is not running and a reschedule is not going to happen
2201 * anytime soon on its runqueue, we try pushing it away now.
2202 */
2203static void task_woken_dl(struct rq *rq, struct task_struct *p)
2204{
2205	if (!task_running(rq, p) &&
2206	    !test_tsk_need_resched(rq->curr) &&
2207	    p->nr_cpus_allowed > 1 &&
2208	    dl_task(rq->curr) &&
2209	    (rq->curr->nr_cpus_allowed < 2 ||
2210	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2211		push_dl_tasks(rq);
2212	}
2213}
2214
2215static void set_cpus_allowed_dl(struct task_struct *p,
2216				const struct cpumask *new_mask)
2217{
2218	struct root_domain *src_rd;
2219	struct rq *rq;
2220
2221	BUG_ON(!dl_task(p));
2222
2223	rq = task_rq(p);
2224	src_rd = rq->rd;
2225	/*
2226	 * Migrating a SCHED_DEADLINE task between exclusive
2227	 * cpusets (different root_domains) entails a bandwidth
2228	 * update. We already made space for us in the destination
2229	 * domain (see cpuset_can_attach()).
2230	 */
2231	if (!cpumask_intersects(src_rd->span, new_mask)) {
2232		struct dl_bw *src_dl_b;
2233
2234		src_dl_b = dl_bw_of(cpu_of(rq));
2235		/*
2236		 * We now free resources of the root_domain we are migrating
2237		 * off. In the worst case, sched_setattr() may temporary fail
2238		 * until we complete the update.
2239		 */
2240		raw_spin_lock(&src_dl_b->lock);
2241		__dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2242		raw_spin_unlock(&src_dl_b->lock);
2243	}
2244
2245	set_cpus_allowed_common(p, new_mask);
2246}
2247
2248/* Assumes rq->lock is held */
2249static void rq_online_dl(struct rq *rq)
2250{
2251	if (rq->dl.overloaded)
2252		dl_set_overload(rq);
2253
2254	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2255	if (rq->dl.dl_nr_running > 0)
2256		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2257}
2258
2259/* Assumes rq->lock is held */
2260static void rq_offline_dl(struct rq *rq)
2261{
2262	if (rq->dl.overloaded)
2263		dl_clear_overload(rq);
2264
2265	cpudl_clear(&rq->rd->cpudl, rq->cpu);
2266	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2267}
2268
2269void __init init_sched_dl_class(void)
2270{
2271	unsigned int i;
2272
2273	for_each_possible_cpu(i)
2274		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2275					GFP_KERNEL, cpu_to_node(i));
2276}
2277
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2278#endif /* CONFIG_SMP */
2279
2280static void switched_from_dl(struct rq *rq, struct task_struct *p)
2281{
2282	/*
2283	 * task_non_contending() can start the "inactive timer" (if the 0-lag
2284	 * time is in the future). If the task switches back to dl before
2285	 * the "inactive timer" fires, it can continue to consume its current
2286	 * runtime using its current deadline. If it stays outside of
2287	 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2288	 * will reset the task parameters.
2289	 */
2290	if (task_on_rq_queued(p) && p->dl.dl_runtime)
2291		task_non_contending(p);
2292
2293	if (!task_on_rq_queued(p))
 
 
 
 
 
 
 
 
2294		sub_rq_bw(&p->dl, &rq->dl);
 
2295
2296	/*
2297	 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2298	 * at the 0-lag time, because the task could have been migrated
2299	 * while SCHED_OTHER in the meanwhile.
2300	 */
2301	if (p->dl.dl_non_contending)
2302		p->dl.dl_non_contending = 0;
2303
2304	/*
2305	 * Since this might be the only -deadline task on the rq,
2306	 * this is the right place to try to pull some other one
2307	 * from an overloaded CPU, if any.
2308	 */
2309	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2310		return;
2311
2312	deadline_queue_pull_task(rq);
2313}
2314
2315/*
2316 * When switching to -deadline, we may overload the rq, then
2317 * we try to push someone off, if possible.
2318 */
2319static void switched_to_dl(struct rq *rq, struct task_struct *p)
2320{
2321	if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2322		put_task_struct(p);
2323
2324	/* If p is not queued we will update its parameters at next wakeup. */
2325	if (!task_on_rq_queued(p)) {
2326		add_rq_bw(&p->dl, &rq->dl);
2327
2328		return;
2329	}
2330
2331	if (rq->curr != p) {
2332#ifdef CONFIG_SMP
2333		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2334			deadline_queue_push_tasks(rq);
2335#endif
2336		if (dl_task(rq->curr))
2337			check_preempt_curr_dl(rq, p, 0);
2338		else
2339			resched_curr(rq);
2340	}
2341}
2342
2343/*
2344 * If the scheduling parameters of a -deadline task changed,
2345 * a push or pull operation might be needed.
2346 */
2347static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2348			    int oldprio)
2349{
2350	if (task_on_rq_queued(p) || rq->curr == p) {
2351#ifdef CONFIG_SMP
2352		/*
2353		 * This might be too much, but unfortunately
2354		 * we don't have the old deadline value, and
2355		 * we can't argue if the task is increasing
2356		 * or lowering its prio, so...
2357		 */
2358		if (!rq->dl.overloaded)
2359			deadline_queue_pull_task(rq);
2360
2361		/*
2362		 * If we now have a earlier deadline task than p,
2363		 * then reschedule, provided p is still on this
2364		 * runqueue.
2365		 */
2366		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2367			resched_curr(rq);
2368#else
2369		/*
2370		 * Again, we don't know if p has a earlier
2371		 * or later deadline, so let's blindly set a
2372		 * (maybe not needed) rescheduling point.
2373		 */
2374		resched_curr(rq);
2375#endif /* CONFIG_SMP */
2376	}
2377}
2378
2379const struct sched_class dl_sched_class = {
2380	.next			= &rt_sched_class,
2381	.enqueue_task		= enqueue_task_dl,
2382	.dequeue_task		= dequeue_task_dl,
2383	.yield_task		= yield_task_dl,
2384
2385	.check_preempt_curr	= check_preempt_curr_dl,
2386
2387	.pick_next_task		= pick_next_task_dl,
2388	.put_prev_task		= put_prev_task_dl,
 
2389
2390#ifdef CONFIG_SMP
 
2391	.select_task_rq		= select_task_rq_dl,
2392	.migrate_task_rq	= migrate_task_rq_dl,
2393	.set_cpus_allowed       = set_cpus_allowed_dl,
2394	.rq_online              = rq_online_dl,
2395	.rq_offline             = rq_offline_dl,
2396	.task_woken		= task_woken_dl,
2397#endif
2398
2399	.set_curr_task		= set_curr_task_dl,
2400	.task_tick		= task_tick_dl,
2401	.task_fork              = task_fork_dl,
2402
2403	.prio_changed           = prio_changed_dl,
2404	.switched_from		= switched_from_dl,
2405	.switched_to		= switched_to_dl,
2406
2407	.update_curr		= update_curr_dl,
2408};
2409
2410int sched_dl_global_validate(void)
2411{
2412	u64 runtime = global_rt_runtime();
2413	u64 period = global_rt_period();
2414	u64 new_bw = to_ratio(period, runtime);
2415	struct dl_bw *dl_b;
2416	int cpu, ret = 0;
2417	unsigned long flags;
2418
2419	/*
2420	 * Here we want to check the bandwidth not being set to some
2421	 * value smaller than the currently allocated bandwidth in
2422	 * any of the root_domains.
2423	 *
2424	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
2425	 * cycling on root_domains... Discussion on different/better
2426	 * solutions is welcome!
2427	 */
2428	for_each_possible_cpu(cpu) {
2429		rcu_read_lock_sched();
2430		dl_b = dl_bw_of(cpu);
2431
2432		raw_spin_lock_irqsave(&dl_b->lock, flags);
2433		if (new_bw < dl_b->total_bw)
2434			ret = -EBUSY;
2435		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2436
2437		rcu_read_unlock_sched();
2438
2439		if (ret)
2440			break;
2441	}
2442
2443	return ret;
2444}
2445
2446void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2447{
2448	if (global_rt_runtime() == RUNTIME_INF) {
2449		dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2450		dl_rq->extra_bw = 1 << BW_SHIFT;
2451	} else {
2452		dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2453			  global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2454		dl_rq->extra_bw = to_ratio(global_rt_period(),
2455						    global_rt_runtime());
2456	}
2457}
2458
2459void sched_dl_do_global(void)
2460{
2461	u64 new_bw = -1;
2462	struct dl_bw *dl_b;
2463	int cpu;
2464	unsigned long flags;
2465
2466	def_dl_bandwidth.dl_period = global_rt_period();
2467	def_dl_bandwidth.dl_runtime = global_rt_runtime();
2468
2469	if (global_rt_runtime() != RUNTIME_INF)
2470		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2471
2472	/*
2473	 * FIXME: As above...
2474	 */
2475	for_each_possible_cpu(cpu) {
2476		rcu_read_lock_sched();
2477		dl_b = dl_bw_of(cpu);
2478
2479		raw_spin_lock_irqsave(&dl_b->lock, flags);
2480		dl_b->bw = new_bw;
2481		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2482
2483		rcu_read_unlock_sched();
2484		init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2485	}
2486}
2487
2488/*
2489 * We must be sure that accepting a new task (or allowing changing the
2490 * parameters of an existing one) is consistent with the bandwidth
2491 * constraints. If yes, this function also accordingly updates the currently
2492 * allocated bandwidth to reflect the new situation.
2493 *
2494 * This function is called while holding p's rq->lock.
2495 */
2496int sched_dl_overflow(struct task_struct *p, int policy,
2497		      const struct sched_attr *attr)
2498{
2499	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2500	u64 period = attr->sched_period ?: attr->sched_deadline;
2501	u64 runtime = attr->sched_runtime;
2502	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2503	int cpus, err = -1;
 
 
2504
2505	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2506		return 0;
2507
2508	/* !deadline task may carry old deadline bandwidth */
2509	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2510		return 0;
2511
2512	/*
2513	 * Either if a task, enters, leave, or stays -deadline but changes
2514	 * its parameters, we may need to update accordingly the total
2515	 * allocated bandwidth of the container.
2516	 */
2517	raw_spin_lock(&dl_b->lock);
2518	cpus = dl_bw_cpus(task_cpu(p));
 
 
2519	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2520	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2521		if (hrtimer_active(&p->dl.inactive_timer))
2522			__dl_sub(dl_b, p->dl.dl_bw, cpus);
2523		__dl_add(dl_b, new_bw, cpus);
2524		err = 0;
2525	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2526		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2527		/*
2528		 * XXX this is slightly incorrect: when the task
2529		 * utilization decreases, we should delay the total
2530		 * utilization change until the task's 0-lag point.
2531		 * But this would require to set the task's "inactive
2532		 * timer" when the task is not inactive.
2533		 */
2534		__dl_sub(dl_b, p->dl.dl_bw, cpus);
2535		__dl_add(dl_b, new_bw, cpus);
2536		dl_change_utilization(p, new_bw);
2537		err = 0;
2538	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2539		/*
2540		 * Do not decrease the total deadline utilization here,
2541		 * switched_from_dl() will take care to do it at the correct
2542		 * (0-lag) time.
2543		 */
2544		err = 0;
2545	}
2546	raw_spin_unlock(&dl_b->lock);
2547
2548	return err;
2549}
2550
2551/*
2552 * This function initializes the sched_dl_entity of a newly becoming
2553 * SCHED_DEADLINE task.
2554 *
2555 * Only the static values are considered here, the actual runtime and the
2556 * absolute deadline will be properly calculated when the task is enqueued
2557 * for the first time with its new policy.
2558 */
2559void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2560{
2561	struct sched_dl_entity *dl_se = &p->dl;
2562
2563	dl_se->dl_runtime = attr->sched_runtime;
2564	dl_se->dl_deadline = attr->sched_deadline;
2565	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2566	dl_se->flags = attr->sched_flags;
2567	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2568	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2569}
2570
2571void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2572{
2573	struct sched_dl_entity *dl_se = &p->dl;
2574
2575	attr->sched_priority = p->rt_priority;
2576	attr->sched_runtime = dl_se->dl_runtime;
2577	attr->sched_deadline = dl_se->dl_deadline;
2578	attr->sched_period = dl_se->dl_period;
2579	attr->sched_flags = dl_se->flags;
2580}
2581
2582/*
 
 
 
 
 
 
 
 
2583 * This function validates the new parameters of a -deadline task.
2584 * We ask for the deadline not being zero, and greater or equal
2585 * than the runtime, as well as the period of being zero or
2586 * greater than deadline. Furthermore, we have to be sure that
2587 * user parameters are above the internal resolution of 1us (we
2588 * check sched_runtime only since it is always the smaller one) and
2589 * below 2^63 ns (we have to check both sched_deadline and
2590 * sched_period, as the latter can be zero).
2591 */
2592bool __checkparam_dl(const struct sched_attr *attr)
2593{
 
 
2594	/* special dl tasks don't actually use any parameter */
2595	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2596		return true;
2597
2598	/* deadline != 0 */
2599	if (attr->sched_deadline == 0)
2600		return false;
2601
2602	/*
2603	 * Since we truncate DL_SCALE bits, make sure we're at least
2604	 * that big.
2605	 */
2606	if (attr->sched_runtime < (1ULL << DL_SCALE))
2607		return false;
2608
2609	/*
2610	 * Since we use the MSB for wrap-around and sign issues, make
2611	 * sure it's not set (mind that period can be equal to zero).
2612	 */
2613	if (attr->sched_deadline & (1ULL << 63) ||
2614	    attr->sched_period & (1ULL << 63))
2615		return false;
2616
 
