Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
   3 * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
   4 *
   5 * This copyrighted material is made available to anyone wishing to use,
   6 * modify, copy, or redistribute it subject to the terms and conditions
   7 * of the GNU General Public License version 2.
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/slab.h>
  13#include <linux/spinlock.h>
  14#include <linux/completion.h>
  15#include <linux/buffer_head.h>
  16#include <linux/fs.h>
  17#include <linux/gfs2_ondisk.h>
  18#include <linux/prefetch.h>
  19#include <linux/blkdev.h>
  20#include <linux/rbtree.h>
  21#include <linux/random.h>
  22
  23#include "gfs2.h"
  24#include "incore.h"
  25#include "glock.h"
  26#include "glops.h"
  27#include "lops.h"
  28#include "meta_io.h"
  29#include "quota.h"
  30#include "rgrp.h"
  31#include "super.h"
  32#include "trans.h"
  33#include "util.h"
  34#include "log.h"
  35#include "inode.h"
  36#include "trace_gfs2.h"
  37#include "dir.h"
  38
  39#define BFITNOENT ((u32)~0)
  40#define NO_BLOCK ((u64)~0)
  41
  42#if BITS_PER_LONG == 32
  43#define LBITMASK   (0x55555555UL)
  44#define LBITSKIP55 (0x55555555UL)
  45#define LBITSKIP00 (0x00000000UL)
  46#else
  47#define LBITMASK   (0x5555555555555555UL)
  48#define LBITSKIP55 (0x5555555555555555UL)
  49#define LBITSKIP00 (0x0000000000000000UL)
  50#endif
 
 
 
 
 
 
 
 
  51
  52/*
  53 * These routines are used by the resource group routines (rgrp.c)
  54 * to keep track of block allocation.  Each block is represented by two
  55 * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
  56 *
  57 * 0 = Free
  58 * 1 = Used (not metadata)
  59 * 2 = Unlinked (still in use) inode
  60 * 3 = Used (metadata)
  61 */
  62
  63struct gfs2_extent {
  64	struct gfs2_rbm rbm;
  65	u32 len;
  66};
  67
  68static const char valid_change[16] = {
  69	        /* current */
  70	/* n */ 0, 1, 1, 1,
  71	/* e */ 1, 0, 0, 0,
  72	/* w */ 0, 0, 0, 1,
  73	        1, 0, 0, 0
  74};
  75
  76static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
  77			 const struct gfs2_inode *ip, bool nowrap);
  78
  79
  80/**
  81 * gfs2_setbit - Set a bit in the bitmaps
  82 * @rbm: The position of the bit to set
  83 * @do_clone: Also set the clone bitmap, if it exists
  84 * @new_state: the new state of the block
  85 *
  86 */
  87
  88static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
  89			       unsigned char new_state)
  90{
  91	unsigned char *byte1, *byte2, *end, cur_state;
  92	struct gfs2_bitmap *bi = rbm_bi(rbm);
  93	unsigned int buflen = bi->bi_len;
  94	const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
  95
  96	byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY);
  97	end = bi->bi_bh->b_data + bi->bi_offset + buflen;
  98
  99	BUG_ON(byte1 >= end);
 100
 101	cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
 102
 103	if (unlikely(!valid_change[new_state * 4 + cur_state])) {
 104		pr_warn("buf_blk = 0x%x old_state=%d, new_state=%d\n",
 
 
 105			rbm->offset, cur_state, new_state);
 106		pr_warn("rgrp=0x%llx bi_start=0x%x\n",
 107			(unsigned long long)rbm->rgd->rd_addr, bi->bi_start);
 108		pr_warn("bi_offset=0x%x bi_len=0x%x\n",
 109			bi->bi_offset, bi->bi_len);
 
 
 110		dump_stack();
 111		gfs2_consist_rgrpd(rbm->rgd);
 112		return;
 113	}
 114	*byte1 ^= (cur_state ^ new_state) << bit;
 115
 116	if (do_clone && bi->bi_clone) {
 117		byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY);
 118		cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
 119		*byte2 ^= (cur_state ^ new_state) << bit;
 120	}
 121}
 122
 123/**
 124 * gfs2_testbit - test a bit in the bitmaps
 125 * @rbm: The bit to test
 
 
 
 
 126 *
 127 * Returns: The two bit block state of the requested bit
 128 */
 129
 130static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm)
 131{
 132	struct gfs2_bitmap *bi = rbm_bi(rbm);
 133	const u8 *buffer = bi->bi_bh->b_data + bi->bi_offset;
 134	const u8 *byte;
 135	unsigned int bit;
 136
 
 
 
 
 
 137	byte = buffer + (rbm->offset / GFS2_NBBY);
 138	bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
 139
 140	return (*byte >> bit) & GFS2_BIT_MASK;
 141}
 142
 143/**
 144 * gfs2_bit_search
 145 * @ptr: Pointer to bitmap data
 146 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
 147 * @state: The state we are searching for
 148 *
 149 * We xor the bitmap data with a patter which is the bitwise opposite
 150 * of what we are looking for, this gives rise to a pattern of ones
 151 * wherever there is a match. Since we have two bits per entry, we
 152 * take this pattern, shift it down by one place and then and it with
 153 * the original. All the even bit positions (0,2,4, etc) then represent
 154 * successful matches, so we mask with 0x55555..... to remove the unwanted
 155 * odd bit positions.
 156 *
 157 * This allows searching of a whole u64 at once (32 blocks) with a
 158 * single test (on 64 bit arches).
 159 */
 160
 161static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
 162{
 163	u64 tmp;
 164	static const u64 search[] = {
 165		[0] = 0xffffffffffffffffULL,
 166		[1] = 0xaaaaaaaaaaaaaaaaULL,
 167		[2] = 0x5555555555555555ULL,
 168		[3] = 0x0000000000000000ULL,
 169	};
 170	tmp = le64_to_cpu(*ptr) ^ search[state];
 171	tmp &= (tmp >> 1);
 172	tmp &= mask;
 173	return tmp;
 174}
 175
 176/**
 177 * rs_cmp - multi-block reservation range compare
 178 * @blk: absolute file system block number of the new reservation
 179 * @len: number of blocks in the new reservation
 180 * @rs: existing reservation to compare against
 181 *
 182 * returns: 1 if the block range is beyond the reach of the reservation
 183 *         -1 if the block range is before the start of the reservation
 184 *          0 if the block range overlaps with the reservation
 185 */
 186static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
 187{
 188	u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm);
 189
 190	if (blk >= startblk + rs->rs_free)
 191		return 1;
 192	if (blk + len - 1 < startblk)
 193		return -1;
 194	return 0;
 195}
 196
 197/**
 198 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
 199 *       a block in a given allocation state.
 200 * @buf: the buffer that holds the bitmaps
 201 * @len: the length (in bytes) of the buffer
 202 * @goal: start search at this block's bit-pair (within @buffer)
 203 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
 204 *
 205 * Scope of @goal and returned block number is only within this bitmap buffer,
 206 * not entire rgrp or filesystem.  @buffer will be offset from the actual
 207 * beginning of a bitmap block buffer, skipping any header structures, but
 208 * headers are always a multiple of 64 bits long so that the buffer is
 209 * always aligned to a 64 bit boundary.
 210 *
 211 * The size of the buffer is in bytes, but is it assumed that it is
 212 * always ok to read a complete multiple of 64 bits at the end
 213 * of the block in case the end is no aligned to a natural boundary.
 214 *
 215 * Return: the block number (bitmap buffer scope) that was found
 216 */
 217
 218static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
 219		       u32 goal, u8 state)
 220{
 221	u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
 222	const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
 223	const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
 224	u64 tmp;
 225	u64 mask = 0x5555555555555555ULL;
 226	u32 bit;
 227
 228	/* Mask off bits we don't care about at the start of the search */
 229	mask <<= spoint;
 230	tmp = gfs2_bit_search(ptr, mask, state);
 231	ptr++;
 232	while(tmp == 0 && ptr < end) {
 233		tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
 234		ptr++;
 235	}
 236	/* Mask off any bits which are more than len bytes from the start */
 237	if (ptr == end && (len & (sizeof(u64) - 1)))
 238		tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
 239	/* Didn't find anything, so return */
 240	if (tmp == 0)
 241		return BFITNOENT;
 242	ptr--;
 243	bit = __ffs64(tmp);
 244	bit /= 2;	/* two bits per entry in the bitmap */
 245	return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
 246}
 247
 248/**
 249 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
 250 * @rbm: The rbm with rgd already set correctly
 251 * @block: The block number (filesystem relative)
 252 *
 253 * This sets the bi and offset members of an rbm based on a
 254 * resource group and a filesystem relative block number. The
 255 * resource group must be set in the rbm on entry, the bi and
 256 * offset members will be set by this function.
 257 *
 258 * Returns: 0 on success, or an error code
 259 */
 260
 261static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
 262{
 263	u64 rblock = block - rbm->rgd->rd_data0;
 264
 265	if (WARN_ON_ONCE(rblock > UINT_MAX))
 266		return -EINVAL;
 267	if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data)
 268		return -E2BIG;
 269
 270	rbm->bii = 0;
 271	rbm->offset = (u32)(rblock);
 272	/* Check if the block is within the first block */
 273	if (rbm->offset < rbm_bi(rbm)->bi_blocks)
 274		return 0;
 275
 276	/* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
 277	rbm->offset += (sizeof(struct gfs2_rgrp) -
 278			sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
 279	rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
 280	rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
 281	return 0;
 282}
 283
 284/**
 285 * gfs2_rbm_incr - increment an rbm structure
 286 * @rbm: The rbm with rgd already set correctly
 
 287 *
 288 * This function takes an existing rbm structure and increments it to the next
 289 * viable block offset.
 290 *
 291 * Returns: If incrementing the offset would cause the rbm to go past the
 292 *          end of the rgrp, true is returned, otherwise false.
 293 *
 
 294 */
 295
 296static bool gfs2_rbm_incr(struct gfs2_rbm *rbm)
 297{
 298	if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */
 299		rbm->offset++;
 
 
 
 300		return false;
 301	}
 302	if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */
 303		return true;
 304
 305	rbm->offset = 0;
 306	rbm->bii++;
 307	return false;
 
 
 
 
 
 
 
 
 308}
 309
 310/**
 311 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
 312 * @rbm: Position to search (value/result)
 313 * @n_unaligned: Number of unaligned blocks to check
 314 * @len: Decremented for each block found (terminate on zero)
 315 *
 316 * Returns: true if a non-free block is encountered
 
 317 */
 318
 319static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
 320{
 321	u32 n;
 322	u8 res;
 323
 324	for (n = 0; n < n_unaligned; n++) {
 325		res = gfs2_testbit(rbm);
 326		if (res != GFS2_BLKST_FREE)
 327			return true;
 328		(*len)--;
 329		if (*len == 0)
 330			return true;
 331		if (gfs2_rbm_incr(rbm))
 332			return true;
 333	}
 334
 335	return false;
 336}
 337
 338/**
 339 * gfs2_free_extlen - Return extent length of free blocks
 340 * @rrbm: Starting position
 341 * @len: Max length to check
 342 *
 343 * Starting at the block specified by the rbm, see how many free blocks
 344 * there are, not reading more than len blocks ahead. This can be done
 345 * using memchr_inv when the blocks are byte aligned, but has to be done
 346 * on a block by block basis in case of unaligned blocks. Also this
 347 * function can cope with bitmap boundaries (although it must stop on
 348 * a resource group boundary)
 349 *
 350 * Returns: Number of free blocks in the extent
 351 */
 352
 353static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
 354{
 355	struct gfs2_rbm rbm = *rrbm;
 356	u32 n_unaligned = rbm.offset & 3;
 357	u32 size = len;
 358	u32 bytes;
 359	u32 chunk_size;
 360	u8 *ptr, *start, *end;
 361	u64 block;
 362	struct gfs2_bitmap *bi;
 363
 364	if (n_unaligned &&
 365	    gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
 366		goto out;
 367
 368	n_unaligned = len & 3;
 369	/* Start is now byte aligned */
 370	while (len > 3) {
 371		bi = rbm_bi(&rbm);
 372		start = bi->bi_bh->b_data;
 373		if (bi->bi_clone)
 374			start = bi->bi_clone;
 375		end = start + bi->bi_bh->b_size;
 376		start += bi->bi_offset;
 
 377		BUG_ON(rbm.offset & 3);
 378		start += (rbm.offset / GFS2_NBBY);
 379		bytes = min_t(u32, len / GFS2_NBBY, (end - start));
 380		ptr = memchr_inv(start, 0, bytes);
 381		chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
 382		chunk_size *= GFS2_NBBY;
 383		BUG_ON(len < chunk_size);
 384		len -= chunk_size;
 385		block = gfs2_rbm_to_block(&rbm);
 386		if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
 387			n_unaligned = 0;
 388			break;
 389		}
 390		if (ptr) {
 391			n_unaligned = 3;
 392			break;
 393		}
 394		n_unaligned = len & 3;
 395	}
 396
 397	/* Deal with any bits left over at the end */
 398	if (n_unaligned)
 399		gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
 400out:
 401	return size - len;
 402}
 403
 404/**
 405 * gfs2_bitcount - count the number of bits in a certain state
 406 * @rgd: the resource group descriptor
 407 * @buffer: the buffer that holds the bitmaps
 408 * @buflen: the length (in bytes) of the buffer
 409 * @state: the state of the block we're looking for
 410 *
 411 * Returns: The number of bits
 412 */
 413
 414static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
 415			 unsigned int buflen, u8 state)
 416{
 417	const u8 *byte = buffer;
 418	const u8 *end = buffer + buflen;
 419	const u8 state1 = state << 2;
 420	const u8 state2 = state << 4;
 421	const u8 state3 = state << 6;
 422	u32 count = 0;
 423
 424	for (; byte < end; byte++) {
 425		if (((*byte) & 0x03) == state)
 426			count++;
 427		if (((*byte) & 0x0C) == state1)
 428			count++;
 429		if (((*byte) & 0x30) == state2)
 430			count++;
 431		if (((*byte) & 0xC0) == state3)
 432			count++;
 433	}
 434
 435	return count;
 436}
 437
 438/**
 439 * gfs2_rgrp_verify - Verify that a resource group is consistent
 440 * @rgd: the rgrp
 441 *
 442 */
 443
 444void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
 445{
 446	struct gfs2_sbd *sdp = rgd->rd_sbd;
 447	struct gfs2_bitmap *bi = NULL;
 448	u32 length = rgd->rd_length;
 449	u32 count[4], tmp;
 450	int buf, x;
 451
 452	memset(count, 0, 4 * sizeof(u32));
 453
 454	/* Count # blocks in each of 4 possible allocation states */
 455	for (buf = 0; buf < length; buf++) {
 456		bi = rgd->rd_bits + buf;
 457		for (x = 0; x < 4; x++)
 458			count[x] += gfs2_bitcount(rgd,
 459						  bi->bi_bh->b_data +
 460						  bi->bi_offset,
 461						  bi->bi_len, x);
 462	}
 463
 464	if (count[0] != rgd->rd_free) {
 465		if (gfs2_consist_rgrpd(rgd))
 466			fs_err(sdp, "free data mismatch:  %u != %u\n",
 467			       count[0], rgd->rd_free);
 468		return;
 469	}
 470
 471	tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
 472	if (count[1] != tmp) {
 473		if (gfs2_consist_rgrpd(rgd))
 474			fs_err(sdp, "used data mismatch:  %u != %u\n",
 475			       count[1], tmp);
 476		return;
 477	}
 478
 479	if (count[2] + count[3] != rgd->rd_dinodes) {
 480		if (gfs2_consist_rgrpd(rgd))
 481			fs_err(sdp, "used metadata mismatch:  %u != %u\n",
 482			       count[2] + count[3], rgd->rd_dinodes);
 483		return;
 484	}
 485}
 486
 487/**
 488 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
 489 * @sdp: The GFS2 superblock
 490 * @blk: The data block number
 491 * @exact: True if this needs to be an exact match
 492 *
 493 * The @exact argument should be set to true by most callers. The exception
 494 * is when we need to match blocks which are not represented by the rgrp
 495 * bitmap, but which are part of the rgrp (i.e. padding blocks) which are
 496 * there for alignment purposes. Another way of looking at it is that @exact
 497 * matches only valid data/metadata blocks, but with @exact false, it will
 498 * match any block within the extent of the rgrp.
 499 *
 500 * Returns: The resource group, or NULL if not found
 501 */
 502
 503struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
 504{
 505	struct rb_node *n, *next;
 506	struct gfs2_rgrpd *cur;
 507
 508	spin_lock(&sdp->sd_rindex_spin);
 509	n = sdp->sd_rindex_tree.rb_node;
 510	while (n) {
 511		cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
 512		next = NULL;
 513		if (blk < cur->rd_addr)
 514			next = n->rb_left;
 515		else if (blk >= cur->rd_data0 + cur->rd_data)
 516			next = n->rb_right;
 517		if (next == NULL) {
 518			spin_unlock(&sdp->sd_rindex_spin);
 519			if (exact) {
 520				if (blk < cur->rd_addr)
 521					return NULL;
 522				if (blk >= cur->rd_data0 + cur->rd_data)
 523					return NULL;
 524			}
 525			return cur;
 526		}
 527		n = next;
 528	}
 529	spin_unlock(&sdp->sd_rindex_spin);
 530
 531	return NULL;
 532}
 533
 534/**
 535 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
 536 * @sdp: The GFS2 superblock
 537 *
 538 * Returns: The first rgrp in the filesystem
 539 */
 540
 541struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
 542{
 543	const struct rb_node *n;
 544	struct gfs2_rgrpd *rgd;
 545
 546	spin_lock(&sdp->sd_rindex_spin);
 547	n = rb_first(&sdp->sd_rindex_tree);
 548	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 549	spin_unlock(&sdp->sd_rindex_spin);
 550
 551	return rgd;
 552}
 553
 554/**
 555 * gfs2_rgrpd_get_next - get the next RG
 556 * @rgd: the resource group descriptor
 557 *
 558 * Returns: The next rgrp
 559 */
 560
 561struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
 562{
 563	struct gfs2_sbd *sdp = rgd->rd_sbd;
 564	const struct rb_node *n;
 565
 566	spin_lock(&sdp->sd_rindex_spin);
 567	n = rb_next(&rgd->rd_node);
 568	if (n == NULL)
 569		n = rb_first(&sdp->sd_rindex_tree);
 570
 571	if (unlikely(&rgd->rd_node == n)) {
 572		spin_unlock(&sdp->sd_rindex_spin);
 573		return NULL;
 574	}
 575	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 576	spin_unlock(&sdp->sd_rindex_spin);
 577	return rgd;
 578}
 579
 580void check_and_update_goal(struct gfs2_inode *ip)
 581{
 582	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 583	if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL)
 584		ip->i_goal = ip->i_no_addr;
 585}
 586
 587void gfs2_free_clones(struct gfs2_rgrpd *rgd)
 588{
 589	int x;
 590
 591	for (x = 0; x < rgd->rd_length; x++) {
 592		struct gfs2_bitmap *bi = rgd->rd_bits + x;
 593		kfree(bi->bi_clone);
 594		bi->bi_clone = NULL;
 595	}
 596}
 597
 598/**
 599 * gfs2_rsqa_alloc - make sure we have a reservation assigned to the inode
 600 *                 plus a quota allocations data structure, if necessary
 601 * @ip: the inode for this reservation
 602 */
 603int gfs2_rsqa_alloc(struct gfs2_inode *ip)
 604{
 605	return gfs2_qa_alloc(ip);
 606}
 607
 608static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs)
 609{
 610	gfs2_print_dbg(seq, "  B: n:%llu s:%llu b:%u f:%u\n",
 611		       (unsigned long long)rs->rs_inum,
 612		       (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm),
 613		       rs->rs_rbm.offset, rs->rs_free);
 614}
 615
 616/**
 617 * __rs_deltree - remove a multi-block reservation from the rgd tree
 618 * @rs: The reservation to remove
 619 *
 620 */
 621static void __rs_deltree(struct gfs2_blkreserv *rs)
 622{
 623	struct gfs2_rgrpd *rgd;
 624
 625	if (!gfs2_rs_active(rs))
 626		return;
 627
 628	rgd = rs->rs_rbm.rgd;
 629	trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
 630	rb_erase(&rs->rs_node, &rgd->rd_rstree);
 631	RB_CLEAR_NODE(&rs->rs_node);
 632
 633	if (rs->rs_free) {
 634		struct gfs2_bitmap *bi = rbm_bi(&rs->rs_rbm);
 
 
 635
 636		/* return reserved blocks to the rgrp */
 637		BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free);
 638		rs->rs_rbm.rgd->rd_reserved -= rs->rs_free;
 639		/* The rgrp extent failure point is likely not to increase;
 640		   it will only do so if the freed blocks are somehow
 641		   contiguous with a span of free blocks that follows. Still,
 642		   it will force the number to be recalculated later. */
 643		rgd->rd_extfail_pt += rs->rs_free;
 644		rs->rs_free = 0;
 645		clear_bit(GBF_FULL, &bi->bi_flags);
 646	}
 647}
 648
 649/**
 650 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
 651 * @rs: The reservation to remove
 652 *
 653 */
 654void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
 655{
 656	struct gfs2_rgrpd *rgd;
 657
 658	rgd = rs->rs_rbm.rgd;
 659	if (rgd) {
 660		spin_lock(&rgd->rd_rsspin);
 661		__rs_deltree(rs);
 662		BUG_ON(rs->rs_free);
 663		spin_unlock(&rgd->rd_rsspin);
 664	}
 665}
 666
 667/**
 668 * gfs2_rsqa_delete - delete a multi-block reservation and quota allocation
 669 * @ip: The inode for this reservation
 670 * @wcount: The inode's write count, or NULL
 671 *
 672 */
 673void gfs2_rsqa_delete(struct gfs2_inode *ip, atomic_t *wcount)
 674{
 
 
 675	down_write(&ip->i_rw_mutex);
 676	if ((wcount == NULL) || (atomic_read(wcount) <= 1))
 677		gfs2_rs_deltree(&ip->i_res);
 678	up_write(&ip->i_rw_mutex);
 679	gfs2_qa_delete(ip, wcount);
 680}
 681
 682/**
 683 * return_all_reservations - return all reserved blocks back to the rgrp.
 684 * @rgd: the rgrp that needs its space back
 685 *
 686 * We previously reserved a bunch of blocks for allocation. Now we need to
 687 * give them back. This leave the reservation structures in tact, but removes
 688 * all of their corresponding "no-fly zones".
 689 */
 690static void return_all_reservations(struct gfs2_rgrpd *rgd)
 691{
 692	struct rb_node *n;
 693	struct gfs2_blkreserv *rs;
 694
 695	spin_lock(&rgd->rd_rsspin);
 696	while ((n = rb_first(&rgd->rd_rstree))) {
 697		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
 698		__rs_deltree(rs);
 699	}
 700	spin_unlock(&rgd->rd_rsspin);
 701}
 702
 703void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
 704{
 705	struct rb_node *n;
 706	struct gfs2_rgrpd *rgd;
 707	struct gfs2_glock *gl;
 708
 709	while ((n = rb_first(&sdp->sd_rindex_tree))) {
 710		rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 711		gl = rgd->rd_gl;
 712
 713		rb_erase(n, &sdp->sd_rindex_tree);
 714
 715		if (gl) {
 
