Loading...
1/*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_shared.h"
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
24#include "xfs_bit.h"
25#include "xfs_sb.h"
26#include "xfs_mount.h"
27#include "xfs_defer.h"
28#include "xfs_da_format.h"
29#include "xfs_da_btree.h"
30#include "xfs_inode.h"
31#include "xfs_trans.h"
32#include "xfs_log.h"
33#include "xfs_log_priv.h"
34#include "xfs_log_recover.h"
35#include "xfs_inode_item.h"
36#include "xfs_extfree_item.h"
37#include "xfs_trans_priv.h"
38#include "xfs_alloc.h"
39#include "xfs_ialloc.h"
40#include "xfs_quota.h"
41#include "xfs_cksum.h"
42#include "xfs_trace.h"
43#include "xfs_icache.h"
44#include "xfs_bmap_btree.h"
45#include "xfs_error.h"
46#include "xfs_dir2.h"
47#include "xfs_rmap_item.h"
48#include "xfs_buf_item.h"
49#include "xfs_refcount_item.h"
50#include "xfs_bmap_item.h"
51
52#define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
53
54STATIC int
55xlog_find_zeroed(
56 struct xlog *,
57 xfs_daddr_t *);
58STATIC int
59xlog_clear_stale_blocks(
60 struct xlog *,
61 xfs_lsn_t);
62#if defined(DEBUG)
63STATIC void
64xlog_recover_check_summary(
65 struct xlog *);
66#else
67#define xlog_recover_check_summary(log)
68#endif
69STATIC int
70xlog_do_recovery_pass(
71 struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
72
73/*
74 * This structure is used during recovery to record the buf log items which
75 * have been canceled and should not be replayed.
76 */
77struct xfs_buf_cancel {
78 xfs_daddr_t bc_blkno;
79 uint bc_len;
80 int bc_refcount;
81 struct list_head bc_list;
82};
83
84/*
85 * Sector aligned buffer routines for buffer create/read/write/access
86 */
87
88/*
89 * Verify the log-relative block number and length in basic blocks are valid for
90 * an operation involving the given XFS log buffer. Returns true if the fields
91 * are valid, false otherwise.
92 */
93static inline bool
94xlog_verify_bp(
95 struct xlog *log,
96 xfs_daddr_t blk_no,
97 int bbcount)
98{
99 if (blk_no < 0 || blk_no >= log->l_logBBsize)
100 return false;
101 if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize)
102 return false;
103 return true;
104}
105
106/*
107 * Allocate a buffer to hold log data. The buffer needs to be able
108 * to map to a range of nbblks basic blocks at any valid (basic
109 * block) offset within the log.
110 */
111STATIC xfs_buf_t *
112xlog_get_bp(
113 struct xlog *log,
114 int nbblks)
115{
116 struct xfs_buf *bp;
117
118 /*
119 * Pass log block 0 since we don't have an addr yet, buffer will be
120 * verified on read.
121 */
122 if (!xlog_verify_bp(log, 0, nbblks)) {
123 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
124 nbblks);
125 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
126 return NULL;
127 }
128
129 /*
130 * We do log I/O in units of log sectors (a power-of-2
131 * multiple of the basic block size), so we round up the
132 * requested size to accommodate the basic blocks required
133 * for complete log sectors.
134 *
135 * In addition, the buffer may be used for a non-sector-
136 * aligned block offset, in which case an I/O of the
137 * requested size could extend beyond the end of the
138 * buffer. If the requested size is only 1 basic block it
139 * will never straddle a sector boundary, so this won't be
140 * an issue. Nor will this be a problem if the log I/O is
141 * done in basic blocks (sector size 1). But otherwise we
142 * extend the buffer by one extra log sector to ensure
143 * there's space to accommodate this possibility.
144 */
145 if (nbblks > 1 && log->l_sectBBsize > 1)
146 nbblks += log->l_sectBBsize;
147 nbblks = round_up(nbblks, log->l_sectBBsize);
148
149 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
150 if (bp)
151 xfs_buf_unlock(bp);
152 return bp;
153}
154
155STATIC void
156xlog_put_bp(
157 xfs_buf_t *bp)
158{
159 xfs_buf_free(bp);
160}
161
162/*
163 * Return the address of the start of the given block number's data
164 * in a log buffer. The buffer covers a log sector-aligned region.
165 */
166STATIC char *
167xlog_align(
168 struct xlog *log,
169 xfs_daddr_t blk_no,
170 int nbblks,
171 struct xfs_buf *bp)
172{
173 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
174
175 ASSERT(offset + nbblks <= bp->b_length);
176 return bp->b_addr + BBTOB(offset);
177}
178
179
180/*
181 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
182 */
183STATIC int
184xlog_bread_noalign(
185 struct xlog *log,
186 xfs_daddr_t blk_no,
187 int nbblks,
188 struct xfs_buf *bp)
189{
190 int error;
191
192 if (!xlog_verify_bp(log, blk_no, nbblks)) {
193 xfs_warn(log->l_mp,
194 "Invalid log block/length (0x%llx, 0x%x) for buffer",
195 blk_no, nbblks);
196 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
197 return -EFSCORRUPTED;
198 }
199
200 blk_no = round_down(blk_no, log->l_sectBBsize);
201 nbblks = round_up(nbblks, log->l_sectBBsize);
202
203 ASSERT(nbblks > 0);
204 ASSERT(nbblks <= bp->b_length);
205
206 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
207 bp->b_flags |= XBF_READ;
208 bp->b_io_length = nbblks;
209 bp->b_error = 0;
210
211 error = xfs_buf_submit_wait(bp);
212 if (error && !XFS_FORCED_SHUTDOWN(log->l_mp))
213 xfs_buf_ioerror_alert(bp, __func__);
214 return error;
215}
216
217STATIC int
218xlog_bread(
219 struct xlog *log,
220 xfs_daddr_t blk_no,
221 int nbblks,
222 struct xfs_buf *bp,
223 char **offset)
224{
225 int error;
226
227 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
228 if (error)
229 return error;
230
231 *offset = xlog_align(log, blk_no, nbblks, bp);
232 return 0;
233}
234
235/*
236 * Read at an offset into the buffer. Returns with the buffer in it's original
237 * state regardless of the result of the read.
238 */
239STATIC int
240xlog_bread_offset(
241 struct xlog *log,
242 xfs_daddr_t blk_no, /* block to read from */
243 int nbblks, /* blocks to read */
244 struct xfs_buf *bp,
245 char *offset)
246{
247 char *orig_offset = bp->b_addr;
248 int orig_len = BBTOB(bp->b_length);
249 int error, error2;
250
251 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
252 if (error)
253 return error;
254
255 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
256
257 /* must reset buffer pointer even on error */
258 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
259 if (error)
260 return error;
261 return error2;
262}
263
264/*
265 * Write out the buffer at the given block for the given number of blocks.
266 * The buffer is kept locked across the write and is returned locked.
267 * This can only be used for synchronous log writes.
268 */
269STATIC int
270xlog_bwrite(
271 struct xlog *log,
272 xfs_daddr_t blk_no,
273 int nbblks,
274 struct xfs_buf *bp)
275{
276 int error;
277
278 if (!xlog_verify_bp(log, blk_no, nbblks)) {
279 xfs_warn(log->l_mp,
280 "Invalid log block/length (0x%llx, 0x%x) for buffer",
281 blk_no, nbblks);
282 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
283 return -EFSCORRUPTED;
284 }
285
286 blk_no = round_down(blk_no, log->l_sectBBsize);
287 nbblks = round_up(nbblks, log->l_sectBBsize);
288
289 ASSERT(nbblks > 0);
290 ASSERT(nbblks <= bp->b_length);
291
292 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
293 xfs_buf_hold(bp);
294 xfs_buf_lock(bp);
295 bp->b_io_length = nbblks;
296 bp->b_error = 0;
297
298 error = xfs_bwrite(bp);
299 if (error)
300 xfs_buf_ioerror_alert(bp, __func__);
301 xfs_buf_relse(bp);
302 return error;
303}
304
305#ifdef DEBUG
306/*
307 * dump debug superblock and log record information
308 */
309STATIC void
310xlog_header_check_dump(
311 xfs_mount_t *mp,
312 xlog_rec_header_t *head)
313{
314 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d",
315 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
316 xfs_debug(mp, " log : uuid = %pU, fmt = %d",
317 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
318}
319#else
320#define xlog_header_check_dump(mp, head)
321#endif
322
323/*
324 * check log record header for recovery
325 */
326STATIC int
327xlog_header_check_recover(
328 xfs_mount_t *mp,
329 xlog_rec_header_t *head)
330{
331 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
332
333 /*
334 * IRIX doesn't write the h_fmt field and leaves it zeroed
335 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
336 * a dirty log created in IRIX.
337 */
338 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
339 xfs_warn(mp,
340 "dirty log written in incompatible format - can't recover");
341 xlog_header_check_dump(mp, head);
342 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
343 XFS_ERRLEVEL_HIGH, mp);
344 return -EFSCORRUPTED;
345 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
346 xfs_warn(mp,
347 "dirty log entry has mismatched uuid - can't recover");
348 xlog_header_check_dump(mp, head);
349 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
350 XFS_ERRLEVEL_HIGH, mp);
351 return -EFSCORRUPTED;
352 }
353 return 0;
354}
355
356/*
357 * read the head block of the log and check the header
358 */
359STATIC int
360xlog_header_check_mount(
361 xfs_mount_t *mp,
362 xlog_rec_header_t *head)
363{
364 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
365
366 if (uuid_is_null(&head->h_fs_uuid)) {
367 /*
368 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
369 * h_fs_uuid is null, we assume this log was last mounted
370 * by IRIX and continue.
371 */
372 xfs_warn(mp, "null uuid in log - IRIX style log");
373 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
374 xfs_warn(mp, "log has mismatched uuid - can't recover");
375 xlog_header_check_dump(mp, head);
376 XFS_ERROR_REPORT("xlog_header_check_mount",
377 XFS_ERRLEVEL_HIGH, mp);
378 return -EFSCORRUPTED;
379 }
380 return 0;
381}
382
383STATIC void
384xlog_recover_iodone(
385 struct xfs_buf *bp)
386{
387 if (bp->b_error) {
388 /*
389 * We're not going to bother about retrying
390 * this during recovery. One strike!
391 */
392 if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
393 xfs_buf_ioerror_alert(bp, __func__);
394 xfs_force_shutdown(bp->b_target->bt_mount,
395 SHUTDOWN_META_IO_ERROR);
396 }
397 }
398
399 /*
400 * On v5 supers, a bli could be attached to update the metadata LSN.
401 * Clean it up.
402 */
403 if (bp->b_log_item)
404 xfs_buf_item_relse(bp);
405 ASSERT(bp->b_log_item == NULL);
406
407 bp->b_iodone = NULL;
408 xfs_buf_ioend(bp);
409}
410
411/*
412 * This routine finds (to an approximation) the first block in the physical
413 * log which contains the given cycle. It uses a binary search algorithm.
414 * Note that the algorithm can not be perfect because the disk will not
415 * necessarily be perfect.
416 */
417STATIC int
418xlog_find_cycle_start(
419 struct xlog *log,
420 struct xfs_buf *bp,
421 xfs_daddr_t first_blk,
422 xfs_daddr_t *last_blk,
423 uint cycle)
424{
425 char *offset;
426 xfs_daddr_t mid_blk;
427 xfs_daddr_t end_blk;
428 uint mid_cycle;
429 int error;
430
431 end_blk = *last_blk;
432 mid_blk = BLK_AVG(first_blk, end_blk);
433 while (mid_blk != first_blk && mid_blk != end_blk) {
434 error = xlog_bread(log, mid_blk, 1, bp, &offset);
435 if (error)
436 return error;
437 mid_cycle = xlog_get_cycle(offset);
438 if (mid_cycle == cycle)
439 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
440 else
441 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
442 mid_blk = BLK_AVG(first_blk, end_blk);
443 }
444 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
445 (mid_blk == end_blk && mid_blk-1 == first_blk));
446
447 *last_blk = end_blk;
448
449 return 0;
450}
451
452/*
453 * Check that a range of blocks does not contain stop_on_cycle_no.
454 * Fill in *new_blk with the block offset where such a block is
455 * found, or with -1 (an invalid block number) if there is no such
456 * block in the range. The scan needs to occur from front to back
457 * and the pointer into the region must be updated since a later
458 * routine will need to perform another test.
459 */
460STATIC int
461xlog_find_verify_cycle(
462 struct xlog *log,
463 xfs_daddr_t start_blk,
464 int nbblks,
465 uint stop_on_cycle_no,
466 xfs_daddr_t *new_blk)
467{
468 xfs_daddr_t i, j;
469 uint cycle;
470 xfs_buf_t *bp;
471 xfs_daddr_t bufblks;
472 char *buf = NULL;
473 int error = 0;
474
475 /*
476 * Greedily allocate a buffer big enough to handle the full
477 * range of basic blocks we'll be examining. If that fails,
478 * try a smaller size. We need to be able to read at least
479 * a log sector, or we're out of luck.
480 */
481 bufblks = 1 << ffs(nbblks);
482 while (bufblks > log->l_logBBsize)
483 bufblks >>= 1;
484 while (!(bp = xlog_get_bp(log, bufblks))) {
485 bufblks >>= 1;
486 if (bufblks < log->l_sectBBsize)
487 return -ENOMEM;
488 }
489
490 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
491 int bcount;
492
493 bcount = min(bufblks, (start_blk + nbblks - i));
494
495 error = xlog_bread(log, i, bcount, bp, &buf);
496 if (error)
497 goto out;
498
499 for (j = 0; j < bcount; j++) {
500 cycle = xlog_get_cycle(buf);
501 if (cycle == stop_on_cycle_no) {
502 *new_blk = i+j;
503 goto out;
504 }
505
506 buf += BBSIZE;
507 }
508 }
509
510 *new_blk = -1;
511
512out:
513 xlog_put_bp(bp);
514 return error;
515}
516
517/*
518 * Potentially backup over partial log record write.
519 *
520 * In the typical case, last_blk is the number of the block directly after
521 * a good log record. Therefore, we subtract one to get the block number
522 * of the last block in the given buffer. extra_bblks contains the number
523 * of blocks we would have read on a previous read. This happens when the
524 * last log record is split over the end of the physical log.
525 *
526 * extra_bblks is the number of blocks potentially verified on a previous
527 * call to this routine.
528 */
529STATIC int
530xlog_find_verify_log_record(
531 struct xlog *log,
532 xfs_daddr_t start_blk,
533 xfs_daddr_t *last_blk,
534 int extra_bblks)
535{
536 xfs_daddr_t i;
537 xfs_buf_t *bp;
538 char *offset = NULL;
539 xlog_rec_header_t *head = NULL;
540 int error = 0;
541 int smallmem = 0;
542 int num_blks = *last_blk - start_blk;
543 int xhdrs;
544
545 ASSERT(start_blk != 0 || *last_blk != start_blk);
546
547 if (!(bp = xlog_get_bp(log, num_blks))) {
548 if (!(bp = xlog_get_bp(log, 1)))
549 return -ENOMEM;
550 smallmem = 1;
551 } else {
552 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
553 if (error)
554 goto out;
555 offset += ((num_blks - 1) << BBSHIFT);
556 }
557
558 for (i = (*last_blk) - 1; i >= 0; i--) {
559 if (i < start_blk) {
560 /* valid log record not found */
561 xfs_warn(log->l_mp,
562 "Log inconsistent (didn't find previous header)");
563 ASSERT(0);
564 error = -EIO;
565 goto out;
566 }
567
568 if (smallmem) {
569 error = xlog_bread(log, i, 1, bp, &offset);
570 if (error)
571 goto out;
572 }
573
574 head = (xlog_rec_header_t *)offset;
575
576 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
577 break;
578
579 if (!smallmem)
580 offset -= BBSIZE;
581 }
582
583 /*
584 * We hit the beginning of the physical log & still no header. Return
585 * to caller. If caller can handle a return of -1, then this routine
586 * will be called again for the end of the physical log.
587 */
588 if (i == -1) {
589 error = 1;
590 goto out;
591 }
592
593 /*
594 * We have the final block of the good log (the first block
595 * of the log record _before_ the head. So we check the uuid.
596 */
597 if ((error = xlog_header_check_mount(log->l_mp, head)))
598 goto out;
599
600 /*
601 * We may have found a log record header before we expected one.
602 * last_blk will be the 1st block # with a given cycle #. We may end
603 * up reading an entire log record. In this case, we don't want to
604 * reset last_blk. Only when last_blk points in the middle of a log
605 * record do we update last_blk.
606 */
607 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
608 uint h_size = be32_to_cpu(head->h_size);
609
610 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
611 if (h_size % XLOG_HEADER_CYCLE_SIZE)
612 xhdrs++;
613 } else {
614 xhdrs = 1;
615 }
616
617 if (*last_blk - i + extra_bblks !=
618 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
619 *last_blk = i;
620
621out:
622 xlog_put_bp(bp);
623 return error;
624}
625
626/*
627 * Head is defined to be the point of the log where the next log write
628 * could go. This means that incomplete LR writes at the end are
629 * eliminated when calculating the head. We aren't guaranteed that previous
630 * LR have complete transactions. We only know that a cycle number of
631 * current cycle number -1 won't be present in the log if we start writing
632 * from our current block number.
633 *
634 * last_blk contains the block number of the first block with a given
635 * cycle number.
636 *
637 * Return: zero if normal, non-zero if error.
638 */
639STATIC int
640xlog_find_head(
641 struct xlog *log,
642 xfs_daddr_t *return_head_blk)
643{
644 xfs_buf_t *bp;
645 char *offset;
646 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
647 int num_scan_bblks;
648 uint first_half_cycle, last_half_cycle;
649 uint stop_on_cycle;
650 int error, log_bbnum = log->l_logBBsize;
651
652 /* Is the end of the log device zeroed? */
653 error = xlog_find_zeroed(log, &first_blk);
654 if (error < 0) {
655 xfs_warn(log->l_mp, "empty log check failed");
656 return error;
657 }
658 if (error == 1) {
659 *return_head_blk = first_blk;
660
661 /* Is the whole lot zeroed? */
662 if (!first_blk) {
663 /* Linux XFS shouldn't generate totally zeroed logs -
664 * mkfs etc write a dummy unmount record to a fresh
665 * log so we can store the uuid in there
666 */
667 xfs_warn(log->l_mp, "totally zeroed log");
668 }
669
670 return 0;
671 }
672
673 first_blk = 0; /* get cycle # of 1st block */
674 bp = xlog_get_bp(log, 1);
675 if (!bp)
676 return -ENOMEM;
677
678 error = xlog_bread(log, 0, 1, bp, &offset);
679 if (error)
680 goto bp_err;
681
682 first_half_cycle = xlog_get_cycle(offset);
683
684 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
685 error = xlog_bread(log, last_blk, 1, bp, &offset);
686 if (error)
687 goto bp_err;
688
689 last_half_cycle = xlog_get_cycle(offset);
690 ASSERT(last_half_cycle != 0);
691
692 /*
693 * If the 1st half cycle number is equal to the last half cycle number,
694 * then the entire log is stamped with the same cycle number. In this
695 * case, head_blk can't be set to zero (which makes sense). The below
696 * math doesn't work out properly with head_blk equal to zero. Instead,
697 * we set it to log_bbnum which is an invalid block number, but this
698 * value makes the math correct. If head_blk doesn't changed through
699 * all the tests below, *head_blk is set to zero at the very end rather
700 * than log_bbnum. In a sense, log_bbnum and zero are the same block
701 * in a circular file.
702 */
703 if (first_half_cycle == last_half_cycle) {
704 /*
705 * In this case we believe that the entire log should have
706 * cycle number last_half_cycle. We need to scan backwards
707 * from the end verifying that there are no holes still
708 * containing last_half_cycle - 1. If we find such a hole,
709 * then the start of that hole will be the new head. The
710 * simple case looks like
711 * x | x ... | x - 1 | x
712 * Another case that fits this picture would be
713 * x | x + 1 | x ... | x
714 * In this case the head really is somewhere at the end of the
715 * log, as one of the latest writes at the beginning was
716 * incomplete.
717 * One more case is
718 * x | x + 1 | x ... | x - 1 | x
719 * This is really the combination of the above two cases, and
720 * the head has to end up at the start of the x-1 hole at the
721 * end of the log.
722 *
723 * In the 256k log case, we will read from the beginning to the
724 * end of the log and search for cycle numbers equal to x-1.
725 * We don't worry about the x+1 blocks that we encounter,
726 * because we know that they cannot be the head since the log
727 * started with x.
728 */
729 head_blk = log_bbnum;
730 stop_on_cycle = last_half_cycle - 1;
731 } else {
732 /*
733 * In this case we want to find the first block with cycle
734 * number matching last_half_cycle. We expect the log to be
735 * some variation on
736 * x + 1 ... | x ... | x
737 * The first block with cycle number x (last_half_cycle) will
738 * be where the new head belongs. First we do a binary search
739 * for the first occurrence of last_half_cycle. The binary
740 * search may not be totally accurate, so then we scan back
741 * from there looking for occurrences of last_half_cycle before
742 * us. If that backwards scan wraps around the beginning of
743 * the log, then we look for occurrences of last_half_cycle - 1
744 * at the end of the log. The cases we're looking for look
745 * like
746 * v binary search stopped here
747 * x + 1 ... | x | x + 1 | x ... | x
748 * ^ but we want to locate this spot
749 * or
750 * <---------> less than scan distance
751 * x + 1 ... | x ... | x - 1 | x
752 * ^ we want to locate this spot
753 */
754 stop_on_cycle = last_half_cycle;
755 if ((error = xlog_find_cycle_start(log, bp, first_blk,
756 &head_blk, last_half_cycle)))
757 goto bp_err;
758 }
759
760 /*
761 * Now validate the answer. Scan back some number of maximum possible
762 * blocks and make sure each one has the expected cycle number. The
763 * maximum is determined by the total possible amount of buffering
764 * in the in-core log. The following number can be made tighter if
765 * we actually look at the block size of the filesystem.
766 */
767 num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log));
768 if (head_blk >= num_scan_bblks) {
769 /*
770 * We are guaranteed that the entire check can be performed
771 * in one buffer.
772 */
773 start_blk = head_blk - num_scan_bblks;
774 if ((error = xlog_find_verify_cycle(log,
775 start_blk, num_scan_bblks,
776 stop_on_cycle, &new_blk)))
777 goto bp_err;
778 if (new_blk != -1)
779 head_blk = new_blk;
780 } else { /* need to read 2 parts of log */
781 /*
782 * We are going to scan backwards in the log in two parts.
783 * First we scan the physical end of the log. In this part
784 * of the log, we are looking for blocks with cycle number
785 * last_half_cycle - 1.
786 * If we find one, then we know that the log starts there, as
787 * we've found a hole that didn't get written in going around
788 * the end of the physical log. The simple case for this is
789 * x + 1 ... | x ... | x - 1 | x
790 * <---------> less than scan distance
791 * If all of the blocks at the end of the log have cycle number
792 * last_half_cycle, then we check the blocks at the start of
793 * the log looking for occurrences of last_half_cycle. If we
794 * find one, then our current estimate for the location of the
795 * first occurrence of last_half_cycle is wrong and we move
796 * back to the hole we've found. This case looks like
797 * x + 1 ... | x | x + 1 | x ...
798 * ^ binary search stopped here
799 * Another case we need to handle that only occurs in 256k
800 * logs is
801 * x + 1 ... | x ... | x+1 | x ...
802 * ^ binary search stops here
803 * In a 256k log, the scan at the end of the log will see the
804 * x + 1 blocks. We need to skip past those since that is
805 * certainly not the head of the log. By searching for
806 * last_half_cycle-1 we accomplish that.
807 */
808 ASSERT(head_blk <= INT_MAX &&
809 (xfs_daddr_t) num_scan_bblks >= head_blk);
810 start_blk = log_bbnum - (num_scan_bblks - head_blk);
811 if ((error = xlog_find_verify_cycle(log, start_blk,
812 num_scan_bblks - (int)head_blk,
813 (stop_on_cycle - 1), &new_blk)))
814 goto bp_err;
815 if (new_blk != -1) {
816 head_blk = new_blk;
817 goto validate_head;
818 }
819
820 /*
821 * Scan beginning of log now. The last part of the physical
822 * log is good. This scan needs to verify that it doesn't find
823 * the last_half_cycle.
824 */
825 start_blk = 0;
826 ASSERT(head_blk <= INT_MAX);
827 if ((error = xlog_find_verify_cycle(log,
828 start_blk, (int)head_blk,
829 stop_on_cycle, &new_blk)))
830 goto bp_err;
831 if (new_blk != -1)
832 head_blk = new_blk;
833 }
834
835validate_head:
836 /*
837 * Now we need to make sure head_blk is not pointing to a block in
838 * the middle of a log record.
839 */
840 num_scan_bblks = XLOG_REC_SHIFT(log);
841 if (head_blk >= num_scan_bblks) {
842 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
843
844 /* start ptr at last block ptr before head_blk */
845 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
846 if (error == 1)
847 error = -EIO;
848 if (error)
849 goto bp_err;
850 } else {
851 start_blk = 0;
852 ASSERT(head_blk <= INT_MAX);
853 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
854 if (error < 0)
855 goto bp_err;
856 if (error == 1) {
857 /* We hit the beginning of the log during our search */
858 start_blk = log_bbnum - (num_scan_bblks - head_blk);
859 new_blk = log_bbnum;
860 ASSERT(start_blk <= INT_MAX &&
861 (xfs_daddr_t) log_bbnum-start_blk >= 0);
862 ASSERT(head_blk <= INT_MAX);
863 error = xlog_find_verify_log_record(log, start_blk,
864 &new_blk, (int)head_blk);
865 if (error == 1)
866 error = -EIO;
867 if (error)
868 goto bp_err;
869 if (new_blk != log_bbnum)
870 head_blk = new_blk;
871 } else if (error)
872 goto bp_err;
873 }
874
875 xlog_put_bp(bp);
876 if (head_blk == log_bbnum)
877 *return_head_blk = 0;
878 else
879 *return_head_blk = head_blk;
880 /*
881 * When returning here, we have a good block number. Bad block
882 * means that during a previous crash, we didn't have a clean break
883 * from cycle number N to cycle number N-1. In this case, we need
884 * to find the first block with cycle number N-1.
885 */
886 return 0;
887
888 bp_err:
889 xlog_put_bp(bp);
890
891 if (error)
892 xfs_warn(log->l_mp, "failed to find log head");
893 return error;
894}
895
896/*
897 * Seek backwards in the log for log record headers.
898 *
899 * Given a starting log block, walk backwards until we find the provided number
900 * of records or hit the provided tail block. The return value is the number of
901 * records encountered or a negative error code. The log block and buffer
902 * pointer of the last record seen are returned in rblk and rhead respectively.
903 */
904STATIC int
905xlog_rseek_logrec_hdr(
906 struct xlog *log,
907 xfs_daddr_t head_blk,
908 xfs_daddr_t tail_blk,
909 int count,
910 struct xfs_buf *bp,
911 xfs_daddr_t *rblk,
912 struct xlog_rec_header **rhead,
913 bool *wrapped)
914{
915 int i;
916 int error;
917 int found = 0;
918 char *offset = NULL;
919 xfs_daddr_t end_blk;
920
921 *wrapped = false;
922
923 /*
924 * Walk backwards from the head block until we hit the tail or the first
925 * block in the log.
926 */
927 end_blk = head_blk > tail_blk ? tail_blk : 0;
928 for (i = (int) head_blk - 1; i >= end_blk; i--) {
929 error = xlog_bread(log, i, 1, bp, &offset);
930 if (error)
931 goto out_error;
932
933 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
934 *rblk = i;
935 *rhead = (struct xlog_rec_header *) offset;
936 if (++found == count)
937 break;
938 }
939 }
940
941 /*
942 * If we haven't hit the tail block or the log record header count,
943 * start looking again from the end of the physical log. Note that
944 * callers can pass head == tail if the tail is not yet known.
945 */
946 if (tail_blk >= head_blk && found != count) {
947 for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
948 error = xlog_bread(log, i, 1, bp, &offset);
949 if (error)
950 goto out_error;
951
952 if (*(__be32 *)offset ==
953 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
954 *wrapped = true;
955 *rblk = i;
956 *rhead = (struct xlog_rec_header *) offset;
957 if (++found == count)
958 break;
959 }
960 }
961 }
962
963 return found;
964
965out_error:
966 return error;
967}
968
969/*
970 * Seek forward in the log for log record headers.
971 *
972 * Given head and tail blocks, walk forward from the tail block until we find
973 * the provided number of records or hit the head block. The return value is the
974 * number of records encountered or a negative error code. The log block and
975 * buffer pointer of the last record seen are returned in rblk and rhead
976 * respectively.
977 */
978STATIC int
979xlog_seek_logrec_hdr(
980 struct xlog *log,
981 xfs_daddr_t head_blk,
982 xfs_daddr_t tail_blk,
983 int count,
984 struct xfs_buf *bp,
985 xfs_daddr_t *rblk,
986 struct xlog_rec_header **rhead,
987 bool *wrapped)
988{
989 int i;
990 int error;
991 int found = 0;
992 char *offset = NULL;
993 xfs_daddr_t end_blk;
994
995 *wrapped = false;
996
997 /*
998 * Walk forward from the tail block until we hit the head or the last
999 * block in the log.
1000 */
1001 end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
1002 for (i = (int) tail_blk; i <= end_blk; i++) {
1003 error = xlog_bread(log, i, 1, bp, &offset);
1004 if (error)
1005 goto out_error;
1006
1007 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1008 *rblk = i;
1009 *rhead = (struct xlog_rec_header *) offset;
1010 if (++found == count)
1011 break;
1012 }
1013 }
1014
1015 /*
1016 * If we haven't hit the head block or the log record header count,
1017 * start looking again from the start of the physical log.
1018 */
1019 if (tail_blk > head_blk && found != count) {
1020 for (i = 0; i < (int) head_blk; i++) {
1021 error = xlog_bread(log, i, 1, bp, &offset);
1022 if (error)
1023 goto out_error;
1024
1025 if (*(__be32 *)offset ==
1026 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1027 *wrapped = true;
1028 *rblk = i;
1029 *rhead = (struct xlog_rec_header *) offset;
1030 if (++found == count)
1031 break;
1032 }
1033 }
1034 }
1035
1036 return found;
1037
1038out_error:
1039 return error;
1040}
1041
1042/*
1043 * Calculate distance from head to tail (i.e., unused space in the log).
1044 */
1045static inline int
1046xlog_tail_distance(
1047 struct xlog *log,
1048 xfs_daddr_t head_blk,
1049 xfs_daddr_t tail_blk)
1050{
1051 if (head_blk < tail_blk)
1052 return tail_blk - head_blk;
1053
1054 return tail_blk + (log->l_logBBsize - head_blk);
1055}
1056
1057/*
1058 * Verify the log tail. This is particularly important when torn or incomplete
1059 * writes have been detected near the front of the log and the head has been
1060 * walked back accordingly.
1061 *
1062 * We also have to handle the case where the tail was pinned and the head
1063 * blocked behind the tail right before a crash. If the tail had been pushed
1064 * immediately prior to the crash and the subsequent checkpoint was only
1065 * partially written, it's possible it overwrote the last referenced tail in the
1066 * log with garbage. This is not a coherency problem because the tail must have
1067 * been pushed before it can be overwritten, but appears as log corruption to
1068 * recovery because we have no way to know the tail was updated if the
1069 * subsequent checkpoint didn't write successfully.
1070 *
1071 * Therefore, CRC check the log from tail to head. If a failure occurs and the
1072 * offending record is within max iclog bufs from the head, walk the tail
1073 * forward and retry until a valid tail is found or corruption is detected out
1074 * of the range of a possible overwrite.
1075 */
1076STATIC int
1077xlog_verify_tail(
1078 struct xlog *log,
1079 xfs_daddr_t head_blk,
1080 xfs_daddr_t *tail_blk,
1081 int hsize)
1082{
1083 struct xlog_rec_header *thead;
1084 struct xfs_buf *bp;
1085 xfs_daddr_t first_bad;
1086 int error = 0;
1087 bool wrapped;
1088 xfs_daddr_t tmp_tail;
1089 xfs_daddr_t orig_tail = *tail_blk;
1090
1091 bp = xlog_get_bp(log, 1);
1092 if (!bp)
1093 return -ENOMEM;
1094
1095 /*
1096 * Make sure the tail points to a record (returns positive count on
1097 * success).
1098 */
1099 error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, bp,
1100 &tmp_tail, &thead, &wrapped);
1101 if (error < 0)
1102 goto out;
1103 if (*tail_blk != tmp_tail)
1104 *tail_blk = tmp_tail;
1105
1106 /*
1107 * Run a CRC check from the tail to the head. We can't just check
1108 * MAX_ICLOGS records past the tail because the tail may point to stale
1109 * blocks cleared during the search for the head/tail. These blocks are
1110 * overwritten with zero-length records and thus record count is not a
1111 * reliable indicator of the iclog state before a crash.
1112 */
1113 first_bad = 0;
1114 error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1115 XLOG_RECOVER_CRCPASS, &first_bad);
1116 while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1117 int tail_distance;
1118
1119 /*
1120 * Is corruption within range of the head? If so, retry from
1121 * the next record. Otherwise return an error.
1122 */
1123 tail_distance = xlog_tail_distance(log, head_blk, first_bad);
1124 if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize))
1125 break;
1126
1127 /* skip to the next record; returns positive count on success */
1128 error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2, bp,
1129 &tmp_tail, &thead, &wrapped);
1130 if (error < 0)
1131 goto out;
1132
1133 *tail_blk = tmp_tail;
1134 first_bad = 0;
1135 error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1136 XLOG_RECOVER_CRCPASS, &first_bad);
1137 }
1138
1139 if (!error && *tail_blk != orig_tail)
1140 xfs_warn(log->l_mp,
1141 "Tail block (0x%llx) overwrite detected. Updated to 0x%llx",
1142 orig_tail, *tail_blk);
1143out:
1144 xlog_put_bp(bp);
1145 return error;
1146}
1147
1148/*
1149 * Detect and trim torn writes from the head of the log.
1150 *
1151 * Storage without sector atomicity guarantees can result in torn writes in the
1152 * log in the event of a crash. Our only means to detect this scenario is via
1153 * CRC verification. While we can't always be certain that CRC verification
1154 * failure is due to a torn write vs. an unrelated corruption, we do know that
1155 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1156 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1157 * the log and treat failures in this range as torn writes as a matter of
1158 * policy. In the event of CRC failure, the head is walked back to the last good
1159 * record in the log and the tail is updated from that record and verified.
1160 */
1161STATIC int
1162xlog_verify_head(
1163 struct xlog *log,
1164 xfs_daddr_t *head_blk, /* in/out: unverified head */
1165 xfs_daddr_t *tail_blk, /* out: tail block */
1166 struct xfs_buf *bp,
1167 xfs_daddr_t *rhead_blk, /* start blk of last record */
1168 struct xlog_rec_header **rhead, /* ptr to last record */
1169 bool *wrapped) /* last rec. wraps phys. log */
1170{
1171 struct xlog_rec_header *tmp_rhead;
1172 struct xfs_buf *tmp_bp;
1173 xfs_daddr_t first_bad;
1174 xfs_daddr_t tmp_rhead_blk;
1175 int found;
1176 int error;
1177 bool tmp_wrapped;
1178
1179 /*
1180 * Check the head of the log for torn writes. Search backwards from the
1181 * head until we hit the tail or the maximum number of log record I/Os
1182 * that could have been in flight at one time. Use a temporary buffer so
1183 * we don't trash the rhead/bp pointers from the caller.
1184 */
1185 tmp_bp = xlog_get_bp(log, 1);
1186 if (!tmp_bp)
1187 return -ENOMEM;
1188 error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1189 XLOG_MAX_ICLOGS, tmp_bp, &tmp_rhead_blk,
1190 &tmp_rhead, &tmp_wrapped);
1191 xlog_put_bp(tmp_bp);
1192 if (error < 0)
1193 return error;
1194
1195 /*
1196 * Now run a CRC verification pass over the records starting at the
1197 * block found above to the current head. If a CRC failure occurs, the
1198 * log block of the first bad record is saved in first_bad.
1199 */
1200 error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1201 XLOG_RECOVER_CRCPASS, &first_bad);
1202 if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1203 /*
1204 * We've hit a potential torn write. Reset the error and warn
1205 * about it.
1206 */
1207 error = 0;
1208 xfs_warn(log->l_mp,
1209"Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1210 first_bad, *head_blk);
1211
1212 /*
1213 * Get the header block and buffer pointer for the last good
1214 * record before the bad record.
1215 *
1216 * Note that xlog_find_tail() clears the blocks at the new head
1217 * (i.e., the records with invalid CRC) if the cycle number
1218 * matches the the current cycle.
1219 */
1220 found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, bp,
1221 rhead_blk, rhead, wrapped);
1222 if (found < 0)
1223 return found;
1224 if (found == 0) /* XXX: right thing to do here? */
1225 return -EIO;
1226
1227 /*
1228 * Reset the head block to the starting block of the first bad
1229 * log record and set the tail block based on the last good
1230 * record.
1231 *
1232 * Bail out if the updated head/tail match as this indicates
1233 * possible corruption outside of the acceptable
1234 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1235 */
1236 *head_blk = first_bad;
1237 *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1238 if (*head_blk == *tail_blk) {
1239 ASSERT(0);
1240 return 0;
1241 }
1242 }
1243 if (error)
1244 return error;
1245
1246 return xlog_verify_tail(log, *head_blk, tail_blk,
1247 be32_to_cpu((*rhead)->h_size));
1248}
1249
1250/*
1251 * Check whether the head of the log points to an unmount record. In other
1252 * words, determine whether the log is clean. If so, update the in-core state
1253 * appropriately.
1254 */
1255static int
1256xlog_check_unmount_rec(
1257 struct xlog *log,
1258 xfs_daddr_t *head_blk,
1259 xfs_daddr_t *tail_blk,
1260 struct xlog_rec_header *rhead,
1261 xfs_daddr_t rhead_blk,
1262 struct xfs_buf *bp,
1263 bool *clean)
1264{
1265 struct xlog_op_header *op_head;
1266 xfs_daddr_t umount_data_blk;
1267 xfs_daddr_t after_umount_blk;
1268 int hblks;
1269 int error;
1270 char *offset;
1271
1272 *clean = false;
1273
1274 /*
1275 * Look for unmount record. If we find it, then we know there was a
1276 * clean unmount. Since 'i' could be the last block in the physical
1277 * log, we convert to a log block before comparing to the head_blk.
