Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
   3 * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
   4 *
   5 * This copyrighted material is made available to anyone wishing to use,
   6 * modify, copy, or redistribute it subject to the terms and conditions
   7 * of the GNU General Public License version 2.
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/slab.h>
  13#include <linux/spinlock.h>
  14#include <linux/completion.h>
  15#include <linux/buffer_head.h>
  16#include <linux/fs.h>
  17#include <linux/gfs2_ondisk.h>
  18#include <linux/prefetch.h>
  19#include <linux/blkdev.h>
  20#include <linux/rbtree.h>
  21#include <linux/random.h>
  22
  23#include "gfs2.h"
  24#include "incore.h"
  25#include "glock.h"
  26#include "glops.h"
  27#include "lops.h"
  28#include "meta_io.h"
  29#include "quota.h"
  30#include "rgrp.h"
  31#include "super.h"
  32#include "trans.h"
  33#include "util.h"
  34#include "log.h"
  35#include "inode.h"
  36#include "trace_gfs2.h"
  37#include "dir.h"
  38
  39#define BFITNOENT ((u32)~0)
  40#define NO_BLOCK ((u64)~0)
  41
  42#if BITS_PER_LONG == 32
  43#define LBITMASK   (0x55555555UL)
  44#define LBITSKIP55 (0x55555555UL)
  45#define LBITSKIP00 (0x00000000UL)
  46#else
  47#define LBITMASK   (0x5555555555555555UL)
  48#define LBITSKIP55 (0x5555555555555555UL)
  49#define LBITSKIP00 (0x0000000000000000UL)
  50#endif
  51
  52/*
  53 * These routines are used by the resource group routines (rgrp.c)
  54 * to keep track of block allocation.  Each block is represented by two
  55 * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
  56 *
  57 * 0 = Free
  58 * 1 = Used (not metadata)
  59 * 2 = Unlinked (still in use) inode
  60 * 3 = Used (metadata)
  61 */
  62
  63struct gfs2_extent {
  64	struct gfs2_rbm rbm;
  65	u32 len;
  66};
  67
  68static const char valid_change[16] = {
  69	        /* current */
  70	/* n */ 0, 1, 1, 1,
  71	/* e */ 1, 0, 0, 0,
  72	/* w */ 0, 0, 0, 1,
  73	        1, 0, 0, 0
  74};
  75
  76static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
  77			 const struct gfs2_inode *ip, bool nowrap);
  78
  79
  80/**
  81 * gfs2_setbit - Set a bit in the bitmaps
  82 * @rbm: The position of the bit to set
  83 * @do_clone: Also set the clone bitmap, if it exists
  84 * @new_state: the new state of the block
  85 *
  86 */
  87
  88static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
  89			       unsigned char new_state)
  90{
  91	unsigned char *byte1, *byte2, *end, cur_state;
  92	struct gfs2_bitmap *bi = rbm_bi(rbm);
  93	unsigned int buflen = bi->bi_len;
  94	const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
  95
  96	byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY);
  97	end = bi->bi_bh->b_data + bi->bi_offset + buflen;
  98
  99	BUG_ON(byte1 >= end);
 100
 101	cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
 102
 103	if (unlikely(!valid_change[new_state * 4 + cur_state])) {
 104		pr_warn("buf_blk = 0x%x old_state=%d, new_state=%d\n",
 105			rbm->offset, cur_state, new_state);
 106		pr_warn("rgrp=0x%llx bi_start=0x%x\n",
 107			(unsigned long long)rbm->rgd->rd_addr, bi->bi_start);
 108		pr_warn("bi_offset=0x%x bi_len=0x%x\n",
 109			bi->bi_offset, bi->bi_len);
 110		dump_stack();
 111		gfs2_consist_rgrpd(rbm->rgd);
 112		return;
 113	}
 114	*byte1 ^= (cur_state ^ new_state) << bit;
 115
 116	if (do_clone && bi->bi_clone) {
 117		byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY);
 118		cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
 119		*byte2 ^= (cur_state ^ new_state) << bit;
 120	}
 121}
 122
 123/**
 124 * gfs2_testbit - test a bit in the bitmaps
 125 * @rbm: The bit to test
 126 *
 127 * Returns: The two bit block state of the requested bit
 128 */
 129
 130static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm)
 131{
 132	struct gfs2_bitmap *bi = rbm_bi(rbm);
 133	const u8 *buffer = bi->bi_bh->b_data + bi->bi_offset;
 134	const u8 *byte;
 135	unsigned int bit;
 136
 137	byte = buffer + (rbm->offset / GFS2_NBBY);
 138	bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
 139
 140	return (*byte >> bit) & GFS2_BIT_MASK;
 141}
 142
 143/**
 144 * gfs2_bit_search
 145 * @ptr: Pointer to bitmap data
 146 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
 147 * @state: The state we are searching for
 148 *
 149 * We xor the bitmap data with a patter which is the bitwise opposite
 150 * of what we are looking for, this gives rise to a pattern of ones
 151 * wherever there is a match. Since we have two bits per entry, we
 152 * take this pattern, shift it down by one place and then and it with
 153 * the original. All the even bit positions (0,2,4, etc) then represent
 154 * successful matches, so we mask with 0x55555..... to remove the unwanted
 155 * odd bit positions.
 156 *
 157 * This allows searching of a whole u64 at once (32 blocks) with a
 158 * single test (on 64 bit arches).
 159 */
 160
 161static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
 162{
 163	u64 tmp;
 164	static const u64 search[] = {
 165		[0] = 0xffffffffffffffffULL,
 166		[1] = 0xaaaaaaaaaaaaaaaaULL,
 167		[2] = 0x5555555555555555ULL,
 168		[3] = 0x0000000000000000ULL,
 169	};
 170	tmp = le64_to_cpu(*ptr) ^ search[state];
 171	tmp &= (tmp >> 1);
 172	tmp &= mask;
 173	return tmp;
 174}
 175
 176/**
 177 * rs_cmp - multi-block reservation range compare
 178 * @blk: absolute file system block number of the new reservation
 179 * @len: number of blocks in the new reservation
 180 * @rs: existing reservation to compare against
 181 *
 182 * returns: 1 if the block range is beyond the reach of the reservation
 183 *         -1 if the block range is before the start of the reservation
 184 *          0 if the block range overlaps with the reservation
 185 */
 186static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
 187{
 188	u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm);
 189
 190	if (blk >= startblk + rs->rs_free)
 191		return 1;
 192	if (blk + len - 1 < startblk)
 193		return -1;
 194	return 0;
 195}
 196
 197/**
 198 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
 199 *       a block in a given allocation state.
 200 * @buf: the buffer that holds the bitmaps
 201 * @len: the length (in bytes) of the buffer
 202 * @goal: start search at this block's bit-pair (within @buffer)
 203 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
 204 *
 205 * Scope of @goal and returned block number is only within this bitmap buffer,
 206 * not entire rgrp or filesystem.  @buffer will be offset from the actual
 207 * beginning of a bitmap block buffer, skipping any header structures, but
 208 * headers are always a multiple of 64 bits long so that the buffer is
 209 * always aligned to a 64 bit boundary.
 210 *
 211 * The size of the buffer is in bytes, but is it assumed that it is
 212 * always ok to read a complete multiple of 64 bits at the end
 213 * of the block in case the end is no aligned to a natural boundary.
 214 *
 215 * Return: the block number (bitmap buffer scope) that was found
 216 */
 217
 218static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
 219		       u32 goal, u8 state)
 220{
 221	u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
 222	const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
 223	const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
 224	u64 tmp;
 225	u64 mask = 0x5555555555555555ULL;
 226	u32 bit;
 227
 228	/* Mask off bits we don't care about at the start of the search */
 229	mask <<= spoint;
 230	tmp = gfs2_bit_search(ptr, mask, state);
 231	ptr++;
 232	while(tmp == 0 && ptr < end) {
 233		tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
 234		ptr++;
 235	}
 236	/* Mask off any bits which are more than len bytes from the start */
 237	if (ptr == end && (len & (sizeof(u64) - 1)))
 238		tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
 239	/* Didn't find anything, so return */
 240	if (tmp == 0)
 241		return BFITNOENT;
 242	ptr--;
 243	bit = __ffs64(tmp);
 244	bit /= 2;	/* two bits per entry in the bitmap */
 245	return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
 246}
 247
 248/**
 249 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
 250 * @rbm: The rbm with rgd already set correctly
 251 * @block: The block number (filesystem relative)
 252 *
 253 * This sets the bi and offset members of an rbm based on a
 254 * resource group and a filesystem relative block number. The
 255 * resource group must be set in the rbm on entry, the bi and
 256 * offset members will be set by this function.
 257 *
 258 * Returns: 0 on success, or an error code
 259 */
 260
 261static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
 262{
 263	u64 rblock = block - rbm->rgd->rd_data0;
 264
 265	if (WARN_ON_ONCE(rblock > UINT_MAX))
 266		return -EINVAL;
 267	if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data)
 268		return -E2BIG;
 269
 270	rbm->bii = 0;
 271	rbm->offset = (u32)(rblock);
 272	/* Check if the block is within the first block */
 273	if (rbm->offset < rbm_bi(rbm)->bi_blocks)
 274		return 0;
 275
 276	/* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
 277	rbm->offset += (sizeof(struct gfs2_rgrp) -
 278			sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
 279	rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
 280	rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
 281	return 0;
 282}
 283
 284/**
 285 * gfs2_rbm_incr - increment an rbm structure
 286 * @rbm: The rbm with rgd already set correctly
 287 *
 288 * This function takes an existing rbm structure and increments it to the next
 289 * viable block offset.
 290 *
 291 * Returns: If incrementing the offset would cause the rbm to go past the
 292 *          end of the rgrp, true is returned, otherwise false.
 293 *
 294 */
 295
 296static bool gfs2_rbm_incr(struct gfs2_rbm *rbm)
 297{
 298	if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */
 299		rbm->offset++;
 300		return false;
 301	}
 302	if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */
 303		return true;
 304
 305	rbm->offset = 0;
 306	rbm->bii++;
 307	return false;
 308}
 309
 310/**
 311 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
 312 * @rbm: Position to search (value/result)
 313 * @n_unaligned: Number of unaligned blocks to check
 314 * @len: Decremented for each block found (terminate on zero)
 315 *
 316 * Returns: true if a non-free block is encountered
 317 */
 318
 319static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
 320{
 321	u32 n;
 322	u8 res;
 323
 324	for (n = 0; n < n_unaligned; n++) {
 325		res = gfs2_testbit(rbm);
 326		if (res != GFS2_BLKST_FREE)
 327			return true;
 328		(*len)--;
 329		if (*len == 0)
 330			return true;
 331		if (gfs2_rbm_incr(rbm))
 332			return true;
 333	}
 334
 335	return false;
 336}
 337
 338/**
 339 * gfs2_free_extlen - Return extent length of free blocks
 340 * @rrbm: Starting position
 341 * @len: Max length to check
 342 *
 343 * Starting at the block specified by the rbm, see how many free blocks
 344 * there are, not reading more than len blocks ahead. This can be done
 345 * using memchr_inv when the blocks are byte aligned, but has to be done
 346 * on a block by block basis in case of unaligned blocks. Also this
 347 * function can cope with bitmap boundaries (although it must stop on
 348 * a resource group boundary)
 349 *
 350 * Returns: Number of free blocks in the extent
 351 */
 352
 353static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
 354{
 355	struct gfs2_rbm rbm = *rrbm;
 356	u32 n_unaligned = rbm.offset & 3;
 357	u32 size = len;
 358	u32 bytes;
 359	u32 chunk_size;
 360	u8 *ptr, *start, *end;
 361	u64 block;
 362	struct gfs2_bitmap *bi;
 363
 364	if (n_unaligned &&
 365	    gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
 366		goto out;
 367
 368	n_unaligned = len & 3;
 369	/* Start is now byte aligned */
 370	while (len > 3) {
 371		bi = rbm_bi(&rbm);
 372		start = bi->bi_bh->b_data;
 373		if (bi->bi_clone)
 374			start = bi->bi_clone;
 375		end = start + bi->bi_bh->b_size;
 376		start += bi->bi_offset;
 377		BUG_ON(rbm.offset & 3);
 378		start += (rbm.offset / GFS2_NBBY);
 379		bytes = min_t(u32, len / GFS2_NBBY, (end - start));
 380		ptr = memchr_inv(start, 0, bytes);
 381		chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
 382		chunk_size *= GFS2_NBBY;
 383		BUG_ON(len < chunk_size);
 384		len -= chunk_size;
 385		block = gfs2_rbm_to_block(&rbm);
 386		if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
 387			n_unaligned = 0;
 388			break;
 389		}
 390		if (ptr) {
 391			n_unaligned = 3;
 392			break;
 393		}
 394		n_unaligned = len & 3;
 395	}
 396
 397	/* Deal with any bits left over at the end */
 398	if (n_unaligned)
 399		gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
 400out:
 401	return size - len;
 402}
 403
 404/**
 405 * gfs2_bitcount - count the number of bits in a certain state
 406 * @rgd: the resource group descriptor
 407 * @buffer: the buffer that holds the bitmaps
 408 * @buflen: the length (in bytes) of the buffer
 409 * @state: the state of the block we're looking for
 410 *
 411 * Returns: The number of bits
 412 */
 413
 414static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
 415			 unsigned int buflen, u8 state)
 416{
 417	const u8 *byte = buffer;
 418	const u8 *end = buffer + buflen;
 419	const u8 state1 = state << 2;
 420	const u8 state2 = state << 4;
 421	const u8 state3 = state << 6;
 422	u32 count = 0;
 423
 424	for (; byte < end; byte++) {
 425		if (((*byte) & 0x03) == state)
 426			count++;
 427		if (((*byte) & 0x0C) == state1)
 428			count++;
 429		if (((*byte) & 0x30) == state2)
 430			count++;
 431		if (((*byte) & 0xC0) == state3)
 432			count++;
 433	}
 434
 435	return count;
 436}
 437
 438/**
 439 * gfs2_rgrp_verify - Verify that a resource group is consistent
 440 * @rgd: the rgrp
 441 *
 442 */
 443
 444void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
 445{
 446	struct gfs2_sbd *sdp = rgd->rd_sbd;
 447	struct gfs2_bitmap *bi = NULL;
 448	u32 length = rgd->rd_length;
 449	u32 count[4], tmp;
 450	int buf, x;
 451
 452	memset(count, 0, 4 * sizeof(u32));
 453
 454	/* Count # blocks in each of 4 possible allocation states */
 455	for (buf = 0; buf < length; buf++) {
 456		bi = rgd->rd_bits + buf;
 457		for (x = 0; x < 4; x++)
 458			count[x] += gfs2_bitcount(rgd,
 459						  bi->bi_bh->b_data +
 460						  bi->bi_offset,
 461						  bi->bi_len, x);
 462	}
 463
 464	if (count[0] != rgd->rd_free) {
 465		if (gfs2_consist_rgrpd(rgd))
 466			fs_err(sdp, "free data mismatch:  %u != %u\n",
 467			       count[0], rgd->rd_free);
 468		return;
 469	}
 470
 471	tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
 472	if (count[1] != tmp) {
 473		if (gfs2_consist_rgrpd(rgd))
 474			fs_err(sdp, "used data mismatch:  %u != %u\n",
 475			       count[1], tmp);
 476		return;
 477	}
 478
 479	if (count[2] + count[3] != rgd->rd_dinodes) {
 480		if (gfs2_consist_rgrpd(rgd))
 481			fs_err(sdp, "used metadata mismatch:  %u != %u\n",
 482			       count[2] + count[3], rgd->rd_dinodes);
 483		return;
 484	}
 485}
 486
 
 
 
 
 
 
 