 
 
 
2617	/* runtime <= deadline <= period (if period != 0) */
2618	if ((attr->sched_period != 0 &&
2619	     attr->sched_period < attr->sched_deadline) ||
2620	    attr->sched_deadline < attr->sched_runtime)
2621		return false;
2622
 
 
 
 
 
 
2623	return true;
2624}
2625
2626/*
2627 * This function clears the sched_dl_entity static params.
2628 */
2629void __dl_clear_params(struct task_struct *p)
2630{
2631	struct sched_dl_entity *dl_se = &p->dl;
2632
2633	dl_se->dl_runtime		= 0;
2634	dl_se->dl_deadline		= 0;
2635	dl_se->dl_period		= 0;
2636	dl_se->flags			= 0;
2637	dl_se->dl_bw			= 0;
2638	dl_se->dl_density		= 0;
2639
 
2640	dl_se->dl_throttled		= 0;
2641	dl_se->dl_yielded		= 0;
2642	dl_se->dl_non_contending	= 0;
2643	dl_se->dl_overrun		= 0;
2644}
2645
2646bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
2647{
2648	struct sched_dl_entity *dl_se = &p->dl;
2649
2650	if (dl_se->dl_runtime != attr->sched_runtime ||
2651	    dl_se->dl_deadline != attr->sched_deadline ||
2652	    dl_se->dl_period != attr->sched_period ||
2653	    dl_se->flags != attr->sched_flags)
2654		return true;
2655
2656	return false;
2657}
2658
2659#ifdef CONFIG_SMP
2660int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed)
2661{
 
2662	unsigned int dest_cpu;
2663	struct dl_bw *dl_b;
2664	bool overflow;
2665	int cpus, ret;
2666	unsigned long flags;
2667
2668	dest_cpu = cpumask_any_and(cpu_active_mask, cs_cpus_allowed);
2669
2670	rcu_read_lock_sched();
2671	dl_b = dl_bw_of(dest_cpu);
2672	raw_spin_lock_irqsave(&dl_b->lock, flags);
2673	cpus = dl_bw_cpus(dest_cpu);
2674	overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
2675	if (overflow) {
2676		ret = -EBUSY;
2677	} else {
2678		/*
2679		 * We reserve space for this task in the destination
2680		 * root_domain, as we can't fail after this point.
2681		 * We will free resources in the source root_domain
2682		 * later on (see set_cpus_allowed_dl()).
2683		 */
 
 
2684		__dl_add(dl_b, p->dl.dl_bw, cpus);
2685		ret = 0;
2686	}
2687	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2688	rcu_read_unlock_sched();
2689
2690	return ret;
2691}
2692
2693int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
2694				 const struct cpumask *trial)
2695{
2696	int ret = 1, trial_cpus;
2697	struct dl_bw *cur_dl_b;
2698	unsigned long flags;
2699
2700	rcu_read_lock_sched();
2701	cur_dl_b = dl_bw_of(cpumask_any(cur));
2702	trial_cpus = cpumask_weight(trial);
2703
2704	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
2705	if (cur_dl_b->bw != -1 &&
2706	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
2707		ret = 0;
2708	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
2709	rcu_read_unlock_sched();
2710
2711	return ret;
2712}
2713
2714bool dl_cpu_busy(unsigned int cpu)
2715{
2716	unsigned long flags;
2717	struct dl_bw *dl_b;
2718	bool overflow;
2719	int cpus;
2720
2721	rcu_read_lock_sched();
2722	dl_b = dl_bw_of(cpu);
2723	raw_spin_lock_irqsave(&dl_b->lock, flags);
2724	cpus = dl_bw_cpus(cpu);
2725	overflow = __dl_overflow(dl_b, cpus, 0, 0);
2726	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2727	rcu_read_unlock_sched();
2728
2729	return overflow;
2730}
2731#endif
2732
2733#ifdef CONFIG_SCHED_DEBUG
2734void print_dl_stats(struct seq_file *m, int cpu)
2735{
2736	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
2737}
2738#endif /* CONFIG_SCHED_DEBUG */
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Deadline Scheduling Class (SCHED_DEADLINE)
   4 *
   5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
   6 *
   7 * Tasks that periodically executes their instances for less than their
   8 * runtime won't miss any of their deadlines.
   9 * Tasks that are not periodic or sporadic or that tries to execute more
  10 * than their reserved bandwidth will be slowed down (and may potentially
  11 * miss some of their deadlines), and won't affect any other task.
  12 *
  13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
  14 *                    Juri Lelli <juri.lelli@gmail.com>,
  15 *                    Michael Trimarchi <michael@amarulasolutions.com>,
  16 *                    Fabio Checconi <fchecconi@gmail.com>
  17 */
  18#include "sched.h"
  19#include "pelt.h"
  20
  21struct dl_bandwidth def_dl_bandwidth;
  22
  23static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
  24{
  25	return container_of(dl_se, struct task_struct, dl);
  26}
  27
  28static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
  29{
  30	return container_of(dl_rq, struct rq, dl);
  31}
  32
  33static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
  34{
  35	struct task_struct *p = dl_task_of(dl_se);
  36	struct rq *rq = task_rq(p);
  37
  38	return &rq->dl;
  39}
  40
  41static inline int on_dl_rq(struct sched_dl_entity *dl_se)
  42{
  43	return !RB_EMPTY_NODE(&dl_se->rb_node);
  44}
  45
  46#ifdef CONFIG_SMP
  47static inline struct dl_bw *dl_bw_of(int i)
  48{
  49	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
  50			 "sched RCU must be held");
  51	return &cpu_rq(i)->rd->dl_bw;
  52}
  53
  54static inline int dl_bw_cpus(int i)
  55{
  56	struct root_domain *rd = cpu_rq(i)->rd;
  57	int cpus;
  58
  59	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
  60			 "sched RCU must be held");
  61
  62	if (cpumask_subset(rd->span, cpu_active_mask))
  63		return cpumask_weight(rd->span);
  64
  65	cpus = 0;
  66
  67	for_each_cpu_and(i, rd->span, cpu_active_mask)
  68		cpus++;
  69
  70	return cpus;
  71}
  72
  73static inline unsigned long __dl_bw_capacity(int i)
  74{
  75	struct root_domain *rd = cpu_rq(i)->rd;
  76	unsigned long cap = 0;
  77
  78	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
  79			 "sched RCU must be held");
  80
  81	for_each_cpu_and(i, rd->span, cpu_active_mask)
  82		cap += capacity_orig_of(i);
  83
  84	return cap;
  85}
  86
  87/*
  88 * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
  89 * of the CPU the task is running on rather rd's \Sum CPU capacity.
  90 */
  91static inline unsigned long dl_bw_capacity(int i)
  92{
  93	if (!static_branch_unlikely(&sched_asym_cpucapacity) &&
  94	    capacity_orig_of(i) == SCHED_CAPACITY_SCALE) {
  95		return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
  96	} else {
  97		return __dl_bw_capacity(i);
  98	}
  99}
 100#else
 101static inline struct dl_bw *dl_bw_of(int i)
 102{
 103	return &cpu_rq(i)->dl.dl_bw;
 104}
 105
 106static inline int dl_bw_cpus(int i)
 107{
 108	return 1;
 109}
 110
 111static inline unsigned long dl_bw_capacity(int i)
 112{
 113	return SCHED_CAPACITY_SCALE;
 114}
 115#endif
 116
 117static inline
 118void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
 119{
 120	u64 old = dl_rq->running_bw;
 121
 122	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
 123	dl_rq->running_bw += dl_bw;
 124	SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
 125	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
 126	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
 127	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
 128}
 129
 130static inline
 131void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
 132{
 133	u64 old = dl_rq->running_bw;
 134
 135	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
 136	dl_rq->running_bw -= dl_bw;
 137	SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
 138	if (dl_rq->running_bw > old)
 139		dl_rq->running_bw = 0;
 140	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
 141	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
 142}
 143
 144static inline
 145void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
 146{
 147	u64 old = dl_rq->this_bw;
 148
 149	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
 150	dl_rq->this_bw += dl_bw;
 151	SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
 152}
 153
 154static inline
 155void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
 156{
 157	u64 old = dl_rq->this_bw;
 158
 159	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
 160	dl_rq->this_bw -= dl_bw;
 161	SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
 162	if (dl_rq->this_bw > old)
 163		dl_rq->this_bw = 0;
 164	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
 165}
 166
 167static inline
 168void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 169{
 170	if (!dl_entity_is_special(dl_se))
 171		__add_rq_bw(dl_se->dl_bw, dl_rq);
 172}
 173
 174static inline
 175void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 176{
 177	if (!dl_entity_is_special(dl_se))
 178		__sub_rq_bw(dl_se->dl_bw, dl_rq);
 179}
 180
 181static inline
 182void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 183{
 184	if (!dl_entity_is_special(dl_se))
 185		__add_running_bw(dl_se->dl_bw, dl_rq);
 186}
 187
 188static inline
 189void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 190{
 191	if (!dl_entity_is_special(dl_se))
 192		__sub_running_bw(dl_se->dl_bw, dl_rq);
 193}
 194
 195static void dl_change_utilization(struct task_struct *p, u64 new_bw)
 196{
 197	struct rq *rq;
 198
 199	BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV);
 200
 201	if (task_on_rq_queued(p))
 202		return;
 203
 204	rq = task_rq(p);
 205	if (p->dl.dl_non_contending) {
 206		sub_running_bw(&p->dl, &rq->dl);
 207		p->dl.dl_non_contending = 0;
 208		/*
 209		 * If the timer handler is currently running and the
 210		 * timer cannot be cancelled, inactive_task_timer()
 211		 * will see that dl_not_contending is not set, and
 212		 * will not touch the rq's active utilization,
 213		 * so we are still safe.
 214		 */
 215		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
 216			put_task_struct(p);
 217	}
 218	__sub_rq_bw(p->dl.dl_bw, &rq->dl);
 219	__add_rq_bw(new_bw, &rq->dl);
 220}
 221
 222/*
 223 * The utilization of a task cannot be immediately removed from
 224 * the rq active utilization (running_bw) when the task blocks.
 225 * Instead, we have to wait for the so called "0-lag time".
 226 *
 227 * If a task blocks before the "0-lag time", a timer (the inactive
 228 * timer) is armed, and running_bw is decreased when the timer
 229 * fires.
 230 *
 231 * If the task wakes up again before the inactive timer fires,
 232 * the timer is cancelled, whereas if the task wakes up after the
 233 * inactive timer fired (and running_bw has been decreased) the
 234 * task's utilization has to be added to running_bw again.
 235 * A flag in the deadline scheduling entity (dl_non_contending)
 236 * is used to avoid race conditions between the inactive timer handler
 237 * and task wakeups.
 238 *
 239 * The following diagram shows how running_bw is updated. A task is
 240 * "ACTIVE" when its utilization contributes to running_bw; an
 241 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
 242 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
 243 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
 244 * time already passed, which does not contribute to running_bw anymore.
 245 *                              +------------------+
 246 *             wakeup           |    ACTIVE        |
 247 *          +------------------>+   contending     |
 248 *          | add_running_bw    |                  |
 249 *          |                   +----+------+------+
 250 *          |                        |      ^
 251 *          |                dequeue |      |
 252 * +--------+-------+                |      |
 253 * |                |   t >= 0-lag   |      | wakeup
 254 * |    INACTIVE    |<---------------+      |
 255 * |                | sub_running_bw |      |
 256 * +--------+-------+                |      |
 257 *          ^                        |      |
 258 *          |              t < 0-lag |      |
 259 *          |                        |      |
 260 *          |                        V      |
 261 *          |                   +----+------+------+
 262 *          | sub_running_bw    |    ACTIVE        |
 263 *          +-------------------+                  |
 264 *            inactive timer    |  non contending  |
 265 *            fired             +------------------+
 266 *
 267 * The task_non_contending() function is invoked when a task
 268 * blocks, and checks if the 0-lag time already passed or
 269 * not (in the first case, it directly updates running_bw;
 270 * in the second case, it arms the inactive timer).
 271 *
 272 * The task_contending() function is invoked when a task wakes
 273 * up, and checks if the task is still in the "ACTIVE non contending"
 274 * state or not (in the second case, it updates running_bw).
 275 */
 276static void task_non_contending(struct task_struct *p)
 277{
 278	struct sched_dl_entity *dl_se = &p->dl;
 279	struct hrtimer *timer = &dl_se->inactive_timer;
 280	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 281	struct rq *rq = rq_of_dl_rq(dl_rq);
 282	s64 zerolag_time;
 283
 284	/*
 285	 * If this is a non-deadline task that has been boosted,
 286	 * do nothing
 287	 */
 288	if (dl_se->dl_runtime == 0)
 289		return;
 290
 291	if (dl_entity_is_special(dl_se))
 292		return;
 293
 