1278 *
1279 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1280 * below. We won't want to clear the unmount record if there is one, so
1281 * we pass the lsn of the unmount record rather than the block after it.
1282 */
1283 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1284 int h_size = be32_to_cpu(rhead->h_size);
1285 int h_version = be32_to_cpu(rhead->h_version);
1286
1287 if ((h_version & XLOG_VERSION_2) &&
1288 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1289 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1290 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1291 hblks++;
1292 } else {
1293 hblks = 1;
1294 }
1295 } else {
1296 hblks = 1;
1297 }
1298 after_umount_blk = rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len));
1299 after_umount_blk = do_mod(after_umount_blk, log->l_logBBsize);
1300 if (*head_blk == after_umount_blk &&
1301 be32_to_cpu(rhead->h_num_logops) == 1) {
1302 umount_data_blk = rhead_blk + hblks;
1303 umount_data_blk = do_mod(umount_data_blk, log->l_logBBsize);
1304 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1305 if (error)
1306 return error;
1307
1308 op_head = (struct xlog_op_header *)offset;
1309 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1310 /*
1311 * Set tail and last sync so that newly written log
1312 * records will point recovery to after the current
1313 * unmount record.
1314 */
1315 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1316 log->l_curr_cycle, after_umount_blk);
1317 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1318 log->l_curr_cycle, after_umount_blk);
1319 *tail_blk = after_umount_blk;
1320
1321 *clean = true;
1322 }
1323 }
1324
1325 return 0;
1326}
1327
1328static void
1329xlog_set_state(
1330 struct xlog *log,
1331 xfs_daddr_t head_blk,
1332 struct xlog_rec_header *rhead,
1333 xfs_daddr_t rhead_blk,
1334 bool bump_cycle)
1335{
1336 /*
1337 * Reset log values according to the state of the log when we
1338 * crashed. In the case where head_blk == 0, we bump curr_cycle
1339 * one because the next write starts a new cycle rather than
1340 * continuing the cycle of the last good log record. At this
1341 * point we have guaranteed that all partial log records have been
1342 * accounted for. Therefore, we know that the last good log record
1343 * written was complete and ended exactly on the end boundary
1344 * of the physical log.
1345 */
1346 log->l_prev_block = rhead_blk;
1347 log->l_curr_block = (int)head_blk;
1348 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1349 if (bump_cycle)
1350 log->l_curr_cycle++;
1351 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1352 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
1353 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
1354 BBTOB(log->l_curr_block));
1355 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
1356 BBTOB(log->l_curr_block));
1357}
1358
1359/*
1360 * Find the sync block number or the tail of the log.
1361 *
1362 * This will be the block number of the last record to have its
1363 * associated buffers synced to disk. Every log record header has
1364 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
1365 * to get a sync block number. The only concern is to figure out which
1366 * log record header to believe.
1367 *
1368 * The following algorithm uses the log record header with the largest
1369 * lsn. The entire log record does not need to be valid. We only care
1370 * that the header is valid.
1371 *
1372 * We could speed up search by using current head_blk buffer, but it is not
1373 * available.
1374 */
1375STATIC int
1376xlog_find_tail(
1377 struct xlog *log,
1378 xfs_daddr_t *head_blk,
1379 xfs_daddr_t *tail_blk)
1380{
1381 xlog_rec_header_t *rhead;
1382 char *offset = NULL;
1383 xfs_buf_t *bp;
1384 int error;
1385 xfs_daddr_t rhead_blk;
1386 xfs_lsn_t tail_lsn;
1387 bool wrapped = false;
1388 bool clean = false;
1389
1390 /*
1391 * Find previous log record
1392 */
1393 if ((error = xlog_find_head(log, head_blk)))
1394 return error;
1395 ASSERT(*head_blk < INT_MAX);
1396
1397 bp = xlog_get_bp(log, 1);
1398 if (!bp)
1399 return -ENOMEM;
1400 if (*head_blk == 0) { /* special case */
1401 error = xlog_bread(log, 0, 1, bp, &offset);
1402 if (error)
1403 goto done;
1404
1405 if (xlog_get_cycle(offset) == 0) {
1406 *tail_blk = 0;
1407 /* leave all other log inited values alone */
1408 goto done;
1409 }
1410 }
1411
1412 /*
1413 * Search backwards through the log looking for the log record header
1414 * block. This wraps all the way back around to the head so something is
1415 * seriously wrong if we can't find it.
1416 */
1417 error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, bp,
1418 &rhead_blk, &rhead, &wrapped);
1419 if (error < 0)
1420 return error;
1421 if (!error) {
1422 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1423 return -EIO;
1424 }
1425 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1426
1427 /*
1428 * Set the log state based on the current head record.
1429 */
1430 xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
1431 tail_lsn = atomic64_read(&log->l_tail_lsn);
1432
1433 /*
1434 * Look for an unmount record at the head of the log. This sets the log
1435 * state to determine whether recovery is necessary.
1436 */
1437 error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1438 rhead_blk, bp, &clean);
1439 if (error)
1440 goto done;
1441
1442 /*
1443 * Verify the log head if the log is not clean (e.g., we have anything
1444 * but an unmount record at the head). This uses CRC verification to
1445 * detect and trim torn writes. If discovered, CRC failures are
1446 * considered torn writes and the log head is trimmed accordingly.
1447 *
1448 * Note that we can only run CRC verification when the log is dirty
1449 * because there's no guarantee that the log data behind an unmount
1450 * record is compatible with the current architecture.
1451 */
1452 if (!clean) {
1453 xfs_daddr_t orig_head = *head_blk;
1454
1455 error = xlog_verify_head(log, head_blk, tail_blk, bp,
1456 &rhead_blk, &rhead, &wrapped);
1457 if (error)
1458 goto done;
1459
1460 /* update in-core state again if the head changed */
1461 if (*head_blk != orig_head) {
1462 xlog_set_state(log, *head_blk, rhead, rhead_blk,
1463 wrapped);
1464 tail_lsn = atomic64_read(&log->l_tail_lsn);
1465 error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1466 rhead, rhead_blk, bp,
1467 &clean);
1468 if (error)
1469 goto done;
1470 }
1471 }
1472
1473 /*
1474 * Note that the unmount was clean. If the unmount was not clean, we
1475 * need to know this to rebuild the superblock counters from the perag
1476 * headers if we have a filesystem using non-persistent counters.
1477 */
1478 if (clean)
1479 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1480
1481 /*
1482 * Make sure that there are no blocks in front of the head
1483 * with the same cycle number as the head. This can happen
1484 * because we allow multiple outstanding log writes concurrently,
1485 * and the later writes might make it out before earlier ones.
1486 *
1487 * We use the lsn from before modifying it so that we'll never
1488 * overwrite the unmount record after a clean unmount.
1489 *
1490 * Do this only if we are going to recover the filesystem
1491 *
1492 * NOTE: This used to say "if (!readonly)"
1493 * However on Linux, we can & do recover a read-only filesystem.
1494 * We only skip recovery if NORECOVERY is specified on mount,
1495 * in which case we would not be here.
1496 *
1497 * But... if the -device- itself is readonly, just skip this.
1498 * We can't recover this device anyway, so it won't matter.
1499 */
1500 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1501 error = xlog_clear_stale_blocks(log, tail_lsn);
1502
1503done:
1504 xlog_put_bp(bp);
1505
1506 if (error)
1507 xfs_warn(log->l_mp, "failed to locate log tail");
1508 return error;
1509}
1510
1511/*
1512 * Is the log zeroed at all?
1513 *
1514 * The last binary search should be changed to perform an X block read
1515 * once X becomes small enough. You can then search linearly through
1516 * the X blocks. This will cut down on the number of reads we need to do.
1517 *
1518 * If the log is partially zeroed, this routine will pass back the blkno
1519 * of the first block with cycle number 0. It won't have a complete LR
1520 * preceding it.
1521 *
1522 * Return:
1523 * 0 => the log is completely written to
1524 * 1 => use *blk_no as the first block of the log
1525 * <0 => error has occurred
1526 */
1527STATIC int
1528xlog_find_zeroed(
1529 struct xlog *log,
1530 xfs_daddr_t *blk_no)
1531{
1532 xfs_buf_t *bp;
1533 char *offset;
1534 uint first_cycle, last_cycle;
1535 xfs_daddr_t new_blk, last_blk, start_blk;
1536 xfs_daddr_t num_scan_bblks;
1537 int error, log_bbnum = log->l_logBBsize;
1538
1539 *blk_no = 0;
1540
1541 /* check totally zeroed log */
1542 bp = xlog_get_bp(log, 1);
1543 if (!bp)
1544 return -ENOMEM;
1545 error = xlog_bread(log, 0, 1, bp, &offset);
1546 if (error)
1547 goto bp_err;
1548
1549 first_cycle = xlog_get_cycle(offset);
1550 if (first_cycle == 0) { /* completely zeroed log */
1551 *blk_no = 0;
1552 xlog_put_bp(bp);
1553 return 1;
1554 }
1555
1556 /* check partially zeroed log */
1557 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1558 if (error)
1559 goto bp_err;
1560
1561 last_cycle = xlog_get_cycle(offset);
1562 if (last_cycle != 0) { /* log completely written to */
1563 xlog_put_bp(bp);
1564 return 0;
1565 } else if (first_cycle != 1) {
1566 /*
1567 * If the cycle of the last block is zero, the cycle of
1568 * the first block must be 1. If it's not, maybe we're
1569 * not looking at a log... Bail out.
1570 */
1571 xfs_warn(log->l_mp,
1572 "Log inconsistent or not a log (last==0, first!=1)");
1573 error = -EINVAL;
1574 goto bp_err;
1575 }
1576
1577 /* we have a partially zeroed log */
1578 last_blk = log_bbnum-1;
1579 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1580 goto bp_err;
1581
1582 /*
1583 * Validate the answer. Because there is no way to guarantee that
1584 * the entire log is made up of log records which are the same size,
1585 * we scan over the defined maximum blocks. At this point, the maximum
1586 * is not chosen to mean anything special. XXXmiken
1587 */
1588 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1589 ASSERT(num_scan_bblks <= INT_MAX);
1590
1591 if (last_blk < num_scan_bblks)
1592 num_scan_bblks = last_blk;
1593 start_blk = last_blk - num_scan_bblks;
1594
1595 /*
1596 * We search for any instances of cycle number 0 that occur before
1597 * our current estimate of the head. What we're trying to detect is
1598 * 1 ... | 0 | 1 | 0...
1599 * ^ binary search ends here
1600 */
1601 if ((error = xlog_find_verify_cycle(log, start_blk,
1602 (int)num_scan_bblks, 0, &new_blk)))
1603 goto bp_err;
1604 if (new_blk != -1)
1605 last_blk = new_blk;
1606
1607 /*
1608 * Potentially backup over partial log record write. We don't need
1609 * to search the end of the log because we know it is zero.
1610 */
1611 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1612 if (error == 1)
1613 error = -EIO;
1614 if (error)
1615 goto bp_err;
1616
1617 *blk_no = last_blk;
1618bp_err:
1619 xlog_put_bp(bp);
1620 if (error)
1621 return error;
1622 return 1;
1623}
1624
1625/*
1626 * These are simple subroutines used by xlog_clear_stale_blocks() below
1627 * to initialize a buffer full of empty log record headers and write
1628 * them into the log.
1629 */
1630STATIC void
1631xlog_add_record(
1632 struct xlog *log,
1633 char *buf,
1634 int cycle,
1635 int block,
1636 int tail_cycle,
1637 int tail_block)
1638{
1639 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1640
1641 memset(buf, 0, BBSIZE);
1642 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1643 recp->h_cycle = cpu_to_be32(cycle);
1644 recp->h_version = cpu_to_be32(
1645 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1646 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1647 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1648 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1649 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1650}
1651
1652STATIC int
1653xlog_write_log_records(
1654 struct xlog *log,
1655 int cycle,
1656 int start_block,
1657 int blocks,
1658 int tail_cycle,
1659 int tail_block)
1660{
1661 char *offset;
1662 xfs_buf_t *bp;
1663 int balign, ealign;
1664 int sectbb = log->l_sectBBsize;
1665 int end_block = start_block + blocks;
1666 int bufblks;
1667 int error = 0;
1668 int i, j = 0;
1669
1670 /*
1671 * Greedily allocate a buffer big enough to handle the full
1672 * range of basic blocks to be written. If that fails, try
1673 * a smaller size. We need to be able to write at least a
1674 * log sector, or we're out of luck.
1675 */
1676 bufblks = 1 << ffs(blocks);
1677 while (bufblks > log->l_logBBsize)
1678 bufblks >>= 1;
1679 while (!(bp = xlog_get_bp(log, bufblks))) {
1680 bufblks >>= 1;
1681 if (bufblks < sectbb)
1682 return -ENOMEM;
1683 }
1684
1685 /* We may need to do a read at the start to fill in part of
1686 * the buffer in the starting sector not covered by the first
1687 * write below.
1688 */
1689 balign = round_down(start_block, sectbb);
1690 if (balign != start_block) {
1691 error = xlog_bread_noalign(log, start_block, 1, bp);
1692 if (error)
1693 goto out_put_bp;
1694
1695 j = start_block - balign;
1696 }
1697
1698 for (i = start_block; i < end_block; i += bufblks) {
1699 int bcount, endcount;
1700
1701 bcount = min(bufblks, end_block - start_block);
1702 endcount = bcount - j;
1703
1704 /* We may need to do a read at the end to fill in part of
1705 * the buffer in the final sector not covered by the write.
1706 * If this is the same sector as the above read, skip it.
1707 */
1708 ealign = round_down(end_block, sectbb);
1709 if (j == 0 && (start_block + endcount > ealign)) {
1710 offset = bp->b_addr + BBTOB(ealign - start_block);
1711 error = xlog_bread_offset(log, ealign, sectbb,
1712 bp, offset);
1713 if (error)
1714 break;
1715
1716 }
1717
1718 offset = xlog_align(log, start_block, endcount, bp);
1719 for (; j < endcount; j++) {
1720 xlog_add_record(log, offset, cycle, i+j,
1721 tail_cycle, tail_block);
1722 offset += BBSIZE;
1723 }
1724 error = xlog_bwrite(log, start_block, endcount, bp);
1725 if (error)
1726 break;
1727 start_block += endcount;
1728 j = 0;
1729 }
1730
1731 out_put_bp:
1732 xlog_put_bp(bp);
1733 return error;
1734}
1735
1736/*
1737 * This routine is called to blow away any incomplete log writes out
1738 * in front of the log head. We do this so that we won't become confused
1739 * if we come up, write only a little bit more, and then crash again.
1740 * If we leave the partial log records out there, this situation could
1741 * cause us to think those partial writes are valid blocks since they
1742 * have the current cycle number. We get rid of them by overwriting them
1743 * with empty log records with the old cycle number rather than the
1744 * current one.
1745 *
1746 * The tail lsn is passed in rather than taken from
1747 * the log so that we will not write over the unmount record after a
1748 * clean unmount in a 512 block log. Doing so would leave the log without
1749 * any valid log records in it until a new one was written. If we crashed
1750 * during that time we would not be able to recover.
1751 */
1752STATIC int
1753xlog_clear_stale_blocks(
1754 struct xlog *log,
1755 xfs_lsn_t tail_lsn)
1756{
1757 int tail_cycle, head_cycle;
1758 int tail_block, head_block;
1759 int tail_distance, max_distance;
1760 int distance;
1761 int error;
1762
1763 tail_cycle = CYCLE_LSN(tail_lsn);
1764 tail_block = BLOCK_LSN(tail_lsn);
1765 head_cycle = log->l_curr_cycle;
1766 head_block = log->l_curr_block;
1767
1768 /*
1769 * Figure out the distance between the new head of the log
1770 * and the tail. We want to write over any blocks beyond the
1771 * head that we may have written just before the crash, but
1772 * we don't want to overwrite the tail of the log.
1773 */
1774 if (head_cycle == tail_cycle) {
1775 /*
1776 * The tail is behind the head in the physical log,
1777 * so the distance from the head to the tail is the
1778 * distance from the head to the end of the log plus
1779 * the distance from the beginning of the log to the
1780 * tail.
1781 */
1782 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1783 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1784 XFS_ERRLEVEL_LOW, log->l_mp);
1785 return -EFSCORRUPTED;
1786 }
1787 tail_distance = tail_block + (log->l_logBBsize - head_block);
1788 } else {
1789 /*
1790 * The head is behind the tail in the physical log,
1791 * so the distance from the head to the tail is just
1792 * the tail block minus the head block.
1793 */
1794 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1795 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1796 XFS_ERRLEVEL_LOW, log->l_mp);
1797 return -EFSCORRUPTED;
1798 }
1799 tail_distance = tail_block - head_block;
1800 }
1801
1802 /*
1803 * If the head is right up against the tail, we can't clear
1804 * anything.
1805 */
1806 if (tail_distance <= 0) {
1807 ASSERT(tail_distance == 0);
1808 return 0;
1809 }
1810
1811 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1812 /*
1813 * Take the smaller of the maximum amount of outstanding I/O
1814 * we could have and the distance to the tail to clear out.
1815 * We take the smaller so that we don't overwrite the tail and
1816 * we don't waste all day writing from the head to the tail
1817 * for no reason.
1818 */
1819 max_distance = MIN(max_distance, tail_distance);
1820
1821 if ((head_block + max_distance) <= log->l_logBBsize) {
1822 /*
1823 * We can stomp all the blocks we need to without
1824 * wrapping around the end of the log. Just do it
1825 * in a single write. Use the cycle number of the
1826 * current cycle minus one so that the log will look like:
1827 * n ... | n - 1 ...
1828 */
1829 error = xlog_write_log_records(log, (head_cycle - 1),
1830 head_block, max_distance, tail_cycle,
1831 tail_block);
1832 if (error)
1833 return error;
1834 } else {
1835 /*
1836 * We need to wrap around the end of the physical log in
1837 * order to clear all the blocks. Do it in two separate
1838 * I/Os. The first write should be from the head to the
1839 * end of the physical log, and it should use the current
1840 * cycle number minus one just like above.
1841 */
1842 distance = log->l_logBBsize - head_block;
1843 error = xlog_write_log_records(log, (head_cycle - 1),
1844 head_block, distance, tail_cycle,
1845 tail_block);
1846
1847 if (error)
1848 return error;
1849
1850 /*
1851 * Now write the blocks at the start of the physical log.
1852 * This writes the remainder of the blocks we want to clear.
1853 * It uses the current cycle number since we're now on the
1854 * same cycle as the head so that we get:
1855 * n ... n ... | n - 1 ...
1856 * ^^^^^ blocks we're writing
1857 */
1858 distance = max_distance - (log->l_logBBsize - head_block);
1859 error = xlog_write_log_records(log, head_cycle, 0, distance,
1860 tail_cycle, tail_block);
1861 if (error)
1862 return error;
1863 }
1864
1865 return 0;
1866}
1867
1868/******************************************************************************
1869 *
1870 * Log recover routines
1871 *
1872 ******************************************************************************
1873 */
1874
1875/*
1876 * Sort the log items in the transaction.
1877 *
1878 * The ordering constraints are defined by the inode allocation and unlink
1879 * behaviour. The rules are:
1880 *
1881 * 1. Every item is only logged once in a given transaction. Hence it
1882 * represents the last logged state of the item. Hence ordering is
1883 * dependent on the order in which operations need to be performed so
1884 * required initial conditions are always met.
1885 *
1886 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1887 * there's nothing to replay from them so we can simply cull them
1888 * from the transaction. However, we can't do that until after we've
1889 * replayed all the other items because they may be dependent on the
1890 * cancelled buffer and replaying the cancelled buffer can remove it
1891 * form the cancelled buffer table. Hence they have tobe done last.
1892 *
1893 * 3. Inode allocation buffers must be replayed before inode items that
1894 * read the buffer and replay changes into it. For filesystems using the
1895 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1896 * treated the same as inode allocation buffers as they create and
1897 * initialise the buffers directly.
1898 *
1899 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1900 * This ensures that inodes are completely flushed to the inode buffer
1901 * in a "free" state before we remove the unlinked inode list pointer.
1902 *
1903 * Hence the ordering needs to be inode allocation buffers first, inode items
1904 * second, inode unlink buffers third and cancelled buffers last.
1905 *
1906 * But there's a problem with that - we can't tell an inode allocation buffer
1907 * apart from a regular buffer, so we can't separate them. We can, however,
1908 * tell an inode unlink buffer from the others, and so we can separate them out
1909 * from all the other buffers and move them to last.
1910 *
1911 * Hence, 4 lists, in order from head to tail:
1912 * - buffer_list for all buffers except cancelled/inode unlink buffers
1913 * - item_list for all non-buffer items
1914 * - inode_buffer_list for inode unlink buffers
1915 * - cancel_list for the cancelled buffers
1916 *
1917 * Note that we add objects to the tail of the lists so that first-to-last
1918 * ordering is preserved within the lists. Adding objects to the head of the
1919 * list means when we traverse from the head we walk them in last-to-first
1920 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1921 * but for all other items there may be specific ordering that we need to
1922 * preserve.
1923 */
1924STATIC int
1925xlog_recover_reorder_trans(
1926 struct xlog *log,
1927 struct xlog_recover *trans,
1928 int pass)
1929{
1930 xlog_recover_item_t *item, *n;
1931 int error = 0;
1932 LIST_HEAD(sort_list);
1933 LIST_HEAD(cancel_list);
1934 LIST_HEAD(buffer_list);
1935 LIST_HEAD(inode_buffer_list);
1936 LIST_HEAD(inode_list);
1937
1938 list_splice_init(&trans->r_itemq, &sort_list);
1939 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1940 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1941
1942 switch (ITEM_TYPE(item)) {
1943 case XFS_LI_ICREATE:
1944 list_move_tail(&item->ri_list, &buffer_list);
1945 break;
1946 case XFS_LI_BUF:
1947 if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1948 trace_xfs_log_recover_item_reorder_head(log,
1949 trans, item, pass);
1950 list_move(&item->ri_list, &cancel_list);
1951 break;
1952 }
1953 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1954 list_move(&item->ri_list, &inode_buffer_list);
1955 break;
1956 }
1957 list_move_tail(&item->ri_list, &buffer_list);
1958 break;
1959 case XFS_LI_INODE:
1960 case XFS_LI_DQUOT:
1961 case XFS_LI_QUOTAOFF:
1962 case XFS_LI_EFD:
1963 case XFS_LI_EFI:
1964 case XFS_LI_RUI:
1965 case XFS_LI_RUD:
1966 case XFS_LI_CUI:
1967 case XFS_LI_CUD:
1968 case XFS_LI_BUI:
1969 case XFS_LI_BUD:
1970 trace_xfs_log_recover_item_reorder_tail(log,
1971 trans, item, pass);
1972 list_move_tail(&item->ri_list, &inode_list);
1973 break;
1974 default:
1975 xfs_warn(log->l_mp,
1976 "%s: unrecognized type of log operation",
1977 __func__);
1978 ASSERT(0);
1979 /*
1980 * return the remaining items back to the transaction
1981 * item list so they can be freed in caller.
1982 */
1983 if (!list_empty(&sort_list))
1984 list_splice_init(&sort_list, &trans->r_itemq);
1985 error = -EIO;
1986 goto out;
1987 }
1988 }
1989out:
1990 ASSERT(list_empty(&sort_list));
1991 if (!list_empty(&buffer_list))
1992 list_splice(&buffer_list, &trans->r_itemq);
1993 if (!list_empty(&inode_list))
1994 list_splice_tail(&inode_list, &trans->r_itemq);
1995 if (!list_empty(&inode_buffer_list))
1996 list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1997 if (!list_empty(&cancel_list))
1998 list_splice_tail(&cancel_list, &trans->r_itemq);
1999 return error;
2000}
2001
2002/*
2003 * Build up the table of buf cancel records so that we don't replay
2004 * cancelled data in the second pass. For buffer records that are
2005 * not cancel records, there is nothing to do here so we just return.
2006 *
2007 * If we get a cancel record which is already in the table, this indicates
2008 * that the buffer was cancelled multiple times. In order to ensure
2009 * that during pass 2 we keep the record in the table until we reach its
2010 * last occurrence in the log, we keep a reference count in the cancel
2011 * record in the table to tell us how many times we expect to see this
2012 * record during the second pass.
2013 */
2014STATIC int
2015xlog_recover_buffer_pass1(
2016 struct xlog *log,
2017 struct xlog_recover_item *item)
2018{
2019 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
2020 struct list_head *bucket;
2021 struct xfs_buf_cancel *bcp;
2022
2023 /*
2024 * If this isn't a cancel buffer item, then just return.
2025 */
2026 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
2027 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
2028 return 0;
2029 }
2030
2031 /*
2032 * Insert an xfs_buf_cancel record into the hash table of them.
2033 * If there is already an identical record, bump its reference count.
2034 */
2035 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
2036 list_for_each_entry(bcp, bucket, bc_list) {
2037 if (bcp->bc_blkno == buf_f->blf_blkno &&
2038 bcp->bc_len == buf_f->blf_len) {
2039 bcp->bc_refcount++;
2040 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
2041 return 0;
2042 }
2043 }
2044
2045 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
2046 bcp->bc_blkno = buf_f->blf_blkno;
2047 bcp->bc_len = buf_f->blf_len;
2048 bcp->bc_refcount = 1;
2049 list_add_tail(&bcp->bc_list, bucket);
2050
2051 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
2052 return 0;
2053}
2054
2055/*
2056 * Check to see whether the buffer being recovered has a corresponding
2057 * entry in the buffer cancel record table. If it is, return the cancel
2058 * buffer structure to the caller.
2059 */
2060STATIC struct xfs_buf_cancel *
2061xlog_peek_buffer_cancelled(
2062 struct xlog *log,
2063 xfs_daddr_t blkno,
2064 uint len,
2065 unsigned short flags)
2066{
2067 struct list_head *bucket;
2068 struct xfs_buf_cancel *bcp;
2069
2070 if (!log->l_buf_cancel_table) {
2071 /* empty table means no cancelled buffers in the log */
2072 ASSERT(!(flags & XFS_BLF_CANCEL));
2073 return NULL;
2074 }
2075
2076 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
2077 list_for_each_entry(bcp, bucket, bc_list) {
2078 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
2079 return bcp;
2080 }
2081
2082 /*
2083 * We didn't find a corresponding entry in the table, so return 0 so
2084 * that the buffer is NOT cancelled.
2085 */
2086 ASSERT(!(flags & XFS_BLF_CANCEL));
2087 return NULL;
2088}
2089
2090/*
2091 * If the buffer is being cancelled then return 1 so that it will be cancelled,
2092 * otherwise return 0. If the buffer is actually a buffer cancel item
2093 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
2094 * table and remove it from the table if this is the last reference.
2095 *
2096 * We remove the cancel record from the table when we encounter its last
2097 * occurrence in the log so that if the same buffer is re-used again after its
2098 * last cancellation we actually replay the changes made at that point.
2099 */
2100STATIC int
2101xlog_check_buffer_cancelled(
2102 struct xlog *log,
2103 xfs_daddr_t blkno,
2104 uint len,
2105 unsigned short flags)
2106{
2107 struct xfs_buf_cancel *bcp;
2108
2109 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
2110 if (!bcp)
2111 return 0;
2112
2113 /*
2114 * We've go a match, so return 1 so that the recovery of this buffer
2115 * is cancelled. If this buffer is actually a buffer cancel log
2116 * item, then decrement the refcount on the one in the table and
2117 * remove it if this is the last reference.
2118 */
2119 if (flags & XFS_BLF_CANCEL) {
2120 if (--bcp->bc_refcount == 0) {
2121 list_del(&bcp->bc_list);
2122 kmem_free(bcp);
2123 }
2124 }
2125 return 1;
2126}
2127
2128/*
2129 * Perform recovery for a buffer full of inodes. In these buffers, the only
2130 * data which should be recovered is that which corresponds to the
2131 * di_next_unlinked pointers in the on disk inode structures. The rest of the
2132 * data for the inodes is always logged through the inodes themselves rather
2133 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
2134 *
2135 * The only time when buffers full of inodes are fully recovered is when the
2136 * buffer is full of newly allocated inodes. In this case the buffer will
2137 * not be marked as an inode buffer and so will be sent to
2138 * xlog_recover_do_reg_buffer() below during recovery.
2139 */
2140STATIC int
2141xlog_recover_do_inode_buffer(
2142 struct xfs_mount *mp,
2143 xlog_recover_item_t *item,
2144 struct xfs_buf *bp,
2145 xfs_buf_log_format_t *buf_f)
2146{
2147 int i;
2148 int item_index = 0;
2149 int bit = 0;
2150 int nbits = 0;
2151 int reg_buf_offset = 0;
2152 int reg_buf_bytes = 0;
2153 int next_unlinked_offset;
2154 int inodes_per_buf;
2155 xfs_agino_t *logged_nextp;
2156 xfs_agino_t *buffer_nextp;
2157
2158 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
2159
2160 /*
2161 * Post recovery validation only works properly on CRC enabled
2162 * filesystems.
2163 */
2164 if (xfs_sb_version_hascrc(&mp->m_sb))
2165 bp->b_ops = &xfs_inode_buf_ops;
2166
2167 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
2168 for (i = 0; i < inodes_per_buf; i++) {
2169 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
2170 offsetof(xfs_dinode_t, di_next_unlinked);
2171
2172 while (next_unlinked_offset >=
2173 (reg_buf_offset + reg_buf_bytes)) {
2174 /*
2175 * The next di_next_unlinked field is beyond
2176 * the current logged region. Find the next
2177 * logged region that contains or is beyond
2178 * the current di_next_unlinked field.
2179 */
2180 bit += nbits;
2181 bit = xfs_next_bit(buf_f->blf_data_map,
2182 buf_f->blf_map_size, bit);
2183
2184 /*
2185 * If there are no more logged regions in the
2186 * buffer, then we're done.
2187 */
2188 if (bit == -1)
2189 return 0;
2190
2191 nbits = xfs_contig_bits(buf_f->blf_data_map,
2192 buf_f->blf_map_size, bit);
2193 ASSERT(nbits > 0);
2194 reg_buf_offset = bit << XFS_BLF_SHIFT;
2195 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
2196 item_index++;
2197 }
2198
2199 /*
2200 * If the current logged region starts after the current
2201 * di_next_unlinked field, then move on to the next
2202 * di_next_unlinked field.
2203 */
2204 if (next_unlinked_offset < reg_buf_offset)
2205 continue;
2206
2207 ASSERT(item->ri_buf[item_index].i_addr != NULL);
2208 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
2209 ASSERT((reg_buf_offset + reg_buf_bytes) <=
2210 BBTOB(bp->b_io_length));
2211
2212 /*
2213 * The current logged region contains a copy of the
2214 * current di_next_unlinked field. Extract its value
2215 * and copy it to the buffer copy.
2216 */
2217 logged_nextp = item->ri_buf[item_index].i_addr +
2218 next_unlinked_offset - reg_buf_offset;
2219 if (unlikely(*logged_nextp == 0)) {
2220 xfs_alert(mp,
2221 "Bad inode buffer log record (ptr = "PTR_FMT", bp = "PTR_FMT"). "
2222 "Trying to replay bad (0) inode di_next_unlinked field.",
2223 item, bp);
2224 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
2225 XFS_ERRLEVEL_LOW, mp);
2226 return -EFSCORRUPTED;
2227 }
2228
2229 buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
2230 *buffer_nextp = *logged_nextp;
2231
2232 /*
2233 * If necessary, recalculate the CRC in the on-disk inode. We
2234 * have to leave the inode in a consistent state for whoever
2235 * reads it next....
2236 */
2237 xfs_dinode_calc_crc(mp,
2238 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
2239
2240 }
2241
2242 return 0;
2243}
2244
2245/*
2246 * V5 filesystems know the age of the buffer on disk being recovered. We can
2247 * have newer objects on disk than we are replaying, and so for these cases we
2248 * don't want to replay the current change as that will make the buffer contents
2249 * temporarily invalid on disk.
2250 *
2251 * The magic number might not match the buffer type we are going to recover
2252 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
2253 * extract the LSN of the existing object in the buffer based on it's current
2254 * magic number. If we don't recognise the magic number in the buffer, then
2255 * return a LSN of -1 so that the caller knows it was an unrecognised block and
2256 * so can recover the buffer.
2257 *
2258 * Note: we cannot rely solely on magic number matches to determine that the
2259 * buffer has a valid LSN - we also need to verify that it belongs to this
2260 * filesystem, so we need to extract the object's LSN and compare it to that
2261 * which we read from the superblock. If the UUIDs don't match, then we've got a
2262 * stale metadata block from an old filesystem instance that we need to recover
2263 * over the top of.
2264 */
2265static xfs_lsn_t
2266xlog_recover_get_buf_lsn(
2267 struct xfs_mount *mp,
2268 struct xfs_buf *bp)
2269{
2270 uint32_t magic32;
2271 uint16_t magic16;
2272 uint16_t magicda;
2273 void *blk = bp->b_addr;
2274 uuid_t *uuid;
2275 xfs_lsn_t lsn = -1;
2276
2277 /* v4 filesystems always recover immediately */
2278 if (!xfs_sb_version_hascrc(&mp->m_sb))
2279 goto recover_immediately;
2280
2281 magic32 = be32_to_cpu(*(__be32 *)blk);
2282 switch (magic32) {
2283 case XFS_ABTB_CRC_MAGIC:
2284 case XFS_ABTC_CRC_MAGIC:
2285 case XFS_ABTB_MAGIC:
2286 case XFS_ABTC_MAGIC:
2287 case XFS_RMAP_CRC_MAGIC:
2288 case XFS_REFC_CRC_MAGIC:
2289 case XFS_IBT_CRC_MAGIC:
2290 case XFS_IBT_MAGIC: {
2291 struct xfs_btree_block *btb = blk;
2292
2293 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2294 uuid = &btb->bb_u.s.bb_uuid;
2295 break;
2296 }
2297 case XFS_BMAP_CRC_MAGIC:
2298 case XFS_BMAP_MAGIC: {
2299 struct xfs_btree_block *btb = blk;
2300
2301 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2302 uuid = &btb->bb_u.l.bb_uuid;
2303 break;
2304 }
2305 case XFS_AGF_MAGIC:
2306 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2307 uuid = &((struct xfs_agf *)blk)->agf_uuid;
2308 break;
2309 case XFS_AGFL_MAGIC:
2310 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2311 uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2312 break;
2313 case XFS_AGI_MAGIC:
2314 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2315 uuid = &((struct xfs_agi *)blk)->agi_uuid;
2316 break;
2317 case XFS_SYMLINK_MAGIC:
2318 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2319 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2320 break;
2321 case XFS_DIR3_BLOCK_MAGIC:
2322 case XFS_DIR3_DATA_MAGIC:
2323 case XFS_DIR3_FREE_MAGIC:
2324 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2325 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2326 break;
2327 case XFS_ATTR3_RMT_MAGIC:
2328 /*
2329 * Remote attr blocks are written synchronously, rather than
2330 * being logged. That means they do not contain a valid LSN
2331 * (i.e. transactionally ordered) in them, and hence any time we
2332 * see a buffer to replay over the top of a remote attribute
2333 * block we should simply do so.
2334 */
2335 goto recover_immediately;
2336 case XFS_SB_MAGIC:
2337 /*
2338 * superblock uuids are magic. We may or may not have a
2339 * sb_meta_uuid on disk, but it will be set in the in-core
2340 * superblock. We set the uuid pointer for verification
2341 * according to the superblock feature mask to ensure we check
2342 * the relevant UUID in the superblock.
2343 */
2344 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
2345 if (xfs_sb_version_hasmetauuid(&mp->m_sb))
2346 uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
2347 else
2348 uuid = &((struct xfs_dsb *)blk)->sb_uuid;
2349 break;
2350 default:
2351 break;
2352 }
2353
2354 if (lsn != (xfs_lsn_t)-1) {
2355 if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
2356 goto recover_immediately;
2357 return lsn;
2358 }
2359
2360 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2361 switch (magicda) {
2362 case XFS_DIR3_LEAF1_MAGIC:
2363 case XFS_DIR3_LEAFN_MAGIC:
2364 case XFS_DA3_NODE_MAGIC:
2365 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2366 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2367 break;
2368 default:
2369 break;
2370 }
2371
2372 if (lsn != (xfs_lsn_t)-1) {
2373 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2374 goto recover_immediately;
2375 return lsn;
2376 }
2377
2378 /*
2379 * We do individual object checks on dquot and inode buffers as they
2380 * have their own individual LSN records. Also, we could have a stale
2381 * buffer here, so we have to at least recognise these buffer types.
2382 *
2383 * A notd complexity here is inode unlinked list processing - it logs
2384 * the inode directly in the buffer, but we don't know which inodes have
2385 * been modified, and there is no global buffer LSN. Hence we need to
2386 * recover all inode buffer types immediately. This problem will be
2387 * fixed by logical logging of the unlinked list modifications.
2388 */
2389 magic16 = be16_to_cpu(*(__be16 *)blk);
2390 switch (magic16) {
2391 case XFS_DQUOT_MAGIC:
2392 case XFS_DINODE_MAGIC:
2393 goto recover_immediately;
2394 default:
2395 break;
2396 }
2397
2398 /* unknown buffer contents, recover immediately */
2399
2400recover_immediately:
2401 return (xfs_lsn_t)-1;
2402
2403}
2404
2405/*
2406 * Validate the recovered buffer is of the correct type and attach the
2407 * appropriate buffer operations to them for writeback. Magic numbers are in a
2408 * few places:
2409 * the first 16 bits of the buffer (inode buffer, dquot buffer),
2410 * the first 32 bits of the buffer (most blocks),
2411 * inside a struct xfs_da_blkinfo at the start of the buffer.