 
 
 
 
 716			glock_clear_object(gl, rgd);
 717			gfs2_glock_put(gl);
 718		}
 719
 720		gfs2_free_clones(rgd);
 
 721		kfree(rgd->rd_bits);
 722		rgd->rd_bits = NULL;
 723		return_all_reservations(rgd);
 724		kmem_cache_free(gfs2_rgrpd_cachep, rgd);
 725	}
 726}
 727
 728static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
 729{
 730	pr_info("ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
 731	pr_info("ri_length = %u\n", rgd->rd_length);
 732	pr_info("ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
 733	pr_info("ri_data = %u\n", rgd->rd_data);
 734	pr_info("ri_bitbytes = %u\n", rgd->rd_bitbytes);
 735}
 736
 737/**
 738 * gfs2_compute_bitstructs - Compute the bitmap sizes
 739 * @rgd: The resource group descriptor
 740 *
 741 * Calculates bitmap descriptors, one for each block that contains bitmap data
 742 *
 743 * Returns: errno
 744 */
 745
 746static int compute_bitstructs(struct gfs2_rgrpd *rgd)
 747{
 748	struct gfs2_sbd *sdp = rgd->rd_sbd;
 749	struct gfs2_bitmap *bi;
 750	u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
 751	u32 bytes_left, bytes;
 752	int x;
 753
 754	if (!length)
 755		return -EINVAL;
 756
 757	rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
 758	if (!rgd->rd_bits)
 759		return -ENOMEM;
 760
 761	bytes_left = rgd->rd_bitbytes;
 762
 763	for (x = 0; x < length; x++) {
 764		bi = rgd->rd_bits + x;
 765
 766		bi->bi_flags = 0;
 767		/* small rgrp; bitmap stored completely in header block */
 768		if (length == 1) {
 769			bytes = bytes_left;
 770			bi->bi_offset = sizeof(struct gfs2_rgrp);
 771			bi->bi_start = 0;
 772			bi->bi_len = bytes;
 773			bi->bi_blocks = bytes * GFS2_NBBY;
 774		/* header block */
 775		} else if (x == 0) {
 776			bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
 777			bi->bi_offset = sizeof(struct gfs2_rgrp);
 778			bi->bi_start = 0;
 779			bi->bi_len = bytes;
 780			bi->bi_blocks = bytes * GFS2_NBBY;
 781		/* last block */
 782		} else if (x + 1 == length) {
 783			bytes = bytes_left;
 784			bi->bi_offset = sizeof(struct gfs2_meta_header);
 785			bi->bi_start = rgd->rd_bitbytes - bytes_left;
 786			bi->bi_len = bytes;
 787			bi->bi_blocks = bytes * GFS2_NBBY;
 788		/* other blocks */
 789		} else {
 790			bytes = sdp->sd_sb.sb_bsize -
 791				sizeof(struct gfs2_meta_header);
 792			bi->bi_offset = sizeof(struct gfs2_meta_header);
 793			bi->bi_start = rgd->rd_bitbytes - bytes_left;
 794			bi->bi_len = bytes;
 795			bi->bi_blocks = bytes * GFS2_NBBY;
 796		}
 797
 798		bytes_left -= bytes;
 799	}
 800
 801	if (bytes_left) {
 802		gfs2_consist_rgrpd(rgd);
 803		return -EIO;
 804	}
 805	bi = rgd->rd_bits + (length - 1);
 806	if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
 807		if (gfs2_consist_rgrpd(rgd)) {
 808			gfs2_rindex_print(rgd);
 809			fs_err(sdp, "start=%u len=%u offset=%u\n",
 810			       bi->bi_start, bi->bi_len, bi->bi_offset);
 811		}
 
 
 
 
 
 
 
 
 
 812		return -EIO;
 813	}
 814
 815	return 0;
 816}
 817
 818/**
 819 * gfs2_ri_total - Total up the file system space, according to the rindex.
 820 * @sdp: the filesystem
 821 *
 822 */
 823u64 gfs2_ri_total(struct gfs2_sbd *sdp)
 824{
 825	u64 total_data = 0;	
 826	struct inode *inode = sdp->sd_rindex;
 827	struct gfs2_inode *ip = GFS2_I(inode);
 828	char buf[sizeof(struct gfs2_rindex)];
 829	int error, rgrps;
 830
 831	for (rgrps = 0;; rgrps++) {
 832		loff_t pos = rgrps * sizeof(struct gfs2_rindex);
 833
 834		if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
 835			break;
 836		error = gfs2_internal_read(ip, buf, &pos,
 837					   sizeof(struct gfs2_rindex));
 838		if (error != sizeof(struct gfs2_rindex))
 839			break;
 840		total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
 841	}
 842	return total_data;
 843}
 844
 845static int rgd_insert(struct gfs2_rgrpd *rgd)
 846{
 847	struct gfs2_sbd *sdp = rgd->rd_sbd;
 848	struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
 849
 850	/* Figure out where to put new node */
 851	while (*newn) {
 852		struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
 853						  rd_node);
 854
 855		parent = *newn;
 856		if (rgd->rd_addr < cur->rd_addr)
 857			newn = &((*newn)->rb_left);
 858		else if (rgd->rd_addr > cur->rd_addr)
 859			newn = &((*newn)->rb_right);
 860		else
 861			return -EEXIST;
 862	}
 863
 864	rb_link_node(&rgd->rd_node, parent, newn);
 865	rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
 866	sdp->sd_rgrps++;
 867	return 0;
 868}
 869
 870/**
 871 * read_rindex_entry - Pull in a new resource index entry from the disk
 872 * @ip: Pointer to the rindex inode
 873 *
 874 * Returns: 0 on success, > 0 on EOF, error code otherwise
 875 */
 876
 877static int read_rindex_entry(struct gfs2_inode *ip)
 878{
 879	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 880	const unsigned bsize = sdp->sd_sb.sb_bsize;
 881	loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
 882	struct gfs2_rindex buf;
 883	int error;
 884	struct gfs2_rgrpd *rgd;
 885
 886	if (pos >= i_size_read(&ip->i_inode))
 887		return 1;
 888
 889	error = gfs2_internal_read(ip, (char *)&buf, &pos,
 890				   sizeof(struct gfs2_rindex));
 891
 892	if (error != sizeof(struct gfs2_rindex))
 893		return (error == 0) ? 1 : error;
 894
 895	rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
 896	error = -ENOMEM;
 897	if (!rgd)
 898		return error;
 899
 900	rgd->rd_sbd = sdp;
 901	rgd->rd_addr = be64_to_cpu(buf.ri_addr);
 902	rgd->rd_length = be32_to_cpu(buf.ri_length);
 903	rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
 904	rgd->rd_data = be32_to_cpu(buf.ri_data);
 905	rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
 906	spin_lock_init(&rgd->rd_rsspin);
 907
 908	error = compute_bitstructs(rgd);
 909	if (error)
 910		goto fail;
 911
 912	error = gfs2_glock_get(sdp, rgd->rd_addr,
 913			       &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
 914	if (error)
 915		goto fail;
 916
 
 
 
 
 917	rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
 918	rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED);
 919	if (rgd->rd_data > sdp->sd_max_rg_data)
 920		sdp->sd_max_rg_data = rgd->rd_data;
 921	spin_lock(&sdp->sd_rindex_spin);
 922	error = rgd_insert(rgd);
 923	spin_unlock(&sdp->sd_rindex_spin);
 924	if (!error) {
 925		glock_set_object(rgd->rd_gl, rgd);
 926		rgd->rd_gl->gl_vm.start = (rgd->rd_addr * bsize) & PAGE_MASK;
 927		rgd->rd_gl->gl_vm.end = PAGE_ALIGN((rgd->rd_addr +
 928						    rgd->rd_length) * bsize) - 1;
 929		return 0;
 930	}
 931
 932	error = 0; /* someone else read in the rgrp; free it and ignore it */
 
 933	gfs2_glock_put(rgd->rd_gl);
 934
 935fail:
 936	kfree(rgd->rd_bits);
 937	rgd->rd_bits = NULL;
 938	kmem_cache_free(gfs2_rgrpd_cachep, rgd);
 939	return error;
 940}
 941
 942/**
 943 * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use
 944 * @sdp: the GFS2 superblock
 945 *
 946 * The purpose of this function is to select a subset of the resource groups
 947 * and mark them as PREFERRED. We do it in such a way that each node prefers
 948 * to use a unique set of rgrps to minimize glock contention.
 949 */
 950static void set_rgrp_preferences(struct gfs2_sbd *sdp)
 951{
 952	struct gfs2_rgrpd *rgd, *first;
 953	int i;
 954
 955	/* Skip an initial number of rgrps, based on this node's journal ID.
 956	   That should start each node out on its own set. */
 957	rgd = gfs2_rgrpd_get_first(sdp);
 958	for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++)
 959		rgd = gfs2_rgrpd_get_next(rgd);
 960	first = rgd;
 961
 962	do {
 963		rgd->rd_flags |= GFS2_RDF_PREFERRED;
 964		for (i = 0; i < sdp->sd_journals; i++) {
 965			rgd = gfs2_rgrpd_get_next(rgd);
 966			if (!rgd || rgd == first)
 967				break;
 968		}
 969	} while (rgd && rgd != first);
 970}
 971
 972/**
 973 * gfs2_ri_update - Pull in a new resource index from the disk
 974 * @ip: pointer to the rindex inode
 975 *
 976 * Returns: 0 on successful update, error code otherwise
 977 */
 978
 979static int gfs2_ri_update(struct gfs2_inode *ip)
 980{
 981	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 982	int error;
 983
 984	do {
 985		error = read_rindex_entry(ip);
 986	} while (error == 0);
 987
 988	if (error < 0)
 989		return error;
 990
 
 
 
 
 991	set_rgrp_preferences(sdp);
 992
 993	sdp->sd_rindex_uptodate = 1;
 994	return 0;
 995}
 996
 997/**
 998 * gfs2_rindex_update - Update the rindex if required
 999 * @sdp: The GFS2 superblock
1000 *
1001 * We grab a lock on the rindex inode to make sure that it doesn't
1002 * change whilst we are performing an operation. We keep this lock
1003 * for quite long periods of time compared to other locks. This
1004 * doesn't matter, since it is shared and it is very, very rarely
1005 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
1006 *
1007 * This makes sure that we're using the latest copy of the resource index
1008 * special file, which might have been updated if someone expanded the
1009 * filesystem (via gfs2_grow utility), which adds new resource groups.
1010 *
1011 * Returns: 0 on succeess, error code otherwise
1012 */
1013
1014int gfs2_rindex_update(struct gfs2_sbd *sdp)
1015{
1016	struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
1017	struct gfs2_glock *gl = ip->i_gl;
1018	struct gfs2_holder ri_gh;
1019	int error = 0;
1020	int unlock_required = 0;
1021
1022	/* Read new copy from disk if we don't have the latest */
1023	if (!sdp->sd_rindex_uptodate) {
1024		if (!gfs2_glock_is_locked_by_me(gl)) {
1025			error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
1026			if (error)
1027				return error;
1028			unlock_required = 1;
1029		}
1030		if (!sdp->sd_rindex_uptodate)
1031			error = gfs2_ri_update(ip);
1032		if (unlock_required)
1033			gfs2_glock_dq_uninit(&ri_gh);
1034	}
1035
1036	return error;
1037}
1038
1039static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
1040{
1041	const struct gfs2_rgrp *str = buf;
1042	u32 rg_flags;
1043
1044	rg_flags = be32_to_cpu(str->rg_flags);
1045	rg_flags &= ~GFS2_RDF_MASK;
1046	rgd->rd_flags &= GFS2_RDF_MASK;
1047	rgd->rd_flags |= rg_flags;
1048	rgd->rd_free = be32_to_cpu(str->rg_free);
1049	rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
1050	rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
1051	/* rd_data0, rd_data and rd_bitbytes already set from rindex */
1052}
1053
 
 
 
 
 
 
 
 
 
 
 
 
1054static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
1055{
1056	struct gfs2_rgrpd *next = gfs2_rgrpd_get_next(rgd);
1057	struct gfs2_rgrp *str = buf;
1058	u32 crc;
1059
1060	str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
1061	str->rg_free = cpu_to_be32(rgd->rd_free);
1062	str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
1063	if (next == NULL)
1064		str->rg_skip = 0;
1065	else if (next->rd_addr > rgd->rd_addr)
1066		str->rg_skip = cpu_to_be32(next->rd_addr - rgd->rd_addr);
1067	str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
1068	str->rg_data0 = cpu_to_be64(rgd->rd_data0);
1069	str->rg_data = cpu_to_be32(rgd->rd_data);
1070	str->rg_bitbytes = cpu_to_be32(rgd->rd_bitbytes);
1071	str->rg_crc = 0;
1072	crc = gfs2_disk_hash(buf, sizeof(struct gfs2_rgrp));
1073	str->rg_crc = cpu_to_be32(crc);
1074
1075	memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
 
1076}
1077
1078static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
1079{
1080	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1081	struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
 
 
1082
1083	if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free ||
1084	    rgl->rl_dinodes != str->rg_dinodes ||
1085	    rgl->rl_igeneration != str->rg_igeneration)
1086		return 0;
1087	return 1;
1088}
1089
1090static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1091{
1092	const struct gfs2_rgrp *str = buf;
1093
1094	rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1095	rgl->rl_flags = str->rg_flags;
1096	rgl->rl_free = str->rg_free;
1097	rgl->rl_dinodes = str->rg_dinodes;
1098	rgl->rl_igeneration = str->rg_igeneration;
1099	rgl->__pad = 0UL;
1100}
1101
1102static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change)
1103{
1104	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1105	u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change;
1106	rgl->rl_unlinked = cpu_to_be32(unlinked);
 
 
 
1107}
1108
1109static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1110{
1111	struct gfs2_bitmap *bi;
1112	const u32 length = rgd->rd_length;
1113	const u8 *buffer = NULL;
1114	u32 i, goal, count = 0;
1115
1116	for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1117		goal = 0;
1118		buffer = bi->bi_bh->b_data + bi->bi_offset;
1119		WARN_ON(!buffer_uptodate(bi->bi_bh));
1120		while (goal < bi->bi_len * GFS2_NBBY) {
1121			goal = gfs2_bitfit(buffer, bi->bi_len, goal,
1122					   GFS2_BLKST_UNLINKED);
1123			if (goal == BFITNOENT)
1124				break;
1125			count++;
1126			goal++;
1127		}
1128	}
1129
1130	return count;
1131}
1132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1133
1134/**
1135 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1136 * @rgd: the struct gfs2_rgrpd describing the RG to read in
1137 *
1138 * Read in all of a Resource Group's header and bitmap blocks.
1139 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
1140 *
1141 * Returns: errno
1142 */
1143
1144static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1145{
 
1146	struct gfs2_sbd *sdp = rgd->rd_sbd;
1147	struct gfs2_glock *gl = rgd->rd_gl;
1148	unsigned int length = rgd->rd_length;
1149	struct gfs2_bitmap *bi;
1150	unsigned int x, y;
1151	int error;
1152
1153	if (rgd->rd_bits[0].bi_bh != NULL)
1154		return 0;
1155
1156	for (x = 0; x < length; x++) {
1157		bi = rgd->rd_bits + x;
1158		error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh);
1159		if (error)
1160			goto fail;
1161	}
1162
1163	for (y = length; y--;) {
1164		bi = rgd->rd_bits + y;
1165		error = gfs2_meta_wait(sdp, bi->bi_bh);
1166		if (error)
1167			goto fail;
1168		if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1169					      GFS2_METATYPE_RG)) {
1170			error = -EIO;
1171			goto fail;
1172		}
1173	}
1174
1175	if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1176		for (x = 0; x < length; x++)
1177			clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
1178		gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1179		rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1180		rgd->rd_free_clone = rgd->rd_free;
1181		/* max out the rgrp allocation failure point */
1182		rgd->rd_extfail_pt = rgd->rd_free;
1183	}
1184	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1185		rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1186		gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1187				     rgd->rd_bits[0].bi_bh->b_data);
1188	}
1189	else if (sdp->sd_args.ar_rgrplvb) {
1190		if (!gfs2_rgrp_lvb_valid(rgd)){
1191			gfs2_consist_rgrpd(rgd);
1192			error = -EIO;
1193			goto fail;
1194		}
1195		if (rgd->rd_rgl->rl_unlinked == 0)
1196			rgd->rd_flags &= ~GFS2_RDF_CHECK;
1197	}
1198	return 0;
1199
1200fail:
1201	while (x--) {
1202		bi = rgd->rd_bits + x;
1203		brelse(bi->bi_bh);
1204		bi->bi_bh = NULL;
1205		gfs2_assert_warn(sdp, !bi->bi_clone);
1206	}
1207
1208	return error;
1209}
1210
1211static int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1212{
1213	u32 rl_flags;
1214
1215	if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1216		return 0;
1217
1218	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1219		return gfs2_rgrp_bh_get(rgd);
1220
1221	rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1222	rl_flags &= ~GFS2_RDF_MASK;
1223	rgd->rd_flags &= GFS2_RDF_MASK;
1224	rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1225	if (rgd->rd_rgl->rl_unlinked == 0)
1226		rgd->rd_flags &= ~GFS2_RDF_CHECK;
1227	rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
 
1228	rgd->rd_free_clone = rgd->rd_free;
 
 
 
1229	rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1230	rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1231	return 0;
1232}
1233
1234int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1235{
1236	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1237	struct gfs2_sbd *sdp = rgd->rd_sbd;
1238
1239	if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1240		return 0;
1241	return gfs2_rgrp_bh_get(rgd);
1242}
1243
1244/**
1245 * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1246 * @rgd: The resource group
1247 *
1248 */
1249
1250void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd)
1251{
1252	int x, length = rgd->rd_length;
1253
1254	for (x = 0; x < length; x++) {
1255		struct gfs2_bitmap *bi = rgd->rd_bits + x;
1256		if (bi->bi_bh) {
1257			brelse(bi->bi_bh);
1258			bi->bi_bh = NULL;
1259		}
1260	}
1261
1262}
1263
1264/**
1265 * gfs2_rgrp_go_unlock - Unlock a rgrp glock
1266 * @gh: The glock holder for the resource group
1267 *
1268 */
1269
1270void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
1271{
1272	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1273	int demote_requested = test_bit(GLF_DEMOTE, &gh->gh_gl->gl_flags) |
1274		test_bit(GLF_PENDING_DEMOTE, &gh->gh_gl->gl_flags);
1275
1276	if (rgd && demote_requested)
1277		gfs2_rgrp_brelse(rgd);
1278}
1279
1280int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1281			     struct buffer_head *bh,
1282			     const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1283{
1284	struct super_block *sb = sdp->sd_vfs;
1285	u64 blk;
1286	sector_t start = 0;
1287	sector_t nr_blks = 0;
1288	int rv;
1289	unsigned int x;
1290	u32 trimmed = 0;
1291	u8 diff;
1292
1293	for (x = 0; x < bi->bi_len; x++) {
1294		const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1295		clone += bi->bi_offset;
1296		clone += x;
1297		if (bh) {
1298			const u8 *orig = bh->b_data + bi->bi_offset + x;
1299			diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1300		} else {
1301			diff = ~(*clone | (*clone >> 1));
1302		}
1303		diff &= 0x55;
1304		if (diff == 0)
1305			continue;
1306		blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1307		while(diff) {
1308			if (diff & 1) {
1309				if (nr_blks == 0)
1310					goto start_new_extent;
1311				if ((start + nr_blks) != blk) {
1312					if (nr_blks >= minlen) {
1313						rv = sb_issue_discard(sb,
1314							start, nr_blks,
1315							GFP_NOFS, 0);
1316						if (rv)
1317							goto fail;
1318						trimmed += nr_blks;
1319					}
1320					nr_blks = 0;
1321start_new_extent:
1322					start = blk;
1323				}
1324				nr_blks++;
1325			}
1326			diff >>= 2;
1327			blk++;
1328		}
1329	}
1330	if (nr_blks >= minlen) {
1331		rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1332		if (rv)
1333			goto fail;
1334		trimmed += nr_blks;
1335	}
1336	if (ptrimmed)
1337		*ptrimmed = trimmed;
1338	return 0;
1339
1340fail:
1341	if (sdp->sd_args.ar_discard)
1342		fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem\n", rv);
1343	sdp->sd_args.ar_discard = 0;
1344	return -EIO;
1345}
1346
1347/**
1348 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1349 * @filp: Any file on the filesystem
1350 * @argp: Pointer to the arguments (also used to pass result)
1351 *
1352 * Returns: 0 on success, otherwise error code
1353 */
1354
1355int gfs2_fitrim(struct file *filp, void __user *argp)
1356{
1357	struct inode *inode = file_inode(filp);
1358	struct gfs2_sbd *sdp = GFS2_SB(inode);
1359	struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1360	struct buffer_head *bh;
1361	struct gfs2_rgrpd *rgd;
1362	struct gfs2_rgrpd *rgd_end;
1363	struct gfs2_holder gh;
1364	struct fstrim_range r;
1365	int ret = 0;
1366	u64 amt;
1367	u64 trimmed = 0;
1368	u64 start, end, minlen;
1369	unsigned int x;
1370	unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1371
1372	if (!capable(CAP_SYS_ADMIN))
1373		return -EPERM;
1374
1375	if (!blk_queue_discard(q))
 
 
 
1376		return -EOPNOTSUPP;
1377
1378	if (copy_from_user(&r, argp, sizeof(r)))
1379		return -EFAULT;
1380
1381	ret = gfs2_rindex_update(sdp);
1382	if (ret)
1383		return ret;
1384
1385	start = r.start >> bs_shift;
1386	end = start + (r.len >> bs_shift);
1387	minlen = max_t(u64, r.minlen,
1388		       q->limits.discard_granularity) >> bs_shift;
1389
1390	if (end <= start || minlen > sdp->sd_max_rg_data)
1391		return -EINVAL;
1392
1393	rgd = gfs2_blk2rgrpd(sdp, start, 0);
1394	rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
1395
1396	if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
1397	    && (start > rgd_end->rd_data0 + rgd_end->rd_data))
1398		return -EINVAL; /* start is beyond the end of the fs */
1399
1400	while (1) {
1401
1402		ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
 