 294	WARN_ON(dl_se->dl_non_contending);
 295
 296	zerolag_time = dl_se->deadline -
 297		 div64_long((dl_se->runtime * dl_se->dl_period),
 298			dl_se->dl_runtime);
 299
 300	/*
 301	 * Using relative times instead of the absolute "0-lag time"
 302	 * allows to simplify the code
 303	 */
 304	zerolag_time -= rq_clock(rq);
 305
 306	/*
 307	 * If the "0-lag time" already passed, decrease the active
 308	 * utilization now, instead of starting a timer
 309	 */
 310	if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
 311		if (dl_task(p))
 312			sub_running_bw(dl_se, dl_rq);
 313		if (!dl_task(p) || p->state == TASK_DEAD) {
 314			struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
 315
 316			if (p->state == TASK_DEAD)
 317				sub_rq_bw(&p->dl, &rq->dl);
 318			raw_spin_lock(&dl_b->lock);
 319			__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
 320			__dl_clear_params(p);
 321			raw_spin_unlock(&dl_b->lock);
 322		}
 323
 324		return;
 325	}
 326
 327	dl_se->dl_non_contending = 1;
 328	get_task_struct(p);
 329	hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
 330}
 331
 332static void task_contending(struct sched_dl_entity *dl_se, int flags)
 333{
 334	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 335
 336	/*
 337	 * If this is a non-deadline task that has been boosted,
 338	 * do nothing
 339	 */
 340	if (dl_se->dl_runtime == 0)
 341		return;
 342
 343	if (flags & ENQUEUE_MIGRATED)
 344		add_rq_bw(dl_se, dl_rq);
 345
 346	if (dl_se->dl_non_contending) {
 347		dl_se->dl_non_contending = 0;
 348		/*
 349		 * If the timer handler is currently running and the
 350		 * timer cannot be cancelled, inactive_task_timer()
 351		 * will see that dl_not_contending is not set, and
 352		 * will not touch the rq's active utilization,
 353		 * so we are still safe.
 354		 */
 355		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
 356			put_task_struct(dl_task_of(dl_se));
 357	} else {
 358		/*
 359		 * Since "dl_non_contending" is not set, the
 360		 * task's utilization has already been removed from
 361		 * active utilization (either when the task blocked,
 362		 * when the "inactive timer" fired).
 363		 * So, add it back.
 364		 */
 365		add_running_bw(dl_se, dl_rq);
 366	}
 367}
 368
 369static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
 370{
 371	struct sched_dl_entity *dl_se = &p->dl;
 372
 373	return dl_rq->root.rb_leftmost == &dl_se->rb_node;
 374}
 375
 376static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
 377
 378void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
 379{
 380	raw_spin_lock_init(&dl_b->dl_runtime_lock);
 381	dl_b->dl_period = period;
 382	dl_b->dl_runtime = runtime;
 383}
 384
 385void init_dl_bw(struct dl_bw *dl_b)
 386{
 387	raw_spin_lock_init(&dl_b->lock);
 388	raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
 389	if (global_rt_runtime() == RUNTIME_INF)
 390		dl_b->bw = -1;
 391	else
 392		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
 393	raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
 394	dl_b->total_bw = 0;
 395}
 396
 397void init_dl_rq(struct dl_rq *dl_rq)
 398{
 399	dl_rq->root = RB_ROOT_CACHED;
 400
 401#ifdef CONFIG_SMP
 402	/* zero means no -deadline tasks */
 403	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
 404
 405	dl_rq->dl_nr_migratory = 0;
 406	dl_rq->overloaded = 0;
 407	dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
 408#else
 409	init_dl_bw(&dl_rq->dl_bw);
 410#endif
 411
 412	dl_rq->running_bw = 0;
 413	dl_rq->this_bw = 0;
 414	init_dl_rq_bw_ratio(dl_rq);
 415}
 416
 417#ifdef CONFIG_SMP
 418
 419static inline int dl_overloaded(struct rq *rq)
 420{
 421	return atomic_read(&rq->rd->dlo_count);
 422}
 423
 424static inline void dl_set_overload(struct rq *rq)
 425{
 426	if (!rq->online)
 427		return;
 428
 429	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
 430	/*
 431	 * Must be visible before the overload count is
 432	 * set (as in sched_rt.c).
 433	 *
 434	 * Matched by the barrier in pull_dl_task().
 435	 */
 436	smp_wmb();
 437	atomic_inc(&rq->rd->dlo_count);
 438}
 439
 440static inline void dl_clear_overload(struct rq *rq)
 441{
 442	if (!rq->online)
 443		return;
 444
 445	atomic_dec(&rq->rd->dlo_count);
 446	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
 447}
 448
 449static void update_dl_migration(struct dl_rq *dl_rq)
 450{
 451	if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
 452		if (!dl_rq->overloaded) {
 453			dl_set_overload(rq_of_dl_rq(dl_rq));
 454			dl_rq->overloaded = 1;
 455		}
 456	} else if (dl_rq->overloaded) {
 457		dl_clear_overload(rq_of_dl_rq(dl_rq));
 458		dl_rq->overloaded = 0;
 459	}
 460}
 461
 462static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 463{
 464	struct task_struct *p = dl_task_of(dl_se);
 465
 466	if (p->nr_cpus_allowed > 1)
 467		dl_rq->dl_nr_migratory++;
 468
 469	update_dl_migration(dl_rq);
 470}
 471
 472static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 473{
 474	struct task_struct *p = dl_task_of(dl_se);
 475
 476	if (p->nr_cpus_allowed > 1)
 477		dl_rq->dl_nr_migratory--;
 478
 479	update_dl_migration(dl_rq);
 480}
 481
 482/*
 483 * The list of pushable -deadline task is not a plist, like in
 484 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
 485 */
 486static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 487{
 488	struct dl_rq *dl_rq = &rq->dl;
 489	struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_root.rb_node;
 490	struct rb_node *parent = NULL;
 491	struct task_struct *entry;
 492	bool leftmost = true;
 493
 494	BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
 495
 496	while (*link) {
 497		parent = *link;
 498		entry = rb_entry(parent, struct task_struct,
 499				 pushable_dl_tasks);
 500		if (dl_entity_preempt(&p->dl, &entry->dl))
 501			link = &parent->rb_left;
 502		else {
 503			link = &parent->rb_right;
 504			leftmost = false;
 505		}
 506	}
 507
 508	if (leftmost)
 509		dl_rq->earliest_dl.next = p->dl.deadline;
 510
 511	rb_link_node(&p->pushable_dl_tasks, parent, link);
 512	rb_insert_color_cached(&p->pushable_dl_tasks,
 513			       &dl_rq->pushable_dl_tasks_root, leftmost);
 514}
 515
 516static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 517{
 518	struct dl_rq *dl_rq = &rq->dl;
 519
 520	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
 521		return;
 522
 523	if (dl_rq->pushable_dl_tasks_root.rb_leftmost == &p->pushable_dl_tasks) {
 524		struct rb_node *next_node;
 525
 526		next_node = rb_next(&p->pushable_dl_tasks);
 527		if (next_node) {
 528			dl_rq->earliest_dl.next = rb_entry(next_node,
 529				struct task_struct, pushable_dl_tasks)->dl.deadline;
 530		}
 531	}
 532
 533	rb_erase_cached(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
 534	RB_CLEAR_NODE(&p->pushable_dl_tasks);
 535}
 536
 537static inline int has_pushable_dl_tasks(struct rq *rq)
 538{
 539	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
 540}
 541
 542static int push_dl_task(struct rq *rq);
 543
 544static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
 545{
 546	return dl_task(prev);
 547}
 548
 549static DEFINE_PER_CPU(struct callback_head, dl_push_head);
 550static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
 551
 552static void push_dl_tasks(struct rq *);
 553static void pull_dl_task(struct rq *);
 554
 555static inline void deadline_queue_push_tasks(struct rq *rq)
 556{
 557	if (!has_pushable_dl_tasks(rq))
 558		return;
 559
 560	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
 561}
 562
 563static inline void deadline_queue_pull_task(struct rq *rq)
 564{
 565	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
 566}
 567
 568static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
 569
 570static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
 571{
 572	struct rq *later_rq = NULL;
 573	struct dl_bw *dl_b;
 574
 575	later_rq = find_lock_later_rq(p, rq);
 576	if (!later_rq) {
 577		int cpu;
 578
 579		/*
 580		 * If we cannot preempt any rq, fall back to pick any
 581		 * online CPU:
 582		 */
 583		cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
 584		if (cpu >= nr_cpu_ids) {
 585			/*
 586			 * Failed to find any suitable CPU.
 587			 * The task will never come back!
 588			 */
 589			BUG_ON(dl_bandwidth_enabled());
 590
 591			/*
 592			 * If admission control is disabled we
 593			 * try a little harder to let the task
 594			 * run.
 595			 */
 596			cpu = cpumask_any(cpu_active_mask);
 597		}
 598		later_rq = cpu_rq(cpu);
 599		double_lock_balance(rq, later_rq);
 600	}
 601
 602	if (p->dl.dl_non_contending || p->dl.dl_throttled) {
 603		/*
 604		 * Inactive timer is armed (or callback is running, but
 605		 * waiting for us to release rq locks). In any case, when it
 606		 * will fire (or continue), it will see running_bw of this
 607		 * task migrated to later_rq (and correctly handle it).
 608		 */
 609		sub_running_bw(&p->dl, &rq->dl);
 610		sub_rq_bw(&p->dl, &rq->dl);
 611
 612		add_rq_bw(&p->dl, &later_rq->dl);
 613		add_running_bw(&p->dl, &later_rq->dl);
 614	} else {
 615		sub_rq_bw(&p->dl, &rq->dl);
 616		add_rq_bw(&p->dl, &later_rq->dl);
 617	}
 618
 619	/*
 620	 * And we finally need to fixup root_domain(s) bandwidth accounting,
 621	 * since p is still hanging out in the old (now moved to default) root
 622	 * domain.
 623	 */
 624	dl_b = &rq->rd->dl_bw;
 625	raw_spin_lock(&dl_b->lock);
 626	__dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
 627	raw_spin_unlock(&dl_b->lock);
 628
 629	dl_b = &later_rq->rd->dl_bw;
 630	raw_spin_lock(&dl_b->lock);
 631	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
 632	raw_spin_unlock(&dl_b->lock);
 633
 634	set_task_cpu(p, later_rq->cpu);
 635	double_unlock_balance(later_rq, rq);
 636
 637	return later_rq;
 638}
 639
 640#else
 641
 642static inline
 643void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 644{
 645}
 646
 647static inline
 648void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 649{
 650}
 651
 652static inline
 653void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 654{
 655}
 656
 657static inline
 658void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 659{
 660}
 661
 662static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
 663{
 664	return false;
 665}
 666
 667static inline void pull_dl_task(struct rq *rq)
 668{
 669}
 670
 671static inline void deadline_queue_push_tasks(struct rq *rq)
 672{
 673}
 674
 675static inline void deadline_queue_pull_task(struct rq *rq)
 676{
 677}
 678#endif /* CONFIG_SMP */
 679
 680static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
 681static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
 682static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags);
 683
 684/*
 685 * We are being explicitly informed that a new instance is starting,
 686 * and this means that:
 687 *  - the absolute deadline of the entity has to be placed at
 688 *    current time + relative deadline;
 689 *  - the runtime of the entity has to be set to the maximum value.
 690 *
 691 * The capability of specifying such event is useful whenever a -deadline
 692 * entity wants to (try to!) synchronize its behaviour with the scheduler's
 693 * one, and to (try to!) reconcile itself with its own scheduling
 694 * parameters.
 695 */
 696static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
 697{
 698	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 699	struct rq *rq = rq_of_dl_rq(dl_rq);
 700
 701	WARN_ON(dl_se->dl_boosted);
 702	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
 703
 704	/*
 705	 * We are racing with the deadline timer. So, do nothing because
 706	 * the deadline timer handler will take care of properly recharging
 707	 * the runtime and postponing the deadline
 708	 */
 709	if (dl_se->dl_throttled)
 710		return;
 711
 712	/*
 713	 * We use the regular wall clock time to set deadlines in the
 714	 * future; in fact, we must consider execution overheads (time
 715	 * spent on hardirq context, etc.).
 716	 */
 717	dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
 718	dl_se->runtime = dl_se->dl_runtime;
 719}
 720
 721/*
 722 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
 723 * possibility of a entity lasting more than what it declared, and thus
 724 * exhausting its runtime.
 725 *
 726 * Here we are interested in making runtime overrun possible, but we do
 727 * not want a entity which is misbehaving to affect the scheduling of all
 728 * other entities.
 729 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
 730 * is used, in order to confine each entity within its own bandwidth.
 731 *
 732 * This function deals exactly with that, and ensures that when the runtime
 733 * of a entity is replenished, its deadline is also postponed. That ensures
 734 * the overrunning entity can't interfere with other entity in the system and
 735 * can't make them miss their deadlines. Reasons why this kind of overruns
 736 * could happen are, typically, a entity voluntarily trying to overcome its
 737 * runtime, or it just underestimated it during sched_setattr().
 738 */
 739static void replenish_dl_entity(struct sched_dl_entity *dl_se,
 740				struct sched_dl_entity *pi_se)
 741{
 742	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 743	struct rq *rq = rq_of_dl_rq(dl_rq);
 744
 745	BUG_ON(pi_se->dl_runtime <= 0);
 746
 747	/*
 748	 * This could be the case for a !-dl task that is boosted.
 749	 * Just go with full inherited parameters.
 750	 */
 751	if (dl_se->dl_deadline == 0) {
 752		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 753		dl_se->runtime = pi_se->dl_runtime;
 754	}
 755
 756	if (dl_se->dl_yielded && dl_se->runtime > 0)
 757		dl_se->runtime = 0;
 758
 759	/*
 760	 * We keep moving the deadline away until we get some
 761	 * available runtime for the entity. This ensures correct
 762	 * handling of situations where the runtime overrun is
 763	 * arbitrary large.
 764	 */
 765	while (dl_se->runtime <= 0) {
 766		dl_se->deadline += pi_se->dl_period;
 767		dl_se->runtime += pi_se->dl_runtime;
 768	}
 769
 770	/*
 771	 * At this point, the deadline really should be "in
 772	 * the future" with respect to rq->clock. If it's
 773	 * not, we are, for some reason, lagging too much!
 774	 * Anyway, after having warn userspace abut that,
 775	 * we still try to keep the things running by
 776	 * resetting the deadline and the budget of the
 777	 * entity.
 778	 */
 779	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
 780		printk_deferred_once("sched: DL replenish lagged too much\n");
 781		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 782		dl_se->runtime = pi_se->dl_runtime;
 783	}
 784
 785	if (dl_se->dl_yielded)
 786		dl_se->dl_yielded = 0;
 787	if (dl_se->dl_throttled)
 788		dl_se->dl_throttled = 0;
 789}
 790
 791/*
 792 * Here we check if --at time t-- an entity (which is probably being
 793 * [re]activated or, in general, enqueued) can use its remaining runtime
 794 * and its current deadline _without_ exceeding the bandwidth it is
 795 * assigned (function returns true if it can't). We are in fact applying
 796 * one of the CBS rules: when a task wakes up, if the residual runtime
 797 * over residual deadline fits within the allocated bandwidth, then we
 798 * can keep the current (absolute) deadline and residual budget without
 799 * disrupting the schedulability of the system. Otherwise, we should
 800 * refill the runtime and set the deadline a period in the future,
 801 * because keeping the current (absolute) deadline of the task would
 802 * result in breaking guarantees promised to other tasks (refer to
 803 * Documentation/scheduler/sched-deadline.rst for more information).
 804 *
 805 * This function returns true if:
 806 *
 807 *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
 808 *
 809 * IOW we can't recycle current parameters.
 810 *
 811 * Notice that the bandwidth check is done against the deadline. For
 812 * task with deadline equal to period this is the same of using
 813 * dl_period instead of dl_deadline in the equation above.
 814 */
 815static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
 816			       struct sched_dl_entity *pi_se, u64 t)
 817{
 818	u64 left, right;
