Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_shared.h"
  21#include "xfs_format.h"
  22#include "xfs_log_format.h"
  23#include "xfs_trans_resv.h"
  24#include "xfs_bit.h"
  25#include "xfs_sb.h"
  26#include "xfs_mount.h"
  27#include "xfs_defer.h"
  28#include "xfs_da_format.h"
  29#include "xfs_da_btree.h"
  30#include "xfs_inode.h"
  31#include "xfs_trans.h"
  32#include "xfs_log.h"
  33#include "xfs_log_priv.h"
  34#include "xfs_log_recover.h"
  35#include "xfs_inode_item.h"
  36#include "xfs_extfree_item.h"
  37#include "xfs_trans_priv.h"
  38#include "xfs_alloc.h"
  39#include "xfs_ialloc.h"
  40#include "xfs_quota.h"
  41#include "xfs_cksum.h"
  42#include "xfs_trace.h"
  43#include "xfs_icache.h"
  44#include "xfs_bmap_btree.h"
  45#include "xfs_error.h"
  46#include "xfs_dir2.h"
  47#include "xfs_rmap_item.h"
  48#include "xfs_buf_item.h"
  49#include "xfs_refcount_item.h"
  50#include "xfs_bmap_item.h"
 
  51
  52#define BLK_AVG(blk1, blk2)	((blk1+blk2) >> 1)
  53
  54STATIC int
  55xlog_find_zeroed(
  56	struct xlog	*,
  57	xfs_daddr_t	*);
  58STATIC int
  59xlog_clear_stale_blocks(
  60	struct xlog	*,
  61	xfs_lsn_t);
  62#if defined(DEBUG)
  63STATIC void
  64xlog_recover_check_summary(
  65	struct xlog *);
  66#else
  67#define	xlog_recover_check_summary(log)
  68#endif
  69STATIC int
  70xlog_do_recovery_pass(
  71        struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
  72
  73/*
  74 * This structure is used during recovery to record the buf log items which
  75 * have been canceled and should not be replayed.
  76 */
  77struct xfs_buf_cancel {
  78	xfs_daddr_t		bc_blkno;
  79	uint			bc_len;
  80	int			bc_refcount;
  81	struct list_head	bc_list;
  82};
  83
  84/*
  85 * Sector aligned buffer routines for buffer create/read/write/access
  86 */
  87
  88/*
  89 * Verify the log-relative block number and length in basic blocks are valid for
  90 * an operation involving the given XFS log buffer. Returns true if the fields
  91 * are valid, false otherwise.
  92 */
  93static inline bool
  94xlog_verify_bp(
  95	struct xlog	*log,
  96	xfs_daddr_t	blk_no,
  97	int		bbcount)
  98{
  99	if (blk_no < 0 || blk_no >= log->l_logBBsize)
 100		return false;
 101	if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize)
 102		return false;
 103	return true;
 104}
 105
 106/*
 107 * Allocate a buffer to hold log data.  The buffer needs to be able
 108 * to map to a range of nbblks basic blocks at any valid (basic
 109 * block) offset within the log.
 110 */
 111STATIC xfs_buf_t *
 112xlog_get_bp(
 113	struct xlog	*log,
 114	int		nbblks)
 115{
 116	struct xfs_buf	*bp;
 117
 118	/*
 119	 * Pass log block 0 since we don't have an addr yet, buffer will be
 120	 * verified on read.
 121	 */
 122	if (!xlog_verify_bp(log, 0, nbblks)) {
 123		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
 124			nbblks);
 125		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
 126		return NULL;
 127	}
 128
 129	/*
 130	 * We do log I/O in units of log sectors (a power-of-2
 131	 * multiple of the basic block size), so we round up the
 132	 * requested size to accommodate the basic blocks required
 133	 * for complete log sectors.
 134	 *
 135	 * In addition, the buffer may be used for a non-sector-
 136	 * aligned block offset, in which case an I/O of the
 137	 * requested size could extend beyond the end of the
 138	 * buffer.  If the requested size is only 1 basic block it
 139	 * will never straddle a sector boundary, so this won't be
 140	 * an issue.  Nor will this be a problem if the log I/O is
 141	 * done in basic blocks (sector size 1).  But otherwise we
 142	 * extend the buffer by one extra log sector to ensure
 143	 * there's space to accommodate this possibility.
 144	 */
 145	if (nbblks > 1 && log->l_sectBBsize > 1)
 146		nbblks += log->l_sectBBsize;
 147	nbblks = round_up(nbblks, log->l_sectBBsize);
 148
 149	bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
 150	if (bp)
 151		xfs_buf_unlock(bp);
 152	return bp;
 153}
 154
 155STATIC void
 156xlog_put_bp(
 157	xfs_buf_t	*bp)
 158{
 159	xfs_buf_free(bp);
 160}
 161
 162/*
 163 * Return the address of the start of the given block number's data
 164 * in a log buffer.  The buffer covers a log sector-aligned region.
 165 */
 166STATIC char *
 167xlog_align(
 168	struct xlog	*log,
 169	xfs_daddr_t	blk_no,
 170	int		nbblks,
 171	struct xfs_buf	*bp)
 172{
 173	xfs_daddr_t	offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
 174
 175	ASSERT(offset + nbblks <= bp->b_length);
 176	return bp->b_addr + BBTOB(offset);
 177}
 178
 179
 180/*
 181 * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
 182 */
 183STATIC int
 184xlog_bread_noalign(
 185	struct xlog	*log,
 186	xfs_daddr_t	blk_no,
 187	int		nbblks,
 188	struct xfs_buf	*bp)
 189{
 190	int		error;
 191
 192	if (!xlog_verify_bp(log, blk_no, nbblks)) {
 193		xfs_warn(log->l_mp,
 194			 "Invalid log block/length (0x%llx, 0x%x) for buffer",
 195			 blk_no, nbblks);
 196		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
 197		return -EFSCORRUPTED;
 198	}
 199
 200	blk_no = round_down(blk_no, log->l_sectBBsize);
 201	nbblks = round_up(nbblks, log->l_sectBBsize);
 202
 203	ASSERT(nbblks > 0);
 204	ASSERT(nbblks <= bp->b_length);
 205
 206	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
 207	bp->b_flags |= XBF_READ;
 208	bp->b_io_length = nbblks;
 209	bp->b_error = 0;
 210
 211	error = xfs_buf_submit_wait(bp);
 212	if (error && !XFS_FORCED_SHUTDOWN(log->l_mp))
 213		xfs_buf_ioerror_alert(bp, __func__);
 214	return error;
 215}
 216
 217STATIC int
 218xlog_bread(
 219	struct xlog	*log,
 220	xfs_daddr_t	blk_no,
 221	int		nbblks,
 222	struct xfs_buf	*bp,
 223	char		**offset)
 224{
 225	int		error;
 226
 227	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
 228	if (error)
 229		return error;
 230
 231	*offset = xlog_align(log, blk_no, nbblks, bp);
 232	return 0;
 233}
 234
 235/*
 236 * Read at an offset into the buffer. Returns with the buffer in it's original
 237 * state regardless of the result of the read.
 238 */
 239STATIC int
 240xlog_bread_offset(
 241	struct xlog	*log,
 242	xfs_daddr_t	blk_no,		/* block to read from */
 243	int		nbblks,		/* blocks to read */
 244	struct xfs_buf	*bp,
 245	char		*offset)
 246{
 247	char		*orig_offset = bp->b_addr;
 248	int		orig_len = BBTOB(bp->b_length);
 249	int		error, error2;
 250
 251	error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
 252	if (error)
 253		return error;
 254
 255	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
 256
 257	/* must reset buffer pointer even on error */
 258	error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
 259	if (error)
 260		return error;
 261	return error2;
 262}
 263
 264/*
 265 * Write out the buffer at the given block for the given number of blocks.
 266 * The buffer is kept locked across the write and is returned locked.
 267 * This can only be used for synchronous log writes.
 268 */
 269STATIC int
 270xlog_bwrite(
 271	struct xlog	*log,
 272	xfs_daddr_t	blk_no,
 273	int		nbblks,
 274	struct xfs_buf	*bp)
 275{
 276	int		error;
 277
 278	if (!xlog_verify_bp(log, blk_no, nbblks)) {
 279		xfs_warn(log->l_mp,
 280			 "Invalid log block/length (0x%llx, 0x%x) for buffer",
 281			 blk_no, nbblks);
 282		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
 283		return -EFSCORRUPTED;
 284	}
 285
 286	blk_no = round_down(blk_no, log->l_sectBBsize);
 287	nbblks = round_up(nbblks, log->l_sectBBsize);
 288
 289	ASSERT(nbblks > 0);
 290	ASSERT(nbblks <= bp->b_length);
 291
 292	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
 293	xfs_buf_hold(bp);
 294	xfs_buf_lock(bp);
 295	bp->b_io_length = nbblks;
 296	bp->b_error = 0;
 297
 298	error = xfs_bwrite(bp);
 299	if (error)
 300		xfs_buf_ioerror_alert(bp, __func__);
 301	xfs_buf_relse(bp);
 302	return error;
 303}
 304
 305#ifdef DEBUG
 306/*
 307 * dump debug superblock and log record information
 308 */
 309STATIC void
 310xlog_header_check_dump(
 311	xfs_mount_t		*mp,
 312	xlog_rec_header_t	*head)
 313{
 314	xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d",
 315		__func__, &mp->m_sb.sb_uuid, XLOG_FMT);
 316	xfs_debug(mp, "    log : uuid = %pU, fmt = %d",
 317		&head->h_fs_uuid, be32_to_cpu(head->h_fmt));
 318}
 319#else
 320#define xlog_header_check_dump(mp, head)
 321#endif
 322
 323/*
 324 * check log record header for recovery
 325 */
 326STATIC int
 327xlog_header_check_recover(
 328	xfs_mount_t		*mp,
 329	xlog_rec_header_t	*head)
 330{
 331	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
 332
 333	/*
 334	 * IRIX doesn't write the h_fmt field and leaves it zeroed
 335	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
 336	 * a dirty log created in IRIX.
 337	 */
 338	if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
 339		xfs_warn(mp,
 340	"dirty log written in incompatible format - can't recover");
 341		xlog_header_check_dump(mp, head);
 342		XFS_ERROR_REPORT("xlog_header_check_recover(1)",
 343				 XFS_ERRLEVEL_HIGH, mp);
 344		return -EFSCORRUPTED;
 345	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
 
 
 346		xfs_warn(mp,
 347	"dirty log entry has mismatched uuid - can't recover");
 348		xlog_header_check_dump(mp, head);
 349		XFS_ERROR_REPORT("xlog_header_check_recover(2)",
 350				 XFS_ERRLEVEL_HIGH, mp);
 351		return -EFSCORRUPTED;
 352	}
 353	return 0;
 354}
 355
 356/*
 357 * read the head block of the log and check the header
 358 */
 359STATIC int
 360xlog_header_check_mount(
 361	xfs_mount_t		*mp,
 362	xlog_rec_header_t	*head)
 363{
 364	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
 365
 366	if (uuid_is_null(&head->h_fs_uuid)) {
 367		/*
 368		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
 369		 * h_fs_uuid is null, we assume this log was last mounted
 370		 * by IRIX and continue.
 371		 */
 372		xfs_warn(mp, "null uuid in log - IRIX style log");
 373	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
 
 374		xfs_warn(mp, "log has mismatched uuid - can't recover");
 375		xlog_header_check_dump(mp, head);
 376		XFS_ERROR_REPORT("xlog_header_check_mount",
 377				 XFS_ERRLEVEL_HIGH, mp);
 378		return -EFSCORRUPTED;
 379	}
 380	return 0;
 381}
 382
 383STATIC void
 384xlog_recover_iodone(
 385	struct xfs_buf	*bp)
 386{
 387	if (bp->b_error) {
 388		/*
 389		 * We're not going to bother about retrying
 390		 * this during recovery. One strike!
 391		 */
 392		if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
 393			xfs_buf_ioerror_alert(bp, __func__);
 394			xfs_force_shutdown(bp->b_target->bt_mount,
 395						SHUTDOWN_META_IO_ERROR);
 396		}
 397	}
 398
 399	/*
 400	 * On v5 supers, a bli could be attached to update the metadata LSN.
 401	 * Clean it up.
 402	 */
 403	if (bp->b_log_item)
 404		xfs_buf_item_relse(bp);
 405	ASSERT(bp->b_log_item == NULL);
 406
 407	bp->b_iodone = NULL;
 408	xfs_buf_ioend(bp);
 409}
 410
 411/*
 412 * This routine finds (to an approximation) the first block in the physical
 413 * log which contains the given cycle.  It uses a binary search algorithm.
 414 * Note that the algorithm can not be perfect because the disk will not
 415 * necessarily be perfect.
 416 */
 417STATIC int
 418xlog_find_cycle_start(
 419	struct xlog	*log,
 420	struct xfs_buf	*bp,
 421	xfs_daddr_t	first_blk,
 422	xfs_daddr_t	*last_blk,
 423	uint		cycle)
 424{
 425	char		*offset;
 426	xfs_daddr_t	mid_blk;
 427	xfs_daddr_t	end_blk;
 428	uint		mid_cycle;
 429	int		error;
 430
 431	end_blk = *last_blk;
 432	mid_blk = BLK_AVG(first_blk, end_blk);
 433	while (mid_blk != first_blk && mid_blk != end_blk) {
 434		error = xlog_bread(log, mid_blk, 1, bp, &offset);
 435		if (error)
 436			return error;
 437		mid_cycle = xlog_get_cycle(offset);
 438		if (mid_cycle == cycle)
 439			end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
 440		else
 441			first_blk = mid_blk; /* first_half_cycle == mid_cycle */
 442		mid_blk = BLK_AVG(first_blk, end_blk);
 443	}
 444	ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
 445	       (mid_blk == end_blk && mid_blk-1 == first_blk));
 446
 447	*last_blk = end_blk;
 448
 449	return 0;
 450}
 451
 452/*
 453 * Check that a range of blocks does not contain stop_on_cycle_no.
 454 * Fill in *new_blk with the block offset where such a block is
 455 * found, or with -1 (an invalid block number) if there is no such
 456 * block in the range.  The scan needs to occur from front to back
 457 * and the pointer into the region must be updated since a later
 458 * routine will need to perform another test.
 459 */
 460STATIC int
 461xlog_find_verify_cycle(
 462	struct xlog	*log,
 463	xfs_daddr_t	start_blk,
 464	int		nbblks,
 465	uint		stop_on_cycle_no,
 466	xfs_daddr_t	*new_blk)
 467{
 468	xfs_daddr_t	i, j;
 469	uint		cycle;
 470	xfs_buf_t	*bp;
 471	xfs_daddr_t	bufblks;
 472	char		*buf = NULL;
 473	int		error = 0;
 474
 475	/*
 476	 * Greedily allocate a buffer big enough to handle the full
 477	 * range of basic blocks we'll be examining.  If that fails,
 478	 * try a smaller size.  We need to be able to read at least
 479	 * a log sector, or we're out of luck.
 480	 */
 481	bufblks = 1 << ffs(nbblks);
 482	while (bufblks > log->l_logBBsize)
 483		bufblks >>= 1;
 484	while (!(bp = xlog_get_bp(log, bufblks))) {
 485		bufblks >>= 1;
 486		if (bufblks < log->l_sectBBsize)
 487			return -ENOMEM;
 488	}
 489
 490	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
 491		int	bcount;
 492
 493		bcount = min(bufblks, (start_blk + nbblks - i));
 494
 495		error = xlog_bread(log, i, bcount, bp, &buf);
 496		if (error)
 497			goto out;
 498
 499		for (j = 0; j < bcount; j++) {
 500			cycle = xlog_get_cycle(buf);
 501			if (cycle == stop_on_cycle_no) {
 502				*new_blk = i+j;
 503				goto out;
 504			}
 505
 506			buf += BBSIZE;
 507		}
 508	}
 509
 510	*new_blk = -1;
 511
 512out:
 513	xlog_put_bp(bp);
 514	return error;
 515}
 516
 
 
 
 
 
 
 
 
 
 
 
 
 
 517/*
 518 * Potentially backup over partial log record write.
 519 *
 520 * In the typical case, last_blk is the number of the block directly after
 521 * a good log record.  Therefore, we subtract one to get the block number
 522 * of the last block in the given buffer.  extra_bblks contains the number
 523 * of blocks we would have read on a previous read.  This happens when the
 524 * last log record is split over the end of the physical log.
 525 *
 526 * extra_bblks is the number of blocks potentially verified on a previous
 527 * call to this routine.
 528 */
 529STATIC int
 530xlog_find_verify_log_record(
 531	struct xlog		*log,
 532	xfs_daddr_t		start_blk,
 533	xfs_daddr_t		*last_blk,
 534	int			extra_bblks)
 535{
 536	xfs_daddr_t		i;
 537	xfs_buf_t		*bp;
 538	char			*offset = NULL;
 539	xlog_rec_header_t	*head = NULL;
 540	int			error = 0;
 541	int			smallmem = 0;
 542	int			num_blks = *last_blk - start_blk;
 543	int			xhdrs;
 544
 545	ASSERT(start_blk != 0 || *last_blk != start_blk);
 546
 547	if (!(bp = xlog_get_bp(log, num_blks))) {
 548		if (!(bp = xlog_get_bp(log, 1)))
 
 
 549			return -ENOMEM;
 550		smallmem = 1;
 551	} else {
 552		error = xlog_bread(log, start_blk, num_blks, bp, &offset);
 553		if (error)
 554			goto out;
 555		offset += ((num_blks - 1) << BBSHIFT);
 556	}
 557
 558	for (i = (*last_blk) - 1; i >= 0; i--) {
 559		if (i < start_blk) {
 560			/* valid log record not found */
 561			xfs_warn(log->l_mp,
 562		"Log inconsistent (didn't find previous header)");
 563			ASSERT(0);
 564			error = -EIO;
 565			goto out;
 566		}
 567
 568		if (smallmem) {
 569			error = xlog_bread(log, i, 1, bp, &offset);
 570			if (error)
 571				goto out;
 572		}
 573
 574		head = (xlog_rec_header_t *)offset;
 575
 576		if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
 577			break;
 578
 579		if (!smallmem)
 580			offset -= BBSIZE;
 581	}
 582
 583	/*
 584	 * We hit the beginning of the physical log & still no header.  Return
 585	 * to caller.  If caller can handle a return of -1, then this routine
 586	 * will be called again for the end of the physical log.
 587	 */
 588	if (i == -1) {
 589		error = 1;
 590		goto out;
 591	}
 592
 593	/*
 594	 * We have the final block of the good log (the first block
 595	 * of the log record _before_ the head. So we check the uuid.
 596	 */
 597	if ((error = xlog_header_check_mount(log->l_mp, head)))
 598		goto out;
 599
 600	/*
 601	 * We may have found a log record header before we expected one.
 602	 * last_blk will be the 1st block # with a given cycle #.  We may end
 603	 * up reading an entire log record.  In this case, we don't want to
 604	 * reset last_blk.  Only when last_blk points in the middle of a log
 605	 * record do we update last_blk.
 606	 */
 607	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
 608		uint	h_size = be32_to_cpu(head->h_size);
 609
 610		xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
 611		if (h_size % XLOG_HEADER_CYCLE_SIZE)
 612			xhdrs++;
 613	} else {
 614		xhdrs = 1;
 615	}
 616
 617	if (*last_blk - i + extra_bblks !=
 618	    BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
 619		*last_blk = i;
 620
 621out:
 622	xlog_put_bp(bp);
 623	return error;
 624}
 625
 626/*
 627 * Head is defined to be the point of the log where the next log write
 628 * could go.  This means that incomplete LR writes at the end are
 629 * eliminated when calculating the head.  We aren't guaranteed that previous
 630 * LR have complete transactions.  We only know that a cycle number of
 631 * current cycle number -1 won't be present in the log if we start writing
 632 * from our current block number.
 633 *
 634 * last_blk contains the block number of the first block with a given
 635 * cycle number.
 636 *
 637 * Return: zero if normal, non-zero if error.
 638 */
 639STATIC int
 640xlog_find_head(
 641	struct xlog	*log,
 642	xfs_daddr_t	*return_head_blk)
 643{
 644	xfs_buf_t	*bp;
 645	char		*offset;
 646	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
 647	int		num_scan_bblks;
 648	uint		first_half_cycle, last_half_cycle;
 649	uint		stop_on_cycle;
 650	int		error, log_bbnum = log->l_logBBsize;
 651
 652	/* Is the end of the log device zeroed? */
 653	error = xlog_find_zeroed(log, &first_blk);
 654	if (error < 0) {
 655		xfs_warn(log->l_mp, "empty log check failed");
 656		return error;
 657	}
 658	if (error == 1) {
 659		*return_head_blk = first_blk;
 660
 661		/* Is the whole lot zeroed? */
 662		if (!first_blk) {
 663			/* Linux XFS shouldn't generate totally zeroed logs -
 664			 * mkfs etc write a dummy unmount record to a fresh
 665			 * log so we can store the uuid in there
 666			 */
 667			xfs_warn(log->l_mp, "totally zeroed log");
 668		}
 669
 670		return 0;
 671	}
 672
 673	first_blk = 0;			/* get cycle # of 1st block */
 674	bp = xlog_get_bp(log, 1);
 675	if (!bp)
 676		return -ENOMEM;
 677
 678	error = xlog_bread(log, 0, 1, bp, &offset);
 679	if (error)
 680		goto bp_err;
 681
 682	first_half_cycle = xlog_get_cycle(offset);
 683
 684	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
 685	error = xlog_bread(log, last_blk, 1, bp, &offset);
 686	if (error)
 687		goto bp_err;
 688
 689	last_half_cycle = xlog_get_cycle(offset);
 690	ASSERT(last_half_cycle != 0);
 691
 692	/*
 693	 * If the 1st half cycle number is equal to the last half cycle number,
 694	 * then the entire log is stamped with the same cycle number.  In this
 695	 * case, head_blk can't be set to zero (which makes sense).  The below
 696	 * math doesn't work out properly with head_blk equal to zero.  Instead,
 697	 * we set it to log_bbnum which is an invalid block number, but this
 698	 * value makes the math correct.  If head_blk doesn't changed through
 699	 * all the tests below, *head_blk is set to zero at the very end rather
 700	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
 701	 * in a circular file.
 702	 */
 703	if (first_half_cycle == last_half_cycle) {
 704		/*
 705		 * In this case we believe that the entire log should have
 706		 * cycle number last_half_cycle.  We need to scan backwards
 707		 * from the end verifying that there are no holes still
 708		 * containing last_half_cycle - 1.  If we find such a hole,
 709		 * then the start of that hole will be the new head.  The
 710		 * simple case looks like
 711		 *        x | x ... | x - 1 | x
 712		 * Another case that fits this picture would be
 713		 *        x | x + 1 | x ... | x
 714		 * In this case the head really is somewhere at the end of the
 715		 * log, as one of the latest writes at the beginning was
 716		 * incomplete.
 717		 * One more case is
 718		 *        x | x + 1 | x ... | x - 1 | x
 719		 * This is really the combination of the above two cases, and
 720		 * the head has to end up at the start of the x-1 hole at the
 721		 * end of the log.
 722		 *
 723		 * In the 256k log case, we will read from the beginning to the
 724		 * end of the log and search for cycle numbers equal to x-1.
 725		 * We don't worry about the x+1 blocks that we encounter,
 726		 * because we know that they cannot be the head since the log
 727		 * started with x.
 728		 */
 729		head_blk = log_bbnum;
 730		stop_on_cycle = last_half_cycle - 1;
 731	} else {
 732		/*
 733		 * In this case we want to find the first block with cycle
 734		 * number matching last_half_cycle.  We expect the log to be
 735		 * some variation on
 736		 *        x + 1 ... | x ... | x
 737		 * The first block with cycle number x (last_half_cycle) will
 738		 * be where the new head belongs.  First we do a binary search
 739		 * for the first occurrence of last_half_cycle.  The binary
 740		 * search may not be totally accurate, so then we scan back
 741		 * from there looking for occurrences of last_half_cycle before
 742		 * us.  If that backwards scan wraps around the beginning of
 743		 * the log, then we look for occurrences of last_half_cycle - 1
 744		 * at the end of the log.  The cases we're looking for look
 745		 * like
 746		 *                               v binary search stopped here
 747		 *        x + 1 ... | x | x + 1 | x ... | x
 748		 *                   ^ but we want to locate this spot
 749		 * or
 750		 *        <---------> less than scan distance
 751		 *        x + 1 ... | x ... | x - 1 | x
 752		 *                           ^ we want to locate this spot
 753		 */
 754		stop_on_cycle = last_half_cycle;
 755		if ((error = xlog_find_cycle_start(log, bp, first_blk,
 756						&head_blk, last_half_cycle)))
 757			goto bp_err;
 
 758	}
 759
 760	/*
 761	 * Now validate the answer.  Scan back some number of maximum possible
 762	 * blocks and make sure each one has the expected cycle number.  The
 763	 * maximum is determined by the total possible amount of buffering
 764	 * in the in-core log.  The following number can be made tighter if
 765	 * we actually look at the block size of the filesystem.
 766	 */
 767	num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log));
 768	if (head_blk >= num_scan_bblks) {
 769		/*
 770		 * We are guaranteed that the entire check can be performed
 771		 * in one buffer.
 772		 */
 773		start_blk = head_blk - num_scan_bblks;
 774		if ((error = xlog_find_verify_cycle(log,
 775						start_blk, num_scan_bblks,
 776						stop_on_cycle, &new_blk)))
 777			goto bp_err;
 778		if (new_blk != -1)
 779			head_blk = new_blk;
 780	} else {		/* need to read 2 parts of log */
 781		/*
 782		 * We are going to scan backwards in the log in two parts.
 783		 * First we scan the physical end of the log.  In this part
 784		 * of the log, we are looking for blocks with cycle number
 785		 * last_half_cycle - 1.
 786		 * If we find one, then we know that the log starts there, as
 787		 * we've found a hole that didn't get written in going around
 788		 * the end of the physical log.  The simple case for this is
 789		 *        x + 1 ... | x ... | x - 1 | x
 790		 *        <---------> less than scan distance
 791		 * If all of the blocks at the end of the log have cycle number
 792		 * last_half_cycle, then we check the blocks at the start of
 793		 * the log looking for occurrences of last_half_cycle.  If we
 794		 * find one, then our current estimate for the location of the
 795		 * first occurrence of last_half_cycle is wrong and we move
 796		 * back to the hole we've found.  This case looks like
 797		 *        x + 1 ... | x | x + 1 | x ...
 798		 *                               ^ binary search stopped here
 799		 * Another case we need to handle that only occurs in 256k
 800		 * logs is
 801		 *        x + 1 ... | x ... | x+1 | x ...
 802		 *                   ^ binary search stops here
 803		 * In a 256k log, the scan at the end of the log will see the
 804		 * x + 1 blocks.  We need to skip past those since that is
 805		 * certainly not the head of the log.  By searching for
 806		 * last_half_cycle-1 we accomplish that.
 807		 */
 808		ASSERT(head_blk <= INT_MAX &&
 809			(xfs_daddr_t) num_scan_bblks >= head_blk);
 810		start_blk = log_bbnum - (num_scan_bblks - head_blk);
 811		if ((error = xlog_find_verify_cycle(log, start_blk,
 812					num_scan_bblks - (int)head_blk,
 813					(stop_on_cycle - 1), &new_blk)))
 814			goto bp_err;
 815		if (new_blk != -1) {
 816			head_blk = new_blk;
 817			goto validate_head;
 818		}
 819
 820		/*
 821		 * Scan beginning of log now.  The last part of the physical
 822		 * log is good.  This scan needs to verify that it doesn't find
 823		 * the last_half_cycle.
 824		 */
 825		start_blk = 0;
 826		ASSERT(head_blk <= INT_MAX);
 827		if ((error = xlog_find_verify_cycle(log,
 828					start_blk, (int)head_blk,
 829					stop_on_cycle, &new_blk)))
 830			goto bp_err;
 831		if (new_blk != -1)
 832			head_blk = new_blk;
 833	}
 834
 835validate_head:
 836	/*
 837	 * Now we need to make sure head_blk is not pointing to a block in
 838	 * the middle of a log record.
 839	 */
 840	num_scan_bblks = XLOG_REC_SHIFT(log);
 841	if (head_blk >= num_scan_bblks) {
 842		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
 843
 844		/* start ptr at last block ptr before head_blk */
 845		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
 846		if (error == 1)
 847			error = -EIO;
 848		if (error)
 849			goto bp_err;
 850	} else {
 851		start_blk = 0;
 852		ASSERT(head_blk <= INT_MAX);
 853		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
 854		if (error < 0)
 855			goto bp_err;
 856		if (error == 1) {
 857			/* We hit the beginning of the log during our search */
 858			start_blk = log_bbnum - (num_scan_bblks - head_blk);
 859			new_blk = log_bbnum;
 860			ASSERT(start_blk <= INT_MAX &&
 861				(xfs_daddr_t) log_bbnum-start_blk >= 0);
 862			ASSERT(head_blk <= INT_MAX);
 863			error = xlog_find_verify_log_record(log, start_blk,
 864							&new_blk, (int)head_blk);
 865			if (error == 1)
 866				error = -EIO;
 867			if (error)
 868				goto bp_err;
 869			if (new_blk != log_bbnum)
 870				head_blk = new_blk;
 871		} else if (error)
 872			goto bp_err;
 873	}
 874
 875	xlog_put_bp(bp);
 876	if (head_blk == log_bbnum)
 877		*return_head_blk = 0;
 878	else
 879		*return_head_blk = head_blk;
 880	/*
 881	 * When returning here, we have a good block number.  Bad block
 882	 * means that during a previous crash, we didn't have a clean break
 883	 * from cycle number N to cycle number N-1.  In this case, we need
 884	 * to find the first block with cycle number N-1.
 885	 */
 886	return 0;
 887
 888 bp_err:
 889	xlog_put_bp(bp);
 890
 891	if (error)
 892		xfs_warn(log->l_mp, "failed to find log head");
 893	return error;
 894}
 895
 896/*
 897 * Seek backwards in the log for log record headers.
 898 *
 899 * Given a starting log block, walk backwards until we find the provided number
 900 * of records or hit the provided tail block. The return value is the number of
 901 * records encountered or a negative error code. The log block and buffer
 902 * pointer of the last record seen are returned in rblk and rhead respectively.
 903 */
 904STATIC int
 905xlog_rseek_logrec_hdr(
 906	struct xlog		*log,
 907	xfs_daddr_t		head_blk,
 908	xfs_daddr_t		tail_blk,
 909	int			count,
 910	struct xfs_buf		*bp,
 911	xfs_daddr_t		*rblk,
 912	struct xlog_rec_header	**rhead,
 913	bool			*wrapped)
 914{
 915	int			i;
 916	int			error;
 917	int			found = 0;
 918	char			*offset = NULL;
 919	xfs_daddr_t		end_blk;
 920
 921	*wrapped = false;
 922
 923	/*
 924	 * Walk backwards from the head block until we hit the tail or the first
 925	 * block in the log.
 926	 */
 927	end_blk = head_blk > tail_blk ? tail_blk : 0;
 928	for (i = (int) head_blk - 1; i >= end_blk; i--) {
 929		error = xlog_bread(log, i, 1, bp, &offset);
 930		if (error)
 931			goto out_error;
 932
 933		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
 934			*rblk = i;
 935			*rhead = (struct xlog_rec_header *) offset;
 936			if (++found == count)
 937				break;
 938		}
 939	}
 940
 941	/*
 942	 * If we haven't hit the tail block or the log record header count,
 943	 * start looking again from the end of the physical log. Note that
 944	 * callers can pass head == tail if the tail is not yet known.
 945	 */
 946	if (tail_blk >= head_blk && found != count) {
 947		for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
 948			error = xlog_bread(log, i, 1, bp, &offset);
 949			if (error)
 950				goto out_error;
 951
 952			if (*(__be32 *)offset ==
 953			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
 954				*wrapped = true;
 955				*rblk = i;
 956				*rhead = (struct xlog_rec_header *) offset;
 957				if (++found == count)
 958					break;
 959			}
 960		}
 961	}
 962
 963	return found;
 964
 965out_error:
 966	return error;
 967}
 968
 969/*
 970 * Seek forward in the log for log record headers.
 971 *
 972 * Given head and tail blocks, walk forward from the tail block until we find
 973 * the provided number of records or hit the head block. The return value is the
 974 * number of records encountered or a negative error code. The log block and
 975 * buffer pointer of the last record seen are returned in rblk and rhead
 976 * respectively.
 977 */
 978STATIC int
 979xlog_seek_logrec_hdr(
 980	struct xlog		*log,
 981	xfs_daddr_t		head_blk,
 982	xfs_daddr_t		tail_blk,
 983	int			count,
 984	struct xfs_buf		*bp,
 985	xfs_daddr_t		*rblk,
 986	struct xlog_rec_header	**rhead,
 987	bool			*wrapped)
 988{
 989	int			i;
 990	int			error;
 991	int			found = 0;
 992	char			*offset = NULL;
 993	xfs_daddr_t		end_blk;
 994
 995	*wrapped = false;
 996
 997	/*
 998	 * Walk forward from the tail block until we hit the head or the last
 999	 * block in the log.
1000	 */
1001	end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
1002	for (i = (int) tail_blk; i <= end_blk; i++) {
1003		error = xlog_bread(log, i, 1, bp, &offset);
1004		if (error)
1005			goto out_error;
1006
1007		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1008			*rblk = i;
1009			*rhead = (struct xlog_rec_header *) offset;
1010			if (++found == count)
1011				break;
1012		}
1013	}
1014
1015	/*
1016	 * If we haven't hit the head block or the log record header count,
1017	 * start looking again from the start of the physical log.
1018	 */
1019	if (tail_blk > head_blk && found != count) {
1020		for (i = 0; i < (int) head_blk; i++) {
1021			error = xlog_bread(log, i, 1, bp, &offset);
1022			if (error)
1023				goto out_error;
1024
1025			if (*(__be32 *)offset ==
1026			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1027				*wrapped = true;
1028				*rblk = i;
1029				*rhead = (struct xlog_rec_header *) offset;
1030				if (++found == count)
1031					break;
1032			}
1033		}
1034	}
1035
1036	return found;
1037
1038out_error:
1039	return error;
1040}
1041
1042/*
1043 * Calculate distance from head to tail (i.e., unused space in the log).
1044 */
1045static inline int
1046xlog_tail_distance(
1047	struct xlog	*log,
1048	xfs_daddr_t	head_blk,
1049	xfs_daddr_t	tail_blk)
1050{
1051	if (head_blk < tail_blk)
1052		return tail_blk - head_blk;
1053
1054	return tail_blk + (log->l_logBBsize - head_blk);
1055}
1056
1057/*
1058 * Verify the log tail. This is particularly important when torn or incomplete
1059 * writes have been detected near the front of the log and the head has been
1060 * walked back accordingly.
1061 *
1062 * We also have to handle the case where the tail was pinned and the head
1063 * blocked behind the tail right before a crash. If the tail had been pushed
1064 * immediately prior to the crash and the subsequent checkpoint was only
1065 * partially written, it's possible it overwrote the last referenced tail in the
1066 * log with garbage. This is not a coherency problem because the tail must have
1067 * been pushed before it can be overwritten, but appears as log corruption to
1068 * recovery because we have no way to know the tail was updated if the
1069 * subsequent checkpoint didn't write successfully.
1070 *
1071 * Therefore, CRC check the log from tail to head. If a failure occurs and the
1072 * offending record is within max iclog bufs from the head, walk the tail
1073 * forward and retry until a valid tail is found or corruption is detected out
1074 * of the range of a possible overwrite.
1075 */
1076STATIC int
1077xlog_verify_tail(
1078	struct xlog		*log,
1079	xfs_daddr_t		head_blk,
1080	xfs_daddr_t		*tail_blk,
1081	int			hsize)
1082{
1083	struct xlog_rec_header	*thead;
1084	struct xfs_buf		*bp;
1085	xfs_daddr_t		first_bad;
1086	int			error = 0;
1087	bool			wrapped;
1088	xfs_daddr_t		tmp_tail;
1089	xfs_daddr_t		orig_tail = *tail_blk;
1090
1091	bp = xlog_get_bp(log, 1);
1092	if (!bp)
1093		return -ENOMEM;
1094
1095	/*
1096	 * Make sure the tail points to a record (returns positive count on
1097	 * success).
1098	 */
1099	error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, bp,
1100			&tmp_tail, &thead, &wrapped);
1101	if (error < 0)
1102		goto out;
1103	if (*tail_blk != tmp_tail)
1104		*tail_blk = tmp_tail;
1105
1106	/*
1107	 * Run a CRC check from the tail to the head. We can't just check
1108	 * MAX_ICLOGS records past the tail because the tail may point to stale
1109	 * blocks cleared during the search for the head/tail. These blocks are
1110	 * overwritten with zero-length records and thus record count is not a
1111	 * reliable indicator of the iclog state before a crash.
1112	 */
1113	first_bad = 0;
1114	error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1115				      XLOG_RECOVER_CRCPASS, &first_bad);
1116	while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1117		int	tail_distance;
1118
1119		/*
1120		 * Is corruption within range of the head? If so, retry from
1121		 * the next record. Otherwise return an error.
1122		 */
1123		tail_distance = xlog_tail_distance(log, head_blk, first_bad);
1124		if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize))
1125			break;
1126
1127		/* skip to the next record; returns positive count on success */
1128		error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2, bp,
1129				&tmp_tail, &thead, &wrapped);
1130		if (error < 0)
1131			goto out;
1132
1133		*tail_blk = tmp_tail;
1134		first_bad = 0;
1135		error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1136					      XLOG_RECOVER_CRCPASS, &first_bad);
1137	}
1138
1139	if (!error && *tail_blk != orig_tail)
1140		xfs_warn(log->l_mp,
1141		"Tail block (0x%llx) overwrite detected. Updated to 0x%llx",
1142			 orig_tail, *tail_blk);
1143out:
1144	xlog_put_bp(bp);
1145	return error;
1146}
1147
1148/*
1149 * Detect and trim torn writes from the head of the log.
1150 *
1151 * Storage without sector atomicity guarantees can result in torn writes in the
1152 * log in the event of a crash. Our only means to detect this scenario is via
1153 * CRC verification. While we can't always be certain that CRC verification
1154 * failure is due to a torn write vs. an unrelated corruption, we do know that
1155 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1156 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1157 * the log and treat failures in this range as torn writes as a matter of
1158 * policy. In the event of CRC failure, the head is walked back to the last good
1159 * record in the log and the tail is updated from that record and verified.
1160 */
1161STATIC int
1162xlog_verify_head(
1163	struct xlog		*log,
1164	xfs_daddr_t		*head_blk,	/* in/out: unverified head */
1165	xfs_daddr_t		*tail_blk,	/* out: tail block */
1166	struct xfs_buf		*bp,
1167	xfs_daddr_t		*rhead_blk,	/* start blk of last record */
1168	struct xlog_rec_header	**rhead,	/* ptr to last record */
1169	bool			*wrapped)	/* last rec. wraps phys. log */
1170{
1171	struct xlog_rec_header	*tmp_rhead;
1172	struct xfs_buf		*tmp_bp;
1173	xfs_daddr_t		first_bad;
1174	xfs_daddr_t		tmp_rhead_blk;
1175	int			found;
1176	int			error;
1177	bool			tmp_wrapped;
1178
1179	/*
1180	 * Check the head of the log for torn writes. Search backwards from the
1181	 * head until we hit the tail or the maximum number of log record I/Os
1182	 * that could have been in flight at one time. Use a temporary buffer so
1183	 * we don't trash the rhead/bp pointers from the caller.
1184	 */
1185	tmp_bp = xlog_get_bp(log, 1);
1186	if (!tmp_bp)
1187		return -ENOMEM;
1188	error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1189				      XLOG_MAX_ICLOGS, tmp_bp, &tmp_rhead_blk,
1190				      &tmp_rhead, &tmp_wrapped);
1191	xlog_put_bp(tmp_bp);
1192	if (error < 0)
1193		return error;
1194
1195	/*
1196	 * Now run a CRC verification pass over the records starting at the
1197	 * block found above to the current head. If a CRC failure occurs, the
1198	 * log block of the first bad record is saved in first_bad.
1199	 */
1200	error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1201				      XLOG_RECOVER_CRCPASS, &first_bad);
1202	if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1203		/*
1204		 * We've hit a potential torn write. Reset the error and warn
1205		 * about it.
1206		 */
1207		error = 0;
1208		xfs_warn(log->l_mp,
1209"Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1210			 first_bad, *head_blk);
1211
1212		/*
1213		 * Get the header block and buffer pointer for the last good
1214		 * record before the bad record.
1215		 *
1216		 * Note that xlog_find_tail() clears the blocks at the new head
1217		 * (i.e., the records with invalid CRC) if the cycle number
1218		 * matches the the current cycle.
1219		 */
1220		found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, bp,
1221					      rhead_blk, rhead, wrapped);
1222		if (found < 0)
1223			return found;
1224		if (found == 0)		/* XXX: right thing to do here? */
1225			return -EIO;
1226
1227		/*
1228		 * Reset the head block to the starting block of the first bad
1229		 * log record and set the tail block based on the last good
1230		 * record.
1231		 *
1232		 * Bail out if the updated head/tail match as this indicates
1233		 * possible corruption outside of the acceptable
1234		 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1235		 */
1236		*head_blk = first_bad;
1237		*tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1238		if (*head_blk == *tail_blk) {
1239			ASSERT(0);
1240			return 0;
1241		}
1242	}
1243	if (error)
1244		return error;
1245
1246	return xlog_verify_tail(log, *head_blk, tail_blk,
1247				be32_to_cpu((*rhead)->h_size));
1248}
1249
1250/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1251 * Check whether the head of the log points to an unmount record. In other
1252 * words, determine whether the log is clean. If so, update the in-core state
1253 * appropriately.
1254 */
1255static int
1256xlog_check_unmount_rec(
1257	struct xlog		*log,
1258	xfs_daddr_t		*head_blk,
1259	xfs_daddr_t		*tail_blk,
1260	struct xlog_rec_header	*rhead,
1261	xfs_daddr_t		rhead_blk,
1262	struct xfs_buf		*bp,
1263	bool			*clean)
1264{
1265	struct xlog_op_header	*op_head;
1266	xfs_daddr_t		umount_data_blk;
1267	xfs_daddr_t		after_umount_blk;
1268	int			hblks;
1269	int			error;
1270	char			*offset;
1271
1272	*clean = false;
1273
1274	/*
1275	 * Look for unmount record. If we find it, then we know there was a
1276	 * clean unmount. Since 'i' could be the last block in the physical
1277	 * log, we convert to a log block before comparing to the head_blk.
1278	 *
1279	 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1280	 * below. We won't want to clear the unmount record if there is one, so
1281	 * we pass the lsn of the unmount record rather than the block after it.
1282	 */
1283	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1284		int	h_size = be32_to_cpu(rhead->h_size);
1285		int	h_version = be32_to_cpu(rhead->h_version);
1286
1287		if ((h_version & XLOG_VERSION_2) &&
1288		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1289			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1290			if (h_size % XLOG_HEADER_CYCLE_SIZE)
1291				hblks++;
1292		} else {
1293			hblks = 1;
1294		}
1295	} else {
1296		hblks = 1;
1297	}
1298	after_umount_blk = rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len));
1299	after_umount_blk = do_mod(after_umount_blk, log->l_logBBsize);
1300	if (*head_blk == after_umount_blk &&
1301	    be32_to_cpu(rhead->h_num_logops) == 1) {
1302		umount_data_blk = rhead_blk + hblks;
1303		umount_data_blk = do_mod(umount_data_blk, log->l_logBBsize);
1304		error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1305		if (error)
1306			return error;
1307
1308		op_head = (struct xlog_op_header *)offset;
1309		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1310			/*
1311			 * Set tail and last sync so that newly written log
1312			 * records will point recovery to after the current
1313			 * unmount record.
1314			 */
1315			xlog_assign_atomic_lsn(&log->l_tail_lsn,
1316					log->l_curr_cycle, after_umount_blk);
1317			xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1318					log->l_curr_cycle, after_umount_blk);
1319			*tail_blk = after_umount_blk;
1320
1321			*clean = true;
1322		}
1323	}
1324
1325	return 0;
1326}
1327
1328static void
1329xlog_set_state(
1330	struct xlog		*log,
1331	xfs_daddr_t		head_blk,
1332	struct xlog_rec_header	*rhead,
1333	xfs_daddr_t		rhead_blk,
1334	bool			bump_cycle)
1335{
1336	/*
1337	 * Reset log values according to the state of the log when we
1338	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
1339	 * one because the next write starts a new cycle rather than
1340	 * continuing the cycle of the last good log record.  At this
1341	 * point we have guaranteed that all partial log records have been
1342	 * accounted for.  Therefore, we know that the last good log record
1343	 * written was complete and ended exactly on the end boundary
1344	 * of the physical log.
1345	 */
1346	log->l_prev_block = rhead_blk;
1347	log->l_curr_block = (int)head_blk;
1348	log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1349	if (bump_cycle)
1350		log->l_curr_cycle++;
1351	atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1352	atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
1353	xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
1354					BBTOB(log->l_curr_block));
1355	xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
1356					BBTOB(log->l_curr_block));
1357}
1358
1359/*
1360 * Find the sync block number or the tail of the log.
1361 *
1362 * This will be the block number of the last record to have its
1363 * associated buffers synced to disk.  Every log record header has
1364 * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
1365 * to get a sync block number.  The only concern is to figure out which
1366 * log record header to believe.
1367 *
1368 * The following algorithm uses the log record header with the largest
1369 * lsn.  The entire log record does not need to be valid.  We only care
1370 * that the header is valid.
1371 *
1372 * We could speed up search by using current head_blk buffer, but it is not
1373 * available.
1374 */
1375STATIC int
1376xlog_find_tail(
1377	struct xlog		*log,
1378	xfs_daddr_t		*head_blk,
1379	xfs_daddr_t		*tail_blk)
1380{
1381	xlog_rec_header_t	*rhead;
1382	char			*offset = NULL;
1383	xfs_buf_t		*bp;
1384	int			error;
1385	xfs_daddr_t		rhead_blk;
1386	xfs_lsn_t		tail_lsn;
1387	bool			wrapped = false;
1388	bool			clean = false;
1389
1390	/*
1391	 * Find previous log record
1392	 */
1393	if ((error = xlog_find_head(log, head_blk)))
1394		return error;
1395	ASSERT(*head_blk < INT_MAX);
1396
1397	bp = xlog_get_bp(log, 1);
1398	if (!bp)
1399		return -ENOMEM;
1400	if (*head_blk == 0) {				/* special case */
1401		error = xlog_bread(log, 0, 1, bp, &offset);
1402		if (error)
1403			goto done;
1404
1405		if (xlog_get_cycle(offset) == 0) {
1406			*tail_blk = 0;
1407			/* leave all other log inited values alone */
1408			goto done;
1409		}
1410	}
1411
1412	/*
1413	 * Search backwards through the log looking for the log record header
1414	 * block. This wraps all the way back around to the head so something is
1415	 * seriously wrong if we can't find it.
1416	 */
1417	error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, bp,
1418				      &rhead_blk, &rhead, &wrapped);
1419	if (error < 0)
1420		return error;
1421	if (!error) {
1422		xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1423		return -EIO;
 