 487/**
 488 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
 489 * @sdp: The GFS2 superblock
 490 * @blk: The data block number
 491 * @exact: True if this needs to be an exact match
 492 *
 493 * The @exact argument should be set to true by most callers. The exception
 494 * is when we need to match blocks which are not represented by the rgrp
 495 * bitmap, but which are part of the rgrp (i.e. padding blocks) which are
 496 * there for alignment purposes. Another way of looking at it is that @exact
 497 * matches only valid data/metadata blocks, but with @exact false, it will
 498 * match any block within the extent of the rgrp.
 499 *
 500 * Returns: The resource group, or NULL if not found
 501 */
 502
 503struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
 504{
 505	struct rb_node *n, *next;
 506	struct gfs2_rgrpd *cur;
 507
 508	spin_lock(&sdp->sd_rindex_spin);
 509	n = sdp->sd_rindex_tree.rb_node;
 510	while (n) {
 511		cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
 512		next = NULL;
 513		if (blk < cur->rd_addr)
 514			next = n->rb_left;
 515		else if (blk >= cur->rd_data0 + cur->rd_data)
 516			next = n->rb_right;
 517		if (next == NULL) {
 518			spin_unlock(&sdp->sd_rindex_spin);
 519			if (exact) {
 520				if (blk < cur->rd_addr)
 521					return NULL;
 522				if (blk >= cur->rd_data0 + cur->rd_data)
 523					return NULL;
 524			}
 525			return cur;
 526		}
 527		n = next;
 528	}
 529	spin_unlock(&sdp->sd_rindex_spin);
 530
 531	return NULL;
 532}
 533
 534/**
 535 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
 536 * @sdp: The GFS2 superblock
 537 *
 538 * Returns: The first rgrp in the filesystem
 539 */
 540
 541struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
 542{
 543	const struct rb_node *n;
 544	struct gfs2_rgrpd *rgd;
 545
 546	spin_lock(&sdp->sd_rindex_spin);
 547	n = rb_first(&sdp->sd_rindex_tree);
 548	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 549	spin_unlock(&sdp->sd_rindex_spin);
 550
 551	return rgd;
 552}
 553
 554/**
 555 * gfs2_rgrpd_get_next - get the next RG
 556 * @rgd: the resource group descriptor
 557 *
 558 * Returns: The next rgrp
 559 */
 560
 561struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
 562{
 563	struct gfs2_sbd *sdp = rgd->rd_sbd;
 564	const struct rb_node *n;
 565
 566	spin_lock(&sdp->sd_rindex_spin);
 567	n = rb_next(&rgd->rd_node);
 568	if (n == NULL)
 569		n = rb_first(&sdp->sd_rindex_tree);
 570
 571	if (unlikely(&rgd->rd_node == n)) {
 572		spin_unlock(&sdp->sd_rindex_spin);
 573		return NULL;
 574	}
 575	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 576	spin_unlock(&sdp->sd_rindex_spin);
 577	return rgd;
 578}
 579
 580void check_and_update_goal(struct gfs2_inode *ip)
 581{
 582	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 583	if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL)
 584		ip->i_goal = ip->i_no_addr;
 585}
 586
 587void gfs2_free_clones(struct gfs2_rgrpd *rgd)
 588{
 589	int x;
 590
 591	for (x = 0; x < rgd->rd_length; x++) {
 592		struct gfs2_bitmap *bi = rgd->rd_bits + x;
 593		kfree(bi->bi_clone);
 594		bi->bi_clone = NULL;
 595	}
 596}
 597
 598/**
 599 * gfs2_rsqa_alloc - make sure we have a reservation assigned to the inode
 600 *                 plus a quota allocations data structure, if necessary
 601 * @ip: the inode for this reservation
 602 */
 603int gfs2_rsqa_alloc(struct gfs2_inode *ip)
 604{
 605	return gfs2_qa_alloc(ip);
 606}
 607
 608static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs)
 609{
 610	gfs2_print_dbg(seq, "  B: n:%llu s:%llu b:%u f:%u\n",
 611		       (unsigned long long)rs->rs_inum,
 612		       (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm),
 613		       rs->rs_rbm.offset, rs->rs_free);
 614}
 615
 616/**
 617 * __rs_deltree - remove a multi-block reservation from the rgd tree
 618 * @rs: The reservation to remove
 619 *
 620 */
 621static void __rs_deltree(struct gfs2_blkreserv *rs)
 622{
 623	struct gfs2_rgrpd *rgd;
 624
 625	if (!gfs2_rs_active(rs))
 626		return;
 627
 628	rgd = rs->rs_rbm.rgd;
 629	trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
 630	rb_erase(&rs->rs_node, &rgd->rd_rstree);
 631	RB_CLEAR_NODE(&rs->rs_node);
 632
 633	if (rs->rs_free) {
 634		struct gfs2_bitmap *bi = rbm_bi(&rs->rs_rbm);
 635
 636		/* return reserved blocks to the rgrp */
 637		BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free);
 638		rs->rs_rbm.rgd->rd_reserved -= rs->rs_free;
 639		/* The rgrp extent failure point is likely not to increase;
 640		   it will only do so if the freed blocks are somehow
 641		   contiguous with a span of free blocks that follows. Still,
 642		   it will force the number to be recalculated later. */
 643		rgd->rd_extfail_pt += rs->rs_free;
 644		rs->rs_free = 0;
 645		clear_bit(GBF_FULL, &bi->bi_flags);
 646	}
 647}
 648
 649/**
 650 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
 651 * @rs: The reservation to remove
 652 *
 653 */
 654void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
 655{
 656	struct gfs2_rgrpd *rgd;
 657
 658	rgd = rs->rs_rbm.rgd;
 659	if (rgd) {
 660		spin_lock(&rgd->rd_rsspin);
 661		__rs_deltree(rs);
 662		BUG_ON(rs->rs_free);
 663		spin_unlock(&rgd->rd_rsspin);
 664	}
 665}
 666
 667/**
 668 * gfs2_rsqa_delete - delete a multi-block reservation and quota allocation
 669 * @ip: The inode for this reservation
 670 * @wcount: The inode's write count, or NULL
 671 *
 672 */
 673void gfs2_rsqa_delete(struct gfs2_inode *ip, atomic_t *wcount)
 674{
 675	down_write(&ip->i_rw_mutex);
 676	if ((wcount == NULL) || (atomic_read(wcount) <= 1))
 677		gfs2_rs_deltree(&ip->i_res);
 678	up_write(&ip->i_rw_mutex);
 679	gfs2_qa_delete(ip, wcount);
 680}
 681
 682/**
 683 * return_all_reservations - return all reserved blocks back to the rgrp.
 684 * @rgd: the rgrp that needs its space back
 685 *
 686 * We previously reserved a bunch of blocks for allocation. Now we need to
 687 * give them back. This leave the reservation structures in tact, but removes
 688 * all of their corresponding "no-fly zones".
 689 */
 690static void return_all_reservations(struct gfs2_rgrpd *rgd)
 691{
 692	struct rb_node *n;
 693	struct gfs2_blkreserv *rs;
 694
 695	spin_lock(&rgd->rd_rsspin);
 696	while ((n = rb_first(&rgd->rd_rstree))) {
 697		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
 698		__rs_deltree(rs);
 699	}
 700	spin_unlock(&rgd->rd_rsspin);
 701}
 702
 703void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
 704{
 705	struct rb_node *n;
 706	struct gfs2_rgrpd *rgd;
 707	struct gfs2_glock *gl;
 708
 709	while ((n = rb_first(&sdp->sd_rindex_tree))) {
 710		rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 711		gl = rgd->rd_gl;
 712
 713		rb_erase(n, &sdp->sd_rindex_tree);
 714
 715		if (gl) {
 716			glock_clear_object(gl, rgd);
 
 
 