2412 */
2413static void
2414xlog_recover_validate_buf_type(
2415 struct xfs_mount *mp,
2416 struct xfs_buf *bp,
2417 xfs_buf_log_format_t *buf_f,
2418 xfs_lsn_t current_lsn)
2419{
2420 struct xfs_da_blkinfo *info = bp->b_addr;
2421 uint32_t magic32;
2422 uint16_t magic16;
2423 uint16_t magicda;
2424 char *warnmsg = NULL;
2425
2426 /*
2427 * We can only do post recovery validation on items on CRC enabled
2428 * fielsystems as we need to know when the buffer was written to be able
2429 * to determine if we should have replayed the item. If we replay old
2430 * metadata over a newer buffer, then it will enter a temporarily
2431 * inconsistent state resulting in verification failures. Hence for now
2432 * just avoid the verification stage for non-crc filesystems
2433 */
2434 if (!xfs_sb_version_hascrc(&mp->m_sb))
2435 return;
2436
2437 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2438 magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2439 magicda = be16_to_cpu(info->magic);
2440 switch (xfs_blft_from_flags(buf_f)) {
2441 case XFS_BLFT_BTREE_BUF:
2442 switch (magic32) {
2443 case XFS_ABTB_CRC_MAGIC:
2444 case XFS_ABTC_CRC_MAGIC:
2445 case XFS_ABTB_MAGIC:
2446 case XFS_ABTC_MAGIC:
2447 bp->b_ops = &xfs_allocbt_buf_ops;
2448 break;
2449 case XFS_IBT_CRC_MAGIC:
2450 case XFS_FIBT_CRC_MAGIC:
2451 case XFS_IBT_MAGIC:
2452 case XFS_FIBT_MAGIC:
2453 bp->b_ops = &xfs_inobt_buf_ops;
2454 break;
2455 case XFS_BMAP_CRC_MAGIC:
2456 case XFS_BMAP_MAGIC:
2457 bp->b_ops = &xfs_bmbt_buf_ops;
2458 break;
2459 case XFS_RMAP_CRC_MAGIC:
2460 bp->b_ops = &xfs_rmapbt_buf_ops;
2461 break;
2462 case XFS_REFC_CRC_MAGIC:
2463 bp->b_ops = &xfs_refcountbt_buf_ops;
2464 break;
2465 default:
2466 warnmsg = "Bad btree block magic!";
2467 break;
2468 }
2469 break;
2470 case XFS_BLFT_AGF_BUF:
2471 if (magic32 != XFS_AGF_MAGIC) {
2472 warnmsg = "Bad AGF block magic!";
2473 break;
2474 }
2475 bp->b_ops = &xfs_agf_buf_ops;
2476 break;
2477 case XFS_BLFT_AGFL_BUF:
2478 if (magic32 != XFS_AGFL_MAGIC) {
2479 warnmsg = "Bad AGFL block magic!";
2480 break;
2481 }
2482 bp->b_ops = &xfs_agfl_buf_ops;
2483 break;
2484 case XFS_BLFT_AGI_BUF:
2485 if (magic32 != XFS_AGI_MAGIC) {
2486 warnmsg = "Bad AGI block magic!";
2487 break;
2488 }
2489 bp->b_ops = &xfs_agi_buf_ops;
2490 break;
2491 case XFS_BLFT_UDQUOT_BUF:
2492 case XFS_BLFT_PDQUOT_BUF:
2493 case XFS_BLFT_GDQUOT_BUF:
2494#ifdef CONFIG_XFS_QUOTA
2495 if (magic16 != XFS_DQUOT_MAGIC) {
2496 warnmsg = "Bad DQUOT block magic!";
2497 break;
2498 }
2499 bp->b_ops = &xfs_dquot_buf_ops;
2500#else
2501 xfs_alert(mp,
2502 "Trying to recover dquots without QUOTA support built in!");
2503 ASSERT(0);
2504#endif
2505 break;
2506 case XFS_BLFT_DINO_BUF:
2507 if (magic16 != XFS_DINODE_MAGIC) {
2508 warnmsg = "Bad INODE block magic!";
2509 break;
2510 }
2511 bp->b_ops = &xfs_inode_buf_ops;
2512 break;
2513 case XFS_BLFT_SYMLINK_BUF:
2514 if (magic32 != XFS_SYMLINK_MAGIC) {
2515 warnmsg = "Bad symlink block magic!";
2516 break;
2517 }
2518 bp->b_ops = &xfs_symlink_buf_ops;
2519 break;
2520 case XFS_BLFT_DIR_BLOCK_BUF:
2521 if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2522 magic32 != XFS_DIR3_BLOCK_MAGIC) {
2523 warnmsg = "Bad dir block magic!";
2524 break;
2525 }
2526 bp->b_ops = &xfs_dir3_block_buf_ops;
2527 break;
2528 case XFS_BLFT_DIR_DATA_BUF:
2529 if (magic32 != XFS_DIR2_DATA_MAGIC &&
2530 magic32 != XFS_DIR3_DATA_MAGIC) {
2531 warnmsg = "Bad dir data magic!";
2532 break;
2533 }
2534 bp->b_ops = &xfs_dir3_data_buf_ops;
2535 break;
2536 case XFS_BLFT_DIR_FREE_BUF:
2537 if (magic32 != XFS_DIR2_FREE_MAGIC &&
2538 magic32 != XFS_DIR3_FREE_MAGIC) {
2539 warnmsg = "Bad dir3 free magic!";
2540 break;
2541 }
2542 bp->b_ops = &xfs_dir3_free_buf_ops;
2543 break;
2544 case XFS_BLFT_DIR_LEAF1_BUF:
2545 if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2546 magicda != XFS_DIR3_LEAF1_MAGIC) {
2547 warnmsg = "Bad dir leaf1 magic!";
2548 break;
2549 }
2550 bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2551 break;
2552 case XFS_BLFT_DIR_LEAFN_BUF:
2553 if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2554 magicda != XFS_DIR3_LEAFN_MAGIC) {
2555 warnmsg = "Bad dir leafn magic!";
2556 break;
2557 }
2558 bp->b_ops = &xfs_dir3_leafn_buf_ops;
2559 break;
2560 case XFS_BLFT_DA_NODE_BUF:
2561 if (magicda != XFS_DA_NODE_MAGIC &&
2562 magicda != XFS_DA3_NODE_MAGIC) {
2563 warnmsg = "Bad da node magic!";
2564 break;
2565 }
2566 bp->b_ops = &xfs_da3_node_buf_ops;
2567 break;
2568 case XFS_BLFT_ATTR_LEAF_BUF:
2569 if (magicda != XFS_ATTR_LEAF_MAGIC &&
2570 magicda != XFS_ATTR3_LEAF_MAGIC) {
2571 warnmsg = "Bad attr leaf magic!";
2572 break;
2573 }
2574 bp->b_ops = &xfs_attr3_leaf_buf_ops;
2575 break;
2576 case XFS_BLFT_ATTR_RMT_BUF:
2577 if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2578 warnmsg = "Bad attr remote magic!";
2579 break;
2580 }
2581 bp->b_ops = &xfs_attr3_rmt_buf_ops;
2582 break;
2583 case XFS_BLFT_SB_BUF:
2584 if (magic32 != XFS_SB_MAGIC) {
2585 warnmsg = "Bad SB block magic!";
2586 break;
2587 }
2588 bp->b_ops = &xfs_sb_buf_ops;
2589 break;
2590#ifdef CONFIG_XFS_RT
2591 case XFS_BLFT_RTBITMAP_BUF:
2592 case XFS_BLFT_RTSUMMARY_BUF:
2593 /* no magic numbers for verification of RT buffers */
2594 bp->b_ops = &xfs_rtbuf_ops;
2595 break;
2596#endif /* CONFIG_XFS_RT */
2597 default:
2598 xfs_warn(mp, "Unknown buffer type %d!",
2599 xfs_blft_from_flags(buf_f));
2600 break;
2601 }
2602
2603 /*
2604 * Nothing else to do in the case of a NULL current LSN as this means
2605 * the buffer is more recent than the change in the log and will be
2606 * skipped.
2607 */
2608 if (current_lsn == NULLCOMMITLSN)
2609 return;
2610
2611 if (warnmsg) {
2612 xfs_warn(mp, warnmsg);
2613 ASSERT(0);
2614 }
2615
2616 /*
2617 * We must update the metadata LSN of the buffer as it is written out to
2618 * ensure that older transactions never replay over this one and corrupt
2619 * the buffer. This can occur if log recovery is interrupted at some
2620 * point after the current transaction completes, at which point a
2621 * subsequent mount starts recovery from the beginning.
2622 *
2623 * Write verifiers update the metadata LSN from log items attached to
2624 * the buffer. Therefore, initialize a bli purely to carry the LSN to
2625 * the verifier. We'll clean it up in our ->iodone() callback.
2626 */
2627 if (bp->b_ops) {
2628 struct xfs_buf_log_item *bip;
2629
2630 ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone);
2631 bp->b_iodone = xlog_recover_iodone;
2632 xfs_buf_item_init(bp, mp);
2633 bip = bp->b_log_item;
2634 bip->bli_item.li_lsn = current_lsn;
2635 }
2636}
2637
2638/*
2639 * Perform a 'normal' buffer recovery. Each logged region of the
2640 * buffer should be copied over the corresponding region in the
2641 * given buffer. The bitmap in the buf log format structure indicates
2642 * where to place the logged data.
2643 */
2644STATIC void
2645xlog_recover_do_reg_buffer(
2646 struct xfs_mount *mp,
2647 xlog_recover_item_t *item,
2648 struct xfs_buf *bp,
2649 xfs_buf_log_format_t *buf_f,
2650 xfs_lsn_t current_lsn)
2651{
2652 int i;
2653 int bit;
2654 int nbits;
2655 xfs_failaddr_t fa;
2656
2657 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2658
2659 bit = 0;
2660 i = 1; /* 0 is the buf format structure */
2661 while (1) {
2662 bit = xfs_next_bit(buf_f->blf_data_map,
2663 buf_f->blf_map_size, bit);
2664 if (bit == -1)
2665 break;
2666 nbits = xfs_contig_bits(buf_f->blf_data_map,
2667 buf_f->blf_map_size, bit);
2668 ASSERT(nbits > 0);
2669 ASSERT(item->ri_buf[i].i_addr != NULL);
2670 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2671 ASSERT(BBTOB(bp->b_io_length) >=
2672 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2673
2674 /*
2675 * The dirty regions logged in the buffer, even though
2676 * contiguous, may span multiple chunks. This is because the
2677 * dirty region may span a physical page boundary in a buffer
2678 * and hence be split into two separate vectors for writing into
2679 * the log. Hence we need to trim nbits back to the length of
2680 * the current region being copied out of the log.
2681 */
2682 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2683 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2684
2685 /*
2686 * Do a sanity check if this is a dquot buffer. Just checking
2687 * the first dquot in the buffer should do. XXXThis is
2688 * probably a good thing to do for other buf types also.
2689 */
2690 fa = NULL;
2691 if (buf_f->blf_flags &
2692 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2693 if (item->ri_buf[i].i_addr == NULL) {
2694 xfs_alert(mp,
2695 "XFS: NULL dquot in %s.", __func__);
2696 goto next;
2697 }
2698 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2699 xfs_alert(mp,
2700 "XFS: dquot too small (%d) in %s.",
2701 item->ri_buf[i].i_len, __func__);
2702 goto next;
2703 }
2704 fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr,
2705 -1, 0, 0);
2706 if (fa) {
2707 xfs_alert(mp,
2708 "dquot corrupt at %pS trying to replay into block 0x%llx",
2709 fa, bp->b_bn);
2710 goto next;
2711 }
2712 }
2713
2714 memcpy(xfs_buf_offset(bp,
2715 (uint)bit << XFS_BLF_SHIFT), /* dest */
2716 item->ri_buf[i].i_addr, /* source */
2717 nbits<<XFS_BLF_SHIFT); /* length */
2718 next:
2719 i++;
2720 bit += nbits;
2721 }
2722
2723 /* Shouldn't be any more regions */
2724 ASSERT(i == item->ri_total);
2725
2726 xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn);
2727}
2728
2729/*
2730 * Perform a dquot buffer recovery.
2731 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2732 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2733 * Else, treat it as a regular buffer and do recovery.
2734 *
2735 * Return false if the buffer was tossed and true if we recovered the buffer to
2736 * indicate to the caller if the buffer needs writing.
2737 */
2738STATIC bool
2739xlog_recover_do_dquot_buffer(
2740 struct xfs_mount *mp,
2741 struct xlog *log,
2742 struct xlog_recover_item *item,
2743 struct xfs_buf *bp,
2744 struct xfs_buf_log_format *buf_f)
2745{
2746 uint type;
2747
2748 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2749
2750 /*
2751 * Filesystems are required to send in quota flags at mount time.
2752 */
2753 if (!mp->m_qflags)
2754 return false;
2755
2756 type = 0;
2757 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2758 type |= XFS_DQ_USER;
2759 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2760 type |= XFS_DQ_PROJ;
2761 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2762 type |= XFS_DQ_GROUP;
2763 /*
2764 * This type of quotas was turned off, so ignore this buffer
2765 */
2766 if (log->l_quotaoffs_flag & type)
2767 return false;
2768
2769 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN);
2770 return true;
2771}
2772
2773/*
2774 * This routine replays a modification made to a buffer at runtime.
2775 * There are actually two types of buffer, regular and inode, which
2776 * are handled differently. Inode buffers are handled differently
2777 * in that we only recover a specific set of data from them, namely
2778 * the inode di_next_unlinked fields. This is because all other inode
2779 * data is actually logged via inode records and any data we replay
2780 * here which overlaps that may be stale.
2781 *
2782 * When meta-data buffers are freed at run time we log a buffer item
2783 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2784 * of the buffer in the log should not be replayed at recovery time.
2785 * This is so that if the blocks covered by the buffer are reused for
2786 * file data before we crash we don't end up replaying old, freed
2787 * meta-data into a user's file.
2788 *
2789 * To handle the cancellation of buffer log items, we make two passes
2790 * over the log during recovery. During the first we build a table of
2791 * those buffers which have been cancelled, and during the second we
2792 * only replay those buffers which do not have corresponding cancel
2793 * records in the table. See xlog_recover_buffer_pass[1,2] above
2794 * for more details on the implementation of the table of cancel records.
2795 */
2796STATIC int
2797xlog_recover_buffer_pass2(
2798 struct xlog *log,
2799 struct list_head *buffer_list,
2800 struct xlog_recover_item *item,
2801 xfs_lsn_t current_lsn)
2802{
2803 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
2804 xfs_mount_t *mp = log->l_mp;
2805 xfs_buf_t *bp;
2806 int error;
2807 uint buf_flags;
2808 xfs_lsn_t lsn;
2809
2810 /*
2811 * In this pass we only want to recover all the buffers which have
2812 * not been cancelled and are not cancellation buffers themselves.
2813 */
2814 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2815 buf_f->blf_len, buf_f->blf_flags)) {
2816 trace_xfs_log_recover_buf_cancel(log, buf_f);
2817 return 0;
2818 }
2819
2820 trace_xfs_log_recover_buf_recover(log, buf_f);
2821
2822 buf_flags = 0;
2823 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2824 buf_flags |= XBF_UNMAPPED;
2825
2826 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2827 buf_flags, NULL);
2828 if (!bp)
2829 return -ENOMEM;
2830 error = bp->b_error;
2831 if (error) {
2832 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2833 goto out_release;
2834 }
2835
2836 /*
2837 * Recover the buffer only if we get an LSN from it and it's less than
2838 * the lsn of the transaction we are replaying.
2839 *
2840 * Note that we have to be extremely careful of readahead here.
2841 * Readahead does not attach verfiers to the buffers so if we don't
2842 * actually do any replay after readahead because of the LSN we found
2843 * in the buffer if more recent than that current transaction then we
2844 * need to attach the verifier directly. Failure to do so can lead to
2845 * future recovery actions (e.g. EFI and unlinked list recovery) can
2846 * operate on the buffers and they won't get the verifier attached. This
2847 * can lead to blocks on disk having the correct content but a stale
2848 * CRC.
2849 *
2850 * It is safe to assume these clean buffers are currently up to date.
2851 * If the buffer is dirtied by a later transaction being replayed, then
2852 * the verifier will be reset to match whatever recover turns that
2853 * buffer into.
2854 */
2855 lsn = xlog_recover_get_buf_lsn(mp, bp);
2856 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2857 trace_xfs_log_recover_buf_skip(log, buf_f);
2858 xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN);
2859 goto out_release;
2860 }
2861
2862 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2863 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2864 if (error)
2865 goto out_release;
2866 } else if (buf_f->blf_flags &
2867 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2868 bool dirty;
2869
2870 dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2871 if (!dirty)
2872 goto out_release;
2873 } else {
2874 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
2875 }
2876
2877 /*
2878 * Perform delayed write on the buffer. Asynchronous writes will be
2879 * slower when taking into account all the buffers to be flushed.
2880 *
2881 * Also make sure that only inode buffers with good sizes stay in
2882 * the buffer cache. The kernel moves inodes in buffers of 1 block
2883 * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode
2884 * buffers in the log can be a different size if the log was generated
2885 * by an older kernel using unclustered inode buffers or a newer kernel
2886 * running with a different inode cluster size. Regardless, if the
2887 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
2888 * for *our* value of mp->m_inode_cluster_size, then we need to keep
2889 * the buffer out of the buffer cache so that the buffer won't
2890 * overlap with future reads of those inodes.
2891 */
2892 if (XFS_DINODE_MAGIC ==
2893 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2894 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2895 (uint32_t)log->l_mp->m_inode_cluster_size))) {
2896 xfs_buf_stale(bp);
2897 error = xfs_bwrite(bp);
2898 } else {
2899 ASSERT(bp->b_target->bt_mount == mp);
2900 bp->b_iodone = xlog_recover_iodone;
2901 xfs_buf_delwri_queue(bp, buffer_list);
2902 }
2903
2904out_release:
2905 xfs_buf_relse(bp);
2906 return error;
2907}
2908
2909/*
2910 * Inode fork owner changes
2911 *
2912 * If we have been told that we have to reparent the inode fork, it's because an
2913 * extent swap operation on a CRC enabled filesystem has been done and we are
2914 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2915 * owners of it.
2916 *
2917 * The complexity here is that we don't have an inode context to work with, so
2918 * after we've replayed the inode we need to instantiate one. This is where the
2919 * fun begins.
2920 *
2921 * We are in the middle of log recovery, so we can't run transactions. That
2922 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2923 * that will result in the corresponding iput() running the inode through
2924 * xfs_inactive(). If we've just replayed an inode core that changes the link
2925 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2926 * transactions (bad!).
2927 *
2928 * So, to avoid this, we instantiate an inode directly from the inode core we've
2929 * just recovered. We have the buffer still locked, and all we really need to
2930 * instantiate is the inode core and the forks being modified. We can do this
2931 * manually, then run the inode btree owner change, and then tear down the
2932 * xfs_inode without having to run any transactions at all.
2933 *
2934 * Also, because we don't have a transaction context available here but need to
2935 * gather all the buffers we modify for writeback so we pass the buffer_list
2936 * instead for the operation to use.
2937 */
2938
2939STATIC int
2940xfs_recover_inode_owner_change(
2941 struct xfs_mount *mp,
2942 struct xfs_dinode *dip,
2943 struct xfs_inode_log_format *in_f,
2944 struct list_head *buffer_list)
2945{
2946 struct xfs_inode *ip;
2947 int error;
2948
2949 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2950
2951 ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2952 if (!ip)
2953 return -ENOMEM;
2954
2955 /* instantiate the inode */
2956 xfs_inode_from_disk(ip, dip);
2957 ASSERT(ip->i_d.di_version >= 3);
2958
2959 error = xfs_iformat_fork(ip, dip);
2960 if (error)
2961 goto out_free_ip;
2962
2963 if (!xfs_inode_verify_forks(ip)) {
2964 error = -EFSCORRUPTED;
2965 goto out_free_ip;
2966 }
2967
2968 if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2969 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2970 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2971 ip->i_ino, buffer_list);
2972 if (error)
2973 goto out_free_ip;
2974 }
2975
2976 if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2977 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2978 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2979 ip->i_ino, buffer_list);
2980 if (error)
2981 goto out_free_ip;
2982 }
2983
2984out_free_ip:
2985 xfs_inode_free(ip);
2986 return error;
2987}
2988
2989STATIC int
2990xlog_recover_inode_pass2(
2991 struct xlog *log,
2992 struct list_head *buffer_list,
2993 struct xlog_recover_item *item,
2994 xfs_lsn_t current_lsn)
2995{
2996 struct xfs_inode_log_format *in_f;
2997 xfs_mount_t *mp = log->l_mp;
2998 xfs_buf_t *bp;
2999 xfs_dinode_t *dip;
3000 int len;
3001 char *src;
3002 char *dest;
3003 int error;
3004 int attr_index;
3005 uint fields;
3006 struct xfs_log_dinode *ldip;
3007 uint isize;
3008 int need_free = 0;
3009
3010 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3011 in_f = item->ri_buf[0].i_addr;
3012 } else {
3013 in_f = kmem_alloc(sizeof(struct xfs_inode_log_format), KM_SLEEP);
3014 need_free = 1;
3015 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
3016 if (error)
3017 goto error;
3018 }
3019
3020 /*
3021 * Inode buffers can be freed, look out for it,
3022 * and do not replay the inode.
3023 */
3024 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
3025 in_f->ilf_len, 0)) {
3026 error = 0;
3027 trace_xfs_log_recover_inode_cancel(log, in_f);
3028 goto error;
3029 }
3030 trace_xfs_log_recover_inode_recover(log, in_f);
3031
3032 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
3033 &xfs_inode_buf_ops);
3034 if (!bp) {
3035 error = -ENOMEM;
3036 goto error;
3037 }
3038 error = bp->b_error;
3039 if (error) {
3040 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
3041 goto out_release;
3042 }
3043 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
3044 dip = xfs_buf_offset(bp, in_f->ilf_boffset);
3045
3046 /*
3047 * Make sure the place we're flushing out to really looks
3048 * like an inode!
3049 */
3050 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
3051 xfs_alert(mp,
3052 "%s: Bad inode magic number, dip = "PTR_FMT", dino bp = "PTR_FMT", ino = %Ld",
3053 __func__, dip, bp, in_f->ilf_ino);
3054 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
3055 XFS_ERRLEVEL_LOW, mp);
3056 error = -EFSCORRUPTED;
3057 goto out_release;
3058 }
3059 ldip = item->ri_buf[1].i_addr;
3060 if (unlikely(ldip->di_magic != XFS_DINODE_MAGIC)) {
3061 xfs_alert(mp,
3062 "%s: Bad inode log record, rec ptr "PTR_FMT", ino %Ld",
3063 __func__, item, in_f->ilf_ino);
3064 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
3065 XFS_ERRLEVEL_LOW, mp);
3066 error = -EFSCORRUPTED;
3067 goto out_release;
3068 }
3069
3070 /*
3071 * If the inode has an LSN in it, recover the inode only if it's less
3072 * than the lsn of the transaction we are replaying. Note: we still
3073 * need to replay an owner change even though the inode is more recent
3074 * than the transaction as there is no guarantee that all the btree
3075 * blocks are more recent than this transaction, too.
3076 */
3077 if (dip->di_version >= 3) {
3078 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn);
3079
3080 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3081 trace_xfs_log_recover_inode_skip(log, in_f);
3082 error = 0;
3083 goto out_owner_change;
3084 }
3085 }
3086
3087 /*
3088 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
3089 * are transactional and if ordering is necessary we can determine that
3090 * more accurately by the LSN field in the V3 inode core. Don't trust
3091 * the inode versions we might be changing them here - use the
3092 * superblock flag to determine whether we need to look at di_flushiter
3093 * to skip replay when the on disk inode is newer than the log one
3094 */
3095 if (!xfs_sb_version_hascrc(&mp->m_sb) &&
3096 ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
3097 /*
3098 * Deal with the wrap case, DI_MAX_FLUSH is less
3099 * than smaller numbers
3100 */
3101 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
3102 ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) {
3103 /* do nothing */
3104 } else {
3105 trace_xfs_log_recover_inode_skip(log, in_f);
3106 error = 0;
3107 goto out_release;
3108 }
3109 }
3110
3111 /* Take the opportunity to reset the flush iteration count */
3112 ldip->di_flushiter = 0;
3113
3114 if (unlikely(S_ISREG(ldip->di_mode))) {
3115 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3116 (ldip->di_format != XFS_DINODE_FMT_BTREE)) {
3117 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
3118 XFS_ERRLEVEL_LOW, mp, ldip);
3119 xfs_alert(mp,
3120 "%s: Bad regular inode log record, rec ptr "PTR_FMT", "
3121 "ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld",
3122 __func__, item, dip, bp, in_f->ilf_ino);
3123 error = -EFSCORRUPTED;
3124 goto out_release;
3125 }
3126 } else if (unlikely(S_ISDIR(ldip->di_mode))) {
3127 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3128 (ldip->di_format != XFS_DINODE_FMT_BTREE) &&
3129 (ldip->di_format != XFS_DINODE_FMT_LOCAL)) {
3130 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
3131 XFS_ERRLEVEL_LOW, mp, ldip);
3132 xfs_alert(mp,
3133 "%s: Bad dir inode log record, rec ptr "PTR_FMT", "
3134 "ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld",
3135 __func__, item, dip, bp, in_f->ilf_ino);
3136 error = -EFSCORRUPTED;
3137 goto out_release;
3138 }
3139 }
3140 if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){
3141 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
3142 XFS_ERRLEVEL_LOW, mp, ldip);
3143 xfs_alert(mp,
3144 "%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", "
3145 "dino bp "PTR_FMT", ino %Ld, total extents = %d, nblocks = %Ld",
3146 __func__, item, dip, bp, in_f->ilf_ino,
3147 ldip->di_nextents + ldip->di_anextents,
3148 ldip->di_nblocks);
3149 error = -EFSCORRUPTED;
3150 goto out_release;
3151 }
3152 if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) {
3153 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
3154 XFS_ERRLEVEL_LOW, mp, ldip);
3155 xfs_alert(mp,
3156 "%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", "
3157 "dino bp "PTR_FMT", ino %Ld, forkoff 0x%x", __func__,
3158 item, dip, bp, in_f->ilf_ino, ldip->di_forkoff);
3159 error = -EFSCORRUPTED;
3160 goto out_release;
3161 }
3162 isize = xfs_log_dinode_size(ldip->di_version);
3163 if (unlikely(item->ri_buf[1].i_len > isize)) {
3164 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
3165 XFS_ERRLEVEL_LOW, mp, ldip);
3166 xfs_alert(mp,
3167 "%s: Bad inode log record length %d, rec ptr "PTR_FMT,
3168 __func__, item->ri_buf[1].i_len, item);
3169 error = -EFSCORRUPTED;
3170 goto out_release;
3171 }
3172
3173 /* recover the log dinode inode into the on disk inode */
3174 xfs_log_dinode_to_disk(ldip, dip);
3175
3176 fields = in_f->ilf_fields;
3177 if (fields & XFS_ILOG_DEV)
3178 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
3179
3180 if (in_f->ilf_size == 2)
3181 goto out_owner_change;
3182 len = item->ri_buf[2].i_len;
3183 src = item->ri_buf[2].i_addr;
3184 ASSERT(in_f->ilf_size <= 4);
3185 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
3186 ASSERT(!(fields & XFS_ILOG_DFORK) ||
3187 (len == in_f->ilf_dsize));
3188
3189 switch (fields & XFS_ILOG_DFORK) {
3190 case XFS_ILOG_DDATA:
3191 case XFS_ILOG_DEXT:
3192 memcpy(XFS_DFORK_DPTR(dip), src, len);
3193 break;
3194
3195 case XFS_ILOG_DBROOT:
3196 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
3197 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
3198 XFS_DFORK_DSIZE(dip, mp));
3199 break;
3200
3201 default:
3202 /*
3203 * There are no data fork flags set.
3204 */
3205 ASSERT((fields & XFS_ILOG_DFORK) == 0);
3206 break;
3207 }
3208
3209 /*
3210 * If we logged any attribute data, recover it. There may or
3211 * may not have been any other non-core data logged in this
3212 * transaction.
3213 */
3214 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
3215 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
3216 attr_index = 3;
3217 } else {
3218 attr_index = 2;
3219 }
3220 len = item->ri_buf[attr_index].i_len;
3221 src = item->ri_buf[attr_index].i_addr;
3222 ASSERT(len == in_f->ilf_asize);
3223
3224 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
3225 case XFS_ILOG_ADATA:
3226 case XFS_ILOG_AEXT:
3227 dest = XFS_DFORK_APTR(dip);
3228 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
3229 memcpy(dest, src, len);
3230 break;
3231
3232 case XFS_ILOG_ABROOT:
3233 dest = XFS_DFORK_APTR(dip);
3234 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
3235 len, (xfs_bmdr_block_t*)dest,
3236 XFS_DFORK_ASIZE(dip, mp));
3237 break;
3238
3239 default:
3240 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
3241 ASSERT(0);
3242 error = -EIO;
3243 goto out_release;
3244 }
3245 }
3246
3247out_owner_change:
3248 /* Recover the swapext owner change unless inode has been deleted */
3249 if ((in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)) &&
3250 (dip->di_mode != 0))
3251 error = xfs_recover_inode_owner_change(mp, dip, in_f,
3252 buffer_list);
3253 /* re-generate the checksum. */
3254 xfs_dinode_calc_crc(log->l_mp, dip);
3255
3256 ASSERT(bp->b_target->bt_mount == mp);
3257 bp->b_iodone = xlog_recover_iodone;
3258 xfs_buf_delwri_queue(bp, buffer_list);
3259
3260out_release:
3261 xfs_buf_relse(bp);
3262error:
3263 if (need_free)
3264 kmem_free(in_f);
3265 return error;
3266}
3267
3268/*
3269 * Recover QUOTAOFF records. We simply make a note of it in the xlog
3270 * structure, so that we know not to do any dquot item or dquot buffer recovery,
3271 * of that type.
3272 */
3273STATIC int
3274xlog_recover_quotaoff_pass1(
3275 struct xlog *log,
3276 struct xlog_recover_item *item)
3277{
3278 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
3279 ASSERT(qoff_f);
3280
3281 /*
3282 * The logitem format's flag tells us if this was user quotaoff,
3283 * group/project quotaoff or both.
3284 */
3285 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
3286 log->l_quotaoffs_flag |= XFS_DQ_USER;
3287 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
3288 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
3289 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
3290 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
3291
3292 return 0;
3293}
3294
3295/*
3296 * Recover a dquot record
3297 */
3298STATIC int
3299xlog_recover_dquot_pass2(
3300 struct xlog *log,
3301 struct list_head *buffer_list,
3302 struct xlog_recover_item *item,
3303 xfs_lsn_t current_lsn)
3304{
3305 xfs_mount_t *mp = log->l_mp;
3306 xfs_buf_t *bp;
3307 struct xfs_disk_dquot *ddq, *recddq;
3308 xfs_failaddr_t fa;
3309 int error;
3310 xfs_dq_logformat_t *dq_f;
3311 uint type;
3312
3313
3314 /*
3315 * Filesystems are required to send in quota flags at mount time.
3316 */
3317 if (mp->m_qflags == 0)
3318 return 0;
3319
3320 recddq = item->ri_buf[1].i_addr;
3321 if (recddq == NULL) {
3322 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
3323 return -EIO;
3324 }
3325 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
3326 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
3327 item->ri_buf[1].i_len, __func__);
3328 return -EIO;
3329 }
3330
3331 /*
3332 * This type of quotas was turned off, so ignore this record.
3333 */
3334 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3335 ASSERT(type);
3336 if (log->l_quotaoffs_flag & type)
3337 return 0;
3338
3339 /*
3340 * At this point we know that quota was _not_ turned off.
3341 * Since the mount flags are not indicating to us otherwise, this
3342 * must mean that quota is on, and the dquot needs to be replayed.
3343 * Remember that we may not have fully recovered the superblock yet,
3344 * so we can't do the usual trick of looking at the SB quota bits.
3345 *
3346 * The other possibility, of course, is that the quota subsystem was
3347 * removed since the last mount - ENOSYS.
3348 */
3349 dq_f = item->ri_buf[0].i_addr;
3350 ASSERT(dq_f);
3351 fa = xfs_dquot_verify(mp, recddq, dq_f->qlf_id, 0, 0);
3352 if (fa) {
3353 xfs_alert(mp, "corrupt dquot ID 0x%x in log at %pS",
3354 dq_f->qlf_id, fa);
3355 return -EIO;
3356 }
3357 ASSERT(dq_f->qlf_len == 1);
3358
3359 /*
3360 * At this point we are assuming that the dquots have been allocated
3361 * and hence the buffer has valid dquots stamped in it. It should,
3362 * therefore, pass verifier validation. If the dquot is bad, then the
3363 * we'll return an error here, so we don't need to specifically check
3364 * the dquot in the buffer after the verifier has run.
3365 */
3366 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
3367 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
3368 &xfs_dquot_buf_ops);
3369 if (error)
3370 return error;
3371
3372 ASSERT(bp);
3373 ddq = xfs_buf_offset(bp, dq_f->qlf_boffset);
3374
3375 /*
3376 * If the dquot has an LSN in it, recover the dquot only if it's less
3377 * than the lsn of the transaction we are replaying.
3378 */
3379 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3380 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3381 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn);
3382
3383 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3384 goto out_release;
3385 }
3386 }
3387
3388 memcpy(ddq, recddq, item->ri_buf[1].i_len);
3389 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3390 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3391 XFS_DQUOT_CRC_OFF);
3392 }
3393
3394 ASSERT(dq_f->qlf_size == 2);
3395 ASSERT(bp->b_target->bt_mount == mp);
3396 bp->b_iodone = xlog_recover_iodone;
3397 xfs_buf_delwri_queue(bp, buffer_list);
3398
3399out_release:
3400 xfs_buf_relse(bp);
3401 return 0;
3402}
3403
3404/*
3405 * This routine is called to create an in-core extent free intent
3406 * item from the efi format structure which was logged on disk.
3407 * It allocates an in-core efi, copies the extents from the format
3408 * structure into it, and adds the efi to the AIL with the given
3409 * LSN.
3410 */
3411STATIC int
3412xlog_recover_efi_pass2(
3413 struct xlog *log,
3414 struct xlog_recover_item *item,
3415 xfs_lsn_t lsn)
3416{
3417 int error;
3418 struct xfs_mount *mp = log->l_mp;
3419 struct xfs_efi_log_item *efip;
3420 struct xfs_efi_log_format *efi_formatp;
3421
3422 efi_formatp = item->ri_buf[0].i_addr;
3423
3424 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
3425 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
3426 if (error) {
3427 xfs_efi_item_free(efip);
3428 return error;
3429 }
3430 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
3431
3432 spin_lock(&log->l_ailp->ail_lock);
3433 /*
3434 * The EFI has two references. One for the EFD and one for EFI to ensure
3435 * it makes it into the AIL. Insert the EFI into the AIL directly and
3436 * drop the EFI reference. Note that xfs_trans_ail_update() drops the
3437 * AIL lock.
3438 */
3439 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
3440 xfs_efi_release(efip);
3441 return 0;
3442}
3443
3444
3445/*
3446 * This routine is called when an EFD format structure is found in a committed
3447 * transaction in the log. Its purpose is to cancel the corresponding EFI if it
3448 * was still in the log. To do this it searches the AIL for the EFI with an id
3449 * equal to that in the EFD format structure. If we find it we drop the EFD
3450 * reference, which removes the EFI from the AIL and frees it.
3451 */
3452STATIC int
3453xlog_recover_efd_pass2(
3454 struct xlog *log,
3455 struct xlog_recover_item *item)
3456{
3457 xfs_efd_log_format_t *efd_formatp;
3458 xfs_efi_log_item_t *efip = NULL;
3459 xfs_log_item_t *lip;
3460 uint64_t efi_id;
3461 struct xfs_ail_cursor cur;
3462 struct xfs_ail *ailp = log->l_ailp;
3463
3464 efd_formatp = item->ri_buf[0].i_addr;
3465 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3466 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3467 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3468 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
3469 efi_id = efd_formatp->efd_efi_id;
3470
3471 /*
3472 * Search for the EFI with the id in the EFD format structure in the
3473 * AIL.
3474 */
3475 spin_lock(&ailp->ail_lock);
3476 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3477 while (lip != NULL) {
3478 if (lip->li_type == XFS_LI_EFI) {
3479 efip = (xfs_efi_log_item_t *)lip;
3480 if (efip->efi_format.efi_id == efi_id) {
3481 /*
3482 * Drop the EFD reference to the EFI. This
3483 * removes the EFI from the AIL and frees it.
3484 */
3485 spin_unlock(&ailp->ail_lock);
3486 xfs_efi_release(efip);
3487 spin_lock(&ailp->ail_lock);
3488 break;
3489 }
3490 }
3491 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3492 }
3493
3494 xfs_trans_ail_cursor_done(&cur);
3495 spin_unlock(&ailp->ail_lock);
3496
3497 return 0;
3498}
3499
3500/*
3501 * This routine is called to create an in-core extent rmap update
3502 * item from the rui format structure which was logged on disk.
3503 * It allocates an in-core rui, copies the extents from the format
3504 * structure into it, and adds the rui to the AIL with the given
3505 * LSN.
3506 */
3507STATIC int
3508xlog_recover_rui_pass2(
3509 struct xlog *log,
3510 struct xlog_recover_item *item,
3511 xfs_lsn_t lsn)
3512{
3513 int error;
3514 struct xfs_mount *mp = log->l_mp;
3515 struct xfs_rui_log_item *ruip;
3516 struct xfs_rui_log_format *rui_formatp;
3517
3518 rui_formatp = item->ri_buf[0].i_addr;
3519
3520 ruip = xfs_rui_init(mp, rui_formatp->rui_nextents);
3521 error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format);
3522 if (error) {
3523 xfs_rui_item_free(ruip);
3524 return error;
3525 }
3526 atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents);
3527
3528 spin_lock(&log->l_ailp->ail_lock);
3529 /*
3530 * The RUI has two references. One for the RUD and one for RUI to ensure
3531 * it makes it into the AIL. Insert the RUI into the AIL directly and
3532 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3533 * AIL lock.
3534 */
3535 xfs_trans_ail_update(log->l_ailp, &ruip->rui_item, lsn);
3536 xfs_rui_release(ruip);
3537 return 0;
3538}
3539
3540
3541/*
3542 * This routine is called when an RUD format structure is found in a committed
3543 * transaction in the log. Its purpose is to cancel the corresponding RUI if it
3544 * was still in the log. To do this it searches the AIL for the RUI with an id
3545 * equal to that in the RUD format structure. If we find it we drop the RUD
3546 * reference, which removes the RUI from the AIL and frees it.