1424	}
1425	*tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1426
1427	/*
1428	 * Set the log state based on the current head record.
1429	 */
1430	xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
1431	tail_lsn = atomic64_read(&log->l_tail_lsn);
1432
1433	/*
1434	 * Look for an unmount record at the head of the log. This sets the log
1435	 * state to determine whether recovery is necessary.
1436	 */
1437	error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1438				       rhead_blk, bp, &clean);
1439	if (error)
1440		goto done;
1441
1442	/*
1443	 * Verify the log head if the log is not clean (e.g., we have anything
1444	 * but an unmount record at the head). This uses CRC verification to
1445	 * detect and trim torn writes. If discovered, CRC failures are
1446	 * considered torn writes and the log head is trimmed accordingly.
1447	 *
1448	 * Note that we can only run CRC verification when the log is dirty
1449	 * because there's no guarantee that the log data behind an unmount
1450	 * record is compatible with the current architecture.
1451	 */
1452	if (!clean) {
1453		xfs_daddr_t	orig_head = *head_blk;
1454
1455		error = xlog_verify_head(log, head_blk, tail_blk, bp,
1456					 &rhead_blk, &rhead, &wrapped);
1457		if (error)
1458			goto done;
1459
1460		/* update in-core state again if the head changed */
1461		if (*head_blk != orig_head) {
1462			xlog_set_state(log, *head_blk, rhead, rhead_blk,
1463				       wrapped);
1464			tail_lsn = atomic64_read(&log->l_tail_lsn);
1465			error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1466						       rhead, rhead_blk, bp,
1467						       &clean);
1468			if (error)
1469				goto done;
1470		}
1471	}
1472
1473	/*
1474	 * Note that the unmount was clean. If the unmount was not clean, we
1475	 * need to know this to rebuild the superblock counters from the perag
1476	 * headers if we have a filesystem using non-persistent counters.
1477	 */
1478	if (clean)
1479		log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1480
1481	/*
1482	 * Make sure that there are no blocks in front of the head
1483	 * with the same cycle number as the head.  This can happen
1484	 * because we allow multiple outstanding log writes concurrently,
1485	 * and the later writes might make it out before earlier ones.
1486	 *
1487	 * We use the lsn from before modifying it so that we'll never
1488	 * overwrite the unmount record after a clean unmount.
1489	 *
1490	 * Do this only if we are going to recover the filesystem
1491	 *
1492	 * NOTE: This used to say "if (!readonly)"
1493	 * However on Linux, we can & do recover a read-only filesystem.
1494	 * We only skip recovery if NORECOVERY is specified on mount,
1495	 * in which case we would not be here.
1496	 *
1497	 * But... if the -device- itself is readonly, just skip this.
1498	 * We can't recover this device anyway, so it won't matter.
1499	 */
1500	if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1501		error = xlog_clear_stale_blocks(log, tail_lsn);
1502
1503done:
1504	xlog_put_bp(bp);
1505
1506	if (error)
1507		xfs_warn(log->l_mp, "failed to locate log tail");
1508	return error;
1509}
1510
1511/*
1512 * Is the log zeroed at all?
1513 *
1514 * The last binary search should be changed to perform an X block read
1515 * once X becomes small enough.  You can then search linearly through
1516 * the X blocks.  This will cut down on the number of reads we need to do.
1517 *
1518 * If the log is partially zeroed, this routine will pass back the blkno
1519 * of the first block with cycle number 0.  It won't have a complete LR
1520 * preceding it.
1521 *
1522 * Return:
1523 *	0  => the log is completely written to
1524 *	1 => use *blk_no as the first block of the log
1525 *	<0 => error has occurred
1526 */
1527STATIC int
1528xlog_find_zeroed(
1529	struct xlog	*log,
1530	xfs_daddr_t	*blk_no)
1531{
1532	xfs_buf_t	*bp;
1533	char		*offset;
1534	uint	        first_cycle, last_cycle;
1535	xfs_daddr_t	new_blk, last_blk, start_blk;
1536	xfs_daddr_t     num_scan_bblks;
1537	int	        error, log_bbnum = log->l_logBBsize;
 
1538
1539	*blk_no = 0;
1540
1541	/* check totally zeroed log */
1542	bp = xlog_get_bp(log, 1);
1543	if (!bp)
1544		return -ENOMEM;
1545	error = xlog_bread(log, 0, 1, bp, &offset);
1546	if (error)
1547		goto bp_err;
1548
1549	first_cycle = xlog_get_cycle(offset);
1550	if (first_cycle == 0) {		/* completely zeroed log */
1551		*blk_no = 0;
1552		xlog_put_bp(bp);
1553		return 1;
1554	}
1555
1556	/* check partially zeroed log */
1557	error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1558	if (error)
1559		goto bp_err;
1560
1561	last_cycle = xlog_get_cycle(offset);
1562	if (last_cycle != 0) {		/* log completely written to */
1563		xlog_put_bp(bp);
1564		return 0;
1565	} else if (first_cycle != 1) {
1566		/*
1567		 * If the cycle of the last block is zero, the cycle of
1568		 * the first block must be 1. If it's not, maybe we're
1569		 * not looking at a log... Bail out.
1570		 */
1571		xfs_warn(log->l_mp,
1572			"Log inconsistent or not a log (last==0, first!=1)");
1573		error = -EINVAL;
1574		goto bp_err;
1575	}
1576
1577	/* we have a partially zeroed log */
1578	last_blk = log_bbnum-1;
1579	if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1580		goto bp_err;
 