 717			gfs2_glock_put(gl);
 718		}
 719
 720		gfs2_free_clones(rgd);
 721		kfree(rgd->rd_bits);
 722		rgd->rd_bits = NULL;
 723		return_all_reservations(rgd);
 724		kmem_cache_free(gfs2_rgrpd_cachep, rgd);
 725	}
 726}
 727
 728static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
 729{
 730	pr_info("ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
 731	pr_info("ri_length = %u\n", rgd->rd_length);
 732	pr_info("ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
 733	pr_info("ri_data = %u\n", rgd->rd_data);
 734	pr_info("ri_bitbytes = %u\n", rgd->rd_bitbytes);
 735}
 736
 737/**
 738 * gfs2_compute_bitstructs - Compute the bitmap sizes
 739 * @rgd: The resource group descriptor
 740 *
 741 * Calculates bitmap descriptors, one for each block that contains bitmap data
 742 *
 743 * Returns: errno
 744 */
 745
 746static int compute_bitstructs(struct gfs2_rgrpd *rgd)
 747{
 748	struct gfs2_sbd *sdp = rgd->rd_sbd;
 749	struct gfs2_bitmap *bi;
 750	u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
 751	u32 bytes_left, bytes;
 752	int x;
 753
 754	if (!length)
 755		return -EINVAL;
 756
 757	rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
 758	if (!rgd->rd_bits)
 759		return -ENOMEM;
 760
 761	bytes_left = rgd->rd_bitbytes;
 762
 763	for (x = 0; x < length; x++) {
 764		bi = rgd->rd_bits + x;
 765
 766		bi->bi_flags = 0;
 767		/* small rgrp; bitmap stored completely in header block */
 768		if (length == 1) {
 769			bytes = bytes_left;
 770			bi->bi_offset = sizeof(struct gfs2_rgrp);
 771			bi->bi_start = 0;
 772			bi->bi_len = bytes;
 773			bi->bi_blocks = bytes * GFS2_NBBY;
 774		/* header block */
 775		} else if (x == 0) {
 776			bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
 777			bi->bi_offset = sizeof(struct gfs2_rgrp);
 778			bi->bi_start = 0;
 779			bi->bi_len = bytes;
 780			bi->bi_blocks = bytes * GFS2_NBBY;
 781		/* last block */
 782		} else if (x + 1 == length) {
 783			bytes = bytes_left;
 784			bi->bi_offset = sizeof(struct gfs2_meta_header);
 785			bi->bi_start = rgd->rd_bitbytes - bytes_left;
 786			bi->bi_len = bytes;
 787			bi->bi_blocks = bytes * GFS2_NBBY;
 788		/* other blocks */
 789		} else {
 790			bytes = sdp->sd_sb.sb_bsize -
 791				sizeof(struct gfs2_meta_header);
 792			bi->bi_offset = sizeof(struct gfs2_meta_header);
 793			bi->bi_start = rgd->rd_bitbytes - bytes_left;
 794			bi->bi_len = bytes;
 795			bi->bi_blocks = bytes * GFS2_NBBY;
 796		}
 797
 798		bytes_left -= bytes;
 799	}
 800
 801	if (bytes_left) {
 802		gfs2_consist_rgrpd(rgd);
 803		return -EIO;
 804	}
 805	bi = rgd->rd_bits + (length - 1);
 806	if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
 807		if (gfs2_consist_rgrpd(rgd)) {
 808			gfs2_rindex_print(rgd);
 809			fs_err(sdp, "start=%u len=%u offset=%u\n",
 810			       bi->bi_start, bi->bi_len, bi->bi_offset);
 811		}
 812		return -EIO;
 813	}
 814
 815	return 0;
 816}
 817
 818/**
 819 * gfs2_ri_total - Total up the file system space, according to the rindex.
 820 * @sdp: the filesystem
 821 *
 822 */
 823u64 gfs2_ri_total(struct gfs2_sbd *sdp)
 824{
 825	u64 total_data = 0;	
 826	struct inode *inode = sdp->sd_rindex;
 827	struct gfs2_inode *ip = GFS2_I(inode);
 828	char buf[sizeof(struct gfs2_rindex)];
 829	int error, rgrps;
 830
 831	for (rgrps = 0;; rgrps++) {
 832		loff_t pos = rgrps * sizeof(struct gfs2_rindex);
 833
 834		if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
 835			break;
 836		error = gfs2_internal_read(ip, buf, &pos,
 837					   sizeof(struct gfs2_rindex));
 838		if (error != sizeof(struct gfs2_rindex))
 839			break;
 840		total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
 841	}
 842	return total_data;
 843}
 844
 845static int rgd_insert(struct gfs2_rgrpd *rgd)
 846{
 847	struct gfs2_sbd *sdp = rgd->rd_sbd;
 848	struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
 849
 850	/* Figure out where to put new node */
 851	while (*newn) {
 852		struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
 853						  rd_node);
 854
 855		parent = *newn;
 856		if (rgd->rd_addr < cur->rd_addr)
 857			newn = &((*newn)->rb_left);
 858		else if (rgd->rd_addr > cur->rd_addr)
 859			newn = &((*newn)->rb_right);
 860		else
 861			return -EEXIST;
 862	}
 863
 864	rb_link_node(&rgd->rd_node, parent, newn);
 865	rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
 866	sdp->sd_rgrps++;
 867	return 0;
 868}
 869
 870/**
 871 * read_rindex_entry - Pull in a new resource index entry from the disk
 872 * @ip: Pointer to the rindex inode
 873 *
 874 * Returns: 0 on success, > 0 on EOF, error code otherwise
 875 */
 876
 877static int read_rindex_entry(struct gfs2_inode *ip)
 878{
 879	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 880	const unsigned bsize = sdp->sd_sb.sb_bsize;
 881	loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
 882	struct gfs2_rindex buf;
 883	int error;
 884	struct gfs2_rgrpd *rgd;
 885
 886	if (pos >= i_size_read(&ip->i_inode))
 887		return 1;
 888
 889	error = gfs2_internal_read(ip, (char *)&buf, &pos,
 890				   sizeof(struct gfs2_rindex));
 891
 892	if (error != sizeof(struct gfs2_rindex))
 893		return (error == 0) ? 1 : error;
 894
 895	rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
 896	error = -ENOMEM;
 897	if (!rgd)
 898		return error;
 899
 900	rgd->rd_sbd = sdp;
 901	rgd->rd_addr = be64_to_cpu(buf.ri_addr);
 902	rgd->rd_length = be32_to_cpu(buf.ri_length);
 903	rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
 904	rgd->rd_data = be32_to_cpu(buf.ri_data);
 905	rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
 906	spin_lock_init(&rgd->rd_rsspin);
 907
 908	error = compute_bitstructs(rgd);
 909	if (error)
 910		goto fail;
 911
 912	error = gfs2_glock_get(sdp, rgd->rd_addr,
 913			       &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
 914	if (error)
 915		goto fail;
 916
 917	rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
 918	rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED);
 919	if (rgd->rd_data > sdp->sd_max_rg_data)
 920		sdp->sd_max_rg_data = rgd->rd_data;
 921	spin_lock(&sdp->sd_rindex_spin);
 922	error = rgd_insert(rgd);
 923	spin_unlock(&sdp->sd_rindex_spin);
 924	if (!error) {
 925		glock_set_object(rgd->rd_gl, rgd);
 926		rgd->rd_gl->gl_vm.start = (rgd->rd_addr * bsize) & PAGE_MASK;
 927		rgd->rd_gl->gl_vm.end = PAGE_ALIGN((rgd->rd_addr +
 928						    rgd->rd_length) * bsize) - 1;
 929		return 0;
 930	}
 931
 932	error = 0; /* someone else read in the rgrp; free it and ignore it */
 933	gfs2_glock_put(rgd->rd_gl);
 934
 935fail:
 936	kfree(rgd->rd_bits);
 937	rgd->rd_bits = NULL;
 938	kmem_cache_free(gfs2_rgrpd_cachep, rgd);
 939	return error;
 940}
 941
 942/**
 943 * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use
 944 * @sdp: the GFS2 superblock
 945 *
 946 * The purpose of this function is to select a subset of the resource groups
 947 * and mark them as PREFERRED. We do it in such a way that each node prefers
 948 * to use a unique set of rgrps to minimize glock contention.
 949 */
 950static void set_rgrp_preferences(struct gfs2_sbd *sdp)
 951{
 952	struct gfs2_rgrpd *rgd, *first;
 953	int i;
 954
 955	/* Skip an initial number of rgrps, based on this node's journal ID.
 956	   That should start each node out on its own set. */
 957	rgd = gfs2_rgrpd_get_first(sdp);
 958	for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++)
 959		rgd = gfs2_rgrpd_get_next(rgd);
 960	first = rgd;
 961
 962	do {
 963		rgd->rd_flags |= GFS2_RDF_PREFERRED;
 964		for (i = 0; i < sdp->sd_journals; i++) {
 965			rgd = gfs2_rgrpd_get_next(rgd);
 966			if (!rgd || rgd == first)
 967				break;
 968		}
 969	} while (rgd && rgd != first);
 970}
 971
 972/**
 973 * gfs2_ri_update - Pull in a new resource index from the disk
 974 * @ip: pointer to the rindex inode
 975 *
 976 * Returns: 0 on successful update, error code otherwise
 977 */
 978
 979static int gfs2_ri_update(struct gfs2_inode *ip)
 980{
 981	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 982	int error;
 983
 984	do {
 985		error = read_rindex_entry(ip);
 986	} while (error == 0);
 987
 988	if (error < 0)
 989		return error;
 990
 991	set_rgrp_preferences(sdp);
 992
 993	sdp->sd_rindex_uptodate = 1;
 994	return 0;
 995}
 996
 997/**
 998 * gfs2_rindex_update - Update the rindex if required
 999 * @sdp: The GFS2 superblock
1000 *
1001 * We grab a lock on the rindex inode to make sure that it doesn't
1002 * change whilst we are performing an operation. We keep this lock
1003 * for quite long periods of time compared to other locks. This
1004 * doesn't matter, since it is shared and it is very, very rarely
1005 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
1006 *
1007 * This makes sure that we're using the latest copy of the resource index
1008 * special file, which might have been updated if someone expanded the
1009 * filesystem (via gfs2_grow utility), which adds new resource groups.
1010 *
1011 * Returns: 0 on succeess, error code otherwise
1012 */
1013
1014int gfs2_rindex_update(struct gfs2_sbd *sdp)
1015{
1016	struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
1017	struct gfs2_glock *gl = ip->i_gl;
1018	struct gfs2_holder ri_gh;
1019	int error = 0;
1020	int unlock_required = 0;
1021
1022	/* Read new copy from disk if we don't have the latest */
1023	if (!sdp->sd_rindex_uptodate) {
1024		if (!gfs2_glock_is_locked_by_me(gl)) {
1025			error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
1026			if (error)
1027				return error;
1028			unlock_required = 1;
1029		}
1030		if (!sdp->sd_rindex_uptodate)
1031			error = gfs2_ri_update(ip);
1032		if (unlock_required)
1033			gfs2_glock_dq_uninit(&ri_gh);
1034	}
1035
1036	return error;
1037}
1038
1039static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
1040{
1041	const struct gfs2_rgrp *str = buf;
1042	u32 rg_flags;
1043
1044	rg_flags = be32_to_cpu(str->rg_flags);
1045	rg_flags &= ~GFS2_RDF_MASK;
1046	rgd->rd_flags &= GFS2_RDF_MASK;
1047	rgd->rd_flags |= rg_flags;
1048	rgd->rd_free = be32_to_cpu(str->rg_free);
1049	rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
1050	rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
1051	/* rd_data0, rd_data and rd_bitbytes already set from rindex */
1052}
1053
1054static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
1055{
1056	struct gfs2_rgrpd *next = gfs2_rgrpd_get_next(rgd);
1057	struct gfs2_rgrp *str = buf;
1058	u32 crc;
1059
1060	str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
1061	str->rg_free = cpu_to_be32(rgd->rd_free);
1062	str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
1063	if (next == NULL)
1064		str->rg_skip = 0;
1065	else if (next->rd_addr > rgd->rd_addr)
1066		str->rg_skip = cpu_to_be32(next->rd_addr - rgd->rd_addr);
1067	str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
1068	str->rg_data0 = cpu_to_be64(rgd->rd_data0);
1069	str->rg_data = cpu_to_be32(rgd->rd_data);
1070	str->rg_bitbytes = cpu_to_be32(rgd->rd_bitbytes);
1071	str->rg_crc = 0;
1072	crc = gfs2_disk_hash(buf, sizeof(struct gfs2_rgrp));
1073	str->rg_crc = cpu_to_be32(crc);
1074
1075	memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
1076}
1077
1078static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
1079{
1080	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1081	struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1082
1083	if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free ||
1084	    rgl->rl_dinodes != str->rg_dinodes ||
1085	    rgl->rl_igeneration != str->rg_igeneration)
1086		return 0;
1087	return 1;
1088}
1089
1090static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1091{
1092	const struct gfs2_rgrp *str = buf;
1093
1094	rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1095	rgl->rl_flags = str->rg_flags;
1096	rgl->rl_free = str->rg_free;
1097	rgl->rl_dinodes = str->rg_dinodes;
1098	rgl->rl_igeneration = str->rg_igeneration;
1099	rgl->__pad = 0UL;
1100}
1101
1102static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change)
1103{
1104	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1105	u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change;
1106	rgl->rl_unlinked = cpu_to_be32(unlinked);
1107}
1108
1109static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1110{
1111	struct gfs2_bitmap *bi;
1112	const u32 length = rgd->rd_length;
1113	const u8 *buffer = NULL;
1114	u32 i, goal, count = 0;
1115
1116	for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1117		goal = 0;
1118		buffer = bi->bi_bh->b_data + bi->bi_offset;
1119		WARN_ON(!buffer_uptodate(bi->bi_bh));
1120		while (goal < bi->bi_len * GFS2_NBBY) {
1121			goal = gfs2_bitfit(buffer, bi->bi_len, goal,
1122					   GFS2_BLKST_UNLINKED);
1123			if (goal == BFITNOENT)
1124				break;
1125			count++;
1126			goal++;
1127		}
1128	}
1129
1130	return count;
1131}
1132
1133
1134/**
1135 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1136 * @rgd: the struct gfs2_rgrpd describing the RG to read in
1137 *
1138 * Read in all of a Resource Group's header and bitmap blocks.
1139 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
1140 *
1141 * Returns: errno
1142 */
1143
1144static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1145{
1146	struct gfs2_sbd *sdp = rgd->rd_sbd;
1147	struct gfs2_glock *gl = rgd->rd_gl;
1148	unsigned int length = rgd->rd_length;
1149	struct gfs2_bitmap *bi;
1150	unsigned int x, y;
1151	int error;
1152
1153	if (rgd->rd_bits[0].bi_bh != NULL)
1154		return 0;
1155
1156	for (x = 0; x < length; x++) {
1157		bi = rgd->rd_bits + x;
1158		error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh);
1159		if (error)
1160			goto fail;
1161	}
1162
1163	for (y = length; y--;) {
1164		bi = rgd->rd_bits + y;
1165		error = gfs2_meta_wait(sdp, bi->bi_bh);
1166		if (error)
1167			goto fail;
1168		if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1169					      GFS2_METATYPE_RG)) {
1170			error = -EIO;
1171			goto fail;
1172		}
1173	}
1174
1175	if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1176		for (x = 0; x < length; x++)
1177			clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
1178		gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1179		rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1180		rgd->rd_free_clone = rgd->rd_free;
1181		/* max out the rgrp allocation failure point */
1182		rgd->rd_extfail_pt = rgd->rd_free;
1183	}
1184	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1185		rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1186		gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1187				     rgd->rd_bits[0].bi_bh->b_data);
1188	}
1189	else if (sdp->sd_args.ar_rgrplvb) {
1190		if (!gfs2_rgrp_lvb_valid(rgd)){
1191			gfs2_consist_rgrpd(rgd);
1192			error = -EIO;
1193			goto fail;
1194		}
1195		if (rgd->rd_rgl->rl_unlinked == 0)
1196			rgd->rd_flags &= ~GFS2_RDF_CHECK;
1197	}
1198	return 0;
1199
1200fail:
1201	while (x--) {
1202		bi = rgd->rd_bits + x;
1203		brelse(bi->bi_bh);
1204		bi->bi_bh = NULL;
1205		gfs2_assert_warn(sdp, !bi->bi_clone);
1206	}
1207
1208	return error;
1209}
1210
1211static int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1212{
1213	u32 rl_flags;
1214
1215	if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1216		return 0;
1217
1218	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1219		return gfs2_rgrp_bh_get(rgd);
1220
1221	rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1222	rl_flags &= ~GFS2_RDF_MASK;
1223	rgd->rd_flags &= GFS2_RDF_MASK;
1224	rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1225	if (rgd->rd_rgl->rl_unlinked == 0)
1226		rgd->rd_flags &= ~GFS2_RDF_CHECK;
1227	rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1228	rgd->rd_free_clone = rgd->rd_free;
1229	rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1230	rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1231	return 0;
1232}
1233
1234int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1235{
1236	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1237	struct gfs2_sbd *sdp = rgd->rd_sbd;
1238
1239	if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1240		return 0;
1241	return gfs2_rgrp_bh_get(rgd);
1242}
1243
1244/**
1245 * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1246 * @rgd: The resource group
1247 *
1248 */
1249
1250void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd)
1251{
1252	int x, length = rgd->rd_length;
1253
1254	for (x = 0; x < length; x++) {
1255		struct gfs2_bitmap *bi = rgd->rd_bits + x;
1256		if (bi->bi_bh) {
1257			brelse(bi->bi_bh);
1258			bi->bi_bh = NULL;
1259		}
1260	}
1261
1262}
1263
1264/**
1265 * gfs2_rgrp_go_unlock - Unlock a rgrp glock
1266 * @gh: The glock holder for the resource group
1267 *
1268 */
1269
1270void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
1271{
1272	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1273	int demote_requested = test_bit(GLF_DEMOTE, &gh->gh_gl->gl_flags) |
1274		test_bit(GLF_PENDING_DEMOTE, &gh->gh_gl->gl_flags);
1275
1276	if (rgd && demote_requested)
1277		gfs2_rgrp_brelse(rgd);
1278}
1279
1280int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1281			     struct buffer_head *bh,
1282			     const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1283{
1284	struct super_block *sb = sdp->sd_vfs;
1285	u64 blk;
1286	sector_t start = 0;
1287	sector_t nr_blks = 0;
1288	int rv;
1289	unsigned int x;
1290	u32 trimmed = 0;
1291	u8 diff;
1292
1293	for (x = 0; x < bi->bi_len; x++) {
1294		const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1295		clone += bi->bi_offset;
1296		clone += x;
1297		if (bh) {
1298			const u8 *orig = bh->b_data + bi->bi_offset + x;
1299			diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1300		} else {
1301			diff = ~(*clone | (*clone >> 1));
1302		}
1303		diff &= 0x55;
1304		if (diff == 0)
1305			continue;
1306		blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1307		while(diff) {
1308			if (diff & 1) {
1309				if (nr_blks == 0)
1310					goto start_new_extent;
1311				if ((start + nr_blks) != blk) {
1312					if (nr_blks >= minlen) {
1313						rv = sb_issue_discard(sb,
1314							start, nr_blks,
1315							GFP_NOFS, 0);
1316						if (rv)
1317							goto fail;
1318						trimmed += nr_blks;
1319					}
1320					nr_blks = 0;
1321start_new_extent:
1322					start = blk;
1323				}
1324				nr_blks++;
1325			}
1326			diff >>= 2;
1327			blk++;
1328		}
1329	}
1330	if (nr_blks >= minlen) {
1331		rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1332		if (rv)
1333			goto fail;
1334		trimmed += nr_blks;
1335	}
1336	if (ptrimmed)
1337		*ptrimmed = trimmed;
1338	return 0;
1339
1340fail:
1341	if (sdp->sd_args.ar_discard)
1342		fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem\n", rv);
1343	sdp->sd_args.ar_discard = 0;
1344	return -EIO;
1345}
1346
1347/**
1348 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1349 * @filp: Any file on the filesystem
1350 * @argp: Pointer to the arguments (also used to pass result)
1351 *
1352 * Returns: 0 on success, otherwise error code
1353 */
1354
1355int gfs2_fitrim(struct file *filp, void __user *argp)
1356{
1357	struct inode *inode = file_inode(filp);
1358	struct gfs2_sbd *sdp = GFS2_SB(inode);
1359	struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1360	struct buffer_head *bh;
1361	struct gfs2_rgrpd *rgd;
1362	struct gfs2_rgrpd *rgd_end;
1363	struct gfs2_holder gh;
1364	struct fstrim_range r;
1365	int ret = 0;
1366	u64 amt;
1367	u64 trimmed = 0;
1368	u64 start, end, minlen;
1369	unsigned int x;
1370	unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1371
1372	if (!capable(CAP_SYS_ADMIN))
1373		return -EPERM;
1374
1375	if (!blk_queue_discard(q))
1376		return -EOPNOTSUPP;
1377
1378	if (copy_from_user(&r, argp, sizeof(r)))
1379		return -EFAULT;
1380
1381	ret = gfs2_rindex_update(sdp);
1382	if (ret)
1383		return ret;
1384
1385	start = r.start >> bs_shift;
1386	end = start + (r.len >> bs_shift);
1387	minlen = max_t(u64, r.minlen,
1388		       q->limits.discard_granularity) >> bs_shift;
1389
1390	if (end <= start || minlen > sdp->sd_max_rg_data)
1391		return -EINVAL;
1392
1393	rgd = gfs2_blk2rgrpd(sdp, start, 0);
1394	rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
1395
1396	if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
1397	    && (start > rgd_end->rd_data0 + rgd_end->rd_data))
1398		return -EINVAL; /* start is beyond the end of the fs */
1399
1400	while (1) {
1401
1402		ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
1403		if (ret)
1404			goto out;
1405
1406		if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1407			/* Trim each bitmap in the rgrp */
1408			for (x = 0; x < rgd->rd_length; x++) {
1409				struct gfs2_bitmap *bi = rgd->rd_bits + x;
1410				ret = gfs2_rgrp_send_discards(sdp,
1411						rgd->rd_data0, NULL, bi, minlen,
1412						&amt);
1413				if (ret) {
1414					gfs2_glock_dq_uninit(&gh);
1415					goto out;
1416				}
1417				trimmed += amt;
1418			}
1419
1420			/* Mark rgrp as having been trimmed */
1421			ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1422			if (ret == 0) {
1423				bh = rgd->rd_bits[0].bi_bh;
1424				rgd->rd_flags |= GFS2_RGF_TRIMMED;
1425				gfs2_trans_add_meta(rgd->rd_gl, bh);
1426				gfs2_rgrp_out(rgd, bh->b_data);
1427				gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data);
1428				gfs2_trans_end(sdp);
1429			}
1430		}
1431		gfs2_glock_dq_uninit(&gh);
1432
1433		if (rgd == rgd_end)
1434			break;
1435
1436		rgd = gfs2_rgrpd_get_next(rgd);
1437	}
1438
1439out:
1440	r.len = trimmed << bs_shift;
1441	if (copy_to_user(argp, &r, sizeof(r)))
1442		return -EFAULT;
1443
1444	return ret;
1445}
1446
1447/**
1448 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1449 * @ip: the inode structure
1450 *
1451 */
1452static void rs_insert(struct gfs2_inode *ip)
1453{
1454	struct rb_node **newn, *parent = NULL;
1455	int rc;
1456	struct gfs2_blkreserv *rs = &ip->i_res;
1457	struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd;
1458	u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm);
1459
1460	BUG_ON(gfs2_rs_active(rs));
1461
1462	spin_lock(&rgd->rd_rsspin);
1463	newn = &rgd->rd_rstree.rb_node;
1464	while (*newn) {
1465		struct gfs2_blkreserv *cur =
1466			rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1467
1468		parent = *newn;
1469		rc = rs_cmp(fsblock, rs->rs_free, cur);
1470		if (rc > 0)
1471			newn = &((*newn)->rb_right);
1472		else if (rc < 0)
1473			newn = &((*newn)->rb_left);
1474		else {
1475			spin_unlock(&rgd->rd_rsspin);
1476			WARN_ON(1);
1477			return;
1478		}
1479	}
1480
1481	rb_link_node(&rs->rs_node, parent, newn);
1482	rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1483
1484	/* Do our rgrp accounting for the reservation */
1485	rgd->rd_reserved += rs->rs_free; /* blocks reserved */
1486	spin_unlock(&rgd->rd_rsspin);
1487	trace_gfs2_rs(rs, TRACE_RS_INSERT);
1488}
1489
1490/**
1491 * rg_mblk_search - find a group of multiple free blocks to form a reservation
1492 * @rgd: the resource group descriptor
1493 * @ip: pointer to the inode for which we're reserving blocks
1494 * @ap: the allocation parameters
1495 *
1496 */
1497
1498static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1499			   const struct gfs2_alloc_parms *ap)
1500{
1501	struct gfs2_rbm rbm = { .rgd = rgd, };
1502	u64 goal;
1503	struct gfs2_blkreserv *rs = &ip->i_res;
1504	u32 extlen;
1505	u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved;
1506	int ret;
1507	struct inode *inode = &ip->i_inode;
1508
1509	if (S_ISDIR(inode->i_mode))
1510		extlen = 1;
1511	else {
1512		extlen = max_t(u32, atomic_read(&rs->rs_sizehint), ap->target);
1513		extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks);
1514	}
1515	if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen))
1516		return;
1517
1518	/* Find bitmap block that contains bits for goal block */
1519	if (rgrp_contains_block(rgd, ip->i_goal))
1520		goal = ip->i_goal;
1521	else
1522		goal = rgd->rd_last_alloc + rgd->rd_data0;
1523
1524	if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1525		return;
1526
1527	ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true);
1528	if (ret == 0) {
1529		rs->rs_rbm = rbm;
1530		rs->rs_free = extlen;
1531		rs->rs_inum = ip->i_no_addr;
1532		rs_insert(ip);
1533	} else {
1534		if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1535			rgd->rd_last_alloc = 0;
1536	}
1537}
1538
1539/**
1540 * gfs2_next_unreserved_block - Return next block that is not reserved
1541 * @rgd: The resource group
1542 * @block: The starting block
1543 * @length: The required length
1544 * @ip: Ignore any reservations for this inode
1545 *
1546 * If the block does not appear in any reservation, then return the
1547 * block number unchanged. If it does appear in the reservation, then
1548 * keep looking through the tree of reservations in order to find the
1549 * first block number which is not reserved.
1550 */
1551
1552static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1553				      u32 length,
1554				      const struct gfs2_inode *ip)
1555{
1556	struct gfs2_blkreserv *rs;
1557	struct rb_node *n;
1558	int rc;
1559
1560	spin_lock(&rgd->rd_rsspin);
1561	n = rgd->rd_rstree.rb_node;
1562	while (n) {
1563		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1564		rc = rs_cmp(block, length, rs);
1565		if (rc < 0)
1566			n = n->rb_left;
1567		else if (rc > 0)
1568			n = n->rb_right;
1569		else
1570			break;
1571	}
1572
1573	if (n) {
1574		while ((rs_cmp(block, length, rs) == 0) && (&ip->i_res != rs)) {
1575			block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free;
1576			n = n->rb_right;
1577			if (n == NULL)
1578				break;
1579			rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1580		}
1581	}
1582
1583	spin_unlock(&rgd->rd_rsspin);
1584	return block;
1585}
1586
1587/**
1588 * gfs2_reservation_check_and_update - Check for reservations during block alloc
1589 * @rbm: The current position in the resource group
1590 * @ip: The inode for which we are searching for blocks
1591 * @minext: The minimum extent length
1592 * @maxext: A pointer to the maximum extent structure
1593 *
1594 * This checks the current position in the rgrp to see whether there is
1595 * a reservation covering this block. If not then this function is a
1596 * no-op. If there is, then the position is moved to the end of the
1597 * contiguous reservation(s) so that we are pointing at the first
1598 * non-reserved block.
1599 *
1600 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1601 */
1602
1603static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1604					     const struct gfs2_inode *ip,
1605					     u32 minext,
1606					     struct gfs2_extent *maxext)
1607{
1608	u64 block = gfs2_rbm_to_block(rbm);
1609	u32 extlen = 1;
1610	u64 nblock;
1611	int ret;
1612
1613	/*
1614	 * If we have a minimum extent length, then skip over any extent
1615	 * which is less than the min extent length in size.
1616	 */
1617	if (minext) {
1618		extlen = gfs2_free_extlen(rbm, minext);
1619		if (extlen <= maxext->len)
1620			goto fail;
1621	}
1622
1623	/*
1624	 * Check the extent which has been found against the reservations
1625	 * and skip if parts of it are already reserved
1626	 */
1627	nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip);
1628	if (nblock == block) {
1629		if (!minext || extlen >= minext)
1630			return 0;
1631
1632		if (extlen > maxext->len) {
1633			maxext->len = extlen;
1634			maxext->rbm = *rbm;
1635		}
1636fail:
1637		nblock = block + extlen;
1638	}
1639	ret = gfs2_rbm_from_block(rbm, nblock);
1640	if (ret < 0)
1641		return ret;
1642	return 1;
1643}
1644
1645/**
1646 * gfs2_rbm_find - Look for blocks of a particular state
1647 * @rbm: Value/result starting position and final position
1648 * @state: The state which we want to find