 819
 820	/*
 821	 * left and right are the two sides of the equation above,
 822	 * after a bit of shuffling to use multiplications instead
 823	 * of divisions.
 824	 *
 825	 * Note that none of the time values involved in the two
 826	 * multiplications are absolute: dl_deadline and dl_runtime
 827	 * are the relative deadline and the maximum runtime of each
 828	 * instance, runtime is the runtime left for the last instance
 829	 * and (deadline - t), since t is rq->clock, is the time left
 830	 * to the (absolute) deadline. Even if overflowing the u64 type
 831	 * is very unlikely to occur in both cases, here we scale down
 832	 * as we want to avoid that risk at all. Scaling down by 10
 833	 * means that we reduce granularity to 1us. We are fine with it,
 834	 * since this is only a true/false check and, anyway, thinking
 835	 * of anything below microseconds resolution is actually fiction
 836	 * (but still we want to give the user that illusion >;).
 837	 */
 838	left = (pi_se->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
 839	right = ((dl_se->deadline - t) >> DL_SCALE) *
 840		(pi_se->dl_runtime >> DL_SCALE);
 841
 842	return dl_time_before(right, left);
 843}
 844
 845/*
 846 * Revised wakeup rule [1]: For self-suspending tasks, rather then
 847 * re-initializing task's runtime and deadline, the revised wakeup
 848 * rule adjusts the task's runtime to avoid the task to overrun its
 849 * density.
 850 *
 851 * Reasoning: a task may overrun the density if:
 852 *    runtime / (deadline - t) > dl_runtime / dl_deadline
 853 *
 854 * Therefore, runtime can be adjusted to:
 855 *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
 856 *
 857 * In such way that runtime will be equal to the maximum density
 858 * the task can use without breaking any rule.
 859 *
 860 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
 861 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
 862 */
 863static void
 864update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
 865{
 866	u64 laxity = dl_se->deadline - rq_clock(rq);
 867
 868	/*
 869	 * If the task has deadline < period, and the deadline is in the past,
 870	 * it should already be throttled before this check.
 871	 *
 872	 * See update_dl_entity() comments for further details.
 873	 */
 874	WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
 875
 876	dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
 877}
 878
 879/*
 880 * Regarding the deadline, a task with implicit deadline has a relative
 881 * deadline == relative period. A task with constrained deadline has a
 882 * relative deadline <= relative period.
 883 *
 884 * We support constrained deadline tasks. However, there are some restrictions
 885 * applied only for tasks which do not have an implicit deadline. See
 886 * update_dl_entity() to know more about such restrictions.
 887 *
 888 * The dl_is_implicit() returns true if the task has an implicit deadline.
 889 */
 890static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
 891{
 892	return dl_se->dl_deadline == dl_se->dl_period;
 893}
 894
 895/*
 896 * When a deadline entity is placed in the runqueue, its runtime and deadline
 897 * might need to be updated. This is done by a CBS wake up rule. There are two
 898 * different rules: 1) the original CBS; and 2) the Revisited CBS.
 899 *
 900 * When the task is starting a new period, the Original CBS is used. In this
 901 * case, the runtime is replenished and a new absolute deadline is set.
 902 *
 903 * When a task is queued before the begin of the next period, using the
 904 * remaining runtime and deadline could make the entity to overflow, see
 905 * dl_entity_overflow() to find more about runtime overflow. When such case
 906 * is detected, the runtime and deadline need to be updated.
 907 *
 908 * If the task has an implicit deadline, i.e., deadline == period, the Original
 909 * CBS is applied. the runtime is replenished and a new absolute deadline is
 910 * set, as in the previous cases.
 911 *
 912 * However, the Original CBS does not work properly for tasks with
 913 * deadline < period, which are said to have a constrained deadline. By
 914 * applying the Original CBS, a constrained deadline task would be able to run
 915 * runtime/deadline in a period. With deadline < period, the task would
 916 * overrun the runtime/period allowed bandwidth, breaking the admission test.
 917 *
 918 * In order to prevent this misbehave, the Revisited CBS is used for
 919 * constrained deadline tasks when a runtime overflow is detected. In the
 920 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
 921 * the remaining runtime of the task is reduced to avoid runtime overflow.
 922 * Please refer to the comments update_dl_revised_wakeup() function to find
 923 * more about the Revised CBS rule.
 924 */
 925static void update_dl_entity(struct sched_dl_entity *dl_se,
 926			     struct sched_dl_entity *pi_se)
 927{
 928	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 929	struct rq *rq = rq_of_dl_rq(dl_rq);
 930
 931	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
 932	    dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
 933
 934		if (unlikely(!dl_is_implicit(dl_se) &&
 935			     !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
 936			     !dl_se->dl_boosted)){
 937			update_dl_revised_wakeup(dl_se, rq);
 938			return;
 939		}
 940
 941		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 942		dl_se->runtime = pi_se->dl_runtime;
 943	}
 944}
 945
 946static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
 947{
 948	return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
 949}
 950
 951/*
 952 * If the entity depleted all its runtime, and if we want it to sleep
 953 * while waiting for some new execution time to become available, we
 954 * set the bandwidth replenishment timer to the replenishment instant
 955 * and try to activate it.
 956 *
 957 * Notice that it is important for the caller to know if the timer
 958 * actually started or not (i.e., the replenishment instant is in
 959 * the future or in the past).
 960 */
 961static int start_dl_timer(struct task_struct *p)
 962{
 963	struct sched_dl_entity *dl_se = &p->dl;
 964	struct hrtimer *timer = &dl_se->dl_timer;
 965	struct rq *rq = task_rq(p);
 966	ktime_t now, act;
 967	s64 delta;
 968
 969	lockdep_assert_held(&rq->lock);
 970
 971	/*
 972	 * We want the timer to fire at the deadline, but considering
 973	 * that it is actually coming from rq->clock and not from
 974	 * hrtimer's time base reading.
 975	 */
 976	act = ns_to_ktime(dl_next_period(dl_se));
 977	now = hrtimer_cb_get_time(timer);
 978	delta = ktime_to_ns(now) - rq_clock(rq);
 979	act = ktime_add_ns(act, delta);
 980
 981	/*
 982	 * If the expiry time already passed, e.g., because the value
 983	 * chosen as the deadline is too small, don't even try to
 984	 * start the timer in the past!
 985	 */
 986	if (ktime_us_delta(act, now) < 0)
 987		return 0;
 988
 989	/*
 990	 * !enqueued will guarantee another callback; even if one is already in
 991	 * progress. This ensures a balanced {get,put}_task_struct().
 992	 *
 993	 * The race against __run_timer() clearing the enqueued state is
 994	 * harmless because we're holding task_rq()->lock, therefore the timer
 995	 * expiring after we've done the check will wait on its task_rq_lock()
 996	 * and observe our state.
 997	 */
 998	if (!hrtimer_is_queued(timer)) {
 999		get_task_struct(p);
1000		hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1001	}
1002
1003	return 1;
1004}
1005
1006/*
1007 * This is the bandwidth enforcement timer callback. If here, we know
1008 * a task is not on its dl_rq, since the fact that the timer was running
1009 * means the task is throttled and needs a runtime replenishment.
1010 *
1011 * However, what we actually do depends on the fact the task is active,
1012 * (it is on its rq) or has been removed from there by a call to
1013 * dequeue_task_dl(). In the former case we must issue the runtime
1014 * replenishment and add the task back to the dl_rq; in the latter, we just
1015 * do nothing but clearing dl_throttled, so that runtime and deadline
1016 * updating (and the queueing back to dl_rq) will be done by the
1017 * next call to enqueue_task_dl().
1018 */
1019static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1020{
1021	struct sched_dl_entity *dl_se = container_of(timer,
1022						     struct sched_dl_entity,
1023						     dl_timer);
1024	struct task_struct *p = dl_task_of(dl_se);
1025	struct rq_flags rf;
1026	struct rq *rq;
1027
1028	rq = task_rq_lock(p, &rf);
1029
1030	/*
1031	 * The task might have changed its scheduling policy to something
1032	 * different than SCHED_DEADLINE (through switched_from_dl()).
1033	 */
1034	if (!dl_task(p))
1035		goto unlock;
1036
1037	/*
1038	 * The task might have been boosted by someone else and might be in the
1039	 * boosting/deboosting path, its not throttled.
1040	 */
1041	if (dl_se->dl_boosted)
1042		goto unlock;
1043
1044	/*
1045	 * Spurious timer due to start_dl_timer() race; or we already received
1046	 * a replenishment from rt_mutex_setprio().
1047	 */
1048	if (!dl_se->dl_throttled)
1049		goto unlock;
1050
1051	sched_clock_tick();
1052	update_rq_clock(rq);
1053
1054	/*
1055	 * If the throttle happened during sched-out; like:
1056	 *
1057	 *   schedule()
1058	 *     deactivate_task()
1059	 *       dequeue_task_dl()
1060	 *         update_curr_dl()
1061	 *           start_dl_timer()
1062	 *         __dequeue_task_dl()
1063	 *     prev->on_rq = 0;
1064	 *
1065	 * We can be both throttled and !queued. Replenish the counter
1066	 * but do not enqueue -- wait for our wakeup to do that.
1067	 */
1068	if (!task_on_rq_queued(p)) {
1069		replenish_dl_entity(dl_se, dl_se);
1070		goto unlock;
1071	}
1072
1073#ifdef CONFIG_SMP
1074	if (unlikely(!rq->online)) {
1075		/*
1076		 * If the runqueue is no longer available, migrate the
1077		 * task elsewhere. This necessarily changes rq.
1078		 */
1079		lockdep_unpin_lock(&rq->lock, rf.cookie);
1080		rq = dl_task_offline_migration(rq, p);
1081		rf.cookie = lockdep_pin_lock(&rq->lock);
1082		update_rq_clock(rq);
1083
1084		/*
1085		 * Now that the task has been migrated to the new RQ and we
1086		 * have that locked, proceed as normal and enqueue the task
1087		 * there.
1088		 */
1089	}
1090#endif
1091
1092	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1093	if (dl_task(rq->curr))
1094		check_preempt_curr_dl(rq, p, 0);
1095	else
1096		resched_curr(rq);
1097
1098#ifdef CONFIG_SMP
1099	/*
1100	 * Queueing this task back might have overloaded rq, check if we need
1101	 * to kick someone away.
1102	 */
1103	if (has_pushable_dl_tasks(rq)) {
1104		/*
1105		 * Nothing relies on rq->lock after this, so its safe to drop
1106		 * rq->lock.
1107		 */
1108		rq_unpin_lock(rq, &rf);
1109		push_dl_task(rq);
1110		rq_repin_lock(rq, &rf);
1111	}
1112#endif
1113
1114unlock:
1115	task_rq_unlock(rq, p, &rf);
1116
1117	/*
1118	 * This can free the task_struct, including this hrtimer, do not touch
1119	 * anything related to that after this.
1120	 */
1121	put_task_struct(p);
1122
1123	return HRTIMER_NORESTART;
1124}
1125
1126void init_dl_task_timer(struct sched_dl_entity *dl_se)
1127{
1128	struct hrtimer *timer = &dl_se->dl_timer;
1129
1130	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1131	timer->function = dl_task_timer;
1132}
1133
1134/*
1135 * During the activation, CBS checks if it can reuse the current task's
1136 * runtime and period. If the deadline of the task is in the past, CBS
1137 * cannot use the runtime, and so it replenishes the task. This rule
1138 * works fine for implicit deadline tasks (deadline == period), and the
1139 * CBS was designed for implicit deadline tasks. However, a task with
1140 * constrained deadline (deadline < period) might be awakened after the
1141 * deadline, but before the next period. In this case, replenishing the
1142 * task would allow it to run for runtime / deadline. As in this case
1143 * deadline < period, CBS enables a task to run for more than the
1144 * runtime / period. In a very loaded system, this can cause a domino
1145 * effect, making other tasks miss their deadlines.
1146 *
1147 * To avoid this problem, in the activation of a constrained deadline
1148 * task after the deadline but before the next period, throttle the
1149 * task and set the replenishing timer to the begin of the next period,
1150 * unless it is boosted.
1151 */
1152static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1153{
1154	struct task_struct *p = dl_task_of(dl_se);
1155	struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1156
1157	if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1158	    dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1159		if (unlikely(dl_se->dl_boosted || !start_dl_timer(p)))
1160			return;
1161		dl_se->dl_throttled = 1;
1162		if (dl_se->runtime > 0)
1163			dl_se->runtime = 0;
1164	}
1165}
1166
1167static
1168int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1169{
1170	return (dl_se->runtime <= 0);
1171}
1172
1173extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
1174
1175/*
1176 * This function implements the GRUB accounting rule:
1177 * according to the GRUB reclaiming algorithm, the runtime is
1178 * not decreased as "dq = -dt", but as
1179 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1180 * where u is the utilization of the task, Umax is the maximum reclaimable
1181 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1182 * as the difference between the "total runqueue utilization" and the
1183 * runqueue active utilization, and Uextra is the (per runqueue) extra
1184 * reclaimable utilization.
1185 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
1186 * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1187 * BW_SHIFT.
1188 * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT,
1189 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1190 * Since delta is a 64 bit variable, to have an overflow its value
1191 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1192 * So, overflow is not an issue here.
1193 */
1194static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1195{
1196	u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1197	u64 u_act;
1198	u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
1199
1200	/*
1201	 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1202	 * we compare u_inact + rq->dl.extra_bw with
1203	 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1204	 * u_inact + rq->dl.extra_bw can be larger than
1205	 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1206	 * leading to wrong results)
1207	 */
1208	if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
1209		u_act = u_act_min;
1210	else
1211		u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
1212
1213	return (delta * u_act) >> BW_SHIFT;
1214}
1215
1216/*
1217 * Update the current task's runtime statistics (provided it is still
1218 * a -deadline task and has not been removed from the dl_rq).
1219 */
1220static void update_curr_dl(struct rq *rq)
1221{
1222	struct task_struct *curr = rq->curr;
1223	struct sched_dl_entity *dl_se = &curr->dl;
1224	u64 delta_exec, scaled_delta_exec;
1225	int cpu = cpu_of(rq);
1226	u64 now;
1227
1228	if (!dl_task(curr) || !on_dl_rq(dl_se))
1229		return;
1230
1231	/*
1232	 * Consumed budget is computed considering the time as
1233	 * observed by schedulable tasks (excluding time spent
1234	 * in hardirq context, etc.). Deadlines are instead
1235	 * computed using hard walltime. This seems to be the more
1236	 * natural solution, but the full ramifications of this
1237	 * approach need further study.
1238	 */
1239	now = rq_clock_task(rq);
1240	delta_exec = now - curr->se.exec_start;
1241	if (unlikely((s64)delta_exec <= 0)) {
1242		if (unlikely(dl_se->dl_yielded))
1243			goto throttle;
1244		return;
1245	}
1246
1247	schedstat_set(curr->se.statistics.exec_max,
1248		      max(curr->se.statistics.exec_max, delta_exec));
1249
1250	curr->se.sum_exec_runtime += delta_exec;
1251	account_group_exec_runtime(curr, delta_exec);
1252
1253	curr->se.exec_start = now;
1254	cgroup_account_cputime(curr, delta_exec);
1255
 