1403		if (ret)
1404			goto out;
1405
1406		if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1407			/* Trim each bitmap in the rgrp */
1408			for (x = 0; x < rgd->rd_length; x++) {
1409				struct gfs2_bitmap *bi = rgd->rd_bits + x;
 
1410				ret = gfs2_rgrp_send_discards(sdp,
1411						rgd->rd_data0, NULL, bi, minlen,
1412						&amt);
 
1413				if (ret) {
1414					gfs2_glock_dq_uninit(&gh);
1415					goto out;
1416				}
1417				trimmed += amt;
1418			}
1419
1420			/* Mark rgrp as having been trimmed */
1421			ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1422			if (ret == 0) {
1423				bh = rgd->rd_bits[0].bi_bh;
 
1424				rgd->rd_flags |= GFS2_RGF_TRIMMED;
1425				gfs2_trans_add_meta(rgd->rd_gl, bh);
1426				gfs2_rgrp_out(rgd, bh->b_data);
1427				gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data);
1428				gfs2_trans_end(sdp);
1429			}
1430		}
1431		gfs2_glock_dq_uninit(&gh);
1432
1433		if (rgd == rgd_end)
1434			break;
1435
1436		rgd = gfs2_rgrpd_get_next(rgd);
1437	}
1438
1439out:
1440	r.len = trimmed << bs_shift;
1441	if (copy_to_user(argp, &r, sizeof(r)))
1442		return -EFAULT;
1443
1444	return ret;
1445}
1446
1447/**
1448 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1449 * @ip: the inode structure
1450 *
1451 */
1452static void rs_insert(struct gfs2_inode *ip)
1453{
1454	struct rb_node **newn, *parent = NULL;
1455	int rc;
1456	struct gfs2_blkreserv *rs = &ip->i_res;
1457	struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd;
1458	u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm);
1459
1460	BUG_ON(gfs2_rs_active(rs));
1461
1462	spin_lock(&rgd->rd_rsspin);
1463	newn = &rgd->rd_rstree.rb_node;
1464	while (*newn) {
1465		struct gfs2_blkreserv *cur =
1466			rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1467
1468		parent = *newn;
1469		rc = rs_cmp(fsblock, rs->rs_free, cur);
1470		if (rc > 0)
1471			newn = &((*newn)->rb_right);
1472		else if (rc < 0)
1473			newn = &((*newn)->rb_left);
1474		else {
1475			spin_unlock(&rgd->rd_rsspin);
1476			WARN_ON(1);
1477			return;
1478		}
1479	}
1480
1481	rb_link_node(&rs->rs_node, parent, newn);
1482	rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1483
1484	/* Do our rgrp accounting for the reservation */
1485	rgd->rd_reserved += rs->rs_free; /* blocks reserved */
1486	spin_unlock(&rgd->rd_rsspin);
1487	trace_gfs2_rs(rs, TRACE_RS_INSERT);
1488}
1489
1490/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1491 * rg_mblk_search - find a group of multiple free blocks to form a reservation
1492 * @rgd: the resource group descriptor
1493 * @ip: pointer to the inode for which we're reserving blocks
1494 * @ap: the allocation parameters
1495 *
1496 */
1497
1498static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1499			   const struct gfs2_alloc_parms *ap)
1500{
1501	struct gfs2_rbm rbm = { .rgd = rgd, };
1502	u64 goal;
1503	struct gfs2_blkreserv *rs = &ip->i_res;
1504	u32 extlen;
1505	u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved;
1506	int ret;
1507	struct inode *inode = &ip->i_inode;
1508
 
 
 
 
 
 
 
 
 
1509	if (S_ISDIR(inode->i_mode))
1510		extlen = 1;
1511	else {
1512		extlen = max_t(u32, atomic_read(&rs->rs_sizehint), ap->target);
1513		extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks);
1514	}
1515	if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen))
1516		return;
1517
1518	/* Find bitmap block that contains bits for goal block */
1519	if (rgrp_contains_block(rgd, ip->i_goal))
1520		goal = ip->i_goal;
1521	else
1522		goal = rgd->rd_last_alloc + rgd->rd_data0;
1523
1524	if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1525		return;
1526
1527	ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true);
1528	if (ret == 0) {
1529		rs->rs_rbm = rbm;
1530		rs->rs_free = extlen;
1531		rs->rs_inum = ip->i_no_addr;
1532		rs_insert(ip);
1533	} else {
1534		if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1535			rgd->rd_last_alloc = 0;
1536	}
1537}
1538
1539/**
1540 * gfs2_next_unreserved_block - Return next block that is not reserved
1541 * @rgd: The resource group
1542 * @block: The starting block
1543 * @length: The required length
1544 * @ip: Ignore any reservations for this inode
1545 *
1546 * If the block does not appear in any reservation, then return the
1547 * block number unchanged. If it does appear in the reservation, then
1548 * keep looking through the tree of reservations in order to find the
1549 * first block number which is not reserved.
1550 */
1551
1552static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1553				      u32 length,
1554				      const struct gfs2_inode *ip)
1555{
1556	struct gfs2_blkreserv *rs;
1557	struct rb_node *n;
1558	int rc;
1559
1560	spin_lock(&rgd->rd_rsspin);
1561	n = rgd->rd_rstree.rb_node;
1562	while (n) {
1563		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1564		rc = rs_cmp(block, length, rs);
1565		if (rc < 0)
1566			n = n->rb_left;
1567		else if (rc > 0)
1568			n = n->rb_right;
1569		else
1570			break;
1571	}
1572
1573	if (n) {
1574		while ((rs_cmp(block, length, rs) == 0) && (&ip->i_res != rs)) {
1575			block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free;
1576			n = n->rb_right;
1577			if (n == NULL)
1578				break;
1579			rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1580		}
1581	}
1582
1583	spin_unlock(&rgd->rd_rsspin);
1584	return block;
1585}
1586
1587/**
1588 * gfs2_reservation_check_and_update - Check for reservations during block alloc
1589 * @rbm: The current position in the resource group
1590 * @ip: The inode for which we are searching for blocks
1591 * @minext: The minimum extent length
1592 * @maxext: A pointer to the maximum extent structure
1593 *
1594 * This checks the current position in the rgrp to see whether there is
1595 * a reservation covering this block. If not then this function is a
1596 * no-op. If there is, then the position is moved to the end of the
1597 * contiguous reservation(s) so that we are pointing at the first
1598 * non-reserved block.
1599 *
1600 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1601 */
1602
1603static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1604					     const struct gfs2_inode *ip,
1605					     u32 minext,
1606					     struct gfs2_extent *maxext)
1607{
1608	u64 block = gfs2_rbm_to_block(rbm);
1609	u32 extlen = 1;
1610	u64 nblock;
1611	int ret;
1612
1613	/*
1614	 * If we have a minimum extent length, then skip over any extent
1615	 * which is less than the min extent length in size.
1616	 */
1617	if (minext) {
1618		extlen = gfs2_free_extlen(rbm, minext);
1619		if (extlen <= maxext->len)
1620			goto fail;
1621	}
1622
1623	/*
1624	 * Check the extent which has been found against the reservations
1625	 * and skip if parts of it are already reserved
1626	 */
1627	nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip);
1628	if (nblock == block) {
1629		if (!minext || extlen >= minext)
1630			return 0;
1631
1632		if (extlen > maxext->len) {
1633			maxext->len = extlen;
1634			maxext->rbm = *rbm;
1635		}
1636fail:
1637		nblock = block + extlen;
 
 
 
1638	}
1639	ret = gfs2_rbm_from_block(rbm, nblock);
1640	if (ret < 0)
1641		return ret;
1642	return 1;
1643}
1644
1645/**
1646 * gfs2_rbm_find - Look for blocks of a particular state
1647 * @rbm: Value/result starting position and final position
1648 * @state: The state which we want to find
1649 * @minext: Pointer to the requested extent length (NULL for a single block)
1650 *          This is updated to be the actual reservation size.
1651 * @ip: If set, check for reservations
1652 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1653 *          around until we've reached the starting point.
1654 *
1655 * Side effects:
1656 * - If looking for free blocks, we set GBF_FULL on each bitmap which
1657 *   has no free blocks in it.
1658 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1659 *   has come up short on a free block search.
1660 *
1661 * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1662 */
1663
1664static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
1665			 const struct gfs2_inode *ip, bool nowrap)
1666{
 
1667	struct buffer_head *bh;
1668	int initial_bii;
1669	u32 initial_offset;
1670	int first_bii = rbm->bii;
1671	u32 first_offset = rbm->offset;
1672	u32 offset;
1673	u8 *buffer;
1674	int n = 0;
1675	int iters = rbm->rgd->rd_length;
1676	int ret;
1677	struct gfs2_bitmap *bi;
1678	struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, };
1679
1680	/* If we are not starting at the beginning of a bitmap, then we
1681	 * need to add one to the bitmap count to ensure that we search
1682	 * the starting bitmap twice.
 
1683	 */
1684	if (rbm->offset != 0)
1685		iters++;
1686
1687	while(1) {
1688		bi = rbm_bi(rbm);
1689		if (test_bit(GBF_FULL, &bi->bi_flags) &&
1690		    (state == GFS2_BLKST_FREE))
1691			goto next_bitmap;
1692
1693		bh = bi->bi_bh;
1694		buffer = bh->b_data + bi->bi_offset;
1695		WARN_ON(!buffer_uptodate(bh));
1696		if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1697			buffer = bi->bi_clone + bi->bi_offset;
1698		initial_offset = rbm->offset;
1699		offset = gfs2_bitfit(buffer, bi->bi_len, rbm->offset, state);
1700		if (offset == BFITNOENT)
1701			goto bitmap_full;
 
 
1702		rbm->offset = offset;
1703		if (ip == NULL)
1704			return 0;
1705
1706		initial_bii = rbm->bii;
1707		ret = gfs2_reservation_check_and_update(rbm, ip,
1708							minext ? *minext : 0,
1709							&maxext);
1710		if (ret == 0)
1711			return 0;
1712		if (ret > 0) {
1713			n += (rbm->bii - initial_bii);
1714			goto next_iter;
1715		}
1716		if (ret == -E2BIG) {
1717			rbm->bii = 0;
1718			rbm->offset = 0;
1719			n += (rbm->bii - initial_bii);
1720			goto res_covered_end_of_rgrp;
1721		}
1722		return ret;
1723
1724bitmap_full:	/* Mark bitmap as full and fall through */
1725		if ((state == GFS2_BLKST_FREE) && initial_offset == 0)
1726			set_bit(GBF_FULL, &bi->bi_flags);
1727
1728next_bitmap:	/* Find next bitmap in the rgrp */
1729		rbm->offset = 0;
1730		rbm->bii++;
1731		if (rbm->bii == rbm->rgd->rd_length)
1732			rbm->bii = 0;
1733res_covered_end_of_rgrp:
1734		if ((rbm->bii == 0) && nowrap)
1735			break;
1736		n++;
 
 
 
 
1737next_iter:
1738		if (n >= iters)
 
1739			break;
1740	}
1741
1742	if (minext == NULL || state != GFS2_BLKST_FREE)
1743		return -ENOSPC;
1744
1745	/* If the extent was too small, and it's smaller than the smallest
1746	   to have failed before, remember for future reference that it's
1747	   useless to search this rgrp again for this amount or more. */
1748	if ((first_offset == 0) && (first_bii == 0) &&
1749	    (*minext < rbm->rgd->rd_extfail_pt))
1750		rbm->rgd->rd_extfail_pt = *minext;
1751
1752	/* If the maximum extent we found is big enough to fulfill the
1753	   minimum requirements, use it anyway. */
1754	if (maxext.len) {
1755		*rbm = maxext.rbm;
1756		*minext = maxext.len;
1757		return 0;
1758	}
1759
1760	return -ENOSPC;
1761}
1762
1763/**
1764 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1765 * @rgd: The rgrp
1766 * @last_unlinked: block address of the last dinode we unlinked
1767 * @skip: block address we should explicitly not unlink
1768 *
1769 * Returns: 0 if no error
1770 *          The inode, if one has been found, in inode.
1771 */
1772
1773static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1774{
1775	u64 block;
1776	struct gfs2_sbd *sdp = rgd->rd_sbd;
1777	struct gfs2_glock *gl;
1778	struct gfs2_inode *ip;
1779	int error;
1780	int found = 0;
1781	struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 };
1782
1783	while (1) {
1784		down_write(&sdp->sd_log_flush_lock);
1785		error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL,
1786				      true);
1787		up_write(&sdp->sd_log_flush_lock);
1788		if (error == -ENOSPC)
1789			break;
1790		if (WARN_ON_ONCE(error))
1791			break;
1792
1793		block = gfs2_rbm_to_block(&rbm);
1794		if (gfs2_rbm_from_block(&rbm, block + 1))
1795			break;
1796		if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1797			continue;
1798		if (block == skip)
1799			continue;
1800		*last_unlinked = block;
1801
1802		error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl);
1803		if (error)
1804			continue;
1805
1806		/* If the inode is already in cache, we can ignore it here
1807		 * because the existing inode disposal code will deal with
1808		 * it when all refs have gone away. Accessing gl_object like
1809		 * this is not safe in general. Here it is ok because we do
1810		 * not dereference the pointer, and we only need an approx
1811		 * answer to whether it is NULL or not.
1812		 */
1813		ip = gl->gl_object;
1814
1815		if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1816			gfs2_glock_put(gl);
1817		else
1818			found++;
1819
1820		/* Limit reclaim to sensible number of tasks */
1821		if (found > NR_CPUS)
1822			return;
1823	}
1824
1825	rgd->rd_flags &= ~GFS2_RDF_CHECK;
1826	return;
1827}
1828
1829/**
1830 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1831 * @rgd: The rgrp in question
1832 * @loops: An indication of how picky we can be (0=very, 1=less so)
1833 *
1834 * This function uses the recently added glock statistics in order to
1835 * figure out whether a parciular resource group is suffering from
1836 * contention from multiple nodes. This is done purely on the basis
1837 * of timings, since this is the only data we have to work with and
1838 * our aim here is to reject a resource group which is highly contended
1839 * but (very important) not to do this too often in order to ensure that
1840 * we do not land up introducing fragmentation by changing resource
1841 * groups when not actually required.
1842 *
1843 * The calculation is fairly simple, we want to know whether the SRTTB
1844 * (i.e. smoothed round trip time for blocking operations) to acquire
1845 * the lock for this rgrp's glock is significantly greater than the
1846 * time taken for resource groups on average. We introduce a margin in
1847 * the form of the variable @var which is computed as the sum of the two
1848 * respective variences, and multiplied by a factor depending on @loops
1849 * and whether we have a lot of data to base the decision on. This is
1850 * then tested against the square difference of the means in order to
1851 * decide whether the result is statistically significant or not.
1852 *
1853 * Returns: A boolean verdict on the congestion status
1854 */
1855
1856static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1857{
1858	const struct gfs2_glock *gl = rgd->rd_gl;
1859	const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
1860	struct gfs2_lkstats *st;
1861	u64 r_dcount, l_dcount;
1862	u64 l_srttb, a_srttb = 0;
1863	s64 srttb_diff;
1864	u64 sqr_diff;
1865	u64 var;
1866	int cpu, nonzero = 0;
1867
1868	preempt_disable();
1869	for_each_present_cpu(cpu) {
1870		st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP];
1871		if (st->stats[GFS2_LKS_SRTTB]) {
1872			a_srttb += st->stats[GFS2_LKS_SRTTB];
1873			nonzero++;
1874		}
1875	}
1876	st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1877	if (nonzero)
1878		do_div(a_srttb, nonzero);
1879	r_dcount = st->stats[GFS2_LKS_DCOUNT];
1880	var = st->stats[GFS2_LKS_SRTTVARB] +
1881	      gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1882	preempt_enable();
1883
1884	l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1885	l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1886
1887	if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0))
1888		return false;
1889
1890	srttb_diff = a_srttb - l_srttb;
1891	sqr_diff = srttb_diff * srttb_diff;
1892
1893	var *= 2;
1894	if (l_dcount < 8 || r_dcount < 8)
1895		var *= 2;
1896	if (loops == 1)
1897		var *= 2;
1898
1899	return ((srttb_diff < 0) && (sqr_diff > var));
1900}
1901
1902/**
1903 * gfs2_rgrp_used_recently
1904 * @rs: The block reservation with the rgrp to test
1905 * @msecs: The time limit in milliseconds
1906 *
1907 * Returns: True if the rgrp glock has been used within the time limit
1908 */
1909static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1910				    u64 msecs)
1911{
1912	u64 tdiff;
1913
1914	tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1915                            rs->rs_rbm.rgd->rd_gl->gl_dstamp));
1916
1917	return tdiff > (msecs * 1000 * 1000);
1918}
1919
1920static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1921{
1922	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1923	u32 skip;
1924
1925	get_random_bytes(&skip, sizeof(skip));
1926	return skip % sdp->sd_rgrps;
1927}
1928
1929static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
1930{
1931	struct gfs2_rgrpd *rgd = *pos;
1932	struct gfs2_sbd *sdp = rgd->rd_sbd;
1933
1934	rgd = gfs2_rgrpd_get_next(rgd);
1935	if (rgd == NULL)
1936		rgd = gfs2_rgrpd_get_first(sdp);
1937	*pos = rgd;
1938	if (rgd != begin) /* If we didn't wrap */
1939		return true;
1940	return false;
1941}
1942
1943/**
1944 * fast_to_acquire - determine if a resource group will be fast to acquire
 
1945 *
1946 * If this is one of our preferred rgrps, it should be quicker to acquire,
1947 * because we tried to set ourselves up as dlm lock master.
1948 */
1949static inline int fast_to_acquire(struct gfs2_rgrpd *rgd)
1950{
1951	struct gfs2_glock *gl = rgd->rd_gl;
1952
1953	if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) &&
1954	    !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) &&
1955	    !test_bit(GLF_DEMOTE, &gl->gl_flags))
1956		return 1;
1957	if (rgd->rd_flags & GFS2_RDF_PREFERRED)
1958		return 1;
1959	return 0;
1960}
1961
1962/**
1963 * gfs2_inplace_reserve - Reserve space in the filesystem
1964 * @ip: the inode to reserve space for
1965 * @ap: the allocation parameters
1966 *
1967 * We try our best to find an rgrp that has at least ap->target blocks
1968 * available. After a couple of passes (loops == 2), the prospects of finding
1969 * such an rgrp diminish. At this stage, we return the first rgrp that has
1970 * atleast ap->min_target blocks available. Either way, we set ap->allowed to
1971 * the number of blocks available in the chosen rgrp.
1972 *
1973 * Returns: 0 on success,
1974 *          -ENOMEM if a suitable rgrp can't be found
1975 *          errno otherwise
1976 */
1977
1978int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap)
1979{
1980	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1981	struct gfs2_rgrpd *begin = NULL;
1982	struct gfs2_blkreserv *rs = &ip->i_res;
1983	int error = 0, rg_locked, flags = 0;
 
1984	u64 last_unlinked = NO_BLOCK;
 
1985	int loops = 0;
1986	u32 skip = 0;
 
 
1987
1988	if (sdp->sd_args.ar_rgrplvb)
1989		flags |= GL_SKIP;
1990	if (gfs2_assert_warn(sdp, ap->target))
1991		return -EINVAL;
1992	if (gfs2_rs_active(rs)) {
1993		begin = rs->rs_rbm.rgd;
1994	} else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) {
1995		rs->rs_rbm.rgd = begin = ip->i_rgd;
 
1996	} else {
1997		check_and_update_goal(ip);
1998		rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
1999	}
2000	if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV))
2001		skip = gfs2_orlov_skip(ip);
2002	if (rs->rs_rbm.rgd == NULL)
2003		return -EBADSLT;
2004
2005	while (loops < 3) {
2006		rg_locked = 1;
2007
2008		if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) {
2009			rg_locked = 0;
 
 
2010			if (skip && skip--)
2011				goto next_rgrp;
2012			if (!gfs2_rs_active(rs)) {
2013				if (loops == 0 &&
2014				    !fast_to_acquire(rs->rs_rbm.rgd))
2015					goto next_rgrp;
2016				if ((loops < 2) &&
2017				    gfs2_rgrp_used_recently(rs, 1000) &&
2018				    gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2019					goto next_rgrp;
2020			}
2021			error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl,
2022						   LM_ST_EXCLUSIVE, flags,
2023						   &rs->rs_rgd_gh);
2024			if (unlikely(error))
2025				return error;
 
2026			if (!gfs2_rs_active(rs) && (loops < 2) &&
2027			    gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2028				goto skip_rgrp;
2029			if (sdp->sd_args.ar_rgrplvb) {
2030				error = update_rgrp_lvb(rs->rs_rbm.rgd);
 
2031				if (unlikely(error)) {
2032					gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
 
2033					return error;
2034				}
2035			}
2036		}
2037
2038		/* Skip unuseable resource groups */
2039		if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC |
2040						 GFS2_RDF_ERROR)) ||
2041		    (loops == 0 && ap->target > rs->rs_rbm.rgd->rd_extfail_pt))
2042			goto skip_rgrp;
2043
2044		if (sdp->sd_args.ar_rgrplvb)
2045			gfs2_rgrp_bh_get(rs->rs_rbm.rgd);
 
 
 
2046
2047		/* Get a reservation if we don't already have one */
2048		if (!gfs2_rs_active(rs))
2049			rg_mblk_search(rs->rs_rbm.rgd, ip, ap);
2050
2051		/* Skip rgrps when we can't get a reservation on first pass */
2052		if (!gfs2_rs_active(rs) && (loops < 1))
2053			goto check_rgrp;
2054
2055		/* If rgrp has enough free space, use it */
2056		if (rs->rs_rbm.rgd->rd_free_clone >= ap->target ||
2057		    (loops == 2 && ap->min_target &&
2058		     rs->rs_rbm.rgd->rd_free_clone >= ap->min_target)) {
2059			ip->i_rgd = rs->rs_rbm.rgd;
2060			ap->allowed = ip->i_rgd->rd_free_clone;
2061			return 0;
 
2062		}
 
 
 
 
 
 
 
2063check_rgrp:
2064		/* Check for unlinked inodes which can be reclaimed */
2065		if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK)
2066			try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked,
2067					ip->i_no_addr);
2068skip_rgrp:
 