1649 * @minext: Pointer to the requested extent length (NULL for a single block)
1650 *          This is updated to be the actual reservation size.
1651 * @ip: If set, check for reservations
1652 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1653 *          around until we've reached the starting point.
1654 *
1655 * Side effects:
1656 * - If looking for free blocks, we set GBF_FULL on each bitmap which
1657 *   has no free blocks in it.
1658 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1659 *   has come up short on a free block search.
1660 *
1661 * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1662 */
1663
1664static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
1665			 const struct gfs2_inode *ip, bool nowrap)
1666{
1667	struct buffer_head *bh;
1668	int initial_bii;
1669	u32 initial_offset;
1670	int first_bii = rbm->bii;
1671	u32 first_offset = rbm->offset;
1672	u32 offset;
1673	u8 *buffer;
1674	int n = 0;
1675	int iters = rbm->rgd->rd_length;
1676	int ret;
1677	struct gfs2_bitmap *bi;
1678	struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, };
1679
1680	/* If we are not starting at the beginning of a bitmap, then we
1681	 * need to add one to the bitmap count to ensure that we search
1682	 * the starting bitmap twice.
1683	 */
1684	if (rbm->offset != 0)
1685		iters++;
1686
1687	while(1) {
1688		bi = rbm_bi(rbm);
1689		if (test_bit(GBF_FULL, &bi->bi_flags) &&
1690		    (state == GFS2_BLKST_FREE))
1691			goto next_bitmap;
1692
1693		bh = bi->bi_bh;
1694		buffer = bh->b_data + bi->bi_offset;
1695		WARN_ON(!buffer_uptodate(bh));
1696		if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1697			buffer = bi->bi_clone + bi->bi_offset;
1698		initial_offset = rbm->offset;
1699		offset = gfs2_bitfit(buffer, bi->bi_len, rbm->offset, state);
1700		if (offset == BFITNOENT)
1701			goto bitmap_full;
1702		rbm->offset = offset;
1703		if (ip == NULL)
1704			return 0;
1705
1706		initial_bii = rbm->bii;
1707		ret = gfs2_reservation_check_and_update(rbm, ip,
1708							minext ? *minext : 0,
1709							&maxext);
1710		if (ret == 0)
1711			return 0;
1712		if (ret > 0) {
1713			n += (rbm->bii - initial_bii);
1714			goto next_iter;
1715		}
1716		if (ret == -E2BIG) {
1717			rbm->bii = 0;
1718			rbm->offset = 0;
1719			n += (rbm->bii - initial_bii);
1720			goto res_covered_end_of_rgrp;
1721		}
1722		return ret;
1723
1724bitmap_full:	/* Mark bitmap as full and fall through */
1725		if ((state == GFS2_BLKST_FREE) && initial_offset == 0)
1726			set_bit(GBF_FULL, &bi->bi_flags);
1727
1728next_bitmap:	/* Find next bitmap in the rgrp */
1729		rbm->offset = 0;
1730		rbm->bii++;
1731		if (rbm->bii == rbm->rgd->rd_length)
1732			rbm->bii = 0;
1733res_covered_end_of_rgrp:
1734		if ((rbm->bii == 0) && nowrap)
1735			break;
1736		n++;
1737next_iter:
1738		if (n >= iters)
1739			break;
1740	}
1741
1742	if (minext == NULL || state != GFS2_BLKST_FREE)
1743		return -ENOSPC;
1744
1745	/* If the extent was too small, and it's smaller than the smallest
1746	   to have failed before, remember for future reference that it's
1747	   useless to search this rgrp again for this amount or more. */
1748	if ((first_offset == 0) && (first_bii == 0) &&
1749	    (*minext < rbm->rgd->rd_extfail_pt))
1750		rbm->rgd->rd_extfail_pt = *minext;
1751
1752	/* If the maximum extent we found is big enough to fulfill the
1753	   minimum requirements, use it anyway. */
1754	if (maxext.len) {
1755		*rbm = maxext.rbm;
1756		*minext = maxext.len;
1757		return 0;
1758	}
1759
1760	return -ENOSPC;
1761}
1762
1763/**
1764 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1765 * @rgd: The rgrp
1766 * @last_unlinked: block address of the last dinode we unlinked
1767 * @skip: block address we should explicitly not unlink
1768 *
1769 * Returns: 0 if no error
1770 *          The inode, if one has been found, in inode.
1771 */
1772
1773static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1774{
1775	u64 block;
1776	struct gfs2_sbd *sdp = rgd->rd_sbd;
1777	struct gfs2_glock *gl;
1778	struct gfs2_inode *ip;
1779	int error;
1780	int found = 0;
1781	struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 };
1782
1783	while (1) {
1784		down_write(&sdp->sd_log_flush_lock);
1785		error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL,
1786				      true);
1787		up_write(&sdp->sd_log_flush_lock);
1788		if (error == -ENOSPC)
1789			break;
1790		if (WARN_ON_ONCE(error))
1791			break;
1792
1793		block = gfs2_rbm_to_block(&rbm);
1794		if (gfs2_rbm_from_block(&rbm, block + 1))
1795			break;
1796		if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1797			continue;
1798		if (block == skip)
1799			continue;
1800		*last_unlinked = block;
1801
1802		error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl);
1803		if (error)
1804			continue;
1805
1806		/* If the inode is already in cache, we can ignore it here
1807		 * because the existing inode disposal code will deal with
1808		 * it when all refs have gone away. Accessing gl_object like
1809		 * this is not safe in general. Here it is ok because we do
1810		 * not dereference the pointer, and we only need an approx
1811		 * answer to whether it is NULL or not.
1812		 */
1813		ip = gl->gl_object;
1814
1815		if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1816			gfs2_glock_put(gl);
1817		else
1818			found++;
1819
1820		/* Limit reclaim to sensible number of tasks */
1821		if (found > NR_CPUS)
1822			return;
1823	}
1824
1825	rgd->rd_flags &= ~GFS2_RDF_CHECK;
1826	return;
1827}
1828
1829/**
1830 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1831 * @rgd: The rgrp in question
1832 * @loops: An indication of how picky we can be (0=very, 1=less so)
1833 *
1834 * This function uses the recently added glock statistics in order to
1835 * figure out whether a parciular resource group is suffering from
1836 * contention from multiple nodes. This is done purely on the basis
1837 * of timings, since this is the only data we have to work with and
1838 * our aim here is to reject a resource group which is highly contended
1839 * but (very important) not to do this too often in order to ensure that
1840 * we do not land up introducing fragmentation by changing resource
1841 * groups when not actually required.
1842 *
1843 * The calculation is fairly simple, we want to know whether the SRTTB
1844 * (i.e. smoothed round trip time for blocking operations) to acquire
1845 * the lock for this rgrp's glock is significantly greater than the
1846 * time taken for resource groups on average. We introduce a margin in
1847 * the form of the variable @var which is computed as the sum of the two
1848 * respective variences, and multiplied by a factor depending on @loops
1849 * and whether we have a lot of data to base the decision on. This is
1850 * then tested against the square difference of the means in order to
1851 * decide whether the result is statistically significant or not.
1852 *
1853 * Returns: A boolean verdict on the congestion status
1854 */
1855
1856static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1857{
1858	const struct gfs2_glock *gl = rgd->rd_gl;
1859	const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
1860	struct gfs2_lkstats *st;
1861	u64 r_dcount, l_dcount;
1862	u64 l_srttb, a_srttb = 0;
1863	s64 srttb_diff;
1864	u64 sqr_diff;
1865	u64 var;
1866	int cpu, nonzero = 0;
1867
1868	preempt_disable();
1869	for_each_present_cpu(cpu) {
1870		st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP];
1871		if (st->stats[GFS2_LKS_SRTTB]) {
1872			a_srttb += st->stats[GFS2_LKS_SRTTB];
1873			nonzero++;
1874		}
1875	}
1876	st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1877	if (nonzero)
1878		do_div(a_srttb, nonzero);
1879	r_dcount = st->stats[GFS2_LKS_DCOUNT];
1880	var = st->stats[GFS2_LKS_SRTTVARB] +
1881	      gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1882	preempt_enable();
1883
1884	l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1885	l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1886
1887	if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0))
1888		return false;
1889
1890	srttb_diff = a_srttb - l_srttb;
1891	sqr_diff = srttb_diff * srttb_diff;
1892
1893	var *= 2;
1894	if (l_dcount < 8 || r_dcount < 8)
1895		var *= 2;
1896	if (loops == 1)
1897		var *= 2;
1898
1899	return ((srttb_diff < 0) && (sqr_diff > var));
1900}
1901
1902/**
1903 * gfs2_rgrp_used_recently
1904 * @rs: The block reservation with the rgrp to test
1905 * @msecs: The time limit in milliseconds
1906 *
1907 * Returns: True if the rgrp glock has been used within the time limit
1908 */
1909static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1910				    u64 msecs)
1911{
1912	u64 tdiff;
1913
1914	tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1915                            rs->rs_rbm.rgd->rd_gl->gl_dstamp));
1916
1917	return tdiff > (msecs * 1000 * 1000);
1918}
1919
1920static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1921{
1922	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1923	u32 skip;
1924
1925	get_random_bytes(&skip, sizeof(skip));
1926	return skip % sdp->sd_rgrps;
1927}
1928
1929static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
1930{
1931	struct gfs2_rgrpd *rgd = *pos;
1932	struct gfs2_sbd *sdp = rgd->rd_sbd;
1933
1934	rgd = gfs2_rgrpd_get_next(rgd);
1935	if (rgd == NULL)
1936		rgd = gfs2_rgrpd_get_first(sdp);
1937	*pos = rgd;
1938	if (rgd != begin) /* If we didn't wrap */
1939		return true;
1940	return false;
1941}
1942
1943/**
1944 * fast_to_acquire - determine if a resource group will be fast to acquire
1945 *
1946 * If this is one of our preferred rgrps, it should be quicker to acquire,
1947 * because we tried to set ourselves up as dlm lock master.
1948 */
1949static inline int fast_to_acquire(struct gfs2_rgrpd *rgd)
1950{
1951	struct gfs2_glock *gl = rgd->rd_gl;
1952
1953	if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) &&
1954	    !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) &&
1955	    !test_bit(GLF_DEMOTE, &gl->gl_flags))
1956		return 1;
1957	if (rgd->rd_flags & GFS2_RDF_PREFERRED)
1958		return 1;
1959	return 0;
1960}
1961
1962/**
1963 * gfs2_inplace_reserve - Reserve space in the filesystem
1964 * @ip: the inode to reserve space for
1965 * @ap: the allocation parameters
1966 *
1967 * We try our best to find an rgrp that has at least ap->target blocks
1968 * available. After a couple of passes (loops == 2), the prospects of finding
1969 * such an rgrp diminish. At this stage, we return the first rgrp that has
1970 * atleast ap->min_target blocks available. Either way, we set ap->allowed to
1971 * the number of blocks available in the chosen rgrp.
1972 *
1973 * Returns: 0 on success,
1974 *          -ENOMEM if a suitable rgrp can't be found
1975 *          errno otherwise
1976 */
1977
1978int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap)
1979{
1980	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1981	struct gfs2_rgrpd *begin = NULL;
1982	struct gfs2_blkreserv *rs = &ip->i_res;
1983	int error = 0, rg_locked, flags = 0;
1984	u64 last_unlinked = NO_BLOCK;
1985	int loops = 0;
1986	u32 skip = 0;
1987
1988	if (sdp->sd_args.ar_rgrplvb)
1989		flags |= GL_SKIP;
1990	if (gfs2_assert_warn(sdp, ap->target))
1991		return -EINVAL;
1992	if (gfs2_rs_active(rs)) {
1993		begin = rs->rs_rbm.rgd;
1994	} else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) {
1995		rs->rs_rbm.rgd = begin = ip->i_rgd;
1996	} else {
1997		check_and_update_goal(ip);
1998		rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
1999	}
2000	if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV))
2001		skip = gfs2_orlov_skip(ip);
2002	if (rs->rs_rbm.rgd == NULL)
2003		return -EBADSLT;
2004
2005	while (loops < 3) {
2006		rg_locked = 1;
2007
2008		if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) {
2009			rg_locked = 0;
2010			if (skip && skip--)
2011				goto next_rgrp;
2012			if (!gfs2_rs_active(rs)) {
2013				if (loops == 0 &&
2014				    !fast_to_acquire(rs->rs_rbm.rgd))
2015					goto next_rgrp;
2016				if ((loops < 2) &&
2017				    gfs2_rgrp_used_recently(rs, 1000) &&
2018				    gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2019					goto next_rgrp;
2020			}
2021			error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl,
2022						   LM_ST_EXCLUSIVE, flags,
2023						   &rs->rs_rgd_gh);
2024			if (unlikely(error))
2025				return error;
2026			if (!gfs2_rs_active(rs) && (loops < 2) &&
2027			    gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2028				goto skip_rgrp;
2029			if (sdp->sd_args.ar_rgrplvb) {
2030				error = update_rgrp_lvb(rs->rs_rbm.rgd);
2031				if (unlikely(error)) {
2032					gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2033					return error;
2034				}
2035			}
2036		}
2037
2038		/* Skip unuseable resource groups */
2039		if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC |
2040						 GFS2_RDF_ERROR)) ||
2041		    (loops == 0 && ap->target > rs->rs_rbm.rgd->rd_extfail_pt))
2042			goto skip_rgrp;
2043
2044		if (sdp->sd_args.ar_rgrplvb)
2045			gfs2_rgrp_bh_get(rs->rs_rbm.rgd);
2046
2047		/* Get a reservation if we don't already have one */
2048		if (!gfs2_rs_active(rs))
2049			rg_mblk_search(rs->rs_rbm.rgd, ip, ap);
2050
2051		/* Skip rgrps when we can't get a reservation on first pass */
2052		if (!gfs2_rs_active(rs) && (loops < 1))
2053			goto check_rgrp;
2054
2055		/* If rgrp has enough free space, use it */
2056		if (rs->rs_rbm.rgd->rd_free_clone >= ap->target ||
2057		    (loops == 2 && ap->min_target &&
2058		     rs->rs_rbm.rgd->rd_free_clone >= ap->min_target)) {
2059			ip->i_rgd = rs->rs_rbm.rgd;
2060			ap->allowed = ip->i_rgd->rd_free_clone;
2061			return 0;
2062		}
2063check_rgrp:
2064		/* Check for unlinked inodes which can be reclaimed */
2065		if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK)
2066			try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked,
2067					ip->i_no_addr);
2068skip_rgrp:
2069		/* Drop reservation, if we couldn't use reserved rgrp */
2070		if (gfs2_rs_active(rs))
2071			gfs2_rs_deltree(rs);
2072
2073		/* Unlock rgrp if required */
2074		if (!rg_locked)
2075			gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2076next_rgrp:
2077		/* Find the next rgrp, and continue looking */
2078		if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin))
2079			continue;
2080		if (skip)
2081			continue;
2082
2083		/* If we've scanned all the rgrps, but found no free blocks
2084		 * then this checks for some less likely conditions before
2085		 * trying again.
2086		 */
2087		loops++;
2088		/* Check that fs hasn't grown if writing to rindex */
2089		if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
2090			error = gfs2_ri_update(ip);
2091			if (error)
2092				return error;
2093		}
2094		/* Flushing the log may release space */
2095		if (loops == 2)
2096			gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL |
2097				       GFS2_LFC_INPLACE_RESERVE);
2098	}
2099
2100	return -ENOSPC;
2101}
2102
2103/**
2104 * gfs2_inplace_release - release an inplace reservation
2105 * @ip: the inode the reservation was taken out on
2106 *
2107 * Release a reservation made by gfs2_inplace_reserve().
2108 */
2109
2110void gfs2_inplace_release(struct gfs2_inode *ip)
2111{
2112	struct gfs2_blkreserv *rs = &ip->i_res;
2113
2114	if (gfs2_holder_initialized(&rs->rs_rgd_gh))
2115		gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2116}
2117
2118/**
2119 * gfs2_get_block_type - Check a block in a RG is of given type
2120 * @rgd: the resource group holding the block
2121 * @block: the block number
2122 *
2123 * Returns: The block type (GFS2_BLKST_*)
2124 */
2125
2126static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
2127{
2128	struct gfs2_rbm rbm = { .rgd = rgd, };
2129	int ret;
2130
2131	ret = gfs2_rbm_from_block(&rbm, block);
2132	WARN_ON_ONCE(ret != 0);
2133
2134	return gfs2_testbit(&rbm);
2135}
2136
2137
2138/**
2139 * gfs2_alloc_extent - allocate an extent from a given bitmap
2140 * @rbm: the resource group information
2141 * @dinode: TRUE if the first block we allocate is for a dinode
2142 * @n: The extent length (value/result)
2143 *
2144 * Add the bitmap buffer to the transaction.
2145 * Set the found bits to @new_state to change block's allocation state.
2146 */
2147static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
2148			     unsigned int *n)
2149{
2150	struct gfs2_rbm pos = { .rgd = rbm->rgd, };
2151	const unsigned int elen = *n;
2152	u64 block;
2153	int ret;
2154
2155	*n = 1;
2156	block = gfs2_rbm_to_block(rbm);
2157	gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh);
2158	gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2159	block++;
2160	while (*n < elen) {
2161		ret = gfs2_rbm_from_block(&pos, block);
2162		if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE)
2163			break;
2164		gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh);
2165		gfs2_setbit(&pos, true, GFS2_BLKST_USED);
2166		(*n)++;
2167		block++;
2168	}
2169}
2170
2171/**
2172 * rgblk_free - Change alloc state of given block(s)
2173 * @sdp: the filesystem
2174 * @bstart: the start of a run of blocks to free
2175 * @blen: the length of the block run (all must lie within ONE RG!)
2176 * @new_state: GFS2_BLKST_XXX the after-allocation block state
2177 *
2178 * Returns:  Resource group containing the block(s)
2179 */
2180
2181static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
2182				     u32 blen, unsigned char new_state)
2183{
2184	struct gfs2_rbm rbm;
2185	struct gfs2_bitmap *bi, *bi_prev = NULL;
2186
2187	rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1);
2188	if (!rbm.rgd) {
2189		if (gfs2_consist(sdp))
2190			fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
2191		return NULL;
2192	}
2193
2194	gfs2_rbm_from_block(&rbm, bstart);
2195	while (blen--) {
2196		bi = rbm_bi(&rbm);
2197		if (bi != bi_prev) {
2198			if (!bi->bi_clone) {
2199				bi->bi_clone = kmalloc(bi->bi_bh->b_size,
2200						      GFP_NOFS | __GFP_NOFAIL);
2201				memcpy(bi->bi_clone + bi->bi_offset,
2202				       bi->bi_bh->b_data + bi->bi_offset,
2203				       bi->bi_len);
2204			}
2205			gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh);
2206			bi_prev = bi;
2207		}
2208		gfs2_setbit(&rbm, false, new_state);
2209		gfs2_rbm_incr(&rbm);
2210	}
2211
2212	return rbm.rgd;
2213}
2214
2215/**
2216 * gfs2_rgrp_dump - print out an rgrp
2217 * @seq: The iterator
2218 * @gl: The glock in question
2219 *
2220 */
2221
2222void gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
2223{
2224	struct gfs2_rgrpd *rgd = gl->gl_object;
2225	struct gfs2_blkreserv *trs;
2226	const struct rb_node *n;
2227
2228	if (rgd == NULL)
2229		return;
2230	gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n",
2231		       (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2232		       rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2233		       rgd->rd_reserved, rgd->rd_extfail_pt);
2234	spin_lock(&rgd->rd_rsspin);
2235	for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2236		trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2237		dump_rs(seq, trs);
2238	}
2239	spin_unlock(&rgd->rd_rsspin);
2240}
2241
2242static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2243{
2244	struct gfs2_sbd *sdp = rgd->rd_sbd;
2245	fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2246		(unsigned long long)rgd->rd_addr);
2247	fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2248	gfs2_rgrp_dump(NULL, rgd->rd_gl);
2249	rgd->rd_flags |= GFS2_RDF_ERROR;
2250}
2251
2252/**
2253 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2254 * @ip: The inode we have just allocated blocks for
2255 * @rbm: The start of the allocated blocks
2256 * @len: The extent length
2257 *
2258 * Adjusts a reservation after an allocation has taken place. If the
2259 * reservation does not match the allocation, or if it is now empty
2260 * then it is removed.
2261 */
2262
2263static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2264				    const struct gfs2_rbm *rbm, unsigned len)
2265{
2266	struct gfs2_blkreserv *rs = &ip->i_res;
2267	struct gfs2_rgrpd *rgd = rbm->rgd;
2268	unsigned rlen;
2269	u64 block;
2270	int ret;
2271
2272	spin_lock(&rgd->rd_rsspin);
2273	if (gfs2_rs_active(rs)) {
2274		if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) {
2275			block = gfs2_rbm_to_block(rbm);
2276			ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len);
2277			rlen = min(rs->rs_free, len);
2278			rs->rs_free -= rlen;
2279			rgd->rd_reserved -= rlen;
2280			trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2281			if (rs->rs_free && !ret)
2282				goto out;
2283			/* We used up our block reservation, so we should
2284			   reserve more blocks next time. */
2285			atomic_add(RGRP_RSRV_ADDBLKS, &rs->rs_sizehint);
2286		}
2287		__rs_deltree(rs);
2288	}
2289out:
2290	spin_unlock(&rgd->rd_rsspin);
2291}
2292
2293/**
2294 * gfs2_set_alloc_start - Set starting point for block allocation
2295 * @rbm: The rbm which will be set to the required location
2296 * @ip: The gfs2 inode
2297 * @dinode: Flag to say if allocation includes a new inode
2298 *
2299 * This sets the starting point from the reservation if one is active
2300 * otherwise it falls back to guessing a start point based on the
2301 * inode's goal block or the last allocation point in the rgrp.
2302 */
2303
2304static void gfs2_set_alloc_start(struct gfs2_rbm *rbm,
2305				 const struct gfs2_inode *ip, bool dinode)
2306{
2307	u64 goal;
2308
2309	if (gfs2_rs_active(&ip->i_res)) {
2310		*rbm = ip->i_res.rs_rbm;
2311		return;
2312	}
2313
2314	if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal))
2315		goal = ip->i_goal;
2316	else
2317		goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0;
2318
2319	gfs2_rbm_from_block(rbm, goal);
2320}
2321
2322/**
2323 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2324 * @ip: the inode to allocate the block for
2325 * @bn: Used to return the starting block number
2326 * @nblocks: requested number of blocks/extent length (value/result)
2327 * @dinode: 1 if we're allocating a dinode block, else 0
2328 * @generation: the generation number of the inode
2329 *
2330 * Returns: 0 or error
2331 */
2332
2333int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2334		      bool dinode, u64 *generation)
2335{
2336	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2337	struct buffer_head *dibh;
2338	struct gfs2_rbm rbm = { .rgd = ip->i_rgd, };
2339	unsigned int ndata;
2340	u64 block; /* block, within the file system scope */
2341	int error;
2342
2343	gfs2_set_alloc_start(&rbm, ip, dinode);
2344	error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false);
2345
2346	if (error == -ENOSPC) {
2347		gfs2_set_alloc_start(&rbm, ip, dinode);
2348		error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false);
2349	}
2350
2351	/* Since all blocks are reserved in advance, this shouldn't happen */
2352	if (error) {
2353		fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2354			(unsigned long long)ip->i_no_addr, error, *nblocks,
2355			test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags),
2356			rbm.rgd->rd_extfail_pt);
2357		goto rgrp_error;
2358	}
2359
2360	gfs2_alloc_extent(&rbm, dinode, nblocks);
2361	block = gfs2_rbm_to_block(&rbm);
2362	rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2363	if (gfs2_rs_active(&ip->i_res))
2364		gfs2_adjust_reservation(ip, &rbm, *nblocks);
2365	ndata = *nblocks;
2366	if (dinode)
2367		ndata--;
2368
2369	if (!dinode) {
2370		ip->i_goal = block + ndata - 1;
2371		error = gfs2_meta_inode_buffer(ip, &dibh);
2372		if (error == 0) {
2373			struct gfs2_dinode *di =
2374				(struct gfs2_dinode *)dibh->b_data;
2375			gfs2_trans_add_meta(ip->i_gl, dibh);
2376			di->di_goal_meta = di->di_goal_data =
2377				cpu_to_be64(ip->i_goal);
2378			brelse(dibh);
2379		}
2380	}
2381	if (rbm.rgd->rd_free < *nblocks) {
2382		pr_warn("nblocks=%u\n", *nblocks);
2383		goto rgrp_error;
2384	}
2385
2386	rbm.rgd->rd_free -= *nblocks;
2387	if (dinode) {
2388		rbm.rgd->rd_dinodes++;
2389		*generation = rbm.rgd->rd_igeneration++;
2390		if (*generation == 0)
2391			*generation = rbm.rgd->rd_igeneration++;
2392	}
2393
2394	gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2395	gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2396	gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data);
2397
2398	gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2399	if (dinode)
2400		gfs2_trans_add_unrevoke(sdp, block, *nblocks);
2401
2402	gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
2403
2404	rbm.rgd->rd_free_clone -= *nblocks;
2405	trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2406			       dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2407	*bn = block;
2408	return 0;
2409
2410rgrp_error:
2411	gfs2_rgrp_error(rbm.rgd);
2412	return -EIO;
2413}
2414
2415/**
2416 * __gfs2_free_blocks - free a contiguous run of block(s)
2417 * @ip: the inode these blocks are being freed from
2418 * @bstart: first block of a run of contiguous blocks
2419 * @blen: the length of the block run
2420 * @meta: 1 if the blocks represent metadata
2421 *
2422 */
2423
2424void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
2425{
2426	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2427	struct gfs2_rgrpd *rgd;
2428
2429	rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
2430	if (!rgd)
2431		return;
2432	trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2433	rgd->rd_free += blen;
2434	rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2435	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2436	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2437	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2438
2439	/* Directories keep their data in the metadata address space */
2440	if (meta || ip->i_depth)
2441		gfs2_meta_wipe(ip, bstart, blen);
2442}
2443
2444/**
2445 * gfs2_free_meta - free a contiguous run of data block(s)
2446 * @ip: the inode these blocks are being freed from
2447 * @bstart: first block of a run of contiguous blocks
2448 * @blen: the length of the block run
2449 *
2450 */
2451
2452void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
2453{
2454	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2455
2456	__gfs2_free_blocks(ip, bstart, blen, 1);
2457	gfs2_statfs_change(sdp, 0, +blen, 0);
2458	gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2459}
2460
2461void gfs2_unlink_di(struct inode *inode)
2462{
2463	struct gfs2_inode *ip = GFS2_I(inode);
2464	struct gfs2_sbd *sdp = GFS2_SB(inode);
2465	struct gfs2_rgrpd *rgd;
2466	u64 blkno = ip->i_no_addr;
2467
2468	rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
2469	if (!rgd)
2470		return;
2471	trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2472	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2473	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2474	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2475	update_rgrp_lvb_unlinked(rgd, 1);
2476}
2477
2478void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2479{
2480	struct gfs2_sbd *sdp = rgd->rd_sbd;
2481	struct gfs2_rgrpd *tmp_rgd;
2482
2483	tmp_rgd = rgblk_free(sdp, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2484	if (!tmp_rgd)
2485		return;
2486	gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
2487
2488	if (!rgd->rd_dinodes)
2489		gfs2_consist_rgrpd(rgd);
2490	rgd->rd_dinodes--;
2491	rgd->rd_free++;
2492
2493	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2494	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2495	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2496	update_rgrp_lvb_unlinked(rgd, -1);
2497
2498	gfs2_statfs_change(sdp, 0, +1, -1);
 