 
1256	if (dl_entity_is_special(dl_se))
1257		return;
1258
1259	/*
1260	 * For tasks that participate in GRUB, we implement GRUB-PA: the
1261	 * spare reclaimed bandwidth is used to clock down frequency.
1262	 *
1263	 * For the others, we still need to scale reservation parameters
1264	 * according to current frequency and CPU maximum capacity.
1265	 */
1266	if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1267		scaled_delta_exec = grub_reclaim(delta_exec,
1268						 rq,
1269						 &curr->dl);
1270	} else {
1271		unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1272		unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1273
1274		scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1275		scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1276	}
1277
1278	dl_se->runtime -= scaled_delta_exec;
1279
1280throttle:
1281	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1282		dl_se->dl_throttled = 1;
1283
1284		/* If requested, inform the user about runtime overruns. */
1285		if (dl_runtime_exceeded(dl_se) &&
1286		    (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1287			dl_se->dl_overrun = 1;
1288
1289		__dequeue_task_dl(rq, curr, 0);
1290		if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
1291			enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
1292
1293		if (!is_leftmost(curr, &rq->dl))
1294			resched_curr(rq);
1295	}
1296
1297	/*
1298	 * Because -- for now -- we share the rt bandwidth, we need to
1299	 * account our runtime there too, otherwise actual rt tasks
1300	 * would be able to exceed the shared quota.
1301	 *
1302	 * Account to the root rt group for now.
1303	 *
1304	 * The solution we're working towards is having the RT groups scheduled
1305	 * using deadline servers -- however there's a few nasties to figure
1306	 * out before that can happen.
1307	 */
1308	if (rt_bandwidth_enabled()) {
1309		struct rt_rq *rt_rq = &rq->rt;
1310
1311		raw_spin_lock(&rt_rq->rt_runtime_lock);
1312		/*
1313		 * We'll let actual RT tasks worry about the overflow here, we
1314		 * have our own CBS to keep us inline; only account when RT
1315		 * bandwidth is relevant.
1316		 */
1317		if (sched_rt_bandwidth_account(rt_rq))
1318			rt_rq->rt_time += delta_exec;
1319		raw_spin_unlock(&rt_rq->rt_runtime_lock);
1320	}
1321}
1322
1323static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1324{
1325	struct sched_dl_entity *dl_se = container_of(timer,
1326						     struct sched_dl_entity,
1327						     inactive_timer);
1328	struct task_struct *p = dl_task_of(dl_se);
1329	struct rq_flags rf;
1330	struct rq *rq;
1331
1332	rq = task_rq_lock(p, &rf);
1333
1334	sched_clock_tick();
1335	update_rq_clock(rq);
1336
1337	if (!dl_task(p) || p->state == TASK_DEAD) {
1338		struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1339
1340		if (p->state == TASK_DEAD && dl_se->dl_non_contending) {
1341			sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1342			sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1343			dl_se->dl_non_contending = 0;
1344		}
1345
1346		raw_spin_lock(&dl_b->lock);
1347		__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1348		raw_spin_unlock(&dl_b->lock);
1349		__dl_clear_params(p);
1350
1351		goto unlock;
1352	}
1353	if (dl_se->dl_non_contending == 0)
1354		goto unlock;
1355
1356	sub_running_bw(dl_se, &rq->dl);
1357	dl_se->dl_non_contending = 0;
1358unlock:
1359	task_rq_unlock(rq, p, &rf);
1360	put_task_struct(p);
1361
1362	return HRTIMER_NORESTART;
1363}
1364
1365void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1366{
1367	struct hrtimer *timer = &dl_se->inactive_timer;
1368
1369	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1370	timer->function = inactive_task_timer;
1371}
1372
1373#ifdef CONFIG_SMP
1374
1375static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1376{
1377	struct rq *rq = rq_of_dl_rq(dl_rq);
1378
1379	if (dl_rq->earliest_dl.curr == 0 ||
1380	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1381		dl_rq->earliest_dl.curr = deadline;
1382		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1383	}
1384}
1385
1386static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1387{
1388	struct rq *rq = rq_of_dl_rq(dl_rq);
1389
1390	/*
1391	 * Since we may have removed our earliest (and/or next earliest)
1392	 * task we must recompute them.
1393	 */
1394	if (!dl_rq->dl_nr_running) {
1395		dl_rq->earliest_dl.curr = 0;
1396		dl_rq->earliest_dl.next = 0;
1397		cpudl_clear(&rq->rd->cpudl, rq->cpu);
1398	} else {
1399		struct rb_node *leftmost = dl_rq->root.rb_leftmost;
1400		struct sched_dl_entity *entry;
1401
1402		entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
1403		dl_rq->earliest_dl.curr = entry->deadline;
1404		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1405	}
1406}
1407
1408#else
1409
1410static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1411static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1412
1413#endif /* CONFIG_SMP */
1414
1415static inline
1416void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1417{
1418	int prio = dl_task_of(dl_se)->prio;
1419	u64 deadline = dl_se->deadline;
1420
1421	WARN_ON(!dl_prio(prio));
1422	dl_rq->dl_nr_running++;
1423	add_nr_running(rq_of_dl_rq(dl_rq), 1);
1424
1425	inc_dl_deadline(dl_rq, deadline);
1426	inc_dl_migration(dl_se, dl_rq);
1427}
1428
1429static inline
1430void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1431{
1432	int prio = dl_task_of(dl_se)->prio;
1433
1434	WARN_ON(!dl_prio(prio));
1435	WARN_ON(!dl_rq->dl_nr_running);
1436	dl_rq->dl_nr_running--;
1437	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1438
1439	dec_dl_deadline(dl_rq, dl_se->deadline);
1440	dec_dl_migration(dl_se, dl_rq);
1441}
1442
1443static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1444{
1445	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1446	struct rb_node **link = &dl_rq->root.rb_root.rb_node;
1447	struct rb_node *parent = NULL;
1448	struct sched_dl_entity *entry;
1449	int leftmost = 1;
1450
1451	BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
1452
1453	while (*link) {
1454		parent = *link;
1455		entry = rb_entry(parent, struct sched_dl_entity, rb_node);
1456		if (dl_time_before(dl_se->deadline, entry->deadline))
1457			link = &parent->rb_left;
1458		else {
1459			link = &parent->rb_right;
1460			leftmost = 0;
1461		}
1462	}
1463
1464	rb_link_node(&dl_se->rb_node, parent, link);
1465	rb_insert_color_cached(&dl_se->rb_node, &dl_rq->root, leftmost);
1466
1467	inc_dl_tasks(dl_se, dl_rq);
1468}
1469
1470static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1471{
1472	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1473
1474	if (RB_EMPTY_NODE(&dl_se->rb_node))
1475		return;
1476
1477	rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1478	RB_CLEAR_NODE(&dl_se->rb_node);
1479
1480	dec_dl_tasks(dl_se, dl_rq);
1481}
1482
1483static void
1484enqueue_dl_entity(struct sched_dl_entity *dl_se,
1485		  struct sched_dl_entity *pi_se, int flags)
1486{
1487	BUG_ON(on_dl_rq(dl_se));
1488
1489	/*
1490	 * If this is a wakeup or a new instance, the scheduling
1491	 * parameters of the task might need updating. Otherwise,
1492	 * we want a replenishment of its runtime.
1493	 */
1494	if (flags & ENQUEUE_WAKEUP) {
1495		task_contending(dl_se, flags);
1496		update_dl_entity(dl_se, pi_se);
1497	} else if (flags & ENQUEUE_REPLENISH) {
1498		replenish_dl_entity(dl_se, pi_se);
1499	} else if ((flags & ENQUEUE_RESTORE) &&
1500		  dl_time_before(dl_se->deadline,
1501				 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
1502		setup_new_dl_entity(dl_se);
1503	}
1504
1505	__enqueue_dl_entity(dl_se);
1506}
1507
1508static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1509{
1510	__dequeue_dl_entity(dl_se);
1511}
1512
1513static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1514{
1515	struct task_struct *pi_task = rt_mutex_get_top_task(p);
1516	struct sched_dl_entity *pi_se = &p->dl;
1517
1518	/*
1519	 * Use the scheduling parameters of the top pi-waiter task if:
1520	 * - we have a top pi-waiter which is a SCHED_DEADLINE task AND
1521	 * - our dl_boosted is set (i.e. the pi-waiter's (absolute) deadline is
1522	 *   smaller than our deadline OR we are a !SCHED_DEADLINE task getting
1523	 *   boosted due to a SCHED_DEADLINE pi-waiter).
1524	 * Otherwise we keep our runtime and deadline.
1525	 */
1526	if (pi_task && dl_prio(pi_task->normal_prio) && p->dl.dl_boosted) {
1527		pi_se = &pi_task->dl;
1528	} else if (!dl_prio(p->normal_prio)) {
1529		/*
1530		 * Special case in which we have a !SCHED_DEADLINE task
1531		 * that is going to be deboosted, but exceeds its
1532		 * runtime while doing so. No point in replenishing
1533		 * it, as it's going to return back to its original
1534		 * scheduling class after this.
1535		 */
1536		BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
1537		return;
1538	}
1539
1540	/*
1541	 * Check if a constrained deadline task was activated
1542	 * after the deadline but before the next period.
1543	 * If that is the case, the task will be throttled and
1544	 * the replenishment timer will be set to the next period.
1545	 */
1546	if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
1547		dl_check_constrained_dl(&p->dl);
1548
1549	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
1550		add_rq_bw(&p->dl, &rq->dl);
1551		add_running_bw(&p->dl, &rq->dl);
1552	}
1553
1554	/*
1555	 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1556	 * its budget it needs a replenishment and, since it now is on
1557	 * its rq, the bandwidth timer callback (which clearly has not
1558	 * run yet) will take care of this.
1559	 * However, the active utilization does not depend on the fact
1560	 * that the task is on the runqueue or not (but depends on the
1561	 * task's state - in GRUB parlance, "inactive" vs "active contending").
1562	 * In other words, even if a task is throttled its utilization must
1563	 * be counted in the active utilization; hence, we need to call
1564	 * add_running_bw().
1565	 */
1566	if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1567		if (flags & ENQUEUE_WAKEUP)
1568			task_contending(&p->dl, flags);
1569
1570		return;
1571	}
1572
1573	enqueue_dl_entity(&p->dl, pi_se, flags);
1574
1575	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1576		enqueue_pushable_dl_task(rq, p);
1577}
1578
1579static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1580{
1581	dequeue_dl_entity(&p->dl);
1582	dequeue_pushable_dl_task(rq, p);
1583}
1584
1585static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1586{
1587	update_curr_dl(rq);
1588	__dequeue_task_dl(rq, p, flags);
1589
1590	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
1591		sub_running_bw(&p->dl, &rq->dl);
1592		sub_rq_bw(&p->dl, &rq->dl);
1593	}
1594
1595	/*
1596	 * This check allows to start the inactive timer (or to immediately
1597	 * decrease the active utilization, if needed) in two cases:
1598	 * when the task blocks and when it is terminating
1599	 * (p->state == TASK_DEAD). We can handle the two cases in the same
1600	 * way, because from GRUB's point of view the same thing is happening
1601	 * (the task moves from "active contending" to "active non contending"
1602	 * or "inactive")
1603	 */
1604	if (flags & DEQUEUE_SLEEP)
1605		task_non_contending(p);
1606}
1607
1608/*
1609 * Yield task semantic for -deadline tasks is:
1610 *
1611 *   get off from the CPU until our next instance, with
1612 *   a new runtime. This is of little use now, since we
1613 *   don't have a bandwidth reclaiming mechanism. Anyway,
1614 *   bandwidth reclaiming is planned for the future, and
1615 *   yield_task_dl will indicate that some spare budget
1616 *   is available for other task instances to use it.
1617 */
1618static void yield_task_dl(struct rq *rq)
1619{
1620	/*
1621	 * We make the task go to sleep until its current deadline by
1622	 * forcing its runtime to zero. This way, update_curr_dl() stops
1623	 * it and the bandwidth timer will wake it up and will give it
1624	 * new scheduling parameters (thanks to dl_yielded=1).
1625	 */
1626	rq->curr->dl.dl_yielded = 1;
1627
1628	update_rq_clock(rq);
1629	update_curr_dl(rq);
1630	/*
1631	 * Tell update_rq_clock() that we've just updated,
1632	 * so we don't do microscopic update in schedule()
1633	 * and double the fastpath cost.
1634	 */
1635	rq_clock_skip_update(rq);
1636}
1637
1638#ifdef CONFIG_SMP
1639
1640static int find_later_rq(struct task_struct *task);
1641
1642static int
1643select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1644{
1645	struct task_struct *curr;
1646	bool select_rq;
1647	struct rq *rq;
1648
1649	if (sd_flag != SD_BALANCE_WAKE)
1650		goto out;
1651
1652	rq = cpu_rq(cpu);
1653
1654	rcu_read_lock();
1655	curr = READ_ONCE(rq->curr); /* unlocked access */
1656
1657	/*
1658	 * If we are dealing with a -deadline task, we must
1659	 * decide where to wake it up.
1660	 * If it has a later deadline and the current task
1661	 * on this rq can't move (provided the waking task
1662	 * can!) we prefer to send it somewhere else. On the
1663	 * other hand, if it has a shorter deadline, we
1664	 * try to make it stay here, it might be important.
1665	 */
1666	select_rq = unlikely(dl_task(curr)) &&
1667		    (curr->nr_cpus_allowed < 2 ||
1668		     !dl_entity_preempt(&p->dl, &curr->dl)) &&
1669		    p->nr_cpus_allowed > 1;
1670
1671	/*
1672	 * Take the capacity of the CPU into account to
1673	 * ensure it fits the requirement of the task.
1674	 */
1675	if (static_branch_unlikely(&sched_asym_cpucapacity))
1676		select_rq |= !dl_task_fits_capacity(p, cpu);
1677
1678	if (select_rq) {
1679		int target = find_later_rq(p);
1680
1681		if (target != -1 &&
1682				(dl_time_before(p->dl.deadline,
1683					cpu_rq(target)->dl.earliest_dl.curr) ||
1684				(cpu_rq(target)->dl.dl_nr_running == 0)))
1685			cpu = target;
1686	}
1687	rcu_read_unlock();
1688
1689out:
1690	return cpu;
1691}
1692
1693static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
1694{
1695	struct rq *rq;
1696
1697	if (p->state != TASK_WAKING)
1698		return;
1699
1700	rq = task_rq(p);
1701	/*
1702	 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1703	 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1704	 * rq->lock is not... So, lock it
1705	 */
1706	raw_spin_lock(&rq->lock);
1707	if (p->dl.dl_non_contending) {
1708		sub_running_bw(&p->dl, &rq->dl);
1709		p->dl.dl_non_contending = 0;
1710		/*
1711		 * If the timer handler is currently running and the
1712		 * timer cannot be cancelled, inactive_task_timer()
1713		 * will see that dl_not_contending is not set, and
1714		 * will not touch the rq's active utilization,
1715		 * so we are still safe.
1716		 */
1717		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1718			put_task_struct(p);
1719	}
1720	sub_rq_bw(&p->dl, &rq->dl);
1721	raw_spin_unlock(&rq->lock);
1722}
1723
1724static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1725{
1726	/*
1727	 * Current can't be migrated, useless to reschedule,
1728	 * let's hope p can move out.
1729	 */
1730	if (rq->curr->nr_cpus_allowed == 1 ||
1731	    !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1732		return;
1733
1734	/*
1735	 * p is migratable, so let's not schedule it and
1736	 * see if it is pushed or pulled somewhere else.
1737	 */
1738	if (p->nr_cpus_allowed != 1 &&
1739	    cpudl_find(&rq->rd->cpudl, p, NULL))
1740		return;
1741
1742	resched_curr(rq);
1743}
1744
1745static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1746{
1747	if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
1748		/*
1749		 * This is OK, because current is on_cpu, which avoids it being
1750		 * picked for load-balance and preemption/IRQs are still
1751		 * disabled avoiding further scheduler activity on it and we've
1752		 * not yet started the picking loop.
1753		 */
1754		rq_unpin_lock(rq, rf);
1755		pull_dl_task(rq);
1756		rq_repin_lock(rq, rf);
1757	}
1758
1759	return sched_stop_runnable(rq) || sched_dl_runnable(rq);
1760}
1761#endif /* CONFIG_SMP */
1762
1763/*
1764 * Only called when both the current and waking task are -deadline
1765 * tasks.
1766 */
1767static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1768				  int flags)
1769{
1770	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1771		resched_curr(rq);
1772		return;
1773	}
1774
1775#ifdef CONFIG_SMP
1776	/*
1777	 * In the unlikely case current and p have the same deadline
1778	 * let us try to decide what's the best thing to do...
1779	 */
1780	if ((p->dl.deadline == rq->curr->dl.deadline) &&
1781	    !test_tsk_need_resched(rq->curr))
1782		check_preempt_equal_dl(rq, p);
1783#endif /* CONFIG_SMP */
1784}
1785
1786#ifdef CONFIG_SCHED_HRTICK
1787static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1788{
1789	hrtick_start(rq, p->dl.runtime);
1790}
1791#else /* !CONFIG_SCHED_HRTICK */
1792static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1793{
1794}
1795#endif
1796
1797static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
1798{
1799	p->se.exec_start = rq_clock_task(rq);
1800
1801	/* You can't push away the running task */
1802	dequeue_pushable_dl_task(rq, p);
1803
1804	if (!first)
1805		return;
1806
1807	if (hrtick_enabled(rq))
1808		start_hrtick_dl(rq, p);
1809
1810	if (rq->curr->sched_class != &dl_sched_class)
1811		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1812
1813	deadline_queue_push_tasks(rq);
1814}
1815
1816static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1817						   struct dl_rq *dl_rq)
1818{
1819	struct rb_node *left = rb_first_cached(&dl_rq->root);
1820
1821	if (!left)
1822		return NULL;
1823
1824	return rb_entry(left, struct sched_dl_entity, rb_node);
1825}
1826
1827static struct task_struct *pick_next_task_dl(struct rq *rq)
 