 
2069		/* Drop reservation, if we couldn't use reserved rgrp */
2070		if (gfs2_rs_active(rs))
2071			gfs2_rs_deltree(rs);
2072
2073		/* Unlock rgrp if required */
2074		if (!rg_locked)
2075			gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2076next_rgrp:
2077		/* Find the next rgrp, and continue looking */
2078		if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin))
2079			continue;
2080		if (skip)
2081			continue;
2082
2083		/* If we've scanned all the rgrps, but found no free blocks
2084		 * then this checks for some less likely conditions before
2085		 * trying again.
2086		 */
2087		loops++;
2088		/* Check that fs hasn't grown if writing to rindex */
2089		if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
2090			error = gfs2_ri_update(ip);
2091			if (error)
2092				return error;
2093		}
2094		/* Flushing the log may release space */
2095		if (loops == 2)
 
 
2096			gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL |
2097				       GFS2_LFC_INPLACE_RESERVE);
 
2098	}
2099
2100	return -ENOSPC;
2101}
2102
2103/**
2104 * gfs2_inplace_release - release an inplace reservation
2105 * @ip: the inode the reservation was taken out on
2106 *
2107 * Release a reservation made by gfs2_inplace_reserve().
2108 */
2109
2110void gfs2_inplace_release(struct gfs2_inode *ip)
2111{
2112	struct gfs2_blkreserv *rs = &ip->i_res;
2113
2114	if (gfs2_holder_initialized(&rs->rs_rgd_gh))
2115		gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2116}
2117
2118/**
2119 * gfs2_get_block_type - Check a block in a RG is of given type
2120 * @rgd: the resource group holding the block
2121 * @block: the block number
2122 *
2123 * Returns: The block type (GFS2_BLKST_*)
2124 */
2125
2126static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
2127{
2128	struct gfs2_rbm rbm = { .rgd = rgd, };
2129	int ret;
2130
2131	ret = gfs2_rbm_from_block(&rbm, block);
2132	WARN_ON_ONCE(ret != 0);
2133
2134	return gfs2_testbit(&rbm);
 
 
 
 
 
 
 
2135}
2136
2137
2138/**
2139 * gfs2_alloc_extent - allocate an extent from a given bitmap
2140 * @rbm: the resource group information
2141 * @dinode: TRUE if the first block we allocate is for a dinode
2142 * @n: The extent length (value/result)
2143 *
2144 * Add the bitmap buffer to the transaction.
2145 * Set the found bits to @new_state to change block's allocation state.
2146 */
2147static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
2148			     unsigned int *n)
2149{
2150	struct gfs2_rbm pos = { .rgd = rbm->rgd, };
2151	const unsigned int elen = *n;
2152	u64 block;
2153	int ret;
2154
2155	*n = 1;
2156	block = gfs2_rbm_to_block(rbm);
2157	gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh);
2158	gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2159	block++;
2160	while (*n < elen) {
2161		ret = gfs2_rbm_from_block(&pos, block);
2162		if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE)
2163			break;
2164		gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh);
2165		gfs2_setbit(&pos, true, GFS2_BLKST_USED);
2166		(*n)++;
2167		block++;
2168	}
2169}
2170
2171/**
2172 * rgblk_free - Change alloc state of given block(s)
2173 * @sdp: the filesystem
 
2174 * @bstart: the start of a run of blocks to free
2175 * @blen: the length of the block run (all must lie within ONE RG!)
2176 * @new_state: GFS2_BLKST_XXX the after-allocation block state
2177 *
2178 * Returns:  Resource group containing the block(s)
2179 */
2180
2181static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
2182				     u32 blen, unsigned char new_state)
2183{
2184	struct gfs2_rbm rbm;
2185	struct gfs2_bitmap *bi, *bi_prev = NULL;
2186
2187	rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1);
2188	if (!rbm.rgd) {
2189		if (gfs2_consist(sdp))
2190			fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
2191		return NULL;
2192	}
2193
2194	gfs2_rbm_from_block(&rbm, bstart);
2195	while (blen--) {
2196		bi = rbm_bi(&rbm);
2197		if (bi != bi_prev) {
2198			if (!bi->bi_clone) {
2199				bi->bi_clone = kmalloc(bi->bi_bh->b_size,
2200						      GFP_NOFS | __GFP_NOFAIL);
2201				memcpy(bi->bi_clone + bi->bi_offset,
2202				       bi->bi_bh->b_data + bi->bi_offset,
2203				       bi->bi_len);
2204			}
2205			gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh);
2206			bi_prev = bi;
2207		}
2208		gfs2_setbit(&rbm, false, new_state);
2209		gfs2_rbm_incr(&rbm);
2210	}
2211
2212	return rbm.rgd;
2213}
2214
2215/**
2216 * gfs2_rgrp_dump - print out an rgrp
2217 * @seq: The iterator
2218 * @gl: The glock in question
 
2219 *
2220 */
2221
2222void gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
 
2223{
2224	struct gfs2_rgrpd *rgd = gl->gl_object;
2225	struct gfs2_blkreserv *trs;
2226	const struct rb_node *n;
2227
2228	if (rgd == NULL)
2229		return;
2230	gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n",
2231		       (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2232		       rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2233		       rgd->rd_reserved, rgd->rd_extfail_pt);
2234	spin_lock(&rgd->rd_rsspin);
 
 
 
 
 
 
 
2235	for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2236		trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2237		dump_rs(seq, trs);
2238	}
2239	spin_unlock(&rgd->rd_rsspin);
2240}
2241
2242static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2243{
2244	struct gfs2_sbd *sdp = rgd->rd_sbd;
 
 
2245	fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2246		(unsigned long long)rgd->rd_addr);
2247	fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2248	gfs2_rgrp_dump(NULL, rgd->rd_gl);
 
2249	rgd->rd_flags |= GFS2_RDF_ERROR;
2250}
2251
2252/**
2253 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2254 * @ip: The inode we have just allocated blocks for
2255 * @rbm: The start of the allocated blocks
2256 * @len: The extent length
2257 *
2258 * Adjusts a reservation after an allocation has taken place. If the
2259 * reservation does not match the allocation, or if it is now empty
2260 * then it is removed.
2261 */
2262
2263static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2264				    const struct gfs2_rbm *rbm, unsigned len)
2265{
2266	struct gfs2_blkreserv *rs = &ip->i_res;
2267	struct gfs2_rgrpd *rgd = rbm->rgd;
2268	unsigned rlen;
2269	u64 block;
2270	int ret;
2271
2272	spin_lock(&rgd->rd_rsspin);
 
2273	if (gfs2_rs_active(rs)) {
2274		if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) {
2275			block = gfs2_rbm_to_block(rbm);
2276			ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len);
2277			rlen = min(rs->rs_free, len);
2278			rs->rs_free -= rlen;
2279			rgd->rd_reserved -= rlen;
 
 
 
2280			trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2281			if (rs->rs_free && !ret)
2282				goto out;
 
2283			/* We used up our block reservation, so we should
2284			   reserve more blocks next time. */
2285			atomic_add(RGRP_RSRV_ADDBLKS, &rs->rs_sizehint);
2286		}
2287		__rs_deltree(rs);
2288	}
2289out:
2290	spin_unlock(&rgd->rd_rsspin);
2291}
2292
2293/**
2294 * gfs2_set_alloc_start - Set starting point for block allocation
2295 * @rbm: The rbm which will be set to the required location
2296 * @ip: The gfs2 inode
2297 * @dinode: Flag to say if allocation includes a new inode
2298 *
2299 * This sets the starting point from the reservation if one is active
2300 * otherwise it falls back to guessing a start point based on the
2301 * inode's goal block or the last allocation point in the rgrp.
2302 */
2303
2304static void gfs2_set_alloc_start(struct gfs2_rbm *rbm,
2305				 const struct gfs2_inode *ip, bool dinode)
2306{
2307	u64 goal;
2308
2309	if (gfs2_rs_active(&ip->i_res)) {
2310		*rbm = ip->i_res.rs_rbm;
2311		return;
 
 
 
 
 
 
 
 
2312	}
2313
2314	if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal))
2315		goal = ip->i_goal;
2316	else
2317		goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0;
2318
2319	gfs2_rbm_from_block(rbm, goal);
2320}
2321
2322/**
2323 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2324 * @ip: the inode to allocate the block for
2325 * @bn: Used to return the starting block number
2326 * @nblocks: requested number of blocks/extent length (value/result)
2327 * @dinode: 1 if we're allocating a dinode block, else 0
2328 * @generation: the generation number of the inode
2329 *
2330 * Returns: 0 or error
2331 */
2332
2333int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2334		      bool dinode, u64 *generation)
2335{
2336	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2337	struct buffer_head *dibh;
2338	struct gfs2_rbm rbm = { .rgd = ip->i_rgd, };
2339	unsigned int ndata;
2340	u64 block; /* block, within the file system scope */
2341	int error;
 
2342
2343	gfs2_set_alloc_start(&rbm, ip, dinode);
2344	error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false);
2345
 
 
 
 
 
2346	if (error == -ENOSPC) {
2347		gfs2_set_alloc_start(&rbm, ip, dinode);
2348		error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false);
2349	}
2350
2351	/* Since all blocks are reserved in advance, this shouldn't happen */
2352	if (error) {
2353		fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2354			(unsigned long long)ip->i_no_addr, error, *nblocks,
2355			test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags),
2356			rbm.rgd->rd_extfail_pt);
2357		goto rgrp_error;
2358	}
2359
2360	gfs2_alloc_extent(&rbm, dinode, nblocks);
2361	block = gfs2_rbm_to_block(&rbm);
2362	rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2363	if (gfs2_rs_active(&ip->i_res))
2364		gfs2_adjust_reservation(ip, &rbm, *nblocks);
2365	ndata = *nblocks;
2366	if (dinode)
2367		ndata--;
2368
2369	if (!dinode) {
2370		ip->i_goal = block + ndata - 1;
2371		error = gfs2_meta_inode_buffer(ip, &dibh);
2372		if (error == 0) {
2373			struct gfs2_dinode *di =
2374				(struct gfs2_dinode *)dibh->b_data;
2375			gfs2_trans_add_meta(ip->i_gl, dibh);
2376			di->di_goal_meta = di->di_goal_data =
2377				cpu_to_be64(ip->i_goal);
2378			brelse(dibh);
2379		}
2380	}
2381	if (rbm.rgd->rd_free < *nblocks) {
2382		pr_warn("nblocks=%u\n", *nblocks);
 
 
 
2383		goto rgrp_error;
2384	}
2385
 
 
 
 
2386	rbm.rgd->rd_free -= *nblocks;
 
2387	if (dinode) {
 
 
2388		rbm.rgd->rd_dinodes++;
2389		*generation = rbm.rgd->rd_igeneration++;
2390		if (*generation == 0)
2391			*generation = rbm.rgd->rd_igeneration++;
 
2392	}
2393
2394	gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2395	gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2396	gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data);
2397
2398	gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2399	if (dinode)
2400		gfs2_trans_add_unrevoke(sdp, block, *nblocks);
2401
2402	gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
2403
2404	rbm.rgd->rd_free_clone -= *nblocks;
2405	trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2406			       dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2407	*bn = block;
2408	return 0;
2409
2410rgrp_error:
 
2411	gfs2_rgrp_error(rbm.rgd);
2412	return -EIO;
2413}
2414
2415/**
2416 * __gfs2_free_blocks - free a contiguous run of block(s)
2417 * @ip: the inode these blocks are being freed from
 
2418 * @bstart: first block of a run of contiguous blocks
2419 * @blen: the length of the block run
2420 * @meta: 1 if the blocks represent metadata
2421 *
2422 */
2423
2424void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
 
2425{
2426	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2427	struct gfs2_rgrpd *rgd;
2428
2429	rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
2430	if (!rgd)
2431		return;
2432	trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2433	rgd->rd_free += blen;
2434	rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2435	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2436	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2437	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2438
2439	/* Directories keep their data in the metadata address space */
2440	if (meta || ip->i_depth)
2441		gfs2_meta_wipe(ip, bstart, blen);
2442}
2443
2444/**
2445 * gfs2_free_meta - free a contiguous run of data block(s)
2446 * @ip: the inode these blocks are being freed from
 
2447 * @bstart: first block of a run of contiguous blocks
2448 * @blen: the length of the block run
2449 *
2450 */
2451
2452void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
 
2453{
2454	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2455
2456	__gfs2_free_blocks(ip, bstart, blen, 1);
2457	gfs2_statfs_change(sdp, 0, +blen, 0);
2458	gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2459}
2460
2461void gfs2_unlink_di(struct inode *inode)
2462{
2463	struct gfs2_inode *ip = GFS2_I(inode);
2464	struct gfs2_sbd *sdp = GFS2_SB(inode);
2465	struct gfs2_rgrpd *rgd;
2466	u64 blkno = ip->i_no_addr;
2467
2468	rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
2469	if (!rgd)
2470		return;
 
 
2471	trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2472	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2473	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2474	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2475	update_rgrp_lvb_unlinked(rgd, 1);
2476}
2477
2478void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2479{
2480	struct gfs2_sbd *sdp = rgd->rd_sbd;
2481	struct gfs2_rgrpd *tmp_rgd;
2482
2483	tmp_rgd = rgblk_free(sdp, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2484	if (!tmp_rgd)
2485		return;
2486	gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
2487
 
 
2488	if (!rgd->rd_dinodes)
2489		gfs2_consist_rgrpd(rgd);
2490	rgd->rd_dinodes--;
2491	rgd->rd_free++;
2492
2493	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2494	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2495	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2496	update_rgrp_lvb_unlinked(rgd, -1);
2497
2498	gfs2_statfs_change(sdp, 0, +1, -1);
2499	trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2500	gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2501	gfs2_meta_wipe(ip, ip->i_no_addr, 1);
2502}
2503
2504/**
2505 * gfs2_check_blk_type - Check the type of a block
2506 * @sdp: The superblock
2507 * @no_addr: The block number to check
2508 * @type: The block type we are looking for
2509 *
 
 
 
 
2510 * Returns: 0 if the block type matches the expected type
2511 *          -ESTALE if it doesn't match
2512 *          or -ve errno if something went wrong while checking
2513 */
2514
2515int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2516{
2517	struct gfs2_rgrpd *rgd;
2518	struct gfs2_holder rgd_gh;
 
2519	int error = -EINVAL;
2520
2521	rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2522	if (!rgd)
2523		goto fail;
2524
2525	error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2526	if (error)
2527		goto fail;
2528
2529	if (gfs2_get_block_type(rgd, no_addr) != type)
2530		error = -ESTALE;
 
 
 
 
 
 
 
 
 
 
 
2531
2532	gfs2_glock_dq_uninit(&rgd_gh);
 
2533fail:
2534	return error;
2535}
2536
2537/**
2538 * gfs2_rlist_add - add a RG to a list of RGs
2539 * @ip: the inode
2540 * @rlist: the list of resource groups
2541 * @block: the block
2542 *
2543 * Figure out what RG a block belongs to and add that RG to the list
2544 *
2545 * FIXME: Don't use NOFAIL
2546 *
2547 */
2548
2549void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2550		    u64 block)
2551{
2552	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2553	struct gfs2_rgrpd *rgd;
2554	struct gfs2_rgrpd **tmp;
2555	unsigned int new_space;
2556	unsigned int x;
2557
2558	if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2559		return;
2560
2561	if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
2562		rgd = ip->i_rgd;
2563	else
 
 
 
 
 
2564		rgd = gfs2_blk2rgrpd(sdp, block, 1);
 
 
 
 
 
 
2565	if (!rgd) {
2566		fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
 
2567		return;
2568	}
2569	ip->i_rgd = rgd;
2570
2571	for (x = 0; x < rlist->rl_rgrps; x++)
2572		if (rlist->rl_rgd[x] == rgd)
 
 
2573			return;
 
 
2574
2575	if (rlist->rl_rgrps == rlist->rl_space) {
2576		new_space = rlist->rl_space + 10;
2577
2578		tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2579			      GFP_NOFS | __GFP_NOFAIL);
2580
2581		if (rlist->rl_rgd) {
2582			memcpy(tmp, rlist->rl_rgd,
2583			       rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2584			kfree(rlist->rl_rgd);
2585		}
2586
2587		rlist->rl_space = new_space;
2588		rlist->rl_rgd = tmp;
2589	}
2590
2591	rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2592}
2593
2594/**
2595 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2596 *      and initialize an array of glock holders for them
2597 * @rlist: the list of resource groups
2598 * @state: the lock state to acquire the RG lock in
 
2599 *
2600 * FIXME: Don't use NOFAIL
2601 *
2602 */
2603
2604void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
 
2605{
2606	unsigned int x;
2607
2608	rlist->rl_ghs = kmalloc(rlist->rl_rgrps * sizeof(struct gfs2_holder),
2609				GFP_NOFS | __GFP_NOFAIL);
 
2610	for (x = 0; x < rlist->rl_rgrps; x++)
2611		gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
2612				state, 0,
2613				&rlist->rl_ghs[x]);
2614}
2615
2616/**
2617 * gfs2_rlist_free - free a resource group list
2618 * @rlist: the list of resource groups
2619 *
2620 */
2621
2622void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2623{
2624	unsigned int x;
2625
2626	kfree(rlist->rl_rgd);
2627
2628	if (rlist->rl_ghs) {
2629		for (x = 0; x < rlist->rl_rgrps; x++)
2630			gfs2_holder_uninit(&rlist->rl_ghs[x]);
2631		kfree(rlist->rl_ghs);
2632		rlist->rl_ghs = NULL;
2633	}
2634}
2635
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
   4 * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
 
 
 
 
   5 */
   6
   7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   8
   9#include <linux/slab.h>
  10#include <linux/spinlock.h>
  11#include <linux/completion.h>
  12#include <linux/buffer_head.h>
  13#include <linux/fs.h>
  14#include <linux/gfs2_ondisk.h>
  15#include <linux/prefetch.h>
  16#include <linux/blkdev.h>
  17#include <linux/rbtree.h>
  18#include <linux/random.h>
  19
  20#include "gfs2.h"
  21#include "incore.h"
  22#include "glock.h"
  23#include "glops.h"
  24#include "lops.h"
  25#include "meta_io.h"
  26#include "quota.h"
  27#include "rgrp.h"
  28#include "super.h"
  29#include "trans.h"
  30#include "util.h"
  31#include "log.h"
  32#include "inode.h"
  33#include "trace_gfs2.h"
  34#include "dir.h"
  35
  36#define BFITNOENT ((u32)~0)
  37#define NO_BLOCK ((u64)~0)
  38
  39struct gfs2_rbm {
  40	struct gfs2_rgrpd *rgd;
  41	u32 offset;		/* The offset is bitmap relative */
  42	int bii;		/* Bitmap index */
  43};
  44
  45static inline struct gfs2_bitmap *rbm_bi(const struct gfs2_rbm *rbm)
  46{
  47	return rbm->rgd->rd_bits + rbm->bii;
  48}
  49
  50static inline u64 gfs2_rbm_to_block(const struct gfs2_rbm *rbm)
  51{
  52	BUG_ON(rbm->offset >= rbm->rgd->rd_data);
  53	return rbm->rgd->rd_data0 + (rbm_bi(rbm)->bi_start * GFS2_NBBY) +
  54		rbm->offset;
  55}
  56
  57/*
  58 * These routines are used by the resource group routines (rgrp.c)
  59 * to keep track of block allocation.  Each block is represented by two
  60 * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
  61 *
  62 * 0 = Free
  63 * 1 = Used (not metadata)
  64 * 2 = Unlinked (still in use) inode
  65 * 3 = Used (metadata)
  66 */
  67
  68struct gfs2_extent {
  69	struct gfs2_rbm rbm;
  70	u32 len;
  71};
  72
  73static const char valid_change[16] = {
  74	        /* current */
  75	/* n */ 0, 1, 1, 1,
  76	/* e */ 1, 0, 0, 0,
  77	/* w */ 0, 0, 0, 1,
  78	        1, 0, 0, 0
  79};
  80
  81static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
  82			 struct gfs2_blkreserv *rs, bool nowrap);
  83
  84
  85/**
  86 * gfs2_setbit - Set a bit in the bitmaps
  87 * @rbm: The position of the bit to set
  88 * @do_clone: Also set the clone bitmap, if it exists
  89 * @new_state: the new state of the block
  90 *
  91 */
  92
  93static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
  94			       unsigned char new_state)
  95{
  96	unsigned char *byte1, *byte2, *end, cur_state;
  97	struct gfs2_bitmap *bi = rbm_bi(rbm);
  98	unsigned int buflen = bi->bi_bytes;
  99	const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
 100
 101	byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY);
 102	end = bi->bi_bh->b_data + bi->bi_offset + buflen;
 103
 104	BUG_ON(byte1 >= end);
 105
 106	cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
 107
 108	if (unlikely(!valid_change[new_state * 4 + cur_state])) {
 109		struct gfs2_sbd *sdp = rbm->rgd->rd_sbd;
 110
 111		fs_warn(sdp, "buf_blk = 0x%x old_state=%d, new_state=%d\n",
 112			rbm->offset, cur_state, new_state);
 113		fs_warn(sdp, "rgrp=0x%llx bi_start=0x%x biblk: 0x%llx\n",
 114			(unsigned long long)rbm->rgd->rd_addr, bi->bi_start,
 115			(unsigned long long)bi->bi_bh->b_blocknr);
 116		fs_warn(sdp, "bi_offset=0x%x bi_bytes=0x%x block=0x%llx\n",
 117			bi->bi_offset, bi->bi_bytes,
 118			(unsigned long long)gfs2_rbm_to_block(rbm));
 119		dump_stack();
 120		gfs2_consist_rgrpd(rbm->rgd);
 121		return;
 122	}
 123	*byte1 ^= (cur_state ^ new_state) << bit;
 124
 125	if (do_clone && bi->bi_clone) {
 126		byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY);
 127		cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
 128		*byte2 ^= (cur_state ^ new_state) << bit;
 129	}
 130}
 131
 132/**
 133 * gfs2_testbit - test a bit in the bitmaps
 134 * @rbm: The bit to test
 135 * @use_clone: If true, test the clone bitmap, not the official bitmap.
 136 *
 137 * Some callers like gfs2_unaligned_extlen need to test the clone bitmaps,
 138 * not the "real" bitmaps, to avoid allocating recently freed blocks.
 139 *
 140 * Returns: The two bit block state of the requested bit
 141 */
 142
 143static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm, bool use_clone)
 144{
 145	struct gfs2_bitmap *bi = rbm_bi(rbm);
 146	const u8 *buffer;
 147	const u8 *byte;
 148	unsigned int bit;
 149
 150	if (use_clone && bi->bi_clone)
 151		buffer = bi->bi_clone;
 152	else
 153		buffer = bi->bi_bh->b_data;
 154	buffer += bi->bi_offset;
 155	byte = buffer + (rbm->offset / GFS2_NBBY);
 156	bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
 157
 158	return (*byte >> bit) & GFS2_BIT_MASK;
 159}
 160
 161/**
 162 * gfs2_bit_search - search bitmap for a state
 163 * @ptr: Pointer to bitmap data
 164 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
 165 * @state: The state we are searching for
 166 *
 167 * We xor the bitmap data with a pattern which is the bitwise opposite
 168 * of what we are looking for. This gives rise to a pattern of ones
 169 * wherever there is a match. Since we have two bits per entry, we
 170 * take this pattern, shift it down by one place and then and it with
 171 * the original. All the even bit positions (0,2,4, etc) then represent
 172 * successful matches, so we mask with 0x55555..... to remove the unwanted
 173 * odd bit positions.
 174 *
 175 * This allows searching of a whole u64 at once (32 blocks) with a
 176 * single test (on 64 bit arches).
 177 */
 178
 179static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
 180{
 181	u64 tmp;
 182	static const u64 search[] = {
 183		[0] = 0xffffffffffffffffULL,
 184		[1] = 0xaaaaaaaaaaaaaaaaULL,
 185		[2] = 0x5555555555555555ULL,
 186		[3] = 0x0000000000000000ULL,
 187	};
 188	tmp = le64_to_cpu(*ptr) ^ search[state];
 189	tmp &= (tmp >> 1);
 190	tmp &= mask;
 191	return tmp;
 192}
 193
 194/**
 195 * rs_cmp - multi-block reservation range compare
 196 * @start: start of the new reservation
 197 * @len: number of blocks in the new reservation
 198 * @rs: existing reservation to compare against
 199 *
 200 * returns: 1 if the block range is beyond the reach of the reservation
 201 *         -1 if the block range is before the start of the reservation
 202 *          0 if the block range overlaps with the reservation
 203 */
 204static inline int rs_cmp(u64 start, u32 len, struct gfs2_blkreserv *rs)
 205{
 206	if (start >= rs->rs_start + rs->rs_requested)
 