3547 */
3548STATIC int
3549xlog_recover_rud_pass2(
3550 struct xlog *log,
3551 struct xlog_recover_item *item)
3552{
3553 struct xfs_rud_log_format *rud_formatp;
3554 struct xfs_rui_log_item *ruip = NULL;
3555 struct xfs_log_item *lip;
3556 uint64_t rui_id;
3557 struct xfs_ail_cursor cur;
3558 struct xfs_ail *ailp = log->l_ailp;
3559
3560 rud_formatp = item->ri_buf[0].i_addr;
3561 ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format));
3562 rui_id = rud_formatp->rud_rui_id;
3563
3564 /*
3565 * Search for the RUI with the id in the RUD format structure in the
3566 * AIL.
3567 */
3568 spin_lock(&ailp->ail_lock);
3569 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3570 while (lip != NULL) {
3571 if (lip->li_type == XFS_LI_RUI) {
3572 ruip = (struct xfs_rui_log_item *)lip;
3573 if (ruip->rui_format.rui_id == rui_id) {
3574 /*
3575 * Drop the RUD reference to the RUI. This
3576 * removes the RUI from the AIL and frees it.
3577 */
3578 spin_unlock(&ailp->ail_lock);
3579 xfs_rui_release(ruip);
3580 spin_lock(&ailp->ail_lock);
3581 break;
3582 }
3583 }
3584 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3585 }
3586
3587 xfs_trans_ail_cursor_done(&cur);
3588 spin_unlock(&ailp->ail_lock);
3589
3590 return 0;
3591}
3592
3593/*
3594 * Copy an CUI format buffer from the given buf, and into the destination
3595 * CUI format structure. The CUI/CUD items were designed not to need any
3596 * special alignment handling.
3597 */
3598static int
3599xfs_cui_copy_format(
3600 struct xfs_log_iovec *buf,
3601 struct xfs_cui_log_format *dst_cui_fmt)
3602{
3603 struct xfs_cui_log_format *src_cui_fmt;
3604 uint len;
3605
3606 src_cui_fmt = buf->i_addr;
3607 len = xfs_cui_log_format_sizeof(src_cui_fmt->cui_nextents);
3608
3609 if (buf->i_len == len) {
3610 memcpy(dst_cui_fmt, src_cui_fmt, len);
3611 return 0;
3612 }
3613 return -EFSCORRUPTED;
3614}
3615
3616/*
3617 * This routine is called to create an in-core extent refcount update
3618 * item from the cui format structure which was logged on disk.
3619 * It allocates an in-core cui, copies the extents from the format
3620 * structure into it, and adds the cui to the AIL with the given
3621 * LSN.
3622 */
3623STATIC int
3624xlog_recover_cui_pass2(
3625 struct xlog *log,
3626 struct xlog_recover_item *item,
3627 xfs_lsn_t lsn)
3628{
3629 int error;
3630 struct xfs_mount *mp = log->l_mp;
3631 struct xfs_cui_log_item *cuip;
3632 struct xfs_cui_log_format *cui_formatp;
3633
3634 cui_formatp = item->ri_buf[0].i_addr;
3635
3636 cuip = xfs_cui_init(mp, cui_formatp->cui_nextents);
3637 error = xfs_cui_copy_format(&item->ri_buf[0], &cuip->cui_format);
3638 if (error) {
3639 xfs_cui_item_free(cuip);
3640 return error;
3641 }
3642 atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents);
3643
3644 spin_lock(&log->l_ailp->ail_lock);
3645 /*
3646 * The CUI has two references. One for the CUD and one for CUI to ensure
3647 * it makes it into the AIL. Insert the CUI into the AIL directly and
3648 * drop the CUI reference. Note that xfs_trans_ail_update() drops the
3649 * AIL lock.
3650 */
3651 xfs_trans_ail_update(log->l_ailp, &cuip->cui_item, lsn);
3652 xfs_cui_release(cuip);
3653 return 0;
3654}
3655
3656
3657/*
3658 * This routine is called when an CUD format structure is found in a committed
3659 * transaction in the log. Its purpose is to cancel the corresponding CUI if it
3660 * was still in the log. To do this it searches the AIL for the CUI with an id
3661 * equal to that in the CUD format structure. If we find it we drop the CUD
3662 * reference, which removes the CUI from the AIL and frees it.
3663 */
3664STATIC int
3665xlog_recover_cud_pass2(
3666 struct xlog *log,
3667 struct xlog_recover_item *item)
3668{
3669 struct xfs_cud_log_format *cud_formatp;
3670 struct xfs_cui_log_item *cuip = NULL;
3671 struct xfs_log_item *lip;
3672 uint64_t cui_id;
3673 struct xfs_ail_cursor cur;
3674 struct xfs_ail *ailp = log->l_ailp;
3675
3676 cud_formatp = item->ri_buf[0].i_addr;
3677 if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format))
3678 return -EFSCORRUPTED;
3679 cui_id = cud_formatp->cud_cui_id;
3680
3681 /*
3682 * Search for the CUI with the id in the CUD format structure in the
3683 * AIL.
3684 */
3685 spin_lock(&ailp->ail_lock);
3686 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3687 while (lip != NULL) {
3688 if (lip->li_type == XFS_LI_CUI) {
3689 cuip = (struct xfs_cui_log_item *)lip;
3690 if (cuip->cui_format.cui_id == cui_id) {
3691 /*
3692 * Drop the CUD reference to the CUI. This
3693 * removes the CUI from the AIL and frees it.
3694 */
3695 spin_unlock(&ailp->ail_lock);
3696 xfs_cui_release(cuip);
3697 spin_lock(&ailp->ail_lock);
3698 break;
3699 }
3700 }
3701 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3702 }
3703
3704 xfs_trans_ail_cursor_done(&cur);
3705 spin_unlock(&ailp->ail_lock);
3706
3707 return 0;
3708}
3709
3710/*
3711 * Copy an BUI format buffer from the given buf, and into the destination
3712 * BUI format structure. The BUI/BUD items were designed not to need any
3713 * special alignment handling.
3714 */
3715static int
3716xfs_bui_copy_format(
3717 struct xfs_log_iovec *buf,
3718 struct xfs_bui_log_format *dst_bui_fmt)
3719{
3720 struct xfs_bui_log_format *src_bui_fmt;
3721 uint len;
3722
3723 src_bui_fmt = buf->i_addr;
3724 len = xfs_bui_log_format_sizeof(src_bui_fmt->bui_nextents);
3725
3726 if (buf->i_len == len) {
3727 memcpy(dst_bui_fmt, src_bui_fmt, len);
3728 return 0;
3729 }
3730 return -EFSCORRUPTED;
3731}
3732
3733/*
3734 * This routine is called to create an in-core extent bmap update
3735 * item from the bui format structure which was logged on disk.
3736 * It allocates an in-core bui, copies the extents from the format
3737 * structure into it, and adds the bui to the AIL with the given
3738 * LSN.
3739 */
3740STATIC int
3741xlog_recover_bui_pass2(
3742 struct xlog *log,
3743 struct xlog_recover_item *item,
3744 xfs_lsn_t lsn)
3745{
3746 int error;
3747 struct xfs_mount *mp = log->l_mp;
3748 struct xfs_bui_log_item *buip;
3749 struct xfs_bui_log_format *bui_formatp;
3750
3751 bui_formatp = item->ri_buf[0].i_addr;
3752
3753 if (bui_formatp->bui_nextents != XFS_BUI_MAX_FAST_EXTENTS)
3754 return -EFSCORRUPTED;
3755 buip = xfs_bui_init(mp);
3756 error = xfs_bui_copy_format(&item->ri_buf[0], &buip->bui_format);
3757 if (error) {
3758 xfs_bui_item_free(buip);
3759 return error;
3760 }
3761 atomic_set(&buip->bui_next_extent, bui_formatp->bui_nextents);
3762
3763 spin_lock(&log->l_ailp->ail_lock);
3764 /*
3765 * The RUI has two references. One for the RUD and one for RUI to ensure
3766 * it makes it into the AIL. Insert the RUI into the AIL directly and
3767 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3768 * AIL lock.
3769 */
3770 xfs_trans_ail_update(log->l_ailp, &buip->bui_item, lsn);
3771 xfs_bui_release(buip);
3772 return 0;
3773}
3774
3775
3776/*
3777 * This routine is called when an BUD format structure is found in a committed
3778 * transaction in the log. Its purpose is to cancel the corresponding BUI if it
3779 * was still in the log. To do this it searches the AIL for the BUI with an id
3780 * equal to that in the BUD format structure. If we find it we drop the BUD
3781 * reference, which removes the BUI from the AIL and frees it.
3782 */
3783STATIC int
3784xlog_recover_bud_pass2(
3785 struct xlog *log,
3786 struct xlog_recover_item *item)
3787{
3788 struct xfs_bud_log_format *bud_formatp;
3789 struct xfs_bui_log_item *buip = NULL;
3790 struct xfs_log_item *lip;
3791 uint64_t bui_id;
3792 struct xfs_ail_cursor cur;
3793 struct xfs_ail *ailp = log->l_ailp;
3794
3795 bud_formatp = item->ri_buf[0].i_addr;
3796 if (item->ri_buf[0].i_len != sizeof(struct xfs_bud_log_format))
3797 return -EFSCORRUPTED;
3798 bui_id = bud_formatp->bud_bui_id;
3799
3800 /*
3801 * Search for the BUI with the id in the BUD format structure in the
3802 * AIL.
3803 */
3804 spin_lock(&ailp->ail_lock);
3805 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3806 while (lip != NULL) {
3807 if (lip->li_type == XFS_LI_BUI) {
3808 buip = (struct xfs_bui_log_item *)lip;
3809 if (buip->bui_format.bui_id == bui_id) {
3810 /*
3811 * Drop the BUD reference to the BUI. This
3812 * removes the BUI from the AIL and frees it.
3813 */
3814 spin_unlock(&ailp->ail_lock);
3815 xfs_bui_release(buip);
3816 spin_lock(&ailp->ail_lock);
3817 break;
3818 }
3819 }
3820 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3821 }
3822
3823 xfs_trans_ail_cursor_done(&cur);
3824 spin_unlock(&ailp->ail_lock);
3825
3826 return 0;
3827}
3828
3829/*
3830 * This routine is called when an inode create format structure is found in a
3831 * committed transaction in the log. It's purpose is to initialise the inodes
3832 * being allocated on disk. This requires us to get inode cluster buffers that
3833 * match the range to be initialised, stamped with inode templates and written
3834 * by delayed write so that subsequent modifications will hit the cached buffer
3835 * and only need writing out at the end of recovery.
3836 */
3837STATIC int
3838xlog_recover_do_icreate_pass2(
3839 struct xlog *log,
3840 struct list_head *buffer_list,
3841 xlog_recover_item_t *item)
3842{
3843 struct xfs_mount *mp = log->l_mp;
3844 struct xfs_icreate_log *icl;
3845 xfs_agnumber_t agno;
3846 xfs_agblock_t agbno;
3847 unsigned int count;
3848 unsigned int isize;
3849 xfs_agblock_t length;
3850 int blks_per_cluster;
3851 int bb_per_cluster;
3852 int cancel_count;
3853 int nbufs;
3854 int i;
3855
3856 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3857 if (icl->icl_type != XFS_LI_ICREATE) {
3858 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3859 return -EINVAL;
3860 }
3861
3862 if (icl->icl_size != 1) {
3863 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3864 return -EINVAL;
3865 }
3866
3867 agno = be32_to_cpu(icl->icl_ag);
3868 if (agno >= mp->m_sb.sb_agcount) {
3869 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3870 return -EINVAL;
3871 }
3872 agbno = be32_to_cpu(icl->icl_agbno);
3873 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3874 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3875 return -EINVAL;
3876 }
3877 isize = be32_to_cpu(icl->icl_isize);
3878 if (isize != mp->m_sb.sb_inodesize) {
3879 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3880 return -EINVAL;
3881 }
3882 count = be32_to_cpu(icl->icl_count);
3883 if (!count) {
3884 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3885 return -EINVAL;
3886 }
3887 length = be32_to_cpu(icl->icl_length);
3888 if (!length || length >= mp->m_sb.sb_agblocks) {
3889 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3890 return -EINVAL;
3891 }
3892
3893 /*
3894 * The inode chunk is either full or sparse and we only support
3895 * m_ialloc_min_blks sized sparse allocations at this time.
3896 */
3897 if (length != mp->m_ialloc_blks &&
3898 length != mp->m_ialloc_min_blks) {
3899 xfs_warn(log->l_mp,
3900 "%s: unsupported chunk length", __FUNCTION__);
3901 return -EINVAL;
3902 }
3903
3904 /* verify inode count is consistent with extent length */
3905 if ((count >> mp->m_sb.sb_inopblog) != length) {
3906 xfs_warn(log->l_mp,
3907 "%s: inconsistent inode count and chunk length",
3908 __FUNCTION__);
3909 return -EINVAL;
3910 }
3911
3912 /*
3913 * The icreate transaction can cover multiple cluster buffers and these
3914 * buffers could have been freed and reused. Check the individual
3915 * buffers for cancellation so we don't overwrite anything written after
3916 * a cancellation.
3917 */
3918 blks_per_cluster = xfs_icluster_size_fsb(mp);
3919 bb_per_cluster = XFS_FSB_TO_BB(mp, blks_per_cluster);
3920 nbufs = length / blks_per_cluster;
3921 for (i = 0, cancel_count = 0; i < nbufs; i++) {
3922 xfs_daddr_t daddr;
3923
3924 daddr = XFS_AGB_TO_DADDR(mp, agno,
3925 agbno + i * blks_per_cluster);
3926 if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0))
3927 cancel_count++;
3928 }
3929
3930 /*
3931 * We currently only use icreate for a single allocation at a time. This
3932 * means we should expect either all or none of the buffers to be
3933 * cancelled. Be conservative and skip replay if at least one buffer is
3934 * cancelled, but warn the user that something is awry if the buffers
3935 * are not consistent.
3936 *
3937 * XXX: This must be refined to only skip cancelled clusters once we use
3938 * icreate for multiple chunk allocations.
3939 */
3940 ASSERT(!cancel_count || cancel_count == nbufs);
3941 if (cancel_count) {
3942 if (cancel_count != nbufs)
3943 xfs_warn(mp,
3944 "WARNING: partial inode chunk cancellation, skipped icreate.");
3945 trace_xfs_log_recover_icreate_cancel(log, icl);
3946 return 0;
3947 }
3948
3949 trace_xfs_log_recover_icreate_recover(log, icl);
3950 return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno,
3951 length, be32_to_cpu(icl->icl_gen));
3952}
3953
3954STATIC void
3955xlog_recover_buffer_ra_pass2(
3956 struct xlog *log,
3957 struct xlog_recover_item *item)
3958{
3959 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
3960 struct xfs_mount *mp = log->l_mp;
3961
3962 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
3963 buf_f->blf_len, buf_f->blf_flags)) {
3964 return;
3965 }
3966
3967 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3968 buf_f->blf_len, NULL);
3969}
3970
3971STATIC void
3972xlog_recover_inode_ra_pass2(
3973 struct xlog *log,
3974 struct xlog_recover_item *item)
3975{
3976 struct xfs_inode_log_format ilf_buf;
3977 struct xfs_inode_log_format *ilfp;
3978 struct xfs_mount *mp = log->l_mp;
3979 int error;
3980
3981 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3982 ilfp = item->ri_buf[0].i_addr;
3983 } else {
3984 ilfp = &ilf_buf;
3985 memset(ilfp, 0, sizeof(*ilfp));
3986 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3987 if (error)
3988 return;
3989 }
3990
3991 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
3992 return;
3993
3994 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
3995 ilfp->ilf_len, &xfs_inode_buf_ra_ops);
3996}
3997
3998STATIC void
3999xlog_recover_dquot_ra_pass2(
4000 struct xlog *log,
4001 struct xlog_recover_item *item)
4002{
4003 struct xfs_mount *mp = log->l_mp;
4004 struct xfs_disk_dquot *recddq;
4005 struct xfs_dq_logformat *dq_f;
4006 uint type;
4007 int len;
4008
4009
4010 if (mp->m_qflags == 0)
4011 return;
4012
4013 recddq = item->ri_buf[1].i_addr;
4014 if (recddq == NULL)
4015 return;
4016 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
4017 return;
4018
4019 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
4020 ASSERT(type);
4021 if (log->l_quotaoffs_flag & type)
4022 return;
4023
4024 dq_f = item->ri_buf[0].i_addr;
4025 ASSERT(dq_f);
4026 ASSERT(dq_f->qlf_len == 1);
4027
4028 len = XFS_FSB_TO_BB(mp, dq_f->qlf_len);
4029 if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0))
4030 return;
4031
4032 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len,
4033 &xfs_dquot_buf_ra_ops);
4034}
4035
4036STATIC void
4037xlog_recover_ra_pass2(
4038 struct xlog *log,
4039 struct xlog_recover_item *item)
4040{
4041 switch (ITEM_TYPE(item)) {
4042 case XFS_LI_BUF:
4043 xlog_recover_buffer_ra_pass2(log, item);
4044 break;
4045 case XFS_LI_INODE:
4046 xlog_recover_inode_ra_pass2(log, item);
4047 break;
4048 case XFS_LI_DQUOT:
4049 xlog_recover_dquot_ra_pass2(log, item);
4050 break;
4051 case XFS_LI_EFI:
4052 case XFS_LI_EFD:
4053 case XFS_LI_QUOTAOFF:
4054 case XFS_LI_RUI:
4055 case XFS_LI_RUD:
4056 case XFS_LI_CUI:
4057 case XFS_LI_CUD:
4058 case XFS_LI_BUI:
4059 case XFS_LI_BUD:
4060 default:
4061 break;
4062 }
4063}
4064
4065STATIC int
4066xlog_recover_commit_pass1(
4067 struct xlog *log,
4068 struct xlog_recover *trans,
4069 struct xlog_recover_item *item)
4070{
4071 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
4072
4073 switch (ITEM_TYPE(item)) {
4074 case XFS_LI_BUF:
4075 return xlog_recover_buffer_pass1(log, item);
4076 case XFS_LI_QUOTAOFF:
4077 return xlog_recover_quotaoff_pass1(log, item);
4078 case XFS_LI_INODE:
4079 case XFS_LI_EFI:
4080 case XFS_LI_EFD:
4081 case XFS_LI_DQUOT:
4082 case XFS_LI_ICREATE:
4083 case XFS_LI_RUI:
4084 case XFS_LI_RUD:
4085 case XFS_LI_CUI:
4086 case XFS_LI_CUD:
4087 case XFS_LI_BUI:
4088 case XFS_LI_BUD:
4089 /* nothing to do in pass 1 */
4090 return 0;
4091 default:
4092 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4093 __func__, ITEM_TYPE(item));
4094 ASSERT(0);
4095 return -EIO;
4096 }
4097}
4098
4099STATIC int
4100xlog_recover_commit_pass2(
4101 struct xlog *log,
4102 struct xlog_recover *trans,
4103 struct list_head *buffer_list,
4104 struct xlog_recover_item *item)
4105{
4106 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
4107
4108 switch (ITEM_TYPE(item)) {
4109 case XFS_LI_BUF:
4110 return xlog_recover_buffer_pass2(log, buffer_list, item,
4111 trans->r_lsn);
4112 case XFS_LI_INODE:
4113 return xlog_recover_inode_pass2(log, buffer_list, item,
4114 trans->r_lsn);
4115 case XFS_LI_EFI:
4116 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
4117 case XFS_LI_EFD:
4118 return xlog_recover_efd_pass2(log, item);
4119 case XFS_LI_RUI:
4120 return xlog_recover_rui_pass2(log, item, trans->r_lsn);
4121 case XFS_LI_RUD:
4122 return xlog_recover_rud_pass2(log, item);
4123 case XFS_LI_CUI:
4124 return xlog_recover_cui_pass2(log, item, trans->r_lsn);
4125 case XFS_LI_CUD:
4126 return xlog_recover_cud_pass2(log, item);
4127 case XFS_LI_BUI:
4128 return xlog_recover_bui_pass2(log, item, trans->r_lsn);
4129 case XFS_LI_BUD:
4130 return xlog_recover_bud_pass2(log, item);
4131 case XFS_LI_DQUOT:
4132 return xlog_recover_dquot_pass2(log, buffer_list, item,
4133 trans->r_lsn);
4134 case XFS_LI_ICREATE:
4135 return xlog_recover_do_icreate_pass2(log, buffer_list, item);
4136 case XFS_LI_QUOTAOFF:
4137 /* nothing to do in pass2 */
4138 return 0;
4139 default:
4140 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4141 __func__, ITEM_TYPE(item));
4142 ASSERT(0);
4143 return -EIO;
4144 }
4145}
4146
4147STATIC int
4148xlog_recover_items_pass2(
4149 struct xlog *log,
4150 struct xlog_recover *trans,
4151 struct list_head *buffer_list,
4152 struct list_head *item_list)
4153{
4154 struct xlog_recover_item *item;
4155 int error = 0;
4156
4157 list_for_each_entry(item, item_list, ri_list) {
4158 error = xlog_recover_commit_pass2(log, trans,
4159 buffer_list, item);
4160 if (error)
4161 return error;
4162 }
4163
4164 return error;
4165}
4166
4167/*
4168 * Perform the transaction.
4169 *
4170 * If the transaction modifies a buffer or inode, do it now. Otherwise,
4171 * EFIs and EFDs get queued up by adding entries into the AIL for them.
4172 */
4173STATIC int
4174xlog_recover_commit_trans(
4175 struct xlog *log,
4176 struct xlog_recover *trans,
4177 int pass,
4178 struct list_head *buffer_list)
4179{
4180 int error = 0;
4181 int items_queued = 0;
4182 struct xlog_recover_item *item;
4183 struct xlog_recover_item *next;
4184 LIST_HEAD (ra_list);
4185 LIST_HEAD (done_list);
4186
4187 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
4188
4189 hlist_del_init(&trans->r_list);
4190
4191 error = xlog_recover_reorder_trans(log, trans, pass);
4192 if (error)
4193 return error;
4194
4195 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
4196 switch (pass) {
4197 case XLOG_RECOVER_PASS1:
4198 error = xlog_recover_commit_pass1(log, trans, item);
4199 break;
4200 case XLOG_RECOVER_PASS2:
4201 xlog_recover_ra_pass2(log, item);
4202 list_move_tail(&item->ri_list, &ra_list);
4203 items_queued++;
4204 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
4205 error = xlog_recover_items_pass2(log, trans,
4206 buffer_list, &ra_list);
4207 list_splice_tail_init(&ra_list, &done_list);
4208 items_queued = 0;
4209 }
4210
4211 break;
4212 default:
4213 ASSERT(0);
4214 }
4215
4216 if (error)
4217 goto out;
4218 }
4219
4220out:
4221 if (!list_empty(&ra_list)) {
4222 if (!error)
4223 error = xlog_recover_items_pass2(log, trans,
4224 buffer_list, &ra_list);
4225 list_splice_tail_init(&ra_list, &done_list);
4226 }
4227
4228 if (!list_empty(&done_list))
4229 list_splice_init(&done_list, &trans->r_itemq);
4230
4231 return error;
4232}
4233
4234STATIC void
4235xlog_recover_add_item(
4236 struct list_head *head)
4237{
4238 xlog_recover_item_t *item;
4239
4240 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
4241 INIT_LIST_HEAD(&item->ri_list);
4242 list_add_tail(&item->ri_list, head);
4243}
4244
4245STATIC int
4246xlog_recover_add_to_cont_trans(
4247 struct xlog *log,
4248 struct xlog_recover *trans,
4249 char *dp,
4250 int len)
4251{
4252 xlog_recover_item_t *item;
4253 char *ptr, *old_ptr;
4254 int old_len;
4255
4256 /*
4257 * If the transaction is empty, the header was split across this and the
4258 * previous record. Copy the rest of the header.
4259 */
4260 if (list_empty(&trans->r_itemq)) {
4261 ASSERT(len <= sizeof(struct xfs_trans_header));
4262 if (len > sizeof(struct xfs_trans_header)) {
4263 xfs_warn(log->l_mp, "%s: bad header length", __func__);
4264 return -EIO;
4265 }
4266
4267 xlog_recover_add_item(&trans->r_itemq);
4268 ptr = (char *)&trans->r_theader +
4269 sizeof(struct xfs_trans_header) - len;
4270 memcpy(ptr, dp, len);
4271 return 0;
4272 }
4273
4274 /* take the tail entry */
4275 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4276
4277 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
4278 old_len = item->ri_buf[item->ri_cnt-1].i_len;
4279
4280 ptr = kmem_realloc(old_ptr, len + old_len, KM_SLEEP);
4281 memcpy(&ptr[old_len], dp, len);
4282 item->ri_buf[item->ri_cnt-1].i_len += len;
4283 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
4284 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
4285 return 0;
4286}
4287
4288/*
4289 * The next region to add is the start of a new region. It could be
4290 * a whole region or it could be the first part of a new region. Because
4291 * of this, the assumption here is that the type and size fields of all
4292 * format structures fit into the first 32 bits of the structure.
4293 *
4294 * This works because all regions must be 32 bit aligned. Therefore, we
4295 * either have both fields or we have neither field. In the case we have
4296 * neither field, the data part of the region is zero length. We only have
4297 * a log_op_header and can throw away the header since a new one will appear
4298 * later. If we have at least 4 bytes, then we can determine how many regions
4299 * will appear in the current log item.
4300 */
4301STATIC int
4302xlog_recover_add_to_trans(
4303 struct xlog *log,
4304 struct xlog_recover *trans,
4305 char *dp,
4306 int len)
4307{
4308 struct xfs_inode_log_format *in_f; /* any will do */
4309 xlog_recover_item_t *item;
4310 char *ptr;
4311
4312 if (!len)
4313 return 0;
4314 if (list_empty(&trans->r_itemq)) {
4315 /* we need to catch log corruptions here */
4316 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
4317 xfs_warn(log->l_mp, "%s: bad header magic number",
4318 __func__);
4319 ASSERT(0);
4320 return -EIO;
4321 }
4322
4323 if (len > sizeof(struct xfs_trans_header)) {
4324 xfs_warn(log->l_mp, "%s: bad header length", __func__);
4325 ASSERT(0);
4326 return -EIO;
4327 }
4328
4329 /*
4330 * The transaction header can be arbitrarily split across op
4331 * records. If we don't have the whole thing here, copy what we
4332 * do have and handle the rest in the next record.
4333 */
4334 if (len == sizeof(struct xfs_trans_header))
4335 xlog_recover_add_item(&trans->r_itemq);
4336 memcpy(&trans->r_theader, dp, len);
4337 return 0;
4338 }
4339
4340 ptr = kmem_alloc(len, KM_SLEEP);
4341 memcpy(ptr, dp, len);
4342 in_f = (struct xfs_inode_log_format *)ptr;
4343
4344 /* take the tail entry */
4345 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4346 if (item->ri_total != 0 &&
4347 item->ri_total == item->ri_cnt) {
4348 /* tail item is in use, get a new one */
4349 xlog_recover_add_item(&trans->r_itemq);
4350 item = list_entry(trans->r_itemq.prev,
4351 xlog_recover_item_t, ri_list);
4352 }
4353
4354 if (item->ri_total == 0) { /* first region to be added */
4355 if (in_f->ilf_size == 0 ||
4356 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
4357 xfs_warn(log->l_mp,
4358 "bad number of regions (%d) in inode log format",
4359 in_f->ilf_size);
4360 ASSERT(0);
4361 kmem_free(ptr);
4362 return -EIO;
4363 }
4364
4365 item->ri_total = in_f->ilf_size;
4366 item->ri_buf =
4367 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
4368 KM_SLEEP);
4369 }
4370 ASSERT(item->ri_total > item->ri_cnt);
4371 /* Description region is ri_buf[0] */
4372 item->ri_buf[item->ri_cnt].i_addr = ptr;
4373 item->ri_buf[item->ri_cnt].i_len = len;
4374 item->ri_cnt++;
4375 trace_xfs_log_recover_item_add(log, trans, item, 0);
4376 return 0;
4377}
4378
4379/*
4380 * Free up any resources allocated by the transaction
4381 *
4382 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
4383 */
4384STATIC void
4385xlog_recover_free_trans(
4386 struct xlog_recover *trans)
4387{
4388 xlog_recover_item_t *item, *n;
4389 int i;
4390
4391 hlist_del_init(&trans->r_list);
4392
4393 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
4394 /* Free the regions in the item. */
4395 list_del(&item->ri_list);
4396 for (i = 0; i < item->ri_cnt; i++)
4397 kmem_free(item->ri_buf[i].i_addr);
4398 /* Free the item itself */
4399 kmem_free(item->ri_buf);
4400 kmem_free(item);
4401 }
4402 /* Free the transaction recover structure */
4403 kmem_free(trans);
4404}
4405
4406/*
4407 * On error or completion, trans is freed.
4408 */
4409STATIC int
4410xlog_recovery_process_trans(
4411 struct xlog *log,
4412 struct xlog_recover *trans,
4413 char *dp,
4414 unsigned int len,
4415 unsigned int flags,
4416 int pass,
4417 struct list_head *buffer_list)
4418{
4419 int error = 0;
4420 bool freeit = false;
4421
4422 /* mask off ophdr transaction container flags */
4423 flags &= ~XLOG_END_TRANS;
4424 if (flags & XLOG_WAS_CONT_TRANS)
4425 flags &= ~XLOG_CONTINUE_TRANS;
4426
4427 /*
4428 * Callees must not free the trans structure. We'll decide if we need to
4429 * free it or not based on the operation being done and it's result.
4430 */
4431 switch (flags) {
4432 /* expected flag values */
4433 case 0:
4434 case XLOG_CONTINUE_TRANS:
4435 error = xlog_recover_add_to_trans(log, trans, dp, len);
4436 break;
4437 case XLOG_WAS_CONT_TRANS:
4438 error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
4439 break;
4440 case XLOG_COMMIT_TRANS:
4441 error = xlog_recover_commit_trans(log, trans, pass,
4442 buffer_list);
4443 /* success or fail, we are now done with this transaction. */
4444 freeit = true;
4445 break;
4446
4447 /* unexpected flag values */
4448 case XLOG_UNMOUNT_TRANS:
4449 /* just skip trans */
4450 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
4451 freeit = true;
4452 break;
4453 case XLOG_START_TRANS:
4454 default:
4455 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
4456 ASSERT(0);
4457 error = -EIO;
4458 break;
4459 }
4460 if (error || freeit)
4461 xlog_recover_free_trans(trans);
4462 return error;
4463}
4464
4465/*
4466 * Lookup the transaction recovery structure associated with the ID in the
4467 * current ophdr. If the transaction doesn't exist and the start flag is set in
4468 * the ophdr, then allocate a new transaction for future ID matches to find.
4469 * Either way, return what we found during the lookup - an existing transaction
4470 * or nothing.
4471 */
4472STATIC struct xlog_recover *
4473xlog_recover_ophdr_to_trans(
4474 struct hlist_head rhash[],
4475 struct xlog_rec_header *rhead,
4476 struct xlog_op_header *ohead)
4477{
4478 struct xlog_recover *trans;
4479 xlog_tid_t tid;
4480 struct hlist_head *rhp;
4481
4482 tid = be32_to_cpu(ohead->oh_tid);
4483 rhp = &rhash[XLOG_RHASH(tid)];
4484 hlist_for_each_entry(trans, rhp, r_list) {
4485 if (trans->r_log_tid == tid)
4486 return trans;
4487 }
4488
4489 /*
4490 * skip over non-start transaction headers - we could be
4491 * processing slack space before the next transaction starts
4492 */
4493 if (!(ohead->oh_flags & XLOG_START_TRANS))
4494 return NULL;
4495
4496 ASSERT(be32_to_cpu(ohead->oh_len) == 0);
4497
4498 /*
4499 * This is a new transaction so allocate a new recovery container to
4500 * hold the recovery ops that will follow.
4501 */
4502 trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP);
4503 trans->r_log_tid = tid;
4504 trans->r_lsn = be64_to_cpu(rhead->h_lsn);
4505 INIT_LIST_HEAD(&trans->r_itemq);
4506 INIT_HLIST_NODE(&trans->r_list);
4507 hlist_add_head(&trans->r_list, rhp);
4508
4509 /*
4510 * Nothing more to do for this ophdr. Items to be added to this new
4511 * transaction will be in subsequent ophdr containers.
4512 */
4513 return NULL;
4514}
4515
4516STATIC int
4517xlog_recover_process_ophdr(
4518 struct xlog *log,
4519 struct hlist_head rhash[],
4520 struct xlog_rec_header *rhead,
4521 struct xlog_op_header *ohead,
4522 char *dp,
4523 char *end,
4524 int pass,
4525 struct list_head *buffer_list)
4526{
4527 struct xlog_recover *trans;
4528 unsigned int len;
4529 int error;
4530
4531 /* Do we understand who wrote this op? */
4532 if (ohead->oh_clientid != XFS_TRANSACTION &&
4533 ohead->oh_clientid != XFS_LOG) {
4534 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
4535 __func__, ohead->oh_clientid);
4536 ASSERT(0);
4537 return -EIO;
4538 }
4539
4540 /*
4541 * Check the ophdr contains all the data it is supposed to contain.
4542 */
4543 len = be32_to_cpu(ohead->oh_len);
4544 if (dp + len > end) {
4545 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
4546 WARN_ON(1);
4547 return -EIO;
4548 }
4549
4550 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
4551 if (!trans) {
4552 /* nothing to do, so skip over this ophdr */
4553 return 0;
4554 }
4555
4556 /*
4557 * The recovered buffer queue is drained only once we know that all
4558 * recovery items for the current LSN have been processed. This is
4559 * required because:
4560 *
4561 * - Buffer write submission updates the metadata LSN of the buffer.
4562 * - Log recovery skips items with a metadata LSN >= the current LSN of
4563 * the recovery item.
4564 * - Separate recovery items against the same metadata buffer can share
4565 * a current LSN. I.e., consider that the LSN of a recovery item is
4566 * defined as the starting LSN of the first record in which its
4567 * transaction appears, that a record can hold multiple transactions,
4568 * and/or that a transaction can span multiple records.
4569 *
4570 * In other words, we are allowed to submit a buffer from log recovery
4571 * once per current LSN. Otherwise, we may incorrectly skip recovery
4572 * items and cause corruption.
4573 *
4574 * We don't know up front whether buffers are updated multiple times per
4575 * LSN. Therefore, track the current LSN of each commit log record as it
4576 * is processed and drain the queue when it changes. Use commit records
4577 * because they are ordered correctly by the logging code.
4578 */
4579 if (log->l_recovery_lsn != trans->r_lsn &&
4580 ohead->oh_flags & XLOG_COMMIT_TRANS) {
4581 error = xfs_buf_delwri_submit(buffer_list);
4582 if (error)
4583 return error;
4584 log->l_recovery_lsn = trans->r_lsn;
4585 }
4586
4587 return xlog_recovery_process_trans(log, trans, dp, len,
4588 ohead->oh_flags, pass, buffer_list);
4589}
4590
4591/*
4592 * There are two valid states of the r_state field. 0 indicates that the
4593 * transaction structure is in a normal state. We have either seen the
4594 * start of the transaction or the last operation we added was not a partial
4595 * operation. If the last operation we added to the transaction was a
4596 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
4597 *
4598 * NOTE: skip LRs with 0 data length.
4599 */
4600STATIC int
4601xlog_recover_process_data(
4602 struct xlog *log,
4603 struct hlist_head rhash[],
4604 struct xlog_rec_header *rhead,
4605 char *dp,
4606 int pass,
4607 struct list_head *buffer_list)
4608{
4609 struct xlog_op_header *ohead;
4610 char *end;
4611 int num_logops;
4612 int error;
4613
4614 end = dp + be32_to_cpu(rhead->h_len);
4615 num_logops = be32_to_cpu(rhead->h_num_logops);
4616
4617 /* check the log format matches our own - else we can't recover */
4618 if (xlog_header_check_recover(log->l_mp, rhead))
4619 return -EIO;
4620
4621 trace_xfs_log_recover_record(log, rhead, pass);
4622 while ((dp < end) && num_logops) {
4623
4624 ohead = (struct xlog_op_header *)dp;
4625 dp += sizeof(*ohead);
4626 ASSERT(dp <= end);
4627
4628 /* errors will abort recovery */
4629 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
4630 dp, end, pass, buffer_list);
4631 if (error)
4632 return error;
4633
4634 dp += be32_to_cpu(ohead->oh_len);
4635 num_logops--;
4636 }
4637 return 0;
4638}
4639
4640/* Recover the EFI if necessary. */
4641STATIC int
4642xlog_recover_process_efi(
4643 struct xfs_mount *mp,
4644 struct xfs_ail *ailp,
4645 struct xfs_log_item *lip)
4646{
4647 struct xfs_efi_log_item *efip;
4648 int error;
4649
4650 /*
4651 * Skip EFIs that we've already processed.
4652 */
4653 efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4654 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags))
4655 return 0;
4656
4657 spin_unlock(&ailp->ail_lock);
4658 error = xfs_efi_recover(mp, efip);
4659 spin_lock(&ailp->ail_lock);
4660
4661 return error;
4662}
4663
4664/* Release the EFI since we're cancelling everything. */
4665STATIC void
4666xlog_recover_cancel_efi(
4667 struct xfs_mount *mp,
4668 struct xfs_ail *ailp,
4669 struct xfs_log_item *lip)
4670{
4671 struct xfs_efi_log_item *efip;
4672
4673 efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4674
4675 spin_unlock(&ailp->ail_lock);
4676 xfs_efi_release(efip);
4677 spin_lock(&ailp->ail_lock);
4678}
4679
4680/* Recover the RUI if necessary. */
4681STATIC int
4682xlog_recover_process_rui(
4683 struct xfs_mount *mp,
4684 struct xfs_ail *ailp,
4685 struct xfs_log_item *lip)
4686{
4687 struct xfs_rui_log_item *ruip;
4688 int error;
4689
4690 /*
4691 * Skip RUIs that we've already processed.