1581
1582	/*
1583	 * Validate the answer.  Because there is no way to guarantee that
1584	 * the entire log is made up of log records which are the same size,
1585	 * we scan over the defined maximum blocks.  At this point, the maximum
1586	 * is not chosen to mean anything special.   XXXmiken
1587	 */
1588	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1589	ASSERT(num_scan_bblks <= INT_MAX);
1590
1591	if (last_blk < num_scan_bblks)
1592		num_scan_bblks = last_blk;
1593	start_blk = last_blk - num_scan_bblks;
1594
1595	/*
1596	 * We search for any instances of cycle number 0 that occur before
1597	 * our current estimate of the head.  What we're trying to detect is
1598	 *        1 ... | 0 | 1 | 0...
1599	 *                       ^ binary search ends here
1600	 */
1601	if ((error = xlog_find_verify_cycle(log, start_blk,
1602					 (int)num_scan_bblks, 0, &new_blk)))
1603		goto bp_err;
1604	if (new_blk != -1)
1605		last_blk = new_blk;
1606
1607	/*
1608	 * Potentially backup over partial log record write.  We don't need
1609	 * to search the end of the log because we know it is zero.
1610	 */
1611	error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1612	if (error == 1)
1613		error = -EIO;
1614	if (error)
1615		goto bp_err;
1616
1617	*blk_no = last_blk;
1618bp_err:
1619	xlog_put_bp(bp);
1620	if (error)
1621		return error;
1622	return 1;
1623}
1624
1625/*
1626 * These are simple subroutines used by xlog_clear_stale_blocks() below
1627 * to initialize a buffer full of empty log record headers and write
1628 * them into the log.
1629 */
1630STATIC void
1631xlog_add_record(
1632	struct xlog		*log,
1633	char			*buf,
1634	int			cycle,
1635	int			block,
1636	int			tail_cycle,
1637	int			tail_block)
1638{
1639	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1640
1641	memset(buf, 0, BBSIZE);
1642	recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1643	recp->h_cycle = cpu_to_be32(cycle);
1644	recp->h_version = cpu_to_be32(
1645			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1646	recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1647	recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1648	recp->h_fmt = cpu_to_be32(XLOG_FMT);
1649	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1650}
1651
1652STATIC int
1653xlog_write_log_records(
1654	struct xlog	*log,
1655	int		cycle,
1656	int		start_block,
1657	int		blocks,
1658	int		tail_cycle,
1659	int		tail_block)
1660{
1661	char		*offset;
1662	xfs_buf_t	*bp;
1663	int		balign, ealign;
1664	int		sectbb = log->l_sectBBsize;
1665	int		end_block = start_block + blocks;
1666	int		bufblks;
1667	int		error = 0;
1668	int		i, j = 0;
1669
1670	/*
1671	 * Greedily allocate a buffer big enough to handle the full
1672	 * range of basic blocks to be written.  If that fails, try
1673	 * a smaller size.  We need to be able to write at least a
1674	 * log sector, or we're out of luck.
1675	 */
1676	bufblks = 1 << ffs(blocks);
1677	while (bufblks > log->l_logBBsize)
1678		bufblks >>= 1;
1679	while (!(bp = xlog_get_bp(log, bufblks))) {
1680		bufblks >>= 1;
1681		if (bufblks < sectbb)
1682			return -ENOMEM;
1683	}
1684
1685	/* We may need to do a read at the start to fill in part of
1686	 * the buffer in the starting sector not covered by the first
1687	 * write below.
1688	 */
1689	balign = round_down(start_block, sectbb);
1690	if (balign != start_block) {
1691		error = xlog_bread_noalign(log, start_block, 1, bp);
1692		if (error)
1693			goto out_put_bp;
1694
1695		j = start_block - balign;
1696	}
1697
1698	for (i = start_block; i < end_block; i += bufblks) {
1699		int		bcount, endcount;
1700
1701		bcount = min(bufblks, end_block - start_block);
1702		endcount = bcount - j;
1703
1704		/* We may need to do a read at the end to fill in part of
1705		 * the buffer in the final sector not covered by the write.
1706		 * If this is the same sector as the above read, skip it.
1707		 */
1708		ealign = round_down(end_block, sectbb);
1709		if (j == 0 && (start_block + endcount > ealign)) {
1710			offset = bp->b_addr + BBTOB(ealign - start_block);
1711			error = xlog_bread_offset(log, ealign, sectbb,
1712							bp, offset);
1713			if (error)
1714				break;
1715
1716		}
1717
1718		offset = xlog_align(log, start_block, endcount, bp);
1719		for (; j < endcount; j++) {
1720			xlog_add_record(log, offset, cycle, i+j,
1721					tail_cycle, tail_block);
1722			offset += BBSIZE;
1723		}
1724		error = xlog_bwrite(log, start_block, endcount, bp);
1725		if (error)
1726			break;
1727		start_block += endcount;
1728		j = 0;
1729	}
1730
1731 out_put_bp:
1732	xlog_put_bp(bp);
1733	return error;
1734}
1735
1736/*
1737 * This routine is called to blow away any incomplete log writes out
1738 * in front of the log head.  We do this so that we won't become confused
1739 * if we come up, write only a little bit more, and then crash again.
1740 * If we leave the partial log records out there, this situation could
1741 * cause us to think those partial writes are valid blocks since they
1742 * have the current cycle number.  We get rid of them by overwriting them
1743 * with empty log records with the old cycle number rather than the
1744 * current one.
1745 *
1746 * The tail lsn is passed in rather than taken from
1747 * the log so that we will not write over the unmount record after a
1748 * clean unmount in a 512 block log.  Doing so would leave the log without
1749 * any valid log records in it until a new one was written.  If we crashed
1750 * during that time we would not be able to recover.
1751 */
1752STATIC int
1753xlog_clear_stale_blocks(
1754	struct xlog	*log,
1755	xfs_lsn_t	tail_lsn)
1756{
1757	int		tail_cycle, head_cycle;
1758	int		tail_block, head_block;
1759	int		tail_distance, max_distance;
1760	int		distance;
1761	int		error;
1762
1763	tail_cycle = CYCLE_LSN(tail_lsn);
1764	tail_block = BLOCK_LSN(tail_lsn);
1765	head_cycle = log->l_curr_cycle;
1766	head_block = log->l_curr_block;
1767
1768	/*
1769	 * Figure out the distance between the new head of the log
1770	 * and the tail.  We want to write over any blocks beyond the
1771	 * head that we may have written just before the crash, but
1772	 * we don't want to overwrite the tail of the log.
1773	 */
1774	if (head_cycle == tail_cycle) {
1775		/*
1776		 * The tail is behind the head in the physical log,
1777		 * so the distance from the head to the tail is the
1778		 * distance from the head to the end of the log plus
1779		 * the distance from the beginning of the log to the
1780		 * tail.
1781		 */
1782		if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1783			XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1784					 XFS_ERRLEVEL_LOW, log->l_mp);
1785			return -EFSCORRUPTED;
1786		}
1787		tail_distance = tail_block + (log->l_logBBsize - head_block);
1788	} else {
1789		/*
1790		 * The head is behind the tail in the physical log,
1791		 * so the distance from the head to the tail is just
1792		 * the tail block minus the head block.
1793		 */
1794		if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1795			XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1796					 XFS_ERRLEVEL_LOW, log->l_mp);
1797			return -EFSCORRUPTED;
1798		}
1799		tail_distance = tail_block - head_block;
1800	}
1801
1802	/*
1803	 * If the head is right up against the tail, we can't clear
1804	 * anything.
1805	 */
1806	if (tail_distance <= 0) {
1807		ASSERT(tail_distance == 0);
1808		return 0;
1809	}
1810
1811	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1812	/*
1813	 * Take the smaller of the maximum amount of outstanding I/O
1814	 * we could have and the distance to the tail to clear out.
1815	 * We take the smaller so that we don't overwrite the tail and
1816	 * we don't waste all day writing from the head to the tail
1817	 * for no reason.
1818	 */
1819	max_distance = MIN(max_distance, tail_distance);
1820
1821	if ((head_block + max_distance) <= log->l_logBBsize) {
1822		/*
1823		 * We can stomp all the blocks we need to without
1824		 * wrapping around the end of the log.  Just do it
1825		 * in a single write.  Use the cycle number of the
1826		 * current cycle minus one so that the log will look like:
1827		 *     n ... | n - 1 ...
1828		 */
1829		error = xlog_write_log_records(log, (head_cycle - 1),
1830				head_block, max_distance, tail_cycle,
1831				tail_block);
1832		if (error)
1833			return error;
1834	} else {
1835		/*
1836		 * We need to wrap around the end of the physical log in
1837		 * order to clear all the blocks.  Do it in two separate
1838		 * I/Os.  The first write should be from the head to the
1839		 * end of the physical log, and it should use the current
1840		 * cycle number minus one just like above.
1841		 */
1842		distance = log->l_logBBsize - head_block;
1843		error = xlog_write_log_records(log, (head_cycle - 1),
1844				head_block, distance, tail_cycle,
1845				tail_block);
1846
1847		if (error)
1848			return error;
1849
1850		/*
1851		 * Now write the blocks at the start of the physical log.
1852		 * This writes the remainder of the blocks we want to clear.
1853		 * It uses the current cycle number since we're now on the
1854		 * same cycle as the head so that we get:
1855		 *    n ... n ... | n - 1 ...
1856		 *    ^^^^^ blocks we're writing
1857		 */
1858		distance = max_distance - (log->l_logBBsize - head_block);
1859		error = xlog_write_log_records(log, head_cycle, 0, distance,
1860				tail_cycle, tail_block);
1861		if (error)
1862			return error;
1863	}
1864
1865	return 0;
1866}
1867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1868/******************************************************************************
1869 *
1870 *		Log recover routines
1871 *
1872 ******************************************************************************
1873 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1874
1875/*
1876 * Sort the log items in the transaction.
1877 *
1878 * The ordering constraints are defined by the inode allocation and unlink
1879 * behaviour. The rules are:
1880 *
1881 *	1. Every item is only logged once in a given transaction. Hence it
1882 *	   represents the last logged state of the item. Hence ordering is
1883 *	   dependent on the order in which operations need to be performed so
1884 *	   required initial conditions are always met.
1885 *
1886 *	2. Cancelled buffers are recorded in pass 1 in a separate table and
1887 *	   there's nothing to replay from them so we can simply cull them
1888 *	   from the transaction. However, we can't do that until after we've
1889 *	   replayed all the other items because they may be dependent on the
1890 *	   cancelled buffer and replaying the cancelled buffer can remove it
1891 *	   form the cancelled buffer table. Hence they have tobe done last.
1892 *
1893 *	3. Inode allocation buffers must be replayed before inode items that
1894 *	   read the buffer and replay changes into it. For filesystems using the
1895 *	   ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1896 *	   treated the same as inode allocation buffers as they create and
1897 *	   initialise the buffers directly.
1898 *
1899 *	4. Inode unlink buffers must be replayed after inode items are replayed.
1900 *	   This ensures that inodes are completely flushed to the inode buffer
1901 *	   in a "free" state before we remove the unlinked inode list pointer.
1902 *
1903 * Hence the ordering needs to be inode allocation buffers first, inode items
1904 * second, inode unlink buffers third and cancelled buffers last.
1905 *
1906 * But there's a problem with that - we can't tell an inode allocation buffer
1907 * apart from a regular buffer, so we can't separate them. We can, however,
1908 * tell an inode unlink buffer from the others, and so we can separate them out
1909 * from all the other buffers and move them to last.
1910 *
1911 * Hence, 4 lists, in order from head to tail:
1912 *	- buffer_list for all buffers except cancelled/inode unlink buffers
1913 *	- item_list for all non-buffer items
1914 *	- inode_buffer_list for inode unlink buffers
1915 *	- cancel_list for the cancelled buffers
1916 *
1917 * Note that we add objects to the tail of the lists so that first-to-last
1918 * ordering is preserved within the lists. Adding objects to the head of the
1919 * list means when we traverse from the head we walk them in last-to-first
1920 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1921 * but for all other items there may be specific ordering that we need to
1922 * preserve.
1923 */
1924STATIC int
1925xlog_recover_reorder_trans(
1926	struct xlog		*log,
1927	struct xlog_recover	*trans,
1928	int			pass)
1929{
1930	xlog_recover_item_t	*item, *n;
1931	int			error = 0;
1932	LIST_HEAD(sort_list);
1933	LIST_HEAD(cancel_list);
1934	LIST_HEAD(buffer_list);
1935	LIST_HEAD(inode_buffer_list);
1936	LIST_HEAD(inode_list);
1937
1938	list_splice_init(&trans->r_itemq, &sort_list);
1939	list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1940		xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1941
1942		switch (ITEM_TYPE(item)) {
1943		case XFS_LI_ICREATE:
1944			list_move_tail(&item->ri_list, &buffer_list);
1945			break;
1946		case XFS_LI_BUF:
1947			if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1948				trace_xfs_log_recover_item_reorder_head(log,
1949							trans, item, pass);
1950				list_move(&item->ri_list, &cancel_list);
1951				break;
1952			}
1953			if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1954				list_move(&item->ri_list, &inode_buffer_list);
1955				break;
1956			}
1957			list_move_tail(&item->ri_list, &buffer_list);
1958			break;
1959		case XFS_LI_INODE:
1960		case XFS_LI_DQUOT:
1961		case XFS_LI_QUOTAOFF:
1962		case XFS_LI_EFD:
1963		case XFS_LI_EFI:
1964		case XFS_LI_RUI:
1965		case XFS_LI_RUD:
1966		case XFS_LI_CUI:
1967		case XFS_LI_CUD:
1968		case XFS_LI_BUI:
1969		case XFS_LI_BUD:
1970			trace_xfs_log_recover_item_reorder_tail(log,
1971							trans, item, pass);
1972			list_move_tail(&item->ri_list, &inode_list);
1973			break;
1974		default:
1975			xfs_warn(log->l_mp,
1976				"%s: unrecognized type of log operation",
1977				__func__);
1978			ASSERT(0);
1979			/*
1980			 * return the remaining items back to the transaction
1981			 * item list so they can be freed in caller.
1982			 */
1983			if (!list_empty(&sort_list))
1984				list_splice_init(&sort_list, &trans->r_itemq);
1985			error = -EIO;
1986			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1987		}
1988	}
1989out:
1990	ASSERT(list_empty(&sort_list));
1991	if (!list_empty(&buffer_list))
1992		list_splice(&buffer_list, &trans->r_itemq);
1993	if (!list_empty(&inode_list))
1994		list_splice_tail(&inode_list, &trans->r_itemq);
1995	if (!list_empty(&inode_buffer_list))
1996		list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1997	if (!list_empty(&cancel_list))
1998		list_splice_tail(&cancel_list, &trans->r_itemq);
1999	return error;
2000}
2001
2002/*
2003 * Build up the table of buf cancel records so that we don't replay
2004 * cancelled data in the second pass.  For buffer records that are
2005 * not cancel records, there is nothing to do here so we just return.
2006 *
2007 * If we get a cancel record which is already in the table, this indicates
2008 * that the buffer was cancelled multiple times.  In order to ensure
2009 * that during pass 2 we keep the record in the table until we reach its
2010 * last occurrence in the log, we keep a reference count in the cancel
2011 * record in the table to tell us how many times we expect to see this
2012 * record during the second pass.
2013 */
2014STATIC int
2015xlog_recover_buffer_pass1(
2016	struct xlog			*log,
2017	struct xlog_recover_item	*item)
2018{
2019	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
2020	struct list_head	*bucket;
2021	struct xfs_buf_cancel	*bcp;
2022
2023	/*
2024	 * If this isn't a cancel buffer item, then just return.
2025	 */
2026	if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
2027		trace_xfs_log_recover_buf_not_cancel(log, buf_f);
2028		return 0;
2029	}
2030
2031	/*
2032	 * Insert an xfs_buf_cancel record into the hash table of them.
2033	 * If there is already an identical record, bump its reference count.
2034	 */
2035	bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
2036	list_for_each_entry(bcp, bucket, bc_list) {
2037		if (bcp->bc_blkno == buf_f->blf_blkno &&
2038		    bcp->bc_len == buf_f->blf_len) {
2039			bcp->bc_refcount++;
2040			trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
2041			return 0;
2042		}
2043	}
2044
2045	bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
2046	bcp->bc_blkno = buf_f->blf_blkno;
2047	bcp->bc_len = buf_f->blf_len;
2048	bcp->bc_refcount = 1;
2049	list_add_tail(&bcp->bc_list, bucket);
2050
2051	trace_xfs_log_recover_buf_cancel_add(log, buf_f);
2052	return 0;
2053}
2054
2055/*
2056 * Check to see whether the buffer being recovered has a corresponding
2057 * entry in the buffer cancel record table. If it is, return the cancel
2058 * buffer structure to the caller.
2059 */
2060STATIC struct xfs_buf_cancel *
2061xlog_peek_buffer_cancelled(
2062	struct xlog		*log,
2063	xfs_daddr_t		blkno,
2064	uint			len,
2065	unsigned short			flags)
2066{
2067	struct list_head	*bucket;
2068	struct xfs_buf_cancel	*bcp;
2069
2070	if (!log->l_buf_cancel_table) {
2071		/* empty table means no cancelled buffers in the log */
2072		ASSERT(!(flags & XFS_BLF_CANCEL));
2073		return NULL;
2074	}
2075
2076	bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
2077	list_for_each_entry(bcp, bucket, bc_list) {
2078		if (bcp->bc_blkno == blkno && bcp->bc_len == len)
2079			return bcp;
2080	}
2081
2082	/*
2083	 * We didn't find a corresponding entry in the table, so return 0 so
2084	 * that the buffer is NOT cancelled.
2085	 */
2086	ASSERT(!(flags & XFS_BLF_CANCEL));
2087	return NULL;
2088}
2089
2090/*
2091 * If the buffer is being cancelled then return 1 so that it will be cancelled,
2092 * otherwise return 0.  If the buffer is actually a buffer cancel item
2093 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
2094 * table and remove it from the table if this is the last reference.
2095 *
2096 * We remove the cancel record from the table when we encounter its last
2097 * occurrence in the log so that if the same buffer is re-used again after its
2098 * last cancellation we actually replay the changes made at that point.
2099 */
2100STATIC int
2101xlog_check_buffer_cancelled(
2102	struct xlog		*log,
2103	xfs_daddr_t		blkno,
2104	uint			len,
2105	unsigned short			flags)
2106{
2107	struct xfs_buf_cancel	*bcp;
2108
2109	bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
2110	if (!bcp)
2111		return 0;
2112
2113	/*
2114	 * We've go a match, so return 1 so that the recovery of this buffer
2115	 * is cancelled.  If this buffer is actually a buffer cancel log
2116	 * item, then decrement the refcount on the one in the table and
2117	 * remove it if this is the last reference.
2118	 */
2119	if (flags & XFS_BLF_CANCEL) {
2120		if (--bcp->bc_refcount == 0) {
2121			list_del(&bcp->bc_list);
2122			kmem_free(bcp);
2123		}
2124	}
2125	return 1;
2126}
2127
2128/*
2129 * Perform recovery for a buffer full of inodes.  In these buffers, the only
2130 * data which should be recovered is that which corresponds to the
2131 * di_next_unlinked pointers in the on disk inode structures.  The rest of the
2132 * data for the inodes is always logged through the inodes themselves rather
2133 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
2134 *
2135 * The only time when buffers full of inodes are fully recovered is when the
2136 * buffer is full of newly allocated inodes.  In this case the buffer will
2137 * not be marked as an inode buffer and so will be sent to
2138 * xlog_recover_do_reg_buffer() below during recovery.
2139 */
2140STATIC int
2141xlog_recover_do_inode_buffer(
2142	struct xfs_mount	*mp,
2143	xlog_recover_item_t	*item,
2144	struct xfs_buf		*bp,
2145	xfs_buf_log_format_t	*buf_f)
2146{
2147	int			i;
2148	int			item_index = 0;
2149	int			bit = 0;
2150	int			nbits = 0;
2151	int			reg_buf_offset = 0;
2152	int			reg_buf_bytes = 0;
2153	int			next_unlinked_offset;
2154	int			inodes_per_buf;
2155	xfs_agino_t		*logged_nextp;
2156	xfs_agino_t		*buffer_nextp;
2157
2158	trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
2159
2160	/*
2161	 * Post recovery validation only works properly on CRC enabled
2162	 * filesystems.
2163	 */
2164	if (xfs_sb_version_hascrc(&mp->m_sb))
2165		bp->b_ops = &xfs_inode_buf_ops;
2166
2167	inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
2168	for (i = 0; i < inodes_per_buf; i++) {
2169		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
2170			offsetof(xfs_dinode_t, di_next_unlinked);
2171
2172		while (next_unlinked_offset >=
2173		       (reg_buf_offset + reg_buf_bytes)) {
2174			/*
2175			 * The next di_next_unlinked field is beyond
2176			 * the current logged region.  Find the next
2177			 * logged region that contains or is beyond
2178			 * the current di_next_unlinked field.
2179			 */
2180			bit += nbits;
2181			bit = xfs_next_bit(buf_f->blf_data_map,
2182					   buf_f->blf_map_size, bit);
2183
2184			/*
2185			 * If there are no more logged regions in the
2186			 * buffer, then we're done.
2187			 */
2188			if (bit == -1)
2189				return 0;
2190
2191			nbits = xfs_contig_bits(buf_f->blf_data_map,
2192						buf_f->blf_map_size, bit);
2193			ASSERT(nbits > 0);
2194			reg_buf_offset = bit << XFS_BLF_SHIFT;
2195			reg_buf_bytes = nbits << XFS_BLF_SHIFT;
2196			item_index++;
2197		}
2198
2199		/*
2200		 * If the current logged region starts after the current
2201		 * di_next_unlinked field, then move on to the next
2202		 * di_next_unlinked field.
2203		 */
2204		if (next_unlinked_offset < reg_buf_offset)
2205			continue;
2206
2207		ASSERT(item->ri_buf[item_index].i_addr != NULL);
2208		ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
2209		ASSERT((reg_buf_offset + reg_buf_bytes) <=
2210							BBTOB(bp->b_io_length));
2211
2212		/*
2213		 * The current logged region contains a copy of the
2214		 * current di_next_unlinked field.  Extract its value
2215		 * and copy it to the buffer copy.
2216		 */
2217		logged_nextp = item->ri_buf[item_index].i_addr +
2218				next_unlinked_offset - reg_buf_offset;
2219		if (unlikely(*logged_nextp == 0)) {
2220			xfs_alert(mp,
2221		"Bad inode buffer log record (ptr = "PTR_FMT", bp = "PTR_FMT"). "
2222		"Trying to replay bad (0) inode di_next_unlinked field.",
2223				item, bp);
2224			XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
2225					 XFS_ERRLEVEL_LOW, mp);
2226			return -EFSCORRUPTED;
2227		}
2228
2229		buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
2230		*buffer_nextp = *logged_nextp;
2231
2232		/*
2233		 * If necessary, recalculate the CRC in the on-disk inode. We
2234		 * have to leave the inode in a consistent state for whoever
2235		 * reads it next....
2236		 */
2237		xfs_dinode_calc_crc(mp,
2238				xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
2239
2240	}
2241
2242	return 0;
2243}
2244
2245/*
2246 * V5 filesystems know the age of the buffer on disk being recovered. We can
2247 * have newer objects on disk than we are replaying, and so for these cases we
2248 * don't want to replay the current change as that will make the buffer contents
2249 * temporarily invalid on disk.
2250 *
2251 * The magic number might not match the buffer type we are going to recover
2252 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags.  Hence
2253 * extract the LSN of the existing object in the buffer based on it's current
2254 * magic number.  If we don't recognise the magic number in the buffer, then
2255 * return a LSN of -1 so that the caller knows it was an unrecognised block and
2256 * so can recover the buffer.
2257 *
2258 * Note: we cannot rely solely on magic number matches to determine that the
2259 * buffer has a valid LSN - we also need to verify that it belongs to this
2260 * filesystem, so we need to extract the object's LSN and compare it to that
2261 * which we read from the superblock. If the UUIDs don't match, then we've got a
2262 * stale metadata block from an old filesystem instance that we need to recover
2263 * over the top of.
2264 */
2265static xfs_lsn_t
2266xlog_recover_get_buf_lsn(
2267	struct xfs_mount	*mp,
2268	struct xfs_buf		*bp)
2269{
2270	uint32_t		magic32;
2271	uint16_t		magic16;
2272	uint16_t		magicda;
2273	void			*blk = bp->b_addr;
2274	uuid_t			*uuid;
2275	xfs_lsn_t		lsn = -1;
2276
2277	/* v4 filesystems always recover immediately */
2278	if (!xfs_sb_version_hascrc(&mp->m_sb))
2279		goto recover_immediately;
2280
2281	magic32 = be32_to_cpu(*(__be32 *)blk);
2282	switch (magic32) {
2283	case XFS_ABTB_CRC_MAGIC:
2284	case XFS_ABTC_CRC_MAGIC:
2285	case XFS_ABTB_MAGIC:
2286	case XFS_ABTC_MAGIC:
2287	case XFS_RMAP_CRC_MAGIC:
2288	case XFS_REFC_CRC_MAGIC:
2289	case XFS_IBT_CRC_MAGIC:
2290	case XFS_IBT_MAGIC: {
2291		struct xfs_btree_block *btb = blk;
2292
2293		lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2294		uuid = &btb->bb_u.s.bb_uuid;
2295		break;
2296	}
2297	case XFS_BMAP_CRC_MAGIC:
2298	case XFS_BMAP_MAGIC: {
2299		struct xfs_btree_block *btb = blk;
2300
2301		lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2302		uuid = &btb->bb_u.l.bb_uuid;
2303		break;
2304	}
2305	case XFS_AGF_MAGIC:
2306		lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2307		uuid = &((struct xfs_agf *)blk)->agf_uuid;
2308		break;
2309	case XFS_AGFL_MAGIC:
2310		lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2311		uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2312		break;
2313	case XFS_AGI_MAGIC:
2314		lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2315		uuid = &((struct xfs_agi *)blk)->agi_uuid;
2316		break;
2317	case XFS_SYMLINK_MAGIC:
2318		lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2319		uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2320		break;
2321	case XFS_DIR3_BLOCK_MAGIC:
2322	case XFS_DIR3_DATA_MAGIC:
2323	case XFS_DIR3_FREE_MAGIC:
2324		lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2325		uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2326		break;
2327	case XFS_ATTR3_RMT_MAGIC:
2328		/*
2329		 * Remote attr blocks are written synchronously, rather than
2330		 * being logged. That means they do not contain a valid LSN
2331		 * (i.e. transactionally ordered) in them, and hence any time we
2332		 * see a buffer to replay over the top of a remote attribute
2333		 * block we should simply do so.
2334		 */
2335		goto recover_immediately;
2336	case XFS_SB_MAGIC:
2337		/*
2338		 * superblock uuids are magic. We may or may not have a
2339		 * sb_meta_uuid on disk, but it will be set in the in-core
2340		 * superblock. We set the uuid pointer for verification
2341		 * according to the superblock feature mask to ensure we check
2342		 * the relevant UUID in the superblock.
2343		 */
2344		lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
2345		if (xfs_sb_version_hasmetauuid(&mp->m_sb))
2346			uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
2347		else
2348			uuid = &((struct xfs_dsb *)blk)->sb_uuid;
2349		break;
2350	default:
2351		break;
2352	}
2353
2354	if (lsn != (xfs_lsn_t)-1) {
2355		if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
2356			goto recover_immediately;
2357		return lsn;
2358	}
2359
2360	magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2361	switch (magicda) {
2362	case XFS_DIR3_LEAF1_MAGIC:
2363	case XFS_DIR3_LEAFN_MAGIC:
2364	case XFS_DA3_NODE_MAGIC:
2365		lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2366		uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2367		break;
2368	default:
2369		break;
2370	}
2371
2372	if (lsn != (xfs_lsn_t)-1) {
2373		if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2374			goto recover_immediately;
2375		return lsn;
2376	}
2377
2378	/*
2379	 * We do individual object checks on dquot and inode buffers as they
2380	 * have their own individual LSN records. Also, we could have a stale
2381	 * buffer here, so we have to at least recognise these buffer types.
2382	 *
2383	 * A notd complexity here is inode unlinked list processing - it logs
2384	 * the inode directly in the buffer, but we don't know which inodes have
2385	 * been modified, and there is no global buffer LSN. Hence we need to
2386	 * recover all inode buffer types immediately. This problem will be
2387	 * fixed by logical logging of the unlinked list modifications.
2388	 */
2389	magic16 = be16_to_cpu(*(__be16 *)blk);
2390	switch (magic16) {
2391	case XFS_DQUOT_MAGIC:
2392	case XFS_DINODE_MAGIC:
2393		goto recover_immediately;
2394	default:
2395		break;
2396	}
2397
2398	/* unknown buffer contents, recover immediately */
2399
2400recover_immediately:
2401	return (xfs_lsn_t)-1;
2402
2403}
2404
2405/*
2406 * Validate the recovered buffer is of the correct type and attach the
2407 * appropriate buffer operations to them for writeback. Magic numbers are in a
2408 * few places:
2409 *	the first 16 bits of the buffer (inode buffer, dquot buffer),
2410 *	the first 32 bits of the buffer (most blocks),
2411 *	inside a struct xfs_da_blkinfo at the start of the buffer.
2412 */
2413static void
2414xlog_recover_validate_buf_type(
2415	struct xfs_mount	*mp,
2416	struct xfs_buf		*bp,
2417	xfs_buf_log_format_t	*buf_f,
2418	xfs_lsn_t		current_lsn)
2419{
2420	struct xfs_da_blkinfo	*info = bp->b_addr;
2421	uint32_t		magic32;
2422	uint16_t		magic16;
2423	uint16_t		magicda;
2424	char			*warnmsg = NULL;
2425
2426	/*
2427	 * We can only do post recovery validation on items on CRC enabled
2428	 * fielsystems as we need to know when the buffer was written to be able
2429	 * to determine if we should have replayed the item. If we replay old
2430	 * metadata over a newer buffer, then it will enter a temporarily
2431	 * inconsistent state resulting in verification failures. Hence for now
2432	 * just avoid the verification stage for non-crc filesystems
2433	 */
2434	if (!xfs_sb_version_hascrc(&mp->m_sb))
2435		return;
2436
2437	magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2438	magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2439	magicda = be16_to_cpu(info->magic);
2440	switch (xfs_blft_from_flags(buf_f)) {
2441	case XFS_BLFT_BTREE_BUF:
2442		switch (magic32) {
2443		case XFS_ABTB_CRC_MAGIC:
2444		case XFS_ABTC_CRC_MAGIC:
2445		case XFS_ABTB_MAGIC:
2446		case XFS_ABTC_MAGIC:
2447			bp->b_ops = &xfs_allocbt_buf_ops;
2448			break;
2449		case XFS_IBT_CRC_MAGIC:
2450		case XFS_FIBT_CRC_MAGIC:
2451		case XFS_IBT_MAGIC:
2452		case XFS_FIBT_MAGIC:
2453			bp->b_ops = &xfs_inobt_buf_ops;
2454			break;
2455		case XFS_BMAP_CRC_MAGIC:
2456		case XFS_BMAP_MAGIC:
2457			bp->b_ops = &xfs_bmbt_buf_ops;
2458			break;
2459		case XFS_RMAP_CRC_MAGIC:
2460			bp->b_ops = &xfs_rmapbt_buf_ops;
2461			break;
2462		case XFS_REFC_CRC_MAGIC:
2463			bp->b_ops = &xfs_refcountbt_buf_ops;
2464			break;
2465		default:
2466			warnmsg = "Bad btree block magic!";
2467			break;
2468		}
2469		break;
2470	case XFS_BLFT_AGF_BUF:
2471		if (magic32 != XFS_AGF_MAGIC) {
2472			warnmsg = "Bad AGF block magic!";
2473			break;
2474		}
2475		bp->b_ops = &xfs_agf_buf_ops;
2476		break;
2477	case XFS_BLFT_AGFL_BUF:
2478		if (magic32 != XFS_AGFL_MAGIC) {
2479			warnmsg = "Bad AGFL block magic!";
2480			break;
2481		}
2482		bp->b_ops = &xfs_agfl_buf_ops;
2483		break;
2484	case XFS_BLFT_AGI_BUF:
2485		if (magic32 != XFS_AGI_MAGIC) {
2486			warnmsg = "Bad AGI block magic!";
2487			break;
2488		}
2489		bp->b_ops = &xfs_agi_buf_ops;
2490		break;
2491	case XFS_BLFT_UDQUOT_BUF:
2492	case XFS_BLFT_PDQUOT_BUF:
2493	case XFS_BLFT_GDQUOT_BUF:
2494#ifdef CONFIG_XFS_QUOTA
2495		if (magic16 != XFS_DQUOT_MAGIC) {
2496			warnmsg = "Bad DQUOT block magic!";
2497			break;
2498		}
2499		bp->b_ops = &xfs_dquot_buf_ops;
2500#else
2501		xfs_alert(mp,
2502	"Trying to recover dquots without QUOTA support built in!");
2503		ASSERT(0);
2504#endif
2505		break;
2506	case XFS_BLFT_DINO_BUF:
2507		if (magic16 != XFS_DINODE_MAGIC) {
2508			warnmsg = "Bad INODE block magic!";
2509			break;
2510		}
2511		bp->b_ops = &xfs_inode_buf_ops;
2512		break;
2513	case XFS_BLFT_SYMLINK_BUF:
2514		if (magic32 != XFS_SYMLINK_MAGIC) {
2515			warnmsg = "Bad symlink block magic!";
2516			break;
2517		}
2518		bp->b_ops = &xfs_symlink_buf_ops;
2519		break;
2520	case XFS_BLFT_DIR_BLOCK_BUF:
2521		if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2522		    magic32 != XFS_DIR3_BLOCK_MAGIC) {
2523			warnmsg = "Bad dir block magic!";
2524			break;
2525		}
2526		bp->b_ops = &xfs_dir3_block_buf_ops;
2527		break;
2528	case XFS_BLFT_DIR_DATA_BUF:
2529		if (magic32 != XFS_DIR2_DATA_MAGIC &&
2530		    magic32 != XFS_DIR3_DATA_MAGIC) {
2531			warnmsg = "Bad dir data magic!";
2532			break;
2533		}
2534		bp->b_ops = &xfs_dir3_data_buf_ops;
2535		break;
2536	case XFS_BLFT_DIR_FREE_BUF:
2537		if (magic32 != XFS_DIR2_FREE_MAGIC &&
2538		    magic32 != XFS_DIR3_FREE_MAGIC) {
2539			warnmsg = "Bad dir3 free magic!";
2540			break;
2541		}
2542		bp->b_ops = &xfs_dir3_free_buf_ops;
2543		break;
2544	case XFS_BLFT_DIR_LEAF1_BUF:
2545		if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2546		    magicda != XFS_DIR3_LEAF1_MAGIC) {
2547			warnmsg = "Bad dir leaf1 magic!";
2548			break;
2549		}
2550		bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2551		break;
2552	case XFS_BLFT_DIR_LEAFN_BUF:
2553		if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2554		    magicda != XFS_DIR3_LEAFN_MAGIC) {
2555			warnmsg = "Bad dir leafn magic!";
2556			break;
2557		}
2558		bp->b_ops = &xfs_dir3_leafn_buf_ops;
2559		break;
2560	case XFS_BLFT_DA_NODE_BUF:
2561		if (magicda != XFS_DA_NODE_MAGIC &&
2562		    magicda != XFS_DA3_NODE_MAGIC) {
2563			warnmsg = "Bad da node magic!";
2564			break;
2565		}
2566		bp->b_ops = &xfs_da3_node_buf_ops;
2567		break;
2568	case XFS_BLFT_ATTR_LEAF_BUF:
2569		if (magicda != XFS_ATTR_LEAF_MAGIC &&
2570		    magicda != XFS_ATTR3_LEAF_MAGIC) {
2571			warnmsg = "Bad attr leaf magic!";
2572			break;
2573		}
2574		bp->b_ops = &xfs_attr3_leaf_buf_ops;
2575		break;
2576	case XFS_BLFT_ATTR_RMT_BUF:
2577		if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2578			warnmsg = "Bad attr remote magic!";
2579			break;
2580		}
2581		bp->b_ops = &xfs_attr3_rmt_buf_ops;
2582		break;
2583	case XFS_BLFT_SB_BUF:
2584		if (magic32 != XFS_SB_MAGIC) {
2585			warnmsg = "Bad SB block magic!";
2586			break;
2587		}
2588		bp->b_ops = &xfs_sb_buf_ops;
2589		break;
2590#ifdef CONFIG_XFS_RT
2591	case XFS_BLFT_RTBITMAP_BUF:
2592	case XFS_BLFT_RTSUMMARY_BUF:
2593		/* no magic numbers for verification of RT buffers */
2594		bp->b_ops = &xfs_rtbuf_ops;
2595		break;
2596#endif /* CONFIG_XFS_RT */
2597	default:
2598		xfs_warn(mp, "Unknown buffer type %d!",
2599			 xfs_blft_from_flags(buf_f));
2600		break;
2601	}
2602
2603	/*
2604	 * Nothing else to do in the case of a NULL current LSN as this means
2605	 * the buffer is more recent than the change in the log and will be
2606	 * skipped.
2607	 */
2608	if (current_lsn == NULLCOMMITLSN)
2609		return;
2610
2611	if (warnmsg) {
2612		xfs_warn(mp, warnmsg);
2613		ASSERT(0);
2614	}
2615
2616	/*
2617	 * We must update the metadata LSN of the buffer as it is written out to
2618	 * ensure that older transactions never replay over this one and corrupt
2619	 * the buffer. This can occur if log recovery is interrupted at some
2620	 * point after the current transaction completes, at which point a
2621	 * subsequent mount starts recovery from the beginning.
2622	 *
2623	 * Write verifiers update the metadata LSN from log items attached to
2624	 * the buffer. Therefore, initialize a bli purely to carry the LSN to
2625	 * the verifier. We'll clean it up in our ->iodone() callback.
2626	 */
2627	if (bp->b_ops) {
2628		struct xfs_buf_log_item	*bip;
2629
2630		ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone);
2631		bp->b_iodone = xlog_recover_iodone;
2632		xfs_buf_item_init(bp, mp);
2633		bip = bp->b_log_item;
2634		bip->bli_item.li_lsn = current_lsn;
2635	}
2636}
2637
2638/*
2639 * Perform a 'normal' buffer recovery.  Each logged region of the
2640 * buffer should be copied over the corresponding region in the
2641 * given buffer.  The bitmap in the buf log format structure indicates
2642 * where to place the logged data.
2643 */
2644STATIC void
2645xlog_recover_do_reg_buffer(
2646	struct xfs_mount	*mp,
2647	xlog_recover_item_t	*item,
2648	struct xfs_buf		*bp,
2649	xfs_buf_log_format_t	*buf_f,
2650	xfs_lsn_t		current_lsn)
2651{
2652	int			i;
2653	int			bit;
2654	int			nbits;
2655	xfs_failaddr_t		fa;
2656
2657	trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2658
2659	bit = 0;
2660	i = 1;  /* 0 is the buf format structure */
2661	while (1) {
2662		bit = xfs_next_bit(buf_f->blf_data_map,
2663				   buf_f->blf_map_size, bit);
2664		if (bit == -1)
2665			break;
2666		nbits = xfs_contig_bits(buf_f->blf_data_map,
2667					buf_f->blf_map_size, bit);
2668		ASSERT(nbits > 0);
2669		ASSERT(item->ri_buf[i].i_addr != NULL);
2670		ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2671		ASSERT(BBTOB(bp->b_io_length) >=
2672		       ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2673
2674		/*
2675		 * The dirty regions logged in the buffer, even though
2676		 * contiguous, may span multiple chunks. This is because the
2677		 * dirty region may span a physical page boundary in a buffer
2678		 * and hence be split into two separate vectors for writing into
2679		 * the log. Hence we need to trim nbits back to the length of
2680		 * the current region being copied out of the log.
2681		 */
2682		if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2683			nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2684
2685		/*
2686		 * Do a sanity check if this is a dquot buffer. Just checking
2687		 * the first dquot in the buffer should do. XXXThis is
2688		 * probably a good thing to do for other buf types also.
2689		 */
2690		fa = NULL;
2691		if (buf_f->blf_flags &
2692		   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2693			if (item->ri_buf[i].i_addr == NULL) {
2694				xfs_alert(mp,
2695					"XFS: NULL dquot in %s.", __func__);
2696				goto next;
2697			}
2698			if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2699				xfs_alert(mp,
2700					"XFS: dquot too small (%d) in %s.",
2701					item->ri_buf[i].i_len, __func__);
2702				goto next;
2703			}
2704			fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr,
2705					       -1, 0, 0);
2706			if (fa) {
2707				xfs_alert(mp,
2708	"dquot corrupt at %pS trying to replay into block 0x%llx",
2709					fa, bp->b_bn);
2710				goto next;
2711			}
2712		}
2713
2714		memcpy(xfs_buf_offset(bp,
2715			(uint)bit << XFS_BLF_SHIFT),	/* dest */
2716			item->ri_buf[i].i_addr,		/* source */
2717			nbits<<XFS_BLF_SHIFT);		/* length */
2718 next:
2719		i++;
2720		bit += nbits;
2721	}
2722
2723	/* Shouldn't be any more regions */
2724	ASSERT(i == item->ri_total);
2725
2726	xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn);
2727}
2728
2729/*
2730 * Perform a dquot buffer recovery.
2731 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2732 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2733 * Else, treat it as a regular buffer and do recovery.
2734 *
2735 * Return false if the buffer was tossed and true if we recovered the buffer to
2736 * indicate to the caller if the buffer needs writing.
2737 */
2738STATIC bool
2739xlog_recover_do_dquot_buffer(
2740	struct xfs_mount		*mp,
2741	struct xlog			*log,
2742	struct xlog_recover_item	*item,
2743	struct xfs_buf			*bp,
2744	struct xfs_buf_log_format	*buf_f)
2745{
2746	uint			type;
2747
2748	trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2749
2750	/*
2751	 * Filesystems are required to send in quota flags at mount time.
2752	 */
2753	if (!mp->m_qflags)
2754		return false;
2755
2756	type = 0;
2757	if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2758		type |= XFS_DQ_USER;
2759	if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2760		type |= XFS_DQ_PROJ;
2761	if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2762		type |= XFS_DQ_GROUP;
2763	/*
2764	 * This type of quotas was turned off, so ignore this buffer
2765	 */
2766	if (log->l_quotaoffs_flag & type)
2767		return false;
2768
2769	xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN);
2770	return true;
2771}
2772
2773/*
2774 * This routine replays a modification made to a buffer at runtime.
2775 * There are actually two types of buffer, regular and inode, which
2776 * are handled differently.  Inode buffers are handled differently
2777 * in that we only recover a specific set of data from them, namely
2778 * the inode di_next_unlinked fields.  This is because all other inode
2779 * data is actually logged via inode records and any data we replay
2780 * here which overlaps that may be stale.
2781 *
2782 * When meta-data buffers are freed at run time we log a buffer item
2783 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2784 * of the buffer in the log should not be replayed at recovery time.
2785 * This is so that if the blocks covered by the buffer are reused for
2786 * file data before we crash we don't end up replaying old, freed
2787 * meta-data into a user's file.
2788 *
2789 * To handle the cancellation of buffer log items, we make two passes
2790 * over the log during recovery.  During the first we build a table of
2791 * those buffers which have been cancelled, and during the second we
2792 * only replay those buffers which do not have corresponding cancel
2793 * records in the table.  See xlog_recover_buffer_pass[1,2] above
2794 * for more details on the implementation of the table of cancel records.
2795 */
2796STATIC int
2797xlog_recover_buffer_pass2(
2798	struct xlog			*log,
2799	struct list_head		*buffer_list,
2800	struct xlog_recover_item	*item,
2801	xfs_lsn_t			current_lsn)
2802{
2803	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
2804	xfs_mount_t		*mp = log->l_mp;
2805	xfs_buf_t		*bp;
2806	int			error;
2807	uint			buf_flags;
2808	xfs_lsn_t		lsn;
2809
2810	/*
2811	 * In this pass we only want to recover all the buffers which have
2812	 * not been cancelled and are not cancellation buffers themselves.
2813	 */
2814	if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2815			buf_f->blf_len, buf_f->blf_flags)) {
2816		trace_xfs_log_recover_buf_cancel(log, buf_f);
2817		return 0;
2818	}
2819
2820	trace_xfs_log_recover_buf_recover(log, buf_f);
2821
2822	buf_flags = 0;
2823	if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2824		buf_flags |= XBF_UNMAPPED;
2825
2826	bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2827			  buf_flags, NULL);
2828	if (!bp)
2829		return -ENOMEM;
2830	error = bp->b_error;
2831	if (error) {
2832		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2833		goto out_release;
2834	}
2835
2836	/*
2837	 * Recover the buffer only if we get an LSN from it and it's less than
2838	 * the lsn of the transaction we are replaying.
2839	 *
2840	 * Note that we have to be extremely careful of readahead here.
2841	 * Readahead does not attach verfiers to the buffers so if we don't
2842	 * actually do any replay after readahead because of the LSN we found
2843	 * in the buffer if more recent than that current transaction then we
2844	 * need to attach the verifier directly. Failure to do so can lead to
2845	 * future recovery actions (e.g. EFI and unlinked list recovery) can
2846	 * operate on the buffers and they won't get the verifier attached. This
2847	 * can lead to blocks on disk having the correct content but a stale
2848	 * CRC.
2849	 *
2850	 * It is safe to assume these clean buffers are currently up to date.
2851	 * If the buffer is dirtied by a later transaction being replayed, then
2852	 * the verifier will be reset to match whatever recover turns that
2853	 * buffer into.
2854	 */
2855	lsn = xlog_recover_get_buf_lsn(mp, bp);
2856	if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2857		trace_xfs_log_recover_buf_skip(log, buf_f);
2858		xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN);
2859		goto out_release;
2860	}
2861
2862	if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2863		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2864		if (error)
2865			goto out_release;
2866	} else if (buf_f->blf_flags &
2867		  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2868		bool	dirty;
2869
2870		dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2871		if (!dirty)
2872			goto out_release;
2873	} else {
2874		xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
2875	}
2876
2877	/*
2878	 * Perform delayed write on the buffer.  Asynchronous writes will be
2879	 * slower when taking into account all the buffers to be flushed.
2880	 *
2881	 * Also make sure that only inode buffers with good sizes stay in
2882	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
2883	 * or mp->m_inode_cluster_size bytes, whichever is bigger.  The inode
2884	 * buffers in the log can be a different size if the log was generated
2885	 * by an older kernel using unclustered inode buffers or a newer kernel
2886	 * running with a different inode cluster size.  Regardless, if the
2887	 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
2888	 * for *our* value of mp->m_inode_cluster_size, then we need to keep
2889	 * the buffer out of the buffer cache so that the buffer won't
2890	 * overlap with future reads of those inodes.
2891	 */
2892	if (XFS_DINODE_MAGIC ==
2893	    be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2894	    (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2895			(uint32_t)log->l_mp->m_inode_cluster_size))) {
2896		xfs_buf_stale(bp);
2897		error = xfs_bwrite(bp);
2898	} else {
2899		ASSERT(bp->b_target->bt_mount == mp);
2900		bp->b_iodone = xlog_recover_iodone;
2901		xfs_buf_delwri_queue(bp, buffer_list);
2902	}
2903
2904out_release:
2905	xfs_buf_relse(bp);
2906	return error;
2907}
2908
2909/*
2910 * Inode fork owner changes
2911 *
2912 * If we have been told that we have to reparent the inode fork, it's because an
2913 * extent swap operation on a CRC enabled filesystem has been done and we are
2914 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2915 * owners of it.
2916 *
2917 * The complexity here is that we don't have an inode context to work with, so
2918 * after we've replayed the inode we need to instantiate one.  This is where the
2919 * fun begins.
2920 *
2921 * We are in the middle of log recovery, so we can't run transactions. That
2922 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2923 * that will result in the corresponding iput() running the inode through
2924 * xfs_inactive(). If we've just replayed an inode core that changes the link
2925 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2926 * transactions (bad!).
2927 *
2928 * So, to avoid this, we instantiate an inode directly from the inode core we've
2929 * just recovered. We have the buffer still locked, and all we really need to
2930 * instantiate is the inode core and the forks being modified. We can do this
2931 * manually, then run the inode btree owner change, and then tear down the
2932 * xfs_inode without having to run any transactions at all.
2933 *
2934 * Also, because we don't have a transaction context available here but need to
2935 * gather all the buffers we modify for writeback so we pass the buffer_list
2936 * instead for the operation to use.
2937 */
2938
2939STATIC int
2940xfs_recover_inode_owner_change(
2941	struct xfs_mount	*mp,
2942	struct xfs_dinode	*dip,
2943	struct xfs_inode_log_format *in_f,
2944	struct list_head	*buffer_list)
2945{
2946	struct xfs_inode	*ip;
2947	int			error;
2948
2949	ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2950
2951	ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2952	if (!ip)
2953		return -ENOMEM;
2954
2955	/* instantiate the inode */
2956	xfs_inode_from_disk(ip, dip);
2957	ASSERT(ip->i_d.di_version >= 3);
2958
2959	error = xfs_iformat_fork(ip, dip);
2960	if (error)
2961		goto out_free_ip;
2962
2963	if (!xfs_inode_verify_forks(ip)) {
2964		error = -EFSCORRUPTED;
2965		goto out_free_ip;
2966	}
2967
2968	if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2969		ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2970		error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2971					      ip->i_ino, buffer_list);
2972		if (error)
2973			goto out_free_ip;
2974	}
2975
2976	if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2977		ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2978		error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2979					      ip->i_ino, buffer_list);
2980		if (error)
2981			goto out_free_ip;
2982	}
2983
2984out_free_ip:
2985	xfs_inode_free(ip);
2986	return error;
2987}
2988
2989STATIC int
2990xlog_recover_inode_pass2(
2991	struct xlog			*log,
2992	struct list_head		*buffer_list,
2993	struct xlog_recover_item	*item,
2994	xfs_lsn_t			current_lsn)
2995{
2996	struct xfs_inode_log_format	*in_f;
2997	xfs_mount_t		*mp = log->l_mp;
2998	xfs_buf_t		*bp;
2999	xfs_dinode_t		*dip;
3000	int			len;
3001	char			*src;
3002	char			*dest;
3003	int			error;
3004	int			attr_index;
3005	uint			fields;
3006	struct xfs_log_dinode	*ldip;
3007	uint			isize;
3008	int			need_free = 0;
3009
3010	if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3011		in_f = item->ri_buf[0].i_addr;
3012	} else {
3013		in_f = kmem_alloc(sizeof(struct xfs_inode_log_format), KM_SLEEP);
3014		need_free = 1;
3015		error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
3016		if (error)
3017			goto error;
3018	}
3019
3020	/*
3021	 * Inode buffers can be freed, look out for it,
3022	 * and do not replay the inode.
3023	 */
3024	if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
3025					in_f->ilf_len, 0)) {
3026		error = 0;
3027		trace_xfs_log_recover_inode_cancel(log, in_f);
3028		goto error;
3029	}
3030	trace_xfs_log_recover_inode_recover(log, in_f);
3031
3032	bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
3033			  &xfs_inode_buf_ops);
3034	if (!bp) {
3035		error = -ENOMEM;
3036		goto error;
3037	}
3038	error = bp->b_error;
3039	if (error) {
3040		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
3041		goto out_release;
3042	}
3043	ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
3044	dip = xfs_buf_offset(bp, in_f->ilf_boffset);
3045
3046	/*
3047	 * Make sure the place we're flushing out to really looks
3048	 * like an inode!
3049	 */
3050	if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
3051		xfs_alert(mp,
3052	"%s: Bad inode magic number, dip = "PTR_FMT", dino bp = "PTR_FMT", ino = %Ld",
3053			__func__, dip, bp, in_f->ilf_ino);
3054		XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
3055				 XFS_ERRLEVEL_LOW, mp);
3056		error = -EFSCORRUPTED;
3057		goto out_release;
3058	}
3059	ldip = item->ri_buf[1].i_addr;
3060	if (unlikely(ldip->di_magic != XFS_DINODE_MAGIC)) {
3061		xfs_alert(mp,
3062			"%s: Bad inode log record, rec ptr "PTR_FMT", ino %Ld",
3063			__func__, item, in_f->ilf_ino);
3064		XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
3065				 XFS_ERRLEVEL_LOW, mp);
3066		error = -EFSCORRUPTED;
3067		goto out_release;
3068	}
3069
3070	/*
3071	 * If the inode has an LSN in it, recover the inode only if it's less
3072	 * than the lsn of the transaction we are replaying. Note: we still
3073	 * need to replay an owner change even though the inode is more recent
3074	 * than the transaction as there is no guarantee that all the btree
3075	 * blocks are more recent than this transaction, too.
3076	 */
3077	if (dip->di_version >= 3) {
3078		xfs_lsn_t	lsn = be64_to_cpu(dip->di_lsn);
3079
3080		if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3081			trace_xfs_log_recover_inode_skip(log, in_f);
3082			error = 0;
3083			goto out_owner_change;
3084		}
3085	}
3086
3087	/*
3088	 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
3089	 * are transactional and if ordering is necessary we can determine that
3090	 * more accurately by the LSN field in the V3 inode core. Don't trust
3091	 * the inode versions we might be changing them here - use the
3092	 * superblock flag to determine whether we need to look at di_flushiter
3093	 * to skip replay when the on disk inode is newer than the log one
3094	 */
3095	if (!xfs_sb_version_hascrc(&mp->m_sb) &&
3096	    ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
3097		/*
3098		 * Deal with the wrap case, DI_MAX_FLUSH is less
3099		 * than smaller numbers
3100		 */
3101		if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
3102		    ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) {
3103			/* do nothing */
3104		} else {
3105			trace_xfs_log_recover_inode_skip(log, in_f);
3106			error = 0;
3107			goto out_release;
3108		}
3109	}
3110
3111	/* Take the opportunity to reset the flush iteration count */
3112	ldip->di_flushiter = 0;
3113
3114	if (unlikely(S_ISREG(ldip->di_mode))) {
3115		if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3116		    (ldip->di_format != XFS_DINODE_FMT_BTREE)) {
3117			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
3118					 XFS_ERRLEVEL_LOW, mp, ldip);
3119			xfs_alert(mp,
3120		"%s: Bad regular inode log record, rec ptr "PTR_FMT", "
3121		"ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld",
3122				__func__, item, dip, bp, in_f->ilf_ino);
3123			error = -EFSCORRUPTED;
3124			goto out_release;
3125		}
3126	} else if (unlikely(S_ISDIR(ldip->di_mode))) {
3127		if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3128		    (ldip->di_format != XFS_DINODE_FMT_BTREE) &&
3129		    (ldip->di_format != XFS_DINODE_FMT_LOCAL)) {
3130			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
3131					     XFS_ERRLEVEL_LOW, mp, ldip);
3132			xfs_alert(mp,
3133		"%s: Bad dir inode log record, rec ptr "PTR_FMT", "
3134		"ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld",
3135				__func__, item, dip, bp, in_f->ilf_ino);
3136			error = -EFSCORRUPTED;
3137			goto out_release;
3138		}
3139	}
3140	if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){
3141		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
3142				     XFS_ERRLEVEL_LOW, mp, ldip);
3143		xfs_alert(mp,
3144	"%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", "
3145	"dino bp "PTR_FMT", ino %Ld, total extents = %d, nblocks = %Ld",
3146			__func__, item, dip, bp, in_f->ilf_ino,
3147			ldip->di_nextents + ldip->di_anextents,
3148			ldip->di_nblocks);
3149		error = -EFSCORRUPTED;
3150		goto out_release;
3151	}
3152	if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) {
3153		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
3154				     XFS_ERRLEVEL_LOW, mp, ldip);
3155		xfs_alert(mp,
3156	"%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", "
3157	"dino bp "PTR_FMT", ino %Ld, forkoff 0x%x", __func__,
3158			item, dip, bp, in_f->ilf_ino, ldip->di_forkoff);
3159		error = -EFSCORRUPTED;
3160		goto out_release;
3161	}
3162	isize = xfs_log_dinode_size(ldip->di_version);
3163	if (unlikely(item->ri_buf[1].i_len > isize)) {
3164		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
3165				     XFS_ERRLEVEL_LOW, mp, ldip);
3166		xfs_alert(mp,
3167			"%s: Bad inode log record length %d, rec ptr "PTR_FMT,
3168			__func__, item->ri_buf[1].i_len, item);
3169		error = -EFSCORRUPTED;
3170		goto out_release;
3171	}
3172
3173	/* recover the log dinode inode into the on disk inode */
3174	xfs_log_dinode_to_disk(ldip, dip);
3175
3176	fields = in_f->ilf_fields;
3177	if (fields & XFS_ILOG_DEV)
3178		xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
3179
3180	if (in_f->ilf_size == 2)
3181		goto out_owner_change;
3182	len = item->ri_buf[2].i_len;
3183	src = item->ri_buf[2].i_addr;
3184	ASSERT(in_f->ilf_size <= 4);
3185	ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
3186	ASSERT(!(fields & XFS_ILOG_DFORK) ||
3187	       (len == in_f->ilf_dsize));
3188
3189	switch (fields & XFS_ILOG_DFORK) {
3190	case XFS_ILOG_DDATA:
3191	case XFS_ILOG_DEXT:
3192		memcpy(XFS_DFORK_DPTR(dip), src, len);
3193		break;
3194
3195	case XFS_ILOG_DBROOT:
3196		xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
3197				 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
3198				 XFS_DFORK_DSIZE(dip, mp));
3199		break;
3200
3201	default:
3202		/*
3203		 * There are no data fork flags set.
3204		 */
3205		ASSERT((fields & XFS_ILOG_DFORK) == 0);
3206		break;
3207	}
3208
3209	/*
3210	 * If we logged any attribute data, recover it.  There may or
3211	 * may not have been any other non-core data logged in this
3212	 * transaction.
3213	 */
3214	if (in_f->ilf_fields & XFS_ILOG_AFORK) {
3215		if (in_f->ilf_fields & XFS_ILOG_DFORK) {
3216			attr_index = 3;
3217		} else {
3218			attr_index = 2;
3219		}
3220		len = item->ri_buf[attr_index].i_len;
3221		src = item->ri_buf[attr_index].i_addr;
3222		ASSERT(len == in_f->ilf_asize);
3223
3224		switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
3225		case XFS_ILOG_ADATA:
3226		case XFS_ILOG_AEXT:
3227			dest = XFS_DFORK_APTR(dip);
3228			ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
3229			memcpy(dest, src, len);
3230			break;
3231
3232		case XFS_ILOG_ABROOT:
3233			dest = XFS_DFORK_APTR(dip);
3234			xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
3235					 len, (xfs_bmdr_block_t*)dest,
3236					 XFS_DFORK_ASIZE(dip, mp));
3237			break;
3238
3239		default:
3240			xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
3241			ASSERT(0);
3242			error = -EIO;
3243			goto out_release;
3244		}
3245	}
3246
3247out_owner_change:
3248	/* Recover the swapext owner change unless inode has been deleted */
3249	if ((in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)) &&
3250	    (dip->di_mode != 0))
3251		error = xfs_recover_inode_owner_change(mp, dip, in_f,
3252						       buffer_list);
3253	/* re-generate the checksum. */
3254	xfs_dinode_calc_crc(log->l_mp, dip);
3255
3256	ASSERT(bp->b_target->bt_mount == mp);
3257	bp->b_iodone = xlog_recover_iodone;
3258	xfs_buf_delwri_queue(bp, buffer_list);
3259
3260out_release:
3261	xfs_buf_relse(bp);
3262error:
3263	if (need_free)
3264		kmem_free(in_f);
3265	return error;
3266}
3267
3268/*
3269 * Recover QUOTAOFF records. We simply make a note of it in the xlog
3270 * structure, so that we know not to do any dquot item or dquot buffer recovery,
3271 * of that type.
3272 */
3273STATIC int
3274xlog_recover_quotaoff_pass1(
3275	struct xlog			*log,
3276	struct xlog_recover_item	*item)
3277{
3278	xfs_qoff_logformat_t	*qoff_f = item->ri_buf[0].i_addr;
3279	ASSERT(qoff_f);
3280
3281	/*
3282	 * The logitem format's flag tells us if this was user quotaoff,
3283	 * group/project quotaoff or both.
3284	 */
3285	if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
3286		log->l_quotaoffs_flag |= XFS_DQ_USER;
3287	if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
3288		log->l_quotaoffs_flag |= XFS_DQ_PROJ;
3289	if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
3290		log->l_quotaoffs_flag |= XFS_DQ_GROUP;
3291
3292	return 0;
3293}
3294
3295/*
3296 * Recover a dquot record
3297 */
3298STATIC int
3299xlog_recover_dquot_pass2(
3300	struct xlog			*log,
3301	struct list_head		*buffer_list,
3302	struct xlog_recover_item	*item,
3303	xfs_lsn_t			current_lsn)
3304{
3305	xfs_mount_t		*mp = log->l_mp;
3306	xfs_buf_t		*bp;
3307	struct xfs_disk_dquot	*ddq, *recddq;
3308	xfs_failaddr_t		fa;
3309	int			error;
3310	xfs_dq_logformat_t	*dq_f;
3311	uint			type;
3312
3313
3314	/*
3315	 * Filesystems are required to send in quota flags at mount time.
3316	 */
3317	if (mp->m_qflags == 0)
3318		return 0;
3319
3320	recddq = item->ri_buf[1].i_addr;
3321	if (recddq == NULL) {
3322		xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
3323		return -EIO;
3324	}
3325	if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
3326		xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
3327			item->ri_buf[1].i_len, __func__);
3328		return -EIO;
3329	}
3330
3331	/*
3332	 * This type of quotas was turned off, so ignore this record.
3333	 */
3334	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3335	ASSERT(type);
3336	if (log->l_quotaoffs_flag & type)
3337		return 0;
3338
3339	/*
3340	 * At this point we know that quota was _not_ turned off.
3341	 * Since the mount flags are not indicating to us otherwise, this
3342	 * must mean that quota is on, and the dquot needs to be replayed.
3343	 * Remember that we may not have fully recovered the superblock yet,
3344	 * so we can't do the usual trick of looking at the SB quota bits.
3345	 *
3346	 * The other possibility, of course, is that the quota subsystem was
3347	 * removed since the last mount - ENOSYS.
3348	 */
3349	dq_f = item->ri_buf[0].i_addr;
3350	ASSERT(dq_f);
3351	fa = xfs_dquot_verify(mp, recddq, dq_f->qlf_id, 0, 0);
3352	if (fa) {
3353		xfs_alert(mp, "corrupt dquot ID 0x%x in log at %pS",
3354				dq_f->qlf_id, fa);
3355		return -EIO;
3356	}
3357	ASSERT(dq_f->qlf_len == 1);
3358
3359	/*
3360	 * At this point we are assuming that the dquots have been allocated
3361	 * and hence the buffer has valid dquots stamped in it. It should,
3362	 * therefore, pass verifier validation. If the dquot is bad, then the
3363	 * we'll return an error here, so we don't need to specifically check
3364	 * the dquot in the buffer after the verifier has run.
3365	 */
3366	error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
3367				   XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
3368				   &xfs_dquot_buf_ops);
3369	if (error)
3370		return error;
3371
3372	ASSERT(bp);
3373	ddq = xfs_buf_offset(bp, dq_f->qlf_boffset);
3374
3375	/*
3376	 * If the dquot has an LSN in it, recover the dquot only if it's less
3377	 * than the lsn of the transaction we are replaying.
3378	 */
3379	if (xfs_sb_version_hascrc(&mp->m_sb)) {
3380		struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3381		xfs_lsn_t	lsn = be64_to_cpu(dqb->dd_lsn);
3382
3383		if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3384			goto out_release;
3385		}
3386	}
3387
3388	memcpy(ddq, recddq, item->ri_buf[1].i_len);
3389	if (xfs_sb_version_hascrc(&mp->m_sb)) {
3390		xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3391				 XFS_DQUOT_CRC_OFF);
3392	}
3393
3394	ASSERT(dq_f->qlf_size == 2);
3395	ASSERT(bp->b_target->bt_mount == mp);
3396	bp->b_iodone = xlog_recover_iodone;
3397	xfs_buf_delwri_queue(bp, buffer_list);
3398
3399out_release:
3400	xfs_buf_relse(bp);
3401	return 0;
3402}
3403
3404/*
3405 * This routine is called to create an in-core extent free intent
3406 * item from the efi format structure which was logged on disk.
3407 * It allocates an in-core efi, copies the extents from the format
3408 * structure into it, and adds the efi to the AIL with the given
3409 * LSN.
3410 */
3411STATIC int
3412xlog_recover_efi_pass2(
3413	struct xlog			*log,
3414	struct xlog_recover_item	*item,
3415	xfs_lsn_t			lsn)
3416{
3417	int				error;
3418	struct xfs_mount		*mp = log->l_mp;
3419	struct xfs_efi_log_item		*efip;
3420	struct xfs_efi_log_format	*efi_formatp;
3421
3422	efi_formatp = item->ri_buf[0].i_addr;
3423
3424	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
3425	error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
3426	if (error) {
3427		xfs_efi_item_free(efip);
3428		return error;
3429	}
3430	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
3431
3432	spin_lock(&log->l_ailp->ail_lock);
3433	/*
3434	 * The EFI has two references. One for the EFD and one for EFI to ensure
3435	 * it makes it into the AIL. Insert the EFI into the AIL directly and
3436	 * drop the EFI reference. Note that xfs_trans_ail_update() drops the
3437	 * AIL lock.
3438	 */
3439	xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
3440	xfs_efi_release(efip);
3441	return 0;
3442}
3443
3444
3445/*
3446 * This routine is called when an EFD format structure is found in a committed
3447 * transaction in the log. Its purpose is to cancel the corresponding EFI if it
3448 * was still in the log. To do this it searches the AIL for the EFI with an id
3449 * equal to that in the EFD format structure. If we find it we drop the EFD
3450 * reference, which removes the EFI from the AIL and frees it.
3451 */
3452STATIC int
3453xlog_recover_efd_pass2(
3454	struct xlog			*log,
3455	struct xlog_recover_item	*item)
3456{
3457	xfs_efd_log_format_t	*efd_formatp;
3458	xfs_efi_log_item_t	*efip = NULL;
3459	xfs_log_item_t		*lip;
3460	uint64_t		efi_id;
3461	struct xfs_ail_cursor	cur;
3462	struct xfs_ail		*ailp = log->l_ailp;
3463
3464	efd_formatp = item->ri_buf[0].i_addr;
3465	ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3466		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3467	       (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3468		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
3469	efi_id = efd_formatp->efd_efi_id;
3470
3471	/*
3472	 * Search for the EFI with the id in the EFD format structure in the
3473	 * AIL.
3474	 */
3475	spin_lock(&ailp->ail_lock);
3476	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3477	while (lip != NULL) {
3478		if (lip->li_type == XFS_LI_EFI) {
3479			efip = (xfs_efi_log_item_t *)lip;
3480			if (efip->efi_format.efi_id == efi_id) {
3481				/*
3482				 * Drop the EFD reference to the EFI. This
3483				 * removes the EFI from the AIL and frees it.
3484				 */
3485				spin_unlock(&ailp->ail_lock);
3486				xfs_efi_release(efip);
3487				spin_lock(&ailp->ail_lock);
3488				break;
3489			}
3490		}
3491		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3492	}
3493
3494	xfs_trans_ail_cursor_done(&cur);
3495	spin_unlock(&ailp->ail_lock);
3496
3497	return 0;
3498}
3499
3500/*
3501 * This routine is called to create an in-core extent rmap update
3502 * item from the rui format structure which was logged on disk.
3503 * It allocates an in-core rui, copies the extents from the format
3504 * structure into it, and adds the rui to the AIL with the given
3505 * LSN.
3506 */
3507STATIC int
3508xlog_recover_rui_pass2(
3509	struct xlog			*log,
3510	struct xlog_recover_item	*item,
3511	xfs_lsn_t			lsn)
3512{
3513	int				error;
3514	struct xfs_mount		*mp = log->l_mp;
3515	struct xfs_rui_log_item		*ruip;
3516	struct xfs_rui_log_format	*rui_formatp;
3517
3518	rui_formatp = item->ri_buf[0].i_addr;
3519
3520	ruip = xfs_rui_init(mp, rui_formatp->rui_nextents);
3521	error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format);
3522	if (error) {
3523		xfs_rui_item_free(ruip);
3524		return error;
3525	}
3526	atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents);
3527
3528	spin_lock(&log->l_ailp->ail_lock);
3529	/*
3530	 * The RUI has two references. One for the RUD and one for RUI to ensure
3531	 * it makes it into the AIL. Insert the RUI into the AIL directly and
3532	 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3533	 * AIL lock.
3534	 */
3535	xfs_trans_ail_update(log->l_ailp, &ruip->rui_item, lsn);
3536	xfs_rui_release(ruip);
3537	return 0;
3538}
3539
3540
3541/*
3542 * This routine is called when an RUD format structure is found in a committed
3543 * transaction in the log. Its purpose is to cancel the corresponding RUI if it
3544 * was still in the log. To do this it searches the AIL for the RUI with an id
3545 * equal to that in the RUD format structure. If we find it we drop the RUD
3546 * reference, which removes the RUI from the AIL and frees it.
3547 */
3548STATIC int
3549xlog_recover_rud_pass2(
3550	struct xlog			*log,
3551	struct xlog_recover_item	*item)
3552{
3553	struct xfs_rud_log_format	*rud_formatp;
3554	struct xfs_rui_log_item		*ruip = NULL;
3555	struct xfs_log_item		*lip;
3556	uint64_t			rui_id;
3557	struct xfs_ail_cursor		cur;
3558	struct xfs_ail			*ailp = log->l_ailp;
3559
3560	rud_formatp = item->ri_buf[0].i_addr;
3561	ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format));
3562	rui_id = rud_formatp->rud_rui_id;
3563
3564	/*
3565	 * Search for the RUI with the id in the RUD format structure in the
3566	 * AIL.
3567	 */
3568	spin_lock(&ailp->ail_lock);
3569	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3570	while (lip != NULL) {
3571		if (lip->li_type == XFS_LI_RUI) {
3572			ruip = (struct xfs_rui_log_item *)lip;
3573			if (ruip->rui_format.rui_id == rui_id) {
3574				/*
3575				 * Drop the RUD reference to the RUI. This
3576				 * removes the RUI from the AIL and frees it.
3577				 */
3578				spin_unlock(&ailp->ail_lock);
3579				xfs_rui_release(ruip);
3580				spin_lock(&ailp->ail_lock);
3581				break;
3582			}
3583		}
3584		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3585	}
3586
3587	xfs_trans_ail_cursor_done(&cur);
3588	spin_unlock(&ailp->ail_lock);
3589
3590	return 0;
3591}
3592
3593/*
3594 * Copy an CUI format buffer from the given buf, and into the destination
3595 * CUI format structure.  The CUI/CUD items were designed not to need any
3596 * special alignment handling.
3597 */
3598static int
3599xfs_cui_copy_format(
3600	struct xfs_log_iovec		*buf,
3601	struct xfs_cui_log_format	*dst_cui_fmt)
3602{
3603	struct xfs_cui_log_format	*src_cui_fmt;
3604	uint				len;
3605
3606	src_cui_fmt = buf->i_addr;
3607	len = xfs_cui_log_format_sizeof(src_cui_fmt->cui_nextents);
3608
3609	if (buf->i_len == len) {
3610		memcpy(dst_cui_fmt, src_cui_fmt, len);
3611		return 0;
3612	}
3613	return -EFSCORRUPTED;
3614}
3615
3616/*
3617 * This routine is called to create an in-core extent refcount update
3618 * item from the cui format structure which was logged on disk.
3619 * It allocates an in-core cui, copies the extents from the format
3620 * structure into it, and adds the cui to the AIL with the given
3621 * LSN.
3622 */
3623STATIC int
3624xlog_recover_cui_pass2(
3625	struct xlog			*log,
3626	struct xlog_recover_item	*item,
3627	xfs_lsn_t			lsn)
3628{
3629	int				error;
3630	struct xfs_mount		*mp = log->l_mp;
3631	struct xfs_cui_log_item		*cuip;
3632	struct xfs_cui_log_format	*cui_formatp;
3633
3634	cui_formatp = item->ri_buf[0].i_addr;
3635
3636	cuip = xfs_cui_init(mp, cui_formatp->cui_nextents);
3637	error = xfs_cui_copy_format(&item->ri_buf[0], &cuip->cui_format);
3638	if (error) {
3639		xfs_cui_item_free(cuip);
3640		return error;
3641	}
3642	atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents);
3643
3644	spin_lock(&log->l_ailp->ail_lock);
3645	/*
3646	 * The CUI has two references. One for the CUD and one for CUI to ensure
3647	 * it makes it into the AIL. Insert the CUI into the AIL directly and
3648	 * drop the CUI reference. Note that xfs_trans_ail_update() drops the
3649	 * AIL lock.
3650	 */
3651	xfs_trans_ail_update(log->l_ailp, &cuip->cui_item, lsn);
3652	xfs_cui_release(cuip);
3653	return 0;
3654}
3655
3656
3657/*
3658 * This routine is called when an CUD format structure is found in a committed
3659 * transaction in the log. Its purpose is to cancel the corresponding CUI if it
3660 * was still in the log. To do this it searches the AIL for the CUI with an id
3661 * equal to that in the CUD format structure. If we find it we drop the CUD
3662 * reference, which removes the CUI from the AIL and frees it.
3663 */
3664STATIC int
3665xlog_recover_cud_pass2(
3666	struct xlog			*log,
3667	struct xlog_recover_item	*item)
3668{
3669	struct xfs_cud_log_format	*cud_formatp;
3670	struct xfs_cui_log_item		*cuip = NULL;
3671	struct xfs_log_item		*lip;
3672	uint64_t			cui_id;
3673	struct xfs_ail_cursor		cur;
3674	struct xfs_ail			*ailp = log->l_ailp;
3675
3676	cud_formatp = item->ri_buf[0].i_addr;
3677	if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format))
3678		return -EFSCORRUPTED;
3679	cui_id = cud_formatp->cud_cui_id;
3680
3681	/*
3682	 * Search for the CUI with the id in the CUD format structure in the
3683	 * AIL.
3684	 */
3685	spin_lock(&ailp->ail_lock);
3686	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3687	while (lip != NULL) {
3688		if (lip->li_type == XFS_LI_CUI) {
3689			cuip = (struct xfs_cui_log_item *)lip;
3690			if (cuip->cui_format.cui_id == cui_id) {
3691				/*
3692				 * Drop the CUD reference to the CUI. This
3693				 * removes the CUI from the AIL and frees it.
3694				 */
3695				spin_unlock(&ailp->ail_lock);
3696				xfs_cui_release(cuip);
3697				spin_lock(&ailp->ail_lock);
3698				break;
3699			}
3700		}
3701		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3702	}
3703
3704	xfs_trans_ail_cursor_done(&cur);
3705	spin_unlock(&ailp->ail_lock);
3706
3707	return 0;
3708}
3709
3710/*
3711 * Copy an BUI format buffer from the given buf, and into the destination
3712 * BUI format structure.  The BUI/BUD items were designed not to need any
3713 * special alignment handling.
3714 */
3715static int
3716xfs_bui_copy_format(
3717	struct xfs_log_iovec		*buf,
3718	struct xfs_bui_log_format	*dst_bui_fmt)
3719{
3720	struct xfs_bui_log_format	*src_bui_fmt;
3721	uint				len;
3722
3723	src_bui_fmt = buf->i_addr;
3724	len = xfs_bui_log_format_sizeof(src_bui_fmt->bui_nextents);
3725
3726	if (buf->i_len == len) {
3727		memcpy(dst_bui_fmt, src_bui_fmt, len);
3728		return 0;
3729	}
3730	return -EFSCORRUPTED;
3731}
3732
3733/*
3734 * This routine is called to create an in-core extent bmap update
3735 * item from the bui format structure which was logged on disk.
3736 * It allocates an in-core bui, copies the extents from the format
3737 * structure into it, and adds the bui to the AIL with the given
3738 * LSN.
3739 */
3740STATIC int
3741xlog_recover_bui_pass2(
3742	struct xlog			*log,
3743	struct xlog_recover_item	*item,
3744	xfs_lsn_t			lsn)
3745{
3746	int				error;
3747	struct xfs_mount		*mp = log->l_mp;
3748	struct xfs_bui_log_item		*buip;
3749	struct xfs_bui_log_format	*bui_formatp;
3750
3751	bui_formatp = item->ri_buf[0].i_addr;
3752
3753	if (bui_formatp->bui_nextents != XFS_BUI_MAX_FAST_EXTENTS)
3754		return -EFSCORRUPTED;
3755	buip = xfs_bui_init(mp);
3756	error = xfs_bui_copy_format(&item->ri_buf[0], &buip->bui_format);
3757	if (error) {
3758		xfs_bui_item_free(buip);
3759		return error;
3760	}
3761	atomic_set(&buip->bui_next_extent, bui_formatp->bui_nextents);
3762
3763	spin_lock(&log->l_ailp->ail_lock);
3764	/*
3765	 * The RUI has two references. One for the RUD and one for RUI to ensure
3766	 * it makes it into the AIL. Insert the RUI into the AIL directly and
3767	 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3768	 * AIL lock.
3769	 */
3770	xfs_trans_ail_update(log->l_ailp, &buip->bui_item, lsn);
3771	xfs_bui_release(buip);
3772	return 0;
3773}
3774
3775
3776/*
3777 * This routine is called when an BUD format structure is found in a committed
3778 * transaction in the log. Its purpose is to cancel the corresponding BUI if it
3779 * was still in the log. To do this it searches the AIL for the BUI with an id
3780 * equal to that in the BUD format structure. If we find it we drop the BUD
3781 * reference, which removes the BUI from the AIL and frees it.
3782 */
3783STATIC int
3784xlog_recover_bud_pass2(
3785	struct xlog			*log,
3786	struct xlog_recover_item	*item)
3787{
3788	struct xfs_bud_log_format	*bud_formatp;
3789	struct xfs_bui_log_item		*buip = NULL;
3790	struct xfs_log_item		*lip;
3791	uint64_t			bui_id;
3792	struct xfs_ail_cursor		cur;
3793	struct xfs_ail			*ailp = log->l_ailp;
3794
3795	bud_formatp = item->ri_buf[0].i_addr;
3796	if (item->ri_buf[0].i_len != sizeof(struct xfs_bud_log_format))
3797		return -EFSCORRUPTED;
3798	bui_id = bud_formatp->bud_bui_id;
3799
3800	/*
3801	 * Search for the BUI with the id in the BUD format structure in the
3802	 * AIL.
3803	 */
3804	spin_lock(&ailp->ail_lock);
3805	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3806	while (lip != NULL) {
3807		if (lip->li_type == XFS_LI_BUI) {
3808			buip = (struct xfs_bui_log_item *)lip;
3809			if (buip->bui_format.bui_id == bui_id) {
3810				/*
3811				 * Drop the BUD reference to the BUI. This
3812				 * removes the BUI from the AIL and frees it.
3813				 */
3814				spin_unlock(&ailp->ail_lock);
3815				xfs_bui_release(buip);
3816				spin_lock(&ailp->ail_lock);
3817				break;
3818			}
3819		}
3820		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3821	}
3822
3823	xfs_trans_ail_cursor_done(&cur);
3824	spin_unlock(&ailp->ail_lock);
3825
3826	return 0;
3827}
3828
3829/*
3830 * This routine is called when an inode create format structure is found in a
3831 * committed transaction in the log.  It's purpose is to initialise the inodes
3832 * being allocated on disk. This requires us to get inode cluster buffers that
3833 * match the range to be initialised, stamped with inode templates and written
3834 * by delayed write so that subsequent modifications will hit the cached buffer
3835 * and only need writing out at the end of recovery.
3836 */
3837STATIC int
3838xlog_recover_do_icreate_pass2(
3839	struct xlog		*log,
3840	struct list_head	*buffer_list,
3841	xlog_recover_item_t	*item)
3842{
3843	struct xfs_mount	*mp = log->l_mp;
3844	struct xfs_icreate_log	*icl;
3845	xfs_agnumber_t		agno;
3846	xfs_agblock_t		agbno;
3847	unsigned int		count;
3848	unsigned int		isize;
3849	xfs_agblock_t		length;
3850	int			blks_per_cluster;
3851	int			bb_per_cluster;
3852	int			cancel_count;
3853	int			nbufs;
3854	int			i;
3855
3856	icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3857	if (icl->icl_type != XFS_LI_ICREATE) {
3858		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3859		return -EINVAL;
3860	}
3861
3862	if (icl->icl_size != 1) {
3863		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3864		return -EINVAL;
3865	}
3866
3867	agno = be32_to_cpu(icl->icl_ag);
3868	if (agno >= mp->m_sb.sb_agcount) {
3869		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3870		return -EINVAL;
3871	}
3872	agbno = be32_to_cpu(icl->icl_agbno);
3873	if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3874		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3875		return -EINVAL;
3876	}
3877	isize = be32_to_cpu(icl->icl_isize);
3878	if (isize != mp->m_sb.sb_inodesize) {
3879		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3880		return -EINVAL;
3881	}
3882	count = be32_to_cpu(icl->icl_count);
3883	if (!count) {
3884		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3885		return -EINVAL;
3886	}
3887	length = be32_to_cpu(icl->icl_length);
3888	if (!length || length >= mp->m_sb.sb_agblocks) {
3889		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3890		return -EINVAL;
3891	}
3892
3893	/*
3894	 * The inode chunk is either full or sparse and we only support
3895	 * m_ialloc_min_blks sized sparse allocations at this time.
3896	 */
3897	if (length != mp->m_ialloc_blks &&
3898	    length != mp->m_ialloc_min_blks) {
3899		xfs_warn(log->l_mp,
3900			 "%s: unsupported chunk length", __FUNCTION__);
3901		return -EINVAL;
3902	}
3903
3904	/* verify inode count is consistent with extent length */
3905	if ((count >> mp->m_sb.sb_inopblog) != length) {
3906		xfs_warn(log->l_mp,
3907			 "%s: inconsistent inode count and chunk length",
3908			 __FUNCTION__);
3909		return -EINVAL;
3910	}
3911
3912	/*
3913	 * The icreate transaction can cover multiple cluster buffers and these
3914	 * buffers could have been freed and reused. Check the individual
3915	 * buffers for cancellation so we don't overwrite anything written after
3916	 * a cancellation.
3917	 */
3918	blks_per_cluster = xfs_icluster_size_fsb(mp);
3919	bb_per_cluster = XFS_FSB_TO_BB(mp, blks_per_cluster);
3920	nbufs = length / blks_per_cluster;
3921	for (i = 0, cancel_count = 0; i < nbufs; i++) {
3922		xfs_daddr_t	daddr;
3923
3924		daddr = XFS_AGB_TO_DADDR(mp, agno,
3925					 agbno + i * blks_per_cluster);
3926		if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0))
3927			cancel_count++;
3928	}
3929
3930	/*
3931	 * We currently only use icreate for a single allocation at a time. This
3932	 * means we should expect either all or none of the buffers to be
3933	 * cancelled. Be conservative and skip replay if at least one buffer is
3934	 * cancelled, but warn the user that something is awry if the buffers
3935	 * are not consistent.
3936	 *
3937	 * XXX: This must be refined to only skip cancelled clusters once we use
3938	 * icreate for multiple chunk allocations.
3939	 */
3940	ASSERT(!cancel_count || cancel_count == nbufs);
3941	if (cancel_count) {
3942		if (cancel_count != nbufs)
3943			xfs_warn(mp,
3944	"WARNING: partial inode chunk cancellation, skipped icreate.");
3945		trace_xfs_log_recover_icreate_cancel(log, icl);
3946		return 0;
3947	}
3948
3949	trace_xfs_log_recover_icreate_recover(log, icl);
3950	return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno,
3951				     length, be32_to_cpu(icl->icl_gen));
3952}
3953
3954STATIC void
3955xlog_recover_buffer_ra_pass2(
3956	struct xlog                     *log,
3957	struct xlog_recover_item        *item)
3958{
3959	struct xfs_buf_log_format	*buf_f = item->ri_buf[0].i_addr;
3960	struct xfs_mount		*mp = log->l_mp;
3961
3962	if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
3963			buf_f->blf_len, buf_f->blf_flags)) {
3964		return;
3965	}
3966
3967	xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3968				buf_f->blf_len, NULL);
3969}
3970
3971STATIC void
3972xlog_recover_inode_ra_pass2(
3973	struct xlog                     *log,
3974	struct xlog_recover_item        *item)
3975{
3976	struct xfs_inode_log_format	ilf_buf;
3977	struct xfs_inode_log_format	*ilfp;
3978	struct xfs_mount		*mp = log->l_mp;
3979	int			error;
3980
3981	if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3982		ilfp = item->ri_buf[0].i_addr;
3983	} else {
3984		ilfp = &ilf_buf;
3985		memset(ilfp, 0, sizeof(*ilfp));
3986		error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3987		if (error)
3988			return;
3989	}
3990
3991	if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
3992		return;
3993
3994	xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
3995				ilfp->ilf_len, &xfs_inode_buf_ra_ops);
3996}
3997
3998STATIC void
3999xlog_recover_dquot_ra_pass2(
4000	struct xlog			*log,
4001	struct xlog_recover_item	*item)
4002{
4003	struct xfs_mount	*mp = log->l_mp;
4004	struct xfs_disk_dquot	*recddq;
4005	struct xfs_dq_logformat	*dq_f;
4006	uint			type;
4007	int			len;
4008
4009
4010	if (mp->m_qflags == 0)
4011		return;
4012
4013	recddq = item->ri_buf[1].i_addr;
4014	if (recddq == NULL)
4015		return;
4016	if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
4017		return;
4018
4019	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
4020	ASSERT(type);
4021	if (log->l_quotaoffs_flag & type)
4022		return;
4023
4024	dq_f = item->ri_buf[0].i_addr;
4025	ASSERT(dq_f);
4026	ASSERT(dq_f->qlf_len == 1);
4027
4028	len = XFS_FSB_TO_BB(mp, dq_f->qlf_len);
4029	if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0))
4030		return;
4031
4032	xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len,
4033			  &xfs_dquot_buf_ra_ops);
4034}
4035
4036STATIC void
4037xlog_recover_ra_pass2(
4038	struct xlog			*log,
4039	struct xlog_recover_item	*item)
4040{
4041	switch (ITEM_TYPE(item)) {
4042	case XFS_LI_BUF:
4043		xlog_recover_buffer_ra_pass2(log, item);
4044		break;
4045	case XFS_LI_INODE:
4046		xlog_recover_inode_ra_pass2(log, item);
4047		break;
4048	case XFS_LI_DQUOT:
4049		xlog_recover_dquot_ra_pass2(log, item);
4050		break;
4051	case XFS_LI_EFI:
4052	case XFS_LI_EFD:
4053	case XFS_LI_QUOTAOFF:
4054	case XFS_LI_RUI:
4055	case XFS_LI_RUD:
4056	case XFS_LI_CUI:
4057	case XFS_LI_CUD:
4058	case XFS_LI_BUI:
4059	case XFS_LI_BUD:
4060	default:
4061		break;
4062	}
4063}
4064
4065STATIC int
4066xlog_recover_commit_pass1(
4067	struct xlog			*log,
4068	struct xlog_recover		*trans,
4069	struct xlog_recover_item	*item)
4070{
4071	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
4072
4073	switch (ITEM_TYPE(item)) {
4074	case XFS_LI_BUF:
4075		return xlog_recover_buffer_pass1(log, item);
4076	case XFS_LI_QUOTAOFF:
4077		return xlog_recover_quotaoff_pass1(log, item);
4078	case XFS_LI_INODE:
4079	case XFS_LI_EFI:
4080	case XFS_LI_EFD:
4081	case XFS_LI_DQUOT:
4082	case XFS_LI_ICREATE:
4083	case XFS_LI_RUI:
4084	case XFS_LI_RUD:
4085	case XFS_LI_CUI:
4086	case XFS_LI_CUD:
4087	case XFS_LI_BUI:
4088	case XFS_LI_BUD:
4089		/* nothing to do in pass 1 */
4090		return 0;
4091	default:
4092		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4093			__func__, ITEM_TYPE(item));
4094		ASSERT(0);
4095		return -EIO;
4096	}
4097}
4098
4099STATIC int
4100xlog_recover_commit_pass2(
4101	struct xlog			*log,
4102	struct xlog_recover		*trans,
4103	struct list_head		*buffer_list,
4104	struct xlog_recover_item	*item)
4105{
4106	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
4107
4108	switch (ITEM_TYPE(item)) {
4109	case XFS_LI_BUF:
4110		return xlog_recover_buffer_pass2(log, buffer_list, item,
4111						 trans->r_lsn);
4112	case XFS_LI_INODE:
4113		return xlog_recover_inode_pass2(log, buffer_list, item,
4114						 trans->r_lsn);
4115	case XFS_LI_EFI:
4116		return xlog_recover_efi_pass2(log, item, trans->r_lsn);
4117	case XFS_LI_EFD:
4118		return xlog_recover_efd_pass2(log, item);
4119	case XFS_LI_RUI:
4120		return xlog_recover_rui_pass2(log, item, trans->r_lsn);
4121	case XFS_LI_RUD:
4122		return xlog_recover_rud_pass2(log, item);
4123	case XFS_LI_CUI:
4124		return xlog_recover_cui_pass2(log, item, trans->r_lsn);
4125	case XFS_LI_CUD:
4126		return xlog_recover_cud_pass2(log, item);
4127	case XFS_LI_BUI:
4128		return xlog_recover_bui_pass2(log, item, trans->r_lsn);
4129	case XFS_LI_BUD:
4130		return xlog_recover_bud_pass2(log, item);
4131	case XFS_LI_DQUOT:
4132		return xlog_recover_dquot_pass2(log, buffer_list, item,
4133						trans->r_lsn);
4134	case XFS_LI_ICREATE:
4135		return xlog_recover_do_icreate_pass2(log, buffer_list, item);
4136	case XFS_LI_QUOTAOFF:
4137		/* nothing to do in pass2 */
4138		return 0;
4139	default:
4140		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4141			__func__, ITEM_TYPE(item));
4142		ASSERT(0);
4143		return -EIO;
4144	}
4145}
4146
4147STATIC int
4148xlog_recover_items_pass2(
4149	struct xlog                     *log,
4150	struct xlog_recover             *trans,
4151	struct list_head                *buffer_list,
4152	struct list_head                *item_list)
4153{
4154	struct xlog_recover_item	*item;
4155	int				error = 0;
4156
4157	list_for_each_entry(item, item_list, ri_list) {
4158		error = xlog_recover_commit_pass2(log, trans,
4159					  buffer_list, item);
 