 
 207		return 1;
 208	if (rs->rs_start >= start + len)
 209		return -1;
 210	return 0;
 211}
 212
 213/**
 214 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
 215 *       a block in a given allocation state.
 216 * @buf: the buffer that holds the bitmaps
 217 * @len: the length (in bytes) of the buffer
 218 * @goal: start search at this block's bit-pair (within @buffer)
 219 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
 220 *
 221 * Scope of @goal and returned block number is only within this bitmap buffer,
 222 * not entire rgrp or filesystem.  @buffer will be offset from the actual
 223 * beginning of a bitmap block buffer, skipping any header structures, but
 224 * headers are always a multiple of 64 bits long so that the buffer is
 225 * always aligned to a 64 bit boundary.
 226 *
 227 * The size of the buffer is in bytes, but is it assumed that it is
 228 * always ok to read a complete multiple of 64 bits at the end
 229 * of the block in case the end is no aligned to a natural boundary.
 230 *
 231 * Return: the block number (bitmap buffer scope) that was found
 232 */
 233
 234static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
 235		       u32 goal, u8 state)
 236{
 237	u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
 238	const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
 239	const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
 240	u64 tmp;
 241	u64 mask = 0x5555555555555555ULL;
 242	u32 bit;
 243
 244	/* Mask off bits we don't care about at the start of the search */
 245	mask <<= spoint;
 246	tmp = gfs2_bit_search(ptr, mask, state);
 247	ptr++;
 248	while(tmp == 0 && ptr < end) {
 249		tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
 250		ptr++;
 251	}
 252	/* Mask off any bits which are more than len bytes from the start */
 253	if (ptr == end && (len & (sizeof(u64) - 1)))
 254		tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
 255	/* Didn't find anything, so return */
 256	if (tmp == 0)
 257		return BFITNOENT;
 258	ptr--;
 259	bit = __ffs64(tmp);
 260	bit /= 2;	/* two bits per entry in the bitmap */
 261	return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
 262}
 263
 264/**
 265 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
 266 * @rbm: The rbm with rgd already set correctly
 267 * @block: The block number (filesystem relative)
 268 *
 269 * This sets the bi and offset members of an rbm based on a
 270 * resource group and a filesystem relative block number. The
 271 * resource group must be set in the rbm on entry, the bi and
 272 * offset members will be set by this function.
 273 *
 274 * Returns: 0 on success, or an error code
 275 */
 276
 277static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
 278{
 279	if (!rgrp_contains_block(rbm->rgd, block))
 
 
 
 
 280		return -E2BIG;
 
 281	rbm->bii = 0;
 282	rbm->offset = block - rbm->rgd->rd_data0;
 283	/* Check if the block is within the first block */
 284	if (rbm->offset < rbm_bi(rbm)->bi_blocks)
 285		return 0;
 286
 287	/* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
 288	rbm->offset += (sizeof(struct gfs2_rgrp) -
 289			sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
 290	rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
 291	rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
 292	return 0;
 293}
 294
 295/**
 296 * gfs2_rbm_add - add a number of blocks to an rbm
 297 * @rbm: The rbm with rgd already set correctly
 298 * @blocks: The number of blocks to add to rpm
 299 *
 300 * This function takes an existing rbm structure and adds a number of blocks to
 301 * it.
 
 
 
 302 *
 303 * Returns: True if the new rbm would point past the end of the rgrp.
 304 */
 305
 306static bool gfs2_rbm_add(struct gfs2_rbm *rbm, u32 blocks)
 307{
 308	struct gfs2_rgrpd *rgd = rbm->rgd;
 309	struct gfs2_bitmap *bi = rgd->rd_bits + rbm->bii;
 310
 311	if (rbm->offset + blocks < bi->bi_blocks) {
 312		rbm->offset += blocks;
 313		return false;
 314	}
 315	blocks -= bi->bi_blocks - rbm->offset;
 
 316
 317	for(;;) {
 318		bi++;
 319		if (bi == rgd->rd_bits + rgd->rd_length)
 320			return true;
 321		if (blocks < bi->bi_blocks) {
 322			rbm->offset = blocks;
 323			rbm->bii = bi - rgd->rd_bits;
 324			return false;
 325		}
 326		blocks -= bi->bi_blocks;
 327	}
 328}
 329
 330/**
 331 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
 332 * @rbm: Position to search (value/result)
 333 * @n_unaligned: Number of unaligned blocks to check
 334 * @len: Decremented for each block found (terminate on zero)
 335 *
 336 * Returns: true if a non-free block is encountered or the end of the resource
 337 *	    group is reached.
 338 */
 339
 340static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
 341{
 342	u32 n;
 343	u8 res;
 344
 345	for (n = 0; n < n_unaligned; n++) {
 346		res = gfs2_testbit(rbm, true);
 347		if (res != GFS2_BLKST_FREE)
 348			return true;
 349		(*len)--;
 350		if (*len == 0)
 351			return true;
 352		if (gfs2_rbm_add(rbm, 1))
 353			return true;
 354	}
 355
 356	return false;
 357}
 358
 359/**
 360 * gfs2_free_extlen - Return extent length of free blocks
 361 * @rrbm: Starting position
 362 * @len: Max length to check
 363 *
 364 * Starting at the block specified by the rbm, see how many free blocks
 365 * there are, not reading more than len blocks ahead. This can be done
 366 * using memchr_inv when the blocks are byte aligned, but has to be done
 367 * on a block by block basis in case of unaligned blocks. Also this
 368 * function can cope with bitmap boundaries (although it must stop on
 369 * a resource group boundary)
 370 *
 371 * Returns: Number of free blocks in the extent
 372 */
 373
 374static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
 375{
 376	struct gfs2_rbm rbm = *rrbm;
 377	u32 n_unaligned = rbm.offset & 3;
 378	u32 size = len;
 379	u32 bytes;
 380	u32 chunk_size;
 381	u8 *ptr, *start, *end;
 382	u64 block;
 383	struct gfs2_bitmap *bi;
 384
 385	if (n_unaligned &&
 386	    gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
 387		goto out;
 388
 389	n_unaligned = len & 3;
 390	/* Start is now byte aligned */
 391	while (len > 3) {
 392		bi = rbm_bi(&rbm);
 393		start = bi->bi_bh->b_data;
 394		if (bi->bi_clone)
 395			start = bi->bi_clone;
 
 396		start += bi->bi_offset;
 397		end = start + bi->bi_bytes;
 398		BUG_ON(rbm.offset & 3);
 399		start += (rbm.offset / GFS2_NBBY);
 400		bytes = min_t(u32, len / GFS2_NBBY, (end - start));
 401		ptr = memchr_inv(start, 0, bytes);
 402		chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
 403		chunk_size *= GFS2_NBBY;
 404		BUG_ON(len < chunk_size);
 405		len -= chunk_size;
 406		block = gfs2_rbm_to_block(&rbm);
 407		if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
 408			n_unaligned = 0;
 409			break;
 410		}
 411		if (ptr) {
 412			n_unaligned = 3;
 413			break;
 414		}
 415		n_unaligned = len & 3;
 416	}
 417
 418	/* Deal with any bits left over at the end */
 419	if (n_unaligned)
 420		gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
 421out:
 422	return size - len;
 423}
 424
 425/**
 426 * gfs2_bitcount - count the number of bits in a certain state
 427 * @rgd: the resource group descriptor
 428 * @buffer: the buffer that holds the bitmaps
 429 * @buflen: the length (in bytes) of the buffer
 430 * @state: the state of the block we're looking for
 431 *
 432 * Returns: The number of bits
 433 */
 434
 435static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
 436			 unsigned int buflen, u8 state)
 437{
 438	const u8 *byte = buffer;
 439	const u8 *end = buffer + buflen;
 440	const u8 state1 = state << 2;
 441	const u8 state2 = state << 4;
 442	const u8 state3 = state << 6;
 443	u32 count = 0;
 444
 445	for (; byte < end; byte++) {
 446		if (((*byte) & 0x03) == state)
 447			count++;
 448		if (((*byte) & 0x0C) == state1)
 449			count++;
 450		if (((*byte) & 0x30) == state2)
 451			count++;
 452		if (((*byte) & 0xC0) == state3)
 453			count++;
 454	}
 455
 456	return count;
 457}
 458
 459/**
 460 * gfs2_rgrp_verify - Verify that a resource group is consistent
 461 * @rgd: the rgrp
 462 *
 463 */
 464
 465void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
 466{
 467	struct gfs2_sbd *sdp = rgd->rd_sbd;
 468	struct gfs2_bitmap *bi = NULL;
 469	u32 length = rgd->rd_length;
 470	u32 count[4], tmp;
 471	int buf, x;
 472
 473	memset(count, 0, 4 * sizeof(u32));
 474
 475	/* Count # blocks in each of 4 possible allocation states */
 476	for (buf = 0; buf < length; buf++) {
 477		bi = rgd->rd_bits + buf;
 478		for (x = 0; x < 4; x++)
 479			count[x] += gfs2_bitcount(rgd,
 480						  bi->bi_bh->b_data +
 481						  bi->bi_offset,
 482						  bi->bi_bytes, x);
 483	}
 484
 485	if (count[0] != rgd->rd_free) {
 486		gfs2_lm(sdp, "free data mismatch:  %u != %u\n",
 487			count[0], rgd->rd_free);
 488		gfs2_consist_rgrpd(rgd);
 489		return;
 490	}
 491
 492	tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
 493	if (count[1] != tmp) {
 494		gfs2_lm(sdp, "used data mismatch:  %u != %u\n",
 495			count[1], tmp);
 496		gfs2_consist_rgrpd(rgd);
 497		return;
 498	}
 499
 500	if (count[2] + count[3] != rgd->rd_dinodes) {
 501		gfs2_lm(sdp, "used metadata mismatch:  %u != %u\n",
 502			count[2] + count[3], rgd->rd_dinodes);
 503		gfs2_consist_rgrpd(rgd);
 504		return;
 505	}
 506}
 507
 508/**
 509 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
 510 * @sdp: The GFS2 superblock
 511 * @blk: The data block number
 512 * @exact: True if this needs to be an exact match
 513 *
 514 * The @exact argument should be set to true by most callers. The exception
 515 * is when we need to match blocks which are not represented by the rgrp
 516 * bitmap, but which are part of the rgrp (i.e. padding blocks) which are
 517 * there for alignment purposes. Another way of looking at it is that @exact
 518 * matches only valid data/metadata blocks, but with @exact false, it will
 519 * match any block within the extent of the rgrp.
 520 *
 521 * Returns: The resource group, or NULL if not found
 522 */
 523
 524struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
 525{
 526	struct rb_node *n, *next;
 527	struct gfs2_rgrpd *cur;
 528
 529	spin_lock(&sdp->sd_rindex_spin);
 530	n = sdp->sd_rindex_tree.rb_node;
 531	while (n) {
 532		cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
 533		next = NULL;
 534		if (blk < cur->rd_addr)
 535			next = n->rb_left;
 536		else if (blk >= cur->rd_data0 + cur->rd_data)
 537			next = n->rb_right;
 538		if (next == NULL) {
 539			spin_unlock(&sdp->sd_rindex_spin);
 540			if (exact) {
 541				if (blk < cur->rd_addr)
 542					return NULL;
 543				if (blk >= cur->rd_data0 + cur->rd_data)
 544					return NULL;
 545			}
 546			return cur;
 547		}
 548		n = next;
 549	}
 550	spin_unlock(&sdp->sd_rindex_spin);
 551
 552	return NULL;
 553}
 554
 555/**
 556 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
 557 * @sdp: The GFS2 superblock
 558 *
 559 * Returns: The first rgrp in the filesystem
 560 */
 561
 562struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
 563{
 564	const struct rb_node *n;
 565	struct gfs2_rgrpd *rgd;
 566
 567	spin_lock(&sdp->sd_rindex_spin);
 568	n = rb_first(&sdp->sd_rindex_tree);
 569	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 570	spin_unlock(&sdp->sd_rindex_spin);
 571
 572	return rgd;
 573}
 574
 575/**
 576 * gfs2_rgrpd_get_next - get the next RG
 577 * @rgd: the resource group descriptor
 578 *
 579 * Returns: The next rgrp
 580 */
 581
 582struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
 583{
 584	struct gfs2_sbd *sdp = rgd->rd_sbd;
 585	const struct rb_node *n;
 586
 587	spin_lock(&sdp->sd_rindex_spin);
 588	n = rb_next(&rgd->rd_node);
 589	if (n == NULL)
 590		n = rb_first(&sdp->sd_rindex_tree);
 591
 592	if (unlikely(&rgd->rd_node == n)) {
 593		spin_unlock(&sdp->sd_rindex_spin);
 594		return NULL;
 595	}
 596	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 597	spin_unlock(&sdp->sd_rindex_spin);
 598	return rgd;
 599}
 600
 601void check_and_update_goal(struct gfs2_inode *ip)
 602{
 603	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 604	if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL)
 605		ip->i_goal = ip->i_no_addr;
 606}
 607
 608void gfs2_free_clones(struct gfs2_rgrpd *rgd)
 609{
 610	int x;
 611
 612	for (x = 0; x < rgd->rd_length; x++) {
 613		struct gfs2_bitmap *bi = rgd->rd_bits + x;
 614		kfree(bi->bi_clone);
 615		bi->bi_clone = NULL;
 616	}
 617}
 618
 619static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs,
 620		    const char *fs_id_buf)
 
 
 
 
 621{
 622	struct gfs2_inode *ip = container_of(rs, struct gfs2_inode, i_res);
 
 623
 624	gfs2_print_dbg(seq, "%s  B: n:%llu s:%llu f:%u\n",
 625		       fs_id_buf,
 626		       (unsigned long long)ip->i_no_addr,
 627		       (unsigned long long)rs->rs_start,
 628		       rs->rs_requested);
 
 629}
 630
 631/**
 632 * __rs_deltree - remove a multi-block reservation from the rgd tree
 633 * @rs: The reservation to remove
 634 *
 635 */
 636static void __rs_deltree(struct gfs2_blkreserv *rs)
 637{
 638	struct gfs2_rgrpd *rgd;
 639
 640	if (!gfs2_rs_active(rs))
 641		return;
 642
 643	rgd = rs->rs_rgd;
 644	trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
 645	rb_erase(&rs->rs_node, &rgd->rd_rstree);
 646	RB_CLEAR_NODE(&rs->rs_node);
 647
 648	if (rs->rs_requested) {
 649		/* return requested blocks to the rgrp */
 650		BUG_ON(rs->rs_rgd->rd_requested < rs->rs_requested);
 651		rs->rs_rgd->rd_requested -= rs->rs_requested;
 652
 
 
 
 653		/* The rgrp extent failure point is likely not to increase;
 654		   it will only do so if the freed blocks are somehow
 655		   contiguous with a span of free blocks that follows. Still,
 656		   it will force the number to be recalculated later. */
 657		rgd->rd_extfail_pt += rs->rs_requested;
 658		rs->rs_requested = 0;
 
 659	}
 660}
 661
 662/**
 663 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
 664 * @rs: The reservation to remove
 665 *
 666 */
 667void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
 668{
 669	struct gfs2_rgrpd *rgd;
 670
 671	rgd = rs->rs_rgd;
 672	if (rgd) {
 673		spin_lock(&rgd->rd_rsspin);
 674		__rs_deltree(rs);
 675		BUG_ON(rs->rs_requested);
 676		spin_unlock(&rgd->rd_rsspin);
 677	}
 678}
 679
 680/**
 681 * gfs2_rs_delete - delete a multi-block reservation
 682 * @ip: The inode for this reservation
 
 683 *
 684 */
 685void gfs2_rs_delete(struct gfs2_inode *ip)
 686{
 687	struct inode *inode = &ip->i_inode;
 688
 689	down_write(&ip->i_rw_mutex);
 690	if (atomic_read(&inode->i_writecount) <= 1)
 691		gfs2_rs_deltree(&ip->i_res);
 692	up_write(&ip->i_rw_mutex);
 
 693}
 694
 695/**
 696 * return_all_reservations - return all reserved blocks back to the rgrp.
 697 * @rgd: the rgrp that needs its space back
 698 *
 699 * We previously reserved a bunch of blocks for allocation. Now we need to
 700 * give them back. This leave the reservation structures in tact, but removes
 701 * all of their corresponding "no-fly zones".
 702 */
 703static void return_all_reservations(struct gfs2_rgrpd *rgd)
 704{
 705	struct rb_node *n;
 706	struct gfs2_blkreserv *rs;
 707
 708	spin_lock(&rgd->rd_rsspin);
 709	while ((n = rb_first(&rgd->rd_rstree))) {
 710		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
 711		__rs_deltree(rs);
 712	}
 713	spin_unlock(&rgd->rd_rsspin);
 714}
 715
 716void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
 717{
 718	struct rb_node *n;
 719	struct gfs2_rgrpd *rgd;
 720	struct gfs2_glock *gl;
 721
 722	while ((n = rb_first(&sdp->sd_rindex_tree))) {
 723		rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 724		gl = rgd->rd_gl;
 725
 726		rb_erase(n, &sdp->sd_rindex_tree);
 727
 728		if (gl) {
 729			if (gl->gl_state != LM_ST_UNLOCKED) {
 730				gfs2_glock_cb(gl, LM_ST_UNLOCKED);
 731				flush_delayed_work(&gl->gl_work);
 732			}
 733			gfs2_rgrp_brelse(rgd);
 734			glock_clear_object(gl, rgd);
 735			gfs2_glock_put(gl);
 736		}
 737
 738		gfs2_free_clones(rgd);
 739		return_all_reservations(rgd);
 740		kfree(rgd->rd_bits);
 741		rgd->rd_bits = NULL;
 
 742		kmem_cache_free(gfs2_rgrpd_cachep, rgd);
 743	}
 744}
 745
 
 
 
 
 
 
 
 
 