4692 */
4693 ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4694 if (test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags))
4695 return 0;
4696
4697 spin_unlock(&ailp->ail_lock);
4698 error = xfs_rui_recover(mp, ruip);
4699 spin_lock(&ailp->ail_lock);
4700
4701 return error;
4702}
4703
4704/* Release the RUI since we're cancelling everything. */
4705STATIC void
4706xlog_recover_cancel_rui(
4707 struct xfs_mount *mp,
4708 struct xfs_ail *ailp,
4709 struct xfs_log_item *lip)
4710{
4711 struct xfs_rui_log_item *ruip;
4712
4713 ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4714
4715 spin_unlock(&ailp->ail_lock);
4716 xfs_rui_release(ruip);
4717 spin_lock(&ailp->ail_lock);
4718}
4719
4720/* Recover the CUI if necessary. */
4721STATIC int
4722xlog_recover_process_cui(
4723 struct xfs_mount *mp,
4724 struct xfs_ail *ailp,
4725 struct xfs_log_item *lip,
4726 struct xfs_defer_ops *dfops)
4727{
4728 struct xfs_cui_log_item *cuip;
4729 int error;
4730
4731 /*
4732 * Skip CUIs that we've already processed.
4733 */
4734 cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4735 if (test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags))
4736 return 0;
4737
4738 spin_unlock(&ailp->ail_lock);
4739 error = xfs_cui_recover(mp, cuip, dfops);
4740 spin_lock(&ailp->ail_lock);
4741
4742 return error;
4743}
4744
4745/* Release the CUI since we're cancelling everything. */
4746STATIC void
4747xlog_recover_cancel_cui(
4748 struct xfs_mount *mp,
4749 struct xfs_ail *ailp,
4750 struct xfs_log_item *lip)
4751{
4752 struct xfs_cui_log_item *cuip;
4753
4754 cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4755
4756 spin_unlock(&ailp->ail_lock);
4757 xfs_cui_release(cuip);
4758 spin_lock(&ailp->ail_lock);
4759}
4760
4761/* Recover the BUI if necessary. */
4762STATIC int
4763xlog_recover_process_bui(
4764 struct xfs_mount *mp,
4765 struct xfs_ail *ailp,
4766 struct xfs_log_item *lip,
4767 struct xfs_defer_ops *dfops)
4768{
4769 struct xfs_bui_log_item *buip;
4770 int error;
4771
4772 /*
4773 * Skip BUIs that we've already processed.
4774 */
4775 buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4776 if (test_bit(XFS_BUI_RECOVERED, &buip->bui_flags))
4777 return 0;
4778
4779 spin_unlock(&ailp->ail_lock);
4780 error = xfs_bui_recover(mp, buip, dfops);
4781 spin_lock(&ailp->ail_lock);
4782
4783 return error;
4784}
4785
4786/* Release the BUI since we're cancelling everything. */
4787STATIC void
4788xlog_recover_cancel_bui(
4789 struct xfs_mount *mp,
4790 struct xfs_ail *ailp,
4791 struct xfs_log_item *lip)
4792{
4793 struct xfs_bui_log_item *buip;
4794
4795 buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4796
4797 spin_unlock(&ailp->ail_lock);
4798 xfs_bui_release(buip);
4799 spin_lock(&ailp->ail_lock);
4800}
4801
4802/* Is this log item a deferred action intent? */
4803static inline bool xlog_item_is_intent(struct xfs_log_item *lip)
4804{
4805 switch (lip->li_type) {
4806 case XFS_LI_EFI:
4807 case XFS_LI_RUI:
4808 case XFS_LI_CUI:
4809 case XFS_LI_BUI:
4810 return true;
4811 default:
4812 return false;
4813 }
4814}
4815
4816/* Take all the collected deferred ops and finish them in order. */
4817static int
4818xlog_finish_defer_ops(
4819 struct xfs_mount *mp,
4820 struct xfs_defer_ops *dfops)
4821{
4822 struct xfs_trans *tp;
4823 int64_t freeblks;
4824 uint resblks;
4825 int error;
4826
4827 /*
4828 * We're finishing the defer_ops that accumulated as a result of
4829 * recovering unfinished intent items during log recovery. We
4830 * reserve an itruncate transaction because it is the largest
4831 * permanent transaction type. Since we're the only user of the fs
4832 * right now, take 93% (15/16) of the available free blocks. Use
4833 * weird math to avoid a 64-bit division.
4834 */
4835 freeblks = percpu_counter_sum(&mp->m_fdblocks);
4836 if (freeblks <= 0)
4837 return -ENOSPC;
4838 resblks = min_t(int64_t, UINT_MAX, freeblks);
4839 resblks = (resblks * 15) >> 4;
4840 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, resblks,
4841 0, XFS_TRANS_RESERVE, &tp);
4842 if (error)
4843 return error;
4844
4845 error = xfs_defer_finish(&tp, dfops);
4846 if (error)
4847 goto out_cancel;
4848
4849 return xfs_trans_commit(tp);
4850
4851out_cancel:
4852 xfs_trans_cancel(tp);
4853 return error;
4854}
4855
4856/*
4857 * When this is called, all of the log intent items which did not have
4858 * corresponding log done items should be in the AIL. What we do now
4859 * is update the data structures associated with each one.
4860 *
4861 * Since we process the log intent items in normal transactions, they
4862 * will be removed at some point after the commit. This prevents us
4863 * from just walking down the list processing each one. We'll use a
4864 * flag in the intent item to skip those that we've already processed
4865 * and use the AIL iteration mechanism's generation count to try to
4866 * speed this up at least a bit.
4867 *
4868 * When we start, we know that the intents are the only things in the
4869 * AIL. As we process them, however, other items are added to the
4870 * AIL.
4871 */
4872STATIC int
4873xlog_recover_process_intents(
4874 struct xlog *log)
4875{
4876 struct xfs_defer_ops dfops;
4877 struct xfs_ail_cursor cur;
4878 struct xfs_log_item *lip;
4879 struct xfs_ail *ailp;
4880 xfs_fsblock_t firstfsb;
4881 int error = 0;
4882#if defined(DEBUG) || defined(XFS_WARN)
4883 xfs_lsn_t last_lsn;
4884#endif
4885
4886 ailp = log->l_ailp;
4887 spin_lock(&ailp->ail_lock);
4888 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4889#if defined(DEBUG) || defined(XFS_WARN)
4890 last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
4891#endif
4892 xfs_defer_init(&dfops, &firstfsb);
4893 while (lip != NULL) {
4894 /*
4895 * We're done when we see something other than an intent.
4896 * There should be no intents left in the AIL now.
4897 */
4898 if (!xlog_item_is_intent(lip)) {
4899#ifdef DEBUG
4900 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4901 ASSERT(!xlog_item_is_intent(lip));
4902#endif
4903 break;
4904 }
4905
4906 /*
4907 * We should never see a redo item with a LSN higher than
4908 * the last transaction we found in the log at the start
4909 * of recovery.
4910 */
4911 ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0);
4912
4913 /*
4914 * NOTE: If your intent processing routine can create more
4915 * deferred ops, you /must/ attach them to the dfops in this
4916 * routine or else those subsequent intents will get
4917 * replayed in the wrong order!
4918 */
4919 switch (lip->li_type) {
4920 case XFS_LI_EFI:
4921 error = xlog_recover_process_efi(log->l_mp, ailp, lip);
4922 break;
4923 case XFS_LI_RUI:
4924 error = xlog_recover_process_rui(log->l_mp, ailp, lip);
4925 break;
4926 case XFS_LI_CUI:
4927 error = xlog_recover_process_cui(log->l_mp, ailp, lip,
4928 &dfops);
4929 break;
4930 case XFS_LI_BUI:
4931 error = xlog_recover_process_bui(log->l_mp, ailp, lip,
4932 &dfops);
4933 break;
4934 }
4935 if (error)
4936 goto out;
4937 lip = xfs_trans_ail_cursor_next(ailp, &cur);
4938 }
4939out:
4940 xfs_trans_ail_cursor_done(&cur);
4941 spin_unlock(&ailp->ail_lock);
4942 if (error)
4943 xfs_defer_cancel(&dfops);
4944 else
4945 error = xlog_finish_defer_ops(log->l_mp, &dfops);
4946
4947 return error;
4948}
4949
4950/*
4951 * A cancel occurs when the mount has failed and we're bailing out.
4952 * Release all pending log intent items so they don't pin the AIL.
4953 */
4954STATIC int
4955xlog_recover_cancel_intents(
4956 struct xlog *log)
4957{
4958 struct xfs_log_item *lip;
4959 int error = 0;
4960 struct xfs_ail_cursor cur;
4961 struct xfs_ail *ailp;
4962
4963 ailp = log->l_ailp;
4964 spin_lock(&ailp->ail_lock);
4965 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4966 while (lip != NULL) {
4967 /*
4968 * We're done when we see something other than an intent.
4969 * There should be no intents left in the AIL now.
4970 */
4971 if (!xlog_item_is_intent(lip)) {
4972#ifdef DEBUG
4973 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4974 ASSERT(!xlog_item_is_intent(lip));
4975#endif
4976 break;
4977 }
4978
4979 switch (lip->li_type) {
4980 case XFS_LI_EFI:
4981 xlog_recover_cancel_efi(log->l_mp, ailp, lip);
4982 break;
4983 case XFS_LI_RUI:
4984 xlog_recover_cancel_rui(log->l_mp, ailp, lip);
4985 break;
4986 case XFS_LI_CUI:
4987 xlog_recover_cancel_cui(log->l_mp, ailp, lip);
4988 break;
4989 case XFS_LI_BUI:
4990 xlog_recover_cancel_bui(log->l_mp, ailp, lip);
4991 break;
4992 }
4993
4994 lip = xfs_trans_ail_cursor_next(ailp, &cur);
4995 }
4996
4997 xfs_trans_ail_cursor_done(&cur);
4998 spin_unlock(&ailp->ail_lock);
4999 return error;
5000}
5001
5002/*
5003 * This routine performs a transaction to null out a bad inode pointer
5004 * in an agi unlinked inode hash bucket.
5005 */
5006STATIC void
5007xlog_recover_clear_agi_bucket(
5008 xfs_mount_t *mp,
5009 xfs_agnumber_t agno,
5010 int bucket)
5011{
5012 xfs_trans_t *tp;
5013 xfs_agi_t *agi;
5014 xfs_buf_t *agibp;
5015 int offset;
5016 int error;
5017
5018 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
5019 if (error)
5020 goto out_error;
5021
5022 error = xfs_read_agi(mp, tp, agno, &agibp);
5023 if (error)
5024 goto out_abort;
5025
5026 agi = XFS_BUF_TO_AGI(agibp);
5027 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
5028 offset = offsetof(xfs_agi_t, agi_unlinked) +
5029 (sizeof(xfs_agino_t) * bucket);
5030 xfs_trans_log_buf(tp, agibp, offset,
5031 (offset + sizeof(xfs_agino_t) - 1));
5032
5033 error = xfs_trans_commit(tp);
5034 if (error)
5035 goto out_error;
5036 return;
5037
5038out_abort:
5039 xfs_trans_cancel(tp);
5040out_error:
5041 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
5042 return;
5043}
5044
5045STATIC xfs_agino_t
5046xlog_recover_process_one_iunlink(
5047 struct xfs_mount *mp,
5048 xfs_agnumber_t agno,
5049 xfs_agino_t agino,
5050 int bucket)
5051{
5052 struct xfs_buf *ibp;
5053 struct xfs_dinode *dip;
5054 struct xfs_inode *ip;
5055 xfs_ino_t ino;
5056 int error;
5057
5058 ino = XFS_AGINO_TO_INO(mp, agno, agino);
5059 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
5060 if (error)
5061 goto fail;
5062
5063 /*
5064 * Get the on disk inode to find the next inode in the bucket.
5065 */
5066 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
5067 if (error)
5068 goto fail_iput;
5069
5070 xfs_iflags_clear(ip, XFS_IRECOVERY);
5071 ASSERT(VFS_I(ip)->i_nlink == 0);
5072 ASSERT(VFS_I(ip)->i_mode != 0);
5073
5074 /* setup for the next pass */
5075 agino = be32_to_cpu(dip->di_next_unlinked);
5076 xfs_buf_relse(ibp);
5077
5078 /*
5079 * Prevent any DMAPI event from being sent when the reference on
5080 * the inode is dropped.
5081 */
5082 ip->i_d.di_dmevmask = 0;
5083
5084 IRELE(ip);
5085 return agino;
5086
5087 fail_iput:
5088 IRELE(ip);
5089 fail:
5090 /*
5091 * We can't read in the inode this bucket points to, or this inode
5092 * is messed up. Just ditch this bucket of inodes. We will lose
5093 * some inodes and space, but at least we won't hang.
5094 *
5095 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
5096 * clear the inode pointer in the bucket.
5097 */
5098 xlog_recover_clear_agi_bucket(mp, agno, bucket);
5099 return NULLAGINO;
5100}
5101
5102/*
5103 * xlog_iunlink_recover
5104 *
5105 * This is called during recovery to process any inodes which
5106 * we unlinked but not freed when the system crashed. These
5107 * inodes will be on the lists in the AGI blocks. What we do
5108 * here is scan all the AGIs and fully truncate and free any
5109 * inodes found on the lists. Each inode is removed from the
5110 * lists when it has been fully truncated and is freed. The
5111 * freeing of the inode and its removal from the list must be
5112 * atomic.
5113 */
5114STATIC void
5115xlog_recover_process_iunlinks(
5116 struct xlog *log)
5117{
5118 xfs_mount_t *mp;
5119 xfs_agnumber_t agno;
5120 xfs_agi_t *agi;
5121 xfs_buf_t *agibp;
5122 xfs_agino_t agino;
5123 int bucket;
5124 int error;
5125
5126 mp = log->l_mp;
5127
5128 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5129 /*
5130 * Find the agi for this ag.
5131 */
5132 error = xfs_read_agi(mp, NULL, agno, &agibp);
5133 if (error) {
5134 /*
5135 * AGI is b0rked. Don't process it.
5136 *
5137 * We should probably mark the filesystem as corrupt
5138 * after we've recovered all the ag's we can....
5139 */
5140 continue;
5141 }
5142 /*
5143 * Unlock the buffer so that it can be acquired in the normal
5144 * course of the transaction to truncate and free each inode.
5145 * Because we are not racing with anyone else here for the AGI
5146 * buffer, we don't even need to hold it locked to read the
5147 * initial unlinked bucket entries out of the buffer. We keep
5148 * buffer reference though, so that it stays pinned in memory
5149 * while we need the buffer.
5150 */
5151 agi = XFS_BUF_TO_AGI(agibp);
5152 xfs_buf_unlock(agibp);
5153
5154 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
5155 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
5156 while (agino != NULLAGINO) {
5157 agino = xlog_recover_process_one_iunlink(mp,
5158 agno, agino, bucket);
5159 }
5160 }
5161 xfs_buf_rele(agibp);
5162 }
5163}
5164
5165STATIC int
5166xlog_unpack_data(
5167 struct xlog_rec_header *rhead,
5168 char *dp,
5169 struct xlog *log)
5170{
5171 int i, j, k;
5172
5173 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
5174 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
5175 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
5176 dp += BBSIZE;
5177 }
5178
5179 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
5180 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
5181 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
5182 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5183 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5184 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
5185 dp += BBSIZE;
5186 }
5187 }
5188
5189 return 0;
5190}
5191
5192/*
5193 * CRC check, unpack and process a log record.
5194 */
5195STATIC int
5196xlog_recover_process(
5197 struct xlog *log,
5198 struct hlist_head rhash[],
5199 struct xlog_rec_header *rhead,
5200 char *dp,
5201 int pass,
5202 struct list_head *buffer_list)
5203{
5204 int error;
5205 __le32 old_crc = rhead->h_crc;
5206 __le32 crc;
5207
5208
5209 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
5210
5211 /*
5212 * Nothing else to do if this is a CRC verification pass. Just return
5213 * if this a record with a non-zero crc. Unfortunately, mkfs always
5214 * sets old_crc to 0 so we must consider this valid even on v5 supers.
5215 * Otherwise, return EFSBADCRC on failure so the callers up the stack
5216 * know precisely what failed.
5217 */
5218 if (pass == XLOG_RECOVER_CRCPASS) {
5219 if (old_crc && crc != old_crc)
5220 return -EFSBADCRC;
5221 return 0;
5222 }
5223
5224 /*
5225 * We're in the normal recovery path. Issue a warning if and only if the
5226 * CRC in the header is non-zero. This is an advisory warning and the
5227 * zero CRC check prevents warnings from being emitted when upgrading
5228 * the kernel from one that does not add CRCs by default.
5229 */
5230 if (crc != old_crc) {
5231 if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
5232 xfs_alert(log->l_mp,
5233 "log record CRC mismatch: found 0x%x, expected 0x%x.",
5234 le32_to_cpu(old_crc),
5235 le32_to_cpu(crc));
5236 xfs_hex_dump(dp, 32);
5237 }
5238
5239 /*
5240 * If the filesystem is CRC enabled, this mismatch becomes a
5241 * fatal log corruption failure.
5242 */
5243 if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
5244 return -EFSCORRUPTED;
5245 }
5246
5247 error = xlog_unpack_data(rhead, dp, log);
5248 if (error)
5249 return error;
5250
5251 return xlog_recover_process_data(log, rhash, rhead, dp, pass,
5252 buffer_list);
5253}
5254
5255STATIC int
5256xlog_valid_rec_header(
5257 struct xlog *log,
5258 struct xlog_rec_header *rhead,
5259 xfs_daddr_t blkno)
5260{
5261 int hlen;
5262
5263 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
5264 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
5265 XFS_ERRLEVEL_LOW, log->l_mp);
5266 return -EFSCORRUPTED;
5267 }
5268 if (unlikely(
5269 (!rhead->h_version ||
5270 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
5271 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
5272 __func__, be32_to_cpu(rhead->h_version));
5273 return -EIO;
5274 }
5275
5276 /* LR body must have data or it wouldn't have been written */
5277 hlen = be32_to_cpu(rhead->h_len);
5278 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
5279 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
5280 XFS_ERRLEVEL_LOW, log->l_mp);
5281 return -EFSCORRUPTED;
5282 }
5283 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
5284 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
5285 XFS_ERRLEVEL_LOW, log->l_mp);
5286 return -EFSCORRUPTED;
5287 }
5288 return 0;
5289}
5290
5291/*
5292 * Read the log from tail to head and process the log records found.
5293 * Handle the two cases where the tail and head are in the same cycle
5294 * and where the active portion of the log wraps around the end of
5295 * the physical log separately. The pass parameter is passed through
5296 * to the routines called to process the data and is not looked at
5297 * here.
5298 */
5299STATIC int
5300xlog_do_recovery_pass(
5301 struct xlog *log,
5302 xfs_daddr_t head_blk,
5303 xfs_daddr_t tail_blk,
5304 int pass,
5305 xfs_daddr_t *first_bad) /* out: first bad log rec */
5306{
5307 xlog_rec_header_t *rhead;
5308 xfs_daddr_t blk_no, rblk_no;
5309 xfs_daddr_t rhead_blk;
5310 char *offset;
5311 xfs_buf_t *hbp, *dbp;
5312 int error = 0, h_size, h_len;
5313 int error2 = 0;
5314 int bblks, split_bblks;
5315 int hblks, split_hblks, wrapped_hblks;
5316 int i;
5317 struct hlist_head rhash[XLOG_RHASH_SIZE];
5318 LIST_HEAD (buffer_list);
5319
5320 ASSERT(head_blk != tail_blk);
5321 blk_no = rhead_blk = tail_blk;
5322
5323 for (i = 0; i < XLOG_RHASH_SIZE; i++)
5324 INIT_HLIST_HEAD(&rhash[i]);
5325
5326 /*
5327 * Read the header of the tail block and get the iclog buffer size from
5328 * h_size. Use this to tell how many sectors make up the log header.
5329 */
5330 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
5331 /*
5332 * When using variable length iclogs, read first sector of
5333 * iclog header and extract the header size from it. Get a
5334 * new hbp that is the correct size.
5335 */
5336 hbp = xlog_get_bp(log, 1);
5337 if (!hbp)
5338 return -ENOMEM;
5339
5340 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
5341 if (error)
5342 goto bread_err1;
5343
5344 rhead = (xlog_rec_header_t *)offset;
5345 error = xlog_valid_rec_header(log, rhead, tail_blk);
5346 if (error)
5347 goto bread_err1;
5348
5349 /*
5350 * xfsprogs has a bug where record length is based on lsunit but
5351 * h_size (iclog size) is hardcoded to 32k. Now that we
5352 * unconditionally CRC verify the unmount record, this means the
5353 * log buffer can be too small for the record and cause an
5354 * overrun.
5355 *
5356 * Detect this condition here. Use lsunit for the buffer size as
5357 * long as this looks like the mkfs case. Otherwise, return an
5358 * error to avoid a buffer overrun.
5359 */
5360 h_size = be32_to_cpu(rhead->h_size);
5361 h_len = be32_to_cpu(rhead->h_len);
5362 if (h_len > h_size) {
5363 if (h_len <= log->l_mp->m_logbsize &&
5364 be32_to_cpu(rhead->h_num_logops) == 1) {
5365 xfs_warn(log->l_mp,
5366 "invalid iclog size (%d bytes), using lsunit (%d bytes)",
5367 h_size, log->l_mp->m_logbsize);
5368 h_size = log->l_mp->m_logbsize;
5369 } else
5370 return -EFSCORRUPTED;
5371 }
5372
5373 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
5374 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
5375 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
5376 if (h_size % XLOG_HEADER_CYCLE_SIZE)
5377 hblks++;
5378 xlog_put_bp(hbp);
5379 hbp = xlog_get_bp(log, hblks);
5380 } else {
5381 hblks = 1;
5382 }
5383 } else {
5384 ASSERT(log->l_sectBBsize == 1);
5385 hblks = 1;
5386 hbp = xlog_get_bp(log, 1);
5387 h_size = XLOG_BIG_RECORD_BSIZE;
5388 }
5389
5390 if (!hbp)
5391 return -ENOMEM;
5392 dbp = xlog_get_bp(log, BTOBB(h_size));
5393 if (!dbp) {
5394 xlog_put_bp(hbp);
5395 return -ENOMEM;
5396 }
5397
5398 memset(rhash, 0, sizeof(rhash));
5399 if (tail_blk > head_blk) {
5400 /*
5401 * Perform recovery around the end of the physical log.
5402 * When the head is not on the same cycle number as the tail,
5403 * we can't do a sequential recovery.
5404 */
5405 while (blk_no < log->l_logBBsize) {
5406 /*
5407 * Check for header wrapping around physical end-of-log
5408 */
5409 offset = hbp->b_addr;
5410 split_hblks = 0;
5411 wrapped_hblks = 0;
5412 if (blk_no + hblks <= log->l_logBBsize) {
5413 /* Read header in one read */
5414 error = xlog_bread(log, blk_no, hblks, hbp,
5415 &offset);
5416 if (error)
5417 goto bread_err2;
5418 } else {
5419 /* This LR is split across physical log end */
5420 if (blk_no != log->l_logBBsize) {
5421 /* some data before physical log end */
5422 ASSERT(blk_no <= INT_MAX);
5423 split_hblks = log->l_logBBsize - (int)blk_no;
5424 ASSERT(split_hblks > 0);
5425 error = xlog_bread(log, blk_no,
5426 split_hblks, hbp,
5427 &offset);
5428 if (error)
5429 goto bread_err2;
5430 }
5431
5432 /*
5433 * Note: this black magic still works with
5434 * large sector sizes (non-512) only because:
5435 * - we increased the buffer size originally
5436 * by 1 sector giving us enough extra space
5437 * for the second read;
5438 * - the log start is guaranteed to be sector
5439 * aligned;
5440 * - we read the log end (LR header start)
5441 * _first_, then the log start (LR header end)
5442 * - order is important.
5443 */
5444 wrapped_hblks = hblks - split_hblks;
5445 error = xlog_bread_offset(log, 0,
5446 wrapped_hblks, hbp,
5447 offset + BBTOB(split_hblks));
5448 if (error)
5449 goto bread_err2;
5450 }
5451 rhead = (xlog_rec_header_t *)offset;
5452 error = xlog_valid_rec_header(log, rhead,
5453 split_hblks ? blk_no : 0);
5454 if (error)
5455 goto bread_err2;
5456
5457 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5458 blk_no += hblks;
5459
5460 /*
5461 * Read the log record data in multiple reads if it
5462 * wraps around the end of the log. Note that if the
5463 * header already wrapped, blk_no could point past the
5464 * end of the log. The record data is contiguous in
5465 * that case.
5466 */
5467 if (blk_no + bblks <= log->l_logBBsize ||
5468 blk_no >= log->l_logBBsize) {
5469 /* mod blk_no in case the header wrapped and
5470 * pushed it beyond the end of the log */
5471 rblk_no = do_mod(blk_no, log->l_logBBsize);
5472 error = xlog_bread(log, rblk_no, bblks, dbp,
5473 &offset);
5474 if (error)
5475 goto bread_err2;
5476 } else {
5477 /* This log record is split across the
5478 * physical end of log */
5479 offset = dbp->b_addr;
5480 split_bblks = 0;
5481 if (blk_no != log->l_logBBsize) {
5482 /* some data is before the physical
5483 * end of log */
5484 ASSERT(!wrapped_hblks);
5485 ASSERT(blk_no <= INT_MAX);
5486 split_bblks =
5487 log->l_logBBsize - (int)blk_no;
5488 ASSERT(split_bblks > 0);
5489 error = xlog_bread(log, blk_no,
5490 split_bblks, dbp,
5491 &offset);
5492 if (error)
5493 goto bread_err2;
5494 }
5495
5496 /*
5497 * Note: this black magic still works with
5498 * large sector sizes (non-512) only because:
5499 * - we increased the buffer size originally
5500 * by 1 sector giving us enough extra space
5501 * for the second read;
5502 * - the log start is guaranteed to be sector
5503 * aligned;
5504 * - we read the log end (LR header start)
5505 * _first_, then the log start (LR header end)
5506 * - order is important.
5507 */
5508 error = xlog_bread_offset(log, 0,
5509 bblks - split_bblks, dbp,
5510 offset + BBTOB(split_bblks));
5511 if (error)
5512 goto bread_err2;
5513 }
5514
5515 error = xlog_recover_process(log, rhash, rhead, offset,
5516 pass, &buffer_list);
5517 if (error)
5518 goto bread_err2;
5519
5520 blk_no += bblks;
5521 rhead_blk = blk_no;
5522 }
5523
5524 ASSERT(blk_no >= log->l_logBBsize);
5525 blk_no -= log->l_logBBsize;
5526 rhead_blk = blk_no;
5527 }
5528
5529 /* read first part of physical log */
5530 while (blk_no < head_blk) {
5531 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
5532 if (error)
5533 goto bread_err2;
5534
5535 rhead = (xlog_rec_header_t *)offset;
5536 error = xlog_valid_rec_header(log, rhead, blk_no);
5537 if (error)
5538 goto bread_err2;
5539
5540 /* blocks in data section */
5541 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5542 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
5543 &offset);
5544 if (error)
5545 goto bread_err2;
5546
5547 error = xlog_recover_process(log, rhash, rhead, offset, pass,
5548 &buffer_list);
5549 if (error)
5550 goto bread_err2;
5551
5552 blk_no += bblks + hblks;
5553 rhead_blk = blk_no;
5554 }
5555
5556 bread_err2:
5557 xlog_put_bp(dbp);
5558 bread_err1:
5559 xlog_put_bp(hbp);
5560
5561 /*
5562 * Submit buffers that have been added from the last record processed,
5563 * regardless of error status.
5564 */
5565 if (!list_empty(&buffer_list))
5566 error2 = xfs_buf_delwri_submit(&buffer_list);
5567
5568 if (error && first_bad)
5569 *first_bad = rhead_blk;
5570
5571 /*
5572 * Transactions are freed at commit time but transactions without commit
5573 * records on disk are never committed. Free any that may be left in the
5574 * hash table.
5575 */
5576 for (i = 0; i < XLOG_RHASH_SIZE; i++) {
5577 struct hlist_node *tmp;
5578 struct xlog_recover *trans;
5579
5580 hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list)
5581 xlog_recover_free_trans(trans);
5582 }
5583
5584 return error ? error : error2;
5585}
5586
5587/*
5588 * Do the recovery of the log. We actually do this in two phases.
5589 * The two passes are necessary in order to implement the function
5590 * of cancelling a record written into the log. The first pass
5591 * determines those things which have been cancelled, and the
5592 * second pass replays log items normally except for those which
5593 * have been cancelled. The handling of the replay and cancellations
5594 * takes place in the log item type specific routines.
5595 *
5596 * The table of items which have cancel records in the log is allocated
5597 * and freed at this level, since only here do we know when all of
5598 * the log recovery has been completed.
5599 */
5600STATIC int
5601xlog_do_log_recovery(
5602 struct xlog *log,
5603 xfs_daddr_t head_blk,
5604 xfs_daddr_t tail_blk)
5605{
5606 int error, i;
5607
5608 ASSERT(head_blk != tail_blk);
5609
5610 /*
5611 * First do a pass to find all of the cancelled buf log items.
5612 * Store them in the buf_cancel_table for use in the second pass.
5613 */
5614 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
5615 sizeof(struct list_head),
5616 KM_SLEEP);
5617 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5618 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
5619
5620 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5621 XLOG_RECOVER_PASS1, NULL);
5622 if (error != 0) {
5623 kmem_free(log->l_buf_cancel_table);
5624 log->l_buf_cancel_table = NULL;
5625 return error;
5626 }
5627 /*
5628 * Then do a second pass to actually recover the items in the log.
5629 * When it is complete free the table of buf cancel items.
5630 */
5631 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5632 XLOG_RECOVER_PASS2, NULL);
5633#ifdef DEBUG
5634 if (!error) {
5635 int i;
5636
5637 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5638 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
5639 }
5640#endif /* DEBUG */
5641
5642 kmem_free(log->l_buf_cancel_table);
5643 log->l_buf_cancel_table = NULL;
5644
5645 return error;
5646}
5647
5648/*
5649 * Do the actual recovery
5650 */
5651STATIC int
5652xlog_do_recover(
5653 struct xlog *log,
5654 xfs_daddr_t head_blk,
5655 xfs_daddr_t tail_blk)
5656{
5657 struct xfs_mount *mp = log->l_mp;
5658 int error;
5659 xfs_buf_t *bp;
5660 xfs_sb_t *sbp;
5661
5662 trace_xfs_log_recover(log, head_blk, tail_blk);
5663
5664 /*
5665 * First replay the images in the log.
5666 */
5667 error = xlog_do_log_recovery(log, head_blk, tail_blk);
5668 if (error)
5669 return error;
5670
5671 /*
5672 * If IO errors happened during recovery, bail out.
5673 */
5674 if (XFS_FORCED_SHUTDOWN(mp)) {
5675 return -EIO;
5676 }
5677
5678 /*
5679 * We now update the tail_lsn since much of the recovery has completed
5680 * and there may be space available to use. If there were no extent
5681 * or iunlinks, we can free up the entire log and set the tail_lsn to
5682 * be the last_sync_lsn. This was set in xlog_find_tail to be the
5683 * lsn of the last known good LR on disk. If there are extent frees
5684 * or iunlinks they will have some entries in the AIL; so we look at
5685 * the AIL to determine how to set the tail_lsn.
5686 */
5687 xlog_assign_tail_lsn(mp);
5688
5689 /*
5690 * Now that we've finished replaying all buffer and inode
5691 * updates, re-read in the superblock and reverify it.
5692 */
5693 bp = xfs_getsb(mp, 0);
5694 bp->b_flags &= ~(XBF_DONE | XBF_ASYNC);
5695 ASSERT(!(bp->b_flags & XBF_WRITE));
5696 bp->b_flags |= XBF_READ;
5697 bp->b_ops = &xfs_sb_buf_ops;
5698
5699 error = xfs_buf_submit_wait(bp);
5700 if (error) {
5701 if (!XFS_FORCED_SHUTDOWN(mp)) {
5702 xfs_buf_ioerror_alert(bp, __func__);
5703 ASSERT(0);
5704 }
5705 xfs_buf_relse(bp);
5706 return error;
5707 }
5708
5709 /* Convert superblock from on-disk format */
5710 sbp = &mp->m_sb;
5711 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
5712 xfs_buf_relse(bp);
5713
5714 /* re-initialise in-core superblock and geometry structures */
5715 xfs_reinit_percpu_counters(mp);
5716 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
5717 if (error) {
5718 xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
5719 return error;
5720 }
5721 mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
5722
5723 xlog_recover_check_summary(log);
5724
5725 /* Normal transactions can now occur */
5726 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
5727 return 0;
5728}
5729
5730/*
5731 * Perform recovery and re-initialize some log variables in xlog_find_tail.
5732 *
5733 * Return error or zero.
5734 */
5735int
5736xlog_recover(
5737 struct xlog *log)
5738{
5739 xfs_daddr_t head_blk, tail_blk;
5740 int error;
5741
5742 /* find the tail of the log */
5743 error = xlog_find_tail(log, &head_blk, &tail_blk);
5744 if (error)
5745 return error;
5746
5747 /*
5748 * The superblock was read before the log was available and thus the LSN
5749 * could not be verified. Check the superblock LSN against the current
5750 * LSN now that it's known.
5751 */
5752 if (xfs_sb_version_hascrc(&log->l_mp->m_sb) &&
5753 !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
5754 return -EINVAL;
5755
5756 if (tail_blk != head_blk) {
5757 /* There used to be a comment here:
5758 *
5759 * disallow recovery on read-only mounts. note -- mount
5760 * checks for ENOSPC and turns it into an intelligent
5761 * error message.
5762 * ...but this is no longer true. Now, unless you specify
5763 * NORECOVERY (in which case this function would never be
5764 * called), we just go ahead and recover. We do this all
5765 * under the vfs layer, so we can get away with it unless
5766 * the device itself is read-only, in which case we fail.
5767 */
5768 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
5769 return error;
5770 }
5771
5772 /*
5773 * Version 5 superblock log feature mask validation. We know the
5774 * log is dirty so check if there are any unknown log features
5775 * in what we need to recover. If there are unknown features
5776 * (e.g. unsupported transactions, then simply reject the
5777 * attempt at recovery before touching anything.
5778 */
5779 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
5780 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
5781 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
5782 xfs_warn(log->l_mp,
5783"Superblock has unknown incompatible log features (0x%x) enabled.",
5784 (log->l_mp->m_sb.sb_features_log_incompat &
5785 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
5786 xfs_warn(log->l_mp,
5787"The log can not be fully and/or safely recovered by this kernel.");
5788 xfs_warn(log->l_mp,
5789"Please recover the log on a kernel that supports the unknown features.");
5790 return -EINVAL;
5791 }
5792
5793 /*
5794 * Delay log recovery if the debug hook is set. This is debug
5795 * instrumention to coordinate simulation of I/O failures with
5796 * log recovery.
5797 */
5798 if (xfs_globals.log_recovery_delay) {
5799 xfs_notice(log->l_mp,
5800 "Delaying log recovery for %d seconds.",
5801 xfs_globals.log_recovery_delay);
5802 msleep(xfs_globals.log_recovery_delay * 1000);
5803 }
5804
5805 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
5806 log->l_mp->m_logname ? log->l_mp->m_logname
5807 : "internal");
5808
5809 error = xlog_do_recover(log, head_blk, tail_blk);
5810 log->l_flags |= XLOG_RECOVERY_NEEDED;
5811 }
5812 return error;
5813}
5814
5815/*
5816 * In the first part of recovery we replay inodes and buffers and build
5817 * up the list of extent free items which need to be processed. Here
5818 * we process the extent free items and clean up the on disk unlinked
5819 * inode lists. This is separated from the first part of recovery so
5820 * that the root and real-time bitmap inodes can be read in from disk in
5821 * between the two stages. This is necessary so that we can free space
5822 * in the real-time portion of the file system.
5823 */
5824int
5825xlog_recover_finish(
5826 struct xlog *log)
5827{
5828 /*
5829 * Now we're ready to do the transactions needed for the
5830 * rest of recovery. Start with completing all the extent
5831 * free intent records and then process the unlinked inode
5832 * lists. At this point, we essentially run in normal mode
5833 * except that we're still performing recovery actions
5834 * rather than accepting new requests.
5835 */
5836 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
5837 int error;
5838 error = xlog_recover_process_intents(log);
5839 if (error) {
5840 xfs_alert(log->l_mp, "Failed to recover intents");
5841 return error;
5842 }
5843
5844 /*
5845 * Sync the log to get all the intents out of the AIL.
5846 * This isn't absolutely necessary, but it helps in
5847 * case the unlink transactions would have problems
5848 * pushing the intents out of the way.
5849 */
5850 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
5851
5852 xlog_recover_process_iunlinks(log);
5853
5854 xlog_recover_check_summary(log);
5855
5856 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
5857 log->l_mp->m_logname ? log->l_mp->m_logname
5858 : "internal");
5859 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
5860 } else {
5861 xfs_info(log->l_mp, "Ending clean mount");
5862 }
5863 return 0;
5864}
5865
5866int
5867xlog_recover_cancel(
5868 struct xlog *log)
5869{
5870 int error = 0;
5871
5872 if (log->l_flags & XLOG_RECOVERY_NEEDED)
5873 error = xlog_recover_cancel_intents(log);
5874
5875 return error;
5876}
5877
5878#if defined(DEBUG)
5879/*
5880 * Read all of the agf and agi counters and check that they
5881 * are consistent with the superblock counters.