1828{
1829	struct sched_dl_entity *dl_se;
1830	struct dl_rq *dl_rq = &rq->dl;
1831	struct task_struct *p;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1832
1833	if (!sched_dl_runnable(rq))
 
 
 
 
 
 
 
1834		return NULL;
1835
 
 
1836	dl_se = pick_next_dl_entity(rq, dl_rq);
1837	BUG_ON(!dl_se);
 
1838	p = dl_task_of(dl_se);
1839	set_next_task_dl(rq, p, true);
 
 
 
 
 
 
 
 
 
1840	return p;
1841}
1842
1843static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1844{
1845	update_curr_dl(rq);
1846
1847	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1848	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1849		enqueue_pushable_dl_task(rq, p);
1850}
1851
1852/*
1853 * scheduler tick hitting a task of our scheduling class.
1854 *
1855 * NOTE: This function can be called remotely by the tick offload that
1856 * goes along full dynticks. Therefore no local assumption can be made
1857 * and everything must be accessed through the @rq and @curr passed in
1858 * parameters.
1859 */
1860static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1861{
1862	update_curr_dl(rq);
1863
1864	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1865	/*
1866	 * Even when we have runtime, update_curr_dl() might have resulted in us
1867	 * not being the leftmost task anymore. In that case NEED_RESCHED will
1868	 * be set and schedule() will start a new hrtick for the next task.
1869	 */
1870	if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1871	    is_leftmost(p, &rq->dl))
1872		start_hrtick_dl(rq, p);
1873}
1874
1875static void task_fork_dl(struct task_struct *p)
1876{
1877	/*
1878	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1879	 * sched_fork()
1880	 */
1881}
1882
 
 
 
 
 
 
 
 
 
 
1883#ifdef CONFIG_SMP
1884
1885/* Only try algorithms three times */
1886#define DL_MAX_TRIES 3
1887
1888static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1889{
1890	if (!task_running(rq, p) &&
1891	    cpumask_test_cpu(cpu, p->cpus_ptr))
1892		return 1;
1893	return 0;
1894}
1895
1896/*
1897 * Return the earliest pushable rq's task, which is suitable to be executed
1898 * on the CPU, NULL otherwise:
1899 */
1900static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1901{
1902	struct rb_node *next_node = rq->dl.pushable_dl_tasks_root.rb_leftmost;
1903	struct task_struct *p = NULL;
1904
1905	if (!has_pushable_dl_tasks(rq))
1906		return NULL;
1907
1908next_node:
1909	if (next_node) {
1910		p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1911
1912		if (pick_dl_task(rq, p, cpu))
1913			return p;
1914
1915		next_node = rb_next(next_node);
1916		goto next_node;
1917	}
1918
1919	return NULL;
1920}
1921
1922static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1923
1924static int find_later_rq(struct task_struct *task)
1925{
1926	struct sched_domain *sd;
1927	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1928	int this_cpu = smp_processor_id();
1929	int cpu = task_cpu(task);
1930
1931	/* Make sure the mask is initialized first */
1932	if (unlikely(!later_mask))
1933		return -1;
1934
1935	if (task->nr_cpus_allowed == 1)
1936		return -1;
1937
1938	/*
1939	 * We have to consider system topology and task affinity
1940	 * first, then we can look for a suitable CPU.
1941	 */
1942	if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
1943		return -1;
1944
1945	/*
1946	 * If we are here, some targets have been found, including
1947	 * the most suitable which is, among the runqueues where the
1948	 * current tasks have later deadlines than the task's one, the
1949	 * rq with the latest possible one.
1950	 *
1951	 * Now we check how well this matches with task's
1952	 * affinity and system topology.
1953	 *
1954	 * The last CPU where the task run is our first
1955	 * guess, since it is most likely cache-hot there.
1956	 */
1957	if (cpumask_test_cpu(cpu, later_mask))
1958		return cpu;
1959	/*
1960	 * Check if this_cpu is to be skipped (i.e., it is
1961	 * not in the mask) or not.
1962	 */
1963	if (!cpumask_test_cpu(this_cpu, later_mask))
1964		this_cpu = -1;
1965
1966	rcu_read_lock();
1967	for_each_domain(cpu, sd) {
1968		if (sd->flags & SD_WAKE_AFFINE) {
1969			int best_cpu;
1970
1971			/*
1972			 * If possible, preempting this_cpu is
1973			 * cheaper than migrating.
1974			 */
1975			if (this_cpu != -1 &&
1976			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1977				rcu_read_unlock();
1978				return this_cpu;
1979			}
1980
1981			best_cpu = cpumask_first_and(later_mask,
1982							sched_domain_span(sd));
1983			/*
1984			 * Last chance: if a CPU being in both later_mask
1985			 * and current sd span is valid, that becomes our
1986			 * choice. Of course, the latest possible CPU is
1987			 * already under consideration through later_mask.
1988			 */
1989			if (best_cpu < nr_cpu_ids) {
1990				rcu_read_unlock();
1991				return best_cpu;
1992			}
1993		}
1994	}
1995	rcu_read_unlock();
1996
1997	/*
1998	 * At this point, all our guesses failed, we just return
1999	 * 'something', and let the caller sort the things out.
2000	 */
2001	if (this_cpu != -1)
2002		return this_cpu;
2003
2004	cpu = cpumask_any(later_mask);
2005	if (cpu < nr_cpu_ids)
2006		return cpu;
2007
2008	return -1;
2009}
2010
2011/* Locks the rq it finds */
2012static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2013{
2014	struct rq *later_rq = NULL;
2015	int tries;
2016	int cpu;
2017
2018	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2019		cpu = find_later_rq(task);
2020
2021		if ((cpu == -1) || (cpu == rq->cpu))
2022			break;
2023
2024		later_rq = cpu_rq(cpu);
2025
2026		if (later_rq->dl.dl_nr_running &&
2027		    !dl_time_before(task->dl.deadline,
2028					later_rq->dl.earliest_dl.curr)) {
2029			/*
2030			 * Target rq has tasks of equal or earlier deadline,
2031			 * retrying does not release any lock and is unlikely
2032			 * to yield a different result.
2033			 */
2034			later_rq = NULL;
2035			break;
2036		}
2037
2038		/* Retry if something changed. */
2039		if (double_lock_balance(rq, later_rq)) {
2040			if (unlikely(task_rq(task) != rq ||
2041				     !cpumask_test_cpu(later_rq->cpu, task->cpus_ptr) ||
2042				     task_running(rq, task) ||
2043				     !dl_task(task) ||
2044				     !task_on_rq_queued(task))) {
2045				double_unlock_balance(rq, later_rq);
2046				later_rq = NULL;
2047				break;
2048			}
2049		}
2050
2051		/*
2052		 * If the rq we found has no -deadline task, or
2053		 * its earliest one has a later deadline than our
2054		 * task, the rq is a good one.
2055		 */
2056		if (!later_rq->dl.dl_nr_running ||
2057		    dl_time_before(task->dl.deadline,
2058				   later_rq->dl.earliest_dl.curr))
2059			break;
2060
2061		/* Otherwise we try again. */
2062		double_unlock_balance(rq, later_rq);
2063		later_rq = NULL;
2064	}
2065
2066	return later_rq;
2067}
2068
2069static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2070{
2071	struct task_struct *p;
2072
2073	if (!has_pushable_dl_tasks(rq))
2074		return NULL;
2075
2076	p = rb_entry(rq->dl.pushable_dl_tasks_root.rb_leftmost,
2077		     struct task_struct, pushable_dl_tasks);
2078
2079	BUG_ON(rq->cpu != task_cpu(p));
2080	BUG_ON(task_current(rq, p));
2081	BUG_ON(p->nr_cpus_allowed <= 1);
2082
2083	BUG_ON(!task_on_rq_queued(p));
2084	BUG_ON(!dl_task(p));
2085
2086	return p;
2087}
2088
2089/*
2090 * See if the non running -deadline tasks on this rq
2091 * can be sent to some other CPU where they can preempt
2092 * and start executing.
2093 */
2094static int push_dl_task(struct rq *rq)
2095{
2096	struct task_struct *next_task;
2097	struct rq *later_rq;
2098	int ret = 0;
2099
2100	if (!rq->dl.overloaded)
2101		return 0;
2102
2103	next_task = pick_next_pushable_dl_task(rq);
2104	if (!next_task)
2105		return 0;
2106
2107retry:
2108	if (WARN_ON(next_task == rq->curr))
 