 746/**
 747 * compute_bitstructs - Compute the bitmap sizes
 748 * @rgd: The resource group descriptor
 749 *
 750 * Calculates bitmap descriptors, one for each block that contains bitmap data
 751 *
 752 * Returns: errno
 753 */
 754
 755static int compute_bitstructs(struct gfs2_rgrpd *rgd)
 756{
 757	struct gfs2_sbd *sdp = rgd->rd_sbd;
 758	struct gfs2_bitmap *bi;
 759	u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
 760	u32 bytes_left, bytes;
 761	int x;
 762
 763	if (!length)
 764		return -EINVAL;
 765
 766	rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
 767	if (!rgd->rd_bits)
 768		return -ENOMEM;
 769
 770	bytes_left = rgd->rd_bitbytes;
 771
 772	for (x = 0; x < length; x++) {
 773		bi = rgd->rd_bits + x;
 774
 775		bi->bi_flags = 0;
 776		/* small rgrp; bitmap stored completely in header block */
 777		if (length == 1) {
 778			bytes = bytes_left;
 779			bi->bi_offset = sizeof(struct gfs2_rgrp);
 780			bi->bi_start = 0;
 781			bi->bi_bytes = bytes;
 782			bi->bi_blocks = bytes * GFS2_NBBY;
 783		/* header block */
 784		} else if (x == 0) {
 785			bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
 786			bi->bi_offset = sizeof(struct gfs2_rgrp);
 787			bi->bi_start = 0;
 788			bi->bi_bytes = bytes;
 789			bi->bi_blocks = bytes * GFS2_NBBY;
 790		/* last block */
 791		} else if (x + 1 == length) {
 792			bytes = bytes_left;
 793			bi->bi_offset = sizeof(struct gfs2_meta_header);
 794			bi->bi_start = rgd->rd_bitbytes - bytes_left;
 795			bi->bi_bytes = bytes;
 796			bi->bi_blocks = bytes * GFS2_NBBY;
 797		/* other blocks */
 798		} else {
 799			bytes = sdp->sd_sb.sb_bsize -
 800				sizeof(struct gfs2_meta_header);
 801			bi->bi_offset = sizeof(struct gfs2_meta_header);
 802			bi->bi_start = rgd->rd_bitbytes - bytes_left;
 803			bi->bi_bytes = bytes;
 804			bi->bi_blocks = bytes * GFS2_NBBY;
 805		}
 806
 807		bytes_left -= bytes;
 808	}
 809
 810	if (bytes_left) {
 811		gfs2_consist_rgrpd(rgd);
 812		return -EIO;
 813	}
 814	bi = rgd->rd_bits + (length - 1);
 815	if ((bi->bi_start + bi->bi_bytes) * GFS2_NBBY != rgd->rd_data) {
 816		gfs2_lm(sdp,
 817			"ri_addr=%llu "
 818			"ri_length=%u "
 819			"ri_data0=%llu "
 820			"ri_data=%u "
 821			"ri_bitbytes=%u "
 822			"start=%u len=%u offset=%u\n",
 823			(unsigned long long)rgd->rd_addr,
 824			rgd->rd_length,
 825			(unsigned long long)rgd->rd_data0,
 826			rgd->rd_data,
 827			rgd->rd_bitbytes,
 828			bi->bi_start, bi->bi_bytes, bi->bi_offset);
 829		gfs2_consist_rgrpd(rgd);
 830		return -EIO;
 831	}
 832
 833	return 0;
 834}
 835
 836/**
 837 * gfs2_ri_total - Total up the file system space, according to the rindex.
 838 * @sdp: the filesystem
 839 *
 840 */
 841u64 gfs2_ri_total(struct gfs2_sbd *sdp)
 842{
 843	u64 total_data = 0;	
 844	struct inode *inode = sdp->sd_rindex;
 845	struct gfs2_inode *ip = GFS2_I(inode);
 846	char buf[sizeof(struct gfs2_rindex)];
 847	int error, rgrps;
 848
 849	for (rgrps = 0;; rgrps++) {
 850		loff_t pos = rgrps * sizeof(struct gfs2_rindex);
 851
 852		if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
 853			break;
 854		error = gfs2_internal_read(ip, buf, &pos,
 855					   sizeof(struct gfs2_rindex));
 856		if (error != sizeof(struct gfs2_rindex))
 857			break;
 858		total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
 859	}
 860	return total_data;
 861}
 862
 863static int rgd_insert(struct gfs2_rgrpd *rgd)
 864{
 865	struct gfs2_sbd *sdp = rgd->rd_sbd;
 866	struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
 867
 868	/* Figure out where to put new node */
 869	while (*newn) {
 870		struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
 871						  rd_node);
 872
 873		parent = *newn;
 874		if (rgd->rd_addr < cur->rd_addr)
 875			newn = &((*newn)->rb_left);
 876		else if (rgd->rd_addr > cur->rd_addr)
 877			newn = &((*newn)->rb_right);
 878		else
 879			return -EEXIST;
 880	}
 881
 882	rb_link_node(&rgd->rd_node, parent, newn);
 883	rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
 884	sdp->sd_rgrps++;
 885	return 0;
 886}
 887
 888/**
 889 * read_rindex_entry - Pull in a new resource index entry from the disk
 890 * @ip: Pointer to the rindex inode
 891 *
 892 * Returns: 0 on success, > 0 on EOF, error code otherwise
 893 */
 894
 895static int read_rindex_entry(struct gfs2_inode *ip)
 896{
 897	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 
 898	loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
 899	struct gfs2_rindex buf;
 900	int error;
 901	struct gfs2_rgrpd *rgd;
 902
 903	if (pos >= i_size_read(&ip->i_inode))
 904		return 1;
 905
 906	error = gfs2_internal_read(ip, (char *)&buf, &pos,
 907				   sizeof(struct gfs2_rindex));
 908
 909	if (error != sizeof(struct gfs2_rindex))
 910		return (error == 0) ? 1 : error;
 911
 912	rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
 913	error = -ENOMEM;
 914	if (!rgd)
 915		return error;
 916
 917	rgd->rd_sbd = sdp;
 918	rgd->rd_addr = be64_to_cpu(buf.ri_addr);
 919	rgd->rd_length = be32_to_cpu(buf.ri_length);
 920	rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
 921	rgd->rd_data = be32_to_cpu(buf.ri_data);
 922	rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
 923	spin_lock_init(&rgd->rd_rsspin);
 924	mutex_init(&rgd->rd_mutex);
 
 
 
 925
 926	error = gfs2_glock_get(sdp, rgd->rd_addr,
 927			       &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
 928	if (error)
 929		goto fail;
 930
 931	error = compute_bitstructs(rgd);
 932	if (error)
 933		goto fail_glock;
 934
 935	rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
 936	rgd->rd_flags &= ~GFS2_RDF_PREFERRED;
 937	if (rgd->rd_data > sdp->sd_max_rg_data)
 938		sdp->sd_max_rg_data = rgd->rd_data;
 939	spin_lock(&sdp->sd_rindex_spin);
 940	error = rgd_insert(rgd);
 941	spin_unlock(&sdp->sd_rindex_spin);
 942	if (!error) {
 943		glock_set_object(rgd->rd_gl, rgd);
 
 
 
 944		return 0;
 945	}
 946
 947	error = 0; /* someone else read in the rgrp; free it and ignore it */
 948fail_glock:
 949	gfs2_glock_put(rgd->rd_gl);
 950
 951fail:
 952	kfree(rgd->rd_bits);
 953	rgd->rd_bits = NULL;
 954	kmem_cache_free(gfs2_rgrpd_cachep, rgd);
 955	return error;
 956}
 957
 958/**
 959 * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use
 960 * @sdp: the GFS2 superblock
 961 *
 962 * The purpose of this function is to select a subset of the resource groups
 963 * and mark them as PREFERRED. We do it in such a way that each node prefers
 964 * to use a unique set of rgrps to minimize glock contention.
 965 */
 966static void set_rgrp_preferences(struct gfs2_sbd *sdp)
 967{
 968	struct gfs2_rgrpd *rgd, *first;
 969	int i;
 970
 971	/* Skip an initial number of rgrps, based on this node's journal ID.
 972	   That should start each node out on its own set. */
 973	rgd = gfs2_rgrpd_get_first(sdp);
 974	for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++)
 975		rgd = gfs2_rgrpd_get_next(rgd);
 976	first = rgd;
 977
 978	do {
 979		rgd->rd_flags |= GFS2_RDF_PREFERRED;
 980		for (i = 0; i < sdp->sd_journals; i++) {
 981			rgd = gfs2_rgrpd_get_next(rgd);
 982			if (!rgd || rgd == first)
 983				break;
 984		}
 985	} while (rgd && rgd != first);
 986}
 987
 988/**
 989 * gfs2_ri_update - Pull in a new resource index from the disk
 990 * @ip: pointer to the rindex inode
 991 *
 992 * Returns: 0 on successful update, error code otherwise
 993 */
 994
 995static int gfs2_ri_update(struct gfs2_inode *ip)
 996{
 997	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 998	int error;
 999
1000	do {
1001		error = read_rindex_entry(ip);
1002	} while (error == 0);
1003
1004	if (error < 0)
1005		return error;
1006
1007	if (RB_EMPTY_ROOT(&sdp->sd_rindex_tree)) {
1008		fs_err(sdp, "no resource groups found in the file system.\n");
1009		return -ENOENT;
1010	}
1011	set_rgrp_preferences(sdp);
1012
1013	sdp->sd_rindex_uptodate = 1;
1014	return 0;
1015}
1016
1017/**
1018 * gfs2_rindex_update - Update the rindex if required
1019 * @sdp: The GFS2 superblock
1020 *
1021 * We grab a lock on the rindex inode to make sure that it doesn't
1022 * change whilst we are performing an operation. We keep this lock
1023 * for quite long periods of time compared to other locks. This
1024 * doesn't matter, since it is shared and it is very, very rarely
1025 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
1026 *
1027 * This makes sure that we're using the latest copy of the resource index
1028 * special file, which might have been updated if someone expanded the
1029 * filesystem (via gfs2_grow utility), which adds new resource groups.
1030 *
1031 * Returns: 0 on succeess, error code otherwise
1032 */
1033
1034int gfs2_rindex_update(struct gfs2_sbd *sdp)
1035{
1036	struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
1037	struct gfs2_glock *gl = ip->i_gl;
1038	struct gfs2_holder ri_gh;
1039	int error = 0;
1040	int unlock_required = 0;
1041
1042	/* Read new copy from disk if we don't have the latest */
1043	if (!sdp->sd_rindex_uptodate) {
1044		if (!gfs2_glock_is_locked_by_me(gl)) {
1045			error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
1046			if (error)
1047				return error;
1048			unlock_required = 1;
1049		}
1050		if (!sdp->sd_rindex_uptodate)
1051			error = gfs2_ri_update(ip);
1052		if (unlock_required)
1053			gfs2_glock_dq_uninit(&ri_gh);
1054	}
1055
1056	return error;
1057}
1058
1059static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
1060{
1061	const struct gfs2_rgrp *str = buf;
1062	u32 rg_flags;
1063
1064	rg_flags = be32_to_cpu(str->rg_flags);
1065	rg_flags &= ~GFS2_RDF_MASK;
1066	rgd->rd_flags &= GFS2_RDF_MASK;
1067	rgd->rd_flags |= rg_flags;
1068	rgd->rd_free = be32_to_cpu(str->rg_free);
1069	rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
1070	rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
1071	/* rd_data0, rd_data and rd_bitbytes already set from rindex */
1072}
1073
1074static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1075{
1076	const struct gfs2_rgrp *str = buf;
1077
1078	rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1079	rgl->rl_flags = str->rg_flags;
1080	rgl->rl_free = str->rg_free;
1081	rgl->rl_dinodes = str->rg_dinodes;
1082	rgl->rl_igeneration = str->rg_igeneration;
1083	rgl->__pad = 0UL;
1084}
1085
1086static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
1087{
1088	struct gfs2_rgrpd *next = gfs2_rgrpd_get_next(rgd);
1089	struct gfs2_rgrp *str = buf;
1090	u32 crc;
1091
1092	str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
1093	str->rg_free = cpu_to_be32(rgd->rd_free);
1094	str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
1095	if (next == NULL)
1096		str->rg_skip = 0;
1097	else if (next->rd_addr > rgd->rd_addr)
1098		str->rg_skip = cpu_to_be32(next->rd_addr - rgd->rd_addr);
1099	str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
1100	str->rg_data0 = cpu_to_be64(rgd->rd_data0);
1101	str->rg_data = cpu_to_be32(rgd->rd_data);
1102	str->rg_bitbytes = cpu_to_be32(rgd->rd_bitbytes);
1103	str->rg_crc = 0;
1104	crc = gfs2_disk_hash(buf, sizeof(struct gfs2_rgrp));
1105	str->rg_crc = cpu_to_be32(crc);
1106
1107	memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
1108	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, buf);
1109}
1110
1111static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
1112{
1113	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1114	struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1115	struct gfs2_sbd *sdp = rgd->rd_sbd;
1116	int valid = 1;
1117
1118	if (rgl->rl_flags != str->rg_flags) {
1119		fs_warn(sdp, "GFS2: rgd: %llu lvb flag mismatch %u/%u",
1120			(unsigned long long)rgd->rd_addr,
1121		       be32_to_cpu(rgl->rl_flags), be32_to_cpu(str->rg_flags));
1122		valid = 0;
1123	}
1124	if (rgl->rl_free != str->rg_free) {
1125		fs_warn(sdp, "GFS2: rgd: %llu lvb free mismatch %u/%u",
1126			(unsigned long long)rgd->rd_addr,
1127			be32_to_cpu(rgl->rl_free), be32_to_cpu(str->rg_free));
1128		valid = 0;
1129	}
1130	if (rgl->rl_dinodes != str->rg_dinodes) {
1131		fs_warn(sdp, "GFS2: rgd: %llu lvb dinode mismatch %u/%u",
1132			(unsigned long long)rgd->rd_addr,
1133			be32_to_cpu(rgl->rl_dinodes),
1134			be32_to_cpu(str->rg_dinodes));
1135		valid = 0;
1136	}
1137	if (rgl->rl_igeneration != str->rg_igeneration) {
1138		fs_warn(sdp, "GFS2: rgd: %llu lvb igen mismatch %llu/%llu",
1139			(unsigned long long)rgd->rd_addr,
1140			(unsigned long long)be64_to_cpu(rgl->rl_igeneration),
1141			(unsigned long long)be64_to_cpu(str->rg_igeneration));
1142		valid = 0;
1143	}
1144	return valid;
1145}
1146
1147static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1148{
1149	struct gfs2_bitmap *bi;
1150	const u32 length = rgd->rd_length;
1151	const u8 *buffer = NULL;
1152	u32 i, goal, count = 0;
1153
1154	for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1155		goal = 0;
1156		buffer = bi->bi_bh->b_data + bi->bi_offset;
1157		WARN_ON(!buffer_uptodate(bi->bi_bh));
1158		while (goal < bi->bi_blocks) {
1159			goal = gfs2_bitfit(buffer, bi->bi_bytes, goal,
1160					   GFS2_BLKST_UNLINKED);
1161			if (goal == BFITNOENT)
1162				break;
1163			count++;
1164			goal++;
1165		}
1166	}
1167
1168	return count;
1169}
1170
1171static void rgrp_set_bitmap_flags(struct gfs2_rgrpd *rgd)
1172{
1173	struct gfs2_bitmap *bi;
1174	int x;
1175
1176	if (rgd->rd_free) {
1177		for (x = 0; x < rgd->rd_length; x++) {
1178			bi = rgd->rd_bits + x;
1179			clear_bit(GBF_FULL, &bi->bi_flags);
1180		}
1181	} else {
1182		for (x = 0; x < rgd->rd_length; x++) {
1183			bi = rgd->rd_bits + x;
1184			set_bit(GBF_FULL, &bi->bi_flags);
1185		}
1186	}
1187}
1188
1189/**
1190 * gfs2_rgrp_go_instantiate - Read in a RG's header and bitmaps
1191 * @gl: the glock representing the rgrpd to read in
1192 *
1193 * Read in all of a Resource Group's header and bitmap blocks.
1194 * Caller must eventually call gfs2_rgrp_brelse() to free the bitmaps.
1195 *
1196 * Returns: errno
1197 */
1198
1199int gfs2_rgrp_go_instantiate(struct gfs2_glock *gl)
1200{
1201	struct gfs2_rgrpd *rgd = gl->gl_object;
1202	struct gfs2_sbd *sdp = rgd->rd_sbd;
 
1203	unsigned int length = rgd->rd_length;
1204	struct gfs2_bitmap *bi;
1205	unsigned int x, y;
1206	int error;
1207
1208	if (rgd->rd_bits[0].bi_bh != NULL)
1209		return 0;
1210
1211	for (x = 0; x < length; x++) {
1212		bi = rgd->rd_bits + x;
1213		error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh);
1214		if (error)
1215			goto fail;
1216	}
1217
1218	for (y = length; y--;) {
1219		bi = rgd->rd_bits + y;
1220		error = gfs2_meta_wait(sdp, bi->bi_bh);
1221		if (error)
1222			goto fail;
1223		if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1224					      GFS2_METATYPE_RG)) {
1225			error = -EIO;
1226			goto fail;
1227		}
1228	}
1229
1230	gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1231	rgrp_set_bitmap_flags(rgd);
1232	rgd->rd_flags |= GFS2_RDF_CHECK;
1233	rgd->rd_free_clone = rgd->rd_free;
1234	GLOCK_BUG_ON(rgd->rd_gl, rgd->rd_reserved);
1235	/* max out the rgrp allocation failure point */
1236	rgd->rd_extfail_pt = rgd->rd_free;
 
 
1237	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1238		rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1239		gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1240				     rgd->rd_bits[0].bi_bh->b_data);
1241	} else if (sdp->sd_args.ar_rgrplvb) {
 
1242		if (!gfs2_rgrp_lvb_valid(rgd)){
1243			gfs2_consist_rgrpd(rgd);
1244			error = -EIO;
1245			goto fail;
1246		}
1247		if (rgd->rd_rgl->rl_unlinked == 0)
1248			rgd->rd_flags &= ~GFS2_RDF_CHECK;
1249	}
1250	return 0;
1251
1252fail:
1253	while (x--) {
1254		bi = rgd->rd_bits + x;
1255		brelse(bi->bi_bh);
1256		bi->bi_bh = NULL;
1257		gfs2_assert_warn(sdp, !bi->bi_clone);
1258	}
 
1259	return error;
1260}
1261
1262static int update_rgrp_lvb(struct gfs2_rgrpd *rgd, struct gfs2_holder *gh)
1263{
1264	u32 rl_flags;
1265
1266	if (!test_bit(GLF_INSTANTIATE_NEEDED, &gh->gh_gl->gl_flags))
1267		return 0;
1268
1269	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1270		return gfs2_instantiate(gh);
1271
1272	rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1273	rl_flags &= ~GFS2_RDF_MASK;
1274	rgd->rd_flags &= GFS2_RDF_MASK;
1275	rgd->rd_flags |= (rl_flags | GFS2_RDF_CHECK);
1276	if (rgd->rd_rgl->rl_unlinked == 0)
1277		rgd->rd_flags &= ~GFS2_RDF_CHECK;
1278	rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1279	rgrp_set_bitmap_flags(rgd);
1280	rgd->rd_free_clone = rgd->rd_free;
1281	GLOCK_BUG_ON(rgd->rd_gl, rgd->rd_reserved);
1282	/* max out the rgrp allocation failure point */
1283	rgd->rd_extfail_pt = rgd->rd_free;
1284	rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1285	rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1286	return 0;
1287}
1288
 
 
 
 
 
 
 
 
 
 
1289/**
1290 * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1291 * @rgd: The resource group
1292 *
1293 */
1294
1295void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd)
1296{
1297	int x, length = rgd->rd_length;
1298
1299	for (x = 0; x < length; x++) {
1300		struct gfs2_bitmap *bi = rgd->rd_bits + x;
1301		if (bi->bi_bh) {
1302			brelse(bi->bi_bh);
1303			bi->bi_bh = NULL;
1304		}
1305	}
1306	set_bit(GLF_INSTANTIATE_NEEDED, &rgd->rd_gl->gl_flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1307}
1308
1309int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1310			     struct buffer_head *bh,
1311			     const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1312{
1313	struct super_block *sb = sdp->sd_vfs;
1314	u64 blk;
1315	sector_t start = 0;
1316	sector_t nr_blks = 0;
1317	int rv = -EIO;
1318	unsigned int x;
1319	u32 trimmed = 0;
1320	u8 diff;
1321
1322	for (x = 0; x < bi->bi_bytes; x++) {
1323		const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1324		clone += bi->bi_offset;
1325		clone += x;
1326		if (bh) {
1327			const u8 *orig = bh->b_data + bi->bi_offset + x;
1328			diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1329		} else {
1330			diff = ~(*clone | (*clone >> 1));
1331		}
1332		diff &= 0x55;
1333		if (diff == 0)
1334			continue;
1335		blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1336		while(diff) {
1337			if (diff & 1) {
1338				if (nr_blks == 0)
1339					goto start_new_extent;
1340				if ((start + nr_blks) != blk) {
1341					if (nr_blks >= minlen) {
1342						rv = sb_issue_discard(sb,
1343							start, nr_blks,
1344							GFP_NOFS, 0);
1345						if (rv)
1346							goto fail;
1347						trimmed += nr_blks;
1348					}
1349					nr_blks = 0;
1350start_new_extent:
1351					start = blk;
1352				}
1353				nr_blks++;
1354			}
1355			diff >>= 2;
1356			blk++;
1357		}
1358	}
1359	if (nr_blks >= minlen) {
1360		rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1361		if (rv)
1362			goto fail;
1363		trimmed += nr_blks;
1364	}
1365	if (ptrimmed)
1366		*ptrimmed = trimmed;
1367	return 0;
1368
1369fail:
1370	if (sdp->sd_args.ar_discard)
1371		fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem\n", rv);
1372	sdp->sd_args.ar_discard = 0;
1373	return rv;
1374}
1375
1376/**
1377 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1378 * @filp: Any file on the filesystem
1379 * @argp: Pointer to the arguments (also used to pass result)
1380 *
1381 * Returns: 0 on success, otherwise error code
1382 */
1383
1384int gfs2_fitrim(struct file *filp, void __user *argp)
1385{
1386	struct inode *inode = file_inode(filp);
1387	struct gfs2_sbd *sdp = GFS2_SB(inode);
1388	struct block_device *bdev = sdp->sd_vfs->s_bdev;
1389	struct buffer_head *bh;
1390	struct gfs2_rgrpd *rgd;
1391	struct gfs2_rgrpd *rgd_end;
1392	struct gfs2_holder gh;
1393	struct fstrim_range r;
1394	int ret = 0;
1395	u64 amt;
1396	u64 trimmed = 0;
1397	u64 start, end, minlen;
1398	unsigned int x;
1399	unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1400
1401	if (!capable(CAP_SYS_ADMIN))
1402		return -EPERM;
1403
1404	if (!test_bit(SDF_JOURNAL_LIVE, &sdp->sd_flags))
1405		return -EROFS;
1406
1407	if (!bdev_max_discard_sectors(bdev))
1408		return -EOPNOTSUPP;
1409
1410	if (copy_from_user(&r, argp, sizeof(r)))
1411		return -EFAULT;
1412
1413	ret = gfs2_rindex_update(sdp);
1414	if (ret)
1415		return ret;
1416
1417	start = r.start >> bs_shift;
1418	end = start + (r.len >> bs_shift);
1419	minlen = max_t(u64, r.minlen, sdp->sd_sb.sb_bsize);
1420	minlen = max_t(u64, minlen, bdev_discard_granularity(bdev)) >> bs_shift;
1421
1422	if (end <= start || minlen > sdp->sd_max_rg_data)
1423		return -EINVAL;
1424
1425	rgd = gfs2_blk2rgrpd(sdp, start, 0);
1426	rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
1427
1428	if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
1429	    && (start > rgd_end->rd_data0 + rgd_end->rd_data))
1430		return -EINVAL; /* start is beyond the end of the fs */
1431
1432	while (1) {
1433
1434		ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1435					 LM_FLAG_NODE_SCOPE, &gh);
1436		if (ret)
1437			goto out;
1438
1439		if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1440			/* Trim each bitmap in the rgrp */
1441			for (x = 0; x < rgd->rd_length; x++) {
1442				struct gfs2_bitmap *bi = rgd->rd_bits + x;
1443				rgrp_lock_local(rgd);
1444				ret = gfs2_rgrp_send_discards(sdp,
1445						rgd->rd_data0, NULL, bi, minlen,
1446						&amt);
1447				rgrp_unlock_local(rgd);
1448				if (ret) {
1449					gfs2_glock_dq_uninit(&gh);
1450					goto out;
1451				}
1452				trimmed += amt;
1453			}
1454
1455			/* Mark rgrp as having been trimmed */
1456			ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1457			if (ret == 0) {
1458				bh = rgd->rd_bits[0].bi_bh;
1459				rgrp_lock_local(rgd);
1460				rgd->rd_flags |= GFS2_RGF_TRIMMED;
1461				gfs2_trans_add_meta(rgd->rd_gl, bh);
1462				gfs2_rgrp_out(rgd, bh->b_data);
1463				rgrp_unlock_local(rgd);
1464				gfs2_trans_end(sdp);
1465			}
1466		}
1467		gfs2_glock_dq_uninit(&gh);
1468
1469		if (rgd == rgd_end)
1470			break;
1471
1472		rgd = gfs2_rgrpd_get_next(rgd);
1473	}
1474
1475out:
1476	r.len = trimmed << bs_shift;
1477	if (copy_to_user(argp, &r, sizeof(r)))
1478		return -EFAULT;
1479
1480	return ret;
1481}
1482
1483/**
1484 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1485 * @ip: the inode structure
1486 *
1487 */
1488static void rs_insert(struct gfs2_inode *ip)
1489{
1490	struct rb_node **newn, *parent = NULL;
1491	int rc;
1492	struct gfs2_blkreserv *rs = &ip->i_res;
1493	struct gfs2_rgrpd *rgd = rs->rs_rgd;
 