5882 */
5883STATIC void
5884xlog_recover_check_summary(
5885 struct xlog *log)
5886{
5887 xfs_mount_t *mp;
5888 xfs_agf_t *agfp;
5889 xfs_buf_t *agfbp;
5890 xfs_buf_t *agibp;
5891 xfs_agnumber_t agno;
5892 uint64_t freeblks;
5893 uint64_t itotal;
5894 uint64_t ifree;
5895 int error;
5896
5897 mp = log->l_mp;
5898
5899 freeblks = 0LL;
5900 itotal = 0LL;
5901 ifree = 0LL;
5902 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5903 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
5904 if (error) {
5905 xfs_alert(mp, "%s agf read failed agno %d error %d",
5906 __func__, agno, error);
5907 } else {
5908 agfp = XFS_BUF_TO_AGF(agfbp);
5909 freeblks += be32_to_cpu(agfp->agf_freeblks) +
5910 be32_to_cpu(agfp->agf_flcount);
5911 xfs_buf_relse(agfbp);
5912 }
5913
5914 error = xfs_read_agi(mp, NULL, agno, &agibp);
5915 if (error) {
5916 xfs_alert(mp, "%s agi read failed agno %d error %d",
5917 __func__, agno, error);
5918 } else {
5919 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
5920
5921 itotal += be32_to_cpu(agi->agi_count);
5922 ifree += be32_to_cpu(agi->agi_freecount);
5923 xfs_buf_relse(agibp);
5924 }
5925 }
5926}
5927#endif /* DEBUG */
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_sb.h"
14#include "xfs_mount.h"
15#include "xfs_defer.h"
16#include "xfs_inode.h"
17#include "xfs_trans.h"
18#include "xfs_log.h"
19#include "xfs_log_priv.h"
20#include "xfs_log_recover.h"
21#include "xfs_trans_priv.h"
22#include "xfs_alloc.h"
23#include "xfs_ialloc.h"
24#include "xfs_trace.h"
25#include "xfs_icache.h"
26#include "xfs_error.h"
27#include "xfs_buf_item.h"
28#include "xfs_ag.h"
29
30#define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
31
32STATIC int
33xlog_find_zeroed(
34 struct xlog *,
35 xfs_daddr_t *);
36STATIC int
37xlog_clear_stale_blocks(
38 struct xlog *,
39 xfs_lsn_t);
40#if defined(DEBUG)
41STATIC void
42xlog_recover_check_summary(
43 struct xlog *);
44#else
45#define xlog_recover_check_summary(log)
46#endif
47STATIC int
48xlog_do_recovery_pass(
49 struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
50
51/*
52 * Sector aligned buffer routines for buffer create/read/write/access
53 */
54
55/*
56 * Verify the log-relative block number and length in basic blocks are valid for
57 * an operation involving the given XFS log buffer. Returns true if the fields
58 * are valid, false otherwise.
59 */
60static inline bool
61xlog_verify_bno(
62 struct xlog *log,
63 xfs_daddr_t blk_no,
64 int bbcount)
65{
66 if (blk_no < 0 || blk_no >= log->l_logBBsize)
67 return false;
68 if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize)
69 return false;
70 return true;
71}
72
73/*
74 * Allocate a buffer to hold log data. The buffer needs to be able to map to
75 * a range of nbblks basic blocks at any valid offset within the log.
76 */
77static char *
78xlog_alloc_buffer(
79 struct xlog *log,
80 int nbblks)
81{
82 int align_mask = xfs_buftarg_dma_alignment(log->l_targ);
83
84 /*
85 * Pass log block 0 since we don't have an addr yet, buffer will be
86 * verified on read.
87 */
88 if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, 0, nbblks))) {
89 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
90 nbblks);
91 return NULL;
92 }
93
94 /*
95 * We do log I/O in units of log sectors (a power-of-2 multiple of the
96 * basic block size), so we round up the requested size to accommodate
97 * the basic blocks required for complete log sectors.
98 *
99 * In addition, the buffer may be used for a non-sector-aligned block
100 * offset, in which case an I/O of the requested size could extend
101 * beyond the end of the buffer. If the requested size is only 1 basic
102 * block it will never straddle a sector boundary, so this won't be an
103 * issue. Nor will this be a problem if the log I/O is done in basic
104 * blocks (sector size 1). But otherwise we extend the buffer by one
105 * extra log sector to ensure there's space to accommodate this
106 * possibility.
107 */
108 if (nbblks > 1 && log->l_sectBBsize > 1)
109 nbblks += log->l_sectBBsize;
110 nbblks = round_up(nbblks, log->l_sectBBsize);
111 return kmem_alloc_io(BBTOB(nbblks), align_mask, KM_MAYFAIL | KM_ZERO);
112}
113
114/*
115 * Return the address of the start of the given block number's data
116 * in a log buffer. The buffer covers a log sector-aligned region.
117 */
118static inline unsigned int
119xlog_align(
120 struct xlog *log,
121 xfs_daddr_t blk_no)
122{
123 return BBTOB(blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1));
124}
125
126static int
127xlog_do_io(
128 struct xlog *log,
129 xfs_daddr_t blk_no,
130 unsigned int nbblks,
131 char *data,
132 unsigned int op)
133{
134 int error;
135
136 if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, blk_no, nbblks))) {
137 xfs_warn(log->l_mp,
138 "Invalid log block/length (0x%llx, 0x%x) for buffer",
139 blk_no, nbblks);
140 return -EFSCORRUPTED;
141 }
142
143 blk_no = round_down(blk_no, log->l_sectBBsize);
144 nbblks = round_up(nbblks, log->l_sectBBsize);
145 ASSERT(nbblks > 0);
146
147 error = xfs_rw_bdev(log->l_targ->bt_bdev, log->l_logBBstart + blk_no,
148 BBTOB(nbblks), data, op);
149 if (error && !XFS_FORCED_SHUTDOWN(log->l_mp)) {
150 xfs_alert(log->l_mp,
151 "log recovery %s I/O error at daddr 0x%llx len %d error %d",
152 op == REQ_OP_WRITE ? "write" : "read",
153 blk_no, nbblks, error);
154 }
155 return error;
156}
157
158STATIC int
159xlog_bread_noalign(
160 struct xlog *log,
161 xfs_daddr_t blk_no,
162 int nbblks,
163 char *data)
164{
165 return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
166}
167
168STATIC int
169xlog_bread(
170 struct xlog *log,
171 xfs_daddr_t blk_no,
172 int nbblks,
173 char *data,
174 char **offset)
175{
176 int error;
177
178 error = xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
179 if (!error)
180 *offset = data + xlog_align(log, blk_no);
181 return error;
182}
183
184STATIC int
185xlog_bwrite(
186 struct xlog *log,
187 xfs_daddr_t blk_no,
188 int nbblks,
189 char *data)
190{
191 return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_WRITE);
192}
193
194#ifdef DEBUG
195/*
196 * dump debug superblock and log record information
197 */
198STATIC void
199xlog_header_check_dump(
200 xfs_mount_t *mp,
201 xlog_rec_header_t *head)
202{
203 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d",
204 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
205 xfs_debug(mp, " log : uuid = %pU, fmt = %d",
206 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
207}
208#else
209#define xlog_header_check_dump(mp, head)
210#endif
211
212/*
213 * check log record header for recovery
214 */
215STATIC int
216xlog_header_check_recover(
217 xfs_mount_t *mp,
218 xlog_rec_header_t *head)
219{
220 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
221
222 /*
223 * IRIX doesn't write the h_fmt field and leaves it zeroed
224 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
225 * a dirty log created in IRIX.
226 */
227 if (XFS_IS_CORRUPT(mp, head->h_fmt != cpu_to_be32(XLOG_FMT))) {
228 xfs_warn(mp,
229 "dirty log written in incompatible format - can't recover");
230 xlog_header_check_dump(mp, head);
231 return -EFSCORRUPTED;
232 }
233 if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid,
234 &head->h_fs_uuid))) {
235 xfs_warn(mp,
236 "dirty log entry has mismatched uuid - can't recover");
237 xlog_header_check_dump(mp, head);
238 return -EFSCORRUPTED;
239 }
240 return 0;
241}
242
243/*
244 * read the head block of the log and check the header
245 */
246STATIC int
247xlog_header_check_mount(
248 xfs_mount_t *mp,
249 xlog_rec_header_t *head)
250{
251 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
252
253 if (uuid_is_null(&head->h_fs_uuid)) {
254 /*
255 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
256 * h_fs_uuid is null, we assume this log was last mounted
257 * by IRIX and continue.
258 */
259 xfs_warn(mp, "null uuid in log - IRIX style log");
260 } else if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid,
261 &head->h_fs_uuid))) {
262 xfs_warn(mp, "log has mismatched uuid - can't recover");
263 xlog_header_check_dump(mp, head);
264 return -EFSCORRUPTED;
265 }
266 return 0;
267}
268
269/*
270 * This routine finds (to an approximation) the first block in the physical
271 * log which contains the given cycle. It uses a binary search algorithm.
272 * Note that the algorithm can not be perfect because the disk will not
273 * necessarily be perfect.
274 */
275STATIC int
276xlog_find_cycle_start(
277 struct xlog *log,
278 char *buffer,
279 xfs_daddr_t first_blk,
280 xfs_daddr_t *last_blk,
281 uint cycle)
282{
283 char *offset;
284 xfs_daddr_t mid_blk;
285 xfs_daddr_t end_blk;
286 uint mid_cycle;
287 int error;
288
289 end_blk = *last_blk;
290 mid_blk = BLK_AVG(first_blk, end_blk);
291 while (mid_blk != first_blk && mid_blk != end_blk) {
292 error = xlog_bread(log, mid_blk, 1, buffer, &offset);
293 if (error)
294 return error;
295 mid_cycle = xlog_get_cycle(offset);
296 if (mid_cycle == cycle)
297 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
298 else
299 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
300 mid_blk = BLK_AVG(first_blk, end_blk);
301 }
302 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
303 (mid_blk == end_blk && mid_blk-1 == first_blk));
304
305 *last_blk = end_blk;
306
307 return 0;
308}
309
310/*
311 * Check that a range of blocks does not contain stop_on_cycle_no.
312 * Fill in *new_blk with the block offset where such a block is
313 * found, or with -1 (an invalid block number) if there is no such
314 * block in the range. The scan needs to occur from front to back
315 * and the pointer into the region must be updated since a later
316 * routine will need to perform another test.
317 */
318STATIC int
319xlog_find_verify_cycle(
320 struct xlog *log,
321 xfs_daddr_t start_blk,
322 int nbblks,
323 uint stop_on_cycle_no,
324 xfs_daddr_t *new_blk)
325{
326 xfs_daddr_t i, j;
327 uint cycle;
328 char *buffer;
329 xfs_daddr_t bufblks;
330 char *buf = NULL;
331 int error = 0;
332
333 /*
334 * Greedily allocate a buffer big enough to handle the full
335 * range of basic blocks we'll be examining. If that fails,
336 * try a smaller size. We need to be able to read at least
337 * a log sector, or we're out of luck.
338 */
339 bufblks = 1 << ffs(nbblks);
340 while (bufblks > log->l_logBBsize)
341 bufblks >>= 1;
342 while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
343 bufblks >>= 1;
344 if (bufblks < log->l_sectBBsize)
345 return -ENOMEM;
346 }
347
348 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
349 int bcount;
350
351 bcount = min(bufblks, (start_blk + nbblks - i));
352
353 error = xlog_bread(log, i, bcount, buffer, &buf);
354 if (error)
355 goto out;
356
357 for (j = 0; j < bcount; j++) {
358 cycle = xlog_get_cycle(buf);
359 if (cycle == stop_on_cycle_no) {
360 *new_blk = i+j;
361 goto out;
362 }
363
364 buf += BBSIZE;
365 }
366 }
367
368 *new_blk = -1;
369
370out:
371 kmem_free(buffer);
372 return error;
373}
374
375static inline int
376xlog_logrec_hblks(struct xlog *log, struct xlog_rec_header *rh)
377{
378 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
379 int h_size = be32_to_cpu(rh->h_size);
380
381 if ((be32_to_cpu(rh->h_version) & XLOG_VERSION_2) &&
382 h_size > XLOG_HEADER_CYCLE_SIZE)
383 return DIV_ROUND_UP(h_size, XLOG_HEADER_CYCLE_SIZE);
384 }
385 return 1;
386}
387
388/*
389 * Potentially backup over partial log record write.
390 *
391 * In the typical case, last_blk is the number of the block directly after
392 * a good log record. Therefore, we subtract one to get the block number
393 * of the last block in the given buffer. extra_bblks contains the number
394 * of blocks we would have read on a previous read. This happens when the
395 * last log record is split over the end of the physical log.
396 *
397 * extra_bblks is the number of blocks potentially verified on a previous
398 * call to this routine.
399 */
400STATIC int
401xlog_find_verify_log_record(
402 struct xlog *log,
403 xfs_daddr_t start_blk,
404 xfs_daddr_t *last_blk,
405 int extra_bblks)
406{
407 xfs_daddr_t i;
408 char *buffer;
409 char *offset = NULL;
410 xlog_rec_header_t *head = NULL;
411 int error = 0;
412 int smallmem = 0;
413 int num_blks = *last_blk - start_blk;
414 int xhdrs;
415
416 ASSERT(start_blk != 0 || *last_blk != start_blk);
417
418 buffer = xlog_alloc_buffer(log, num_blks);
419 if (!buffer) {
420 buffer = xlog_alloc_buffer(log, 1);
421 if (!buffer)
422 return -ENOMEM;
423 smallmem = 1;
424 } else {
425 error = xlog_bread(log, start_blk, num_blks, buffer, &offset);
426 if (error)
427 goto out;
428 offset += ((num_blks - 1) << BBSHIFT);
429 }
430
431 for (i = (*last_blk) - 1; i >= 0; i--) {
432 if (i < start_blk) {
433 /* valid log record not found */
434 xfs_warn(log->l_mp,
435 "Log inconsistent (didn't find previous header)");
436 ASSERT(0);
437 error = -EFSCORRUPTED;
438 goto out;
439 }
440
441 if (smallmem) {
442 error = xlog_bread(log, i, 1, buffer, &offset);
443 if (error)
444 goto out;
445 }
446
447 head = (xlog_rec_header_t *)offset;
448
449 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
450 break;
451
452 if (!smallmem)
453 offset -= BBSIZE;
454 }
455
456 /*
457 * We hit the beginning of the physical log & still no header. Return
458 * to caller. If caller can handle a return of -1, then this routine
459 * will be called again for the end of the physical log.
460 */
461 if (i == -1) {
462 error = 1;
463 goto out;
464 }
465
466 /*
467 * We have the final block of the good log (the first block
468 * of the log record _before_ the head. So we check the uuid.
469 */
470 if ((error = xlog_header_check_mount(log->l_mp, head)))
471 goto out;
472
473 /*
474 * We may have found a log record header before we expected one.
475 * last_blk will be the 1st block # with a given cycle #. We may end
476 * up reading an entire log record. In this case, we don't want to
477 * reset last_blk. Only when last_blk points in the middle of a log
478 * record do we update last_blk.
479 */
480 xhdrs = xlog_logrec_hblks(log, head);
481
482 if (*last_blk - i + extra_bblks !=
483 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
484 *last_blk = i;
485
486out:
487 kmem_free(buffer);
488 return error;
489}
490
491/*
492 * Head is defined to be the point of the log where the next log write
493 * could go. This means that incomplete LR writes at the end are
494 * eliminated when calculating the head. We aren't guaranteed that previous
495 * LR have complete transactions. We only know that a cycle number of
496 * current cycle number -1 won't be present in the log if we start writing
497 * from our current block number.
498 *
499 * last_blk contains the block number of the first block with a given
500 * cycle number.
501 *
502 * Return: zero if normal, non-zero if error.
503 */
504STATIC int
505xlog_find_head(
506 struct xlog *log,
507 xfs_daddr_t *return_head_blk)
508{
509 char *buffer;
510 char *offset;
511 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
512 int num_scan_bblks;
513 uint first_half_cycle, last_half_cycle;
514 uint stop_on_cycle;
515 int error, log_bbnum = log->l_logBBsize;
516
517 /* Is the end of the log device zeroed? */
518 error = xlog_find_zeroed(log, &first_blk);
519 if (error < 0) {
520 xfs_warn(log->l_mp, "empty log check failed");
521 return error;
522 }
523 if (error == 1) {
524 *return_head_blk = first_blk;
525
526 /* Is the whole lot zeroed? */
527 if (!first_blk) {
528 /* Linux XFS shouldn't generate totally zeroed logs -
529 * mkfs etc write a dummy unmount record to a fresh
530 * log so we can store the uuid in there
531 */
532 xfs_warn(log->l_mp, "totally zeroed log");
533 }
534
535 return 0;
536 }
537
538 first_blk = 0; /* get cycle # of 1st block */
539 buffer = xlog_alloc_buffer(log, 1);
540 if (!buffer)
541 return -ENOMEM;
542
543 error = xlog_bread(log, 0, 1, buffer, &offset);
544 if (error)
545 goto out_free_buffer;
546
547 first_half_cycle = xlog_get_cycle(offset);
548
549 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
550 error = xlog_bread(log, last_blk, 1, buffer, &offset);
551 if (error)
552 goto out_free_buffer;
553
554 last_half_cycle = xlog_get_cycle(offset);
555 ASSERT(last_half_cycle != 0);
556
557 /*
558 * If the 1st half cycle number is equal to the last half cycle number,
559 * then the entire log is stamped with the same cycle number. In this
560 * case, head_blk can't be set to zero (which makes sense). The below
561 * math doesn't work out properly with head_blk equal to zero. Instead,
562 * we set it to log_bbnum which is an invalid block number, but this
563 * value makes the math correct. If head_blk doesn't changed through
564 * all the tests below, *head_blk is set to zero at the very end rather
565 * than log_bbnum. In a sense, log_bbnum and zero are the same block
566 * in a circular file.
567 */
568 if (first_half_cycle == last_half_cycle) {
569 /*
570 * In this case we believe that the entire log should have
571 * cycle number last_half_cycle. We need to scan backwards
572 * from the end verifying that there are no holes still
573 * containing last_half_cycle - 1. If we find such a hole,
574 * then the start of that hole will be the new head. The
575 * simple case looks like
576 * x | x ... | x - 1 | x
577 * Another case that fits this picture would be
578 * x | x + 1 | x ... | x
579 * In this case the head really is somewhere at the end of the
580 * log, as one of the latest writes at the beginning was
581 * incomplete.
582 * One more case is
583 * x | x + 1 | x ... | x - 1 | x
584 * This is really the combination of the above two cases, and
585 * the head has to end up at the start of the x-1 hole at the
586 * end of the log.
587 *
588 * In the 256k log case, we will read from the beginning to the
589 * end of the log and search for cycle numbers equal to x-1.
590 * We don't worry about the x+1 blocks that we encounter,
591 * because we know that they cannot be the head since the log
592 * started with x.
593 */
594 head_blk = log_bbnum;
595 stop_on_cycle = last_half_cycle - 1;
596 } else {
597 /*
598 * In this case we want to find the first block with cycle
599 * number matching last_half_cycle. We expect the log to be
600 * some variation on
601 * x + 1 ... | x ... | x
602 * The first block with cycle number x (last_half_cycle) will
603 * be where the new head belongs. First we do a binary search
604 * for the first occurrence of last_half_cycle. The binary
605 * search may not be totally accurate, so then we scan back
606 * from there looking for occurrences of last_half_cycle before
607 * us. If that backwards scan wraps around the beginning of
608 * the log, then we look for occurrences of last_half_cycle - 1
609 * at the end of the log. The cases we're looking for look
610 * like
611 * v binary search stopped here
612 * x + 1 ... | x | x + 1 | x ... | x
613 * ^ but we want to locate this spot
614 * or
615 * <---------> less than scan distance
616 * x + 1 ... | x ... | x - 1 | x
617 * ^ we want to locate this spot
618 */
619 stop_on_cycle = last_half_cycle;
620 error = xlog_find_cycle_start(log, buffer, first_blk, &head_blk,
621 last_half_cycle);
622 if (error)
623 goto out_free_buffer;
624 }
625
626 /*
627 * Now validate the answer. Scan back some number of maximum possible
628 * blocks and make sure each one has the expected cycle number. The
629 * maximum is determined by the total possible amount of buffering
630 * in the in-core log. The following number can be made tighter if
631 * we actually look at the block size of the filesystem.
632 */
633 num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log));
634 if (head_blk >= num_scan_bblks) {
635 /*
636 * We are guaranteed that the entire check can be performed
637 * in one buffer.
638 */
639 start_blk = head_blk - num_scan_bblks;
640 if ((error = xlog_find_verify_cycle(log,
641 start_blk, num_scan_bblks,
642 stop_on_cycle, &new_blk)))
643 goto out_free_buffer;
644 if (new_blk != -1)
645 head_blk = new_blk;
646 } else { /* need to read 2 parts of log */
647 /*
648 * We are going to scan backwards in the log in two parts.
649 * First we scan the physical end of the log. In this part
650 * of the log, we are looking for blocks with cycle number
651 * last_half_cycle - 1.
652 * If we find one, then we know that the log starts there, as
653 * we've found a hole that didn't get written in going around
654 * the end of the physical log. The simple case for this is
655 * x + 1 ... | x ... | x - 1 | x
656 * <---------> less than scan distance
657 * If all of the blocks at the end of the log have cycle number
658 * last_half_cycle, then we check the blocks at the start of
659 * the log looking for occurrences of last_half_cycle. If we
660 * find one, then our current estimate for the location of the
661 * first occurrence of last_half_cycle is wrong and we move
662 * back to the hole we've found. This case looks like
663 * x + 1 ... | x | x + 1 | x ...
664 * ^ binary search stopped here
665 * Another case we need to handle that only occurs in 256k
666 * logs is
667 * x + 1 ... | x ... | x+1 | x ...
668 * ^ binary search stops here
669 * In a 256k log, the scan at the end of the log will see the
670 * x + 1 blocks. We need to skip past those since that is
671 * certainly not the head of the log. By searching for
672 * last_half_cycle-1 we accomplish that.
673 */
674 ASSERT(head_blk <= INT_MAX &&
675 (xfs_daddr_t) num_scan_bblks >= head_blk);
676 start_blk = log_bbnum - (num_scan_bblks - head_blk);
677 if ((error = xlog_find_verify_cycle(log, start_blk,
678 num_scan_bblks - (int)head_blk,
679 (stop_on_cycle - 1), &new_blk)))
680 goto out_free_buffer;
681 if (new_blk != -1) {
682 head_blk = new_blk;
683 goto validate_head;
684 }
685
686 /*
687 * Scan beginning of log now. The last part of the physical
688 * log is good. This scan needs to verify that it doesn't find
689 * the last_half_cycle.
690 */
691 start_blk = 0;
692 ASSERT(head_blk <= INT_MAX);
693 if ((error = xlog_find_verify_cycle(log,
694 start_blk, (int)head_blk,
695 stop_on_cycle, &new_blk)))
696 goto out_free_buffer;
697 if (new_blk != -1)
698 head_blk = new_blk;
699 }
700
701validate_head:
702 /*
703 * Now we need to make sure head_blk is not pointing to a block in
704 * the middle of a log record.
705 */
706 num_scan_bblks = XLOG_REC_SHIFT(log);
707 if (head_blk >= num_scan_bblks) {
708 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
709
710 /* start ptr at last block ptr before head_blk */
711 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
712 if (error == 1)
713 error = -EIO;
714 if (error)
715 goto out_free_buffer;
716 } else {
717 start_blk = 0;
718 ASSERT(head_blk <= INT_MAX);
719 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
720 if (error < 0)
721 goto out_free_buffer;
722 if (error == 1) {
723 /* We hit the beginning of the log during our search */
724 start_blk = log_bbnum - (num_scan_bblks - head_blk);
725 new_blk = log_bbnum;
726 ASSERT(start_blk <= INT_MAX &&
727 (xfs_daddr_t) log_bbnum-start_blk >= 0);
728 ASSERT(head_blk <= INT_MAX);
729 error = xlog_find_verify_log_record(log, start_blk,
730 &new_blk, (int)head_blk);
731 if (error == 1)
732 error = -EIO;
733 if (error)
734 goto out_free_buffer;
735 if (new_blk != log_bbnum)
736 head_blk = new_blk;
737 } else if (error)
738 goto out_free_buffer;
739 }
740
741 kmem_free(buffer);
742 if (head_blk == log_bbnum)
743 *return_head_blk = 0;
744 else
745 *return_head_blk = head_blk;
746 /*
747 * When returning here, we have a good block number. Bad block
748 * means that during a previous crash, we didn't have a clean break
749 * from cycle number N to cycle number N-1. In this case, we need
750 * to find the first block with cycle number N-1.
751 */
752 return 0;
753
754out_free_buffer:
755 kmem_free(buffer);
756 if (error)
757 xfs_warn(log->l_mp, "failed to find log head");
758 return error;
759}
760
761/*
762 * Seek backwards in the log for log record headers.
763 *
764 * Given a starting log block, walk backwards until we find the provided number
765 * of records or hit the provided tail block. The return value is the number of
766 * records encountered or a negative error code. The log block and buffer
767 * pointer of the last record seen are returned in rblk and rhead respectively.
768 */
769STATIC int
770xlog_rseek_logrec_hdr(
771 struct xlog *log,
772 xfs_daddr_t head_blk,
773 xfs_daddr_t tail_blk,
774 int count,
775 char *buffer,
776 xfs_daddr_t *rblk,
777 struct xlog_rec_header **rhead,
778 bool *wrapped)
779{
780 int i;
781 int error;
782 int found = 0;
783 char *offset = NULL;
784 xfs_daddr_t end_blk;
785
786 *wrapped = false;
787
788 /*
789 * Walk backwards from the head block until we hit the tail or the first
790 * block in the log.
791 */
792 end_blk = head_blk > tail_blk ? tail_blk : 0;
793 for (i = (int) head_blk - 1; i >= end_blk; i--) {
794 error = xlog_bread(log, i, 1, buffer, &offset);
795 if (error)
796 goto out_error;
797
798 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
799 *rblk = i;
800 *rhead = (struct xlog_rec_header *) offset;
801 if (++found == count)
802 break;
803 }
804 }
805
806 /*
807 * If we haven't hit the tail block or the log record header count,
808 * start looking again from the end of the physical log. Note that
809 * callers can pass head == tail if the tail is not yet known.
810 */
811 if (tail_blk >= head_blk && found != count) {
812 for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
813 error = xlog_bread(log, i, 1, buffer, &offset);
814 if (error)
815 goto out_error;
816
817 if (*(__be32 *)offset ==
818 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
819 *wrapped = true;
820 *rblk = i;
821 *rhead = (struct xlog_rec_header *) offset;
822 if (++found == count)
823 break;
824 }
825 }
826 }
827
828 return found;
829
830out_error:
831 return error;
832}
833
834/*
835 * Seek forward in the log for log record headers.
836 *
837 * Given head and tail blocks, walk forward from the tail block until we find
838 * the provided number of records or hit the head block. The return value is the
839 * number of records encountered or a negative error code. The log block and
840 * buffer pointer of the last record seen are returned in rblk and rhead
841 * respectively.
842 */
843STATIC int
844xlog_seek_logrec_hdr(
845 struct xlog *log,
846 xfs_daddr_t head_blk,
847 xfs_daddr_t tail_blk,
848 int count,
849 char *buffer,
850 xfs_daddr_t *rblk,
851 struct xlog_rec_header **rhead,
852 bool *wrapped)
853{
854 int i;
855 int error;
856 int found = 0;
857 char *offset = NULL;
858 xfs_daddr_t end_blk;
859
860 *wrapped = false;
861
862 /*
863 * Walk forward from the tail block until we hit the head or the last
864 * block in the log.
865 */
866 end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
867 for (i = (int) tail_blk; i <= end_blk; i++) {
868 error = xlog_bread(log, i, 1, buffer, &offset);
869 if (error)
870 goto out_error;
871
872 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
873 *rblk = i;
874 *rhead = (struct xlog_rec_header *) offset;
875 if (++found == count)
876 break;
877 }
878 }
879
880 /*
881 * If we haven't hit the head block or the log record header count,
882 * start looking again from the start of the physical log.
883 */
884 if (tail_blk > head_blk && found != count) {
885 for (i = 0; i < (int) head_blk; i++) {
886 error = xlog_bread(log, i, 1, buffer, &offset);
887 if (error)
888 goto out_error;
889
890 if (*(__be32 *)offset ==
891 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
892 *wrapped = true;
893 *rblk = i;
894 *rhead = (struct xlog_rec_header *) offset;
895 if (++found == count)
896 break;
897 }
898 }
899 }
900
901 return found;
902
903out_error:
904 return error;
905}
906
907/*
908 * Calculate distance from head to tail (i.e., unused space in the log).
909 */
910static inline int
911xlog_tail_distance(
912 struct xlog *log,
913 xfs_daddr_t head_blk,
914 xfs_daddr_t tail_blk)
915{
916 if (head_blk < tail_blk)
917 return tail_blk - head_blk;
918
919 return tail_blk + (log->l_logBBsize - head_blk);
920}
921
922/*
923 * Verify the log tail. This is particularly important when torn or incomplete
924 * writes have been detected near the front of the log and the head has been
925 * walked back accordingly.
926 *
927 * We also have to handle the case where the tail was pinned and the head
928 * blocked behind the tail right before a crash. If the tail had been pushed
929 * immediately prior to the crash and the subsequent checkpoint was only
930 * partially written, it's possible it overwrote the last referenced tail in the
931 * log with garbage. This is not a coherency problem because the tail must have
932 * been pushed before it can be overwritten, but appears as log corruption to
933 * recovery because we have no way to know the tail was updated if the
934 * subsequent checkpoint didn't write successfully.
935 *
936 * Therefore, CRC check the log from tail to head. If a failure occurs and the
937 * offending record is within max iclog bufs from the head, walk the tail
938 * forward and retry until a valid tail is found or corruption is detected out
939 * of the range of a possible overwrite.
940 */
941STATIC int
942xlog_verify_tail(
943 struct xlog *log,
944 xfs_daddr_t head_blk,
945 xfs_daddr_t *tail_blk,
946 int hsize)
947{
948 struct xlog_rec_header *thead;
949 char *buffer;
950 xfs_daddr_t first_bad;
951 int error = 0;
952 bool wrapped;
953 xfs_daddr_t tmp_tail;
954 xfs_daddr_t orig_tail = *tail_blk;
955
956 buffer = xlog_alloc_buffer(log, 1);
957 if (!buffer)
958 return -ENOMEM;
959
960 /*
961 * Make sure the tail points to a record (returns positive count on
962 * success).
963 */
964 error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, buffer,
965 &tmp_tail, &thead, &wrapped);
966 if (error < 0)
967 goto out;
968 if (*tail_blk != tmp_tail)
969 *tail_blk = tmp_tail;
970
971 /*
972 * Run a CRC check from the tail to the head. We can't just check
973 * MAX_ICLOGS records past the tail because the tail may point to stale
974 * blocks cleared during the search for the head/tail. These blocks are
975 * overwritten with zero-length records and thus record count is not a
976 * reliable indicator of the iclog state before a crash.
977 */
978 first_bad = 0;
979 error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
980 XLOG_RECOVER_CRCPASS, &first_bad);
981 while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
982 int tail_distance;
983
984 /*
985 * Is corruption within range of the head? If so, retry from
986 * the next record. Otherwise return an error.
987 */
988 tail_distance = xlog_tail_distance(log, head_blk, first_bad);
989 if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize))
990 break;
991
992 /* skip to the next record; returns positive count on success */
993 error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2,
994 buffer, &tmp_tail, &thead, &wrapped);
995 if (error < 0)
996 goto out;
997
998 *tail_blk = tmp_tail;
999 first_bad = 0;
1000 error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1001 XLOG_RECOVER_CRCPASS, &first_bad);
1002 }
1003
1004 if (!error && *tail_blk != orig_tail)
1005 xfs_warn(log->l_mp,
1006 "Tail block (0x%llx) overwrite detected. Updated to 0x%llx",
1007 orig_tail, *tail_blk);
1008out:
1009 kmem_free(buffer);
1010 return error;
1011}
1012
1013/*
1014 * Detect and trim torn writes from the head of the log.
1015 *
1016 * Storage without sector atomicity guarantees can result in torn writes in the
1017 * log in the event of a crash. Our only means to detect this scenario is via
1018 * CRC verification. While we can't always be certain that CRC verification
1019 * failure is due to a torn write vs. an unrelated corruption, we do know that
1020 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1021 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1022 * the log and treat failures in this range as torn writes as a matter of
1023 * policy. In the event of CRC failure, the head is walked back to the last good
1024 * record in the log and the tail is updated from that record and verified.
1025 */
1026STATIC int
1027xlog_verify_head(
1028 struct xlog *log,
1029 xfs_daddr_t *head_blk, /* in/out: unverified head */
1030 xfs_daddr_t *tail_blk, /* out: tail block */
1031 char *buffer,
1032 xfs_daddr_t *rhead_blk, /* start blk of last record */
1033 struct xlog_rec_header **rhead, /* ptr to last record */
1034 bool *wrapped) /* last rec. wraps phys. log */
1035{
1036 struct xlog_rec_header *tmp_rhead;
1037 char *tmp_buffer;
1038 xfs_daddr_t first_bad;
1039 xfs_daddr_t tmp_rhead_blk;
1040 int found;
1041 int error;
1042 bool tmp_wrapped;
1043
1044 /*
1045 * Check the head of the log for torn writes. Search backwards from the
1046 * head until we hit the tail or the maximum number of log record I/Os
1047 * that could have been in flight at one time. Use a temporary buffer so
1048 * we don't trash the rhead/buffer pointers from the caller.
1049 */
1050 tmp_buffer = xlog_alloc_buffer(log, 1);
1051 if (!tmp_buffer)
1052 return -ENOMEM;
1053 error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1054 XLOG_MAX_ICLOGS, tmp_buffer,
1055 &tmp_rhead_blk, &tmp_rhead, &tmp_wrapped);
1056 kmem_free(tmp_buffer);
1057 if (error < 0)
1058 return error;
1059
1060 /*
1061 * Now run a CRC verification pass over the records starting at the
1062 * block found above to the current head. If a CRC failure occurs, the
1063 * log block of the first bad record is saved in first_bad.
1064 */
1065 error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1066 XLOG_RECOVER_CRCPASS, &first_bad);
1067 if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1068 /*
1069 * We've hit a potential torn write. Reset the error and warn
1070 * about it.
1071 */
1072 error = 0;
1073 xfs_warn(log->l_mp,
1074"Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1075 first_bad, *head_blk);
1076
1077 /*
1078 * Get the header block and buffer pointer for the last good
1079 * record before the bad record.
1080 *
1081 * Note that xlog_find_tail() clears the blocks at the new head
1082 * (i.e., the records with invalid CRC) if the cycle number
1083 * matches the current cycle.
1084 */
1085 found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1,
1086 buffer, rhead_blk, rhead, wrapped);
1087 if (found < 0)
1088 return found;
1089 if (found == 0) /* XXX: right thing to do here? */
1090 return -EIO;
1091
1092 /*
1093 * Reset the head block to the starting block of the first bad
1094 * log record and set the tail block based on the last good
1095 * record.
1096 *
1097 * Bail out if the updated head/tail match as this indicates
1098 * possible corruption outside of the acceptable
1099 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1100 */
1101 *head_blk = first_bad;
1102 *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1103 if (*head_blk == *tail_blk) {
1104 ASSERT(0);
1105 return 0;
1106 }
1107 }
1108 if (error)
1109 return error;
1110
1111 return xlog_verify_tail(log, *head_blk, tail_blk,
1112 be32_to_cpu((*rhead)->h_size));
1113}
1114
1115/*
1116 * We need to make sure we handle log wrapping properly, so we can't use the
1117 * calculated logbno directly. Make sure it wraps to the correct bno inside the
1118 * log.
1119 *
1120 * The log is limited to 32 bit sizes, so we use the appropriate modulus
1121 * operation here and cast it back to a 64 bit daddr on return.
1122 */
1123static inline xfs_daddr_t
1124xlog_wrap_logbno(
1125 struct xlog *log,
1126 xfs_daddr_t bno)
1127{
1128 int mod;
1129
1130 div_s64_rem(bno, log->l_logBBsize, &mod);
1131 return mod;
1132}
1133
1134/*
1135 * Check whether the head of the log points to an unmount record. In other
1136 * words, determine whether the log is clean. If so, update the in-core state
1137 * appropriately.
1138 */
1139static int
1140xlog_check_unmount_rec(
1141 struct xlog *log,
1142 xfs_daddr_t *head_blk,
1143 xfs_daddr_t *tail_blk,
1144 struct xlog_rec_header *rhead,
1145 xfs_daddr_t rhead_blk,
1146 char *buffer,
1147 bool *clean)
1148{
1149 struct xlog_op_header *op_head;
1150 xfs_daddr_t umount_data_blk;
1151 xfs_daddr_t after_umount_blk;
1152 int hblks;
1153 int error;
1154 char *offset;
1155
1156 *clean = false;
1157
1158 /*
1159 * Look for unmount record. If we find it, then we know there was a
1160 * clean unmount. Since 'i' could be the last block in the physical
1161 * log, we convert to a log block before comparing to the head_blk.
1162 *
1163 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1164 * below. We won't want to clear the unmount record if there is one, so
1165 * we pass the lsn of the unmount record rather than the block after it.
1166 */
1167 hblks = xlog_logrec_hblks(log, rhead);
1168 after_umount_blk = xlog_wrap_logbno(log,
1169 rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len)));
1170
1171 if (*head_blk == after_umount_blk &&
1172 be32_to_cpu(rhead->h_num_logops) == 1) {
1173 umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks);
1174 error = xlog_bread(log, umount_data_blk, 1, buffer, &offset);
1175 if (error)
1176 return error;
1177
1178 op_head = (struct xlog_op_header *)offset;
1179 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1180 /*
1181 * Set tail and last sync so that newly written log
1182 * records will point recovery to after the current
1183 * unmount record.
1184 */
1185 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1186 log->l_curr_cycle, after_umount_blk);
1187 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1188 log->l_curr_cycle, after_umount_blk);
1189 *tail_blk = after_umount_blk;
1190
1191 *clean = true;
1192 }
1193 }
1194
1195 return 0;
1196}
1197
1198static void
1199xlog_set_state(
1200 struct xlog *log,
1201 xfs_daddr_t head_blk,
1202 struct xlog_rec_header *rhead,
1203 xfs_daddr_t rhead_blk,
1204 bool bump_cycle)
1205{
1206 /*
1207 * Reset log values according to the state of the log when we
1208 * crashed. In the case where head_blk == 0, we bump curr_cycle
1209 * one because the next write starts a new cycle rather than
1210 * continuing the cycle of the last good log record. At this
1211 * point we have guaranteed that all partial log records have been
1212 * accounted for. Therefore, we know that the last good log record
1213 * written was complete and ended exactly on the end boundary
1214 * of the physical log.
1215 */
1216 log->l_prev_block = rhead_blk;
1217 log->l_curr_block = (int)head_blk;
1218 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1219 if (bump_cycle)
1220 log->l_curr_cycle++;
1221 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1222 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
1223 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
1224 BBTOB(log->l_curr_block));
1225 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
1226 BBTOB(log->l_curr_block));
1227}
1228
1229/*
1230 * Find the sync block number or the tail of the log.