 
 
 
4160		if (error)
4161			return error;
4162	}
4163
4164	return error;
4165}
4166
4167/*
4168 * Perform the transaction.
4169 *
4170 * If the transaction modifies a buffer or inode, do it now.  Otherwise,
4171 * EFIs and EFDs get queued up by adding entries into the AIL for them.
4172 */
4173STATIC int
4174xlog_recover_commit_trans(
4175	struct xlog		*log,
4176	struct xlog_recover	*trans,
4177	int			pass,
4178	struct list_head	*buffer_list)
4179{
4180	int				error = 0;
4181	int				items_queued = 0;
4182	struct xlog_recover_item	*item;
4183	struct xlog_recover_item	*next;
4184	LIST_HEAD			(ra_list);
4185	LIST_HEAD			(done_list);
4186
4187	#define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
4188
4189	hlist_del_init(&trans->r_list);
4190
4191	error = xlog_recover_reorder_trans(log, trans, pass);
4192	if (error)
4193		return error;
4194
4195	list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
 
 
4196		switch (pass) {
4197		case XLOG_RECOVER_PASS1:
4198			error = xlog_recover_commit_pass1(log, trans, item);
 
4199			break;
4200		case XLOG_RECOVER_PASS2:
4201			xlog_recover_ra_pass2(log, item);
 
4202			list_move_tail(&item->ri_list, &ra_list);
4203			items_queued++;
4204			if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
4205				error = xlog_recover_items_pass2(log, trans,
4206						buffer_list, &ra_list);
4207				list_splice_tail_init(&ra_list, &done_list);
4208				items_queued = 0;
4209			}
4210
4211			break;
4212		default:
4213			ASSERT(0);
4214		}
4215
4216		if (error)
4217			goto out;
4218	}
4219
4220out:
4221	if (!list_empty(&ra_list)) {
4222		if (!error)
4223			error = xlog_recover_items_pass2(log, trans,
4224					buffer_list, &ra_list);
4225		list_splice_tail_init(&ra_list, &done_list);
4226	}
4227
4228	if (!list_empty(&done_list))
4229		list_splice_init(&done_list, &trans->r_itemq);
4230
4231	return error;
4232}
4233
4234STATIC void
4235xlog_recover_add_item(
4236	struct list_head	*head)
4237{
4238	xlog_recover_item_t	*item;
4239
4240	item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
 
4241	INIT_LIST_HEAD(&item->ri_list);
4242	list_add_tail(&item->ri_list, head);
4243}
4244
4245STATIC int
4246xlog_recover_add_to_cont_trans(
4247	struct xlog		*log,
4248	struct xlog_recover	*trans,
4249	char			*dp,
4250	int			len)
4251{
4252	xlog_recover_item_t	*item;
4253	char			*ptr, *old_ptr;
4254	int			old_len;
4255
4256	/*
4257	 * If the transaction is empty, the header was split across this and the
4258	 * previous record. Copy the rest of the header.
4259	 */
4260	if (list_empty(&trans->r_itemq)) {
4261		ASSERT(len <= sizeof(struct xfs_trans_header));
4262		if (len > sizeof(struct xfs_trans_header)) {
4263			xfs_warn(log->l_mp, "%s: bad header length", __func__);
4264			return -EIO;
4265		}
4266
4267		xlog_recover_add_item(&trans->r_itemq);
4268		ptr = (char *)&trans->r_theader +
4269				sizeof(struct xfs_trans_header) - len;
4270		memcpy(ptr, dp, len);
4271		return 0;
4272	}
4273
4274	/* take the tail entry */
4275	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
 
4276
4277	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
4278	old_len = item->ri_buf[item->ri_cnt-1].i_len;
4279
4280	ptr = kmem_realloc(old_ptr, len + old_len, KM_SLEEP);
 
 
4281	memcpy(&ptr[old_len], dp, len);
4282	item->ri_buf[item->ri_cnt-1].i_len += len;
4283	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
4284	trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
4285	return 0;
4286}
4287
4288/*
4289 * The next region to add is the start of a new region.  It could be
4290 * a whole region or it could be the first part of a new region.  Because
4291 * of this, the assumption here is that the type and size fields of all
4292 * format structures fit into the first 32 bits of the structure.
4293 *
4294 * This works because all regions must be 32 bit aligned.  Therefore, we
4295 * either have both fields or we have neither field.  In the case we have
4296 * neither field, the data part of the region is zero length.  We only have
4297 * a log_op_header and can throw away the header since a new one will appear
4298 * later.  If we have at least 4 bytes, then we can determine how many regions
4299 * will appear in the current log item.
4300 */
4301STATIC int
4302xlog_recover_add_to_trans(
4303	struct xlog		*log,
4304	struct xlog_recover	*trans,
4305	char			*dp,
4306	int			len)
4307{
4308	struct xfs_inode_log_format	*in_f;			/* any will do */
4309	xlog_recover_item_t	*item;
4310	char			*ptr;
4311
4312	if (!len)
4313		return 0;
4314	if (list_empty(&trans->r_itemq)) {
4315		/* we need to catch log corruptions here */
4316		if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
4317			xfs_warn(log->l_mp, "%s: bad header magic number",
4318				__func__);
4319			ASSERT(0);
4320			return -EIO;
4321		}
4322
4323		if (len > sizeof(struct xfs_trans_header)) {
4324			xfs_warn(log->l_mp, "%s: bad header length", __func__);
4325			ASSERT(0);
4326			return -EIO;
4327		}
4328
4329		/*
4330		 * The transaction header can be arbitrarily split across op
4331		 * records. If we don't have the whole thing here, copy what we
4332		 * do have and handle the rest in the next record.
4333		 */
4334		if (len == sizeof(struct xfs_trans_header))
4335			xlog_recover_add_item(&trans->r_itemq);
4336		memcpy(&trans->r_theader, dp, len);
4337		return 0;
4338	}
4339
4340	ptr = kmem_alloc(len, KM_SLEEP);
4341	memcpy(ptr, dp, len);
4342	in_f = (struct xfs_inode_log_format *)ptr;
4343
4344	/* take the tail entry */
4345	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
 
4346	if (item->ri_total != 0 &&
4347	     item->ri_total == item->ri_cnt) {
4348		/* tail item is in use, get a new one */
4349		xlog_recover_add_item(&trans->r_itemq);
4350		item = list_entry(trans->r_itemq.prev,
4351					xlog_recover_item_t, ri_list);
4352	}
4353
4354	if (item->ri_total == 0) {		/* first region to be added */
4355		if (in_f->ilf_size == 0 ||
4356		    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
4357			xfs_warn(log->l_mp,
4358		"bad number of regions (%d) in inode log format",
4359				  in_f->ilf_size);
4360			ASSERT(0);
4361			kmem_free(ptr);
4362			return -EIO;
4363		}
4364
4365		item->ri_total = in_f->ilf_size;
4366		item->ri_buf =
4367			kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
4368				    KM_SLEEP);
 
 
 
 
 
 
 
 
4369	}
4370	ASSERT(item->ri_total > item->ri_cnt);
4371	/* Description region is ri_buf[0] */
4372	item->ri_buf[item->ri_cnt].i_addr = ptr;
4373	item->ri_buf[item->ri_cnt].i_len  = len;
4374	item->ri_cnt++;
4375	trace_xfs_log_recover_item_add(log, trans, item, 0);
4376	return 0;
4377}
4378
4379/*
4380 * Free up any resources allocated by the transaction
4381 *
4382 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
4383 */
4384STATIC void
4385xlog_recover_free_trans(
4386	struct xlog_recover	*trans)
4387{
4388	xlog_recover_item_t	*item, *n;
4389	int			i;
4390
4391	hlist_del_init(&trans->r_list);
4392
4393	list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
4394		/* Free the regions in the item. */
4395		list_del(&item->ri_list);
4396		for (i = 0; i < item->ri_cnt; i++)
4397			kmem_free(item->ri_buf[i].i_addr);
4398		/* Free the item itself */
4399		kmem_free(item->ri_buf);
4400		kmem_free(item);
4401	}
4402	/* Free the transaction recover structure */
4403	kmem_free(trans);
4404}
4405
4406/*
4407 * On error or completion, trans is freed.
4408 */
4409STATIC int
4410xlog_recovery_process_trans(
4411	struct xlog		*log,
4412	struct xlog_recover	*trans,
4413	char			*dp,
4414	unsigned int		len,
4415	unsigned int		flags,
4416	int			pass,
4417	struct list_head	*buffer_list)
4418{
4419	int			error = 0;
4420	bool			freeit = false;
4421
4422	/* mask off ophdr transaction container flags */
4423	flags &= ~XLOG_END_TRANS;
4424	if (flags & XLOG_WAS_CONT_TRANS)
4425		flags &= ~XLOG_CONTINUE_TRANS;
4426
4427	/*
4428	 * Callees must not free the trans structure. We'll decide if we need to
4429	 * free it or not based on the operation being done and it's result.
4430	 */
4431	switch (flags) {
4432	/* expected flag values */
4433	case 0:
4434	case XLOG_CONTINUE_TRANS:
4435		error = xlog_recover_add_to_trans(log, trans, dp, len);
4436		break;
4437	case XLOG_WAS_CONT_TRANS:
4438		error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
4439		break;
4440	case XLOG_COMMIT_TRANS:
4441		error = xlog_recover_commit_trans(log, trans, pass,
4442						  buffer_list);
4443		/* success or fail, we are now done with this transaction. */
4444		freeit = true;
4445		break;
4446
4447	/* unexpected flag values */
4448	case XLOG_UNMOUNT_TRANS:
4449		/* just skip trans */
4450		xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
4451		freeit = true;
4452		break;
4453	case XLOG_START_TRANS:
4454	default:
4455		xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
4456		ASSERT(0);
4457		error = -EIO;
4458		break;
4459	}
4460	if (error || freeit)
4461		xlog_recover_free_trans(trans);
4462	return error;
4463}
4464
4465/*
4466 * Lookup the transaction recovery structure associated with the ID in the
4467 * current ophdr. If the transaction doesn't exist and the start flag is set in
4468 * the ophdr, then allocate a new transaction for future ID matches to find.
4469 * Either way, return what we found during the lookup - an existing transaction
4470 * or nothing.
4471 */
4472STATIC struct xlog_recover *
4473xlog_recover_ophdr_to_trans(
4474	struct hlist_head	rhash[],
4475	struct xlog_rec_header	*rhead,
4476	struct xlog_op_header	*ohead)
4477{
4478	struct xlog_recover	*trans;
4479	xlog_tid_t		tid;
4480	struct hlist_head	*rhp;
4481
4482	tid = be32_to_cpu(ohead->oh_tid);
4483	rhp = &rhash[XLOG_RHASH(tid)];
4484	hlist_for_each_entry(trans, rhp, r_list) {
4485		if (trans->r_log_tid == tid)
4486			return trans;
4487	}
4488
4489	/*
4490	 * skip over non-start transaction headers - we could be
4491	 * processing slack space before the next transaction starts
4492	 */
4493	if (!(ohead->oh_flags & XLOG_START_TRANS))
4494		return NULL;
4495
4496	ASSERT(be32_to_cpu(ohead->oh_len) == 0);
4497
4498	/*
4499	 * This is a new transaction so allocate a new recovery container to
4500	 * hold the recovery ops that will follow.
4501	 */
4502	trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP);
4503	trans->r_log_tid = tid;
4504	trans->r_lsn = be64_to_cpu(rhead->h_lsn);
4505	INIT_LIST_HEAD(&trans->r_itemq);
4506	INIT_HLIST_NODE(&trans->r_list);
4507	hlist_add_head(&trans->r_list, rhp);
4508
4509	/*
4510	 * Nothing more to do for this ophdr. Items to be added to this new
4511	 * transaction will be in subsequent ophdr containers.
4512	 */
4513	return NULL;
4514}
4515
4516STATIC int
4517xlog_recover_process_ophdr(
4518	struct xlog		*log,
4519	struct hlist_head	rhash[],
4520	struct xlog_rec_header	*rhead,
4521	struct xlog_op_header	*ohead,
4522	char			*dp,
4523	char			*end,
4524	int			pass,
4525	struct list_head	*buffer_list)
4526{
4527	struct xlog_recover	*trans;
4528	unsigned int		len;
4529	int			error;
4530
4531	/* Do we understand who wrote this op? */
4532	if (ohead->oh_clientid != XFS_TRANSACTION &&
4533	    ohead->oh_clientid != XFS_LOG) {
4534		xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
4535			__func__, ohead->oh_clientid);
4536		ASSERT(0);
4537		return -EIO;
4538	}
4539
4540	/*
4541	 * Check the ophdr contains all the data it is supposed to contain.
4542	 */
4543	len = be32_to_cpu(ohead->oh_len);
4544	if (dp + len > end) {
4545		xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
4546		WARN_ON(1);
4547		return -EIO;
4548	}
4549
4550	trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
4551	if (!trans) {
4552		/* nothing to do, so skip over this ophdr */
4553		return 0;
4554	}
4555
4556	/*
4557	 * The recovered buffer queue is drained only once we know that all
4558	 * recovery items for the current LSN have been processed. This is
4559	 * required because:
4560	 *
4561	 * - Buffer write submission updates the metadata LSN of the buffer.
4562	 * - Log recovery skips items with a metadata LSN >= the current LSN of
4563	 *   the recovery item.
4564	 * - Separate recovery items against the same metadata buffer can share
4565	 *   a current LSN. I.e., consider that the LSN of a recovery item is
4566	 *   defined as the starting LSN of the first record in which its
4567	 *   transaction appears, that a record can hold multiple transactions,
4568	 *   and/or that a transaction can span multiple records.
4569	 *
4570	 * In other words, we are allowed to submit a buffer from log recovery
4571	 * once per current LSN. Otherwise, we may incorrectly skip recovery
4572	 * items and cause corruption.
4573	 *
4574	 * We don't know up front whether buffers are updated multiple times per
4575	 * LSN. Therefore, track the current LSN of each commit log record as it
4576	 * is processed and drain the queue when it changes. Use commit records
4577	 * because they are ordered correctly by the logging code.
4578	 */
4579	if (log->l_recovery_lsn != trans->r_lsn &&
4580	    ohead->oh_flags & XLOG_COMMIT_TRANS) {
4581		error = xfs_buf_delwri_submit(buffer_list);
4582		if (error)
4583			return error;
4584		log->l_recovery_lsn = trans->r_lsn;
4585	}
4586
4587	return xlog_recovery_process_trans(log, trans, dp, len,
4588					   ohead->oh_flags, pass, buffer_list);
4589}
4590
4591/*
4592 * There are two valid states of the r_state field.  0 indicates that the
4593 * transaction structure is in a normal state.  We have either seen the
4594 * start of the transaction or the last operation we added was not a partial
4595 * operation.  If the last operation we added to the transaction was a
4596 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
4597 *
4598 * NOTE: skip LRs with 0 data length.
4599 */
4600STATIC int
4601xlog_recover_process_data(
4602	struct xlog		*log,
4603	struct hlist_head	rhash[],
4604	struct xlog_rec_header	*rhead,
4605	char			*dp,
4606	int			pass,
4607	struct list_head	*buffer_list)
4608{
4609	struct xlog_op_header	*ohead;
4610	char			*end;
4611	int			num_logops;
4612	int			error;
4613
4614	end = dp + be32_to_cpu(rhead->h_len);
4615	num_logops = be32_to_cpu(rhead->h_num_logops);
4616
4617	/* check the log format matches our own - else we can't recover */
4618	if (xlog_header_check_recover(log->l_mp, rhead))
4619		return -EIO;
4620
4621	trace_xfs_log_recover_record(log, rhead, pass);
4622	while ((dp < end) && num_logops) {
4623
4624		ohead = (struct xlog_op_header *)dp;
4625		dp += sizeof(*ohead);
4626		ASSERT(dp <= end);
 
 
 
4627
4628		/* errors will abort recovery */
4629		error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
4630						   dp, end, pass, buffer_list);
4631		if (error)
4632			return error;
4633
4634		dp += be32_to_cpu(ohead->oh_len);
4635		num_logops--;
4636	}
4637	return 0;
4638}
4639
4640/* Recover the EFI if necessary. */
4641STATIC int
4642xlog_recover_process_efi(
4643	struct xfs_mount		*mp,
4644	struct xfs_ail			*ailp,
4645	struct xfs_log_item		*lip)
4646{
4647	struct xfs_efi_log_item		*efip;
4648	int				error;
4649
4650	/*
4651	 * Skip EFIs that we've already processed.
4652	 */
4653	efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4654	if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags))
4655		return 0;
4656
4657	spin_unlock(&ailp->ail_lock);
4658	error = xfs_efi_recover(mp, efip);
4659	spin_lock(&ailp->ail_lock);
4660
4661	return error;
4662}
4663
4664/* Release the EFI since we're cancelling everything. */
4665STATIC void
4666xlog_recover_cancel_efi(
4667	struct xfs_mount		*mp,
4668	struct xfs_ail			*ailp,
4669	struct xfs_log_item		*lip)
4670{
4671	struct xfs_efi_log_item		*efip;
4672
4673	efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4674
4675	spin_unlock(&ailp->ail_lock);
4676	xfs_efi_release(efip);
4677	spin_lock(&ailp->ail_lock);
4678}
4679
4680/* Recover the RUI if necessary. */
4681STATIC int
4682xlog_recover_process_rui(
4683	struct xfs_mount		*mp,
4684	struct xfs_ail			*ailp,
4685	struct xfs_log_item		*lip)
4686{
4687	struct xfs_rui_log_item		*ruip;
4688	int				error;
4689
4690	/*
4691	 * Skip RUIs that we've already processed.
4692	 */
4693	ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4694	if (test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags))
4695		return 0;
4696
4697	spin_unlock(&ailp->ail_lock);
4698	error = xfs_rui_recover(mp, ruip);
4699	spin_lock(&ailp->ail_lock);
4700
4701	return error;
4702}
4703
4704/* Release the RUI since we're cancelling everything. */
4705STATIC void
4706xlog_recover_cancel_rui(
4707	struct xfs_mount		*mp,
4708	struct xfs_ail			*ailp,
4709	struct xfs_log_item		*lip)
4710{
4711	struct xfs_rui_log_item		*ruip;
4712
4713	ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4714
4715	spin_unlock(&ailp->ail_lock);
4716	xfs_rui_release(ruip);
4717	spin_lock(&ailp->ail_lock);
4718}
4719
4720/* Recover the CUI if necessary. */
4721STATIC int
4722xlog_recover_process_cui(
4723	struct xfs_mount		*mp,
4724	struct xfs_ail			*ailp,
4725	struct xfs_log_item		*lip,
4726	struct xfs_defer_ops		*dfops)
4727{
4728	struct xfs_cui_log_item		*cuip;
4729	int				error;
4730
4731	/*
4732	 * Skip CUIs that we've already processed.
4733	 */
4734	cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4735	if (test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags))
4736		return 0;
4737
4738	spin_unlock(&ailp->ail_lock);
4739	error = xfs_cui_recover(mp, cuip, dfops);
4740	spin_lock(&ailp->ail_lock);
4741
4742	return error;
4743}
4744
4745/* Release the CUI since we're cancelling everything. */
4746STATIC void
4747xlog_recover_cancel_cui(
4748	struct xfs_mount		*mp,
4749	struct xfs_ail			*ailp,
4750	struct xfs_log_item		*lip)
4751{
4752	struct xfs_cui_log_item		*cuip;
4753
4754	cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4755
4756	spin_unlock(&ailp->ail_lock);
4757	xfs_cui_release(cuip);
4758	spin_lock(&ailp->ail_lock);
4759}
 
 
 
 
 
 
 
 
 
4760
4761/* Recover the BUI if necessary. */
4762STATIC int
4763xlog_recover_process_bui(
4764	struct xfs_mount		*mp,
4765	struct xfs_ail			*ailp,
4766	struct xfs_log_item		*lip,
4767	struct xfs_defer_ops		*dfops)
4768{
4769	struct xfs_bui_log_item		*buip;
4770	int				error;
4771
4772	/*
4773	 * Skip BUIs that we've already processed.
4774	 */
4775	buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4776	if (test_bit(XFS_BUI_RECOVERED, &buip->bui_flags))
4777		return 0;
4778
4779	spin_unlock(&ailp->ail_lock);
4780	error = xfs_bui_recover(mp, buip, dfops);
4781	spin_lock(&ailp->ail_lock);
 
 
 
 
 
 
 
 
4782
4783	return error;
 
4784}
4785
4786/* Release the BUI since we're cancelling everything. */
4787STATIC void
4788xlog_recover_cancel_bui(
4789	struct xfs_mount		*mp,
4790	struct xfs_ail			*ailp,
4791	struct xfs_log_item		*lip)
4792{
4793	struct xfs_bui_log_item		*buip;
4794
4795	buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4796
4797	spin_unlock(&ailp->ail_lock);
4798	xfs_bui_release(buip);
4799	spin_lock(&ailp->ail_lock);
4800}
4801
4802/* Is this log item a deferred action intent? */
4803static inline bool xlog_item_is_intent(struct xfs_log_item *lip)
4804{
4805	switch (lip->li_type) {
4806	case XFS_LI_EFI:
4807	case XFS_LI_RUI:
4808	case XFS_LI_CUI:
4809	case XFS_LI_BUI:
4810		return true;
4811	default:
4812		return false;
4813	}
4814}
4815
4816/* Take all the collected deferred ops and finish them in order. */
4817static int
4818xlog_finish_defer_ops(
4819	struct xfs_mount	*mp,
4820	struct xfs_defer_ops	*dfops)
4821{
4822	struct xfs_trans	*tp;
4823	int64_t			freeblks;
4824	uint			resblks;
4825	int			error;
4826
4827	/*
4828	 * We're finishing the defer_ops that accumulated as a result of
4829	 * recovering unfinished intent items during log recovery.  We
4830	 * reserve an itruncate transaction because it is the largest
4831	 * permanent transaction type.  Since we're the only user of the fs
4832	 * right now, take 93% (15/16) of the available free blocks.  Use
4833	 * weird math to avoid a 64-bit division.
4834	 */
4835	freeblks = percpu_counter_sum(&mp->m_fdblocks);
4836	if (freeblks <= 0)
4837		return -ENOSPC;
4838	resblks = min_t(int64_t, UINT_MAX, freeblks);
4839	resblks = (resblks * 15) >> 4;
4840	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, resblks,
4841			0, XFS_TRANS_RESERVE, &tp);
4842	if (error)
4843		return error;
4844
4845	error = xfs_defer_finish(&tp, dfops);
4846	if (error)
4847		goto out_cancel;
4848
4849	return xfs_trans_commit(tp);
4850
4851out_cancel:
4852	xfs_trans_cancel(tp);
4853	return error;
4854}
4855
4856/*
4857 * When this is called, all of the log intent items which did not have
4858 * corresponding log done items should be in the AIL.  What we do now
4859 * is update the data structures associated with each one.
4860 *
4861 * Since we process the log intent items in normal transactions, they
4862 * will be removed at some point after the commit.  This prevents us
4863 * from just walking down the list processing each one.  We'll use a
4864 * flag in the intent item to skip those that we've already processed
4865 * and use the AIL iteration mechanism's generation count to try to
4866 * speed this up at least a bit.
4867 *
4868 * When we start, we know that the intents are the only things in the
4869 * AIL.  As we process them, however, other items are added to the
4870 * AIL.
4871 */
4872STATIC int
4873xlog_recover_process_intents(
4874	struct xlog		*log)
4875{
4876	struct xfs_defer_ops	dfops;
4877	struct xfs_ail_cursor	cur;
4878	struct xfs_log_item	*lip;
4879	struct xfs_ail		*ailp;
4880	xfs_fsblock_t		firstfsb;
4881	int			error = 0;
4882#if defined(DEBUG) || defined(XFS_WARN)
4883	xfs_lsn_t		last_lsn;
4884#endif
4885
4886	ailp = log->l_ailp;
4887	spin_lock(&ailp->ail_lock);
4888	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4889#if defined(DEBUG) || defined(XFS_WARN)
4890	last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
4891#endif
4892	xfs_defer_init(&dfops, &firstfsb);
4893	while (lip != NULL) {
4894		/*
4895		 * We're done when we see something other than an intent.
4896		 * There should be no intents left in the AIL now.
4897		 */
4898		if (!xlog_item_is_intent(lip)) {
4899#ifdef DEBUG
4900			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4901				ASSERT(!xlog_item_is_intent(lip));
4902#endif
4903			break;
4904		}
4905
4906		/*
4907		 * We should never see a redo item with a LSN higher than
4908		 * the last transaction we found in the log at the start
4909		 * of recovery.
4910		 */
4911		ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0);
4912
4913		/*
4914		 * NOTE: If your intent processing routine can create more
4915		 * deferred ops, you /must/ attach them to the dfops in this
4916		 * routine or else those subsequent intents will get
4917		 * replayed in the wrong order!
 