2109		return 0;
 
2110
2111	/*
2112	 * If next_task preempts rq->curr, and rq->curr
2113	 * can move away, it makes sense to just reschedule
2114	 * without going further in pushing next_task.
2115	 */
2116	if (dl_task(rq->curr) &&
2117	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2118	    rq->curr->nr_cpus_allowed > 1) {
2119		resched_curr(rq);
2120		return 0;
2121	}
2122
2123	/* We might release rq lock */
2124	get_task_struct(next_task);
2125
2126	/* Will lock the rq it'll find */
2127	later_rq = find_lock_later_rq(next_task, rq);
2128	if (!later_rq) {
2129		struct task_struct *task;
2130
2131		/*
2132		 * We must check all this again, since
2133		 * find_lock_later_rq releases rq->lock and it is
2134		 * then possible that next_task has migrated.
2135		 */
2136		task = pick_next_pushable_dl_task(rq);
2137		if (task == next_task) {
2138			/*
2139			 * The task is still there. We don't try
2140			 * again, some other CPU will pull it when ready.
2141			 */
2142			goto out;
2143		}
2144
2145		if (!task)
2146			/* No more tasks */
2147			goto out;
2148
2149		put_task_struct(next_task);
2150		next_task = task;
2151		goto retry;
2152	}
2153
2154	deactivate_task(rq, next_task, 0);
 
 
2155	set_task_cpu(next_task, later_rq->cpu);
2156
2157	/*
2158	 * Update the later_rq clock here, because the clock is used
2159	 * by the cpufreq_update_util() inside __add_running_bw().
2160	 */
2161	update_rq_clock(later_rq);
2162	activate_task(later_rq, next_task, ENQUEUE_NOCLOCK);
2163	ret = 1;
2164
2165	resched_curr(later_rq);
2166
2167	double_unlock_balance(rq, later_rq);
2168
2169out:
2170	put_task_struct(next_task);
2171
2172	return ret;
2173}
2174
2175static void push_dl_tasks(struct rq *rq)
2176{
2177	/* push_dl_task() will return true if it moved a -deadline task */
2178	while (push_dl_task(rq))
2179		;
2180}
2181
2182static void pull_dl_task(struct rq *this_rq)
2183{
2184	int this_cpu = this_rq->cpu, cpu;
2185	struct task_struct *p;
2186	bool resched = false;
2187	struct rq *src_rq;
2188	u64 dmin = LONG_MAX;
2189
2190	if (likely(!dl_overloaded(this_rq)))
2191		return;
2192
2193	/*
2194	 * Match the barrier from dl_set_overloaded; this guarantees that if we
2195	 * see overloaded we must also see the dlo_mask bit.
2196	 */
2197	smp_rmb();
2198
2199	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2200		if (this_cpu == cpu)
2201			continue;
2202
2203		src_rq = cpu_rq(cpu);
2204
2205		/*
2206		 * It looks racy, abd it is! However, as in sched_rt.c,
2207		 * we are fine with this.
2208		 */
2209		if (this_rq->dl.dl_nr_running &&
2210		    dl_time_before(this_rq->dl.earliest_dl.curr,
2211				   src_rq->dl.earliest_dl.next))
2212			continue;
2213
2214		/* Might drop this_rq->lock */
2215		double_lock_balance(this_rq, src_rq);
2216
2217		/*
2218		 * If there are no more pullable tasks on the
2219		 * rq, we're done with it.
2220		 */
2221		if (src_rq->dl.dl_nr_running <= 1)
2222			goto skip;
2223
2224		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2225
2226		/*
2227		 * We found a task to be pulled if:
2228		 *  - it preempts our current (if there's one),
2229		 *  - it will preempt the last one we pulled (if any).
2230		 */
2231		if (p && dl_time_before(p->dl.deadline, dmin) &&
2232		    (!this_rq->dl.dl_nr_running ||
2233		     dl_time_before(p->dl.deadline,
2234				    this_rq->dl.earliest_dl.curr))) {
2235			WARN_ON(p == src_rq->curr);
2236			WARN_ON(!task_on_rq_queued(p));
2237
2238			/*
2239			 * Then we pull iff p has actually an earlier
2240			 * deadline than the current task of its runqueue.
2241			 */
2242			if (dl_time_before(p->dl.deadline,
2243					   src_rq->curr->dl.deadline))
2244				goto skip;
2245
2246			resched = true;
2247
2248			deactivate_task(src_rq, p, 0);
 
 
2249			set_task_cpu(p, this_cpu);
 
 
2250			activate_task(this_rq, p, 0);
2251			dmin = p->dl.deadline;
2252
2253			/* Is there any other task even earlier? */
2254		}
2255skip:
2256		double_unlock_balance(this_rq, src_rq);
2257	}
2258
2259	if (resched)
2260		resched_curr(this_rq);
2261}
2262
2263/*
2264 * Since the task is not running and a reschedule is not going to happen
2265 * anytime soon on its runqueue, we try pushing it away now.
2266 */
2267static void task_woken_dl(struct rq *rq, struct task_struct *p)
2268{
2269	if (!task_running(rq, p) &&
2270	    !test_tsk_need_resched(rq->curr) &&
2271	    p->nr_cpus_allowed > 1 &&
2272	    dl_task(rq->curr) &&
2273	    (rq->curr->nr_cpus_allowed < 2 ||
2274	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2275		push_dl_tasks(rq);
2276	}
2277}
2278
2279static void set_cpus_allowed_dl(struct task_struct *p,
2280				const struct cpumask *new_mask)
2281{
2282	struct root_domain *src_rd;
2283	struct rq *rq;
2284
2285	BUG_ON(!dl_task(p));
2286
2287	rq = task_rq(p);
2288	src_rd = rq->rd;
2289	/*
2290	 * Migrating a SCHED_DEADLINE task between exclusive
2291	 * cpusets (different root_domains) entails a bandwidth
2292	 * update. We already made space for us in the destination
2293	 * domain (see cpuset_can_attach()).
2294	 */
2295	if (!cpumask_intersects(src_rd->span, new_mask)) {
2296		struct dl_bw *src_dl_b;
2297
2298		src_dl_b = dl_bw_of(cpu_of(rq));
2299		/*
2300		 * We now free resources of the root_domain we are migrating
2301		 * off. In the worst case, sched_setattr() may temporary fail
2302		 * until we complete the update.
2303		 */
2304		raw_spin_lock(&src_dl_b->lock);
2305		__dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2306		raw_spin_unlock(&src_dl_b->lock);
2307	}
2308
2309	set_cpus_allowed_common(p, new_mask);
2310}
2311
2312/* Assumes rq->lock is held */
2313static void rq_online_dl(struct rq *rq)
2314{
2315	if (rq->dl.overloaded)
2316		dl_set_overload(rq);
2317
2318	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2319	if (rq->dl.dl_nr_running > 0)
2320		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2321}
2322
2323/* Assumes rq->lock is held */
2324static void rq_offline_dl(struct rq *rq)
2325{
2326	if (rq->dl.overloaded)
2327		dl_clear_overload(rq);
2328
2329	cpudl_clear(&rq->rd->cpudl, rq->cpu);
2330	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2331}
2332
2333void __init init_sched_dl_class(void)
2334{
2335	unsigned int i;
2336
2337	for_each_possible_cpu(i)
2338		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2339					GFP_KERNEL, cpu_to_node(i));
2340}
2341
2342void dl_add_task_root_domain(struct task_struct *p)
2343{
2344	struct rq_flags rf;
2345	struct rq *rq;
2346	struct dl_bw *dl_b;
2347
2348	rq = task_rq_lock(p, &rf);
2349	if (!dl_task(p))
2350		goto unlock;
2351
2352	dl_b = &rq->rd->dl_bw;
2353	raw_spin_lock(&dl_b->lock);
2354
2355	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2356
2357	raw_spin_unlock(&dl_b->lock);
2358
2359unlock:
2360	task_rq_unlock(rq, p, &rf);
2361}
2362
2363void dl_clear_root_domain(struct root_domain *rd)
2364{
2365	unsigned long flags;
2366
2367	raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
2368	rd->dl_bw.total_bw = 0;
2369	raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
2370}
2371
2372#endif /* CONFIG_SMP */
2373
2374static void switched_from_dl(struct rq *rq, struct task_struct *p)
2375{
2376	/*
2377	 * task_non_contending() can start the "inactive timer" (if the 0-lag
2378	 * time is in the future). If the task switches back to dl before
2379	 * the "inactive timer" fires, it can continue to consume its current
2380	 * runtime using its current deadline. If it stays outside of
2381	 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2382	 * will reset the task parameters.
2383	 */
2384	if (task_on_rq_queued(p) && p->dl.dl_runtime)
2385		task_non_contending(p);
2386
2387	if (!task_on_rq_queued(p)) {
2388		/*
2389		 * Inactive timer is armed. However, p is leaving DEADLINE and
2390		 * might migrate away from this rq while continuing to run on
2391		 * some other class. We need to remove its contribution from
2392		 * this rq running_bw now, or sub_rq_bw (below) will complain.
2393		 */
2394		if (p->dl.dl_non_contending)
2395			sub_running_bw(&p->dl, &rq->dl);
2396		sub_rq_bw(&p->dl, &rq->dl);
2397	}
2398
2399	/*
2400	 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2401	 * at the 0-lag time, because the task could have been migrated
2402	 * while SCHED_OTHER in the meanwhile.
2403	 */
2404	if (p->dl.dl_non_contending)
2405		p->dl.dl_non_contending = 0;
2406
2407	/*
2408	 * Since this might be the only -deadline task on the rq,
2409	 * this is the right place to try to pull some other one
2410	 * from an overloaded CPU, if any.
2411	 */
2412	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2413		return;
2414
2415	deadline_queue_pull_task(rq);
2416}
2417
2418/*
2419 * When switching to -deadline, we may overload the rq, then
2420 * we try to push someone off, if possible.
2421 */
2422static void switched_to_dl(struct rq *rq, struct task_struct *p)
2423{
2424	if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2425		put_task_struct(p);
2426
2427	/* If p is not queued we will update its parameters at next wakeup. */
2428	if (!task_on_rq_queued(p)) {
2429		add_rq_bw(&p->dl, &rq->dl);
2430
2431		return;
2432	}
2433
2434	if (rq->curr != p) {
2435#ifdef CONFIG_SMP
2436		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2437			deadline_queue_push_tasks(rq);
2438#endif
2439		if (dl_task(rq->curr))
2440			check_preempt_curr_dl(rq, p, 0);
2441		else
2442			resched_curr(rq);
2443	}
2444}
2445
2446/*
2447 * If the scheduling parameters of a -deadline task changed,
2448 * a push or pull operation might be needed.
2449 */
2450static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2451			    int oldprio)
2452{
2453	if (task_on_rq_queued(p) || rq->curr == p) {
2454#ifdef CONFIG_SMP
2455		/*
2456		 * This might be too much, but unfortunately
2457		 * we don't have the old deadline value, and
2458		 * we can't argue if the task is increasing
2459		 * or lowering its prio, so...
2460		 */
2461		if (!rq->dl.overloaded)
2462			deadline_queue_pull_task(rq);
2463
2464		/*
2465		 * If we now have a earlier deadline task than p,
2466		 * then reschedule, provided p is still on this
2467		 * runqueue.
2468		 */
2469		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2470			resched_curr(rq);
2471#else
2472		/*
2473		 * Again, we don't know if p has a earlier
2474		 * or later deadline, so let's blindly set a
2475		 * (maybe not needed) rescheduling point.
2476		 */
2477		resched_curr(rq);
2478#endif /* CONFIG_SMP */
2479	}
2480}
2481
2482const struct sched_class dl_sched_class
2483	__attribute__((section("__dl_sched_class"))) = {
2484	.enqueue_task		= enqueue_task_dl,
2485	.dequeue_task		= dequeue_task_dl,
2486	.yield_task		= yield_task_dl,
2487
2488	.check_preempt_curr	= check_preempt_curr_dl,
2489
2490	.pick_next_task		= pick_next_task_dl,
2491	.put_prev_task		= put_prev_task_dl,
2492	.set_next_task		= set_next_task_dl,
2493
2494#ifdef CONFIG_SMP
2495	.balance		= balance_dl,
2496	.select_task_rq		= select_task_rq_dl,
2497	.migrate_task_rq	= migrate_task_rq_dl,
2498	.set_cpus_allowed       = set_cpus_allowed_dl,
2499	.rq_online              = rq_online_dl,
2500	.rq_offline             = rq_offline_dl,
2501	.task_woken		= task_woken_dl,
2502#endif
2503
 