1231 *
1232 * This will be the block number of the last record to have its
1233 * associated buffers synced to disk. Every log record header has
1234 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
1235 * to get a sync block number. The only concern is to figure out which
1236 * log record header to believe.
1237 *
1238 * The following algorithm uses the log record header with the largest
1239 * lsn. The entire log record does not need to be valid. We only care
1240 * that the header is valid.
1241 *
1242 * We could speed up search by using current head_blk buffer, but it is not
1243 * available.
1244 */
1245STATIC int
1246xlog_find_tail(
1247 struct xlog *log,
1248 xfs_daddr_t *head_blk,
1249 xfs_daddr_t *tail_blk)
1250{
1251 xlog_rec_header_t *rhead;
1252 char *offset = NULL;
1253 char *buffer;
1254 int error;
1255 xfs_daddr_t rhead_blk;
1256 xfs_lsn_t tail_lsn;
1257 bool wrapped = false;
1258 bool clean = false;
1259
1260 /*
1261 * Find previous log record
1262 */
1263 if ((error = xlog_find_head(log, head_blk)))
1264 return error;
1265 ASSERT(*head_blk < INT_MAX);
1266
1267 buffer = xlog_alloc_buffer(log, 1);
1268 if (!buffer)
1269 return -ENOMEM;
1270 if (*head_blk == 0) { /* special case */
1271 error = xlog_bread(log, 0, 1, buffer, &offset);
1272 if (error)
1273 goto done;
1274
1275 if (xlog_get_cycle(offset) == 0) {
1276 *tail_blk = 0;
1277 /* leave all other log inited values alone */
1278 goto done;
1279 }
1280 }
1281
1282 /*
1283 * Search backwards through the log looking for the log record header
1284 * block. This wraps all the way back around to the head so something is
1285 * seriously wrong if we can't find it.
1286 */
1287 error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, buffer,
1288 &rhead_blk, &rhead, &wrapped);
1289 if (error < 0)
1290 goto done;
1291 if (!error) {
1292 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1293 error = -EFSCORRUPTED;
1294 goto done;
1295 }
1296 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1297
1298 /*
1299 * Set the log state based on the current head record.
1300 */
1301 xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
1302 tail_lsn = atomic64_read(&log->l_tail_lsn);
1303
1304 /*
1305 * Look for an unmount record at the head of the log. This sets the log
1306 * state to determine whether recovery is necessary.
1307 */
1308 error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1309 rhead_blk, buffer, &clean);
1310 if (error)
1311 goto done;
1312
1313 /*
1314 * Verify the log head if the log is not clean (e.g., we have anything
1315 * but an unmount record at the head). This uses CRC verification to
1316 * detect and trim torn writes. If discovered, CRC failures are
1317 * considered torn writes and the log head is trimmed accordingly.
1318 *
1319 * Note that we can only run CRC verification when the log is dirty
1320 * because there's no guarantee that the log data behind an unmount
1321 * record is compatible with the current architecture.
1322 */
1323 if (!clean) {
1324 xfs_daddr_t orig_head = *head_blk;
1325
1326 error = xlog_verify_head(log, head_blk, tail_blk, buffer,
1327 &rhead_blk, &rhead, &wrapped);
1328 if (error)
1329 goto done;
1330
1331 /* update in-core state again if the head changed */
1332 if (*head_blk != orig_head) {
1333 xlog_set_state(log, *head_blk, rhead, rhead_blk,
1334 wrapped);
1335 tail_lsn = atomic64_read(&log->l_tail_lsn);
1336 error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1337 rhead, rhead_blk, buffer,
1338 &clean);
1339 if (error)
1340 goto done;
1341 }
1342 }
1343
1344 /*
1345 * Note that the unmount was clean. If the unmount was not clean, we
1346 * need to know this to rebuild the superblock counters from the perag
1347 * headers if we have a filesystem using non-persistent counters.
1348 */
1349 if (clean)
1350 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1351
1352 /*
1353 * Make sure that there are no blocks in front of the head
1354 * with the same cycle number as the head. This can happen
1355 * because we allow multiple outstanding log writes concurrently,
1356 * and the later writes might make it out before earlier ones.
1357 *
1358 * We use the lsn from before modifying it so that we'll never
1359 * overwrite the unmount record after a clean unmount.
1360 *
1361 * Do this only if we are going to recover the filesystem
1362 *
1363 * NOTE: This used to say "if (!readonly)"
1364 * However on Linux, we can & do recover a read-only filesystem.
1365 * We only skip recovery if NORECOVERY is specified on mount,
1366 * in which case we would not be here.
1367 *
1368 * But... if the -device- itself is readonly, just skip this.
1369 * We can't recover this device anyway, so it won't matter.
1370 */
1371 if (!xfs_readonly_buftarg(log->l_targ))
1372 error = xlog_clear_stale_blocks(log, tail_lsn);
1373
1374done:
1375 kmem_free(buffer);
1376
1377 if (error)
1378 xfs_warn(log->l_mp, "failed to locate log tail");
1379 return error;
1380}
1381
1382/*
1383 * Is the log zeroed at all?
1384 *
1385 * The last binary search should be changed to perform an X block read
1386 * once X becomes small enough. You can then search linearly through
1387 * the X blocks. This will cut down on the number of reads we need to do.
1388 *
1389 * If the log is partially zeroed, this routine will pass back the blkno
1390 * of the first block with cycle number 0. It won't have a complete LR
1391 * preceding it.
1392 *
1393 * Return:
1394 * 0 => the log is completely written to
1395 * 1 => use *blk_no as the first block of the log
1396 * <0 => error has occurred
1397 */
1398STATIC int
1399xlog_find_zeroed(
1400 struct xlog *log,
1401 xfs_daddr_t *blk_no)
1402{
1403 char *buffer;
1404 char *offset;
1405 uint first_cycle, last_cycle;
1406 xfs_daddr_t new_blk, last_blk, start_blk;
1407 xfs_daddr_t num_scan_bblks;
1408 int error, log_bbnum = log->l_logBBsize;
1409
1410 *blk_no = 0;
1411
1412 /* check totally zeroed log */
1413 buffer = xlog_alloc_buffer(log, 1);
1414 if (!buffer)
1415 return -ENOMEM;
1416 error = xlog_bread(log, 0, 1, buffer, &offset);
1417 if (error)
1418 goto out_free_buffer;
1419
1420 first_cycle = xlog_get_cycle(offset);
1421 if (first_cycle == 0) { /* completely zeroed log */
1422 *blk_no = 0;
1423 kmem_free(buffer);
1424 return 1;
1425 }
1426
1427 /* check partially zeroed log */
1428 error = xlog_bread(log, log_bbnum-1, 1, buffer, &offset);
1429 if (error)
1430 goto out_free_buffer;
1431
1432 last_cycle = xlog_get_cycle(offset);
1433 if (last_cycle != 0) { /* log completely written to */
1434 kmem_free(buffer);
1435 return 0;
1436 }
1437
1438 /* we have a partially zeroed log */
1439 last_blk = log_bbnum-1;
1440 error = xlog_find_cycle_start(log, buffer, 0, &last_blk, 0);
1441 if (error)
1442 goto out_free_buffer;
1443
1444 /*
1445 * Validate the answer. Because there is no way to guarantee that
1446 * the entire log is made up of log records which are the same size,
1447 * we scan over the defined maximum blocks. At this point, the maximum
1448 * is not chosen to mean anything special. XXXmiken
1449 */
1450 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1451 ASSERT(num_scan_bblks <= INT_MAX);
1452
1453 if (last_blk < num_scan_bblks)
1454 num_scan_bblks = last_blk;
1455 start_blk = last_blk - num_scan_bblks;
1456
1457 /*
1458 * We search for any instances of cycle number 0 that occur before
1459 * our current estimate of the head. What we're trying to detect is
1460 * 1 ... | 0 | 1 | 0...
1461 * ^ binary search ends here
1462 */
1463 if ((error = xlog_find_verify_cycle(log, start_blk,
1464 (int)num_scan_bblks, 0, &new_blk)))
1465 goto out_free_buffer;
1466 if (new_blk != -1)
1467 last_blk = new_blk;
1468
1469 /*
1470 * Potentially backup over partial log record write. We don't need
1471 * to search the end of the log because we know it is zero.
1472 */
1473 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1474 if (error == 1)
1475 error = -EIO;
1476 if (error)
1477 goto out_free_buffer;
1478
1479 *blk_no = last_blk;
1480out_free_buffer:
1481 kmem_free(buffer);
1482 if (error)
1483 return error;
1484 return 1;
1485}
1486
1487/*
1488 * These are simple subroutines used by xlog_clear_stale_blocks() below
1489 * to initialize a buffer full of empty log record headers and write
1490 * them into the log.
1491 */
1492STATIC void
1493xlog_add_record(
1494 struct xlog *log,
1495 char *buf,
1496 int cycle,
1497 int block,
1498 int tail_cycle,
1499 int tail_block)
1500{
1501 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1502
1503 memset(buf, 0, BBSIZE);
1504 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1505 recp->h_cycle = cpu_to_be32(cycle);
1506 recp->h_version = cpu_to_be32(
1507 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1508 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1509 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1510 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1511 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1512}
1513
1514STATIC int
1515xlog_write_log_records(
1516 struct xlog *log,
1517 int cycle,
1518 int start_block,
1519 int blocks,
1520 int tail_cycle,
1521 int tail_block)
1522{
1523 char *offset;
1524 char *buffer;
1525 int balign, ealign;
1526 int sectbb = log->l_sectBBsize;
1527 int end_block = start_block + blocks;
1528 int bufblks;
1529 int error = 0;
1530 int i, j = 0;
1531
1532 /*
1533 * Greedily allocate a buffer big enough to handle the full
1534 * range of basic blocks to be written. If that fails, try
1535 * a smaller size. We need to be able to write at least a
1536 * log sector, or we're out of luck.
1537 */
1538 bufblks = 1 << ffs(blocks);
1539 while (bufblks > log->l_logBBsize)
1540 bufblks >>= 1;
1541 while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
1542 bufblks >>= 1;
1543 if (bufblks < sectbb)
1544 return -ENOMEM;
1545 }
1546
1547 /* We may need to do a read at the start to fill in part of
1548 * the buffer in the starting sector not covered by the first
1549 * write below.
1550 */
1551 balign = round_down(start_block, sectbb);
1552 if (balign != start_block) {
1553 error = xlog_bread_noalign(log, start_block, 1, buffer);
1554 if (error)
1555 goto out_free_buffer;
1556
1557 j = start_block - balign;
1558 }
1559
1560 for (i = start_block; i < end_block; i += bufblks) {
1561 int bcount, endcount;
1562
1563 bcount = min(bufblks, end_block - start_block);
1564 endcount = bcount - j;
1565
1566 /* We may need to do a read at the end to fill in part of
1567 * the buffer in the final sector not covered by the write.
1568 * If this is the same sector as the above read, skip it.
1569 */
1570 ealign = round_down(end_block, sectbb);
1571 if (j == 0 && (start_block + endcount > ealign)) {
1572 error = xlog_bread_noalign(log, ealign, sectbb,
1573 buffer + BBTOB(ealign - start_block));
1574 if (error)
1575 break;
1576
1577 }
1578
1579 offset = buffer + xlog_align(log, start_block);
1580 for (; j < endcount; j++) {
1581 xlog_add_record(log, offset, cycle, i+j,
1582 tail_cycle, tail_block);
1583 offset += BBSIZE;
1584 }
1585 error = xlog_bwrite(log, start_block, endcount, buffer);
1586 if (error)
1587 break;
1588 start_block += endcount;
1589 j = 0;
1590 }
1591
1592out_free_buffer:
1593 kmem_free(buffer);
1594 return error;
1595}
1596
1597/*
1598 * This routine is called to blow away any incomplete log writes out
1599 * in front of the log head. We do this so that we won't become confused
1600 * if we come up, write only a little bit more, and then crash again.
1601 * If we leave the partial log records out there, this situation could
1602 * cause us to think those partial writes are valid blocks since they
1603 * have the current cycle number. We get rid of them by overwriting them
1604 * with empty log records with the old cycle number rather than the
1605 * current one.
1606 *
1607 * The tail lsn is passed in rather than taken from
1608 * the log so that we will not write over the unmount record after a
1609 * clean unmount in a 512 block log. Doing so would leave the log without
1610 * any valid log records in it until a new one was written. If we crashed
1611 * during that time we would not be able to recover.
1612 */
1613STATIC int
1614xlog_clear_stale_blocks(
1615 struct xlog *log,
1616 xfs_lsn_t tail_lsn)
1617{
1618 int tail_cycle, head_cycle;
1619 int tail_block, head_block;
1620 int tail_distance, max_distance;
1621 int distance;
1622 int error;
1623
1624 tail_cycle = CYCLE_LSN(tail_lsn);
1625 tail_block = BLOCK_LSN(tail_lsn);
1626 head_cycle = log->l_curr_cycle;
1627 head_block = log->l_curr_block;
1628
1629 /*
1630 * Figure out the distance between the new head of the log
1631 * and the tail. We want to write over any blocks beyond the
1632 * head that we may have written just before the crash, but
1633 * we don't want to overwrite the tail of the log.
1634 */
1635 if (head_cycle == tail_cycle) {
1636 /*
1637 * The tail is behind the head in the physical log,
1638 * so the distance from the head to the tail is the
1639 * distance from the head to the end of the log plus
1640 * the distance from the beginning of the log to the
1641 * tail.
1642 */
1643 if (XFS_IS_CORRUPT(log->l_mp,
1644 head_block < tail_block ||
1645 head_block >= log->l_logBBsize))
1646 return -EFSCORRUPTED;
1647 tail_distance = tail_block + (log->l_logBBsize - head_block);
1648 } else {
1649 /*
1650 * The head is behind the tail in the physical log,
1651 * so the distance from the head to the tail is just
1652 * the tail block minus the head block.
1653 */
1654 if (XFS_IS_CORRUPT(log->l_mp,
1655 head_block >= tail_block ||
1656 head_cycle != tail_cycle + 1))
1657 return -EFSCORRUPTED;
1658 tail_distance = tail_block - head_block;
1659 }
1660
1661 /*
1662 * If the head is right up against the tail, we can't clear
1663 * anything.
1664 */
1665 if (tail_distance <= 0) {
1666 ASSERT(tail_distance == 0);
1667 return 0;
1668 }
1669
1670 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1671 /*
1672 * Take the smaller of the maximum amount of outstanding I/O
1673 * we could have and the distance to the tail to clear out.
1674 * We take the smaller so that we don't overwrite the tail and
1675 * we don't waste all day writing from the head to the tail
1676 * for no reason.
1677 */
1678 max_distance = min(max_distance, tail_distance);
1679
1680 if ((head_block + max_distance) <= log->l_logBBsize) {
1681 /*
1682 * We can stomp all the blocks we need to without
1683 * wrapping around the end of the log. Just do it
1684 * in a single write. Use the cycle number of the
1685 * current cycle minus one so that the log will look like:
1686 * n ... | n - 1 ...
1687 */
1688 error = xlog_write_log_records(log, (head_cycle - 1),
1689 head_block, max_distance, tail_cycle,
1690 tail_block);
1691 if (error)
1692 return error;
1693 } else {
1694 /*
1695 * We need to wrap around the end of the physical log in
1696 * order to clear all the blocks. Do it in two separate
1697 * I/Os. The first write should be from the head to the
1698 * end of the physical log, and it should use the current
1699 * cycle number minus one just like above.
1700 */
1701 distance = log->l_logBBsize - head_block;
1702 error = xlog_write_log_records(log, (head_cycle - 1),
1703 head_block, distance, tail_cycle,
1704 tail_block);
1705
1706 if (error)
1707 return error;
1708
1709 /*
1710 * Now write the blocks at the start of the physical log.
1711 * This writes the remainder of the blocks we want to clear.
1712 * It uses the current cycle number since we're now on the
1713 * same cycle as the head so that we get:
1714 * n ... n ... | n - 1 ...
1715 * ^^^^^ blocks we're writing
1716 */
1717 distance = max_distance - (log->l_logBBsize - head_block);
1718 error = xlog_write_log_records(log, head_cycle, 0, distance,
1719 tail_cycle, tail_block);
1720 if (error)
1721 return error;
1722 }
1723
1724 return 0;
1725}
1726
1727/*
1728 * Release the recovered intent item in the AIL that matches the given intent
1729 * type and intent id.
1730 */
1731void
1732xlog_recover_release_intent(
1733 struct xlog *log,
1734 unsigned short intent_type,
1735 uint64_t intent_id)
1736{
1737 struct xfs_ail_cursor cur;
1738 struct xfs_log_item *lip;
1739 struct xfs_ail *ailp = log->l_ailp;
1740
1741 spin_lock(&ailp->ail_lock);
1742 for (lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); lip != NULL;
1743 lip = xfs_trans_ail_cursor_next(ailp, &cur)) {
1744 if (lip->li_type != intent_type)
1745 continue;
1746 if (!lip->li_ops->iop_match(lip, intent_id))
1747 continue;
1748
1749 spin_unlock(&ailp->ail_lock);
1750 lip->li_ops->iop_release(lip);
1751 spin_lock(&ailp->ail_lock);
1752 break;
1753 }
1754
1755 xfs_trans_ail_cursor_done(&cur);
1756 spin_unlock(&ailp->ail_lock);
1757}
1758
1759/******************************************************************************
1760 *
1761 * Log recover routines
1762 *
1763 ******************************************************************************
1764 */
1765static const struct xlog_recover_item_ops *xlog_recover_item_ops[] = {
1766 &xlog_buf_item_ops,
1767 &xlog_inode_item_ops,
1768 &xlog_dquot_item_ops,
1769 &xlog_quotaoff_item_ops,
1770 &xlog_icreate_item_ops,
1771 &xlog_efi_item_ops,
1772 &xlog_efd_item_ops,
1773 &xlog_rui_item_ops,
1774 &xlog_rud_item_ops,
1775 &xlog_cui_item_ops,
1776 &xlog_cud_item_ops,
1777 &xlog_bui_item_ops,
1778 &xlog_bud_item_ops,
1779};
1780
1781static const struct xlog_recover_item_ops *
1782xlog_find_item_ops(
1783 struct xlog_recover_item *item)
1784{
1785 unsigned int i;
1786
1787 for (i = 0; i < ARRAY_SIZE(xlog_recover_item_ops); i++)
1788 if (ITEM_TYPE(item) == xlog_recover_item_ops[i]->item_type)
1789 return xlog_recover_item_ops[i];
1790
1791 return NULL;
1792}
1793
1794/*
1795 * Sort the log items in the transaction.
1796 *
1797 * The ordering constraints are defined by the inode allocation and unlink
1798 * behaviour. The rules are:
1799 *
1800 * 1. Every item is only logged once in a given transaction. Hence it
1801 * represents the last logged state of the item. Hence ordering is
1802 * dependent on the order in which operations need to be performed so
1803 * required initial conditions are always met.
1804 *
1805 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1806 * there's nothing to replay from them so we can simply cull them
1807 * from the transaction. However, we can't do that until after we've
1808 * replayed all the other items because they may be dependent on the
1809 * cancelled buffer and replaying the cancelled buffer can remove it
1810 * form the cancelled buffer table. Hence they have tobe done last.
1811 *
1812 * 3. Inode allocation buffers must be replayed before inode items that
1813 * read the buffer and replay changes into it. For filesystems using the
1814 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1815 * treated the same as inode allocation buffers as they create and
1816 * initialise the buffers directly.
1817 *
1818 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1819 * This ensures that inodes are completely flushed to the inode buffer
1820 * in a "free" state before we remove the unlinked inode list pointer.
1821 *
1822 * Hence the ordering needs to be inode allocation buffers first, inode items
1823 * second, inode unlink buffers third and cancelled buffers last.
1824 *
1825 * But there's a problem with that - we can't tell an inode allocation buffer
1826 * apart from a regular buffer, so we can't separate them. We can, however,
1827 * tell an inode unlink buffer from the others, and so we can separate them out
1828 * from all the other buffers and move them to last.
1829 *
1830 * Hence, 4 lists, in order from head to tail:
1831 * - buffer_list for all buffers except cancelled/inode unlink buffers
1832 * - item_list for all non-buffer items
1833 * - inode_buffer_list for inode unlink buffers
1834 * - cancel_list for the cancelled buffers
1835 *
1836 * Note that we add objects to the tail of the lists so that first-to-last
1837 * ordering is preserved within the lists. Adding objects to the head of the
1838 * list means when we traverse from the head we walk them in last-to-first
1839 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1840 * but for all other items there may be specific ordering that we need to
1841 * preserve.
1842 */
1843STATIC int
1844xlog_recover_reorder_trans(
1845 struct xlog *log,
1846 struct xlog_recover *trans,
1847 int pass)
1848{
1849 struct xlog_recover_item *item, *n;
1850 int error = 0;
1851 LIST_HEAD(sort_list);
1852 LIST_HEAD(cancel_list);
1853 LIST_HEAD(buffer_list);
1854 LIST_HEAD(inode_buffer_list);
1855 LIST_HEAD(item_list);
1856
1857 list_splice_init(&trans->r_itemq, &sort_list);
1858 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1859 enum xlog_recover_reorder fate = XLOG_REORDER_ITEM_LIST;
1860
1861 item->ri_ops = xlog_find_item_ops(item);
1862 if (!item->ri_ops) {
1863 xfs_warn(log->l_mp,
1864 "%s: unrecognized type of log operation (%d)",
1865 __func__, ITEM_TYPE(item));
1866 ASSERT(0);
1867 /*
1868 * return the remaining items back to the transaction
1869 * item list so they can be freed in caller.
1870 */
1871 if (!list_empty(&sort_list))
1872 list_splice_init(&sort_list, &trans->r_itemq);
1873 error = -EFSCORRUPTED;
1874 break;
1875 }
1876
1877 if (item->ri_ops->reorder)
1878 fate = item->ri_ops->reorder(item);
1879
1880 switch (fate) {
1881 case XLOG_REORDER_BUFFER_LIST:
1882 list_move_tail(&item->ri_list, &buffer_list);
1883 break;
1884 case XLOG_REORDER_CANCEL_LIST:
1885 trace_xfs_log_recover_item_reorder_head(log,
1886 trans, item, pass);
1887 list_move(&item->ri_list, &cancel_list);
1888 break;
1889 case XLOG_REORDER_INODE_BUFFER_LIST:
1890 list_move(&item->ri_list, &inode_buffer_list);
1891 break;
1892 case XLOG_REORDER_ITEM_LIST:
1893 trace_xfs_log_recover_item_reorder_tail(log,
1894 trans, item, pass);
1895 list_move_tail(&item->ri_list, &item_list);
1896 break;
1897 }
1898 }
1899
1900 ASSERT(list_empty(&sort_list));
1901 if (!list_empty(&buffer_list))
1902 list_splice(&buffer_list, &trans->r_itemq);
1903 if (!list_empty(&item_list))
1904 list_splice_tail(&item_list, &trans->r_itemq);
1905 if (!list_empty(&inode_buffer_list))
1906 list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1907 if (!list_empty(&cancel_list))
1908 list_splice_tail(&cancel_list, &trans->r_itemq);
1909 return error;
1910}
1911
1912void
1913xlog_buf_readahead(
1914 struct xlog *log,
1915 xfs_daddr_t blkno,
1916 uint len,
1917 const struct xfs_buf_ops *ops)
1918{
1919 if (!xlog_is_buffer_cancelled(log, blkno, len))
1920 xfs_buf_readahead(log->l_mp->m_ddev_targp, blkno, len, ops);
1921}
1922
1923STATIC int
1924xlog_recover_items_pass2(
1925 struct xlog *log,
1926 struct xlog_recover *trans,
1927 struct list_head *buffer_list,
1928 struct list_head *item_list)
1929{
1930 struct xlog_recover_item *item;
1931 int error = 0;
1932
1933 list_for_each_entry(item, item_list, ri_list) {
1934 trace_xfs_log_recover_item_recover(log, trans, item,
1935 XLOG_RECOVER_PASS2);
1936
1937 if (item->ri_ops->commit_pass2)
1938 error = item->ri_ops->commit_pass2(log, buffer_list,
1939 item, trans->r_lsn);
1940 if (error)
1941 return error;
1942 }
1943
1944 return error;
1945}
1946
1947/*
1948 * Perform the transaction.
1949 *
1950 * If the transaction modifies a buffer or inode, do it now. Otherwise,
1951 * EFIs and EFDs get queued up by adding entries into the AIL for them.
1952 */
1953STATIC int
1954xlog_recover_commit_trans(
1955 struct xlog *log,
1956 struct xlog_recover *trans,
1957 int pass,
1958 struct list_head *buffer_list)
1959{
1960 int error = 0;
1961 int items_queued = 0;
1962 struct xlog_recover_item *item;
1963 struct xlog_recover_item *next;
1964 LIST_HEAD (ra_list);
1965 LIST_HEAD (done_list);
1966
1967 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
1968
1969 hlist_del_init(&trans->r_list);
1970
1971 error = xlog_recover_reorder_trans(log, trans, pass);
1972 if (error)
1973 return error;
1974
1975 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
1976 trace_xfs_log_recover_item_recover(log, trans, item, pass);
1977
1978 switch (pass) {
1979 case XLOG_RECOVER_PASS1:
1980 if (item->ri_ops->commit_pass1)
1981 error = item->ri_ops->commit_pass1(log, item);
1982 break;
1983 case XLOG_RECOVER_PASS2:
1984 if (item->ri_ops->ra_pass2)
1985 item->ri_ops->ra_pass2(log, item);
1986 list_move_tail(&item->ri_list, &ra_list);
1987 items_queued++;
1988 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
1989 error = xlog_recover_items_pass2(log, trans,
1990 buffer_list, &ra_list);
1991 list_splice_tail_init(&ra_list, &done_list);
1992 items_queued = 0;
1993 }
1994
1995 break;
1996 default:
1997 ASSERT(0);
1998 }
1999
2000 if (error)
2001 goto out;
2002 }
2003
2004out:
2005 if (!list_empty(&ra_list)) {
2006 if (!error)
2007 error = xlog_recover_items_pass2(log, trans,
2008 buffer_list, &ra_list);
2009 list_splice_tail_init(&ra_list, &done_list);
2010 }
2011
2012 if (!list_empty(&done_list))
2013 list_splice_init(&done_list, &trans->r_itemq);
2014
2015 return error;
2016}
2017
2018STATIC void
2019xlog_recover_add_item(
2020 struct list_head *head)
2021{
2022 struct xlog_recover_item *item;
2023
2024 item = kmem_zalloc(sizeof(struct xlog_recover_item), 0);
2025 INIT_LIST_HEAD(&item->ri_list);
2026 list_add_tail(&item->ri_list, head);
2027}
2028
2029STATIC int
2030xlog_recover_add_to_cont_trans(
2031 struct xlog *log,
2032 struct xlog_recover *trans,
2033 char *dp,
2034 int len)
2035{
2036 struct xlog_recover_item *item;
2037 char *ptr, *old_ptr;
2038 int old_len;
2039
2040 /*
2041 * If the transaction is empty, the header was split across this and the
2042 * previous record. Copy the rest of the header.
2043 */
2044 if (list_empty(&trans->r_itemq)) {
2045 ASSERT(len <= sizeof(struct xfs_trans_header));
2046 if (len > sizeof(struct xfs_trans_header)) {
2047 xfs_warn(log->l_mp, "%s: bad header length", __func__);
2048 return -EFSCORRUPTED;
2049 }
2050
2051 xlog_recover_add_item(&trans->r_itemq);
2052 ptr = (char *)&trans->r_theader +
2053 sizeof(struct xfs_trans_header) - len;
2054 memcpy(ptr, dp, len);
2055 return 0;
2056 }
2057
2058 /* take the tail entry */
2059 item = list_entry(trans->r_itemq.prev, struct xlog_recover_item,
2060 ri_list);
2061
2062 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
2063 old_len = item->ri_buf[item->ri_cnt-1].i_len;
2064
2065 ptr = krealloc(old_ptr, len + old_len, GFP_KERNEL | __GFP_NOFAIL);
2066 memcpy(&ptr[old_len], dp, len);
2067 item->ri_buf[item->ri_cnt-1].i_len += len;
2068 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
2069 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
2070 return 0;
2071}
2072
2073/*
2074 * The next region to add is the start of a new region. It could be
2075 * a whole region or it could be the first part of a new region. Because
2076 * of this, the assumption here is that the type and size fields of all
2077 * format structures fit into the first 32 bits of the structure.
2078 *
2079 * This works because all regions must be 32 bit aligned. Therefore, we
2080 * either have both fields or we have neither field. In the case we have
2081 * neither field, the data part of the region is zero length. We only have
2082 * a log_op_header and can throw away the header since a new one will appear
2083 * later. If we have at least 4 bytes, then we can determine how many regions
2084 * will appear in the current log item.
2085 */
2086STATIC int
2087xlog_recover_add_to_trans(
2088 struct xlog *log,
2089 struct xlog_recover *trans,
2090 char *dp,
2091 int len)
2092{
2093 struct xfs_inode_log_format *in_f; /* any will do */
2094 struct xlog_recover_item *item;
2095 char *ptr;
2096
2097 if (!len)
2098 return 0;
2099 if (list_empty(&trans->r_itemq)) {
2100 /* we need to catch log corruptions here */
2101 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
2102 xfs_warn(log->l_mp, "%s: bad header magic number",
2103 __func__);
2104 ASSERT(0);
2105 return -EFSCORRUPTED;
2106 }
2107
2108 if (len > sizeof(struct xfs_trans_header)) {
2109 xfs_warn(log->l_mp, "%s: bad header length", __func__);
2110 ASSERT(0);
2111 return -EFSCORRUPTED;
2112 }
2113
2114 /*
2115 * The transaction header can be arbitrarily split across op
2116 * records. If we don't have the whole thing here, copy what we
2117 * do have and handle the rest in the next record.
2118 */
2119 if (len == sizeof(struct xfs_trans_header))
2120 xlog_recover_add_item(&trans->r_itemq);
2121 memcpy(&trans->r_theader, dp, len);
2122 return 0;
2123 }
2124
2125 ptr = kmem_alloc(len, 0);
2126 memcpy(ptr, dp, len);
2127 in_f = (struct xfs_inode_log_format *)ptr;
2128
2129 /* take the tail entry */
2130 item = list_entry(trans->r_itemq.prev, struct xlog_recover_item,
2131 ri_list);
2132 if (item->ri_total != 0 &&
2133 item->ri_total == item->ri_cnt) {
2134 /* tail item is in use, get a new one */
2135 xlog_recover_add_item(&trans->r_itemq);
2136 item = list_entry(trans->r_itemq.prev,
2137 struct xlog_recover_item, ri_list);
2138 }
2139
2140 if (item->ri_total == 0) { /* first region to be added */
2141 if (in_f->ilf_size == 0 ||
2142 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
2143 xfs_warn(log->l_mp,
2144 "bad number of regions (%d) in inode log format",
2145 in_f->ilf_size);
2146 ASSERT(0);
2147 kmem_free(ptr);
2148 return -EFSCORRUPTED;
2149 }
2150
2151 item->ri_total = in_f->ilf_size;
2152 item->ri_buf =
2153 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
2154 0);
2155 }
2156
2157 if (item->ri_total <= item->ri_cnt) {
2158 xfs_warn(log->l_mp,
2159 "log item region count (%d) overflowed size (%d)",
2160 item->ri_cnt, item->ri_total);
2161 ASSERT(0);
2162 kmem_free(ptr);
2163 return -EFSCORRUPTED;
2164 }
2165
2166 /* Description region is ri_buf[0] */
2167 item->ri_buf[item->ri_cnt].i_addr = ptr;
2168 item->ri_buf[item->ri_cnt].i_len = len;
2169 item->ri_cnt++;
2170 trace_xfs_log_recover_item_add(log, trans, item, 0);
2171 return 0;
2172}
2173
2174/*
2175 * Free up any resources allocated by the transaction
2176 *
2177 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2178 */
2179STATIC void
2180xlog_recover_free_trans(
2181 struct xlog_recover *trans)
2182{
2183 struct xlog_recover_item *item, *n;
2184 int i;
2185
2186 hlist_del_init(&trans->r_list);
2187
2188 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2189 /* Free the regions in the item. */
2190 list_del(&item->ri_list);
2191 for (i = 0; i < item->ri_cnt; i++)
2192 kmem_free(item->ri_buf[i].i_addr);
2193 /* Free the item itself */
2194 kmem_free(item->ri_buf);
2195 kmem_free(item);
2196 }
2197 /* Free the transaction recover structure */
2198 kmem_free(trans);
2199}
2200
2201/*
2202 * On error or completion, trans is freed.
2203 */
2204STATIC int
2205xlog_recovery_process_trans(
2206 struct xlog *log,
2207 struct xlog_recover *trans,
2208 char *dp,
2209 unsigned int len,
2210 unsigned int flags,
2211 int pass,
2212 struct list_head *buffer_list)
2213{
2214 int error = 0;
2215 bool freeit = false;
2216
2217 /* mask off ophdr transaction container flags */
2218 flags &= ~XLOG_END_TRANS;
2219 if (flags & XLOG_WAS_CONT_TRANS)
2220 flags &= ~XLOG_CONTINUE_TRANS;
2221
2222 /*
2223 * Callees must not free the trans structure. We'll decide if we need to
2224 * free it or not based on the operation being done and it's result.
2225 */
2226 switch (flags) {
2227 /* expected flag values */
2228 case 0:
2229 case XLOG_CONTINUE_TRANS:
2230 error = xlog_recover_add_to_trans(log, trans, dp, len);
2231 break;
2232 case XLOG_WAS_CONT_TRANS:
2233 error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
2234 break;
2235 case XLOG_COMMIT_TRANS:
2236 error = xlog_recover_commit_trans(log, trans, pass,
2237 buffer_list);
2238 /* success or fail, we are now done with this transaction. */
2239 freeit = true;
2240 break;
2241
2242 /* unexpected flag values */
2243 case XLOG_UNMOUNT_TRANS:
2244 /* just skip trans */
2245 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
2246 freeit = true;
2247 break;
2248 case XLOG_START_TRANS:
2249 default:
2250 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
2251 ASSERT(0);
2252 error = -EFSCORRUPTED;
2253 break;
2254 }
2255 if (error || freeit)
2256 xlog_recover_free_trans(trans);
2257 return error;
2258}
2259
2260/*
2261 * Lookup the transaction recovery structure associated with the ID in the
2262 * current ophdr. If the transaction doesn't exist and the start flag is set in
2263 * the ophdr, then allocate a new transaction for future ID matches to find.
2264 * Either way, return what we found during the lookup - an existing transaction
2265 * or nothing.
2266 */
2267STATIC struct xlog_recover *
2268xlog_recover_ophdr_to_trans(
2269 struct hlist_head rhash[],
2270 struct xlog_rec_header *rhead,
2271 struct xlog_op_header *ohead)
2272{
2273 struct xlog_recover *trans;
2274 xlog_tid_t tid;
2275 struct hlist_head *rhp;
2276
2277 tid = be32_to_cpu(ohead->oh_tid);
2278 rhp = &rhash[XLOG_RHASH(tid)];
2279 hlist_for_each_entry(trans, rhp, r_list) {
2280 if (trans->r_log_tid == tid)
2281 return trans;
2282 }
2283
2284 /*
2285 * skip over non-start transaction headers - we could be
2286 * processing slack space before the next transaction starts
2287 */
2288 if (!(ohead->oh_flags & XLOG_START_TRANS))
2289 return NULL;
2290
2291 ASSERT(be32_to_cpu(ohead->oh_len) == 0);
2292
2293 /*
2294 * This is a new transaction so allocate a new recovery container to
2295 * hold the recovery ops that will follow.
2296 */
2297 trans = kmem_zalloc(sizeof(struct xlog_recover), 0);
2298 trans->r_log_tid = tid;
2299 trans->r_lsn = be64_to_cpu(rhead->h_lsn);
2300 INIT_LIST_HEAD(&trans->r_itemq);
2301 INIT_HLIST_NODE(&trans->r_list);
2302 hlist_add_head(&trans->r_list, rhp);
2303
2304 /*
2305 * Nothing more to do for this ophdr. Items to be added to this new
2306 * transaction will be in subsequent ophdr containers.
2307 */
2308 return NULL;
2309}
2310
2311STATIC int
2312xlog_recover_process_ophdr(
2313 struct xlog *log,
2314 struct hlist_head rhash[],
2315 struct xlog_rec_header *rhead,
2316 struct xlog_op_header *ohead,
2317 char *dp,
2318 char *end,
2319 int pass,
2320 struct list_head *buffer_list)
2321{
2322 struct xlog_recover *trans;
2323 unsigned int len;
2324 int error;
2325
2326 /* Do we understand who wrote this op? */
2327 if (ohead->oh_clientid != XFS_TRANSACTION &&
2328 ohead->oh_clientid != XFS_LOG) {
2329 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
2330 __func__, ohead->oh_clientid);
2331 ASSERT(0);
2332 return -EFSCORRUPTED;
2333 }
2334
2335 /*
2336 * Check the ophdr contains all the data it is supposed to contain.
2337 */
2338 len = be32_to_cpu(ohead->oh_len);
2339 if (dp + len > end) {
2340 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
2341 WARN_ON(1);
2342 return -EFSCORRUPTED;
2343 }
2344
2345 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
2346 if (!trans) {
2347 /* nothing to do, so skip over this ophdr */
2348 return 0;
2349 }
2350
2351 /*
2352 * The recovered buffer queue is drained only once we know that all
2353 * recovery items for the current LSN have been processed. This is
2354 * required because:
2355 *
2356 * - Buffer write submission updates the metadata LSN of the buffer.
2357 * - Log recovery skips items with a metadata LSN >= the current LSN of
2358 * the recovery item.
2359 * - Separate recovery items against the same metadata buffer can share
2360 * a current LSN. I.e., consider that the LSN of a recovery item is
2361 * defined as the starting LSN of the first record in which its
2362 * transaction appears, that a record can hold multiple transactions,
2363 * and/or that a transaction can span multiple records.
2364 *
2365 * In other words, we are allowed to submit a buffer from log recovery
2366 * once per current LSN. Otherwise, we may incorrectly skip recovery
2367 * items and cause corruption.