 
 
 
 
 
2499	trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2500	gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2501	gfs2_meta_wipe(ip, ip->i_no_addr, 1);
2502}
2503
2504/**
2505 * gfs2_check_blk_type - Check the type of a block
2506 * @sdp: The superblock
2507 * @no_addr: The block number to check
2508 * @type: The block type we are looking for
2509 *
2510 * Returns: 0 if the block type matches the expected type
2511 *          -ESTALE if it doesn't match
2512 *          or -ve errno if something went wrong while checking
2513 */
2514
2515int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2516{
2517	struct gfs2_rgrpd *rgd;
2518	struct gfs2_holder rgd_gh;
2519	int error = -EINVAL;
2520
2521	rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2522	if (!rgd)
2523		goto fail;
2524
2525	error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2526	if (error)
2527		goto fail;
2528
2529	if (gfs2_get_block_type(rgd, no_addr) != type)
2530		error = -ESTALE;
2531
2532	gfs2_glock_dq_uninit(&rgd_gh);
2533fail:
2534	return error;
2535}
2536
2537/**
2538 * gfs2_rlist_add - add a RG to a list of RGs
2539 * @ip: the inode
2540 * @rlist: the list of resource groups
2541 * @block: the block
2542 *
2543 * Figure out what RG a block belongs to and add that RG to the list
2544 *
2545 * FIXME: Don't use NOFAIL
2546 *
2547 */
2548
2549void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2550		    u64 block)
2551{
2552	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2553	struct gfs2_rgrpd *rgd;
2554	struct gfs2_rgrpd **tmp;
2555	unsigned int new_space;
2556	unsigned int x;
2557
2558	if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2559		return;
2560
2561	if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
2562		rgd = ip->i_rgd;
2563	else
2564		rgd = gfs2_blk2rgrpd(sdp, block, 1);
2565	if (!rgd) {
2566		fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
2567		return;
2568	}
2569	ip->i_rgd = rgd;
2570
2571	for (x = 0; x < rlist->rl_rgrps; x++)
2572		if (rlist->rl_rgd[x] == rgd)
2573			return;
2574
2575	if (rlist->rl_rgrps == rlist->rl_space) {
2576		new_space = rlist->rl_space + 10;
2577
2578		tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2579			      GFP_NOFS | __GFP_NOFAIL);
2580
2581		if (rlist->rl_rgd) {
2582			memcpy(tmp, rlist->rl_rgd,
2583			       rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2584			kfree(rlist->rl_rgd);
2585		}
2586
2587		rlist->rl_space = new_space;
2588		rlist->rl_rgd = tmp;
2589	}
2590
2591	rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2592}
2593
2594/**
2595 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2596 *      and initialize an array of glock holders for them
2597 * @rlist: the list of resource groups
2598 * @state: the lock state to acquire the RG lock in
2599 *
2600 * FIXME: Don't use NOFAIL
2601 *
2602 */
2603
2604void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
2605{
2606	unsigned int x;
2607
2608	rlist->rl_ghs = kmalloc(rlist->rl_rgrps * sizeof(struct gfs2_holder),
2609				GFP_NOFS | __GFP_NOFAIL);
2610	for (x = 0; x < rlist->rl_rgrps; x++)
2611		gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
2612				state, 0,
2613				&rlist->rl_ghs[x]);
2614}
2615
2616/**
2617 * gfs2_rlist_free - free a resource group list
2618 * @rlist: the list of resource groups
2619 *
2620 */
2621
2622void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2623{
2624	unsigned int x;
2625
2626	kfree(rlist->rl_rgd);
2627
2628	if (rlist->rl_ghs) {
2629		for (x = 0; x < rlist->rl_rgrps; x++)
2630			gfs2_holder_uninit(&rlist->rl_ghs[x]);
2631		kfree(rlist->rl_ghs);
2632		rlist->rl_ghs = NULL;
2633	}
2634}
2635
v4.10.11
   1/*
   2 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
   3 * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
   4 *
   5 * This copyrighted material is made available to anyone wishing to use,
   6 * modify, copy, or redistribute it subject to the terms and conditions
   7 * of the GNU General Public License version 2.
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/slab.h>
  13#include <linux/spinlock.h>
  14#include <linux/completion.h>
  15#include <linux/buffer_head.h>
  16#include <linux/fs.h>
  17#include <linux/gfs2_ondisk.h>
  18#include <linux/prefetch.h>
  19#include <linux/blkdev.h>
  20#include <linux/rbtree.h>
  21#include <linux/random.h>
  22
  23#include "gfs2.h"
  24#include "incore.h"
  25#include "glock.h"
  26#include "glops.h"
  27#include "lops.h"
  28#include "meta_io.h"
  29#include "quota.h"
  30#include "rgrp.h"
  31#include "super.h"
  32#include "trans.h"
  33#include "util.h"
  34#include "log.h"
  35#include "inode.h"
  36#include "trace_gfs2.h"
 