 
 
 
4918		 */
4919		switch (lip->li_type) {
4920		case XFS_LI_EFI:
4921			error = xlog_recover_process_efi(log->l_mp, ailp, lip);
4922			break;
4923		case XFS_LI_RUI:
4924			error = xlog_recover_process_rui(log->l_mp, ailp, lip);
4925			break;
4926		case XFS_LI_CUI:
4927			error = xlog_recover_process_cui(log->l_mp, ailp, lip,
4928					&dfops);
4929			break;
4930		case XFS_LI_BUI:
4931			error = xlog_recover_process_bui(log->l_mp, ailp, lip,
4932					&dfops);
4933			break;
4934		}
4935		if (error)
4936			goto out;
4937		lip = xfs_trans_ail_cursor_next(ailp, &cur);
4938	}
4939out:
4940	xfs_trans_ail_cursor_done(&cur);
4941	spin_unlock(&ailp->ail_lock);
4942	if (error)
4943		xfs_defer_cancel(&dfops);
4944	else
4945		error = xlog_finish_defer_ops(log->l_mp, &dfops);
 
 
4946
 
 
 
4947	return error;
4948}
4949
4950/*
4951 * A cancel occurs when the mount has failed and we're bailing out.
4952 * Release all pending log intent items so they don't pin the AIL.
 
4953 */
4954STATIC int
4955xlog_recover_cancel_intents(
4956	struct xlog		*log)
4957{
4958	struct xfs_log_item	*lip;
4959	int			error = 0;
4960	struct xfs_ail_cursor	cur;
4961	struct xfs_ail		*ailp;
4962
4963	ailp = log->l_ailp;
4964	spin_lock(&ailp->ail_lock);
4965	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4966	while (lip != NULL) {
4967		/*
4968		 * We're done when we see something other than an intent.
4969		 * There should be no intents left in the AIL now.
4970		 */
4971		if (!xlog_item_is_intent(lip)) {
4972#ifdef DEBUG
4973			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4974				ASSERT(!xlog_item_is_intent(lip));
4975#endif
4976			break;
4977		}
4978
4979		switch (lip->li_type) {
4980		case XFS_LI_EFI:
4981			xlog_recover_cancel_efi(log->l_mp, ailp, lip);
4982			break;
4983		case XFS_LI_RUI:
4984			xlog_recover_cancel_rui(log->l_mp, ailp, lip);
4985			break;
4986		case XFS_LI_CUI:
4987			xlog_recover_cancel_cui(log->l_mp, ailp, lip);
4988			break;
4989		case XFS_LI_BUI:
4990			xlog_recover_cancel_bui(log->l_mp, ailp, lip);
4991			break;
4992		}
4993
4994		lip = xfs_trans_ail_cursor_next(ailp, &cur);
4995	}
 
 
 
 
 
 
 
 
 
 
 
 
 
4996
4997	xfs_trans_ail_cursor_done(&cur);
4998	spin_unlock(&ailp->ail_lock);
 
 
4999	return error;
5000}
5001
5002/*
5003 * This routine performs a transaction to null out a bad inode pointer
5004 * in an agi unlinked inode hash bucket.
5005 */
5006STATIC void
5007xlog_recover_clear_agi_bucket(
5008	xfs_mount_t	*mp,
5009	xfs_agnumber_t	agno,
5010	int		bucket)
5011{
5012	xfs_trans_t	*tp;
5013	xfs_agi_t	*agi;
5014	xfs_buf_t	*agibp;
5015	int		offset;
5016	int		error;
5017
5018	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
5019	if (error)
5020		goto out_error;
5021
5022	error = xfs_read_agi(mp, tp, agno, &agibp);
5023	if (error)
5024		goto out_abort;
5025
5026	agi = XFS_BUF_TO_AGI(agibp);
5027	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
5028	offset = offsetof(xfs_agi_t, agi_unlinked) +
5029		 (sizeof(xfs_agino_t) * bucket);
5030	xfs_trans_log_buf(tp, agibp, offset,
5031			  (offset + sizeof(xfs_agino_t) - 1));
5032
5033	error = xfs_trans_commit(tp);
5034	if (error)
5035		goto out_error;
5036	return;
5037
5038out_abort:
5039	xfs_trans_cancel(tp);
5040out_error:
5041	xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
 
5042	return;
5043}
5044
5045STATIC xfs_agino_t
5046xlog_recover_process_one_iunlink(
5047	struct xfs_mount		*mp,
5048	xfs_agnumber_t			agno,
5049	xfs_agino_t			agino,
5050	int				bucket)
5051{
5052	struct xfs_buf			*ibp;
5053	struct xfs_dinode		*dip;
5054	struct xfs_inode		*ip;
5055	xfs_ino_t			ino;
5056	int				error;
5057
5058	ino = XFS_AGINO_TO_INO(mp, agno, agino);
5059	error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
5060	if (error)
5061		goto fail;
 
 
5062
5063	/*
5064	 * Get the on disk inode to find the next inode in the bucket.
5065	 */
5066	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
5067	if (error)
5068		goto fail_iput;
5069
5070	xfs_iflags_clear(ip, XFS_IRECOVERY);
5071	ASSERT(VFS_I(ip)->i_nlink == 0);
5072	ASSERT(VFS_I(ip)->i_mode != 0);
5073
5074	/* setup for the next pass */
5075	agino = be32_to_cpu(dip->di_next_unlinked);
5076	xfs_buf_relse(ibp);
 
 
 
 
 
 
 
 
 
 
5077
5078	/*
5079	 * Prevent any DMAPI event from being sent when the reference on
5080	 * the inode is dropped.
5081	 */
5082	ip->i_d.di_dmevmask = 0;
5083
5084	IRELE(ip);
5085	return agino;
5086
5087 fail_iput:
5088	IRELE(ip);
5089 fail:
5090	/*
5091	 * We can't read in the inode this bucket points to, or this inode
5092	 * is messed up.  Just ditch this bucket of inodes.  We will lose
5093	 * some inodes and space, but at least we won't hang.
5094	 *
5095	 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
5096	 * clear the inode pointer in the bucket.
5097	 */
5098	xlog_recover_clear_agi_bucket(mp, agno, bucket);
5099	return NULLAGINO;
5100}
5101
5102/*
5103 * xlog_iunlink_recover
5104 *
5105 * This is called during recovery to process any inodes which
5106 * we unlinked but not freed when the system crashed.  These
5107 * inodes will be on the lists in the AGI blocks.  What we do
5108 * here is scan all the AGIs and fully truncate and free any
5109 * inodes found on the lists.  Each inode is removed from the
5110 * lists when it has been fully truncated and is freed.  The
5111 * freeing of the inode and its removal from the list must be
5112 * atomic.
 
 
 
 
 
 
 
 
 
 
 
5113 */
5114STATIC void
5115xlog_recover_process_iunlinks(
5116	struct xlog	*log)
5117{
5118	xfs_mount_t	*mp;
5119	xfs_agnumber_t	agno;
5120	xfs_agi_t	*agi;
5121	xfs_buf_t	*agibp;
5122	xfs_agino_t	agino;
5123	int		bucket;
5124	int		error;
5125
5126	mp = log->l_mp;
5127
5128	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
 
5129		/*
5130		 * Find the agi for this ag.
 
 
 
5131		 */
5132		error = xfs_read_agi(mp, NULL, agno, &agibp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5133		if (error) {
5134			/*
5135			 * AGI is b0rked. Don't process it.
5136			 *
5137			 * We should probably mark the filesystem as corrupt
5138			 * after we've recovered all the ag's we can....
5139			 */
5140			continue;
5141		}
5142		/*
5143		 * Unlock the buffer so that it can be acquired in the normal
5144		 * course of the transaction to truncate and free each inode.
5145		 * Because we are not racing with anyone else here for the AGI
5146		 * buffer, we don't even need to hold it locked to read the
5147		 * initial unlinked bucket entries out of the buffer. We keep
5148		 * buffer reference though, so that it stays pinned in memory
5149		 * while we need the buffer.
5150		 */
5151		agi = XFS_BUF_TO_AGI(agibp);
5152		xfs_buf_unlock(agibp);
5153
5154		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
5155			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
5156			while (agino != NULLAGINO) {
5157				agino = xlog_recover_process_one_iunlink(mp,
5158							agno, agino, bucket);
5159			}
5160		}
5161		xfs_buf_rele(agibp);
5162	}
 
 
5163}
5164
5165STATIC int
 
 
 
 
 
 
 
 
 
 
5166xlog_unpack_data(
5167	struct xlog_rec_header	*rhead,
5168	char			*dp,
5169	struct xlog		*log)
5170{
5171	int			i, j, k;
5172
5173	for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
5174		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
5175		*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
5176		dp += BBSIZE;
5177	}
5178
5179	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
5180		xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
5181		for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
5182			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5183			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5184			*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
5185			dp += BBSIZE;
5186		}
5187	}
5188
5189	return 0;
5190}
5191
5192/*
5193 * CRC check, unpack and process a log record.
5194 */
5195STATIC int
5196xlog_recover_process(
5197	struct xlog		*log,
5198	struct hlist_head	rhash[],
5199	struct xlog_rec_header	*rhead,
5200	char			*dp,
5201	int			pass,
5202	struct list_head	*buffer_list)
5203{
5204	int			error;
5205	__le32			old_crc = rhead->h_crc;
5206	__le32			crc;
5207
5208
5209	crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
5210
5211	/*
5212	 * Nothing else to do if this is a CRC verification pass. Just return
5213	 * if this a record with a non-zero crc. Unfortunately, mkfs always
5214	 * sets old_crc to 0 so we must consider this valid even on v5 supers.
5215	 * Otherwise, return EFSBADCRC on failure so the callers up the stack
5216	 * know precisely what failed.
5217	 */
5218	if (pass == XLOG_RECOVER_CRCPASS) {
5219		if (old_crc && crc != old_crc)
5220			return -EFSBADCRC;
5221		return 0;
5222	}
5223
5224	/*
5225	 * We're in the normal recovery path. Issue a warning if and only if the
5226	 * CRC in the header is non-zero. This is an advisory warning and the
5227	 * zero CRC check prevents warnings from being emitted when upgrading
5228	 * the kernel from one that does not add CRCs by default.
5229	 */
5230	if (crc != old_crc) {
5231		if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
5232			xfs_alert(log->l_mp,
5233		"log record CRC mismatch: found 0x%x, expected 0x%x.",
5234					le32_to_cpu(old_crc),
5235					le32_to_cpu(crc));
5236			xfs_hex_dump(dp, 32);
5237		}
5238
5239		/*
5240		 * If the filesystem is CRC enabled, this mismatch becomes a
5241		 * fatal log corruption failure.
5242		 */
5243		if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
 
5244			return -EFSCORRUPTED;
 
5245	}
5246
5247	error = xlog_unpack_data(rhead, dp, log);
5248	if (error)
5249		return error;
5250
5251	return xlog_recover_process_data(log, rhash, rhead, dp, pass,
5252					 buffer_list);
5253}
5254
5255STATIC int
5256xlog_valid_rec_header(
5257	struct xlog		*log,
5258	struct xlog_rec_header	*rhead,
5259	xfs_daddr_t		blkno)
 
5260{
5261	int			hlen;
5262
5263	if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
5264		XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
5265				XFS_ERRLEVEL_LOW, log->l_mp);
5266		return -EFSCORRUPTED;
5267	}
5268	if (unlikely(
5269	    (!rhead->h_version ||
5270	    (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
5271		xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
5272			__func__, be32_to_cpu(rhead->h_version));
5273		return -EIO;
5274	}
5275
5276	/* LR body must have data or it wouldn't have been written */
 
 
 
5277	hlen = be32_to_cpu(rhead->h_len);
5278	if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
5279		XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
5280				XFS_ERRLEVEL_LOW, log->l_mp);
5281		return -EFSCORRUPTED;
5282	}
5283	if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
5284		XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
5285				XFS_ERRLEVEL_LOW, log->l_mp);
5286		return -EFSCORRUPTED;
5287	}
5288	return 0;
5289}
5290
5291/*
5292 * Read the log from tail to head and process the log records found.
5293 * Handle the two cases where the tail and head are in the same cycle
5294 * and where the active portion of the log wraps around the end of
5295 * the physical log separately.  The pass parameter is passed through
5296 * to the routines called to process the data and is not looked at
5297 * here.
5298 */
5299STATIC int
5300xlog_do_recovery_pass(
5301	struct xlog		*log,
5302	xfs_daddr_t		head_blk,
5303	xfs_daddr_t		tail_blk,
5304	int			pass,
5305	xfs_daddr_t		*first_bad)	/* out: first bad log rec */
5306{
5307	xlog_rec_header_t	*rhead;
5308	xfs_daddr_t		blk_no, rblk_no;
5309	xfs_daddr_t		rhead_blk;
5310	char			*offset;
5311	xfs_buf_t		*hbp, *dbp;
5312	int			error = 0, h_size, h_len;
5313	int			error2 = 0;
5314	int			bblks, split_bblks;
5315	int			hblks, split_hblks, wrapped_hblks;
5316	int			i;
5317	struct hlist_head	rhash[XLOG_RHASH_SIZE];
5318	LIST_HEAD		(buffer_list);
5319
5320	ASSERT(head_blk != tail_blk);
5321	blk_no = rhead_blk = tail_blk;
5322
5323	for (i = 0; i < XLOG_RHASH_SIZE; i++)
5324		INIT_HLIST_HEAD(&rhash[i]);
5325
 
 
 
 
5326	/*
5327	 * Read the header of the tail block and get the iclog buffer size from
5328	 * h_size.  Use this to tell how many sectors make up the log header.
5329	 */
5330	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
5331		/*
5332		 * When using variable length iclogs, read first sector of
5333		 * iclog header and extract the header size from it.  Get a
5334		 * new hbp that is the correct size.
5335		 */
5336		hbp = xlog_get_bp(log, 1);
5337		if (!hbp)
5338			return -ENOMEM;
5339
5340		error = xlog_bread(log, tail_blk, 1, hbp, &offset);
5341		if (error)
5342			goto bread_err1;
5343
5344		rhead = (xlog_rec_header_t *)offset;
5345		error = xlog_valid_rec_header(log, rhead, tail_blk);
5346		if (error)
5347			goto bread_err1;
5348
5349		/*
5350		 * xfsprogs has a bug where record length is based on lsunit but
5351		 * h_size (iclog size) is hardcoded to 32k. Now that we
5352		 * unconditionally CRC verify the unmount record, this means the
5353		 * log buffer can be too small for the record and cause an
5354		 * overrun.
5355		 *
5356		 * Detect this condition here. Use lsunit for the buffer size as
5357		 * long as this looks like the mkfs case. Otherwise, return an
5358		 * error to avoid a buffer overrun.
5359		 */
5360		h_size = be32_to_cpu(rhead->h_size);
5361		h_len = be32_to_cpu(rhead->h_len);
5362		if (h_len > h_size) {
5363			if (h_len <= log->l_mp->m_logbsize &&
5364			    be32_to_cpu(rhead->h_num_logops) == 1) {
5365				xfs_warn(log->l_mp,
5366		"invalid iclog size (%d bytes), using lsunit (%d bytes)",
5367					 h_size, log->l_mp->m_logbsize);
5368				h_size = log->l_mp->m_logbsize;
5369			} else
5370				return -EFSCORRUPTED;
5371		}
5372
5373		if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
5374		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
5375			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
5376			if (h_size % XLOG_HEADER_CYCLE_SIZE)
5377				hblks++;
5378			xlog_put_bp(hbp);
5379			hbp = xlog_get_bp(log, hblks);
5380		} else {
5381			hblks = 1;
 
 
 
 
 
 
 
 
 
 
5382		}
5383	} else {
5384		ASSERT(log->l_sectBBsize == 1);
5385		hblks = 1;
5386		hbp = xlog_get_bp(log, 1);
5387		h_size = XLOG_BIG_RECORD_BSIZE;
5388	}
5389
5390	if (!hbp)
5391		return -ENOMEM;
5392	dbp = xlog_get_bp(log, BTOBB(h_size));
5393	if (!dbp) {
5394		xlog_put_bp(hbp);
5395		return -ENOMEM;
5396	}
5397
5398	memset(rhash, 0, sizeof(rhash));
5399	if (tail_blk > head_blk) {
5400		/*
5401		 * Perform recovery around the end of the physical log.
5402		 * When the head is not on the same cycle number as the tail,
5403		 * we can't do a sequential recovery.
5404		 */
5405		while (blk_no < log->l_logBBsize) {
5406			/*
5407			 * Check for header wrapping around physical end-of-log
5408			 */
5409			offset = hbp->b_addr;
5410			split_hblks = 0;
5411			wrapped_hblks = 0;
5412			if (blk_no + hblks <= log->l_logBBsize) {
5413				/* Read header in one read */
5414				error = xlog_bread(log, blk_no, hblks, hbp,
5415						   &offset);
5416				if (error)
5417					goto bread_err2;
5418			} else {
5419				/* This LR is split across physical log end */
5420				if (blk_no != log->l_logBBsize) {
5421					/* some data before physical log end */
5422					ASSERT(blk_no <= INT_MAX);
5423					split_hblks = log->l_logBBsize - (int)blk_no;
5424					ASSERT(split_hblks > 0);
5425					error = xlog_bread(log, blk_no,
5426							   split_hblks, hbp,
5427							   &offset);
5428					if (error)
5429						goto bread_err2;
5430				}
5431
5432				/*
5433				 * Note: this black magic still works with
5434				 * large sector sizes (non-512) only because:
5435				 * - we increased the buffer size originally
5436				 *   by 1 sector giving us enough extra space
5437				 *   for the second read;
5438				 * - the log start is guaranteed to be sector
5439				 *   aligned;
5440				 * - we read the log end (LR header start)
5441				 *   _first_, then the log start (LR header end)
5442				 *   - order is important.
5443				 */
5444				wrapped_hblks = hblks - split_hblks;
5445				error = xlog_bread_offset(log, 0,
5446						wrapped_hblks, hbp,
5447						offset + BBTOB(split_hblks));
5448				if (error)
5449					goto bread_err2;
5450			}
5451			rhead = (xlog_rec_header_t *)offset;
5452			error = xlog_valid_rec_header(log, rhead,
5453						split_hblks ? blk_no : 0);
5454			if (error)
5455				goto bread_err2;
5456
5457			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5458			blk_no += hblks;
5459
5460			/*
5461			 * Read the log record data in multiple reads if it
5462			 * wraps around the end of the log. Note that if the
5463			 * header already wrapped, blk_no could point past the
5464			 * end of the log. The record data is contiguous in
5465			 * that case.
5466			 */
5467			if (blk_no + bblks <= log->l_logBBsize ||
5468			    blk_no >= log->l_logBBsize) {
5469				/* mod blk_no in case the header wrapped and
5470				 * pushed it beyond the end of the log */
5471				rblk_no = do_mod(blk_no, log->l_logBBsize);
5472				error = xlog_bread(log, rblk_no, bblks, dbp,
5473						   &offset);
5474				if (error)
5475					goto bread_err2;
5476			} else {
5477				/* This log record is split across the
5478				 * physical end of log */
5479				offset = dbp->b_addr;
5480				split_bblks = 0;
5481				if (blk_no != log->l_logBBsize) {
5482					/* some data is before the physical
5483					 * end of log */
5484					ASSERT(!wrapped_hblks);
5485					ASSERT(blk_no <= INT_MAX);
5486					split_bblks =
5487						log->l_logBBsize - (int)blk_no;
5488					ASSERT(split_bblks > 0);
5489					error = xlog_bread(log, blk_no,
5490							split_bblks, dbp,
5491							&offset);
5492					if (error)
5493						goto bread_err2;
5494				}
5495
5496				/*
5497				 * Note: this black magic still works with
5498				 * large sector sizes (non-512) only because:
5499				 * - we increased the buffer size originally
5500				 *   by 1 sector giving us enough extra space
5501				 *   for the second read;
5502				 * - the log start is guaranteed to be sector
5503				 *   aligned;
5504				 * - we read the log end (LR header start)
5505				 *   _first_, then the log start (LR header end)
5506				 *   - order is important.
5507				 */
5508				error = xlog_bread_offset(log, 0,
5509						bblks - split_bblks, dbp,
5510						offset + BBTOB(split_bblks));
5511				if (error)
5512					goto bread_err2;
5513			}
5514
5515			error = xlog_recover_process(log, rhash, rhead, offset,
5516						     pass, &buffer_list);
5517			if (error)
5518				goto bread_err2;
5519
5520			blk_no += bblks;
5521			rhead_blk = blk_no;
5522		}
5523
5524		ASSERT(blk_no >= log->l_logBBsize);
5525		blk_no -= log->l_logBBsize;
5526		rhead_blk = blk_no;
5527	}
5528
5529	/* read first part of physical log */
5530	while (blk_no < head_blk) {
5531		error = xlog_bread(log, blk_no, hblks, hbp, &offset);
5532		if (error)
5533			goto bread_err2;
5534
5535		rhead = (xlog_rec_header_t *)offset;
5536		error = xlog_valid_rec_header(log, rhead, blk_no);
5537		if (error)
5538			goto bread_err2;
5539
5540		/* blocks in data section */
5541		bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5542		error = xlog_bread(log, blk_no+hblks, bblks, dbp,
5543				   &offset);
5544		if (error)
5545			goto bread_err2;
5546
5547		error = xlog_recover_process(log, rhash, rhead, offset, pass,
5548					     &buffer_list);
5549		if (error)
5550			goto bread_err2;
5551
5552		blk_no += bblks + hblks;
5553		rhead_blk = blk_no;
5554	}
5555
5556 bread_err2:
5557	xlog_put_bp(dbp);
5558 bread_err1:
5559	xlog_put_bp(hbp);
5560
5561	/*
5562	 * Submit buffers that have been added from the last record processed,
5563	 * regardless of error status.
5564	 */
5565	if (!list_empty(&buffer_list))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5566		error2 = xfs_buf_delwri_submit(&buffer_list);
 
5567
5568	if (error && first_bad)
5569		*first_bad = rhead_blk;
5570
5571	/*
5572	 * Transactions are freed at commit time but transactions without commit
5573	 * records on disk are never committed. Free any that may be left in the
5574	 * hash table.
5575	 */
5576	for (i = 0; i < XLOG_RHASH_SIZE; i++) {
5577		struct hlist_node	*tmp;
5578		struct xlog_recover	*trans;
5579
5580		hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list)
5581			xlog_recover_free_trans(trans);
5582	}
5583
5584	return error ? error : error2;
5585}
5586
5587/*
5588 * Do the recovery of the log.  We actually do this in two phases.
5589 * The two passes are necessary in order to implement the function
5590 * of cancelling a record written into the log.  The first pass
5591 * determines those things which have been cancelled, and the
5592 * second pass replays log items normally except for those which
5593 * have been cancelled.  The handling of the replay and cancellations
5594 * takes place in the log item type specific routines.
5595 *
5596 * The table of items which have cancel records in the log is allocated
5597 * and freed at this level, since only here do we know when all of
5598 * the log recovery has been completed.
5599 */
5600STATIC int
5601xlog_do_log_recovery(
5602	struct xlog	*log,
5603	xfs_daddr_t	head_blk,
5604	xfs_daddr_t	tail_blk)
5605{
5606	int		error, i;
5607
5608	ASSERT(head_blk != tail_blk);
5609
5610	/*
5611	 * First do a pass to find all of the cancelled buf log items.
5612	 * Store them in the buf_cancel_table for use in the second pass.
5613	 */
5614	log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
5615						 sizeof(struct list_head),
5616						 KM_SLEEP);
5617	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5618		INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
5619
5620	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5621				      XLOG_RECOVER_PASS1, NULL);
5622	if (error != 0) {
5623		kmem_free(log->l_buf_cancel_table);
5624		log->l_buf_cancel_table = NULL;
5625		return error;
5626	}
5627	/*
5628	 * Then do a second pass to actually recover the items in the log.
5629	 * When it is complete free the table of buf cancel items.
5630	 */
5631	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5632				      XLOG_RECOVER_PASS2, NULL);
5633#ifdef DEBUG
5634	if (!error) {
5635		int	i;
5636
5637		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5638			ASSERT(list_empty(&log->l_buf_cancel_table[i]));
5639	}
5640#endif	/* DEBUG */
5641
5642	kmem_free(log->l_buf_cancel_table);
5643	log->l_buf_cancel_table = NULL;
5644
5645	return error;
5646}
5647
5648/*
5649 * Do the actual recovery
5650 */
5651STATIC int
5652xlog_do_recover(
5653	struct xlog	*log,
5654	xfs_daddr_t	head_blk,
5655	xfs_daddr_t	tail_blk)
5656{
5657	struct xfs_mount *mp = log->l_mp;
5658	int		error;
5659	xfs_buf_t	*bp;
5660	xfs_sb_t	*sbp;
5661
5662	trace_xfs_log_recover(log, head_blk, tail_blk);
5663
5664	/*
5665	 * First replay the images in the log.
5666	 */
5667	error = xlog_do_log_recovery(log, head_blk, tail_blk);
5668	if (error)
5669		return error;
5670
5671	/*
5672	 * If IO errors happened during recovery, bail out.
5673	 */
5674	if (XFS_FORCED_SHUTDOWN(mp)) {
5675		return -EIO;
5676	}
5677
5678	/*
5679	 * We now update the tail_lsn since much of the recovery has completed
5680	 * and there may be space available to use.  If there were no extent
5681	 * or iunlinks, we can free up the entire log and set the tail_lsn to
5682	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
5683	 * lsn of the last known good LR on disk.  If there are extent frees
5684	 * or iunlinks they will have some entries in the AIL; so we look at
5685	 * the AIL to determine how to set the tail_lsn.
5686	 */
5687	xlog_assign_tail_lsn(mp);
5688
5689	/*
5690	 * Now that we've finished replaying all buffer and inode
5691	 * updates, re-read in the superblock and reverify it.
5692	 */
5693	bp = xfs_getsb(mp, 0);
5694	bp->b_flags &= ~(XBF_DONE | XBF_ASYNC);
5695	ASSERT(!(bp->b_flags & XBF_WRITE));
5696	bp->b_flags |= XBF_READ;
5697	bp->b_ops = &xfs_sb_buf_ops;
5698
5699	error = xfs_buf_submit_wait(bp);
 
 
 
 
 
 
5700	if (error) {
5701		if (!XFS_FORCED_SHUTDOWN(mp)) {
5702			xfs_buf_ioerror_alert(bp, __func__);
5703			ASSERT(0);
5704		}
5705		xfs_buf_relse(bp);
5706		return error;
5707	}
5708
5709	/* Convert superblock from on-disk format */
5710	sbp = &mp->m_sb;
5711	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
5712	xfs_buf_relse(bp);
5713
5714	/* re-initialise in-core superblock and geometry structures */
 
5715	xfs_reinit_percpu_counters(mp);
5716	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
5717	if (error) {
5718		xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
5719		return error;
5720	}
5721	mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
5722
5723	xlog_recover_check_summary(log);
5724
5725	/* Normal transactions can now occur */
5726	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
5727	return 0;
5728}
5729
5730/*
5731 * Perform recovery and re-initialize some log variables in xlog_find_tail.
5732 *
5733 * Return error or zero.
5734 */
5735int
5736xlog_recover(
5737	struct xlog	*log)
5738{
5739	xfs_daddr_t	head_blk, tail_blk;
5740	int		error;
5741
5742	/* find the tail of the log */
5743	error = xlog_find_tail(log, &head_blk, &tail_blk);
5744	if (error)
5745		return error;
5746
5747	/*
5748	 * The superblock was read before the log was available and thus the LSN
5749	 * could not be verified. Check the superblock LSN against the current
5750	 * LSN now that it's known.
5751	 */
5752	if (xfs_sb_version_hascrc(&log->l_mp->m_sb) &&
5753	    !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
5754		return -EINVAL;
5755
5756	if (tail_blk != head_blk) {
5757		/* There used to be a comment here:
5758		 *
5759		 * disallow recovery on read-only mounts.  note -- mount
5760		 * checks for ENOSPC and turns it into an intelligent
5761		 * error message.
5762		 * ...but this is no longer true.  Now, unless you specify
5763		 * NORECOVERY (in which case this function would never be
5764		 * called), we just go ahead and recover.  We do this all
5765		 * under the vfs layer, so we can get away with it unless
5766		 * the device itself is read-only, in which case we fail.
5767		 */
5768		if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
5769			return error;
5770		}
5771
5772		/*
5773		 * Version 5 superblock log feature mask validation. We know the
5774		 * log is dirty so check if there are any unknown log features
5775		 * in what we need to recover. If there are unknown features
5776		 * (e.g. unsupported transactions, then simply reject the
5777		 * attempt at recovery before touching anything.
5778		 */
5779		if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
5780		    xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
5781					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
5782			xfs_warn(log->l_mp,
5783"Superblock has unknown incompatible log features (0x%x) enabled.",
5784				(log->l_mp->m_sb.sb_features_log_incompat &
5785					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
5786			xfs_warn(log->l_mp,
5787"The log can not be fully and/or safely recovered by this kernel.");
5788			xfs_warn(log->l_mp,
5789"Please recover the log on a kernel that supports the unknown features.");
5790			return -EINVAL;
5791		}
5792
5793		/*
5794		 * Delay log recovery if the debug hook is set. This is debug
5795		 * instrumention to coordinate simulation of I/O failures with
5796		 * log recovery.
5797		 */
5798		if (xfs_globals.log_recovery_delay) {
5799			xfs_notice(log->l_mp,
5800				"Delaying log recovery for %d seconds.",
5801				xfs_globals.log_recovery_delay);
5802			msleep(xfs_globals.log_recovery_delay * 1000);
5803		}
5804
5805		xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
5806				log->l_mp->m_logname ? log->l_mp->m_logname
5807						     : "internal");
5808
5809		error = xlog_do_recover(log, head_blk, tail_blk);
5810		log->l_flags |= XLOG_RECOVERY_NEEDED;
5811	}
5812	return error;
5813}
5814
5815/*
5816 * In the first part of recovery we replay inodes and buffers and build
5817 * up the list of extent free items which need to be processed.  Here
5818 * we process the extent free items and clean up the on disk unlinked
5819 * inode lists.  This is separated from the first part of recovery so
5820 * that the root and real-time bitmap inodes can be read in from disk in
5821 * between the two stages.  This is necessary so that we can free space
5822 * in the real-time portion of the file system.
 
 
 
 
 
5823 */
5824int
5825xlog_recover_finish(
5826	struct xlog	*log)
5827{
5828	/*
5829	 * Now we're ready to do the transactions needed for the
5830	 * rest of recovery.  Start with completing all the extent
5831	 * free intent records and then process the unlinked inode
5832	 * lists.  At this point, we essentially run in normal mode
5833	 * except that we're still performing recovery actions
5834	 * rather than accepting new requests.
5835	 */
5836	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
5837		int	error;
5838		error = xlog_recover_process_intents(log);
5839		if (error) {
5840			xfs_alert(log->l_mp, "Failed to recover intents");
5841			return error;
5842		}
5843
 
 
5844		/*
5845		 * Sync the log to get all the intents out of the AIL.
5846		 * This isn't absolutely necessary, but it helps in
5847		 * case the unlink transactions would have problems
5848		 * pushing the intents out of the way.
5849		 */
5850		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
 
 
 
 
 
5851
5852		xlog_recover_process_iunlinks(log);
 
 
 
 
 
5853
5854		xlog_recover_check_summary(log);
5855
5856		xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
5857				log->l_mp->m_logname ? log->l_mp->m_logname
5858						     : "internal");
5859		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
5860	} else {
5861		xfs_info(log->l_mp, "Ending clean mount");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5862	}
5863	return 0;
5864}
5865
5866int
5867xlog_recover_cancel(
5868	struct xlog	*log)
5869{
5870	int		error = 0;
5871
5872	if (log->l_flags & XLOG_RECOVERY_NEEDED)
5873		error = xlog_recover_cancel_intents(log);
5874
 
 
5875	return error;
5876}
5877
5878#if defined(DEBUG)
5879/*
5880 * Read all of the agf and agi counters and check that they
5881 * are consistent with the superblock counters.
5882 */
5883STATIC void
5884xlog_recover_check_summary(
5885	struct xlog	*log)
5886{
5887	xfs_mount_t	*mp;
5888	xfs_agf_t	*agfp;
5889	xfs_buf_t	*agfbp;
5890	xfs_buf_t	*agibp;
5891	xfs_agnumber_t	agno;
5892	uint64_t	freeblks;
5893	uint64_t	itotal;
5894	uint64_t	ifree;
5895	int		error;
5896
5897	mp = log->l_mp;
5898
5899	freeblks = 0LL;
5900	itotal = 0LL;
5901	ifree = 0LL;
5902	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5903		error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
5904		if (error) {
5905			xfs_alert(mp, "%s agf read failed agno %d error %d",
5906						__func__, agno, error);
5907		} else {
5908			agfp = XFS_BUF_TO_AGF(agfbp);
5909			freeblks += be32_to_cpu(agfp->agf_freeblks) +
5910				    be32_to_cpu(agfp->agf_flcount);
5911			xfs_buf_relse(agfbp);
5912		}
5913
5914		error = xfs_read_agi(mp, NULL, agno, &agibp);
5915		if (error) {
5916			xfs_alert(mp, "%s agi read failed agno %d error %d",
5917						__func__, agno, error);
5918		} else {
5919			struct xfs_agi	*agi = XFS_BUF_TO_AGI(agibp);
5920
5921			itotal += be32_to_cpu(agi->agi_count);
5922			ifree += be32_to_cpu(agi->agi_freecount);
5923			xfs_buf_relse(agibp);
5924		}
5925	}
5926}
5927#endif /* DEBUG */
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_bit.h"
  13#include "xfs_sb.h"
  14#include "xfs_mount.h"
  15#include "xfs_defer.h"
 
 
  16#include "xfs_inode.h"
  17#include "xfs_trans.h"
  18#include "xfs_log.h"
  19#include "xfs_log_priv.h"
  20#include "xfs_log_recover.h"
 
 
  21#include "xfs_trans_priv.h"
  22#include "xfs_alloc.h"
  23#include "xfs_ialloc.h"
 
 
  24#include "xfs_trace.h"
  25#include "xfs_icache.h"
 
  26#include "xfs_error.h"
 
 
  27#include "xfs_buf_item.h"
  28#include "xfs_ag.h"
  29#include "xfs_quota.h"
  30#include "xfs_reflink.h"
  31
  32#define BLK_AVG(blk1, blk2)	((blk1+blk2) >> 1)
  33
  34STATIC int
  35xlog_find_zeroed(
  36	struct xlog	*,
  37	xfs_daddr_t	*);
  38STATIC int
  39xlog_clear_stale_blocks(
  40	struct xlog	*,
  41	xfs_lsn_t);
 
 
 
 
 
 
 
  42STATIC int
  43xlog_do_recovery_pass(
  44        struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
  45
  46/*
 
 
 
 
 
 
 
 
 
 
 
  47 * Sector aligned buffer routines for buffer create/read/write/access
  48 */
  49
  50/*
  51 * Verify the log-relative block number and length in basic blocks are valid for
  52 * an operation involving the given XFS log buffer. Returns true if the fields
  53 * are valid, false otherwise.
  54 */
  55static inline bool
  56xlog_verify_bno(
  57	struct xlog	*log,
  58	xfs_daddr_t	blk_no,
  59	int		bbcount)
  60{
  61	if (blk_no < 0 || blk_no >= log->l_logBBsize)
  62		return false;
  63	if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize)
  64		return false;
  65	return true;
  66}
  67
  68/*
  69 * Allocate a buffer to hold log data.  The buffer needs to be able to map to
  70 * a range of nbblks basic blocks at any valid offset within the log.
 