1494
1495	BUG_ON(gfs2_rs_active(rs));
1496
1497	spin_lock(&rgd->rd_rsspin);
1498	newn = &rgd->rd_rstree.rb_node;
1499	while (*newn) {
1500		struct gfs2_blkreserv *cur =
1501			rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1502
1503		parent = *newn;
1504		rc = rs_cmp(rs->rs_start, rs->rs_requested, cur);
1505		if (rc > 0)
1506			newn = &((*newn)->rb_right);
1507		else if (rc < 0)
1508			newn = &((*newn)->rb_left);
1509		else {
1510			spin_unlock(&rgd->rd_rsspin);
1511			WARN_ON(1);
1512			return;
1513		}
1514	}
1515
1516	rb_link_node(&rs->rs_node, parent, newn);
1517	rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1518
1519	/* Do our rgrp accounting for the reservation */
1520	rgd->rd_requested += rs->rs_requested; /* blocks requested */
1521	spin_unlock(&rgd->rd_rsspin);
1522	trace_gfs2_rs(rs, TRACE_RS_INSERT);
1523}
1524
1525/**
1526 * rgd_free - return the number of free blocks we can allocate
1527 * @rgd: the resource group
1528 * @rs: The reservation to free
1529 *
1530 * This function returns the number of free blocks for an rgrp.
1531 * That's the clone-free blocks (blocks that are free, not including those
1532 * still being used for unlinked files that haven't been deleted.)
1533 *
1534 * It also subtracts any blocks reserved by someone else, but does not
1535 * include free blocks that are still part of our current reservation,
1536 * because obviously we can (and will) allocate them.
1537 */
1538static inline u32 rgd_free(struct gfs2_rgrpd *rgd, struct gfs2_blkreserv *rs)
1539{
1540	u32 tot_reserved, tot_free;
1541
1542	if (WARN_ON_ONCE(rgd->rd_requested < rs->rs_requested))
1543		return 0;
1544	tot_reserved = rgd->rd_requested - rs->rs_requested;
1545
1546	if (rgd->rd_free_clone < tot_reserved)
1547		tot_reserved = 0;
1548
1549	tot_free = rgd->rd_free_clone - tot_reserved;
1550
1551	return tot_free;
1552}
1553
1554/**
1555 * rg_mblk_search - find a group of multiple free blocks to form a reservation
1556 * @rgd: the resource group descriptor
1557 * @ip: pointer to the inode for which we're reserving blocks
1558 * @ap: the allocation parameters
1559 *
1560 */
1561
1562static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1563			   const struct gfs2_alloc_parms *ap)
1564{
1565	struct gfs2_rbm rbm = { .rgd = rgd, };
1566	u64 goal;
1567	struct gfs2_blkreserv *rs = &ip->i_res;
1568	u32 extlen;
1569	u32 free_blocks, blocks_available;
1570	int ret;
1571	struct inode *inode = &ip->i_inode;
1572
1573	spin_lock(&rgd->rd_rsspin);
1574	free_blocks = rgd_free(rgd, rs);
1575	if (rgd->rd_free_clone < rgd->rd_requested)
1576		free_blocks = 0;
1577	blocks_available = rgd->rd_free_clone - rgd->rd_reserved;
1578	if (rgd == rs->rs_rgd)
1579		blocks_available += rs->rs_reserved;
1580	spin_unlock(&rgd->rd_rsspin);
1581
1582	if (S_ISDIR(inode->i_mode))
1583		extlen = 1;
1584	else {
1585		extlen = max_t(u32, atomic_read(&ip->i_sizehint), ap->target);
1586		extlen = clamp(extlen, (u32)RGRP_RSRV_MINBLKS, free_blocks);
1587	}
1588	if (free_blocks < extlen || blocks_available < extlen)
1589		return;
1590
1591	/* Find bitmap block that contains bits for goal block */
1592	if (rgrp_contains_block(rgd, ip->i_goal))
1593		goal = ip->i_goal;
1594	else
1595		goal = rgd->rd_last_alloc + rgd->rd_data0;
1596
1597	if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1598		return;
1599
1600	ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, &ip->i_res, true);
1601	if (ret == 0) {
1602		rs->rs_start = gfs2_rbm_to_block(&rbm);
1603		rs->rs_requested = extlen;
 
1604		rs_insert(ip);
1605	} else {
1606		if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1607			rgd->rd_last_alloc = 0;
1608	}
1609}
1610
1611/**
1612 * gfs2_next_unreserved_block - Return next block that is not reserved
1613 * @rgd: The resource group
1614 * @block: The starting block
1615 * @length: The required length
1616 * @ignore_rs: Reservation to ignore
1617 *
1618 * If the block does not appear in any reservation, then return the
1619 * block number unchanged. If it does appear in the reservation, then
1620 * keep looking through the tree of reservations in order to find the
1621 * first block number which is not reserved.
1622 */
1623
1624static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1625				      u32 length,
1626				      struct gfs2_blkreserv *ignore_rs)
1627{
1628	struct gfs2_blkreserv *rs;
1629	struct rb_node *n;
1630	int rc;
1631
1632	spin_lock(&rgd->rd_rsspin);
1633	n = rgd->rd_rstree.rb_node;
1634	while (n) {
1635		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1636		rc = rs_cmp(block, length, rs);
1637		if (rc < 0)
1638			n = n->rb_left;
1639		else if (rc > 0)
1640			n = n->rb_right;
1641		else
1642			break;
1643	}
1644
1645	if (n) {
1646		while (rs_cmp(block, length, rs) == 0 && rs != ignore_rs) {
1647			block = rs->rs_start + rs->rs_requested;
1648			n = n->rb_right;
1649			if (n == NULL)
1650				break;
1651			rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1652		}
1653	}
1654
1655	spin_unlock(&rgd->rd_rsspin);
1656	return block;
1657}
1658
1659/**
1660 * gfs2_reservation_check_and_update - Check for reservations during block alloc
1661 * @rbm: The current position in the resource group
1662 * @rs: Our own reservation
1663 * @minext: The minimum extent length
1664 * @maxext: A pointer to the maximum extent structure
1665 *
1666 * This checks the current position in the rgrp to see whether there is
1667 * a reservation covering this block. If not then this function is a
1668 * no-op. If there is, then the position is moved to the end of the
1669 * contiguous reservation(s) so that we are pointing at the first
1670 * non-reserved block.
1671 *
1672 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1673 */
1674
1675static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1676					     struct gfs2_blkreserv *rs,
1677					     u32 minext,
1678					     struct gfs2_extent *maxext)
1679{
1680	u64 block = gfs2_rbm_to_block(rbm);
1681	u32 extlen = 1;
1682	u64 nblock;
 
1683
1684	/*
1685	 * If we have a minimum extent length, then skip over any extent
1686	 * which is less than the min extent length in size.
1687	 */
1688	if (minext > 1) {
1689		extlen = gfs2_free_extlen(rbm, minext);
1690		if (extlen <= maxext->len)
1691			goto fail;
1692	}
1693
1694	/*
1695	 * Check the extent which has been found against the reservations
1696	 * and skip if parts of it are already reserved
1697	 */
1698	nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, rs);
1699	if (nblock == block) {
1700		if (!minext || extlen >= minext)
1701			return 0;
1702
1703		if (extlen > maxext->len) {
1704			maxext->len = extlen;
1705			maxext->rbm = *rbm;
1706		}
1707	} else {
1708		u64 len = nblock - block;
1709		if (len >= (u64)1 << 32)
1710			return -E2BIG;
1711		extlen = len;
1712	}
1713fail:
1714	if (gfs2_rbm_add(rbm, extlen))
1715		return -E2BIG;
1716	return 1;
1717}
1718
1719/**
1720 * gfs2_rbm_find - Look for blocks of a particular state
1721 * @rbm: Value/result starting position and final position
1722 * @state: The state which we want to find
1723 * @minext: Pointer to the requested extent length
1724 *          This is updated to be the actual reservation size.
1725 * @rs: Our own reservation (NULL to skip checking for reservations)
1726 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1727 *          around until we've reached the starting point.
1728 *
1729 * Side effects:
1730 * - If looking for free blocks, we set GBF_FULL on each bitmap which
1731 *   has no free blocks in it.
1732 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1733 *   has come up short on a free block search.
1734 *
1735 * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1736 */
1737
1738static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
1739			 struct gfs2_blkreserv *rs, bool nowrap)
1740{
1741	bool scan_from_start = rbm->bii == 0 && rbm->offset == 0;
1742	struct buffer_head *bh;
1743	int last_bii;
 
 
 
1744	u32 offset;
1745	u8 *buffer;
1746	bool wrapped = false;
 
1747	int ret;
1748	struct gfs2_bitmap *bi;
1749	struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, };
1750
1751	/*
1752	 * Determine the last bitmap to search.  If we're not starting at the
1753	 * beginning of a bitmap, we need to search that bitmap twice to scan
1754	 * the entire resource group.
1755	 */
1756	last_bii = rbm->bii - (rbm->offset == 0);
 
1757
1758	while(1) {
1759		bi = rbm_bi(rbm);
1760		if (test_bit(GBF_FULL, &bi->bi_flags) &&
1761		    (state == GFS2_BLKST_FREE))
1762			goto next_bitmap;
1763
1764		bh = bi->bi_bh;
1765		buffer = bh->b_data + bi->bi_offset;
1766		WARN_ON(!buffer_uptodate(bh));
1767		if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1768			buffer = bi->bi_clone + bi->bi_offset;
1769		offset = gfs2_bitfit(buffer, bi->bi_bytes, rbm->offset, state);
1770		if (offset == BFITNOENT) {
1771			if (state == GFS2_BLKST_FREE && rbm->offset == 0)
1772				set_bit(GBF_FULL, &bi->bi_flags);
1773			goto next_bitmap;
1774		}
1775		rbm->offset = offset;
1776		if (!rs || !minext)
1777			return 0;
1778
1779		ret = gfs2_reservation_check_and_update(rbm, rs, *minext,
 
 
1780							&maxext);
1781		if (ret == 0)
1782			return 0;
1783		if (ret > 0)
 
1784			goto next_iter;
 
1785		if (ret == -E2BIG) {
1786			rbm->bii = 0;
1787			rbm->offset = 0;
 
1788			goto res_covered_end_of_rgrp;
1789		}
1790		return ret;
1791
 
 
 
 
1792next_bitmap:	/* Find next bitmap in the rgrp */
1793		rbm->offset = 0;
1794		rbm->bii++;
1795		if (rbm->bii == rbm->rgd->rd_length)
1796			rbm->bii = 0;
1797res_covered_end_of_rgrp:
1798		if (rbm->bii == 0) {
1799			if (wrapped)
1800				break;
1801			wrapped = true;
1802			if (nowrap)
1803				break;
1804		}
1805next_iter:
1806		/* Have we scanned the entire resource group? */
1807		if (wrapped && rbm->bii > last_bii)
1808			break;
1809	}
1810
1811	if (state != GFS2_BLKST_FREE)
1812		return -ENOSPC;
1813
1814	/* If the extent was too small, and it's smaller than the smallest
1815	   to have failed before, remember for future reference that it's
1816	   useless to search this rgrp again for this amount or more. */
1817	if (wrapped && (scan_from_start || rbm->bii > last_bii) &&
1818	    *minext < rbm->rgd->rd_extfail_pt)
1819		rbm->rgd->rd_extfail_pt = *minext - 1;
1820
1821	/* If the maximum extent we found is big enough to fulfill the
1822	   minimum requirements, use it anyway. */
1823	if (maxext.len) {
1824		*rbm = maxext.rbm;
1825		*minext = maxext.len;
1826		return 0;
1827	}
1828
1829	return -ENOSPC;
1830}
1831
1832/**
1833 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1834 * @rgd: The rgrp
1835 * @last_unlinked: block address of the last dinode we unlinked
1836 * @skip: block address we should explicitly not unlink
1837 *
1838 * Returns: 0 if no error
1839 *          The inode, if one has been found, in inode.
1840 */
1841
1842static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1843{
1844	u64 block;
1845	struct gfs2_sbd *sdp = rgd->rd_sbd;
1846	struct gfs2_glock *gl;
1847	struct gfs2_inode *ip;
1848	int error;
1849	int found = 0;
1850	struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 };
1851
1852	while (1) {
 
1853		error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL,
1854				      true);
 
1855		if (error == -ENOSPC)
1856			break;
1857		if (WARN_ON_ONCE(error))
1858			break;
1859
1860		block = gfs2_rbm_to_block(&rbm);
1861		if (gfs2_rbm_from_block(&rbm, block + 1))
1862			break;
1863		if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1864			continue;
1865		if (block == skip)
1866			continue;
1867		*last_unlinked = block;
1868
1869		error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl);
1870		if (error)
1871			continue;
1872
1873		/* If the inode is already in cache, we can ignore it here
1874		 * because the existing inode disposal code will deal with
1875		 * it when all refs have gone away. Accessing gl_object like
1876		 * this is not safe in general. Here it is ok because we do
1877		 * not dereference the pointer, and we only need an approx
1878		 * answer to whether it is NULL or not.
1879		 */
1880		ip = gl->gl_object;
1881
1882		if (ip || !gfs2_queue_verify_delete(gl, false))
1883			gfs2_glock_put(gl);
1884		else
1885			found++;
1886
1887		/* Limit reclaim to sensible number of tasks */
1888		if (found > NR_CPUS)
1889			return;
1890	}
1891
1892	rgd->rd_flags &= ~GFS2_RDF_CHECK;
1893	return;
1894}
1895
1896/**
1897 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1898 * @rgd: The rgrp in question
1899 * @loops: An indication of how picky we can be (0=very, 1=less so)
1900 *
1901 * This function uses the recently added glock statistics in order to
1902 * figure out whether a parciular resource group is suffering from
1903 * contention from multiple nodes. This is done purely on the basis
1904 * of timings, since this is the only data we have to work with and
1905 * our aim here is to reject a resource group which is highly contended
1906 * but (very important) not to do this too often in order to ensure that
1907 * we do not land up introducing fragmentation by changing resource
1908 * groups when not actually required.
1909 *
1910 * The calculation is fairly simple, we want to know whether the SRTTB
1911 * (i.e. smoothed round trip time for blocking operations) to acquire
1912 * the lock for this rgrp's glock is significantly greater than the
1913 * time taken for resource groups on average. We introduce a margin in
1914 * the form of the variable @var which is computed as the sum of the two
1915 * respective variences, and multiplied by a factor depending on @loops
1916 * and whether we have a lot of data to base the decision on. This is
1917 * then tested against the square difference of the means in order to
1918 * decide whether the result is statistically significant or not.
1919 *
1920 * Returns: A boolean verdict on the congestion status
1921 */
1922
1923static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1924{
1925	const struct gfs2_glock *gl = rgd->rd_gl;
1926	const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
1927	struct gfs2_lkstats *st;
1928	u64 r_dcount, l_dcount;
1929	u64 l_srttb, a_srttb = 0;
1930	s64 srttb_diff;
1931	u64 sqr_diff;
1932	u64 var;
1933	int cpu, nonzero = 0;
1934
1935	preempt_disable();
1936	for_each_present_cpu(cpu) {
1937		st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP];
1938		if (st->stats[GFS2_LKS_SRTTB]) {
1939			a_srttb += st->stats[GFS2_LKS_SRTTB];
1940			nonzero++;
1941		}
1942	}
1943	st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1944	if (nonzero)
1945		do_div(a_srttb, nonzero);
1946	r_dcount = st->stats[GFS2_LKS_DCOUNT];
1947	var = st->stats[GFS2_LKS_SRTTVARB] +
1948	      gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1949	preempt_enable();
1950
1951	l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1952	l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1953
1954	if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0))
1955		return false;
1956
1957	srttb_diff = a_srttb - l_srttb;
1958	sqr_diff = srttb_diff * srttb_diff;
1959
1960	var *= 2;
1961	if (l_dcount < 8 || r_dcount < 8)
1962		var *= 2;
1963	if (loops == 1)
1964		var *= 2;
1965
1966	return ((srttb_diff < 0) && (sqr_diff > var));
1967}
1968
1969/**
1970 * gfs2_rgrp_used_recently - test if an rgrp has been used recently
1971 * @rs: The block reservation with the rgrp to test
1972 * @msecs: The time limit in milliseconds
1973 *
1974 * Returns: True if the rgrp glock has been used within the time limit
1975 */
1976static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1977				    u64 msecs)
1978{
1979	u64 tdiff;
1980
1981	tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1982                            rs->rs_rgd->rd_gl->gl_dstamp));
1983
1984	return tdiff > (msecs * 1000 * 1000);
1985}
1986
1987static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1988{
1989	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 
1990
1991	return get_random_u32() % sdp->sd_rgrps;
 
1992}
1993
1994static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
1995{
1996	struct gfs2_rgrpd *rgd = *pos;
1997	struct gfs2_sbd *sdp = rgd->rd_sbd;
1998
1999	rgd = gfs2_rgrpd_get_next(rgd);
2000	if (rgd == NULL)
2001		rgd = gfs2_rgrpd_get_first(sdp);
2002	*pos = rgd;
2003	if (rgd != begin) /* If we didn't wrap */
2004		return true;
2005	return false;
2006}
2007
2008/**
2009 * fast_to_acquire - determine if a resource group will be fast to acquire
2010 * @rgd: The rgrp
2011 *
2012 * If this is one of our preferred rgrps, it should be quicker to acquire,
2013 * because we tried to set ourselves up as dlm lock master.
2014 */
2015static inline int fast_to_acquire(struct gfs2_rgrpd *rgd)
2016{
2017	struct gfs2_glock *gl = rgd->rd_gl;
2018
2019	if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) &&
2020	    !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) &&
2021	    !test_bit(GLF_DEMOTE, &gl->gl_flags))
2022		return 1;
2023	if (rgd->rd_flags & GFS2_RDF_PREFERRED)
2024		return 1;
2025	return 0;
2026}
2027
2028/**
2029 * gfs2_inplace_reserve - Reserve space in the filesystem
2030 * @ip: the inode to reserve space for
2031 * @ap: the allocation parameters
2032 *
2033 * We try our best to find an rgrp that has at least ap->target blocks
2034 * available. After a couple of passes (loops == 2), the prospects of finding
2035 * such an rgrp diminish. At this stage, we return the first rgrp that has
2036 * at least ap->min_target blocks available.
 
2037 *
2038 * Returns: 0 on success,
2039 *          -ENOMEM if a suitable rgrp can't be found
2040 *          errno otherwise
2041 */
2042
2043int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap)
2044{
2045	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2046	struct gfs2_rgrpd *begin = NULL;
2047	struct gfs2_blkreserv *rs = &ip->i_res;
2048	int error = 0, flags = LM_FLAG_NODE_SCOPE;
2049	bool rg_locked;
2050	u64 last_unlinked = NO_BLOCK;
2051	u32 target = ap->target;
2052	int loops = 0;
2053	u32 free_blocks, blocks_available, skip = 0;
2054
2055	BUG_ON(rs->rs_reserved);
2056
2057	if (sdp->sd_args.ar_rgrplvb)
2058		flags |= GL_SKIP;
2059	if (gfs2_assert_warn(sdp, target))
2060		return -EINVAL;
2061	if (gfs2_rs_active(rs)) {
2062		begin = rs->rs_rgd;
2063	} else if (rs->rs_rgd &&
2064		   rgrp_contains_block(rs->rs_rgd, ip->i_goal)) {
2065		begin = rs->rs_rgd;
2066	} else {
2067		check_and_update_goal(ip);
2068		rs->rs_rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
2069	}
2070	if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV))
2071		skip = gfs2_orlov_skip(ip);
2072	if (rs->rs_rgd == NULL)
2073		return -EBADSLT;
2074
2075	while (loops < 3) {
2076		struct gfs2_rgrpd *rgd;
2077
2078		rg_locked = gfs2_glock_is_locked_by_me(rs->rs_rgd->rd_gl);
2079		if (rg_locked) {
2080			rgrp_lock_local(rs->rs_rgd);
2081		} else {
2082			if (skip && skip--)
2083				goto next_rgrp;
2084			if (!gfs2_rs_active(rs)) {
2085				if (loops == 0 &&
2086				    !fast_to_acquire(rs->rs_rgd))
2087					goto next_rgrp;
2088				if ((loops < 2) &&
2089				    gfs2_rgrp_used_recently(rs, 1000) &&
2090				    gfs2_rgrp_congested(rs->rs_rgd, loops))
2091					goto next_rgrp;
2092			}
2093			error = gfs2_glock_nq_init(rs->rs_rgd->rd_gl,
2094						   LM_ST_EXCLUSIVE, flags,
2095						   &ip->i_rgd_gh);
2096			if (unlikely(error))
2097				return error;
2098			rgrp_lock_local(rs->rs_rgd);
2099			if (!gfs2_rs_active(rs) && (loops < 2) &&
2100			    gfs2_rgrp_congested(rs->rs_rgd, loops))
2101				goto skip_rgrp;
2102			if (sdp->sd_args.ar_rgrplvb) {
2103				error = update_rgrp_lvb(rs->rs_rgd,
2104							&ip->i_rgd_gh);
2105				if (unlikely(error)) {
2106					rgrp_unlock_local(rs->rs_rgd);
2107					gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2108					return error;
2109				}
2110			}
2111		}
2112
2113		/* Skip unusable resource groups */
2114		if ((rs->rs_rgd->rd_flags & (GFS2_RGF_NOALLOC |
2115						 GFS2_RDF_ERROR)) ||
2116		    (loops == 0 && target > rs->rs_rgd->rd_extfail_pt))
2117			goto skip_rgrp;
2118
2119		if (sdp->sd_args.ar_rgrplvb) {
2120			error = gfs2_instantiate(&ip->i_rgd_gh);
2121			if (error)
2122				goto skip_rgrp;
2123		}
2124
2125		/* Get a reservation if we don't already have one */
2126		if (!gfs2_rs_active(rs))
2127			rg_mblk_search(rs->rs_rgd, ip, ap);
2128
2129		/* Skip rgrps when we can't get a reservation on first pass */
2130		if (!gfs2_rs_active(rs) && (loops < 1))
2131			goto check_rgrp;
2132
2133		/* If rgrp has enough free space, use it */
2134		rgd = rs->rs_rgd;
2135		spin_lock(&rgd->rd_rsspin);
2136		free_blocks = rgd_free(rgd, rs);
2137		blocks_available = rgd->rd_free_clone - rgd->rd_reserved;
2138		if (free_blocks < target || blocks_available < target) {
2139			spin_unlock(&rgd->rd_rsspin);
2140			goto check_rgrp;
2141		}
2142		rs->rs_reserved = ap->target;
2143		if (rs->rs_reserved > blocks_available)
2144			rs->rs_reserved = blocks_available;
2145		rgd->rd_reserved += rs->rs_reserved;
2146		spin_unlock(&rgd->rd_rsspin);
2147		rgrp_unlock_local(rs->rs_rgd);
2148		return 0;
2149check_rgrp:
2150		/* Check for unlinked inodes which can be reclaimed */
2151		if (rs->rs_rgd->rd_flags & GFS2_RDF_CHECK)
2152			try_rgrp_unlink(rs->rs_rgd, &last_unlinked,
2153					ip->i_no_addr);
2154skip_rgrp:
2155		rgrp_unlock_local(rs->rs_rgd);
2156
2157		/* Drop reservation, if we couldn't use reserved rgrp */
2158		if (gfs2_rs_active(rs))
2159			gfs2_rs_deltree(rs);
2160
2161		/* Unlock rgrp if required */
2162		if (!rg_locked)
2163			gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2164next_rgrp:
2165		/* Find the next rgrp, and continue looking */
2166		if (gfs2_select_rgrp(&rs->rs_rgd, begin))
2167			continue;
2168		if (skip)
2169			continue;
2170
2171		/* If we've scanned all the rgrps, but found no free blocks
2172		 * then this checks for some less likely conditions before
2173		 * trying again.
2174		 */
2175		loops++;
2176		/* Check that fs hasn't grown if writing to rindex */
2177		if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
2178			error = gfs2_ri_update(ip);
2179			if (error)
2180				return error;
2181		}
2182		/* Flushing the log may release space */
2183		if (loops == 2) {
2184			if (ap->min_target)
2185				target = ap->min_target;
2186			gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL |
2187				       GFS2_LFC_INPLACE_RESERVE);
2188		}
2189	}
2190
2191	return -ENOSPC;
2192}
2193
2194/**
2195 * gfs2_inplace_release - release an inplace reservation
2196 * @ip: the inode the reservation was taken out on
2197 *
2198 * Release a reservation made by gfs2_inplace_reserve().
2199 */
2200
2201void gfs2_inplace_release(struct gfs2_inode *ip)
2202{
2203	struct gfs2_blkreserv *rs = &ip->i_res;
2204
2205	if (rs->rs_reserved) {
2206		struct gfs2_rgrpd *rgd = rs->rs_rgd;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2207
2208		spin_lock(&rgd->rd_rsspin);
2209		GLOCK_BUG_ON(rgd->rd_gl, rgd->rd_reserved < rs->rs_reserved);
2210		rgd->rd_reserved -= rs->rs_reserved;
2211		spin_unlock(&rgd->rd_rsspin);
2212		rs->rs_reserved = 0;
2213	}
2214	if (gfs2_holder_initialized(&ip->i_rgd_gh))
2215		gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2216}
2217
 