  37
  38#define BFITNOENT ((u32)~0)
  39#define NO_BLOCK ((u64)~0)
  40
  41#if BITS_PER_LONG == 32
  42#define LBITMASK   (0x55555555UL)
  43#define LBITSKIP55 (0x55555555UL)
  44#define LBITSKIP00 (0x00000000UL)
  45#else
  46#define LBITMASK   (0x5555555555555555UL)
  47#define LBITSKIP55 (0x5555555555555555UL)
  48#define LBITSKIP00 (0x0000000000000000UL)
  49#endif
  50
  51/*
  52 * These routines are used by the resource group routines (rgrp.c)
  53 * to keep track of block allocation.  Each block is represented by two
  54 * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
  55 *
  56 * 0 = Free
  57 * 1 = Used (not metadata)
  58 * 2 = Unlinked (still in use) inode
  59 * 3 = Used (metadata)
  60 */
  61
  62struct gfs2_extent {
  63	struct gfs2_rbm rbm;
  64	u32 len;
  65};
  66
  67static const char valid_change[16] = {
  68	        /* current */
  69	/* n */ 0, 1, 1, 1,
  70	/* e */ 1, 0, 0, 0,
  71	/* w */ 0, 0, 0, 1,
  72	        1, 0, 0, 0
  73};
  74
  75static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
  76			 const struct gfs2_inode *ip, bool nowrap);
  77
  78
  79/**
  80 * gfs2_setbit - Set a bit in the bitmaps
  81 * @rbm: The position of the bit to set
  82 * @do_clone: Also set the clone bitmap, if it exists
  83 * @new_state: the new state of the block
  84 *
  85 */
  86
  87static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
  88			       unsigned char new_state)
  89{
  90	unsigned char *byte1, *byte2, *end, cur_state;
  91	struct gfs2_bitmap *bi = rbm_bi(rbm);
  92	unsigned int buflen = bi->bi_len;
  93	const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
  94
  95	byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY);
  96	end = bi->bi_bh->b_data + bi->bi_offset + buflen;
  97
  98	BUG_ON(byte1 >= end);
  99
 100	cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
 101
 102	if (unlikely(!valid_change[new_state * 4 + cur_state])) {
 103		pr_warn("buf_blk = 0x%x old_state=%d, new_state=%d\n",
 104			rbm->offset, cur_state, new_state);
 105		pr_warn("rgrp=0x%llx bi_start=0x%x\n",
 106			(unsigned long long)rbm->rgd->rd_addr, bi->bi_start);
 107		pr_warn("bi_offset=0x%x bi_len=0x%x\n",
 108			bi->bi_offset, bi->bi_len);
 109		dump_stack();
 110		gfs2_consist_rgrpd(rbm->rgd);
 111		return;
 112	}
 113	*byte1 ^= (cur_state ^ new_state) << bit;
 114
 115	if (do_clone && bi->bi_clone) {
 116		byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY);
 117		cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
 118		*byte2 ^= (cur_state ^ new_state) << bit;
 119	}
 120}
 121
 122/**
 123 * gfs2_testbit - test a bit in the bitmaps
 124 * @rbm: The bit to test
 125 *
 126 * Returns: The two bit block state of the requested bit
 127 */
 128
 129static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm)
 130{
 131	struct gfs2_bitmap *bi = rbm_bi(rbm);
 132	const u8 *buffer = bi->bi_bh->b_data + bi->bi_offset;
 133	const u8 *byte;
 134	unsigned int bit;
 135
 136	byte = buffer + (rbm->offset / GFS2_NBBY);
 137	bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
 138
 139	return (*byte >> bit) & GFS2_BIT_MASK;
 140}
 141
 142/**
 143 * gfs2_bit_search
 144 * @ptr: Pointer to bitmap data
 145 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
 146 * @state: The state we are searching for
 147 *
 148 * We xor the bitmap data with a patter which is the bitwise opposite
 149 * of what we are looking for, this gives rise to a pattern of ones
 150 * wherever there is a match. Since we have two bits per entry, we
 151 * take this pattern, shift it down by one place and then and it with
 152 * the original. All the even bit positions (0,2,4, etc) then represent
 153 * successful matches, so we mask with 0x55555..... to remove the unwanted
 154 * odd bit positions.
 155 *
 156 * This allows searching of a whole u64 at once (32 blocks) with a
 157 * single test (on 64 bit arches).
 158 */
 159
 160static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
 161{
 162	u64 tmp;
 163	static const u64 search[] = {
 164		[0] = 0xffffffffffffffffULL,
 165		[1] = 0xaaaaaaaaaaaaaaaaULL,
 166		[2] = 0x5555555555555555ULL,
 167		[3] = 0x0000000000000000ULL,
 168	};
 169	tmp = le64_to_cpu(*ptr) ^ search[state];
 170	tmp &= (tmp >> 1);
 171	tmp &= mask;
 172	return tmp;
 173}
 174
 175/**
 176 * rs_cmp - multi-block reservation range compare
 177 * @blk: absolute file system block number of the new reservation
 178 * @len: number of blocks in the new reservation
 179 * @rs: existing reservation to compare against
 180 *
 181 * returns: 1 if the block range is beyond the reach of the reservation
 182 *         -1 if the block range is before the start of the reservation
 183 *          0 if the block range overlaps with the reservation
 184 */
 185static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
 186{
 187	u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm);
 188
 189	if (blk >= startblk + rs->rs_free)
 190		return 1;
 191	if (blk + len - 1 < startblk)
 192		return -1;
 193	return 0;
 194}
 195
 196/**
 197 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
 198 *       a block in a given allocation state.
 199 * @buf: the buffer that holds the bitmaps
 200 * @len: the length (in bytes) of the buffer
 201 * @goal: start search at this block's bit-pair (within @buffer)
 202 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
 203 *
 204 * Scope of @goal and returned block number is only within this bitmap buffer,
 205 * not entire rgrp or filesystem.  @buffer will be offset from the actual
 206 * beginning of a bitmap block buffer, skipping any header structures, but
 207 * headers are always a multiple of 64 bits long so that the buffer is
 208 * always aligned to a 64 bit boundary.
 209 *
 210 * The size of the buffer is in bytes, but is it assumed that it is
 211 * always ok to read a complete multiple of 64 bits at the end
 212 * of the block in case the end is no aligned to a natural boundary.
 213 *
 214 * Return: the block number (bitmap buffer scope) that was found
 215 */
 216
 217static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
 218		       u32 goal, u8 state)
 219{
 220	u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
 221	const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
 222	const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
 223	u64 tmp;
 224	u64 mask = 0x5555555555555555ULL;
 225	u32 bit;
 226
 227	/* Mask off bits we don't care about at the start of the search */
 228	mask <<= spoint;
 229	tmp = gfs2_bit_search(ptr, mask, state);
 230	ptr++;
 231	while(tmp == 0 && ptr < end) {
 232		tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
 233		ptr++;
 234	}
 235	/* Mask off any bits which are more than len bytes from the start */
 236	if (ptr == end && (len & (sizeof(u64) - 1)))
 237		tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
 238	/* Didn't find anything, so return */
 239	if (tmp == 0)
 240		return BFITNOENT;
 241	ptr--;
 242	bit = __ffs64(tmp);
 243	bit /= 2;	/* two bits per entry in the bitmap */
 244	return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
 245}
 246
 247/**
 248 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
 249 * @rbm: The rbm with rgd already set correctly
 250 * @block: The block number (filesystem relative)
 251 *
 252 * This sets the bi and offset members of an rbm based on a
 253 * resource group and a filesystem relative block number. The
 254 * resource group must be set in the rbm on entry, the bi and
 255 * offset members will be set by this function.
 256 *
 257 * Returns: 0 on success, or an error code
 258 */
 259
 260static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
 261{
 262	u64 rblock = block - rbm->rgd->rd_data0;
 263
 264	if (WARN_ON_ONCE(rblock > UINT_MAX))
 265		return -EINVAL;
 266	if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data)
 267		return -E2BIG;
 268
 269	rbm->bii = 0;
 270	rbm->offset = (u32)(rblock);
 271	/* Check if the block is within the first block */
 272	if (rbm->offset < rbm_bi(rbm)->bi_blocks)
 273		return 0;
 274
 275	/* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
 276	rbm->offset += (sizeof(struct gfs2_rgrp) -
 277			sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
 278	rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
 279	rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
 280	return 0;
 281}
 282
 283/**
 284 * gfs2_rbm_incr - increment an rbm structure
 285 * @rbm: The rbm with rgd already set correctly
 286 *
 287 * This function takes an existing rbm structure and increments it to the next
 288 * viable block offset.
 289 *
 290 * Returns: If incrementing the offset would cause the rbm to go past the
 291 *          end of the rgrp, true is returned, otherwise false.
 292 *
 293 */
 294
 295static bool gfs2_rbm_incr(struct gfs2_rbm *rbm)
 296{
 297	if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */
 298		rbm->offset++;
 299		return false;
 300	}
 301	if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */
 302		return true;
 303
 304	rbm->offset = 0;
 305	rbm->bii++;
 306	return false;
 307}
 308
 309/**
 310 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
 311 * @rbm: Position to search (value/result)
 312 * @n_unaligned: Number of unaligned blocks to check
 313 * @len: Decremented for each block found (terminate on zero)
 314 *
 315 * Returns: true if a non-free block is encountered
 316 */
 317
 318static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
 319{
 320	u32 n;
 321	u8 res;
 322
 323	for (n = 0; n < n_unaligned; n++) {
 324		res = gfs2_testbit(rbm);
 325		if (res != GFS2_BLKST_FREE)
 326			return true;
 327		(*len)--;
 328		if (*len == 0)
 329			return true;
 330		if (gfs2_rbm_incr(rbm))
 331			return true;
 332	}
 333
 334	return false;
 335}
 336
 337/**
 338 * gfs2_free_extlen - Return extent length of free blocks
 339 * @rrbm: Starting position
 340 * @len: Max length to check
 341 *
 342 * Starting at the block specified by the rbm, see how many free blocks
 343 * there are, not reading more than len blocks ahead. This can be done
 344 * using memchr_inv when the blocks are byte aligned, but has to be done
 345 * on a block by block basis in case of unaligned blocks. Also this
 346 * function can cope with bitmap boundaries (although it must stop on
 347 * a resource group boundary)
 348 *
 349 * Returns: Number of free blocks in the extent
 350 */
 351
 352static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
 353{
 354	struct gfs2_rbm rbm = *rrbm;
 355	u32 n_unaligned = rbm.offset & 3;
 356	u32 size = len;
 357	u32 bytes;
 358	u32 chunk_size;
 359	u8 *ptr, *start, *end;
 360	u64 block;
 361	struct gfs2_bitmap *bi;
 362
 363	if (n_unaligned &&
 364	    gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
 365		goto out;
 366
 367	n_unaligned = len & 3;
 368	/* Start is now byte aligned */
 369	while (len > 3) {
 370		bi = rbm_bi(&rbm);
 371		start = bi->bi_bh->b_data;
 372		if (bi->bi_clone)
 373			start = bi->bi_clone;
 374		end = start + bi->bi_bh->b_size;
 375		start += bi->bi_offset;
 376		BUG_ON(rbm.offset & 3);
 377		start += (rbm.offset / GFS2_NBBY);
 378		bytes = min_t(u32, len / GFS2_NBBY, (end - start));
 379		ptr = memchr_inv(start, 0, bytes);
 380		chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
 381		chunk_size *= GFS2_NBBY;
 382		BUG_ON(len < chunk_size);
 383		len -= chunk_size;
 384		block = gfs2_rbm_to_block(&rbm);
 385		if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
 386			n_unaligned = 0;
 387			break;
 388		}
 389		if (ptr) {
 390			n_unaligned = 3;
 391			break;
 392		}
 393		n_unaligned = len & 3;
 394	}
 395
 396	/* Deal with any bits left over at the end */
 397	if (n_unaligned)
 398		gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
 399out:
 400	return size - len;
 401}
 402
 403/**
 404 * gfs2_bitcount - count the number of bits in a certain state
 405 * @rgd: the resource group descriptor
 406 * @buffer: the buffer that holds the bitmaps
 407 * @buflen: the length (in bytes) of the buffer
 408 * @state: the state of the block we're looking for
 409 *
 410 * Returns: The number of bits
 411 */
 412
 413static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
 414			 unsigned int buflen, u8 state)
 415{
 416	const u8 *byte = buffer;
 417	const u8 *end = buffer + buflen;
 418	const u8 state1 = state << 2;
 419	const u8 state2 = state << 4;
 420	const u8 state3 = state << 6;
 421	u32 count = 0;
 422
 423	for (; byte < end; byte++) {
 424		if (((*byte) & 0x03) == state)
 425			count++;
 426		if (((*byte) & 0x0C) == state1)
 427			count++;
 428		if (((*byte) & 0x30) == state2)
 429			count++;
 430		if (((*byte) & 0xC0) == state3)
 431			count++;
 432	}
 433
 434	return count;
 435}
 436
 437/**
 438 * gfs2_rgrp_verify - Verify that a resource group is consistent
 439 * @rgd: the rgrp
 440 *
 441 */
 442
 443void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
 444{
 445	struct gfs2_sbd *sdp = rgd->rd_sbd;
 446	struct gfs2_bitmap *bi = NULL;
 447	u32 length = rgd->rd_length;
 448	u32 count[4], tmp;
 449	int buf, x;
 450
 451	memset(count, 0, 4 * sizeof(u32));
 452
 453	/* Count # blocks in each of 4 possible allocation states */
 454	for (buf = 0; buf < length; buf++) {
 455		bi = rgd->rd_bits + buf;
 456		for (x = 0; x < 4; x++)
 457			count[x] += gfs2_bitcount(rgd,
 458						  bi->bi_bh->b_data +
 459						  bi->bi_offset,
 460						  bi->bi_len, x);
 461	}
 462
 463	if (count[0] != rgd->rd_free) {
 464		if (gfs2_consist_rgrpd(rgd))
 465			fs_err(sdp, "free data mismatch:  %u != %u\n",
 466			       count[0], rgd->rd_free);
 467		return;
 468	}
 469
 470	tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
 471	if (count[1] != tmp) {
 472		if (gfs2_consist_rgrpd(rgd))
 473			fs_err(sdp, "used data mismatch:  %u != %u\n",
 474			       count[1], tmp);
 475		return;
 476	}
 477
 478	if (count[2] + count[3] != rgd->rd_dinodes) {
 479		if (gfs2_consist_rgrpd(rgd))
 480			fs_err(sdp, "used metadata mismatch:  %u != %u\n",
 481			       count[2] + count[3], rgd->rd_dinodes);
 482		return;
 483	}
 484}
 485
 486static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block)
 487{
 488	u64 first = rgd->rd_data0;
 489	u64 last = first + rgd->rd_data;
 490	return first <= block && block < last;
 491}
 492
 493/**
 494 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
 495 * @sdp: The GFS2 superblock
 496 * @blk: The data block number
 497 * @exact: True if this needs to be an exact match
 498 *
 
 
 
 
 
 
 