  71 */
  72static char *
  73xlog_alloc_buffer(
  74	struct xlog	*log,
  75	int		nbblks)
  76{
 
 
  77	/*
  78	 * Pass log block 0 since we don't have an addr yet, buffer will be
  79	 * verified on read.
  80	 */
  81	if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, 0, nbblks))) {
  82		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
  83			nbblks);
 
  84		return NULL;
  85	}
  86
  87	/*
  88	 * We do log I/O in units of log sectors (a power-of-2 multiple of the
  89	 * basic block size), so we round up the requested size to accommodate
  90	 * the basic blocks required for complete log sectors.
 
  91	 *
  92	 * In addition, the buffer may be used for a non-sector-aligned block
  93	 * offset, in which case an I/O of the requested size could extend
  94	 * beyond the end of the buffer.  If the requested size is only 1 basic
  95	 * block it will never straddle a sector boundary, so this won't be an
  96	 * issue.  Nor will this be a problem if the log I/O is done in basic
  97	 * blocks (sector size 1).  But otherwise we extend the buffer by one
  98	 * extra log sector to ensure there's space to accommodate this
  99	 * possibility.
 
 100	 */
 101	if (nbblks > 1 && log->l_sectBBsize > 1)
 102		nbblks += log->l_sectBBsize;
 103	nbblks = round_up(nbblks, log->l_sectBBsize);
 104	return kvzalloc(BBTOB(nbblks), GFP_KERNEL | __GFP_RETRY_MAYFAIL);
 
 
 
 
 
 
 
 
 
 
 
 105}
 106
 107/*
 108 * Return the address of the start of the given block number's data
 109 * in a log buffer.  The buffer covers a log sector-aligned region.
 110 */
 111static inline unsigned int
 112xlog_align(
 113	struct xlog	*log,
 114	xfs_daddr_t	blk_no)
 
 
 115{
 116	return BBTOB(blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1));
 
 
 
 117}
 118
 119static int
 120xlog_do_io(
 121	struct xlog		*log,
 122	xfs_daddr_t		blk_no,
 123	unsigned int		nbblks,
 124	char			*data,
 125	enum req_op		op)
 
 
 
 126{
 127	int			error;
 128
 129	if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, blk_no, nbblks))) {
 130		xfs_warn(log->l_mp,
 131			 "Invalid log block/length (0x%llx, 0x%x) for buffer",
 132			 blk_no, nbblks);
 
 133		return -EFSCORRUPTED;
 134	}
 135
 136	blk_no = round_down(blk_no, log->l_sectBBsize);
 137	nbblks = round_up(nbblks, log->l_sectBBsize);
 
 138	ASSERT(nbblks > 0);
 
 139
 140	error = xfs_rw_bdev(log->l_targ->bt_bdev, log->l_logBBstart + blk_no,
 141			BBTOB(nbblks), data, op);
 142	if (error && !xlog_is_shutdown(log)) {
 143		xfs_alert(log->l_mp,
 144			  "log recovery %s I/O error at daddr 0x%llx len %d error %d",
 145			  op == REQ_OP_WRITE ? "write" : "read",
 146			  blk_no, nbblks, error);
 147	}
 148	return error;
 149}
 150
 151STATIC int
 152xlog_bread_noalign(
 153	struct xlog	*log,
 154	xfs_daddr_t	blk_no,
 155	int		nbblks,
 156	char		*data)
 
 157{
 158	return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
 
 
 
 
 
 
 
 159}
 160
 
 
 
 
 161STATIC int
 162xlog_bread(
 163	struct xlog	*log,
 164	xfs_daddr_t	blk_no,
 165	int		nbblks,
 166	char		*data,
 167	char		**offset)
 168{
 169	int		error;
 
 
 
 
 
 
 
 
 170
 171	error = xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
 172	if (!error)
 173		*offset = data + xlog_align(log, blk_no);
 174	return error;
 
 175}
 176
 
 
 
 
 
 177STATIC int
 178xlog_bwrite(
 179	struct xlog	*log,
 180	xfs_daddr_t	blk_no,
 181	int		nbblks,
 182	char		*data)
 183{
 184	return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_WRITE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 185}
 186
 187#ifdef DEBUG
 188/*
 189 * dump debug superblock and log record information
 190 */
 191STATIC void
 192xlog_header_check_dump(
 193	xfs_mount_t		*mp,
 194	xlog_rec_header_t	*head)
 195{
 196	xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d",
 197		__func__, &mp->m_sb.sb_uuid, XLOG_FMT);
 198	xfs_debug(mp, "    log : uuid = %pU, fmt = %d",
 199		&head->h_fs_uuid, be32_to_cpu(head->h_fmt));
 200}
 201#else
 202#define xlog_header_check_dump(mp, head)
 203#endif
 204
 205/*
 206 * check log record header for recovery
 207 */
 208STATIC int
 209xlog_header_check_recover(
 210	xfs_mount_t		*mp,
 211	xlog_rec_header_t	*head)
 212{
 213	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
 214
 215	/*
 216	 * IRIX doesn't write the h_fmt field and leaves it zeroed
 217	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
 218	 * a dirty log created in IRIX.
 219	 */
 220	if (XFS_IS_CORRUPT(mp, head->h_fmt != cpu_to_be32(XLOG_FMT))) {
 221		xfs_warn(mp,
 222	"dirty log written in incompatible format - can't recover");
 223		xlog_header_check_dump(mp, head);
 
 
 224		return -EFSCORRUPTED;
 225	}
 226	if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid,
 227					   &head->h_fs_uuid))) {
 228		xfs_warn(mp,
 229	"dirty log entry has mismatched uuid - can't recover");
 230		xlog_header_check_dump(mp, head);
 
 
 231		return -EFSCORRUPTED;
 232	}
 233	return 0;
 234}
 235
 236/*
 237 * read the head block of the log and check the header
 238 */
 239STATIC int
 240xlog_header_check_mount(
 241	xfs_mount_t		*mp,
 242	xlog_rec_header_t	*head)
 243{
 244	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
 245
 246	if (uuid_is_null(&head->h_fs_uuid)) {
 247		/*
 248		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
 249		 * h_fs_uuid is null, we assume this log was last mounted
 250		 * by IRIX and continue.
 251		 */
 252		xfs_warn(mp, "null uuid in log - IRIX style log");
 253	} else if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid,
 254						  &head->h_fs_uuid))) {
 255		xfs_warn(mp, "log has mismatched uuid - can't recover");
 256		xlog_header_check_dump(mp, head);
 
 
 257		return -EFSCORRUPTED;
 258	}
 259	return 0;
 260}
 261
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 262/*
 263 * This routine finds (to an approximation) the first block in the physical
 264 * log which contains the given cycle.  It uses a binary search algorithm.
 265 * Note that the algorithm can not be perfect because the disk will not
 266 * necessarily be perfect.
 267 */
 268STATIC int
 269xlog_find_cycle_start(
 270	struct xlog	*log,
 271	char		*buffer,
 272	xfs_daddr_t	first_blk,
 273	xfs_daddr_t	*last_blk,
 274	uint		cycle)
 275{
 276	char		*offset;
 277	xfs_daddr_t	mid_blk;
 278	xfs_daddr_t	end_blk;
 279	uint		mid_cycle;
 280	int		error;
 281
 282	end_blk = *last_blk;
 283	mid_blk = BLK_AVG(first_blk, end_blk);
 284	while (mid_blk != first_blk && mid_blk != end_blk) {
 285		error = xlog_bread(log, mid_blk, 1, buffer, &offset);
 286		if (error)
 287			return error;
 288		mid_cycle = xlog_get_cycle(offset);
 289		if (mid_cycle == cycle)
 290			end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
 291		else
 292			first_blk = mid_blk; /* first_half_cycle == mid_cycle */
 293		mid_blk = BLK_AVG(first_blk, end_blk);
 294	}
 295	ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
 296	       (mid_blk == end_blk && mid_blk-1 == first_blk));
 297
 298	*last_blk = end_blk;
 299
 300	return 0;
 301}
 302
 303/*
 304 * Check that a range of blocks does not contain stop_on_cycle_no.
 305 * Fill in *new_blk with the block offset where such a block is
 306 * found, or with -1 (an invalid block number) if there is no such
 307 * block in the range.  The scan needs to occur from front to back
 308 * and the pointer into the region must be updated since a later
 309 * routine will need to perform another test.
 310 */
 311STATIC int
 312xlog_find_verify_cycle(
 313	struct xlog	*log,
 314	xfs_daddr_t	start_blk,
 315	int		nbblks,
 316	uint		stop_on_cycle_no,
 317	xfs_daddr_t	*new_blk)
 318{
 319	xfs_daddr_t	i, j;
 320	uint		cycle;
 321	char		*buffer;
 322	xfs_daddr_t	bufblks;
 323	char		*buf = NULL;
 324	int		error = 0;
 325
 326	/*
 327	 * Greedily allocate a buffer big enough to handle the full
 328	 * range of basic blocks we'll be examining.  If that fails,
 329	 * try a smaller size.  We need to be able to read at least
 330	 * a log sector, or we're out of luck.
 331	 */
 332	bufblks = roundup_pow_of_two(nbblks);
 333	while (bufblks > log->l_logBBsize)
 334		bufblks >>= 1;
 335	while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
 336		bufblks >>= 1;
 337		if (bufblks < log->l_sectBBsize)
 338			return -ENOMEM;
 339	}
 340
 341	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
 342		int	bcount;
 343
 344		bcount = min(bufblks, (start_blk + nbblks - i));
 345
 346		error = xlog_bread(log, i, bcount, buffer, &buf);
 347		if (error)
 348			goto out;
 349
 350		for (j = 0; j < bcount; j++) {
 351			cycle = xlog_get_cycle(buf);
 352			if (cycle == stop_on_cycle_no) {
 353				*new_blk = i+j;
 354				goto out;
 355			}
 356
 357			buf += BBSIZE;
 358		}
 359	}
 360
 361	*new_blk = -1;
 362
 363out:
 364	kvfree(buffer);
 365	return error;
 366}
 367
 368static inline int
 369xlog_logrec_hblks(struct xlog *log, struct xlog_rec_header *rh)
 370{
 371	if (xfs_has_logv2(log->l_mp)) {
 372		int	h_size = be32_to_cpu(rh->h_size);
 373
 374		if ((be32_to_cpu(rh->h_version) & XLOG_VERSION_2) &&
 375		    h_size > XLOG_HEADER_CYCLE_SIZE)
 376			return DIV_ROUND_UP(h_size, XLOG_HEADER_CYCLE_SIZE);
 377	}
 378	return 1;
 379}
 380
 381/*
 382 * Potentially backup over partial log record write.
 383 *
 384 * In the typical case, last_blk is the number of the block directly after
 385 * a good log record.  Therefore, we subtract one to get the block number
 386 * of the last block in the given buffer.  extra_bblks contains the number
 387 * of blocks we would have read on a previous read.  This happens when the
 388 * last log record is split over the end of the physical log.
 389 *
 390 * extra_bblks is the number of blocks potentially verified on a previous
 391 * call to this routine.
 392 */
 393STATIC int
 394xlog_find_verify_log_record(
 395	struct xlog		*log,
 396	xfs_daddr_t		start_blk,
 397	xfs_daddr_t		*last_blk,
 398	int			extra_bblks)
 399{
 400	xfs_daddr_t		i;
 401	char			*buffer;
 402	char			*offset = NULL;
 403	xlog_rec_header_t	*head = NULL;
 404	int			error = 0;
 405	int			smallmem = 0;
 406	int			num_blks = *last_blk - start_blk;
 407	int			xhdrs;
 408
 409	ASSERT(start_blk != 0 || *last_blk != start_blk);
 410
 411	buffer = xlog_alloc_buffer(log, num_blks);
 412	if (!buffer) {
 413		buffer = xlog_alloc_buffer(log, 1);
 414		if (!buffer)
 415			return -ENOMEM;
 416		smallmem = 1;
 417	} else {
 418		error = xlog_bread(log, start_blk, num_blks, buffer, &offset);
 419		if (error)
 420			goto out;
 421		offset += ((num_blks - 1) << BBSHIFT);
 422	}
 423
 424	for (i = (*last_blk) - 1; i >= 0; i--) {
 425		if (i < start_blk) {
 426			/* valid log record not found */
 427			xfs_warn(log->l_mp,
 428		"Log inconsistent (didn't find previous header)");
 429			ASSERT(0);
 430			error = -EFSCORRUPTED;
 431			goto out;
 432		}
 433
 434		if (smallmem) {
 435			error = xlog_bread(log, i, 1, buffer, &offset);
 436			if (error)
 437				goto out;
 438		}
 439
 440		head = (xlog_rec_header_t *)offset;
 441
 442		if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
 443			break;
 444
 445		if (!smallmem)
 446			offset -= BBSIZE;
 447	}
 448
 449	/*
 450	 * We hit the beginning of the physical log & still no header.  Return
 451	 * to caller.  If caller can handle a return of -1, then this routine
 452	 * will be called again for the end of the physical log.
 453	 */
 454	if (i == -1) {
 455		error = 1;
 456		goto out;
 457	}
 458
 459	/*
 460	 * We have the final block of the good log (the first block
 461	 * of the log record _before_ the head. So we check the uuid.
 462	 */
 463	if ((error = xlog_header_check_mount(log->l_mp, head)))
 464		goto out;
 465
 466	/*
 467	 * We may have found a log record header before we expected one.
 468	 * last_blk will be the 1st block # with a given cycle #.  We may end
 469	 * up reading an entire log record.  In this case, we don't want to
 470	 * reset last_blk.  Only when last_blk points in the middle of a log
 471	 * record do we update last_blk.
 472	 */
 473	xhdrs = xlog_logrec_hblks(log, head);
 
 
 
 
 
 
 
 
 474
 475	if (*last_blk - i + extra_bblks !=
 476	    BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
 477		*last_blk = i;
 478
 479out:
 480	kvfree(buffer);
 481	return error;
 482}
 483
 484/*
 485 * Head is defined to be the point of the log where the next log write
 486 * could go.  This means that incomplete LR writes at the end are
 487 * eliminated when calculating the head.  We aren't guaranteed that previous
 488 * LR have complete transactions.  We only know that a cycle number of
 489 * current cycle number -1 won't be present in the log if we start writing
 490 * from our current block number.
 491 *
 492 * last_blk contains the block number of the first block with a given
 493 * cycle number.
 494 *
 495 * Return: zero if normal, non-zero if error.
 496 */
 497STATIC int
 498xlog_find_head(
 499	struct xlog	*log,
 500	xfs_daddr_t	*return_head_blk)
 501{
 502	char		*buffer;
 503	char		*offset;
 504	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
 505	int		num_scan_bblks;
 506	uint		first_half_cycle, last_half_cycle;
 507	uint		stop_on_cycle;
 508	int		error, log_bbnum = log->l_logBBsize;
 509
 510	/* Is the end of the log device zeroed? */
 511	error = xlog_find_zeroed(log, &first_blk);
 512	if (error < 0) {
 513		xfs_warn(log->l_mp, "empty log check failed");
 514		return error;
 515	}
 516	if (error == 1) {
 517		*return_head_blk = first_blk;
 518
 519		/* Is the whole lot zeroed? */
 520		if (!first_blk) {
 521			/* Linux XFS shouldn't generate totally zeroed logs -
 522			 * mkfs etc write a dummy unmount record to a fresh
 523			 * log so we can store the uuid in there
 524			 */
 525			xfs_warn(log->l_mp, "totally zeroed log");
 526		}
 527
 528		return 0;
 529	}
 530
 531	first_blk = 0;			/* get cycle # of 1st block */
 532	buffer = xlog_alloc_buffer(log, 1);
 533	if (!buffer)
 534		return -ENOMEM;
 535
 536	error = xlog_bread(log, 0, 1, buffer, &offset);
 537	if (error)
 538		goto out_free_buffer;
 539
 540	first_half_cycle = xlog_get_cycle(offset);
 541
 542	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
 543	error = xlog_bread(log, last_blk, 1, buffer, &offset);
 544	if (error)
 545		goto out_free_buffer;
 546
 547	last_half_cycle = xlog_get_cycle(offset);
 548	ASSERT(last_half_cycle != 0);
 549
 550	/*
 551	 * If the 1st half cycle number is equal to the last half cycle number,
 552	 * then the entire log is stamped with the same cycle number.  In this
 553	 * case, head_blk can't be set to zero (which makes sense).  The below
 554	 * math doesn't work out properly with head_blk equal to zero.  Instead,
 555	 * we set it to log_bbnum which is an invalid block number, but this
 556	 * value makes the math correct.  If head_blk doesn't changed through
 557	 * all the tests below, *head_blk is set to zero at the very end rather
 558	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
 559	 * in a circular file.
 560	 */
 561	if (first_half_cycle == last_half_cycle) {
 562		/*
 563		 * In this case we believe that the entire log should have
 564		 * cycle number last_half_cycle.  We need to scan backwards
 565		 * from the end verifying that there are no holes still
 566		 * containing last_half_cycle - 1.  If we find such a hole,
 567		 * then the start of that hole will be the new head.  The
 568		 * simple case looks like
 569		 *        x | x ... | x - 1 | x
 570		 * Another case that fits this picture would be
 571		 *        x | x + 1 | x ... | x
 572		 * In this case the head really is somewhere at the end of the
 573		 * log, as one of the latest writes at the beginning was
 574		 * incomplete.
 575		 * One more case is
 576		 *        x | x + 1 | x ... | x - 1 | x
 577		 * This is really the combination of the above two cases, and
 578		 * the head has to end up at the start of the x-1 hole at the
 579		 * end of the log.
 580		 *
 581		 * In the 256k log case, we will read from the beginning to the
 582		 * end of the log and search for cycle numbers equal to x-1.
 583		 * We don't worry about the x+1 blocks that we encounter,
 584		 * because we know that they cannot be the head since the log
 585		 * started with x.
 586		 */
 587		head_blk = log_bbnum;
 588		stop_on_cycle = last_half_cycle - 1;
 589	} else {
 590		/*
 591		 * In this case we want to find the first block with cycle
 592		 * number matching last_half_cycle.  We expect the log to be
 593		 * some variation on
 594		 *        x + 1 ... | x ... | x
 595		 * The first block with cycle number x (last_half_cycle) will
 596		 * be where the new head belongs.  First we do a binary search
 597		 * for the first occurrence of last_half_cycle.  The binary
 598		 * search may not be totally accurate, so then we scan back
 599		 * from there looking for occurrences of last_half_cycle before
 600		 * us.  If that backwards scan wraps around the beginning of
 601		 * the log, then we look for occurrences of last_half_cycle - 1
 602		 * at the end of the log.  The cases we're looking for look
 603		 * like
 604		 *                               v binary search stopped here
 605		 *        x + 1 ... | x | x + 1 | x ... | x
 606		 *                   ^ but we want to locate this spot
 607		 * or
 608		 *        <---------> less than scan distance
 609		 *        x + 1 ... | x ... | x - 1 | x
 610		 *                           ^ we want to locate this spot
 611		 */
 612		stop_on_cycle = last_half_cycle;
 613		error = xlog_find_cycle_start(log, buffer, first_blk, &head_blk,
 614				last_half_cycle);
 615		if (error)
 616			goto out_free_buffer;
 617	}
 618
 619	/*
 620	 * Now validate the answer.  Scan back some number of maximum possible
 621	 * blocks and make sure each one has the expected cycle number.  The
 622	 * maximum is determined by the total possible amount of buffering
 623	 * in the in-core log.  The following number can be made tighter if
 624	 * we actually look at the block size of the filesystem.
 625	 */
 626	num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log));
 627	if (head_blk >= num_scan_bblks) {
 628		/*
 629		 * We are guaranteed that the entire check can be performed
 630		 * in one buffer.
 631		 */
 632		start_blk = head_blk - num_scan_bblks;
 633		if ((error = xlog_find_verify_cycle(log,
 634						start_blk, num_scan_bblks,
 635						stop_on_cycle, &new_blk)))
 636			goto out_free_buffer;
 637		if (new_blk != -1)
 638			head_blk = new_blk;
 639	} else {		/* need to read 2 parts of log */
 640		/*
 641		 * We are going to scan backwards in the log in two parts.
 642		 * First we scan the physical end of the log.  In this part
 643		 * of the log, we are looking for blocks with cycle number
 644		 * last_half_cycle - 1.
 645		 * If we find one, then we know that the log starts there, as
 646		 * we've found a hole that didn't get written in going around
 647		 * the end of the physical log.  The simple case for this is
 648		 *        x + 1 ... | x ... | x - 1 | x
 649		 *        <---------> less than scan distance
 650		 * If all of the blocks at the end of the log have cycle number
 651		 * last_half_cycle, then we check the blocks at the start of
 652		 * the log looking for occurrences of last_half_cycle.  If we
 653		 * find one, then our current estimate for the location of the
 654		 * first occurrence of last_half_cycle is wrong and we move
 655		 * back to the hole we've found.  This case looks like
 656		 *        x + 1 ... | x | x + 1 | x ...
 657		 *                               ^ binary search stopped here
 658		 * Another case we need to handle that only occurs in 256k
 659		 * logs is
 660		 *        x + 1 ... | x ... | x+1 | x ...
 661		 *                   ^ binary search stops here
 662		 * In a 256k log, the scan at the end of the log will see the
 663		 * x + 1 blocks.  We need to skip past those since that is
 664		 * certainly not the head of the log.  By searching for
 665		 * last_half_cycle-1 we accomplish that.
 666		 */
 667		ASSERT(head_blk <= INT_MAX &&
 668			(xfs_daddr_t) num_scan_bblks >= head_blk);
 669		start_blk = log_bbnum - (num_scan_bblks - head_blk);
 670		if ((error = xlog_find_verify_cycle(log, start_blk,
 671					num_scan_bblks - (int)head_blk,
 672					(stop_on_cycle - 1), &new_blk)))
 673			goto out_free_buffer;
 674		if (new_blk != -1) {
 675			head_blk = new_blk;
 676			goto validate_head;
 677		}
 678
 679		/*
 680		 * Scan beginning of log now.  The last part of the physical
 681		 * log is good.  This scan needs to verify that it doesn't find
 682		 * the last_half_cycle.
 683		 */
 684		start_blk = 0;
 685		ASSERT(head_blk <= INT_MAX);
 686		if ((error = xlog_find_verify_cycle(log,
 687					start_blk, (int)head_blk,
 688					stop_on_cycle, &new_blk)))
 689			goto out_free_buffer;
 690		if (new_blk != -1)
 691			head_blk = new_blk;
 692	}
 693
 694validate_head:
 695	/*
 696	 * Now we need to make sure head_blk is not pointing to a block in
 697	 * the middle of a log record.
 698	 */
 699	num_scan_bblks = XLOG_REC_SHIFT(log);
 700	if (head_blk >= num_scan_bblks) {
 701		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
 702
 703		/* start ptr at last block ptr before head_blk */
 704		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
 705		if (error == 1)
 706			error = -EIO;
 707		if (error)
 708			goto out_free_buffer;
 709	} else {
 710		start_blk = 0;
 711		ASSERT(head_blk <= INT_MAX);
 712		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
 713		if (error < 0)
 714			goto out_free_buffer;
 715		if (error == 1) {
 716			/* We hit the beginning of the log during our search */
 717			start_blk = log_bbnum - (num_scan_bblks - head_blk);
 718			new_blk = log_bbnum;
 719			ASSERT(start_blk <= INT_MAX &&
 720				(xfs_daddr_t) log_bbnum-start_blk >= 0);
 721			ASSERT(head_blk <= INT_MAX);
 722			error = xlog_find_verify_log_record(log, start_blk,
 723							&new_blk, (int)head_blk);
 724			if (error == 1)
 725				error = -EIO;
 726			if (error)
 727				goto out_free_buffer;
 728			if (new_blk != log_bbnum)
 729				head_blk = new_blk;
 730		} else if (error)
 731			goto out_free_buffer;
 732	}
 733
 734	kvfree(buffer);
 735	if (head_blk == log_bbnum)
 736		*return_head_blk = 0;
 737	else
 738		*return_head_blk = head_blk;
 739	/*
 740	 * When returning here, we have a good block number.  Bad block
 741	 * means that during a previous crash, we didn't have a clean break
 742	 * from cycle number N to cycle number N-1.  In this case, we need
 743	 * to find the first block with cycle number N-1.
 744	 */
 745	return 0;
 746
 747out_free_buffer:
 748	kvfree(buffer);
 
 749	if (error)
 750		xfs_warn(log->l_mp, "failed to find log head");
 751	return error;
 752}
 753
 754/*
 755 * Seek backwards in the log for log record headers.
 756 *
 757 * Given a starting log block, walk backwards until we find the provided number
 758 * of records or hit the provided tail block. The return value is the number of
 759 * records encountered or a negative error code. The log block and buffer
 760 * pointer of the last record seen are returned in rblk and rhead respectively.
 761 */
 762STATIC int
 763xlog_rseek_logrec_hdr(
 764	struct xlog		*log,
 765	xfs_daddr_t		head_blk,
 766	xfs_daddr_t		tail_blk,
 767	int			count,
 768	char			*buffer,
 769	xfs_daddr_t		*rblk,
 770	struct xlog_rec_header	**rhead,
 771	bool			*wrapped)
 772{
 773	int			i;
 774	int			error;
 775	int			found = 0;
 776	char			*offset = NULL;
 777	xfs_daddr_t		end_blk;
 778
 779	*wrapped = false;
 780
 781	/*
 782	 * Walk backwards from the head block until we hit the tail or the first
 783	 * block in the log.
 784	 */
 785	end_blk = head_blk > tail_blk ? tail_blk : 0;
 786	for (i = (int) head_blk - 1; i >= end_blk; i--) {
 787		error = xlog_bread(log, i, 1, buffer, &offset);
 788		if (error)
 789			goto out_error;
 790
 791		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
 792			*rblk = i;
 793			*rhead = (struct xlog_rec_header *) offset;
 794			if (++found == count)
 795				break;
 796		}
 797	}
 798
 799	/*
 800	 * If we haven't hit the tail block or the log record header count,
 801	 * start looking again from the end of the physical log. Note that
 802	 * callers can pass head == tail if the tail is not yet known.
 803	 */
 804	if (tail_blk >= head_blk && found != count) {
 805		for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
 806			error = xlog_bread(log, i, 1, buffer, &offset);
 807			if (error)
 808				goto out_error;
 809
 810			if (*(__be32 *)offset ==
 811			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
 812				*wrapped = true;
 813				*rblk = i;
 814				*rhead = (struct xlog_rec_header *) offset;
 815				if (++found == count)
 816					break;
 817			}
 818		}
 819	}
 820
 821	return found;
 822
 823out_error:
 824	return error;
 825}
 826
 827/*
 828 * Seek forward in the log for log record headers.
 829 *
 830 * Given head and tail blocks, walk forward from the tail block until we find
 831 * the provided number of records or hit the head block. The return value is the
 832 * number of records encountered or a negative error code. The log block and
 833 * buffer pointer of the last record seen are returned in rblk and rhead
 834 * respectively.
 835 */
 836STATIC int
 837xlog_seek_logrec_hdr(
 838	struct xlog		*log,
 839	xfs_daddr_t		head_blk,
 840	xfs_daddr_t		tail_blk,
 841	int			count,
 842	char			*buffer,
 843	xfs_daddr_t		*rblk,
 844	struct xlog_rec_header	**rhead,
 845	bool			*wrapped)
 846{
 847	int			i;
 848	int			error;
 849	int			found = 0;
 850	char			*offset = NULL;
 851	xfs_daddr_t		end_blk;
 852
 853	*wrapped = false;
 854
 855	/*
 856	 * Walk forward from the tail block until we hit the head or the last
 857	 * block in the log.
 858	 */
 859	end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
 860	for (i = (int) tail_blk; i <= end_blk; i++) {
 861		error = xlog_bread(log, i, 1, buffer, &offset);
 862		if (error)
 863			goto out_error;
 864
 865		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
 866			*rblk = i;
 867			*rhead = (struct xlog_rec_header *) offset;
 868			if (++found == count)
 869				break;
 870		}
 871	}
 872
 873	/*
 874	 * If we haven't hit the head block or the log record header count,
 875	 * start looking again from the start of the physical log.
 876	 */
 877	if (tail_blk > head_blk && found != count) {
 878		for (i = 0; i < (int) head_blk; i++) {
 879			error = xlog_bread(log, i, 1, buffer, &offset);
 880			if (error)
 881				goto out_error;
 882
 883			if (*(__be32 *)offset ==
 884			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
 885				*wrapped = true;
 886				*rblk = i;
 887				*rhead = (struct xlog_rec_header *) offset;
 888				if (++found == count)
 889					break;
 890			}
 891		}
 892	}
 893
 894	return found;
 895
 896out_error:
 897	return error;
 898}
 899
 900/*
 901 * Calculate distance from head to tail (i.e., unused space in the log).
 902 */
 903static inline int
 904xlog_tail_distance(
 905	struct xlog	*log,
 906	xfs_daddr_t	head_blk,
 907	xfs_daddr_t	tail_blk)
 908{
 909	if (head_blk < tail_blk)
 910		return tail_blk - head_blk;
 911
 912	return tail_blk + (log->l_logBBsize - head_blk);
 913}
 914
 915/*
 916 * Verify the log tail. This is particularly important when torn or incomplete
 917 * writes have been detected near the front of the log and the head has been
 918 * walked back accordingly.
 919 *
 920 * We also have to handle the case where the tail was pinned and the head
 921 * blocked behind the tail right before a crash. If the tail had been pushed
 922 * immediately prior to the crash and the subsequent checkpoint was only
 923 * partially written, it's possible it overwrote the last referenced tail in the
 924 * log with garbage. This is not a coherency problem because the tail must have
 925 * been pushed before it can be overwritten, but appears as log corruption to
 926 * recovery because we have no way to know the tail was updated if the
 927 * subsequent checkpoint didn't write successfully.
 928 *
 929 * Therefore, CRC check the log from tail to head. If a failure occurs and the
 930 * offending record is within max iclog bufs from the head, walk the tail
 931 * forward and retry until a valid tail is found or corruption is detected out
 932 * of the range of a possible overwrite.
 933 */
 934STATIC int
 935xlog_verify_tail(
 936	struct xlog		*log,
 937	xfs_daddr_t		head_blk,
 938	xfs_daddr_t		*tail_blk,
 939	int			hsize)
 940{
 941	struct xlog_rec_header	*thead;
 942	char			*buffer;
 943	xfs_daddr_t		first_bad;
 944	int			error = 0;
 945	bool			wrapped;
 946	xfs_daddr_t		tmp_tail;
 947	xfs_daddr_t		orig_tail = *tail_blk;
 948
 949	buffer = xlog_alloc_buffer(log, 1);
 950	if (!buffer)
 951		return -ENOMEM;
 952
 953	/*
 954	 * Make sure the tail points to a record (returns positive count on
 955	 * success).
 956	 */
 957	error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, buffer,
 958			&tmp_tail, &thead, &wrapped);
 959	if (error < 0)
 960		goto out;
 961	if (*tail_blk != tmp_tail)
 962		*tail_blk = tmp_tail;
 963
 964	/*
 965	 * Run a CRC check from the tail to the head. We can't just check
 966	 * MAX_ICLOGS records past the tail because the tail may point to stale
 967	 * blocks cleared during the search for the head/tail. These blocks are
 968	 * overwritten with zero-length records and thus record count is not a
 969	 * reliable indicator of the iclog state before a crash.
 970	 */
 971	first_bad = 0;
 972	error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
 973				      XLOG_RECOVER_CRCPASS, &first_bad);
 974	while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
 975		int	tail_distance;
 976
 977		/*
 978		 * Is corruption within range of the head? If so, retry from
 979		 * the next record. Otherwise return an error.
 980		 */
 981		tail_distance = xlog_tail_distance(log, head_blk, first_bad);
 982		if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize))
 983			break;
 984
 985		/* skip to the next record; returns positive count on success */
 986		error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2,
 987				buffer, &tmp_tail, &thead, &wrapped);
 988		if (error < 0)
 989			goto out;
 990
 991		*tail_blk = tmp_tail;
 992		first_bad = 0;
 993		error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
 994					      XLOG_RECOVER_CRCPASS, &first_bad);
 995	}
 996
 997	if (!error && *tail_blk != orig_tail)
 998		xfs_warn(log->l_mp,
 999		"Tail block (0x%llx) overwrite detected. Updated to 0x%llx",
1000			 orig_tail, *tail_blk);
1001out:
1002	kvfree(buffer);
1003	return error;
1004}
1005
1006/*
1007 * Detect and trim torn writes from the head of the log.
1008 *
1009 * Storage without sector atomicity guarantees can result in torn writes in the
1010 * log in the event of a crash. Our only means to detect this scenario is via
1011 * CRC verification. While we can't always be certain that CRC verification
1012 * failure is due to a torn write vs. an unrelated corruption, we do know that
1013 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1014 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1015 * the log and treat failures in this range as torn writes as a matter of
1016 * policy. In the event of CRC failure, the head is walked back to the last good
1017 * record in the log and the tail is updated from that record and verified.
1018 */
1019STATIC int
1020xlog_verify_head(
1021	struct xlog		*log,
1022	xfs_daddr_t		*head_blk,	/* in/out: unverified head */
1023	xfs_daddr_t		*tail_blk,	/* out: tail block */
1024	char			*buffer,
1025	xfs_daddr_t		*rhead_blk,	/* start blk of last record */
1026	struct xlog_rec_header	**rhead,	/* ptr to last record */
1027	bool			*wrapped)	/* last rec. wraps phys. log */
1028{
1029	struct xlog_rec_header	*tmp_rhead;
1030	char			*tmp_buffer;
1031	xfs_daddr_t		first_bad;
1032	xfs_daddr_t		tmp_rhead_blk;
1033	int			found;
1034	int			error;
1035	bool			tmp_wrapped;
1036
1037	/*
1038	 * Check the head of the log for torn writes. Search backwards from the
1039	 * head until we hit the tail or the maximum number of log record I/Os
1040	 * that could have been in flight at one time. Use a temporary buffer so
1041	 * we don't trash the rhead/buffer pointers from the caller.
1042	 */
1043	tmp_buffer = xlog_alloc_buffer(log, 1);
1044	if (!tmp_buffer)
1045		return -ENOMEM;
1046	error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1047				      XLOG_MAX_ICLOGS, tmp_buffer,
1048				      &tmp_rhead_blk, &tmp_rhead, &tmp_wrapped);
1049	kvfree(tmp_buffer);
1050	if (error < 0)
1051		return error;
1052
1053	/*
1054	 * Now run a CRC verification pass over the records starting at the
1055	 * block found above to the current head. If a CRC failure occurs, the
1056	 * log block of the first bad record is saved in first_bad.
1057	 */
1058	error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1059				      XLOG_RECOVER_CRCPASS, &first_bad);
1060	if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1061		/*
1062		 * We've hit a potential torn write. Reset the error and warn
1063		 * about it.
1064		 */
1065		error = 0;
1066		xfs_warn(log->l_mp,
1067"Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1068			 first_bad, *head_blk);
1069
1070		/*
1071		 * Get the header block and buffer pointer for the last good
1072		 * record before the bad record.
1073		 *
1074		 * Note that xlog_find_tail() clears the blocks at the new head
1075		 * (i.e., the records with invalid CRC) if the cycle number
1076		 * matches the current cycle.
1077		 */
1078		found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1,
1079				buffer, rhead_blk, rhead, wrapped);
1080		if (found < 0)
1081			return found;
1082		if (found == 0)		/* XXX: right thing to do here? */
1083			return -EIO;
1084
1085		/*
1086		 * Reset the head block to the starting block of the first bad
1087		 * log record and set the tail block based on the last good
1088		 * record.
1089		 *
1090		 * Bail out if the updated head/tail match as this indicates
1091		 * possible corruption outside of the acceptable
1092		 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1093		 */
1094		*head_blk = first_bad;
1095		*tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1096		if (*head_blk == *tail_blk) {
1097			ASSERT(0);
1098			return 0;
1099		}
1100	}
1101	if (error)
1102		return error;
1103
1104	return xlog_verify_tail(log, *head_blk, tail_blk,
1105				be32_to_cpu((*rhead)->h_size));
1106}
1107
1108/*
1109 * We need to make sure we handle log wrapping properly, so we can't use the
1110 * calculated logbno directly. Make sure it wraps to the correct bno inside the
1111 * log.
1112 *
1113 * The log is limited to 32 bit sizes, so we use the appropriate modulus
1114 * operation here and cast it back to a 64 bit daddr on return.
1115 */
1116static inline xfs_daddr_t
1117xlog_wrap_logbno(
1118	struct xlog		*log,
1119	xfs_daddr_t		bno)
1120{
1121	int			mod;
1122
1123	div_s64_rem(bno, log->l_logBBsize, &mod);
1124	return mod;
1125}
1126
1127/*
1128 * Check whether the head of the log points to an unmount record. In other
1129 * words, determine whether the log is clean. If so, update the in-core state
1130 * appropriately.
1131 */
1132static int
1133xlog_check_unmount_rec(
1134	struct xlog		*log,
1135	xfs_daddr_t		*head_blk,
1136	xfs_daddr_t		*tail_blk,
1137	struct xlog_rec_header	*rhead,
1138	xfs_daddr_t		rhead_blk,
1139	char			*buffer,
1140	bool			*clean)
1141{
1142	struct xlog_op_header	*op_head;
1143	xfs_daddr_t		umount_data_blk;
1144	xfs_daddr_t		after_umount_blk;
1145	int			hblks;
1146	int			error;
1147	char			*offset;
1148
1149	*clean = false;
1150
1151	/*
1152	 * Look for unmount record. If we find it, then we know there was a
1153	 * clean unmount. Since 'i' could be the last block in the physical
1154	 * log, we convert to a log block before comparing to the head_blk.
1155	 *
1156	 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1157	 * below. We won't want to clear the unmount record if there is one, so
1158	 * we pass the lsn of the unmount record rather than the block after it.
1159	 */
1160	hblks = xlog_logrec_hblks(log, rhead);
1161	after_umount_blk = xlog_wrap_logbno(log,
1162			rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len)));
1163
 
 
 
 
 
 
 
 
 
 
 
 
 
1164	if (*head_blk == after_umount_blk &&
1165	    be32_to_cpu(rhead->h_num_logops) == 1) {
1166		umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks);
1167		error = xlog_bread(log, umount_data_blk, 1, buffer, &offset);
 
1168		if (error)
1169			return error;
1170
1171		op_head = (struct xlog_op_header *)offset;
1172		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1173			/*
1174			 * Set tail and last sync so that newly written log
1175			 * records will point recovery to after the current
1176			 * unmount record.
1177			 */
1178			xlog_assign_atomic_lsn(&log->l_tail_lsn,
1179					log->l_curr_cycle, after_umount_blk);
1180			log->l_ailp->ail_head_lsn =
1181					atomic64_read(&log->l_tail_lsn);
1182			*tail_blk = after_umount_blk;
1183
1184			*clean = true;
1185		}
1186	}
1187
1188	return 0;
1189}
1190
1191static void
1192xlog_set_state(
1193	struct xlog		*log,
1194	xfs_daddr_t		head_blk,
1195	struct xlog_rec_header	*rhead,
1196	xfs_daddr_t		rhead_blk,
1197	bool			bump_cycle)
1198{
1199	/*
1200	 * Reset log values according to the state of the log when we
1201	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
1202	 * one because the next write starts a new cycle rather than
1203	 * continuing the cycle of the last good log record.  At this
1204	 * point we have guaranteed that all partial log records have been
1205	 * accounted for.  Therefore, we know that the last good log record
1206	 * written was complete and ended exactly on the end boundary
1207	 * of the physical log.
1208	 */
1209	log->l_prev_block = rhead_blk;
1210	log->l_curr_block = (int)head_blk;
1211	log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1212	if (bump_cycle)
1213		log->l_curr_cycle++;
1214	atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1215	log->l_ailp->ail_head_lsn = be64_to_cpu(rhead->h_lsn);
 
 
 