2218/**
2219 * gfs2_alloc_extent - allocate an extent from a given bitmap
2220 * @rbm: the resource group information
2221 * @dinode: TRUE if the first block we allocate is for a dinode
2222 * @n: The extent length (value/result)
2223 *
2224 * Add the bitmap buffer to the transaction.
2225 * Set the found bits to @new_state to change block's allocation state.
2226 */
2227static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
2228			     unsigned int *n)
2229{
2230	struct gfs2_rbm pos = { .rgd = rbm->rgd, };
2231	const unsigned int elen = *n;
2232	u64 block;
2233	int ret;
2234
2235	*n = 1;
2236	block = gfs2_rbm_to_block(rbm);
2237	gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh);
2238	gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2239	block++;
2240	while (*n < elen) {
2241		ret = gfs2_rbm_from_block(&pos, block);
2242		if (ret || gfs2_testbit(&pos, true) != GFS2_BLKST_FREE)
2243			break;
2244		gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh);
2245		gfs2_setbit(&pos, true, GFS2_BLKST_USED);
2246		(*n)++;
2247		block++;
2248	}
2249}
2250
2251/**
2252 * rgblk_free - Change alloc state of given block(s)
2253 * @sdp: the filesystem
2254 * @rgd: the resource group the blocks are in
2255 * @bstart: the start of a run of blocks to free
2256 * @blen: the length of the block run (all must lie within ONE RG!)
2257 * @new_state: GFS2_BLKST_XXX the after-allocation block state
 
 
2258 */
2259
2260static void rgblk_free(struct gfs2_sbd *sdp, struct gfs2_rgrpd *rgd,
2261		       u64 bstart, u32 blen, unsigned char new_state)
2262{
2263	struct gfs2_rbm rbm;
2264	struct gfs2_bitmap *bi, *bi_prev = NULL;
2265
2266	rbm.rgd = rgd;
2267	if (WARN_ON_ONCE(gfs2_rbm_from_block(&rbm, bstart)))
2268		return;
 
 
 
 
 
2269	while (blen--) {
2270		bi = rbm_bi(&rbm);
2271		if (bi != bi_prev) {
2272			if (!bi->bi_clone) {
2273				bi->bi_clone = kmalloc(bi->bi_bh->b_size,
2274						      GFP_NOFS | __GFP_NOFAIL);
2275				memcpy(bi->bi_clone + bi->bi_offset,
2276				       bi->bi_bh->b_data + bi->bi_offset,
2277				       bi->bi_bytes);
2278			}
2279			gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh);
2280			bi_prev = bi;
2281		}
2282		gfs2_setbit(&rbm, false, new_state);
2283		gfs2_rbm_add(&rbm, 1);
2284	}
 
 
2285}
2286
2287/**
2288 * gfs2_rgrp_dump - print out an rgrp
2289 * @seq: The iterator
2290 * @rgd: The rgrp in question
2291 * @fs_id_buf: pointer to file system id (if requested)
2292 *
2293 */
2294
2295void gfs2_rgrp_dump(struct seq_file *seq, struct gfs2_rgrpd *rgd,
2296		    const char *fs_id_buf)
2297{
 
2298	struct gfs2_blkreserv *trs;
2299	const struct rb_node *n;
2300
2301	spin_lock(&rgd->rd_rsspin);
2302	gfs2_print_dbg(seq, "%s R: n:%llu f:%02x b:%u/%u i:%u q:%u r:%u e:%u\n",
2303		       fs_id_buf,
2304		       (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2305		       rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2306		       rgd->rd_requested, rgd->rd_reserved, rgd->rd_extfail_pt);
2307	if (rgd->rd_sbd->sd_args.ar_rgrplvb && rgd->rd_rgl) {
2308		struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
2309
2310		gfs2_print_dbg(seq, "%s  L: f:%02x b:%u i:%u\n", fs_id_buf,
2311			       be32_to_cpu(rgl->rl_flags),
2312			       be32_to_cpu(rgl->rl_free),
2313			       be32_to_cpu(rgl->rl_dinodes));
2314	}
2315	for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2316		trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2317		dump_rs(seq, trs, fs_id_buf);
2318	}
2319	spin_unlock(&rgd->rd_rsspin);
2320}
2321
2322static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2323{
2324	struct gfs2_sbd *sdp = rgd->rd_sbd;
2325	char fs_id_buf[sizeof(sdp->sd_fsname) + 7];
2326
2327	fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2328		(unsigned long long)rgd->rd_addr);
2329	fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2330	sprintf(fs_id_buf, "fsid=%s: ", sdp->sd_fsname);
2331	gfs2_rgrp_dump(NULL, rgd, fs_id_buf);
2332	rgd->rd_flags |= GFS2_RDF_ERROR;
2333}
2334
2335/**
2336 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2337 * @ip: The inode we have just allocated blocks for
2338 * @rbm: The start of the allocated blocks
2339 * @len: The extent length
2340 *
2341 * Adjusts a reservation after an allocation has taken place. If the
2342 * reservation does not match the allocation, or if it is now empty
2343 * then it is removed.
2344 */
2345
2346static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2347				    const struct gfs2_rbm *rbm, unsigned len)
2348{
2349	struct gfs2_blkreserv *rs = &ip->i_res;
2350	struct gfs2_rgrpd *rgd = rbm->rgd;
 
 
 
2351
2352	BUG_ON(rs->rs_reserved < len);
2353	rs->rs_reserved -= len;
2354	if (gfs2_rs_active(rs)) {
2355		u64 start = gfs2_rbm_to_block(rbm);
2356
2357		if (rs->rs_start == start) {
2358			unsigned int rlen;
2359
2360			rs->rs_start += len;
2361			rlen = min(rs->rs_requested, len);
2362			rs->rs_requested -= rlen;
2363			rgd->rd_requested -= rlen;
2364			trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2365			if (rs->rs_start < rgd->rd_data0 + rgd->rd_data &&
2366			    rs->rs_requested)
2367				return;
2368			/* We used up our block reservation, so we should
2369			   reserve more blocks next time. */
2370			atomic_add(RGRP_RSRV_ADDBLKS, &ip->i_sizehint);
2371		}
2372		__rs_deltree(rs);
2373	}
 
 
2374}
2375
2376/**
2377 * gfs2_set_alloc_start - Set starting point for block allocation
2378 * @rbm: The rbm which will be set to the required location
2379 * @ip: The gfs2 inode
2380 * @dinode: Flag to say if allocation includes a new inode
2381 *
2382 * This sets the starting point from the reservation if one is active
2383 * otherwise it falls back to guessing a start point based on the
2384 * inode's goal block or the last allocation point in the rgrp.
2385 */
2386
2387static void gfs2_set_alloc_start(struct gfs2_rbm *rbm,
2388				 const struct gfs2_inode *ip, bool dinode)
2389{
2390	u64 goal;
2391
2392	if (gfs2_rs_active(&ip->i_res)) {
2393		goal = ip->i_res.rs_start;
2394	} else {
2395		if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal))
2396			goal = ip->i_goal;
2397		else
2398			goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0;
2399	}
2400	if (WARN_ON_ONCE(gfs2_rbm_from_block(rbm, goal))) {
2401		rbm->bii = 0;
2402		rbm->offset = 0;
2403	}
 
 
 
 
 
 
 
2404}
2405
2406/**
2407 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2408 * @ip: the inode to allocate the block for
2409 * @bn: Used to return the starting block number
2410 * @nblocks: requested number of blocks/extent length (value/result)
2411 * @dinode: 1 if we're allocating a dinode block, else 0
 
2412 *
2413 * Returns: 0 or error
2414 */
2415
2416int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2417		      bool dinode)
2418{
2419	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2420	struct buffer_head *dibh;
2421	struct gfs2_rbm rbm = { .rgd = ip->i_res.rs_rgd, };
 
2422	u64 block; /* block, within the file system scope */
2423	u32 minext = 1;
2424	int error = -ENOSPC;
2425
2426	BUG_ON(ip->i_res.rs_reserved < *nblocks);
 
2427
2428	rgrp_lock_local(rbm.rgd);
2429	if (gfs2_rs_active(&ip->i_res)) {
2430		gfs2_set_alloc_start(&rbm, ip, dinode);
2431		error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &minext, &ip->i_res, false);
2432	}
2433	if (error == -ENOSPC) {
2434		gfs2_set_alloc_start(&rbm, ip, dinode);
2435		error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &minext, NULL, false);
2436	}
2437
2438	/* Since all blocks are reserved in advance, this shouldn't happen */
2439	if (error) {
2440		fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2441			(unsigned long long)ip->i_no_addr, error, *nblocks,
2442			test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags),
2443			rbm.rgd->rd_extfail_pt);
2444		goto rgrp_error;
2445	}
2446
2447	gfs2_alloc_extent(&rbm, dinode, nblocks);
2448	block = gfs2_rbm_to_block(&rbm);
2449	rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
 
 
 
 
 
 
2450	if (!dinode) {
2451		ip->i_goal = block + *nblocks - 1;
2452		error = gfs2_meta_inode_buffer(ip, &dibh);
2453		if (error == 0) {
2454			struct gfs2_dinode *di =
2455				(struct gfs2_dinode *)dibh->b_data;
2456			gfs2_trans_add_meta(ip->i_gl, dibh);
2457			di->di_goal_meta = di->di_goal_data =
2458				cpu_to_be64(ip->i_goal);
2459			brelse(dibh);
2460		}
2461	}
2462	spin_lock(&rbm.rgd->rd_rsspin);
2463	gfs2_adjust_reservation(ip, &rbm, *nblocks);
2464	if (rbm.rgd->rd_free < *nblocks || rbm.rgd->rd_reserved < *nblocks) {
2465		fs_warn(sdp, "nblocks=%u\n", *nblocks);
2466		spin_unlock(&rbm.rgd->rd_rsspin);
2467		goto rgrp_error;
2468	}
2469	GLOCK_BUG_ON(rbm.rgd->rd_gl, rbm.rgd->rd_reserved < *nblocks);
2470	GLOCK_BUG_ON(rbm.rgd->rd_gl, rbm.rgd->rd_free_clone < *nblocks);
2471	GLOCK_BUG_ON(rbm.rgd->rd_gl, rbm.rgd->rd_free < *nblocks);
2472	rbm.rgd->rd_reserved -= *nblocks;
2473	rbm.rgd->rd_free_clone -= *nblocks;
2474	rbm.rgd->rd_free -= *nblocks;
2475	spin_unlock(&rbm.rgd->rd_rsspin);
2476	if (dinode) {
2477		u64 generation;
2478
2479		rbm.rgd->rd_dinodes++;
2480		generation = rbm.rgd->rd_igeneration++;
2481		if (generation == 0)
2482			generation = rbm.rgd->rd_igeneration++;
2483		ip->i_generation = generation;
2484	}
2485
2486	gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2487	gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2488	rgrp_unlock_local(rbm.rgd);
2489
2490	gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2491	if (dinode)
2492		gfs2_trans_remove_revoke(sdp, block, *nblocks);
2493
2494	gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
2495
 
2496	trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2497			       dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2498	*bn = block;
2499	return 0;
2500
2501rgrp_error:
2502	rgrp_unlock_local(rbm.rgd);
2503	gfs2_rgrp_error(rbm.rgd);
2504	return -EIO;
2505}
2506
2507/**
2508 * __gfs2_free_blocks - free a contiguous run of block(s)
2509 * @ip: the inode these blocks are being freed from
2510 * @rgd: the resource group the blocks are in
2511 * @bstart: first block of a run of contiguous blocks
2512 * @blen: the length of the block run
2513 * @meta: 1 if the blocks represent metadata
2514 *
2515 */
2516
2517void __gfs2_free_blocks(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd,
2518			u64 bstart, u32 blen, int meta)
2519{
2520	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 
2521
2522	rgrp_lock_local(rgd);
2523	rgblk_free(sdp, rgd, bstart, blen, GFS2_BLKST_FREE);
 
2524	trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2525	rgd->rd_free += blen;
2526	rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2527	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2528	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2529	rgrp_unlock_local(rgd);
2530
2531	/* Directories keep their data in the metadata address space */
2532	if (meta || ip->i_depth || gfs2_is_jdata(ip))
2533		gfs2_journal_wipe(ip, bstart, blen);
2534}
2535
2536/**
2537 * gfs2_free_meta - free a contiguous run of data block(s)
2538 * @ip: the inode these blocks are being freed from
2539 * @rgd: the resource group the blocks are in
2540 * @bstart: first block of a run of contiguous blocks
2541 * @blen: the length of the block run
2542 *
2543 */
2544
2545void gfs2_free_meta(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd,
2546		    u64 bstart, u32 blen)
2547{
2548	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2549
2550	__gfs2_free_blocks(ip, rgd, bstart, blen, 1);
2551	gfs2_statfs_change(sdp, 0, +blen, 0);
2552	gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2553}
2554
2555void gfs2_unlink_di(struct inode *inode)
2556{
2557	struct gfs2_inode *ip = GFS2_I(inode);
2558	struct gfs2_sbd *sdp = GFS2_SB(inode);
2559	struct gfs2_rgrpd *rgd;
2560	u64 blkno = ip->i_no_addr;
2561
2562	rgd = gfs2_blk2rgrpd(sdp, blkno, true);
2563	if (!rgd)
2564		return;
2565	rgrp_lock_local(rgd);
2566	rgblk_free(sdp, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2567	trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2568	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2569	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2570	be32_add_cpu(&rgd->rd_rgl->rl_unlinked, 1);
2571	rgrp_unlock_local(rgd);
2572}
2573
2574void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2575{
2576	struct gfs2_sbd *sdp = rgd->rd_sbd;
 
 
 
 
 
 
2577
2578	rgrp_lock_local(rgd);
2579	rgblk_free(sdp, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2580	if (!rgd->rd_dinodes)
2581		gfs2_consist_rgrpd(rgd);
2582	rgd->rd_dinodes--;
2583	rgd->rd_free++;
2584
2585	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2586	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2587	be32_add_cpu(&rgd->rd_rgl->rl_unlinked, -1);
2588	rgrp_unlock_local(rgd);
2589
2590	gfs2_statfs_change(sdp, 0, +1, -1);
2591	trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2592	gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2593	gfs2_journal_wipe(ip, ip->i_no_addr, 1);
2594}
2595
2596/**
2597 * gfs2_check_blk_type - Check the type of a block
2598 * @sdp: The superblock
2599 * @no_addr: The block number to check
2600 * @type: The block type we are looking for
2601 *
2602 * The inode glock of @no_addr must be held.  The @type to check for is either
2603 * GFS2_BLKST_DINODE or GFS2_BLKST_UNLINKED; checking for type GFS2_BLKST_FREE
2604 * or GFS2_BLKST_USED would make no sense.
2605 *
2606 * Returns: 0 if the block type matches the expected type
2607 *          -ESTALE if it doesn't match
2608 *          or -ve errno if something went wrong while checking
2609 */
2610
2611int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2612{
2613	struct gfs2_rgrpd *rgd;
2614	struct gfs2_holder rgd_gh;
2615	struct gfs2_rbm rbm;
2616	int error = -EINVAL;
2617
2618	rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2619	if (!rgd)
2620		goto fail;
2621
2622	error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2623	if (error)
2624		goto fail;
2625
2626	rbm.rgd = rgd;
2627	error = gfs2_rbm_from_block(&rbm, no_addr);
2628	if (!WARN_ON_ONCE(error)) {
2629		/*
2630		 * No need to take the local resource group lock here; the
2631		 * inode glock of @no_addr provides the necessary
2632		 * synchronization in case the block is an inode.  (In case
2633		 * the block is not an inode, the block type will not match
2634		 * the @type we are looking for.)
2635		 */
2636		if (gfs2_testbit(&rbm, false) != type)
2637			error = -ESTALE;
2638	}
2639
2640	gfs2_glock_dq_uninit(&rgd_gh);
2641
2642fail:
2643	return error;
2644}
2645
2646/**
2647 * gfs2_rlist_add - add a RG to a list of RGs
2648 * @ip: the inode
2649 * @rlist: the list of resource groups
2650 * @block: the block
2651 *
2652 * Figure out what RG a block belongs to and add that RG to the list
2653 *
2654 * FIXME: Don't use NOFAIL
2655 *
2656 */
2657
2658void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2659		    u64 block)
2660{
2661	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2662	struct gfs2_rgrpd *rgd;
2663	struct gfs2_rgrpd **tmp;
2664	unsigned int new_space;
2665	unsigned int x;
2666
2667	if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2668		return;
2669
2670	/*
2671	 * The resource group last accessed is kept in the last position.
2672	 */
2673
2674	if (rlist->rl_rgrps) {
2675		rgd = rlist->rl_rgd[rlist->rl_rgrps - 1];
2676		if (rgrp_contains_block(rgd, block))
2677			return;
2678		rgd = gfs2_blk2rgrpd(sdp, block, 1);
2679	} else {
2680		rgd = ip->i_res.rs_rgd;
2681		if (!rgd || !rgrp_contains_block(rgd, block))
2682			rgd = gfs2_blk2rgrpd(sdp, block, 1);
2683	}
2684
2685	if (!rgd) {
2686		fs_err(sdp, "rlist_add: no rgrp for block %llu\n",
2687		       (unsigned long long)block);
2688		return;
2689	}
 
2690
2691	for (x = 0; x < rlist->rl_rgrps; x++) {
2692		if (rlist->rl_rgd[x] == rgd) {
2693			swap(rlist->rl_rgd[x],
2694			     rlist->rl_rgd[rlist->rl_rgrps - 1]);
2695			return;
2696		}
2697	}
2698
2699	if (rlist->rl_rgrps == rlist->rl_space) {
2700		new_space = rlist->rl_space + 10;
2701
2702		tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2703			      GFP_NOFS | __GFP_NOFAIL);
2704
2705		if (rlist->rl_rgd) {
2706			memcpy(tmp, rlist->rl_rgd,
2707			       rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2708			kfree(rlist->rl_rgd);
2709		}
2710
2711		rlist->rl_space = new_space;
2712		rlist->rl_rgd = tmp;
2713	}
2714
2715	rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2716}
2717
2718/**
2719 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2720 *      and initialize an array of glock holders for them
2721 * @rlist: the list of resource groups
2722 * @state: the state we're requesting
2723 * @flags: the modifier flags
2724 *
2725 * FIXME: Don't use NOFAIL
2726 *
2727 */
2728
2729void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist,
2730		      unsigned int state, u16 flags)
2731{
2732	unsigned int x;
2733
2734	rlist->rl_ghs = kmalloc_array(rlist->rl_rgrps,
2735				      sizeof(struct gfs2_holder),
2736				      GFP_NOFS | __GFP_NOFAIL);
2737	for (x = 0; x < rlist->rl_rgrps; x++)
2738		gfs2_holder_init(rlist->rl_rgd[x]->rd_gl, state, flags,
2739				 &rlist->rl_ghs[x]);
 
2740}
2741
2742/**
2743 * gfs2_rlist_free - free a resource group list
2744 * @rlist: the list of resource groups
2745 *
2746 */
2747
2748void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2749{
2750	unsigned int x;
2751
2752	kfree(rlist->rl_rgd);
2753
2754	if (rlist->rl_ghs) {
2755		for (x = 0; x < rlist->rl_rgrps; x++)
2756			gfs2_holder_uninit(&rlist->rl_ghs[x]);
2757		kfree(rlist->rl_ghs);
2758		rlist->rl_ghs = NULL;
2759	}
2760}
2761
2762void rgrp_lock_local(struct gfs2_rgrpd *rgd)
2763{
2764	mutex_lock(&rgd->rd_mutex);
2765}
2766
2767void rgrp_unlock_local(struct gfs2_rgrpd *rgd)
2768{
2769	mutex_unlock(&rgd->rd_mutex);
2770}