 499 * Returns: The resource group, or NULL if not found
 500 */
 501
 502struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
 503{
 504	struct rb_node *n, *next;
 505	struct gfs2_rgrpd *cur;
 506
 507	spin_lock(&sdp->sd_rindex_spin);
 508	n = sdp->sd_rindex_tree.rb_node;
 509	while (n) {
 510		cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
 511		next = NULL;
 512		if (blk < cur->rd_addr)
 513			next = n->rb_left;
 514		else if (blk >= cur->rd_data0 + cur->rd_data)
 515			next = n->rb_right;
 516		if (next == NULL) {
 517			spin_unlock(&sdp->sd_rindex_spin);
 518			if (exact) {
 519				if (blk < cur->rd_addr)
 520					return NULL;
 521				if (blk >= cur->rd_data0 + cur->rd_data)
 522					return NULL;
 523			}
 524			return cur;
 525		}
 526		n = next;
 527	}
 528	spin_unlock(&sdp->sd_rindex_spin);
 529
 530	return NULL;
 531}
 532
 533/**
 534 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
 535 * @sdp: The GFS2 superblock
 536 *
 537 * Returns: The first rgrp in the filesystem
 538 */
 539
 540struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
 541{
 542	const struct rb_node *n;
 543	struct gfs2_rgrpd *rgd;
 544
 545	spin_lock(&sdp->sd_rindex_spin);
 546	n = rb_first(&sdp->sd_rindex_tree);
 547	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 548	spin_unlock(&sdp->sd_rindex_spin);
 549
 550	return rgd;
 551}
 552
 553/**
 554 * gfs2_rgrpd_get_next - get the next RG
 555 * @rgd: the resource group descriptor
 556 *
 557 * Returns: The next rgrp
 558 */
 559
 560struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
 561{
 562	struct gfs2_sbd *sdp = rgd->rd_sbd;
 563	const struct rb_node *n;
 564
 565	spin_lock(&sdp->sd_rindex_spin);
 566	n = rb_next(&rgd->rd_node);
 567	if (n == NULL)
 568		n = rb_first(&sdp->sd_rindex_tree);
 569
 570	if (unlikely(&rgd->rd_node == n)) {
 571		spin_unlock(&sdp->sd_rindex_spin);
 572		return NULL;
 573	}
 574	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 575	spin_unlock(&sdp->sd_rindex_spin);
 576	return rgd;
 577}
 578
 579void check_and_update_goal(struct gfs2_inode *ip)
 580{
 581	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 582	if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL)
 583		ip->i_goal = ip->i_no_addr;
 584}
 585
 586void gfs2_free_clones(struct gfs2_rgrpd *rgd)
 587{
 588	int x;
 589
 590	for (x = 0; x < rgd->rd_length; x++) {
 591		struct gfs2_bitmap *bi = rgd->rd_bits + x;
 592		kfree(bi->bi_clone);
 593		bi->bi_clone = NULL;
 594	}
 595}
 596
 597/**
 598 * gfs2_rsqa_alloc - make sure we have a reservation assigned to the inode
 599 *                 plus a quota allocations data structure, if necessary
 600 * @ip: the inode for this reservation
 601 */
 602int gfs2_rsqa_alloc(struct gfs2_inode *ip)
 603{
 604	return gfs2_qa_alloc(ip);
 605}
 606
 607static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs)
 608{
 609	gfs2_print_dbg(seq, "  B: n:%llu s:%llu b:%u f:%u\n",
 610		       (unsigned long long)rs->rs_inum,
 611		       (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm),
 612		       rs->rs_rbm.offset, rs->rs_free);
 613}
 614
 615/**
 616 * __rs_deltree - remove a multi-block reservation from the rgd tree
 617 * @rs: The reservation to remove
 618 *
 619 */
 620static void __rs_deltree(struct gfs2_blkreserv *rs)
 621{
 622	struct gfs2_rgrpd *rgd;
 623
 624	if (!gfs2_rs_active(rs))
 625		return;
 626
 627	rgd = rs->rs_rbm.rgd;
 628	trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
 629	rb_erase(&rs->rs_node, &rgd->rd_rstree);
 630	RB_CLEAR_NODE(&rs->rs_node);
 631
 632	if (rs->rs_free) {
 633		struct gfs2_bitmap *bi = rbm_bi(&rs->rs_rbm);
 634
 635		/* return reserved blocks to the rgrp */
 636		BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free);
 637		rs->rs_rbm.rgd->rd_reserved -= rs->rs_free;
 638		/* The rgrp extent failure point is likely not to increase;
 639		   it will only do so if the freed blocks are somehow
 640		   contiguous with a span of free blocks that follows. Still,
 641		   it will force the number to be recalculated later. */
 642		rgd->rd_extfail_pt += rs->rs_free;
 643		rs->rs_free = 0;
 644		clear_bit(GBF_FULL, &bi->bi_flags);
 645	}
 646}
 647
 648/**
 649 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
 650 * @rs: The reservation to remove
 651 *
 652 */
 653void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
 654{
 655	struct gfs2_rgrpd *rgd;
 656
 657	rgd = rs->rs_rbm.rgd;
 658	if (rgd) {
 659		spin_lock(&rgd->rd_rsspin);
 660		__rs_deltree(rs);
 661		BUG_ON(rs->rs_free);
 662		spin_unlock(&rgd->rd_rsspin);
 663	}
 664}
 665
 666/**
 667 * gfs2_rsqa_delete - delete a multi-block reservation and quota allocation
 668 * @ip: The inode for this reservation
 669 * @wcount: The inode's write count, or NULL
 670 *
 671 */
 672void gfs2_rsqa_delete(struct gfs2_inode *ip, atomic_t *wcount)
 673{
 674	down_write(&ip->i_rw_mutex);
 675	if ((wcount == NULL) || (atomic_read(wcount) <= 1))
 676		gfs2_rs_deltree(&ip->i_res);
 677	up_write(&ip->i_rw_mutex);
 678	gfs2_qa_delete(ip, wcount);
 679}
 680
 681/**
 682 * return_all_reservations - return all reserved blocks back to the rgrp.
 683 * @rgd: the rgrp that needs its space back
 684 *
 685 * We previously reserved a bunch of blocks for allocation. Now we need to
 686 * give them back. This leave the reservation structures in tact, but removes
 687 * all of their corresponding "no-fly zones".
 688 */
 689static void return_all_reservations(struct gfs2_rgrpd *rgd)
 690{
 691	struct rb_node *n;
 692	struct gfs2_blkreserv *rs;
 693
 694	spin_lock(&rgd->rd_rsspin);
 695	while ((n = rb_first(&rgd->rd_rstree))) {
 696		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
 697		__rs_deltree(rs);
 698	}
 699	spin_unlock(&rgd->rd_rsspin);
 700}
 701
 702void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
 703{
 704	struct rb_node *n;
 705	struct gfs2_rgrpd *rgd;
 706	struct gfs2_glock *gl;
 707
 708	while ((n = rb_first(&sdp->sd_rindex_tree))) {
 709		rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 710		gl = rgd->rd_gl;
 711
 712		rb_erase(n, &sdp->sd_rindex_tree);
 713
 714		if (gl) {
 715			spin_lock(&gl->gl_lockref.lock);
 716			gl->gl_object = NULL;
 717			spin_unlock(&gl->gl_lockref.lock);
 718			gfs2_glock_add_to_lru(gl);
 719			gfs2_glock_put(gl);
 720		}
 721
 722		gfs2_free_clones(rgd);
 723		kfree(rgd->rd_bits);
 724		rgd->rd_bits = NULL;
 725		return_all_reservations(rgd);
 726		kmem_cache_free(gfs2_rgrpd_cachep, rgd);
 727	}
 728}
 729
 730static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
 731{
 732	pr_info("ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
 733	pr_info("ri_length = %u\n", rgd->rd_length);
 734	pr_info("ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
 735	pr_info("ri_data = %u\n", rgd->rd_data);
 736	pr_info("ri_bitbytes = %u\n", rgd->rd_bitbytes);
 737}
 738
 739/**
 740 * gfs2_compute_bitstructs - Compute the bitmap sizes
 741 * @rgd: The resource group descriptor
 742 *
 743 * Calculates bitmap descriptors, one for each block that contains bitmap data
 744 *
 745 * Returns: errno
 746 */
 747
 748static int compute_bitstructs(struct gfs2_rgrpd *rgd)
 749{
 750	struct gfs2_sbd *sdp = rgd->rd_sbd;
 751	struct gfs2_bitmap *bi;
 752	u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
 753	u32 bytes_left, bytes;
 754	int x;
 755
 756	if (!length)
 757		return -EINVAL;
 758
 759	rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
 760	if (!rgd->rd_bits)
 761		return -ENOMEM;
 762
 763	bytes_left = rgd->rd_bitbytes;
 764
 765	for (x = 0; x < length; x++) {
 766		bi = rgd->rd_bits + x;
 767
 768		bi->bi_flags = 0;
 769		/* small rgrp; bitmap stored completely in header block */
 770		if (length == 1) {
 771			bytes = bytes_left;
 772			bi->bi_offset = sizeof(struct gfs2_rgrp);
 773			bi->bi_start = 0;
 774			bi->bi_len = bytes;
 775			bi->bi_blocks = bytes * GFS2_NBBY;
 776		/* header block */
 777		} else if (x == 0) {
 778			bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
 779			bi->bi_offset = sizeof(struct gfs2_rgrp);
 780			bi->bi_start = 0;
 781			bi->bi_len = bytes;
 782			bi->bi_blocks = bytes * GFS2_NBBY;
 783		/* last block */
 784		} else if (x + 1 == length) {
 785			bytes = bytes_left;
 786			bi->bi_offset = sizeof(struct gfs2_meta_header);
 787			bi->bi_start = rgd->rd_bitbytes - bytes_left;
 788			bi->bi_len = bytes;
 789			bi->bi_blocks = bytes * GFS2_NBBY;
 790		/* other blocks */
 791		} else {
 792			bytes = sdp->sd_sb.sb_bsize -
 793				sizeof(struct gfs2_meta_header);
 794			bi->bi_offset = sizeof(struct gfs2_meta_header);
 795			bi->bi_start = rgd->rd_bitbytes - bytes_left;
 796			bi->bi_len = bytes;
 797			bi->bi_blocks = bytes * GFS2_NBBY;
 798		}
 799
 800		bytes_left -= bytes;
 801	}
 802
 803	if (bytes_left) {
 804		gfs2_consist_rgrpd(rgd);
 805		return -EIO;
 806	}
 807	bi = rgd->rd_bits + (length - 1);
 808	if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
 809		if (gfs2_consist_rgrpd(rgd)) {
 810			gfs2_rindex_print(rgd);
 811			fs_err(sdp, "start=%u len=%u offset=%u\n",
 812			       bi->bi_start, bi->bi_len, bi->bi_offset);
 813		}
 814		return -EIO;
 815	}
 816
 817	return 0;
 818}
 819
 820/**
 821 * gfs2_ri_total - Total up the file system space, according to the rindex.
 822 * @sdp: the filesystem
 823 *
 824 */
 825u64 gfs2_ri_total(struct gfs2_sbd *sdp)
 826{
 827	u64 total_data = 0;	
 828	struct inode *inode = sdp->sd_rindex;
 829	struct gfs2_inode *ip = GFS2_I(inode);
 830	char buf[sizeof(struct gfs2_rindex)];
 831	int error, rgrps;
 832
 833	for (rgrps = 0;; rgrps++) {
 834		loff_t pos = rgrps * sizeof(struct gfs2_rindex);
 835
 836		if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
 837			break;
 838		error = gfs2_internal_read(ip, buf, &pos,
 839					   sizeof(struct gfs2_rindex));
 840		if (error != sizeof(struct gfs2_rindex))
 841			break;
 842		total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
 843	}
 844	return total_data;
 845}
 846
 847static int rgd_insert(struct gfs2_rgrpd *rgd)
 848{
 849	struct gfs2_sbd *sdp = rgd->rd_sbd;
 850	struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
 851
 852	/* Figure out where to put new node */
 853	while (*newn) {
 854		struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
 855						  rd_node);
 856
 857		parent = *newn;
 858		if (rgd->rd_addr < cur->rd_addr)
 859			newn = &((*newn)->rb_left);
 860		else if (rgd->rd_addr > cur->rd_addr)
 861			newn = &((*newn)->rb_right);
 862		else
 863			return -EEXIST;
 864	}
 865
 866	rb_link_node(&rgd->rd_node, parent, newn);
 867	rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
 868	sdp->sd_rgrps++;
 869	return 0;
 870}
 871
 872/**
 873 * read_rindex_entry - Pull in a new resource index entry from the disk
 874 * @ip: Pointer to the rindex inode
 875 *
 876 * Returns: 0 on success, > 0 on EOF, error code otherwise
 877 */
 878
 879static int read_rindex_entry(struct gfs2_inode *ip)
 880{
 881	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 882	const unsigned bsize = sdp->sd_sb.sb_bsize;
 883	loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
 884	struct gfs2_rindex buf;
 885	int error;
 886	struct gfs2_rgrpd *rgd;
 887
 888	if (pos >= i_size_read(&ip->i_inode))
 889		return 1;
 890
 891	error = gfs2_internal_read(ip, (char *)&buf, &pos,
 892				   sizeof(struct gfs2_rindex));
 893
 894	if (error != sizeof(struct gfs2_rindex))
 895		return (error == 0) ? 1 : error;
 896
 897	rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
 898	error = -ENOMEM;
 899	if (!rgd)
 900		return error;
 901
 902	rgd->rd_sbd = sdp;
 903	rgd->rd_addr = be64_to_cpu(buf.ri_addr);
 904	rgd->rd_length = be32_to_cpu(buf.ri_length);
 905	rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
 906	rgd->rd_data = be32_to_cpu(buf.ri_data);
 907	rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
 908	spin_lock_init(&rgd->rd_rsspin);
 909
 910	error = compute_bitstructs(rgd);
 911	if (error)
 912		goto fail;
 913
 914	error = gfs2_glock_get(sdp, rgd->rd_addr,
 915			       &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
 916	if (error)
 917		goto fail;
 918
 919	rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
 920	rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED);
 921	if (rgd->rd_data > sdp->sd_max_rg_data)
 922		sdp->sd_max_rg_data = rgd->rd_data;
 923	spin_lock(&sdp->sd_rindex_spin);
 924	error = rgd_insert(rgd);
 925	spin_unlock(&sdp->sd_rindex_spin);
 926	if (!error) {
 927		rgd->rd_gl->gl_object = rgd;
 928		rgd->rd_gl->gl_vm.start = (rgd->rd_addr * bsize) & PAGE_MASK;
 929		rgd->rd_gl->gl_vm.end = PAGE_ALIGN((rgd->rd_addr +
 930						    rgd->rd_length) * bsize) - 1;
 931		return 0;
 932	}
 933
 934	error = 0; /* someone else read in the rgrp; free it and ignore it */
 935	gfs2_glock_put(rgd->rd_gl);
 936
 937fail:
 938	kfree(rgd->rd_bits);
 939	rgd->rd_bits = NULL;
 940	kmem_cache_free(gfs2_rgrpd_cachep, rgd);
 941	return error;
 942}
 943
 944/**
 945 * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use
 946 * @sdp: the GFS2 superblock
 947 *
 948 * The purpose of this function is to select a subset of the resource groups
 949 * and mark them as PREFERRED. We do it in such a way that each node prefers
 950 * to use a unique set of rgrps to minimize glock contention.
 951 */
 952static void set_rgrp_preferences(struct gfs2_sbd *sdp)
 953{
 954	struct gfs2_rgrpd *rgd, *first;
 955	int i;
 956
 957	/* Skip an initial number of rgrps, based on this node's journal ID.
 958	   That should start each node out on its own set. */
 959	rgd = gfs2_rgrpd_get_first(sdp);
 960	for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++)
 961		rgd = gfs2_rgrpd_get_next(rgd);
 962	first = rgd;
 963
 964	do {
 965		rgd->rd_flags |= GFS2_RDF_PREFERRED;
 966		for (i = 0; i < sdp->sd_journals; i++) {
 967			rgd = gfs2_rgrpd_get_next(rgd);
 968			if (!rgd || rgd == first)
 969				break;
 970		}
 971	} while (rgd && rgd != first);
 972}
 973
 974/**
 975 * gfs2_ri_update - Pull in a new resource index from the disk
 976 * @ip: pointer to the rindex inode
 977 *
 978 * Returns: 0 on successful update, error code otherwise
 979 */
 980
 981static int gfs2_ri_update(struct gfs2_inode *ip)
 982{
 983	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 984	int error;
 985
 986	do {
 987		error = read_rindex_entry(ip);
 988	} while (error == 0);
 989
 990	if (error < 0)
 991		return error;
 992
 993	set_rgrp_preferences(sdp);
 994
 995	sdp->sd_rindex_uptodate = 1;
 996	return 0;
 997}
 998
 999/**
1000 * gfs2_rindex_update - Update the rindex if required
1001 * @sdp: The GFS2 superblock
1002 *
1003 * We grab a lock on the rindex inode to make sure that it doesn't
1004 * change whilst we are performing an operation. We keep this lock
1005 * for quite long periods of time compared to other locks. This
1006 * doesn't matter, since it is shared and it is very, very rarely
1007 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
1008 *
1009 * This makes sure that we're using the latest copy of the resource index
1010 * special file, which might have been updated if someone expanded the
1011 * filesystem (via gfs2_grow utility), which adds new resource groups.
1012 *
1013 * Returns: 0 on succeess, error code otherwise
1014 */
1015
1016int gfs2_rindex_update(struct gfs2_sbd *sdp)
1017{
1018	struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
1019	struct gfs2_glock *gl = ip->i_gl;
1020	struct gfs2_holder ri_gh;
1021	int error = 0;
1022	int unlock_required = 0;
1023
1024	/* Read new copy from disk if we don't have the latest */
1025	if (!sdp->sd_rindex_uptodate) {
1026		if (!gfs2_glock_is_locked_by_me(gl)) {
1027			error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
1028			if (error)
1029				return error;
1030			unlock_required = 1;
1031		}
1032		if (!sdp->sd_rindex_uptodate)
1033			error = gfs2_ri_update(ip);
1034		if (unlock_required)
1035			gfs2_glock_dq_uninit(&ri_gh);
1036	}
1037
1038	return error;
1039}
1040
1041static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
1042{
1043	const struct gfs2_rgrp *str = buf;
1044	u32 rg_flags;
1045
1046	rg_flags = be32_to_cpu(str->rg_flags);
1047	rg_flags &= ~GFS2_RDF_MASK;
1048	rgd->rd_flags &= GFS2_RDF_MASK;
1049	rgd->rd_flags |= rg_flags;
1050	rgd->rd_free = be32_to_cpu(str->rg_free);
1051	rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
1052	rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
 
1053}
1054
1055static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
1056{
 
1057	struct gfs2_rgrp *str = buf;
 
1058
1059	str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
1060	str->rg_free = cpu_to_be32(rgd->rd_free);
1061	str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
1062	str->__pad = cpu_to_be32(0);
 
 
 
1063	str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
 
 
 
 
 
 
 