2504	.task_tick		= task_tick_dl,
2505	.task_fork              = task_fork_dl,
2506
2507	.prio_changed           = prio_changed_dl,
2508	.switched_from		= switched_from_dl,
2509	.switched_to		= switched_to_dl,
2510
2511	.update_curr		= update_curr_dl,
2512};
2513
2514int sched_dl_global_validate(void)
2515{
2516	u64 runtime = global_rt_runtime();
2517	u64 period = global_rt_period();
2518	u64 new_bw = to_ratio(period, runtime);
2519	struct dl_bw *dl_b;
2520	int cpu, ret = 0;
2521	unsigned long flags;
2522
2523	/*
2524	 * Here we want to check the bandwidth not being set to some
2525	 * value smaller than the currently allocated bandwidth in
2526	 * any of the root_domains.
2527	 *
2528	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
2529	 * cycling on root_domains... Discussion on different/better
2530	 * solutions is welcome!
2531	 */
2532	for_each_possible_cpu(cpu) {
2533		rcu_read_lock_sched();
2534		dl_b = dl_bw_of(cpu);
2535
2536		raw_spin_lock_irqsave(&dl_b->lock, flags);
2537		if (new_bw < dl_b->total_bw)
2538			ret = -EBUSY;
2539		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2540
2541		rcu_read_unlock_sched();
2542
2543		if (ret)
2544			break;
2545	}
2546
2547	return ret;
2548}
2549
2550static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2551{
2552	if (global_rt_runtime() == RUNTIME_INF) {
2553		dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2554		dl_rq->extra_bw = 1 << BW_SHIFT;
2555	} else {
2556		dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2557			  global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2558		dl_rq->extra_bw = to_ratio(global_rt_period(),
2559						    global_rt_runtime());
2560	}
2561}
2562
2563void sched_dl_do_global(void)
2564{
2565	u64 new_bw = -1;
2566	struct dl_bw *dl_b;
2567	int cpu;
2568	unsigned long flags;
2569
2570	def_dl_bandwidth.dl_period = global_rt_period();
2571	def_dl_bandwidth.dl_runtime = global_rt_runtime();
2572
2573	if (global_rt_runtime() != RUNTIME_INF)
2574		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2575
2576	/*
2577	 * FIXME: As above...
2578	 */
2579	for_each_possible_cpu(cpu) {
2580		rcu_read_lock_sched();
2581		dl_b = dl_bw_of(cpu);
2582
2583		raw_spin_lock_irqsave(&dl_b->lock, flags);
2584		dl_b->bw = new_bw;
2585		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2586
2587		rcu_read_unlock_sched();
2588		init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2589	}
2590}
2591
2592/*
2593 * We must be sure that accepting a new task (or allowing changing the
2594 * parameters of an existing one) is consistent with the bandwidth
2595 * constraints. If yes, this function also accordingly updates the currently
2596 * allocated bandwidth to reflect the new situation.
2597 *
2598 * This function is called while holding p's rq->lock.
2599 */
2600int sched_dl_overflow(struct task_struct *p, int policy,
2601		      const struct sched_attr *attr)
2602{
 
2603	u64 period = attr->sched_period ?: attr->sched_deadline;
2604	u64 runtime = attr->sched_runtime;
2605	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2606	int cpus, err = -1, cpu = task_cpu(p);
2607	struct dl_bw *dl_b = dl_bw_of(cpu);
2608	unsigned long cap;
2609
2610	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2611		return 0;
2612
2613	/* !deadline task may carry old deadline bandwidth */
2614	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2615		return 0;
2616
2617	/*
2618	 * Either if a task, enters, leave, or stays -deadline but changes
2619	 * its parameters, we may need to update accordingly the total
2620	 * allocated bandwidth of the container.
2621	 */
2622	raw_spin_lock(&dl_b->lock);
2623	cpus = dl_bw_cpus(cpu);
2624	cap = dl_bw_capacity(cpu);
2625
2626	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2627	    !__dl_overflow(dl_b, cap, 0, new_bw)) {
2628		if (hrtimer_active(&p->dl.inactive_timer))
2629			__dl_sub(dl_b, p->dl.dl_bw, cpus);
2630		__dl_add(dl_b, new_bw, cpus);
2631		err = 0;
2632	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2633		   !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
2634		/*
2635		 * XXX this is slightly incorrect: when the task
2636		 * utilization decreases, we should delay the total
2637		 * utilization change until the task's 0-lag point.
2638		 * But this would require to set the task's "inactive
2639		 * timer" when the task is not inactive.
2640		 */
2641		__dl_sub(dl_b, p->dl.dl_bw, cpus);
2642		__dl_add(dl_b, new_bw, cpus);
2643		dl_change_utilization(p, new_bw);
2644		err = 0;
2645	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2646		/*
2647		 * Do not decrease the total deadline utilization here,
2648		 * switched_from_dl() will take care to do it at the correct
2649		 * (0-lag) time.
2650		 */
2651		err = 0;
2652	}
2653	raw_spin_unlock(&dl_b->lock);
2654
2655	return err;
2656}
2657
2658/*
2659 * This function initializes the sched_dl_entity of a newly becoming
2660 * SCHED_DEADLINE task.
2661 *
2662 * Only the static values are considered here, the actual runtime and the
2663 * absolute deadline will be properly calculated when the task is enqueued
2664 * for the first time with its new policy.
2665 */
2666void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2667{
2668	struct sched_dl_entity *dl_se = &p->dl;
2669
2670	dl_se->dl_runtime = attr->sched_runtime;
2671	dl_se->dl_deadline = attr->sched_deadline;
2672	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2673	dl_se->flags = attr->sched_flags;
2674	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2675	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2676}
2677
2678void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2679{
2680	struct sched_dl_entity *dl_se = &p->dl;
2681
2682	attr->sched_priority = p->rt_priority;
2683	attr->sched_runtime = dl_se->dl_runtime;
2684	attr->sched_deadline = dl_se->dl_deadline;
2685	attr->sched_period = dl_se->dl_period;
2686	attr->sched_flags = dl_se->flags;
2687}
2688
2689/*
2690 * Default limits for DL period; on the top end we guard against small util
2691 * tasks still getting rediculous long effective runtimes, on the bottom end we
2692 * guard against timer DoS.
2693 */
2694unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
2695unsigned int sysctl_sched_dl_period_min = 100;     /* 100 us */
2696
2697/*
2698 * This function validates the new parameters of a -deadline task.
2699 * We ask for the deadline not being zero, and greater or equal
2700 * than the runtime, as well as the period of being zero or
2701 * greater than deadline. Furthermore, we have to be sure that
2702 * user parameters are above the internal resolution of 1us (we
2703 * check sched_runtime only since it is always the smaller one) and
2704 * below 2^63 ns (we have to check both sched_deadline and
2705 * sched_period, as the latter can be zero).
2706 */
2707bool __checkparam_dl(const struct sched_attr *attr)
2708{
2709	u64 period, max, min;
2710
2711	/* special dl tasks don't actually use any parameter */
2712	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2713		return true;
2714
2715	/* deadline != 0 */
2716	if (attr->sched_deadline == 0)
2717		return false;
2718
2719	/*
2720	 * Since we truncate DL_SCALE bits, make sure we're at least
2721	 * that big.
2722	 */
2723	if (attr->sched_runtime < (1ULL << DL_SCALE))
2724		return false;
2725
2726	/*
2727	 * Since we use the MSB for wrap-around and sign issues, make
2728	 * sure it's not set (mind that period can be equal to zero).
2729	 */
2730	if (attr->sched_deadline & (1ULL << 63) ||
2731	    attr->sched_period & (1ULL << 63))
2732		return false;
2733
2734	period = attr->sched_period;
2735	if (!period)
2736		period = attr->sched_deadline;
2737
2738	/* runtime <= deadline <= period (if period != 0) */
2739	if (period < attr->sched_deadline ||
 
2740	    attr->sched_deadline < attr->sched_runtime)
2741		return false;
2742
2743	max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
2744	min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
2745
2746	if (period < min || period > max)
2747		return false;
2748
2749	return true;
2750}
2751
2752/*
2753 * This function clears the sched_dl_entity static params.
2754 */
2755void __dl_clear_params(struct task_struct *p)
2756{
2757	struct sched_dl_entity *dl_se = &p->dl;
2758
2759	dl_se->dl_runtime		= 0;
2760	dl_se->dl_deadline		= 0;
2761	dl_se->dl_period		= 0;
2762	dl_se->flags			= 0;
2763	dl_se->dl_bw			= 0;
2764	dl_se->dl_density		= 0;
2765
2766	dl_se->dl_boosted		= 0;
2767	dl_se->dl_throttled		= 0;
2768	dl_se->dl_yielded		= 0;
2769	dl_se->dl_non_contending	= 0;
2770	dl_se->dl_overrun		= 0;
2771}
2772
2773bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
2774{
2775	struct sched_dl_entity *dl_se = &p->dl;
2776
2777	if (dl_se->dl_runtime != attr->sched_runtime ||
2778	    dl_se->dl_deadline != attr->sched_deadline ||
2779	    dl_se->dl_period != attr->sched_period ||
2780	    dl_se->flags != attr->sched_flags)
2781		return true;
2782
2783	return false;
2784}
2785
2786#ifdef CONFIG_SMP
2787int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed)
2788{
2789	unsigned long flags, cap;
2790	unsigned int dest_cpu;
2791	struct dl_bw *dl_b;
2792	bool overflow;
2793	int ret;
 
2794
2795	dest_cpu = cpumask_any_and(cpu_active_mask, cs_cpus_allowed);
2796
2797	rcu_read_lock_sched();
2798	dl_b = dl_bw_of(dest_cpu);
2799	raw_spin_lock_irqsave(&dl_b->lock, flags);
2800	cap = dl_bw_capacity(dest_cpu);
2801	overflow = __dl_overflow(dl_b, cap, 0, p->dl.dl_bw);
2802	if (overflow) {
2803		ret = -EBUSY;
2804	} else {
2805		/*
2806		 * We reserve space for this task in the destination
2807		 * root_domain, as we can't fail after this point.
2808		 * We will free resources in the source root_domain
2809		 * later on (see set_cpus_allowed_dl()).
2810		 */
2811		int cpus = dl_bw_cpus(dest_cpu);
2812
2813		__dl_add(dl_b, p->dl.dl_bw, cpus);
2814		ret = 0;
2815	}
2816	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2817	rcu_read_unlock_sched();
2818
2819	return ret;
2820}
2821
2822int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
2823				 const struct cpumask *trial)
2824{
2825	int ret = 1, trial_cpus;
2826	struct dl_bw *cur_dl_b;
2827	unsigned long flags;
2828
2829	rcu_read_lock_sched();
2830	cur_dl_b = dl_bw_of(cpumask_any(cur));
2831	trial_cpus = cpumask_weight(trial);
2832
2833	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
2834	if (cur_dl_b->bw != -1 &&
2835	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
2836		ret = 0;
2837	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
2838	rcu_read_unlock_sched();
2839
2840	return ret;
2841}
2842
2843bool dl_cpu_busy(unsigned int cpu)
2844{
2845	unsigned long flags, cap;
2846	struct dl_bw *dl_b;
2847	bool overflow;
 
2848
2849	rcu_read_lock_sched();
2850	dl_b = dl_bw_of(cpu);
2851	raw_spin_lock_irqsave(&dl_b->lock, flags);
2852	cap = dl_bw_capacity(cpu);
2853	overflow = __dl_overflow(dl_b, cap, 0, 0);
2854	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2855	rcu_read_unlock_sched();
2856
2857	return overflow;
2858}
2859#endif
2860
2861#ifdef CONFIG_SCHED_DEBUG
2862void print_dl_stats(struct seq_file *m, int cpu)
2863{
2864	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
2865}
2866#endif /* CONFIG_SCHED_DEBUG */