 
1216}
1217
1218/*
1219 * Find the sync block number or the tail of the log.
1220 *
1221 * This will be the block number of the last record to have its
1222 * associated buffers synced to disk.  Every log record header has
1223 * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
1224 * to get a sync block number.  The only concern is to figure out which
1225 * log record header to believe.
1226 *
1227 * The following algorithm uses the log record header with the largest
1228 * lsn.  The entire log record does not need to be valid.  We only care
1229 * that the header is valid.
1230 *
1231 * We could speed up search by using current head_blk buffer, but it is not
1232 * available.
1233 */
1234STATIC int
1235xlog_find_tail(
1236	struct xlog		*log,
1237	xfs_daddr_t		*head_blk,
1238	xfs_daddr_t		*tail_blk)
1239{
1240	xlog_rec_header_t	*rhead;
1241	char			*offset = NULL;
1242	char			*buffer;
1243	int			error;
1244	xfs_daddr_t		rhead_blk;
1245	xfs_lsn_t		tail_lsn;
1246	bool			wrapped = false;
1247	bool			clean = false;
1248
1249	/*
1250	 * Find previous log record
1251	 */
1252	if ((error = xlog_find_head(log, head_blk)))
1253		return error;
1254	ASSERT(*head_blk < INT_MAX);
1255
1256	buffer = xlog_alloc_buffer(log, 1);
1257	if (!buffer)
1258		return -ENOMEM;
1259	if (*head_blk == 0) {				/* special case */
1260		error = xlog_bread(log, 0, 1, buffer, &offset);
1261		if (error)
1262			goto done;
1263
1264		if (xlog_get_cycle(offset) == 0) {
1265			*tail_blk = 0;
1266			/* leave all other log inited values alone */
1267			goto done;
1268		}
1269	}
1270
1271	/*
1272	 * Search backwards through the log looking for the log record header
1273	 * block. This wraps all the way back around to the head so something is
1274	 * seriously wrong if we can't find it.
1275	 */
1276	error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, buffer,
1277				      &rhead_blk, &rhead, &wrapped);
1278	if (error < 0)
1279		goto done;
1280	if (!error) {
1281		xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1282		error = -EFSCORRUPTED;
1283		goto done;
1284	}
1285	*tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1286
1287	/*
1288	 * Set the log state based on the current head record.
1289	 */
1290	xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
1291	tail_lsn = atomic64_read(&log->l_tail_lsn);
1292
1293	/*
1294	 * Look for an unmount record at the head of the log. This sets the log
1295	 * state to determine whether recovery is necessary.
1296	 */
1297	error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1298				       rhead_blk, buffer, &clean);
1299	if (error)
1300		goto done;
1301
1302	/*
1303	 * Verify the log head if the log is not clean (e.g., we have anything
1304	 * but an unmount record at the head). This uses CRC verification to
1305	 * detect and trim torn writes. If discovered, CRC failures are
1306	 * considered torn writes and the log head is trimmed accordingly.
1307	 *
1308	 * Note that we can only run CRC verification when the log is dirty
1309	 * because there's no guarantee that the log data behind an unmount
1310	 * record is compatible with the current architecture.
1311	 */
1312	if (!clean) {
1313		xfs_daddr_t	orig_head = *head_blk;
1314
1315		error = xlog_verify_head(log, head_blk, tail_blk, buffer,
1316					 &rhead_blk, &rhead, &wrapped);
1317		if (error)
1318			goto done;
1319
1320		/* update in-core state again if the head changed */
1321		if (*head_blk != orig_head) {
1322			xlog_set_state(log, *head_blk, rhead, rhead_blk,
1323				       wrapped);
1324			tail_lsn = atomic64_read(&log->l_tail_lsn);
1325			error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1326						       rhead, rhead_blk, buffer,
1327						       &clean);
1328			if (error)
1329				goto done;
1330		}
1331	}
1332
1333	/*
1334	 * Note that the unmount was clean. If the unmount was not clean, we
1335	 * need to know this to rebuild the superblock counters from the perag
1336	 * headers if we have a filesystem using non-persistent counters.
1337	 */
1338	if (clean)
1339		xfs_set_clean(log->l_mp);
1340
1341	/*
1342	 * Make sure that there are no blocks in front of the head
1343	 * with the same cycle number as the head.  This can happen
1344	 * because we allow multiple outstanding log writes concurrently,
1345	 * and the later writes might make it out before earlier ones.
1346	 *
1347	 * We use the lsn from before modifying it so that we'll never
1348	 * overwrite the unmount record after a clean unmount.
1349	 *
1350	 * Do this only if we are going to recover the filesystem
1351	 *
1352	 * NOTE: This used to say "if (!readonly)"
1353	 * However on Linux, we can & do recover a read-only filesystem.
1354	 * We only skip recovery if NORECOVERY is specified on mount,
1355	 * in which case we would not be here.
1356	 *
1357	 * But... if the -device- itself is readonly, just skip this.
1358	 * We can't recover this device anyway, so it won't matter.
1359	 */
1360	if (!xfs_readonly_buftarg(log->l_targ))
1361		error = xlog_clear_stale_blocks(log, tail_lsn);
1362
1363done:
1364	kvfree(buffer);
1365
1366	if (error)
1367		xfs_warn(log->l_mp, "failed to locate log tail");
1368	return error;
1369}
1370
1371/*
1372 * Is the log zeroed at all?
1373 *
1374 * The last binary search should be changed to perform an X block read
1375 * once X becomes small enough.  You can then search linearly through
1376 * the X blocks.  This will cut down on the number of reads we need to do.
1377 *
1378 * If the log is partially zeroed, this routine will pass back the blkno
1379 * of the first block with cycle number 0.  It won't have a complete LR
1380 * preceding it.
1381 *
1382 * Return:
1383 *	0  => the log is completely written to
1384 *	1 => use *blk_no as the first block of the log
1385 *	<0 => error has occurred
1386 */
1387STATIC int
1388xlog_find_zeroed(
1389	struct xlog	*log,
1390	xfs_daddr_t	*blk_no)
1391{
1392	char		*buffer;
1393	char		*offset;
1394	uint	        first_cycle, last_cycle;
1395	xfs_daddr_t	new_blk, last_blk, start_blk;
1396	xfs_daddr_t     num_scan_bblks;
1397	int	        error, log_bbnum = log->l_logBBsize;
1398	int		ret = 1;
1399
1400	*blk_no = 0;
1401
1402	/* check totally zeroed log */
1403	buffer = xlog_alloc_buffer(log, 1);
1404	if (!buffer)
1405		return -ENOMEM;
1406	error = xlog_bread(log, 0, 1, buffer, &offset);
1407	if (error)
1408		goto out_free_buffer;
1409
1410	first_cycle = xlog_get_cycle(offset);
1411	if (first_cycle == 0) {		/* completely zeroed log */
1412		*blk_no = 0;
1413		goto out_free_buffer;
 
1414	}
1415
1416	/* check partially zeroed log */
1417	error = xlog_bread(log, log_bbnum-1, 1, buffer, &offset);
1418	if (error)
1419		goto out_free_buffer;
1420
1421	last_cycle = xlog_get_cycle(offset);
1422	if (last_cycle != 0) {		/* log completely written to */
1423		ret = 0;
1424		goto out_free_buffer;
 
 
 
 
 
 
 
 
 
 
1425	}
1426
1427	/* we have a partially zeroed log */
1428	last_blk = log_bbnum-1;
1429	error = xlog_find_cycle_start(log, buffer, 0, &last_blk, 0);
1430	if (error)
1431		goto out_free_buffer;
1432
1433	/*
1434	 * Validate the answer.  Because there is no way to guarantee that
1435	 * the entire log is made up of log records which are the same size,
1436	 * we scan over the defined maximum blocks.  At this point, the maximum
1437	 * is not chosen to mean anything special.   XXXmiken
1438	 */
1439	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1440	ASSERT(num_scan_bblks <= INT_MAX);
1441
1442	if (last_blk < num_scan_bblks)
1443		num_scan_bblks = last_blk;
1444	start_blk = last_blk - num_scan_bblks;
1445
1446	/*
1447	 * We search for any instances of cycle number 0 that occur before
1448	 * our current estimate of the head.  What we're trying to detect is
1449	 *        1 ... | 0 | 1 | 0...
1450	 *                       ^ binary search ends here
1451	 */
1452	if ((error = xlog_find_verify_cycle(log, start_blk,
1453					 (int)num_scan_bblks, 0, &new_blk)))
1454		goto out_free_buffer;
1455	if (new_blk != -1)
1456		last_blk = new_blk;
1457
1458	/*
1459	 * Potentially backup over partial log record write.  We don't need
1460	 * to search the end of the log because we know it is zero.
1461	 */
1462	error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1463	if (error == 1)
1464		error = -EIO;
1465	if (error)
1466		goto out_free_buffer;
1467
1468	*blk_no = last_blk;
1469out_free_buffer:
1470	kvfree(buffer);
1471	if (error)
1472		return error;
1473	return ret;
1474}
1475
1476/*
1477 * These are simple subroutines used by xlog_clear_stale_blocks() below
1478 * to initialize a buffer full of empty log record headers and write
1479 * them into the log.
1480 */
1481STATIC void
1482xlog_add_record(
1483	struct xlog		*log,
1484	char			*buf,
1485	int			cycle,
1486	int			block,
1487	int			tail_cycle,
1488	int			tail_block)
1489{
1490	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1491
1492	memset(buf, 0, BBSIZE);
1493	recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1494	recp->h_cycle = cpu_to_be32(cycle);
1495	recp->h_version = cpu_to_be32(
1496			xfs_has_logv2(log->l_mp) ? 2 : 1);
1497	recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1498	recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1499	recp->h_fmt = cpu_to_be32(XLOG_FMT);
1500	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1501}
1502
1503STATIC int
1504xlog_write_log_records(
1505	struct xlog	*log,
1506	int		cycle,
1507	int		start_block,
1508	int		blocks,
1509	int		tail_cycle,
1510	int		tail_block)
1511{
1512	char		*offset;
1513	char		*buffer;
1514	int		balign, ealign;
1515	int		sectbb = log->l_sectBBsize;
1516	int		end_block = start_block + blocks;
1517	int		bufblks;
1518	int		error = 0;
1519	int		i, j = 0;
1520
1521	/*
1522	 * Greedily allocate a buffer big enough to handle the full
1523	 * range of basic blocks to be written.  If that fails, try
1524	 * a smaller size.  We need to be able to write at least a
1525	 * log sector, or we're out of luck.
1526	 */
1527	bufblks = roundup_pow_of_two(blocks);
1528	while (bufblks > log->l_logBBsize)
1529		bufblks >>= 1;
1530	while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
1531		bufblks >>= 1;
1532		if (bufblks < sectbb)
1533			return -ENOMEM;
1534	}
1535
1536	/* We may need to do a read at the start to fill in part of
1537	 * the buffer in the starting sector not covered by the first
1538	 * write below.
1539	 */
1540	balign = round_down(start_block, sectbb);
1541	if (balign != start_block) {
1542		error = xlog_bread_noalign(log, start_block, 1, buffer);
1543		if (error)
1544			goto out_free_buffer;
1545
1546		j = start_block - balign;
1547	}
1548
1549	for (i = start_block; i < end_block; i += bufblks) {
1550		int		bcount, endcount;
1551
1552		bcount = min(bufblks, end_block - start_block);
1553		endcount = bcount - j;
1554
1555		/* We may need to do a read at the end to fill in part of
1556		 * the buffer in the final sector not covered by the write.
1557		 * If this is the same sector as the above read, skip it.
1558		 */
1559		ealign = round_down(end_block, sectbb);
1560		if (j == 0 && (start_block + endcount > ealign)) {
1561			error = xlog_bread_noalign(log, ealign, sectbb,
1562					buffer + BBTOB(ealign - start_block));
 
1563			if (error)
1564				break;
1565
1566		}
1567
1568		offset = buffer + xlog_align(log, start_block);
1569		for (; j < endcount; j++) {
1570			xlog_add_record(log, offset, cycle, i+j,
1571					tail_cycle, tail_block);
1572			offset += BBSIZE;
1573		}
1574		error = xlog_bwrite(log, start_block, endcount, buffer);
1575		if (error)
1576			break;
1577		start_block += endcount;
1578		j = 0;
1579	}
1580
1581out_free_buffer:
1582	kvfree(buffer);
1583	return error;
1584}
1585
1586/*
1587 * This routine is called to blow away any incomplete log writes out
1588 * in front of the log head.  We do this so that we won't become confused
1589 * if we come up, write only a little bit more, and then crash again.
1590 * If we leave the partial log records out there, this situation could
1591 * cause us to think those partial writes are valid blocks since they
1592 * have the current cycle number.  We get rid of them by overwriting them
1593 * with empty log records with the old cycle number rather than the
1594 * current one.
1595 *
1596 * The tail lsn is passed in rather than taken from
1597 * the log so that we will not write over the unmount record after a
1598 * clean unmount in a 512 block log.  Doing so would leave the log without
1599 * any valid log records in it until a new one was written.  If we crashed
1600 * during that time we would not be able to recover.
1601 */
1602STATIC int
1603xlog_clear_stale_blocks(
1604	struct xlog	*log,
1605	xfs_lsn_t	tail_lsn)
1606{
1607	int		tail_cycle, head_cycle;
1608	int		tail_block, head_block;
1609	int		tail_distance, max_distance;
1610	int		distance;
1611	int		error;
1612
1613	tail_cycle = CYCLE_LSN(tail_lsn);
1614	tail_block = BLOCK_LSN(tail_lsn);
1615	head_cycle = log->l_curr_cycle;
1616	head_block = log->l_curr_block;
1617
1618	/*
1619	 * Figure out the distance between the new head of the log
1620	 * and the tail.  We want to write over any blocks beyond the
1621	 * head that we may have written just before the crash, but
1622	 * we don't want to overwrite the tail of the log.
1623	 */
1624	if (head_cycle == tail_cycle) {
1625		/*
1626		 * The tail is behind the head in the physical log,
1627		 * so the distance from the head to the tail is the
1628		 * distance from the head to the end of the log plus
1629		 * the distance from the beginning of the log to the
1630		 * tail.
1631		 */
1632		if (XFS_IS_CORRUPT(log->l_mp,
1633				   head_block < tail_block ||
1634				   head_block >= log->l_logBBsize))
1635			return -EFSCORRUPTED;
 
1636		tail_distance = tail_block + (log->l_logBBsize - head_block);
1637	} else {
1638		/*
1639		 * The head is behind the tail in the physical log,
1640		 * so the distance from the head to the tail is just
1641		 * the tail block minus the head block.
1642		 */
1643		if (XFS_IS_CORRUPT(log->l_mp,
1644				   head_block >= tail_block ||
1645				   head_cycle != tail_cycle + 1))
1646			return -EFSCORRUPTED;
 
1647		tail_distance = tail_block - head_block;
1648	}
1649
1650	/*
1651	 * If the head is right up against the tail, we can't clear
1652	 * anything.
1653	 */
1654	if (tail_distance <= 0) {
1655		ASSERT(tail_distance == 0);
1656		return 0;
1657	}
1658
1659	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1660	/*
1661	 * Take the smaller of the maximum amount of outstanding I/O
1662	 * we could have and the distance to the tail to clear out.
1663	 * We take the smaller so that we don't overwrite the tail and
1664	 * we don't waste all day writing from the head to the tail
1665	 * for no reason.
1666	 */
1667	max_distance = min(max_distance, tail_distance);
1668
1669	if ((head_block + max_distance) <= log->l_logBBsize) {
1670		/*
1671		 * We can stomp all the blocks we need to without
1672		 * wrapping around the end of the log.  Just do it
1673		 * in a single write.  Use the cycle number of the
1674		 * current cycle minus one so that the log will look like:
1675		 *     n ... | n - 1 ...
1676		 */
1677		error = xlog_write_log_records(log, (head_cycle - 1),
1678				head_block, max_distance, tail_cycle,
1679				tail_block);
1680		if (error)
1681			return error;
1682	} else {
1683		/*
1684		 * We need to wrap around the end of the physical log in
1685		 * order to clear all the blocks.  Do it in two separate
1686		 * I/Os.  The first write should be from the head to the
1687		 * end of the physical log, and it should use the current
1688		 * cycle number minus one just like above.
1689		 */
1690		distance = log->l_logBBsize - head_block;
1691		error = xlog_write_log_records(log, (head_cycle - 1),
1692				head_block, distance, tail_cycle,
1693				tail_block);
1694
1695		if (error)
1696			return error;
1697
1698		/*
1699		 * Now write the blocks at the start of the physical log.
1700		 * This writes the remainder of the blocks we want to clear.
1701		 * It uses the current cycle number since we're now on the
1702		 * same cycle as the head so that we get:
1703		 *    n ... n ... | n - 1 ...
1704		 *    ^^^^^ blocks we're writing
1705		 */
1706		distance = max_distance - (log->l_logBBsize - head_block);
1707		error = xlog_write_log_records(log, head_cycle, 0, distance,
1708				tail_cycle, tail_block);
1709		if (error)
1710			return error;
1711	}
1712
1713	return 0;
1714}
1715
1716/*
1717 * Release the recovered intent item in the AIL that matches the given intent
1718 * type and intent id.
1719 */
1720void
1721xlog_recover_release_intent(
1722	struct xlog			*log,
1723	unsigned short			intent_type,
1724	uint64_t			intent_id)
1725{
1726	struct xfs_defer_pending	*dfp, *n;
1727
1728	list_for_each_entry_safe(dfp, n, &log->r_dfops, dfp_list) {
1729		struct xfs_log_item	*lip = dfp->dfp_intent;
1730
1731		if (lip->li_type != intent_type)
1732			continue;
1733		if (!lip->li_ops->iop_match(lip, intent_id))
1734			continue;
1735
1736		ASSERT(xlog_item_is_intent(lip));
1737
1738		xfs_defer_cancel_recovery(log->l_mp, dfp);
1739	}
1740}
1741
1742int
1743xlog_recover_iget(
1744	struct xfs_mount	*mp,
1745	xfs_ino_t		ino,
1746	struct xfs_inode	**ipp)
1747{
1748	int			error;
1749
1750	error = xfs_iget(mp, NULL, ino, 0, 0, ipp);
1751	if (error)
1752		return error;
1753
1754	error = xfs_qm_dqattach(*ipp);
1755	if (error) {
1756		xfs_irele(*ipp);
1757		return error;
1758	}
1759
1760	if (VFS_I(*ipp)->i_nlink == 0)
1761		xfs_iflags_set(*ipp, XFS_IRECOVERY);
1762
1763	return 0;
1764}
1765
1766/*
1767 * Get an inode so that we can recover a log operation.
1768 *
1769 * Log intent items that target inodes effectively contain a file handle.
1770 * Check that the generation number matches the intent item like we do for
1771 * other file handles.  Log intent items defined after this validation weakness
1772 * was identified must use this function.
1773 */
1774int
1775xlog_recover_iget_handle(
1776	struct xfs_mount	*mp,
1777	xfs_ino_t		ino,
1778	uint32_t		gen,
1779	struct xfs_inode	**ipp)
1780{
1781	struct xfs_inode	*ip;
1782	int			error;
1783
1784	error = xlog_recover_iget(mp, ino, &ip);
1785	if (error)
1786		return error;
1787
1788	if (VFS_I(ip)->i_generation != gen) {
1789		xfs_irele(ip);
1790		return -EFSCORRUPTED;
1791	}
1792
1793	*ipp = ip;
1794	return 0;
1795}
1796
1797/******************************************************************************
1798 *
1799 *		Log recover routines
1800 *
1801 ******************************************************************************
1802 */
1803static const struct xlog_recover_item_ops *xlog_recover_item_ops[] = {
1804	&xlog_buf_item_ops,
1805	&xlog_inode_item_ops,
1806	&xlog_dquot_item_ops,
1807	&xlog_quotaoff_item_ops,
1808	&xlog_icreate_item_ops,
1809	&xlog_efi_item_ops,
1810	&xlog_efd_item_ops,
1811	&xlog_rui_item_ops,
1812	&xlog_rud_item_ops,
1813	&xlog_cui_item_ops,
1814	&xlog_cud_item_ops,
1815	&xlog_bui_item_ops,
1816	&xlog_bud_item_ops,
1817	&xlog_attri_item_ops,
1818	&xlog_attrd_item_ops,
1819	&xlog_xmi_item_ops,
1820	&xlog_xmd_item_ops,
1821	&xlog_rtefi_item_ops,
1822	&xlog_rtefd_item_ops,
1823};
1824
1825static const struct xlog_recover_item_ops *
1826xlog_find_item_ops(
1827	struct xlog_recover_item		*item)
1828{
1829	unsigned int				i;
1830
1831	for (i = 0; i < ARRAY_SIZE(xlog_recover_item_ops); i++)
1832		if (ITEM_TYPE(item) == xlog_recover_item_ops[i]->item_type)
1833			return xlog_recover_item_ops[i];
1834
1835	return NULL;
1836}
1837
1838/*
1839 * Sort the log items in the transaction.
1840 *
1841 * The ordering constraints are defined by the inode allocation and unlink
1842 * behaviour. The rules are:
1843 *
1844 *	1. Every item is only logged once in a given transaction. Hence it
1845 *	   represents the last logged state of the item. Hence ordering is
1846 *	   dependent on the order in which operations need to be performed so
1847 *	   required initial conditions are always met.
1848 *
1849 *	2. Cancelled buffers are recorded in pass 1 in a separate table and
1850 *	   there's nothing to replay from them so we can simply cull them
1851 *	   from the transaction. However, we can't do that until after we've
1852 *	   replayed all the other items because they may be dependent on the
1853 *	   cancelled buffer and replaying the cancelled buffer can remove it
1854 *	   form the cancelled buffer table. Hence they have to be done last.
1855 *
1856 *	3. Inode allocation buffers must be replayed before inode items that
1857 *	   read the buffer and replay changes into it. For filesystems using the
1858 *	   ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1859 *	   treated the same as inode allocation buffers as they create and
1860 *	   initialise the buffers directly.
1861 *
1862 *	4. Inode unlink buffers must be replayed after inode items are replayed.
1863 *	   This ensures that inodes are completely flushed to the inode buffer
1864 *	   in a "free" state before we remove the unlinked inode list pointer.
1865 *
1866 * Hence the ordering needs to be inode allocation buffers first, inode items
1867 * second, inode unlink buffers third and cancelled buffers last.
1868 *
1869 * But there's a problem with that - we can't tell an inode allocation buffer
1870 * apart from a regular buffer, so we can't separate them. We can, however,
1871 * tell an inode unlink buffer from the others, and so we can separate them out
1872 * from all the other buffers and move them to last.
1873 *
1874 * Hence, 4 lists, in order from head to tail:
1875 *	- buffer_list for all buffers except cancelled/inode unlink buffers
1876 *	- item_list for all non-buffer items
1877 *	- inode_buffer_list for inode unlink buffers
1878 *	- cancel_list for the cancelled buffers
1879 *
1880 * Note that we add objects to the tail of the lists so that first-to-last
1881 * ordering is preserved within the lists. Adding objects to the head of the
1882 * list means when we traverse from the head we walk them in last-to-first
1883 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1884 * but for all other items there may be specific ordering that we need to
1885 * preserve.
1886 */
1887STATIC int
1888xlog_recover_reorder_trans(
1889	struct xlog		*log,
1890	struct xlog_recover	*trans,
1891	int			pass)
1892{
1893	struct xlog_recover_item *item, *n;
1894	int			error = 0;
1895	LIST_HEAD(sort_list);
1896	LIST_HEAD(cancel_list);
1897	LIST_HEAD(buffer_list);
1898	LIST_HEAD(inode_buffer_list);
1899	LIST_HEAD(item_list);
1900
1901	list_splice_init(&trans->r_itemq, &sort_list);
1902	list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1903		enum xlog_recover_reorder	fate = XLOG_REORDER_ITEM_LIST;
1904
1905		item->ri_ops = xlog_find_item_ops(item);
1906		if (!item->ri_ops) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1907			xfs_warn(log->l_mp,
1908				"%s: unrecognized type of log operation (%d)",
1909				__func__, ITEM_TYPE(item));
1910			ASSERT(0);
1911			/*
1912			 * return the remaining items back to the transaction
1913			 * item list so they can be freed in caller.
1914			 */
1915			if (!list_empty(&sort_list))
1916				list_splice_init(&sort_list, &trans->r_itemq);
1917			error = -EFSCORRUPTED;
1918			break;
1919		}
1920
1921		if (item->ri_ops->reorder)
1922			fate = item->ri_ops->reorder(item);
1923
1924		switch (fate) {
1925		case XLOG_REORDER_BUFFER_LIST:
1926			list_move_tail(&item->ri_list, &buffer_list);
1927			break;
1928		case XLOG_REORDER_CANCEL_LIST:
1929			trace_xfs_log_recover_item_reorder_head(log,
1930					trans, item, pass);
1931			list_move(&item->ri_list, &cancel_list);
1932			break;
1933		case XLOG_REORDER_INODE_BUFFER_LIST:
1934			list_move(&item->ri_list, &inode_buffer_list);
1935			break;
1936		case XLOG_REORDER_ITEM_LIST:
1937			trace_xfs_log_recover_item_reorder_tail(log,
1938							trans, item, pass);
1939			list_move_tail(&item->ri_list, &item_list);
1940			break;
1941		}
1942	}
1943
1944	ASSERT(list_empty(&sort_list));
1945	if (!list_empty(&buffer_list))
1946		list_splice(&buffer_list, &trans->r_itemq);
1947	if (!list_empty(&item_list))
1948		list_splice_tail(&item_list, &trans->r_itemq);
1949	if (!list_empty(&inode_buffer_list))
1950		list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1951	if (!list_empty(&cancel_list))
1952		list_splice_tail(&cancel_list, &trans->r_itemq);
1953	return error;
1954}
1955
1956void
1957xlog_buf_readahead(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1958	struct xlog		*log,
1959	xfs_daddr_t		blkno,
1960	uint			len,
1961	const struct xfs_buf_ops *ops)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1962{
1963	if (!xlog_is_buffer_cancelled(log, blkno, len))
1964		xfs_buf_readahead(log->l_mp->m_ddev_targp, blkno, len, ops);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1965}
1966
 
1967/*
1968 * Create a deferred work structure for resuming and tracking the progress of a
1969 * log intent item that was found during recovery.
 
 
 
1970 */
1971void
1972xlog_recover_intent_item(
1973	struct xlog			*log,
1974	struct xfs_log_item		*lip,
1975	xfs_lsn_t			lsn,
1976	const struct xfs_defer_op_type	*ops)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1977{
1978	ASSERT(xlog_item_is_intent(lip));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1979
1980	xfs_defer_start_recovery(lip, &log->r_dfops, ops);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1981
1982	/*
1983	 * Insert the intent into the AIL directly and drop one reference so
1984	 * that finishing or canceling the work will drop the other.
 
 
 
 
 
 
1985	 */
1986	xfs_trans_ail_insert(log->l_ailp, lip, lsn);
1987	lip->li_ops->iop_unpin(lip, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1988}
1989
1990STATIC int
1991xlog_recover_items_pass2(
1992	struct xlog                     *log,
1993	struct xlog_recover             *trans,
1994	struct list_head                *buffer_list,
1995	struct list_head                *item_list)
1996{
1997	struct xlog_recover_item	*item;
1998	int				error = 0;
1999
2000	list_for_each_entry(item, item_list, ri_list) {
2001		trace_xfs_log_recover_item_recover(log, trans, item,
2002				XLOG_RECOVER_PASS2);
2003
2004		if (item->ri_ops->commit_pass2)
2005			error = item->ri_ops->commit_pass2(log, buffer_list,
2006					item, trans->r_lsn);
2007		if (error)
2008			return error;
2009	}
2010
2011	return error;
2012}
2013
2014/*
2015 * Perform the transaction.
2016 *
2017 * If the transaction modifies a buffer or inode, do it now.  Otherwise,
2018 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2019 */
2020STATIC int
2021xlog_recover_commit_trans(
2022	struct xlog		*log,
2023	struct xlog_recover	*trans,
2024	int			pass,
2025	struct list_head	*buffer_list)
2026{
2027	int				error = 0;
2028	int				items_queued = 0;
2029	struct xlog_recover_item	*item;
2030	struct xlog_recover_item	*next;
2031	LIST_HEAD			(ra_list);
2032	LIST_HEAD			(done_list);
2033
2034	#define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
2035
2036	hlist_del_init(&trans->r_list);
2037
2038	error = xlog_recover_reorder_trans(log, trans, pass);
2039	if (error)
2040		return error;
2041
2042	list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
2043		trace_xfs_log_recover_item_recover(log, trans, item, pass);
2044
2045		switch (pass) {
2046		case XLOG_RECOVER_PASS1:
2047			if (item->ri_ops->commit_pass1)
2048				error = item->ri_ops->commit_pass1(log, item);
2049			break;
2050		case XLOG_RECOVER_PASS2:
2051			if (item->ri_ops->ra_pass2)
2052				item->ri_ops->ra_pass2(log, item);
2053			list_move_tail(&item->ri_list, &ra_list);
2054			items_queued++;
2055			if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
2056				error = xlog_recover_items_pass2(log, trans,
2057						buffer_list, &ra_list);
2058				list_splice_tail_init(&ra_list, &done_list);
2059				items_queued = 0;
2060			}
2061
2062			break;
2063		default:
2064			ASSERT(0);
2065		}
2066
2067		if (error)
2068			goto out;
2069	}
2070
2071out:
2072	if (!list_empty(&ra_list)) {
2073		if (!error)
2074			error = xlog_recover_items_pass2(log, trans,
2075					buffer_list, &ra_list);
2076		list_splice_tail_init(&ra_list, &done_list);
2077	}
2078
2079	if (!list_empty(&done_list))
2080		list_splice_init(&done_list, &trans->r_itemq);
2081
2082	return error;
2083}
2084
2085STATIC void
2086xlog_recover_add_item(
2087	struct list_head	*head)
2088{
2089	struct xlog_recover_item *item;
2090
2091	item = kzalloc(sizeof(struct xlog_recover_item),
2092			GFP_KERNEL | __GFP_NOFAIL);
2093	INIT_LIST_HEAD(&item->ri_list);
2094	list_add_tail(&item->ri_list, head);
2095}
2096
2097STATIC int
2098xlog_recover_add_to_cont_trans(
2099	struct xlog		*log,
2100	struct xlog_recover	*trans,
2101	char			*dp,
2102	int			len)
2103{
2104	struct xlog_recover_item *item;
2105	char			*ptr, *old_ptr;
2106	int			old_len;
2107
2108	/*
2109	 * If the transaction is empty, the header was split across this and the
2110	 * previous record. Copy the rest of the header.
2111	 */
2112	if (list_empty(&trans->r_itemq)) {
2113		ASSERT(len <= sizeof(struct xfs_trans_header));
2114		if (len > sizeof(struct xfs_trans_header)) {
2115			xfs_warn(log->l_mp, "%s: bad header length", __func__);
2116			return -EFSCORRUPTED;
2117		}
2118
2119		xlog_recover_add_item(&trans->r_itemq);
2120		ptr = (char *)&trans->r_theader +
2121				sizeof(struct xfs_trans_header) - len;
2122		memcpy(ptr, dp, len);
2123		return 0;
2124	}
2125
2126	/* take the tail entry */
2127	item = list_entry(trans->r_itemq.prev, struct xlog_recover_item,
2128			  ri_list);
2129
2130	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
2131	old_len = item->ri_buf[item->ri_cnt-1].i_len;
2132
2133	ptr = kvrealloc(old_ptr, len + old_len, GFP_KERNEL);
2134	if (!ptr)
2135		return -ENOMEM;
2136	memcpy(&ptr[old_len], dp, len);
2137	item->ri_buf[item->ri_cnt-1].i_len += len;
2138	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
2139	trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
2140	return 0;
2141}
2142
2143/*
2144 * The next region to add is the start of a new region.  It could be
2145 * a whole region or it could be the first part of a new region.  Because
2146 * of this, the assumption here is that the type and size fields of all
2147 * format structures fit into the first 32 bits of the structure.
2148 *
2149 * This works because all regions must be 32 bit aligned.  Therefore, we
2150 * either have both fields or we have neither field.  In the case we have
2151 * neither field, the data part of the region is zero length.  We only have
2152 * a log_op_header and can throw away the header since a new one will appear
2153 * later.  If we have at least 4 bytes, then we can determine how many regions
2154 * will appear in the current log item.
2155 */
2156STATIC int
2157xlog_recover_add_to_trans(
2158	struct xlog		*log,
2159	struct xlog_recover	*trans,
2160	char			*dp,
2161	int			len)
2162{
2163	struct xfs_inode_log_format	*in_f;			/* any will do */
2164	struct xlog_recover_item *item;
2165	char			*ptr;
2166
2167	if (!len)
2168		return 0;
2169	if (list_empty(&trans->r_itemq)) {
2170		/* we need to catch log corruptions here */
2171		if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
2172			xfs_warn(log->l_mp, "%s: bad header magic number",
2173				__func__);
2174			ASSERT(0);
2175			return -EFSCORRUPTED;
2176		}
2177
2178		if (len > sizeof(struct xfs_trans_header)) {
2179			xfs_warn(log->l_mp, "%s: bad header length", __func__);
2180			ASSERT(0);
2181			return -EFSCORRUPTED;
2182		}
2183
2184		/*
2185		 * The transaction header can be arbitrarily split across op
2186		 * records. If we don't have the whole thing here, copy what we
2187		 * do have and handle the rest in the next record.
2188		 */
2189		if (len == sizeof(struct xfs_trans_header))
2190			xlog_recover_add_item(&trans->r_itemq);
2191		memcpy(&trans->r_theader, dp, len);
2192		return 0;
2193	}
2194
2195	ptr = xlog_kvmalloc(len);
2196	memcpy(ptr, dp, len);
2197	in_f = (struct xfs_inode_log_format *)ptr;
2198
2199	/* take the tail entry */
2200	item = list_entry(trans->r_itemq.prev, struct xlog_recover_item,
2201			  ri_list);
2202	if (item->ri_total != 0 &&
2203	     item->ri_total == item->ri_cnt) {
2204		/* tail item is in use, get a new one */
2205		xlog_recover_add_item(&trans->r_itemq);
2206		item = list_entry(trans->r_itemq.prev,
2207					struct xlog_recover_item, ri_list);
2208	}
2209
2210	if (item->ri_total == 0) {		/* first region to be added */
2211		if (in_f->ilf_size == 0 ||
2212		    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
2213			xfs_warn(log->l_mp,
2214		"bad number of regions (%d) in inode log format",
2215				  in_f->ilf_size);
2216			ASSERT(0);
2217			kvfree(ptr);
2218			return -EFSCORRUPTED;
2219		}
2220
2221		item->ri_total = in_f->ilf_size;
2222		item->ri_buf = kzalloc(item->ri_total * sizeof(xfs_log_iovec_t),
2223				GFP_KERNEL | __GFP_NOFAIL);
2224	}
2225
2226	if (item->ri_total <= item->ri_cnt) {
2227		xfs_warn(log->l_mp,
2228	"log item region count (%d) overflowed size (%d)",
2229				item->ri_cnt, item->ri_total);
2230		ASSERT(0);
2231		kvfree(ptr);
2232		return -EFSCORRUPTED;
2233	}
2234
2235	/* Description region is ri_buf[0] */
2236	item->ri_buf[item->ri_cnt].i_addr = ptr;
2237	item->ri_buf[item->ri_cnt].i_len  = len;
2238	item->ri_cnt++;
2239	trace_xfs_log_recover_item_add(log, trans, item, 0);
2240	return 0;
2241}
2242
2243/*
2244 * Free up any resources allocated by the transaction
2245 *
2246 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2247 */
2248STATIC void
2249xlog_recover_free_trans(
2250	struct xlog_recover	*trans)
2251{
2252	struct xlog_recover_item *item, *n;
2253	int			i;
2254
2255	hlist_del_init(&trans->r_list);
2256
2257	list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2258		/* Free the regions in the item. */
2259		list_del(&item->ri_list);
2260		for (i = 0; i < item->ri_cnt; i++)
2261			kvfree(item->ri_buf[i].i_addr);
2262		/* Free the item itself */
2263		kfree(item->ri_buf);
2264		kfree(item);
2265	}
2266	/* Free the transaction recover structure */
2267	kfree(trans);
2268}
2269
2270/*
2271 * On error or completion, trans is freed.
2272 */
2273STATIC int
2274xlog_recovery_process_trans(
2275	struct xlog		*log,
2276	struct xlog_recover	*trans,
2277	char			*dp,
2278	unsigned int		len,
2279	unsigned int		flags,
2280	int			pass,
2281	struct list_head	*buffer_list)
2282{
2283	int			error = 0;
2284	bool			freeit = false;
2285
2286	/* mask off ophdr transaction container flags */
2287	flags &= ~XLOG_END_TRANS;
2288	if (flags & XLOG_WAS_CONT_TRANS)
2289		flags &= ~XLOG_CONTINUE_TRANS;
2290
2291	/*
2292	 * Callees must not free the trans structure. We'll decide if we need to
2293	 * free it or not based on the operation being done and it's result.
2294	 */
2295	switch (flags) {
2296	/* expected flag values */
2297	case 0:
2298	case XLOG_CONTINUE_TRANS:
2299		error = xlog_recover_add_to_trans(log, trans, dp, len);
2300		break;
2301	case XLOG_WAS_CONT_TRANS:
2302		error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
2303		break;
2304	case XLOG_COMMIT_TRANS:
2305		error = xlog_recover_commit_trans(log, trans, pass,
2306						  buffer_list);
2307		/* success or fail, we are now done with this transaction. */
2308		freeit = true;
2309		break;
2310
2311	/* unexpected flag values */
2312	case XLOG_UNMOUNT_TRANS:
2313		/* just skip trans */
2314		xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
2315		freeit = true;
2316		break;
2317	case XLOG_START_TRANS:
2318	default:
2319		xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
2320		ASSERT(0);
2321		error = -EFSCORRUPTED;
2322		break;
2323	}
2324	if (error || freeit)
2325		xlog_recover_free_trans(trans);
2326	return error;
2327}
2328
2329/*
2330 * Lookup the transaction recovery structure associated with the ID in the
2331 * current ophdr. If the transaction doesn't exist and the start flag is set in
2332 * the ophdr, then allocate a new transaction for future ID matches to find.
2333 * Either way, return what we found during the lookup - an existing transaction
2334 * or nothing.
2335 */
2336STATIC struct xlog_recover *
2337xlog_recover_ophdr_to_trans(
2338	struct hlist_head	rhash[],
2339	struct xlog_rec_header	*rhead,
2340	struct xlog_op_header	*ohead)
2341{
2342	struct xlog_recover	*trans;
2343	xlog_tid_t		tid;
2344	struct hlist_head	*rhp;
2345
2346	tid = be32_to_cpu(ohead->oh_tid);
2347	rhp = &rhash[XLOG_RHASH(tid)];
2348	hlist_for_each_entry(trans, rhp, r_list) {
2349		if (trans->r_log_tid == tid)
2350			return trans;
2351	}
2352
2353	/*
2354	 * skip over non-start transaction headers - we could be
2355	 * processing slack space before the next transaction starts
2356	 */
2357	if (!(ohead->oh_flags & XLOG_START_TRANS))
2358		return NULL;
2359
2360	ASSERT(be32_to_cpu(ohead->oh_len) == 0);
2361
2362	/*
2363	 * This is a new transaction so allocate a new recovery container to
2364	 * hold the recovery ops that will follow.
2365	 */
2366	trans = kzalloc(sizeof(struct xlog_recover), GFP_KERNEL | __GFP_NOFAIL);
2367	trans->r_log_tid = tid;
2368	trans->r_lsn = be64_to_cpu(rhead->h_lsn);
2369	INIT_LIST_HEAD(&trans->r_itemq);
2370	INIT_HLIST_NODE(&trans->r_list);
2371	hlist_add_head(&trans->r_list, rhp);
2372
2373	/*
2374	 * Nothing more to do for this ophdr. Items to be added to this new
2375	 * transaction will be in subsequent ophdr containers.
2376	 */
2377	return NULL;
2378}
2379
2380STATIC int
2381xlog_recover_process_ophdr(
2382	struct xlog		*log,
2383	struct hlist_head	rhash[],
2384	struct xlog_rec_header	*rhead,
2385	struct xlog_op_header	*ohead,
2386	char			*dp,
2387	char			*end,
2388	int			pass,
2389	struct list_head	*buffer_list)
2390{
2391	struct xlog_recover	*trans;
2392	unsigned int		len;
2393	int			error;
2394
2395	/* Do we understand who wrote this op? */
2396	if (ohead->oh_clientid != XFS_TRANSACTION &&
2397	    ohead->oh_clientid != XFS_LOG) {
2398		xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
2399			__func__, ohead->oh_clientid);
2400		ASSERT(0);
2401		return -EFSCORRUPTED;
2402	}
2403
2404	/*
2405	 * Check the ophdr contains all the data it is supposed to contain.
2406	 */
2407	len = be32_to_cpu(ohead->oh_len);
2408	if (dp + len > end) {
2409		xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
2410		WARN_ON(1);
2411		return -EFSCORRUPTED;
2412	}
2413
2414	trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
2415	if (!trans) {
2416		/* nothing to do, so skip over this ophdr */
2417		return 0;
2418	}
2419
2420	/*
2421	 * The recovered buffer queue is drained only once we know that all
2422	 * recovery items for the current LSN have been processed. This is
2423	 * required because:
2424	 *
2425	 * - Buffer write submission updates the metadata LSN of the buffer.
2426	 * - Log recovery skips items with a metadata LSN >= the current LSN of
2427	 *   the recovery item.
2428	 * - Separate recovery items against the same metadata buffer can share
2429	 *   a current LSN. I.e., consider that the LSN of a recovery item is
2430	 *   defined as the starting LSN of the first record in which its
2431	 *   transaction appears, that a record can hold multiple transactions,
2432	 *   and/or that a transaction can span multiple records.
2433	 *
2434	 * In other words, we are allowed to submit a buffer from log recovery
2435	 * once per current LSN. Otherwise, we may incorrectly skip recovery
2436	 * items and cause corruption.
2437	 *
2438	 * We don't know up front whether buffers are updated multiple times per
2439	 * LSN. Therefore, track the current LSN of each commit log record as it
2440	 * is processed and drain the queue when it changes. Use commit records
2441	 * because they are ordered correctly by the logging code.
2442	 */
2443	if (log->l_recovery_lsn != trans->r_lsn &&
2444	    ohead->oh_flags & XLOG_COMMIT_TRANS) {
2445		error = xfs_buf_delwri_submit(buffer_list);
2446		if (error)
2447			return error;
2448		log->l_recovery_lsn = trans->r_lsn;
2449	}
2450
2451	return xlog_recovery_process_trans(log, trans, dp, len,
2452					   ohead->oh_flags, pass, buffer_list);
2453}
2454
2455/*
2456 * There are two valid states of the r_state field.  0 indicates that the
2457 * transaction structure is in a normal state.  We have either seen the
2458 * start of the transaction or the last operation we added was not a partial
2459 * operation.  If the last operation we added to the transaction was a
2460 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2461 *
2462 * NOTE: skip LRs with 0 data length.
2463 */
2464STATIC int
2465xlog_recover_process_data(
2466	struct xlog		*log,
2467	struct hlist_head	rhash[],
2468	struct xlog_rec_header	*rhead,
2469	char			*dp,
2470	int			pass,
2471	struct list_head	*buffer_list)
2472{
2473	struct xlog_op_header	*ohead;
2474	char			*end;
2475	int			num_logops;
2476	int			error;
2477
2478	end = dp + be32_to_cpu(rhead->h_len);
2479	num_logops = be32_to_cpu(rhead->h_num_logops);
2480
2481	/* check the log format matches our own - else we can't recover */
2482	if (xlog_header_check_recover(log->l_mp, rhead))
2483		return -EIO;
2484
2485	trace_xfs_log_recover_record(log, rhead, pass);
2486	while ((dp < end) && num_logops) {
2487
2488		ohead = (struct xlog_op_header *)dp;
2489		dp += sizeof(*ohead);
2490		if (dp > end) {
2491			xfs_warn(log->l_mp, "%s: op header overrun", __func__);
2492			return -EFSCORRUPTED;
2493		}
2494
2495		/* errors will abort recovery */
2496		error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
2497						   dp, end, pass, buffer_list);
2498		if (error)
2499			return error;
2500
2501		dp += be32_to_cpu(ohead->oh_len);
2502		num_logops--;
2503	}
2504	return 0;
2505}
2506
2507/* Take all the collected deferred ops and finish them in order. */
2508static int
2509xlog_finish_defer_ops(
2510	struct xfs_mount	*mp,
2511	struct list_head	*capture_list)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2512{
2513	struct xfs_defer_capture *dfc, *next;
2514	struct xfs_trans	*tp;
2515	int			error = 0;
2516
2517	list_for_each_entry_safe(dfc, next, capture_list, dfc_list) {
2518		struct xfs_trans_res	resv;
2519		struct xfs_defer_resources dres;
2520
2521		/*
2522		 * Create a new transaction reservation from the captured
2523		 * information.  Set logcount to 1 to force the new transaction
2524		 * to regrant every roll so that we can make forward progress
2525		 * in recovery no matter how full the log might be.
2526		 */
2527		resv.tr_logres = dfc->dfc_logres;
2528		resv.tr_logcount = 1;
2529		resv.tr_logflags = XFS_TRANS_PERM_LOG_RES;
2530
2531		error = xfs_trans_alloc(mp, &resv, dfc->dfc_blkres,
2532				dfc->dfc_rtxres, XFS_TRANS_RESERVE, &tp);
2533		if (error) {
2534			xlog_force_shutdown(mp->m_log, SHUTDOWN_LOG_IO_ERROR);
2535			return error;
2536		}
 