2368 *
2369 * We don't know up front whether buffers are updated multiple times per
2370 * LSN. Therefore, track the current LSN of each commit log record as it
2371 * is processed and drain the queue when it changes. Use commit records
2372 * because they are ordered correctly by the logging code.
2373 */
2374 if (log->l_recovery_lsn != trans->r_lsn &&
2375 ohead->oh_flags & XLOG_COMMIT_TRANS) {
2376 error = xfs_buf_delwri_submit(buffer_list);
2377 if (error)
2378 return error;
2379 log->l_recovery_lsn = trans->r_lsn;
2380 }
2381
2382 return xlog_recovery_process_trans(log, trans, dp, len,
2383 ohead->oh_flags, pass, buffer_list);
2384}
2385
2386/*
2387 * There are two valid states of the r_state field. 0 indicates that the
2388 * transaction structure is in a normal state. We have either seen the
2389 * start of the transaction or the last operation we added was not a partial
2390 * operation. If the last operation we added to the transaction was a
2391 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2392 *
2393 * NOTE: skip LRs with 0 data length.
2394 */
2395STATIC int
2396xlog_recover_process_data(
2397 struct xlog *log,
2398 struct hlist_head rhash[],
2399 struct xlog_rec_header *rhead,
2400 char *dp,
2401 int pass,
2402 struct list_head *buffer_list)
2403{
2404 struct xlog_op_header *ohead;
2405 char *end;
2406 int num_logops;
2407 int error;
2408
2409 end = dp + be32_to_cpu(rhead->h_len);
2410 num_logops = be32_to_cpu(rhead->h_num_logops);
2411
2412 /* check the log format matches our own - else we can't recover */
2413 if (xlog_header_check_recover(log->l_mp, rhead))
2414 return -EIO;
2415
2416 trace_xfs_log_recover_record(log, rhead, pass);
2417 while ((dp < end) && num_logops) {
2418
2419 ohead = (struct xlog_op_header *)dp;
2420 dp += sizeof(*ohead);
2421 ASSERT(dp <= end);
2422
2423 /* errors will abort recovery */
2424 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
2425 dp, end, pass, buffer_list);
2426 if (error)
2427 return error;
2428
2429 dp += be32_to_cpu(ohead->oh_len);
2430 num_logops--;
2431 }
2432 return 0;
2433}
2434
2435/* Take all the collected deferred ops and finish them in order. */
2436static int
2437xlog_finish_defer_ops(
2438 struct xfs_mount *mp,
2439 struct list_head *capture_list)
2440{
2441 struct xfs_defer_capture *dfc, *next;
2442 struct xfs_trans *tp;
2443 struct xfs_inode *ip;
2444 int error = 0;
2445
2446 list_for_each_entry_safe(dfc, next, capture_list, dfc_list) {
2447 struct xfs_trans_res resv;
2448
2449 /*
2450 * Create a new transaction reservation from the captured
2451 * information. Set logcount to 1 to force the new transaction
2452 * to regrant every roll so that we can make forward progress
2453 * in recovery no matter how full the log might be.
2454 */
2455 resv.tr_logres = dfc->dfc_logres;
2456 resv.tr_logcount = 1;
2457 resv.tr_logflags = XFS_TRANS_PERM_LOG_RES;
2458
2459 error = xfs_trans_alloc(mp, &resv, dfc->dfc_blkres,
2460 dfc->dfc_rtxres, XFS_TRANS_RESERVE, &tp);
2461 if (error) {
2462 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
2463 return error;
2464 }
2465
2466 /*
2467 * Transfer to this new transaction all the dfops we captured
2468 * from recovering a single intent item.
2469 */
2470 list_del_init(&dfc->dfc_list);
2471 xfs_defer_ops_continue(dfc, tp, &ip);
2472
2473 error = xfs_trans_commit(tp);
2474 if (ip) {
2475 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2476 xfs_irele(ip);
2477 }
2478 if (error)
2479 return error;
2480 }
2481
2482 ASSERT(list_empty(capture_list));
2483 return 0;
2484}
2485
2486/* Release all the captured defer ops and capture structures in this list. */
2487static void
2488xlog_abort_defer_ops(
2489 struct xfs_mount *mp,
2490 struct list_head *capture_list)
2491{
2492 struct xfs_defer_capture *dfc;
2493 struct xfs_defer_capture *next;
2494
2495 list_for_each_entry_safe(dfc, next, capture_list, dfc_list) {
2496 list_del_init(&dfc->dfc_list);
2497 xfs_defer_ops_release(mp, dfc);
2498 }
2499}
2500/*
2501 * When this is called, all of the log intent items which did not have
2502 * corresponding log done items should be in the AIL. What we do now
2503 * is update the data structures associated with each one.
2504 *
2505 * Since we process the log intent items in normal transactions, they
2506 * will be removed at some point after the commit. This prevents us
2507 * from just walking down the list processing each one. We'll use a
2508 * flag in the intent item to skip those that we've already processed
2509 * and use the AIL iteration mechanism's generation count to try to
2510 * speed this up at least a bit.
2511 *
2512 * When we start, we know that the intents are the only things in the
2513 * AIL. As we process them, however, other items are added to the
2514 * AIL.
2515 */
2516STATIC int
2517xlog_recover_process_intents(
2518 struct xlog *log)
2519{
2520 LIST_HEAD(capture_list);
2521 struct xfs_ail_cursor cur;
2522 struct xfs_log_item *lip;
2523 struct xfs_ail *ailp;
2524 int error = 0;
2525#if defined(DEBUG) || defined(XFS_WARN)
2526 xfs_lsn_t last_lsn;
2527#endif
2528
2529 ailp = log->l_ailp;
2530 spin_lock(&ailp->ail_lock);
2531#if defined(DEBUG) || defined(XFS_WARN)
2532 last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
2533#endif
2534 for (lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2535 lip != NULL;
2536 lip = xfs_trans_ail_cursor_next(ailp, &cur)) {
2537 /*
2538 * We're done when we see something other than an intent.
2539 * There should be no intents left in the AIL now.
2540 */
2541 if (!xlog_item_is_intent(lip)) {
2542#ifdef DEBUG
2543 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
2544 ASSERT(!xlog_item_is_intent(lip));
2545#endif
2546 break;
2547 }
2548
2549 /*
2550 * We should never see a redo item with a LSN higher than
2551 * the last transaction we found in the log at the start
2552 * of recovery.
2553 */
2554 ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0);
2555
2556 /*
2557 * NOTE: If your intent processing routine can create more
2558 * deferred ops, you /must/ attach them to the capture list in
2559 * the recover routine or else those subsequent intents will be
2560 * replayed in the wrong order!
2561 */
2562 spin_unlock(&ailp->ail_lock);
2563 error = lip->li_ops->iop_recover(lip, &capture_list);
2564 spin_lock(&ailp->ail_lock);
2565 if (error) {
2566 trace_xlog_intent_recovery_failed(log->l_mp, error,
2567 lip->li_ops->iop_recover);
2568 break;
2569 }
2570 }
2571
2572 xfs_trans_ail_cursor_done(&cur);
2573 spin_unlock(&ailp->ail_lock);
2574 if (error)
2575 goto err;
2576
2577 error = xlog_finish_defer_ops(log->l_mp, &capture_list);
2578 if (error)
2579 goto err;
2580
2581 return 0;
2582err:
2583 xlog_abort_defer_ops(log->l_mp, &capture_list);
2584 return error;
2585}
2586
2587/*
2588 * A cancel occurs when the mount has failed and we're bailing out.
2589 * Release all pending log intent items so they don't pin the AIL.
2590 */
2591STATIC void
2592xlog_recover_cancel_intents(
2593 struct xlog *log)
2594{
2595 struct xfs_log_item *lip;
2596 struct xfs_ail_cursor cur;
2597 struct xfs_ail *ailp;
2598
2599 ailp = log->l_ailp;
2600 spin_lock(&ailp->ail_lock);
2601 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2602 while (lip != NULL) {
2603 /*
2604 * We're done when we see something other than an intent.
2605 * There should be no intents left in the AIL now.
2606 */
2607 if (!xlog_item_is_intent(lip)) {
2608#ifdef DEBUG
2609 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
2610 ASSERT(!xlog_item_is_intent(lip));
2611#endif
2612 break;
2613 }
2614
2615 spin_unlock(&ailp->ail_lock);
2616 lip->li_ops->iop_release(lip);
2617 spin_lock(&ailp->ail_lock);
2618 lip = xfs_trans_ail_cursor_next(ailp, &cur);
2619 }
2620
2621 xfs_trans_ail_cursor_done(&cur);
2622 spin_unlock(&ailp->ail_lock);
2623}
2624
2625/*
2626 * This routine performs a transaction to null out a bad inode pointer
2627 * in an agi unlinked inode hash bucket.
2628 */
2629STATIC void
2630xlog_recover_clear_agi_bucket(
2631 xfs_mount_t *mp,
2632 xfs_agnumber_t agno,
2633 int bucket)
2634{
2635 xfs_trans_t *tp;
2636 xfs_agi_t *agi;
2637 struct xfs_buf *agibp;
2638 int offset;
2639 int error;
2640
2641 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
2642 if (error)
2643 goto out_error;
2644
2645 error = xfs_read_agi(mp, tp, agno, &agibp);
2646 if (error)
2647 goto out_abort;
2648
2649 agi = agibp->b_addr;
2650 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
2651 offset = offsetof(xfs_agi_t, agi_unlinked) +
2652 (sizeof(xfs_agino_t) * bucket);
2653 xfs_trans_log_buf(tp, agibp, offset,
2654 (offset + sizeof(xfs_agino_t) - 1));
2655
2656 error = xfs_trans_commit(tp);
2657 if (error)
2658 goto out_error;
2659 return;
2660
2661out_abort:
2662 xfs_trans_cancel(tp);
2663out_error:
2664 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
2665 return;
2666}
2667
2668STATIC xfs_agino_t
2669xlog_recover_process_one_iunlink(
2670 struct xfs_mount *mp,
2671 xfs_agnumber_t agno,
2672 xfs_agino_t agino,
2673 int bucket)
2674{
2675 struct xfs_buf *ibp;
2676 struct xfs_dinode *dip;
2677 struct xfs_inode *ip;
2678 xfs_ino_t ino;
2679 int error;
2680
2681 ino = XFS_AGINO_TO_INO(mp, agno, agino);
2682 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
2683 if (error)
2684 goto fail;
2685
2686 /*
2687 * Get the on disk inode to find the next inode in the bucket.
2688 */
2689 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &ibp);
2690 if (error)
2691 goto fail_iput;
2692 dip = xfs_buf_offset(ibp, ip->i_imap.im_boffset);
2693
2694 xfs_iflags_clear(ip, XFS_IRECOVERY);
2695 ASSERT(VFS_I(ip)->i_nlink == 0);
2696 ASSERT(VFS_I(ip)->i_mode != 0);
2697
2698 /* setup for the next pass */
2699 agino = be32_to_cpu(dip->di_next_unlinked);
2700 xfs_buf_relse(ibp);
2701
2702 xfs_irele(ip);
2703 return agino;
2704
2705 fail_iput:
2706 xfs_irele(ip);
2707 fail:
2708 /*
2709 * We can't read in the inode this bucket points to, or this inode
2710 * is messed up. Just ditch this bucket of inodes. We will lose
2711 * some inodes and space, but at least we won't hang.
2712 *
2713 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
2714 * clear the inode pointer in the bucket.
2715 */
2716 xlog_recover_clear_agi_bucket(mp, agno, bucket);
2717 return NULLAGINO;
2718}
2719
2720/*
2721 * Recover AGI unlinked lists
2722 *
2723 * This is called during recovery to process any inodes which we unlinked but
2724 * not freed when the system crashed. These inodes will be on the lists in the
2725 * AGI blocks. What we do here is scan all the AGIs and fully truncate and free
2726 * any inodes found on the lists. Each inode is removed from the lists when it
2727 * has been fully truncated and is freed. The freeing of the inode and its
2728 * removal from the list must be atomic.
2729 *
2730 * If everything we touch in the agi processing loop is already in memory, this
2731 * loop can hold the cpu for a long time. It runs without lock contention,
2732 * memory allocation contention, the need wait for IO, etc, and so will run
2733 * until we either run out of inodes to process, run low on memory or we run out
2734 * of log space.
2735 *
2736 * This behaviour is bad for latency on single CPU and non-preemptible kernels,
2737 * and can prevent other filesystem work (such as CIL pushes) from running. This
2738 * can lead to deadlocks if the recovery process runs out of log reservation
2739 * space. Hence we need to yield the CPU when there is other kernel work
2740 * scheduled on this CPU to ensure other scheduled work can run without undue
2741 * latency.
2742 */
2743STATIC void
2744xlog_recover_process_iunlinks(
2745 struct xlog *log)
2746{
2747 struct xfs_mount *mp = log->l_mp;
2748 struct xfs_perag *pag;
2749 xfs_agnumber_t agno;
2750 struct xfs_agi *agi;
2751 struct xfs_buf *agibp;
2752 xfs_agino_t agino;
2753 int bucket;
2754 int error;
2755
2756 for_each_perag(mp, agno, pag) {
2757 error = xfs_read_agi(mp, NULL, pag->pag_agno, &agibp);
2758 if (error) {
2759 /*
2760 * AGI is b0rked. Don't process it.
2761 *
2762 * We should probably mark the filesystem as corrupt
2763 * after we've recovered all the ag's we can....
2764 */
2765 continue;
2766 }
2767 /*
2768 * Unlock the buffer so that it can be acquired in the normal
2769 * course of the transaction to truncate and free each inode.
2770 * Because we are not racing with anyone else here for the AGI
2771 * buffer, we don't even need to hold it locked to read the
2772 * initial unlinked bucket entries out of the buffer. We keep
2773 * buffer reference though, so that it stays pinned in memory
2774 * while we need the buffer.
2775 */
2776 agi = agibp->b_addr;
2777 xfs_buf_unlock(agibp);
2778
2779 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
2780 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
2781 while (agino != NULLAGINO) {
2782 agino = xlog_recover_process_one_iunlink(mp,
2783 pag->pag_agno, agino, bucket);
2784 cond_resched();
2785 }
2786 }
2787 xfs_buf_rele(agibp);
2788 }
2789}
2790
2791STATIC void
2792xlog_unpack_data(
2793 struct xlog_rec_header *rhead,
2794 char *dp,
2795 struct xlog *log)
2796{
2797 int i, j, k;
2798
2799 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
2800 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
2801 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
2802 dp += BBSIZE;
2803 }
2804
2805 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
2806 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
2807 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
2808 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
2809 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
2810 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
2811 dp += BBSIZE;
2812 }
2813 }
2814}
2815
2816/*
2817 * CRC check, unpack and process a log record.
2818 */
2819STATIC int
2820xlog_recover_process(
2821 struct xlog *log,
2822 struct hlist_head rhash[],
2823 struct xlog_rec_header *rhead,
2824 char *dp,
2825 int pass,
2826 struct list_head *buffer_list)
2827{
2828 __le32 old_crc = rhead->h_crc;
2829 __le32 crc;
2830
2831 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
2832
2833 /*
2834 * Nothing else to do if this is a CRC verification pass. Just return
2835 * if this a record with a non-zero crc. Unfortunately, mkfs always
2836 * sets old_crc to 0 so we must consider this valid even on v5 supers.
2837 * Otherwise, return EFSBADCRC on failure so the callers up the stack
2838 * know precisely what failed.
2839 */
2840 if (pass == XLOG_RECOVER_CRCPASS) {
2841 if (old_crc && crc != old_crc)
2842 return -EFSBADCRC;
2843 return 0;
2844 }
2845
2846 /*
2847 * We're in the normal recovery path. Issue a warning if and only if the
2848 * CRC in the header is non-zero. This is an advisory warning and the
2849 * zero CRC check prevents warnings from being emitted when upgrading
2850 * the kernel from one that does not add CRCs by default.
2851 */
2852 if (crc != old_crc) {
2853 if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
2854 xfs_alert(log->l_mp,
2855 "log record CRC mismatch: found 0x%x, expected 0x%x.",
2856 le32_to_cpu(old_crc),
2857 le32_to_cpu(crc));
2858 xfs_hex_dump(dp, 32);
2859 }
2860
2861 /*
2862 * If the filesystem is CRC enabled, this mismatch becomes a
2863 * fatal log corruption failure.
2864 */
2865 if (xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
2866 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp);
2867 return -EFSCORRUPTED;
2868 }
2869 }
2870
2871 xlog_unpack_data(rhead, dp, log);
2872
2873 return xlog_recover_process_data(log, rhash, rhead, dp, pass,
2874 buffer_list);
2875}
2876
2877STATIC int
2878xlog_valid_rec_header(
2879 struct xlog *log,
2880 struct xlog_rec_header *rhead,
2881 xfs_daddr_t blkno,
2882 int bufsize)
2883{
2884 int hlen;
2885
2886 if (XFS_IS_CORRUPT(log->l_mp,
2887 rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)))
2888 return -EFSCORRUPTED;
2889 if (XFS_IS_CORRUPT(log->l_mp,
2890 (!rhead->h_version ||
2891 (be32_to_cpu(rhead->h_version) &
2892 (~XLOG_VERSION_OKBITS))))) {
2893 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
2894 __func__, be32_to_cpu(rhead->h_version));
2895 return -EFSCORRUPTED;
2896 }
2897
2898 /*
2899 * LR body must have data (or it wouldn't have been written)
2900 * and h_len must not be greater than LR buffer size.
2901 */
2902 hlen = be32_to_cpu(rhead->h_len);
2903 if (XFS_IS_CORRUPT(log->l_mp, hlen <= 0 || hlen > bufsize))
2904 return -EFSCORRUPTED;
2905
2906 if (XFS_IS_CORRUPT(log->l_mp,
2907 blkno > log->l_logBBsize || blkno > INT_MAX))
2908 return -EFSCORRUPTED;
2909 return 0;
2910}
2911
2912/*
2913 * Read the log from tail to head and process the log records found.
2914 * Handle the two cases where the tail and head are in the same cycle
2915 * and where the active portion of the log wraps around the end of
2916 * the physical log separately. The pass parameter is passed through
2917 * to the routines called to process the data and is not looked at
2918 * here.
2919 */
2920STATIC int
2921xlog_do_recovery_pass(
2922 struct xlog *log,
2923 xfs_daddr_t head_blk,
2924 xfs_daddr_t tail_blk,
2925 int pass,
2926 xfs_daddr_t *first_bad) /* out: first bad log rec */
2927{
2928 xlog_rec_header_t *rhead;
2929 xfs_daddr_t blk_no, rblk_no;
2930 xfs_daddr_t rhead_blk;
2931 char *offset;
2932 char *hbp, *dbp;
2933 int error = 0, h_size, h_len;
2934 int error2 = 0;
2935 int bblks, split_bblks;
2936 int hblks, split_hblks, wrapped_hblks;
2937 int i;
2938 struct hlist_head rhash[XLOG_RHASH_SIZE];
2939 LIST_HEAD (buffer_list);
2940
2941 ASSERT(head_blk != tail_blk);
2942 blk_no = rhead_blk = tail_blk;
2943
2944 for (i = 0; i < XLOG_RHASH_SIZE; i++)
2945 INIT_HLIST_HEAD(&rhash[i]);
2946
2947 /*
2948 * Read the header of the tail block and get the iclog buffer size from
2949 * h_size. Use this to tell how many sectors make up the log header.
2950 */
2951 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
2952 /*
2953 * When using variable length iclogs, read first sector of
2954 * iclog header and extract the header size from it. Get a
2955 * new hbp that is the correct size.
2956 */
2957 hbp = xlog_alloc_buffer(log, 1);
2958 if (!hbp)
2959 return -ENOMEM;
2960
2961 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
2962 if (error)
2963 goto bread_err1;
2964
2965 rhead = (xlog_rec_header_t *)offset;
2966
2967 /*
2968 * xfsprogs has a bug where record length is based on lsunit but
2969 * h_size (iclog size) is hardcoded to 32k. Now that we
2970 * unconditionally CRC verify the unmount record, this means the
2971 * log buffer can be too small for the record and cause an
2972 * overrun.
2973 *
2974 * Detect this condition here. Use lsunit for the buffer size as
2975 * long as this looks like the mkfs case. Otherwise, return an
2976 * error to avoid a buffer overrun.
2977 */
2978 h_size = be32_to_cpu(rhead->h_size);
2979 h_len = be32_to_cpu(rhead->h_len);
2980 if (h_len > h_size && h_len <= log->l_mp->m_logbsize &&
2981 rhead->h_num_logops == cpu_to_be32(1)) {
2982 xfs_warn(log->l_mp,
2983 "invalid iclog size (%d bytes), using lsunit (%d bytes)",
2984 h_size, log->l_mp->m_logbsize);
2985 h_size = log->l_mp->m_logbsize;
2986 }
2987
2988 error = xlog_valid_rec_header(log, rhead, tail_blk, h_size);
2989 if (error)
2990 goto bread_err1;
2991
2992 hblks = xlog_logrec_hblks(log, rhead);
2993 if (hblks != 1) {
2994 kmem_free(hbp);
2995 hbp = xlog_alloc_buffer(log, hblks);
2996 }
2997 } else {
2998 ASSERT(log->l_sectBBsize == 1);
2999 hblks = 1;
3000 hbp = xlog_alloc_buffer(log, 1);
3001 h_size = XLOG_BIG_RECORD_BSIZE;
3002 }
3003
3004 if (!hbp)
3005 return -ENOMEM;
3006 dbp = xlog_alloc_buffer(log, BTOBB(h_size));
3007 if (!dbp) {
3008 kmem_free(hbp);
3009 return -ENOMEM;
3010 }
3011
3012 memset(rhash, 0, sizeof(rhash));
3013 if (tail_blk > head_blk) {
3014 /*
3015 * Perform recovery around the end of the physical log.
3016 * When the head is not on the same cycle number as the tail,
3017 * we can't do a sequential recovery.
3018 */
3019 while (blk_no < log->l_logBBsize) {
3020 /*
3021 * Check for header wrapping around physical end-of-log
3022 */
3023 offset = hbp;
3024 split_hblks = 0;
3025 wrapped_hblks = 0;
3026 if (blk_no + hblks <= log->l_logBBsize) {
3027 /* Read header in one read */
3028 error = xlog_bread(log, blk_no, hblks, hbp,
3029 &offset);
3030 if (error)
3031 goto bread_err2;
3032 } else {
3033 /* This LR is split across physical log end */
3034 if (blk_no != log->l_logBBsize) {
3035 /* some data before physical log end */
3036 ASSERT(blk_no <= INT_MAX);
3037 split_hblks = log->l_logBBsize - (int)blk_no;
3038 ASSERT(split_hblks > 0);
3039 error = xlog_bread(log, blk_no,
3040 split_hblks, hbp,
3041 &offset);
3042 if (error)
3043 goto bread_err2;
3044 }
3045
3046 /*
3047 * Note: this black magic still works with
3048 * large sector sizes (non-512) only because:
3049 * - we increased the buffer size originally
3050 * by 1 sector giving us enough extra space
3051 * for the second read;
3052 * - the log start is guaranteed to be sector
3053 * aligned;
3054 * - we read the log end (LR header start)
3055 * _first_, then the log start (LR header end)
3056 * - order is important.
3057 */
3058 wrapped_hblks = hblks - split_hblks;
3059 error = xlog_bread_noalign(log, 0,
3060 wrapped_hblks,
3061 offset + BBTOB(split_hblks));
3062 if (error)
3063 goto bread_err2;
3064 }
3065 rhead = (xlog_rec_header_t *)offset;
3066 error = xlog_valid_rec_header(log, rhead,
3067 split_hblks ? blk_no : 0, h_size);
3068 if (error)
3069 goto bread_err2;
3070
3071 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3072 blk_no += hblks;
3073
3074 /*
3075 * Read the log record data in multiple reads if it
3076 * wraps around the end of the log. Note that if the
3077 * header already wrapped, blk_no could point past the
3078 * end of the log. The record data is contiguous in
3079 * that case.
3080 */
3081 if (blk_no + bblks <= log->l_logBBsize ||
3082 blk_no >= log->l_logBBsize) {
3083 rblk_no = xlog_wrap_logbno(log, blk_no);
3084 error = xlog_bread(log, rblk_no, bblks, dbp,
3085 &offset);
3086 if (error)
3087 goto bread_err2;
3088 } else {
3089 /* This log record is split across the
3090 * physical end of log */
3091 offset = dbp;
3092 split_bblks = 0;
3093 if (blk_no != log->l_logBBsize) {
3094 /* some data is before the physical
3095 * end of log */
3096 ASSERT(!wrapped_hblks);
3097 ASSERT(blk_no <= INT_MAX);
3098 split_bblks =
3099 log->l_logBBsize - (int)blk_no;
3100 ASSERT(split_bblks > 0);
3101 error = xlog_bread(log, blk_no,
3102 split_bblks, dbp,
3103 &offset);
3104 if (error)
3105 goto bread_err2;
3106 }
3107
3108 /*
3109 * Note: this black magic still works with
3110 * large sector sizes (non-512) only because:
3111 * - we increased the buffer size originally
3112 * by 1 sector giving us enough extra space
3113 * for the second read;
3114 * - the log start is guaranteed to be sector
3115 * aligned;
3116 * - we read the log end (LR header start)
3117 * _first_, then the log start (LR header end)
3118 * - order is important.
3119 */
3120 error = xlog_bread_noalign(log, 0,
3121 bblks - split_bblks,
3122 offset + BBTOB(split_bblks));
3123 if (error)
3124 goto bread_err2;
3125 }
3126
3127 error = xlog_recover_process(log, rhash, rhead, offset,
3128 pass, &buffer_list);
3129 if (error)
3130 goto bread_err2;
3131
3132 blk_no += bblks;
3133 rhead_blk = blk_no;
3134 }
3135
3136 ASSERT(blk_no >= log->l_logBBsize);
3137 blk_no -= log->l_logBBsize;
3138 rhead_blk = blk_no;
3139 }
3140
3141 /* read first part of physical log */
3142 while (blk_no < head_blk) {
3143 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3144 if (error)
3145 goto bread_err2;
3146
3147 rhead = (xlog_rec_header_t *)offset;
3148 error = xlog_valid_rec_header(log, rhead, blk_no, h_size);
3149 if (error)
3150 goto bread_err2;
3151
3152 /* blocks in data section */
3153 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3154 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3155 &offset);
3156 if (error)
3157 goto bread_err2;
3158
3159 error = xlog_recover_process(log, rhash, rhead, offset, pass,
3160 &buffer_list);
3161 if (error)
3162 goto bread_err2;
3163
3164 blk_no += bblks + hblks;
3165 rhead_blk = blk_no;
3166 }
3167
3168 bread_err2:
3169 kmem_free(dbp);
3170 bread_err1:
3171 kmem_free(hbp);
3172
3173 /*
3174 * Submit buffers that have been added from the last record processed,
3175 * regardless of error status.
3176 */
3177 if (!list_empty(&buffer_list))
3178 error2 = xfs_buf_delwri_submit(&buffer_list);
3179
3180 if (error && first_bad)
3181 *first_bad = rhead_blk;
3182
3183 /*
3184 * Transactions are freed at commit time but transactions without commit
3185 * records on disk are never committed. Free any that may be left in the
3186 * hash table.
3187 */
3188 for (i = 0; i < XLOG_RHASH_SIZE; i++) {
3189 struct hlist_node *tmp;
3190 struct xlog_recover *trans;
3191
3192 hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list)
3193 xlog_recover_free_trans(trans);
3194 }
3195
3196 return error ? error : error2;
3197}
3198
3199/*
3200 * Do the recovery of the log. We actually do this in two phases.
3201 * The two passes are necessary in order to implement the function
3202 * of cancelling a record written into the log. The first pass
3203 * determines those things which have been cancelled, and the
3204 * second pass replays log items normally except for those which
3205 * have been cancelled. The handling of the replay and cancellations
3206 * takes place in the log item type specific routines.
3207 *
3208 * The table of items which have cancel records in the log is allocated
3209 * and freed at this level, since only here do we know when all of
3210 * the log recovery has been completed.
3211 */
3212STATIC int
3213xlog_do_log_recovery(
3214 struct xlog *log,
3215 xfs_daddr_t head_blk,
3216 xfs_daddr_t tail_blk)
3217{
3218 int error, i;
3219
3220 ASSERT(head_blk != tail_blk);
3221
3222 /*
3223 * First do a pass to find all of the cancelled buf log items.
3224 * Store them in the buf_cancel_table for use in the second pass.
3225 */
3226 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
3227 sizeof(struct list_head),
3228 0);
3229 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3230 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
3231
3232 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3233 XLOG_RECOVER_PASS1, NULL);
3234 if (error != 0) {
3235 kmem_free(log->l_buf_cancel_table);
3236 log->l_buf_cancel_table = NULL;
3237 return error;
3238 }
3239 /*
3240 * Then do a second pass to actually recover the items in the log.
3241 * When it is complete free the table of buf cancel items.
3242 */
3243 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3244 XLOG_RECOVER_PASS2, NULL);
3245#ifdef DEBUG
3246 if (!error) {
3247 int i;
3248
3249 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3250 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
3251 }
3252#endif /* DEBUG */
3253
3254 kmem_free(log->l_buf_cancel_table);
3255 log->l_buf_cancel_table = NULL;
3256
3257 return error;
3258}
3259
3260/*
3261 * Do the actual recovery
3262 */
3263STATIC int
3264xlog_do_recover(
3265 struct xlog *log,
3266 xfs_daddr_t head_blk,
3267 xfs_daddr_t tail_blk)
3268{
3269 struct xfs_mount *mp = log->l_mp;
3270 struct xfs_buf *bp = mp->m_sb_bp;
3271 struct xfs_sb *sbp = &mp->m_sb;
3272 int error;
3273
3274 trace_xfs_log_recover(log, head_blk, tail_blk);
3275
3276 /*
3277 * First replay the images in the log.
3278 */
3279 error = xlog_do_log_recovery(log, head_blk, tail_blk);
3280 if (error)
3281 return error;
3282
3283 /*
3284 * If IO errors happened during recovery, bail out.
3285 */
3286 if (XFS_FORCED_SHUTDOWN(mp))
3287 return -EIO;
3288
3289 /*
3290 * We now update the tail_lsn since much of the recovery has completed
3291 * and there may be space available to use. If there were no extent
3292 * or iunlinks, we can free up the entire log and set the tail_lsn to
3293 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3294 * lsn of the last known good LR on disk. If there are extent frees
3295 * or iunlinks they will have some entries in the AIL; so we look at
3296 * the AIL to determine how to set the tail_lsn.
3297 */
3298 xlog_assign_tail_lsn(mp);
3299
3300 /*
3301 * Now that we've finished replaying all buffer and inode updates,
3302 * re-read the superblock and reverify it.
3303 */
3304 xfs_buf_lock(bp);
3305 xfs_buf_hold(bp);
3306 error = _xfs_buf_read(bp, XBF_READ);
3307 if (error) {
3308 if (!XFS_FORCED_SHUTDOWN(mp)) {
3309 xfs_buf_ioerror_alert(bp, __this_address);
3310 ASSERT(0);
3311 }
3312 xfs_buf_relse(bp);
3313 return error;
3314 }
3315
3316 /* Convert superblock from on-disk format */
3317 xfs_sb_from_disk(sbp, bp->b_addr);
3318 xfs_buf_relse(bp);
3319
3320 /* re-initialise in-core superblock and geometry structures */
3321 xfs_reinit_percpu_counters(mp);
3322 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
3323 if (error) {
3324 xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
3325 return error;
3326 }
3327 mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
3328
3329 xlog_recover_check_summary(log);
3330
3331 /* Normal transactions can now occur */
3332 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3333 return 0;
3334}
3335
3336/*
3337 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3338 *
3339 * Return error or zero.
3340 */
3341int
3342xlog_recover(
3343 struct xlog *log)
3344{
3345 xfs_daddr_t head_blk, tail_blk;
3346 int error;
3347
3348 /* find the tail of the log */
3349 error = xlog_find_tail(log, &head_blk, &tail_blk);
3350 if (error)
3351 return error;
3352
3353 /*
3354 * The superblock was read before the log was available and thus the LSN
3355 * could not be verified. Check the superblock LSN against the current
3356 * LSN now that it's known.
3357 */
3358 if (xfs_sb_version_hascrc(&log->l_mp->m_sb) &&
3359 !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
3360 return -EINVAL;
3361
3362 if (tail_blk != head_blk) {
3363 /* There used to be a comment here:
3364 *
3365 * disallow recovery on read-only mounts. note -- mount
3366 * checks for ENOSPC and turns it into an intelligent
3367 * error message.
3368 * ...but this is no longer true. Now, unless you specify
3369 * NORECOVERY (in which case this function would never be
3370 * called), we just go ahead and recover. We do this all
3371 * under the vfs layer, so we can get away with it unless
3372 * the device itself is read-only, in which case we fail.
3373 */
3374 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3375 return error;
3376 }
3377
3378 /*
3379 * Version 5 superblock log feature mask validation. We know the
3380 * log is dirty so check if there are any unknown log features
3381 * in what we need to recover. If there are unknown features
3382 * (e.g. unsupported transactions, then simply reject the
3383 * attempt at recovery before touching anything.
3384 */
3385 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
3386 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
3387 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
3388 xfs_warn(log->l_mp,
3389"Superblock has unknown incompatible log features (0x%x) enabled.",
3390 (log->l_mp->m_sb.sb_features_log_incompat &
3391 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
3392 xfs_warn(log->l_mp,
3393"The log can not be fully and/or safely recovered by this kernel.");
3394 xfs_warn(log->l_mp,
3395"Please recover the log on a kernel that supports the unknown features.");
3396 return -EINVAL;
3397 }
3398
3399 /*
3400 * Delay log recovery if the debug hook is set. This is debug
3401 * instrumentation to coordinate simulation of I/O failures with
3402 * log recovery.
3403 */
3404 if (xfs_globals.log_recovery_delay) {
3405 xfs_notice(log->l_mp,
3406 "Delaying log recovery for %d seconds.",
3407 xfs_globals.log_recovery_delay);
3408 msleep(xfs_globals.log_recovery_delay * 1000);
3409 }
3410
3411 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
3412 log->l_mp->m_logname ? log->l_mp->m_logname
3413 : "internal");
3414
3415 error = xlog_do_recover(log, head_blk, tail_blk);
3416 log->l_flags |= XLOG_RECOVERY_NEEDED;
3417 }
3418 return error;
3419}
3420
3421/*
3422 * In the first part of recovery we replay inodes and buffers and build
3423 * up the list of extent free items which need to be processed. Here
3424 * we process the extent free items and clean up the on disk unlinked
3425 * inode lists. This is separated from the first part of recovery so
3426 * that the root and real-time bitmap inodes can be read in from disk in
3427 * between the two stages. This is necessary so that we can free space
3428 * in the real-time portion of the file system.
3429 */
3430int
3431xlog_recover_finish(
3432 struct xlog *log)
3433{
3434 /*
3435 * Now we're ready to do the transactions needed for the
3436 * rest of recovery. Start with completing all the extent
3437 * free intent records and then process the unlinked inode
3438 * lists. At this point, we essentially run in normal mode
3439 * except that we're still performing recovery actions
3440 * rather than accepting new requests.
3441 */
3442 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3443 int error;
3444 error = xlog_recover_process_intents(log);
3445 if (error) {
3446 /*
3447 * Cancel all the unprocessed intent items now so that
3448 * we don't leave them pinned in the AIL. This can
3449 * cause the AIL to livelock on the pinned item if
3450 * anyone tries to push the AIL (inode reclaim does
3451 * this) before we get around to xfs_log_mount_cancel.
3452 */
3453 xlog_recover_cancel_intents(log);
3454 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
3455 xfs_alert(log->l_mp, "Failed to recover intents");
3456 return error;
3457 }
3458
3459 /*
3460 * Sync the log to get all the intents out of the AIL.
3461 * This isn't absolutely necessary, but it helps in
3462 * case the unlink transactions would have problems
3463 * pushing the intents out of the way.
3464 */
3465 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3466
3467 xlog_recover_process_iunlinks(log);
3468
3469 xlog_recover_check_summary(log);
3470
3471 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
3472 log->l_mp->m_logname ? log->l_mp->m_logname
3473 : "internal");
3474 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3475 } else {
3476 xfs_info(log->l_mp, "Ending clean mount");
3477 }
3478 return 0;
3479}
3480
3481void
3482xlog_recover_cancel(
3483 struct xlog *log)
3484{
3485 if (log->l_flags & XLOG_RECOVERY_NEEDED)
3486 xlog_recover_cancel_intents(log);
3487}
3488
3489#if defined(DEBUG)
3490/*
3491 * Read all of the agf and agi counters and check that they
3492 * are consistent with the superblock counters.
3493 */
3494STATIC void
3495xlog_recover_check_summary(
3496 struct xlog *log)
3497{
3498 struct xfs_mount *mp = log->l_mp;
3499 struct xfs_perag *pag;
3500 struct xfs_buf *agfbp;
3501 struct xfs_buf *agibp;
3502 xfs_agnumber_t agno;
3503 uint64_t freeblks;
3504 uint64_t itotal;
3505 uint64_t ifree;
3506 int error;
3507
3508 mp = log->l_mp;
3509
3510 freeblks = 0LL;
3511 itotal = 0LL;
3512 ifree = 0LL;
3513 for_each_perag(mp, agno, pag) {
3514 error = xfs_read_agf(mp, NULL, pag->pag_agno, 0, &agfbp);
3515 if (error) {
3516 xfs_alert(mp, "%s agf read failed agno %d error %d",
3517 __func__, pag->pag_agno, error);
3518 } else {
3519 struct xfs_agf *agfp = agfbp->b_addr;
3520
3521 freeblks += be32_to_cpu(agfp->agf_freeblks) +
3522 be32_to_cpu(agfp->agf_flcount);
3523 xfs_buf_relse(agfbp);
3524 }
3525
3526 error = xfs_read_agi(mp, NULL, pag->pag_agno, &agibp);
3527 if (error) {
3528 xfs_alert(mp, "%s agi read failed agno %d error %d",
3529 __func__, pag->pag_agno, error);
3530 } else {
3531 struct xfs_agi *agi = agibp->b_addr;
3532
3533 itotal += be32_to_cpu(agi->agi_count);
3534 ifree += be32_to_cpu(agi->agi_freecount);
3535 xfs_buf_relse(agibp);
3536 }
3537 }
3538}
3539#endif /* DEBUG */