 
 
 
 
 
 
 
 
 
 
2537
2538		/*
2539		 * Transfer to this new transaction all the dfops we captured
2540		 * from recovering a single intent item.
2541		 */
2542		list_del_init(&dfc->dfc_list);
2543		xfs_defer_ops_continue(dfc, tp, &dres);
2544		error = xfs_trans_commit(tp);
2545		xfs_defer_resources_rele(&dres);
2546		if (error)
2547			return error;
2548	}
2549
2550	ASSERT(list_empty(capture_list));
2551	return 0;
2552}
2553
2554/* Release all the captured defer ops and capture structures in this list. */
2555static void
2556xlog_abort_defer_ops(
2557	struct xfs_mount		*mp,
2558	struct list_head		*capture_list)
 
2559{
2560	struct xfs_defer_capture	*dfc;
2561	struct xfs_defer_capture	*next;
 
2562
2563	list_for_each_entry_safe(dfc, next, capture_list, dfc_list) {
2564		list_del_init(&dfc->dfc_list);
2565		xfs_defer_ops_capture_abort(mp, dfc);
 
 
 
 
 
 
 
 
 
 
 
 
 
2566	}
2567}
2568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2569/*
2570 * When this is called, all of the log intent items which did not have
2571 * corresponding log done items should be in the AIL.  What we do now is update
2572 * the data structures associated with each one.
2573 *
2574 * Since we process the log intent items in normal transactions, they will be
2575 * removed at some point after the commit.  This prevents us from just walking
2576 * down the list processing each one.  We'll use a flag in the intent item to
2577 * skip those that we've already processed and use the AIL iteration mechanism's
2578 * generation count to try to speed this up at least a bit.
2579 *
2580 * When we start, we know that the intents are the only things in the AIL. As we
2581 * process them, however, other items are added to the AIL. Hence we know we
2582 * have started recovery on all the pending intents when we find an non-intent
2583 * item in the AIL.
2584 */
2585STATIC int
2586xlog_recover_process_intents(
2587	struct xlog			*log)
2588{
2589	LIST_HEAD(capture_list);
2590	struct xfs_defer_pending	*dfp, *n;
2591	int				error = 0;
 
 
 
2592#if defined(DEBUG) || defined(XFS_WARN)
2593	xfs_lsn_t			last_lsn;
 
2594
 
 
 
 
2595	last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
2596#endif
2597
2598	list_for_each_entry_safe(dfp, n, &log->r_dfops, dfp_list) {
2599		ASSERT(xlog_item_is_intent(dfp->dfp_intent));
 
 
 
 
 
 
 
 
 
 
2600
2601		/*
2602		 * We should never see a redo item with a LSN higher than
2603		 * the last transaction we found in the log at the start
2604		 * of recovery.
2605		 */
2606		ASSERT(XFS_LSN_CMP(last_lsn, dfp->dfp_intent->li_lsn) >= 0);
2607
2608		/*
2609		 * NOTE: If your intent processing routine can create more
2610		 * deferred ops, you /must/ attach them to the capture list in
2611		 * the recover routine or else those subsequent intents will be
2612		 * replayed in the wrong order!
2613		 *
2614		 * The recovery function can free the log item, so we must not
2615		 * access dfp->dfp_intent after it returns.  It must dispose of
2616		 * @dfp if it returns 0.
2617		 */
2618		error = xfs_defer_finish_recovery(log->l_mp, dfp,
2619				&capture_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2620		if (error)
2621			break;
 
2622	}
 
 
 
2623	if (error)
2624		goto err;
2625
2626	error = xlog_finish_defer_ops(log->l_mp, &capture_list);
2627	if (error)
2628		goto err;
2629
2630	return 0;
2631err:
2632	xlog_abort_defer_ops(log->l_mp, &capture_list);
2633	return error;
2634}
2635
2636/*
2637 * A cancel occurs when the mount has failed and we're bailing out.  Release all
2638 * pending log intent items that we haven't started recovery on so they don't
2639 * pin the AIL.
2640 */
2641STATIC void
2642xlog_recover_cancel_intents(
2643	struct xlog			*log)
2644{
2645	struct xfs_defer_pending	*dfp, *n;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2646
2647	list_for_each_entry_safe(dfp, n, &log->r_dfops, dfp_list) {
2648		ASSERT(xlog_item_is_intent(dfp->dfp_intent));
 
 
 
 
 
 
 
 
 
 
 
 
2649
2650		xfs_defer_cancel_recovery(log->l_mp, dfp);
2651	}
2652}
2653
2654/*
2655 * Transfer ownership of the recovered pending work to the recovery transaction
2656 * and try to finish the work.  If there is more work to be done, the dfp will
2657 * remain attached to the transaction.  If not, the dfp is freed.
2658 */
2659int
2660xlog_recover_finish_intent(
2661	struct xfs_trans		*tp,
2662	struct xfs_defer_pending	*dfp)
2663{
2664	int				error;
2665
2666	list_move(&dfp->dfp_list, &tp->t_dfops);
2667	error = xfs_defer_finish_one(tp, dfp);
2668	if (error == -EAGAIN)
2669		return 0;
2670	return error;
2671}
2672
2673/*
2674 * This routine performs a transaction to null out a bad inode pointer
2675 * in an agi unlinked inode hash bucket.
2676 */
2677STATIC void
2678xlog_recover_clear_agi_bucket(
2679	struct xfs_perag	*pag,
2680	int			bucket)
2681{
2682	struct xfs_mount	*mp = pag_mount(pag);
2683	struct xfs_trans	*tp;
2684	struct xfs_agi		*agi;
2685	struct xfs_buf		*agibp;
2686	int			offset;
2687	int			error;
2688
2689	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
2690	if (error)
2691		goto out_error;
2692
2693	error = xfs_read_agi(pag, tp, 0, &agibp);
2694	if (error)
2695		goto out_abort;
2696
2697	agi = agibp->b_addr;
2698	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
2699	offset = offsetof(xfs_agi_t, agi_unlinked) +
2700		 (sizeof(xfs_agino_t) * bucket);
2701	xfs_trans_log_buf(tp, agibp, offset,
2702			  (offset + sizeof(xfs_agino_t) - 1));
2703
2704	error = xfs_trans_commit(tp);
2705	if (error)
2706		goto out_error;
2707	return;
2708
2709out_abort:
2710	xfs_trans_cancel(tp);
2711out_error:
2712	xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__,
2713			pag_agno(pag));
2714	return;
2715}
2716
2717static int
2718xlog_recover_iunlink_bucket(
2719	struct xfs_perag	*pag,
2720	struct xfs_agi		*agi,
2721	int			bucket)
2722{
2723	struct xfs_mount	*mp = pag_mount(pag);
2724	struct xfs_inode	*prev_ip = NULL;
2725	struct xfs_inode	*ip;
2726	xfs_agino_t		prev_agino, agino;
2727	int			error = 0;
 
2728
2729	agino = be32_to_cpu(agi->agi_unlinked[bucket]);
2730	while (agino != NULLAGINO) {
2731		error = xfs_iget(mp, NULL, xfs_agino_to_ino(pag, agino), 0, 0,
2732				&ip);
2733		if (error)
2734			break;
2735
2736		ASSERT(VFS_I(ip)->i_nlink == 0);
2737		ASSERT(VFS_I(ip)->i_mode != 0);
2738		xfs_iflags_clear(ip, XFS_IRECOVERY);
2739		agino = ip->i_next_unlinked;
 
 
2740
2741		if (prev_ip) {
2742			ip->i_prev_unlinked = prev_agino;
2743			xfs_irele(prev_ip);
2744
2745			/*
2746			 * Ensure the inode is removed from the unlinked list
2747			 * before we continue so that it won't race with
2748			 * building the in-memory list here. This could be
2749			 * serialised with the agibp lock, but that just
2750			 * serialises via lockstepping and it's much simpler
2751			 * just to flush the inodegc queue and wait for it to
2752			 * complete.
2753			 */
2754			error = xfs_inodegc_flush(mp);
2755			if (error)
2756				break;
2757		}
2758
2759		prev_agino = agino;
2760		prev_ip = ip;
2761	}
 
 
2762
2763	if (prev_ip) {
2764		int	error2;
2765
2766		ip->i_prev_unlinked = prev_agino;
2767		xfs_irele(prev_ip);
2768
2769		error2 = xfs_inodegc_flush(mp);
2770		if (error2 && !error)
2771			return error2;
2772	}
2773	return error;
 
 
 
 
 
2774}
2775
2776/*
2777 * Recover AGI unlinked lists
2778 *
2779 * This is called during recovery to process any inodes which we unlinked but
2780 * not freed when the system crashed.  These inodes will be on the lists in the
2781 * AGI blocks. What we do here is scan all the AGIs and fully truncate and free
2782 * any inodes found on the lists. Each inode is removed from the lists when it
2783 * has been fully truncated and is freed. The freeing of the inode and its
2784 * removal from the list must be atomic.
2785 *
2786 * If everything we touch in the agi processing loop is already in memory, this
2787 * loop can hold the cpu for a long time. It runs without lock contention,
2788 * memory allocation contention, the need wait for IO, etc, and so will run
2789 * until we either run out of inodes to process, run low on memory or we run out
2790 * of log space.
2791 *
2792 * This behaviour is bad for latency on single CPU and non-preemptible kernels,
2793 * and can prevent other filesystem work (such as CIL pushes) from running. This
2794 * can lead to deadlocks if the recovery process runs out of log reservation
2795 * space. Hence we need to yield the CPU when there is other kernel work
2796 * scheduled on this CPU to ensure other scheduled work can run without undue
2797 * latency.
2798 */
2799static void
2800xlog_recover_iunlink_ag(
2801	struct xfs_perag	*pag)
2802{
2803	struct xfs_agi		*agi;
2804	struct xfs_buf		*agibp;
2805	int			bucket;
2806	int			error;
 
 
 
 
 
2807
2808	error = xfs_read_agi(pag, NULL, 0, &agibp);
2809	if (error) {
2810		/*
2811		 * AGI is b0rked. Don't process it.
2812		 *
2813		 * We should probably mark the filesystem as corrupt after we've
2814		 * recovered all the ag's we can....
2815		 */
2816		return;
2817	}
2818
2819	/*
2820	 * Unlock the buffer so that it can be acquired in the normal course of
2821	 * the transaction to truncate and free each inode.  Because we are not
2822	 * racing with anyone else here for the AGI buffer, we don't even need
2823	 * to hold it locked to read the initial unlinked bucket entries out of
2824	 * the buffer. We keep buffer reference though, so that it stays pinned
2825	 * in memory while we need the buffer.
2826	 */
2827	agi = agibp->b_addr;
2828	xfs_buf_unlock(agibp);
2829
2830	for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
2831		error = xlog_recover_iunlink_bucket(pag, agi, bucket);
2832		if (error) {
2833			/*
2834			 * Bucket is unrecoverable, so only a repair scan can
2835			 * free the remaining unlinked inodes. Just empty the
2836			 * bucket and remaining inodes on it unreferenced and
2837			 * unfreeable.
2838			 */
2839			xlog_recover_clear_agi_bucket(pag, bucket);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2840		}
 
2841	}
2842
2843	xfs_buf_rele(agibp);
2844}
2845
2846static void
2847xlog_recover_process_iunlinks(
2848	struct xlog	*log)
2849{
2850	struct xfs_perag	*pag = NULL;
2851
2852	while ((pag = xfs_perag_next(log->l_mp, pag)))
2853		xlog_recover_iunlink_ag(pag);
2854}
2855
2856STATIC void
2857xlog_unpack_data(
2858	struct xlog_rec_header	*rhead,
2859	char			*dp,
2860	struct xlog		*log)
2861{
2862	int			i, j, k;
2863
2864	for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
2865		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
2866		*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
2867		dp += BBSIZE;
2868	}
2869
2870	if (xfs_has_logv2(log->l_mp)) {
2871		xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
2872		for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
2873			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
2874			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
2875			*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
2876			dp += BBSIZE;
2877		}
2878	}
 
 
2879}
2880
2881/*
2882 * CRC check, unpack and process a log record.
2883 */
2884STATIC int
2885xlog_recover_process(
2886	struct xlog		*log,
2887	struct hlist_head	rhash[],
2888	struct xlog_rec_header	*rhead,
2889	char			*dp,
2890	int			pass,
2891	struct list_head	*buffer_list)
2892{
 
2893	__le32			old_crc = rhead->h_crc;
2894	__le32			crc;
2895
 
2896	crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
2897
2898	/*
2899	 * Nothing else to do if this is a CRC verification pass. Just return
2900	 * if this a record with a non-zero crc. Unfortunately, mkfs always
2901	 * sets old_crc to 0 so we must consider this valid even on v5 supers.
2902	 * Otherwise, return EFSBADCRC on failure so the callers up the stack
2903	 * know precisely what failed.
2904	 */
2905	if (pass == XLOG_RECOVER_CRCPASS) {
2906		if (old_crc && crc != old_crc)
2907			return -EFSBADCRC;
2908		return 0;
2909	}
2910
2911	/*
2912	 * We're in the normal recovery path. Issue a warning if and only if the
2913	 * CRC in the header is non-zero. This is an advisory warning and the
2914	 * zero CRC check prevents warnings from being emitted when upgrading
2915	 * the kernel from one that does not add CRCs by default.
2916	 */
2917	if (crc != old_crc) {
2918		if (old_crc || xfs_has_crc(log->l_mp)) {
2919			xfs_alert(log->l_mp,
2920		"log record CRC mismatch: found 0x%x, expected 0x%x.",
2921					le32_to_cpu(old_crc),
2922					le32_to_cpu(crc));
2923			xfs_hex_dump(dp, 32);
2924		}
2925
2926		/*
2927		 * If the filesystem is CRC enabled, this mismatch becomes a
2928		 * fatal log corruption failure.
2929		 */
2930		if (xfs_has_crc(log->l_mp)) {
2931			XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp);
2932			return -EFSCORRUPTED;
2933		}
2934	}
2935
2936	xlog_unpack_data(rhead, dp, log);
 
 
2937
2938	return xlog_recover_process_data(log, rhash, rhead, dp, pass,
2939					 buffer_list);
2940}
2941
2942STATIC int
2943xlog_valid_rec_header(
2944	struct xlog		*log,
2945	struct xlog_rec_header	*rhead,
2946	xfs_daddr_t		blkno,
2947	int			bufsize)
2948{
2949	int			hlen;
2950
2951	if (XFS_IS_CORRUPT(log->l_mp,
2952			   rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)))
 
2953		return -EFSCORRUPTED;
2954	if (XFS_IS_CORRUPT(log->l_mp,
2955			   (!rhead->h_version ||
2956			   (be32_to_cpu(rhead->h_version) &
2957			    (~XLOG_VERSION_OKBITS))))) {
2958		xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
2959			__func__, be32_to_cpu(rhead->h_version));
2960		return -EFSCORRUPTED;
2961	}
2962
2963	/*
2964	 * LR body must have data (or it wouldn't have been written)
2965	 * and h_len must not be greater than LR buffer size.
2966	 */
2967	hlen = be32_to_cpu(rhead->h_len);
2968	if (XFS_IS_CORRUPT(log->l_mp, hlen <= 0 || hlen > bufsize))
 
 
2969		return -EFSCORRUPTED;
2970
2971	if (XFS_IS_CORRUPT(log->l_mp,
2972			   blkno > log->l_logBBsize || blkno > INT_MAX))
 
2973		return -EFSCORRUPTED;
 
2974	return 0;
2975}
2976
2977/*
2978 * Read the log from tail to head and process the log records found.
2979 * Handle the two cases where the tail and head are in the same cycle
2980 * and where the active portion of the log wraps around the end of
2981 * the physical log separately.  The pass parameter is passed through
2982 * to the routines called to process the data and is not looked at
2983 * here.
2984 */
2985STATIC int
2986xlog_do_recovery_pass(
2987	struct xlog		*log,
2988	xfs_daddr_t		head_blk,
2989	xfs_daddr_t		tail_blk,
2990	int			pass,
2991	xfs_daddr_t		*first_bad)	/* out: first bad log rec */
2992{
2993	xlog_rec_header_t	*rhead;
2994	xfs_daddr_t		blk_no, rblk_no;
2995	xfs_daddr_t		rhead_blk;
2996	char			*offset;
2997	char			*hbp, *dbp;
2998	int			error = 0, h_size, h_len;
2999	int			error2 = 0;
3000	int			bblks, split_bblks;
3001	int			hblks = 1, split_hblks, wrapped_hblks;
3002	int			i;
3003	struct hlist_head	rhash[XLOG_RHASH_SIZE];
3004	LIST_HEAD		(buffer_list);
3005
3006	ASSERT(head_blk != tail_blk);
3007	blk_no = rhead_blk = tail_blk;
3008
3009	for (i = 0; i < XLOG_RHASH_SIZE; i++)
3010		INIT_HLIST_HEAD(&rhash[i]);
3011
3012	hbp = xlog_alloc_buffer(log, hblks);
3013	if (!hbp)
3014		return -ENOMEM;
3015
3016	/*
3017	 * Read the header of the tail block and get the iclog buffer size from
3018	 * h_size.  Use this to tell how many sectors make up the log header.
3019	 */
3020	if (xfs_has_logv2(log->l_mp)) {
3021		/*
3022		 * When using variable length iclogs, read first sector of
3023		 * iclog header and extract the header size from it.  Get a
3024		 * new hbp that is the correct size.
3025		 */
 
 
 
 
3026		error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3027		if (error)
3028			goto bread_err1;
3029
3030		rhead = (xlog_rec_header_t *)offset;
 
 
 
3031
3032		/*
3033		 * xfsprogs has a bug where record length is based on lsunit but
3034		 * h_size (iclog size) is hardcoded to 32k. Now that we
3035		 * unconditionally CRC verify the unmount record, this means the
3036		 * log buffer can be too small for the record and cause an
3037		 * overrun.
3038		 *
3039		 * Detect this condition here. Use lsunit for the buffer size as
3040		 * long as this looks like the mkfs case. Otherwise, return an
3041		 * error to avoid a buffer overrun.
3042		 */
3043		h_size = be32_to_cpu(rhead->h_size);
3044		h_len = be32_to_cpu(rhead->h_len);
3045		if (h_len > h_size && h_len <= log->l_mp->m_logbsize &&
3046		    rhead->h_num_logops == cpu_to_be32(1)) {
3047			xfs_warn(log->l_mp,
 
3048		"invalid iclog size (%d bytes), using lsunit (%d bytes)",
3049				 h_size, log->l_mp->m_logbsize);
3050			h_size = log->l_mp->m_logbsize;
 
 
3051		}
3052
3053		error = xlog_valid_rec_header(log, rhead, tail_blk, h_size);
3054		if (error)
3055			goto bread_err1;
3056
3057		/*
3058		 * This open codes xlog_logrec_hblks so that we can reuse the
3059		 * fixed up h_size value calculated above.  Without that we'd
3060		 * still allocate the buffer based on the incorrect on-disk
3061		 * size.
3062		 */
3063		if (h_size > XLOG_HEADER_CYCLE_SIZE &&
3064		    (rhead->h_version & cpu_to_be32(XLOG_VERSION_2))) {
3065			hblks = DIV_ROUND_UP(h_size, XLOG_HEADER_CYCLE_SIZE);
3066			if (hblks > 1) {
3067				kvfree(hbp);
3068				hbp = xlog_alloc_buffer(log, hblks);
3069				if (!hbp)
3070					return -ENOMEM;
3071			}
3072		}
3073	} else {
3074		ASSERT(log->l_sectBBsize == 1);
 
 
3075		h_size = XLOG_BIG_RECORD_BSIZE;
3076	}
3077
3078	dbp = xlog_alloc_buffer(log, BTOBB(h_size));
 
 
3079	if (!dbp) {
3080		kvfree(hbp);
3081		return -ENOMEM;
3082	}
3083
3084	memset(rhash, 0, sizeof(rhash));
3085	if (tail_blk > head_blk) {
3086		/*
3087		 * Perform recovery around the end of the physical log.
3088		 * When the head is not on the same cycle number as the tail,
3089		 * we can't do a sequential recovery.
3090		 */
3091		while (blk_no < log->l_logBBsize) {
3092			/*
3093			 * Check for header wrapping around physical end-of-log
3094			 */
3095			offset = hbp;
3096			split_hblks = 0;
3097			wrapped_hblks = 0;
3098			if (blk_no + hblks <= log->l_logBBsize) {
3099				/* Read header in one read */
3100				error = xlog_bread(log, blk_no, hblks, hbp,
3101						   &offset);
3102				if (error)
3103					goto bread_err2;
3104			} else {
3105				/* This LR is split across physical log end */
3106				if (blk_no != log->l_logBBsize) {
3107					/* some data before physical log end */
3108					ASSERT(blk_no <= INT_MAX);
3109					split_hblks = log->l_logBBsize - (int)blk_no;
3110					ASSERT(split_hblks > 0);
3111					error = xlog_bread(log, blk_no,
3112							   split_hblks, hbp,
3113							   &offset);
3114					if (error)
3115						goto bread_err2;
3116				}
3117
3118				/*
3119				 * Note: this black magic still works with
3120				 * large sector sizes (non-512) only because:
3121				 * - we increased the buffer size originally
3122				 *   by 1 sector giving us enough extra space
3123				 *   for the second read;
3124				 * - the log start is guaranteed to be sector
3125				 *   aligned;
3126				 * - we read the log end (LR header start)
3127				 *   _first_, then the log start (LR header end)
3128				 *   - order is important.
3129				 */
3130				wrapped_hblks = hblks - split_hblks;
3131				error = xlog_bread_noalign(log, 0,
3132						wrapped_hblks,
3133						offset + BBTOB(split_hblks));
3134				if (error)
3135					goto bread_err2;
3136			}
3137			rhead = (xlog_rec_header_t *)offset;
3138			error = xlog_valid_rec_header(log, rhead,
3139					split_hblks ? blk_no : 0, h_size);
3140			if (error)
3141				goto bread_err2;
3142
3143			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3144			blk_no += hblks;
3145
3146			/*
3147			 * Read the log record data in multiple reads if it
3148			 * wraps around the end of the log. Note that if the
3149			 * header already wrapped, blk_no could point past the
3150			 * end of the log. The record data is contiguous in
3151			 * that case.
3152			 */
3153			if (blk_no + bblks <= log->l_logBBsize ||
3154			    blk_no >= log->l_logBBsize) {
3155				rblk_no = xlog_wrap_logbno(log, blk_no);
 
 
3156				error = xlog_bread(log, rblk_no, bblks, dbp,
3157						   &offset);
3158				if (error)
3159					goto bread_err2;
3160			} else {
3161				/* This log record is split across the
3162				 * physical end of log */
3163				offset = dbp;
3164				split_bblks = 0;
3165				if (blk_no != log->l_logBBsize) {
3166					/* some data is before the physical
3167					 * end of log */
3168					ASSERT(!wrapped_hblks);
3169					ASSERT(blk_no <= INT_MAX);
3170					split_bblks =
3171						log->l_logBBsize - (int)blk_no;
3172					ASSERT(split_bblks > 0);
3173					error = xlog_bread(log, blk_no,
3174							split_bblks, dbp,
3175							&offset);
3176					if (error)
3177						goto bread_err2;
3178				}
3179
3180				/*
3181				 * Note: this black magic still works with
3182				 * large sector sizes (non-512) only because:
3183				 * - we increased the buffer size originally
3184				 *   by 1 sector giving us enough extra space
3185				 *   for the second read;
3186				 * - the log start is guaranteed to be sector
3187				 *   aligned;
3188				 * - we read the log end (LR header start)
3189				 *   _first_, then the log start (LR header end)
3190				 *   - order is important.
3191				 */
3192				error = xlog_bread_noalign(log, 0,
3193						bblks - split_bblks,
3194						offset + BBTOB(split_bblks));
3195				if (error)
3196					goto bread_err2;
3197			}
3198
3199			error = xlog_recover_process(log, rhash, rhead, offset,
3200						     pass, &buffer_list);
3201			if (error)
3202				goto bread_err2;
3203
3204			blk_no += bblks;
3205			rhead_blk = blk_no;
3206		}
3207
3208		ASSERT(blk_no >= log->l_logBBsize);
3209		blk_no -= log->l_logBBsize;
3210		rhead_blk = blk_no;
3211	}
3212
3213	/* read first part of physical log */
3214	while (blk_no < head_blk) {
3215		error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3216		if (error)
3217			goto bread_err2;
3218
3219		rhead = (xlog_rec_header_t *)offset;
3220		error = xlog_valid_rec_header(log, rhead, blk_no, h_size);
3221		if (error)
3222			goto bread_err2;
3223
3224		/* blocks in data section */
3225		bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3226		error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3227				   &offset);
3228		if (error)
3229			goto bread_err2;
3230
3231		error = xlog_recover_process(log, rhash, rhead, offset, pass,
3232					     &buffer_list);
3233		if (error)
3234			goto bread_err2;
3235
3236		blk_no += bblks + hblks;
3237		rhead_blk = blk_no;
3238	}
3239
3240 bread_err2:
3241	kvfree(dbp);
3242 bread_err1:
3243	kvfree(hbp);
3244
3245	/*
3246	 * Submit buffers that have been dirtied by the last record recovered.
 
3247	 */
3248	if (!list_empty(&buffer_list)) {
3249		if (error) {
3250			/*
3251			 * If there has been an item recovery error then we
3252			 * cannot allow partial checkpoint writeback to
3253			 * occur.  We might have multiple checkpoints with the
3254			 * same start LSN in this buffer list, and partial
3255			 * writeback of a checkpoint in this situation can
3256			 * prevent future recovery of all the changes in the
3257			 * checkpoints at this start LSN.
3258			 *
3259			 * Note: Shutting down the filesystem will result in the
3260			 * delwri submission marking all the buffers stale,
3261			 * completing them and cleaning up _XBF_LOGRECOVERY
3262			 * state without doing any IO.
3263			 */
3264			xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
3265		}
3266		error2 = xfs_buf_delwri_submit(&buffer_list);
3267	}
3268
3269	if (error && first_bad)
3270		*first_bad = rhead_blk;
3271
3272	/*
3273	 * Transactions are freed at commit time but transactions without commit
3274	 * records on disk are never committed. Free any that may be left in the
3275	 * hash table.
3276	 */
3277	for (i = 0; i < XLOG_RHASH_SIZE; i++) {
3278		struct hlist_node	*tmp;
3279		struct xlog_recover	*trans;
3280
3281		hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list)
3282			xlog_recover_free_trans(trans);
3283	}
3284
3285	return error ? error : error2;
3286}
3287
3288/*
3289 * Do the recovery of the log.  We actually do this in two phases.
3290 * The two passes are necessary in order to implement the function
3291 * of cancelling a record written into the log.  The first pass
3292 * determines those things which have been cancelled, and the
3293 * second pass replays log items normally except for those which
3294 * have been cancelled.  The handling of the replay and cancellations
3295 * takes place in the log item type specific routines.
3296 *
3297 * The table of items which have cancel records in the log is allocated
3298 * and freed at this level, since only here do we know when all of
3299 * the log recovery has been completed.
3300 */
3301STATIC int
3302xlog_do_log_recovery(
3303	struct xlog	*log,
3304	xfs_daddr_t	head_blk,
3305	xfs_daddr_t	tail_blk)
3306{
3307	int		error;
3308
3309	ASSERT(head_blk != tail_blk);
3310
3311	/*
3312	 * First do a pass to find all of the cancelled buf log items.
3313	 * Store them in the buf_cancel_table for use in the second pass.
3314	 */
3315	error = xlog_alloc_buf_cancel_table(log);
3316	if (error)
3317		return error;
 
 
3318
3319	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3320				      XLOG_RECOVER_PASS1, NULL);
3321	if (error != 0)
3322		goto out_cancel;
3323
 
 
3324	/*
3325	 * Then do a second pass to actually recover the items in the log.
3326	 * When it is complete free the table of buf cancel items.
3327	 */
3328	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3329				      XLOG_RECOVER_PASS2, NULL);
3330	if (!error)
3331		xlog_check_buf_cancel_table(log);
3332out_cancel:
3333	xlog_free_buf_cancel_table(log);
 
 
 
 
 
 
 
 
3334	return error;
3335}
3336
3337/*
3338 * Do the actual recovery
3339 */
3340STATIC int
3341xlog_do_recover(
3342	struct xlog		*log,
3343	xfs_daddr_t		head_blk,
3344	xfs_daddr_t		tail_blk)
3345{
3346	struct xfs_mount	*mp = log->l_mp;
3347	struct xfs_buf		*bp = mp->m_sb_bp;
3348	struct xfs_sb		*sbp = &mp->m_sb;
3349	int			error;
3350
3351	trace_xfs_log_recover(log, head_blk, tail_blk);
3352
3353	/*
3354	 * First replay the images in the log.
3355	 */
3356	error = xlog_do_log_recovery(log, head_blk, tail_blk);
3357	if (error)
3358		return error;
3359
3360	if (xlog_is_shutdown(log))
 
 
 
3361		return -EIO;
 
3362
3363	/*
3364	 * We now update the tail_lsn since much of the recovery has completed
3365	 * and there may be space available to use.  If there were no extent or
3366	 * iunlinks, we can free up the entire log.  This was set in
3367	 * xlog_find_tail to be the lsn of the last known good LR on disk.  If
3368	 * there are extent frees or iunlinks they will have some entries in the
3369	 * AIL; so we look at the AIL to determine how to set the tail_lsn.
3370	 */
3371	xfs_ail_assign_tail_lsn(log->l_ailp);
 
 
 
 
 
 
 
 
 
 
 
3372
3373	/*
3374	 * Now that we've finished replaying all buffer and inode updates,
3375	 * re-read the superblock and reverify it.
3376	 */
3377	xfs_buf_lock(bp);
3378	xfs_buf_hold(bp);
3379	error = _xfs_buf_read(bp, XBF_READ);
3380	if (error) {
3381		if (!xlog_is_shutdown(log)) {
3382			xfs_buf_ioerror_alert(bp, __this_address);
3383			ASSERT(0);
3384		}
3385		xfs_buf_relse(bp);
3386		return error;
3387	}
3388
3389	/* Convert superblock from on-disk format */
3390	xfs_sb_from_disk(sbp, bp->b_addr);
 
3391	xfs_buf_relse(bp);
3392
3393	/* re-initialise in-core superblock and geometry structures */
3394	mp->m_features |= xfs_sb_version_to_features(sbp);
3395	xfs_reinit_percpu_counters(mp);
 
 
 
 
 
 
 
 
3396
3397	/* Normal transactions can now occur */
3398	clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
3399	return 0;
3400}
3401
3402/*
3403 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3404 *
3405 * Return error or zero.
3406 */
3407int
3408xlog_recover(
3409	struct xlog	*log)
3410{
3411	xfs_daddr_t	head_blk, tail_blk;
3412	int		error;
3413
3414	/* find the tail of the log */
3415	error = xlog_find_tail(log, &head_blk, &tail_blk);
3416	if (error)
3417		return error;
3418
3419	/*
3420	 * The superblock was read before the log was available and thus the LSN
3421	 * could not be verified. Check the superblock LSN against the current
3422	 * LSN now that it's known.
3423	 */
3424	if (xfs_has_crc(log->l_mp) &&
3425	    !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
3426		return -EINVAL;
3427
3428	if (tail_blk != head_blk) {
3429		/* There used to be a comment here:
3430		 *
3431		 * disallow recovery on read-only mounts.  note -- mount
3432		 * checks for ENOSPC and turns it into an intelligent
3433		 * error message.
3434		 * ...but this is no longer true.  Now, unless you specify
3435		 * NORECOVERY (in which case this function would never be
3436		 * called), we just go ahead and recover.  We do this all
3437		 * under the vfs layer, so we can get away with it unless
3438		 * the device itself is read-only, in which case we fail.
3439		 */
3440		if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3441			return error;
3442		}
3443
3444		/*
3445		 * Version 5 superblock log feature mask validation. We know the
3446		 * log is dirty so check if there are any unknown log features
3447		 * in what we need to recover. If there are unknown features
3448		 * (e.g. unsupported transactions, then simply reject the
3449		 * attempt at recovery before touching anything.
3450		 */
3451		if (xfs_sb_is_v5(&log->l_mp->m_sb) &&
3452		    xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
3453					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
3454			xfs_warn(log->l_mp,
3455"Superblock has unknown incompatible log features (0x%x) enabled.",
3456				(log->l_mp->m_sb.sb_features_log_incompat &
3457					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
3458			xfs_warn(log->l_mp,
3459"The log can not be fully and/or safely recovered by this kernel.");
3460			xfs_warn(log->l_mp,
3461"Please recover the log on a kernel that supports the unknown features.");
3462			return -EINVAL;
3463		}
3464
3465		/*
3466		 * Delay log recovery if the debug hook is set. This is debug
3467		 * instrumentation to coordinate simulation of I/O failures with
3468		 * log recovery.
3469		 */
3470		if (xfs_globals.log_recovery_delay) {
3471			xfs_notice(log->l_mp,
3472				"Delaying log recovery for %d seconds.",
3473				xfs_globals.log_recovery_delay);
3474			msleep(xfs_globals.log_recovery_delay * 1000);
3475		}
3476
3477		xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
3478				log->l_mp->m_logname ? log->l_mp->m_logname
3479						     : "internal");
3480
3481		error = xlog_do_recover(log, head_blk, tail_blk);
3482		set_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate);
3483	}
3484	return error;
3485}
3486
3487/*
3488 * In the first part of recovery we replay inodes and buffers and build up the
3489 * list of intents which need to be processed. Here we process the intents and
3490 * clean up the on disk unlinked inode lists. This is separated from the first
3491 * part of recovery so that the root and real-time bitmap inodes can be read in
3492 * from disk in between the two stages.  This is necessary so that we can free
3493 * space in the real-time portion of the file system.
3494 *
3495 * We run this whole process under GFP_NOFS allocation context. We do a
3496 * combination of non-transactional and transactional work, yet we really don't
3497 * want to recurse into the filesystem from direct reclaim during any of this
3498 * processing. This allows all the recovery code run here not to care about the
3499 * memory allocation context it is running in.
3500 */
3501int
3502xlog_recover_finish(
3503	struct xlog	*log)
3504{
3505	unsigned int	nofs_flags = memalloc_nofs_save();
3506	int		error;
 
 
 
 
 
 
 
 
 
 
 
 
 
3507
3508	error = xlog_recover_process_intents(log);
3509	if (error) {
3510		/*
3511		 * Cancel all the unprocessed intent items now so that we don't
3512		 * leave them pinned in the AIL.  This can cause the AIL to
3513		 * livelock on the pinned item if anyone tries to push the AIL
3514		 * (inode reclaim does this) before we get around to
3515		 * xfs_log_mount_cancel.
3516		 */
3517		xlog_recover_cancel_intents(log);
3518		xfs_alert(log->l_mp, "Failed to recover intents");
3519		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
3520		goto out_error;
3521	}
3522
3523	/*
3524	 * Sync the log to get all the intents out of the AIL.  This isn't
3525	 * absolutely necessary, but it helps in case the unlink transactions
3526	 * would have problems pushing the intents out of the way.
3527	 */
3528	xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3529
3530	xlog_recover_process_iunlinks(log);
3531
3532	/*
3533	 * Recover any CoW staging blocks that are still referenced by the
3534	 * ondisk refcount metadata.  During mount there cannot be any live
3535	 * staging extents as we have not permitted any user modifications.
3536	 * Therefore, it is safe to free them all right now, even on a
3537	 * read-only mount.
3538	 */
3539	error = xfs_reflink_recover_cow(log->l_mp);
3540	if (error) {
3541		xfs_alert(log->l_mp,
3542	"Failed to recover leftover CoW staging extents, err %d.",
3543				error);
3544		/*
3545		 * If we get an error here, make sure the log is shut down
3546		 * but return zero so that any log items committed since the
3547		 * end of intents processing can be pushed through the CIL
3548		 * and AIL.
3549		 */
3550		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
3551		error = 0;
3552		goto out_error;
3553	}
 
 
 
 
 
 
 
 
 
 
 
3554
3555out_error:
3556	memalloc_nofs_restore(nofs_flags);
3557	return error;
3558}
3559
3560void
3561xlog_recover_cancel(
 
 
 
 
 
3562	struct xlog	*log)
3563{
3564	if (xlog_recovery_needed(log))
3565		xlog_recover_cancel_intents(log);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3566}
3567