1064	memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
1065}
1066
1067static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
1068{
1069	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1070	struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1071
1072	if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free ||
1073	    rgl->rl_dinodes != str->rg_dinodes ||
1074	    rgl->rl_igeneration != str->rg_igeneration)
1075		return 0;
1076	return 1;
1077}
1078
1079static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1080{
1081	const struct gfs2_rgrp *str = buf;
1082
1083	rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1084	rgl->rl_flags = str->rg_flags;
1085	rgl->rl_free = str->rg_free;
1086	rgl->rl_dinodes = str->rg_dinodes;
1087	rgl->rl_igeneration = str->rg_igeneration;
1088	rgl->__pad = 0UL;
1089}
1090
1091static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change)
1092{
1093	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1094	u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change;
1095	rgl->rl_unlinked = cpu_to_be32(unlinked);
1096}
1097
1098static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1099{
1100	struct gfs2_bitmap *bi;
1101	const u32 length = rgd->rd_length;
1102	const u8 *buffer = NULL;
1103	u32 i, goal, count = 0;
1104
1105	for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1106		goal = 0;
1107		buffer = bi->bi_bh->b_data + bi->bi_offset;
1108		WARN_ON(!buffer_uptodate(bi->bi_bh));
1109		while (goal < bi->bi_len * GFS2_NBBY) {
1110			goal = gfs2_bitfit(buffer, bi->bi_len, goal,
1111					   GFS2_BLKST_UNLINKED);
1112			if (goal == BFITNOENT)
1113				break;
1114			count++;
1115			goal++;
1116		}
1117	}
1118
1119	return count;
1120}
1121
1122
1123/**
1124 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1125 * @rgd: the struct gfs2_rgrpd describing the RG to read in
1126 *
1127 * Read in all of a Resource Group's header and bitmap blocks.
1128 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
1129 *
1130 * Returns: errno
1131 */
1132
1133static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1134{
1135	struct gfs2_sbd *sdp = rgd->rd_sbd;
1136	struct gfs2_glock *gl = rgd->rd_gl;
1137	unsigned int length = rgd->rd_length;
1138	struct gfs2_bitmap *bi;
1139	unsigned int x, y;
1140	int error;
1141
1142	if (rgd->rd_bits[0].bi_bh != NULL)
1143		return 0;
1144
1145	for (x = 0; x < length; x++) {
1146		bi = rgd->rd_bits + x;
1147		error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh);
1148		if (error)
1149			goto fail;
1150	}
1151
1152	for (y = length; y--;) {
1153		bi = rgd->rd_bits + y;
1154		error = gfs2_meta_wait(sdp, bi->bi_bh);
1155		if (error)
1156			goto fail;
1157		if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1158					      GFS2_METATYPE_RG)) {
1159			error = -EIO;
1160			goto fail;
1161		}
1162	}
1163
1164	if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1165		for (x = 0; x < length; x++)
1166			clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
1167		gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1168		rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1169		rgd->rd_free_clone = rgd->rd_free;
1170		/* max out the rgrp allocation failure point */
1171		rgd->rd_extfail_pt = rgd->rd_free;
1172	}
1173	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1174		rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1175		gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1176				     rgd->rd_bits[0].bi_bh->b_data);
1177	}
1178	else if (sdp->sd_args.ar_rgrplvb) {
1179		if (!gfs2_rgrp_lvb_valid(rgd)){
1180			gfs2_consist_rgrpd(rgd);
1181			error = -EIO;
1182			goto fail;
1183		}
1184		if (rgd->rd_rgl->rl_unlinked == 0)
1185			rgd->rd_flags &= ~GFS2_RDF_CHECK;
1186	}
1187	return 0;
1188
1189fail:
1190	while (x--) {
1191		bi = rgd->rd_bits + x;
1192		brelse(bi->bi_bh);
1193		bi->bi_bh = NULL;
1194		gfs2_assert_warn(sdp, !bi->bi_clone);
1195	}
1196
1197	return error;
1198}
1199
1200static int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1201{
1202	u32 rl_flags;
1203
1204	if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1205		return 0;
1206
1207	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1208		return gfs2_rgrp_bh_get(rgd);
1209
1210	rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1211	rl_flags &= ~GFS2_RDF_MASK;
1212	rgd->rd_flags &= GFS2_RDF_MASK;
1213	rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1214	if (rgd->rd_rgl->rl_unlinked == 0)
1215		rgd->rd_flags &= ~GFS2_RDF_CHECK;
1216	rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1217	rgd->rd_free_clone = rgd->rd_free;
1218	rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1219	rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1220	return 0;
1221}
1222
1223int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1224{
1225	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1226	struct gfs2_sbd *sdp = rgd->rd_sbd;
1227
1228	if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1229		return 0;
1230	return gfs2_rgrp_bh_get(rgd);
1231}
1232
1233/**
1234 * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1235 * @rgd: The resource group
1236 *
1237 */
1238
1239void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd)
1240{
1241	int x, length = rgd->rd_length;
1242
1243	for (x = 0; x < length; x++) {
1244		struct gfs2_bitmap *bi = rgd->rd_bits + x;
1245		if (bi->bi_bh) {
1246			brelse(bi->bi_bh);
1247			bi->bi_bh = NULL;
1248		}
1249	}
1250
1251}
1252
1253/**
1254 * gfs2_rgrp_go_unlock - Unlock a rgrp glock
1255 * @gh: The glock holder for the resource group
1256 *
1257 */
1258
1259void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
1260{
1261	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1262	int demote_requested = test_bit(GLF_DEMOTE, &gh->gh_gl->gl_flags) |
1263		test_bit(GLF_PENDING_DEMOTE, &gh->gh_gl->gl_flags);
1264
1265	if (rgd && demote_requested)
1266		gfs2_rgrp_brelse(rgd);
1267}
1268
1269int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1270			     struct buffer_head *bh,
1271			     const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1272{
1273	struct super_block *sb = sdp->sd_vfs;
1274	u64 blk;
1275	sector_t start = 0;
1276	sector_t nr_blks = 0;
1277	int rv;
1278	unsigned int x;
1279	u32 trimmed = 0;
1280	u8 diff;
1281
1282	for (x = 0; x < bi->bi_len; x++) {
1283		const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1284		clone += bi->bi_offset;
1285		clone += x;
1286		if (bh) {
1287			const u8 *orig = bh->b_data + bi->bi_offset + x;
1288			diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1289		} else {
1290			diff = ~(*clone | (*clone >> 1));
1291		}
1292		diff &= 0x55;
1293		if (diff == 0)
1294			continue;
1295		blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1296		while(diff) {
1297			if (diff & 1) {
1298				if (nr_blks == 0)
1299					goto start_new_extent;
1300				if ((start + nr_blks) != blk) {
1301					if (nr_blks >= minlen) {
1302						rv = sb_issue_discard(sb,
1303							start, nr_blks,
1304							GFP_NOFS, 0);
1305						if (rv)
1306							goto fail;
1307						trimmed += nr_blks;
1308					}
1309					nr_blks = 0;
1310start_new_extent:
1311					start = blk;
1312				}
1313				nr_blks++;
1314			}
1315			diff >>= 2;
1316			blk++;
1317		}
1318	}
1319	if (nr_blks >= minlen) {
1320		rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1321		if (rv)
1322			goto fail;
1323		trimmed += nr_blks;
1324	}
1325	if (ptrimmed)
1326		*ptrimmed = trimmed;
1327	return 0;
1328
1329fail:
1330	if (sdp->sd_args.ar_discard)
1331		fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv);
1332	sdp->sd_args.ar_discard = 0;
1333	return -EIO;
1334}
1335
1336/**
1337 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1338 * @filp: Any file on the filesystem
1339 * @argp: Pointer to the arguments (also used to pass result)
1340 *
1341 * Returns: 0 on success, otherwise error code
1342 */
1343
1344int gfs2_fitrim(struct file *filp, void __user *argp)
1345{
1346	struct inode *inode = file_inode(filp);
1347	struct gfs2_sbd *sdp = GFS2_SB(inode);
1348	struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1349	struct buffer_head *bh;
1350	struct gfs2_rgrpd *rgd;
1351	struct gfs2_rgrpd *rgd_end;
1352	struct gfs2_holder gh;
1353	struct fstrim_range r;
1354	int ret = 0;
1355	u64 amt;
1356	u64 trimmed = 0;
1357	u64 start, end, minlen;
1358	unsigned int x;
1359	unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1360
1361	if (!capable(CAP_SYS_ADMIN))
1362		return -EPERM;
1363
1364	if (!blk_queue_discard(q))
1365		return -EOPNOTSUPP;
1366
1367	if (copy_from_user(&r, argp, sizeof(r)))
1368		return -EFAULT;
1369
1370	ret = gfs2_rindex_update(sdp);
1371	if (ret)
1372		return ret;
1373
1374	start = r.start >> bs_shift;
1375	end = start + (r.len >> bs_shift);
1376	minlen = max_t(u64, r.minlen,
1377		       q->limits.discard_granularity) >> bs_shift;
1378
1379	if (end <= start || minlen > sdp->sd_max_rg_data)
1380		return -EINVAL;
1381
1382	rgd = gfs2_blk2rgrpd(sdp, start, 0);
1383	rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
1384
1385	if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
1386	    && (start > rgd_end->rd_data0 + rgd_end->rd_data))
1387		return -EINVAL; /* start is beyond the end of the fs */
1388
1389	while (1) {
1390
1391		ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
1392		if (ret)
1393			goto out;
1394
1395		if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1396			/* Trim each bitmap in the rgrp */
1397			for (x = 0; x < rgd->rd_length; x++) {
1398				struct gfs2_bitmap *bi = rgd->rd_bits + x;
1399				ret = gfs2_rgrp_send_discards(sdp,
1400						rgd->rd_data0, NULL, bi, minlen,
1401						&amt);
1402				if (ret) {
1403					gfs2_glock_dq_uninit(&gh);
1404					goto out;
1405				}
1406				trimmed += amt;
1407			}
1408
1409			/* Mark rgrp as having been trimmed */
1410			ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1411			if (ret == 0) {
1412				bh = rgd->rd_bits[0].bi_bh;
1413				rgd->rd_flags |= GFS2_RGF_TRIMMED;
1414				gfs2_trans_add_meta(rgd->rd_gl, bh);
1415				gfs2_rgrp_out(rgd, bh->b_data);
1416				gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data);
1417				gfs2_trans_end(sdp);
1418			}
1419		}
1420		gfs2_glock_dq_uninit(&gh);
1421
1422		if (rgd == rgd_end)
1423			break;
1424
1425		rgd = gfs2_rgrpd_get_next(rgd);
1426	}
1427
1428out:
1429	r.len = trimmed << bs_shift;
1430	if (copy_to_user(argp, &r, sizeof(r)))
1431		return -EFAULT;
1432
1433	return ret;
1434}
1435
1436/**
1437 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1438 * @ip: the inode structure
1439 *
1440 */
1441static void rs_insert(struct gfs2_inode *ip)
1442{
1443	struct rb_node **newn, *parent = NULL;
1444	int rc;
1445	struct gfs2_blkreserv *rs = &ip->i_res;
1446	struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd;
1447	u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm);
1448
1449	BUG_ON(gfs2_rs_active(rs));
1450
1451	spin_lock(&rgd->rd_rsspin);
1452	newn = &rgd->rd_rstree.rb_node;
1453	while (*newn) {
1454		struct gfs2_blkreserv *cur =
1455			rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1456
1457		parent = *newn;
1458		rc = rs_cmp(fsblock, rs->rs_free, cur);
1459		if (rc > 0)
1460			newn = &((*newn)->rb_right);
1461		else if (rc < 0)
1462			newn = &((*newn)->rb_left);
1463		else {
1464			spin_unlock(&rgd->rd_rsspin);
1465			WARN_ON(1);
1466			return;
1467		}
1468	}
1469
1470	rb_link_node(&rs->rs_node, parent, newn);
1471	rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1472
1473	/* Do our rgrp accounting for the reservation */
1474	rgd->rd_reserved += rs->rs_free; /* blocks reserved */
1475	spin_unlock(&rgd->rd_rsspin);
1476	trace_gfs2_rs(rs, TRACE_RS_INSERT);
1477}
1478
1479/**
1480 * rg_mblk_search - find a group of multiple free blocks to form a reservation
1481 * @rgd: the resource group descriptor
1482 * @ip: pointer to the inode for which we're reserving blocks
1483 * @ap: the allocation parameters
1484 *
1485 */
1486
1487static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1488			   const struct gfs2_alloc_parms *ap)
1489{
1490	struct gfs2_rbm rbm = { .rgd = rgd, };
1491	u64 goal;
1492	struct gfs2_blkreserv *rs = &ip->i_res;
1493	u32 extlen;
1494	u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved;
1495	int ret;
1496	struct inode *inode = &ip->i_inode;
1497
1498	if (S_ISDIR(inode->i_mode))
1499		extlen = 1;
1500	else {
1501		extlen = max_t(u32, atomic_read(&rs->rs_sizehint), ap->target);
1502		extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks);
1503	}
1504	if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen))
1505		return;
1506
1507	/* Find bitmap block that contains bits for goal block */
1508	if (rgrp_contains_block(rgd, ip->i_goal))
1509		goal = ip->i_goal;
1510	else
1511		goal = rgd->rd_last_alloc + rgd->rd_data0;
1512
1513	if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1514		return;
1515
1516	ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true);
1517	if (ret == 0) {
1518		rs->rs_rbm = rbm;
1519		rs->rs_free = extlen;
1520		rs->rs_inum = ip->i_no_addr;
1521		rs_insert(ip);
1522	} else {
1523		if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1524			rgd->rd_last_alloc = 0;
1525	}
1526}
1527
1528/**
1529 * gfs2_next_unreserved_block - Return next block that is not reserved
1530 * @rgd: The resource group
1531 * @block: The starting block
1532 * @length: The required length
1533 * @ip: Ignore any reservations for this inode
1534 *
1535 * If the block does not appear in any reservation, then return the
1536 * block number unchanged. If it does appear in the reservation, then
1537 * keep looking through the tree of reservations in order to find the
1538 * first block number which is not reserved.
1539 */
1540
1541static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1542				      u32 length,
1543				      const struct gfs2_inode *ip)
1544{
1545	struct gfs2_blkreserv *rs;
1546	struct rb_node *n;
1547	int rc;
1548
1549	spin_lock(&rgd->rd_rsspin);
1550	n = rgd->rd_rstree.rb_node;
1551	while (n) {
1552		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1553		rc = rs_cmp(block, length, rs);
1554		if (rc < 0)
1555			n = n->rb_left;
1556		else if (rc > 0)
1557			n = n->rb_right;
1558		else
1559			break;
1560	}
1561
1562	if (n) {
1563		while ((rs_cmp(block, length, rs) == 0) && (&ip->i_res != rs)) {
1564			block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free;
1565			n = n->rb_right;
1566			if (n == NULL)
1567				break;
1568			rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1569		}
1570	}
1571
1572	spin_unlock(&rgd->rd_rsspin);
1573	return block;
1574}
1575
1576/**
1577 * gfs2_reservation_check_and_update - Check for reservations during block alloc
1578 * @rbm: The current position in the resource group
1579 * @ip: The inode for which we are searching for blocks
1580 * @minext: The minimum extent length
1581 * @maxext: A pointer to the maximum extent structure
1582 *
1583 * This checks the current position in the rgrp to see whether there is
1584 * a reservation covering this block. If not then this function is a
1585 * no-op. If there is, then the position is moved to the end of the
1586 * contiguous reservation(s) so that we are pointing at the first
1587 * non-reserved block.
1588 *
1589 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1590 */
1591
1592static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1593					     const struct gfs2_inode *ip,
1594					     u32 minext,
1595					     struct gfs2_extent *maxext)
1596{
1597	u64 block = gfs2_rbm_to_block(rbm);
1598	u32 extlen = 1;
1599	u64 nblock;
1600	int ret;
1601
1602	/*
1603	 * If we have a minimum extent length, then skip over any extent
1604	 * which is less than the min extent length in size.
1605	 */
1606	if (minext) {
1607		extlen = gfs2_free_extlen(rbm, minext);
1608		if (extlen <= maxext->len)
1609			goto fail;
1610	}
1611
1612	/*
1613	 * Check the extent which has been found against the reservations
1614	 * and skip if parts of it are already reserved
1615	 */
1616	nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip);
1617	if (nblock == block) {
1618		if (!minext || extlen >= minext)
1619			return 0;
1620
1621		if (extlen > maxext->len) {
1622			maxext->len = extlen;
1623			maxext->rbm = *rbm;
1624		}
1625fail:
1626		nblock = block + extlen;
1627	}
1628	ret = gfs2_rbm_from_block(rbm, nblock);
1629	if (ret < 0)
1630		return ret;
1631	return 1;
1632}
1633
1634/**
1635 * gfs2_rbm_find - Look for blocks of a particular state
1636 * @rbm: Value/result starting position and final position
1637 * @state: The state which we want to find
1638 * @minext: Pointer to the requested extent length (NULL for a single block)
1639 *          This is updated to be the actual reservation size.
1640 * @ip: If set, check for reservations
1641 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1642 *          around until we've reached the starting point.
1643 *
1644 * Side effects:
1645 * - If looking for free blocks, we set GBF_FULL on each bitmap which
1646 *   has no free blocks in it.
1647 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1648 *   has come up short on a free block search.
1649 *
1650 * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1651 */
1652
1653static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
1654			 const struct gfs2_inode *ip, bool nowrap)
1655{
1656	struct buffer_head *bh;
1657	int initial_bii;
1658	u32 initial_offset;
1659	int first_bii = rbm->bii;
1660	u32 first_offset = rbm->offset;
1661	u32 offset;
1662	u8 *buffer;
1663	int n = 0;
1664	int iters = rbm->rgd->rd_length;
1665	int ret;
1666	struct gfs2_bitmap *bi;
1667	struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, };
1668
1669	/* If we are not starting at the beginning of a bitmap, then we
1670	 * need to add one to the bitmap count to ensure that we search
1671	 * the starting bitmap twice.
1672	 */
1673	if (rbm->offset != 0)
1674		iters++;
1675
1676	while(1) {
1677		bi = rbm_bi(rbm);
1678		if (test_bit(GBF_FULL, &bi->bi_flags) &&
1679		    (state == GFS2_BLKST_FREE))
1680			goto next_bitmap;
1681
1682		bh = bi->bi_bh;
1683		buffer = bh->b_data + bi->bi_offset;
1684		WARN_ON(!buffer_uptodate(bh));
1685		if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1686			buffer = bi->bi_clone + bi->bi_offset;
1687		initial_offset = rbm->offset;
1688		offset = gfs2_bitfit(buffer, bi->bi_len, rbm->offset, state);
1689		if (offset == BFITNOENT)
1690			goto bitmap_full;
1691		rbm->offset = offset;
1692		if (ip == NULL)
1693			return 0;
1694
1695		initial_bii = rbm->bii;
1696		ret = gfs2_reservation_check_and_update(rbm, ip,
1697							minext ? *minext : 0,
1698							&maxext);
1699		if (ret == 0)
1700			return 0;
1701		if (ret > 0) {
1702			n += (rbm->bii - initial_bii);
1703			goto next_iter;
1704		}
1705		if (ret == -E2BIG) {
1706			rbm->bii = 0;
1707			rbm->offset = 0;
1708			n += (rbm->bii - initial_bii);
1709			goto res_covered_end_of_rgrp;
1710		}
1711		return ret;
1712
1713bitmap_full:	/* Mark bitmap as full and fall through */
1714		if ((state == GFS2_BLKST_FREE) && initial_offset == 0)
1715			set_bit(GBF_FULL, &bi->bi_flags);
1716
1717next_bitmap:	/* Find next bitmap in the rgrp */
1718		rbm->offset = 0;
1719		rbm->bii++;
1720		if (rbm->bii == rbm->rgd->rd_length)
1721			rbm->bii = 0;
1722res_covered_end_of_rgrp:
1723		if ((rbm->bii == 0) && nowrap)
1724			break;
1725		n++;
1726next_iter:
1727		if (n >= iters)
1728			break;
1729	}
1730
1731	if (minext == NULL || state != GFS2_BLKST_FREE)
1732		return -ENOSPC;
1733
1734	/* If the extent was too small, and it's smaller than the smallest
1735	   to have failed before, remember for future reference that it's
1736	   useless to search this rgrp again for this amount or more. */
1737	if ((first_offset == 0) && (first_bii == 0) &&
1738	    (*minext < rbm->rgd->rd_extfail_pt))
1739		rbm->rgd->rd_extfail_pt = *minext;
1740
1741	/* If the maximum extent we found is big enough to fulfill the
1742	   minimum requirements, use it anyway. */
1743	if (maxext.len) {
1744		*rbm = maxext.rbm;
1745		*minext = maxext.len;
1746		return 0;
1747	}
1748
1749	return -ENOSPC;
1750}
1751
1752/**
1753 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1754 * @rgd: The rgrp
1755 * @last_unlinked: block address of the last dinode we unlinked
1756 * @skip: block address we should explicitly not unlink
1757 *
1758 * Returns: 0 if no error
1759 *          The inode, if one has been found, in inode.
1760 */
1761
1762static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1763{
1764	u64 block;
1765	struct gfs2_sbd *sdp = rgd->rd_sbd;
1766	struct gfs2_glock *gl;
1767	struct gfs2_inode *ip;
1768	int error;
1769	int found = 0;
1770	struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 };
1771
1772	while (1) {
1773		down_write(&sdp->sd_log_flush_lock);
1774		error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL,
1775				      true);
1776		up_write(&sdp->sd_log_flush_lock);
1777		if (error == -ENOSPC)
1778			break;
1779		if (WARN_ON_ONCE(error))
1780			break;
1781
1782		block = gfs2_rbm_to_block(&rbm);
1783		if (gfs2_rbm_from_block(&rbm, block + 1))
1784			break;
1785		if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1786			continue;
1787		if (block == skip)
1788			continue;
1789		*last_unlinked = block;
1790
1791		error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl);
1792		if (error)
1793			continue;
1794
1795		/* If the inode is already in cache, we can ignore it here
1796		 * because the existing inode disposal code will deal with
1797		 * it when all refs have gone away. Accessing gl_object like
1798		 * this is not safe in general. Here it is ok because we do
1799		 * not dereference the pointer, and we only need an approx
1800		 * answer to whether it is NULL or not.
1801		 */
1802		ip = gl->gl_object;
1803
1804		if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1805			gfs2_glock_put(gl);
1806		else
1807			found++;
1808
1809		/* Limit reclaim to sensible number of tasks */
1810		if (found > NR_CPUS)
1811			return;
1812	}
1813
1814	rgd->rd_flags &= ~GFS2_RDF_CHECK;
1815	return;
1816}
1817
1818/**
1819 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1820 * @rgd: The rgrp in question
1821 * @loops: An indication of how picky we can be (0=very, 1=less so)
1822 *
1823 * This function uses the recently added glock statistics in order to
1824 * figure out whether a parciular resource group is suffering from
1825 * contention from multiple nodes. This is done purely on the basis
1826 * of timings, since this is the only data we have to work with and
1827 * our aim here is to reject a resource group which is highly contended
1828 * but (very important) not to do this too often in order to ensure that
1829 * we do not land up introducing fragmentation by changing resource
1830 * groups when not actually required.
1831 *
1832 * The calculation is fairly simple, we want to know whether the SRTTB
1833 * (i.e. smoothed round trip time for blocking operations) to acquire
1834 * the lock for this rgrp's glock is significantly greater than the
1835 * time taken for resource groups on average. We introduce a margin in
1836 * the form of the variable @var which is computed as the sum of the two
1837 * respective variences, and multiplied by a factor depending on @loops
1838 * and whether we have a lot of data to base the decision on. This is
1839 * then tested against the square difference of the means in order to
1840 * decide whether the result is statistically significant or not.
1841 *
1842 * Returns: A boolean verdict on the congestion status
1843 */
1844
1845static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1846{
1847	const struct gfs2_glock *gl = rgd->rd_gl;
1848	const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
1849	struct gfs2_lkstats *st;
1850	u64 r_dcount, l_dcount;
1851	u64 l_srttb, a_srttb = 0;
1852	s64 srttb_diff;
1853	u64 sqr_diff;
1854	u64 var;
1855	int cpu, nonzero = 0;
1856
1857	preempt_disable();
1858	for_each_present_cpu(cpu) {
1859		st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP];
1860		if (st->stats[GFS2_LKS_SRTTB]) {
1861			a_srttb += st->stats[GFS2_LKS_SRTTB];
1862			nonzero++;
1863		}
1864	}
1865	st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1866	if (nonzero)
1867		do_div(a_srttb, nonzero);
1868	r_dcount = st->stats[GFS2_LKS_DCOUNT];
1869	var = st->stats[GFS2_LKS_SRTTVARB] +
1870	      gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1871	preempt_enable();
1872
1873	l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1874	l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1875
1876	if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0))
1877		return false;
1878
1879	srttb_diff = a_srttb - l_srttb;
1880	sqr_diff = srttb_diff * srttb_diff;
1881
1882	var *= 2;
1883	if (l_dcount < 8 || r_dcount < 8)
1884		var *= 2;
1885	if (loops == 1)
1886		var *= 2;
1887
1888	return ((srttb_diff < 0) && (sqr_diff > var));
1889}
1890
1891/**
1892 * gfs2_rgrp_used_recently
1893 * @rs: The block reservation with the rgrp to test
1894 * @msecs: The time limit in milliseconds
1895 *
1896 * Returns: True if the rgrp glock has been used within the time limit
1897 */
1898static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1899				    u64 msecs)
1900{
1901	u64 tdiff;
1902
1903	tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1904                            rs->rs_rbm.rgd->rd_gl->gl_dstamp));
1905
1906	return tdiff > (msecs * 1000 * 1000);
1907}
1908
1909static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1910{
1911	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1912	u32 skip;
1913
1914	get_random_bytes(&skip, sizeof(skip));
1915	return skip % sdp->sd_rgrps;
1916}
1917
1918static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
1919{
1920	struct gfs2_rgrpd *rgd = *pos;
1921	struct gfs2_sbd *sdp = rgd->rd_sbd;
1922
1923	rgd = gfs2_rgrpd_get_next(rgd);
1924	if (rgd == NULL)
1925		rgd = gfs2_rgrpd_get_first(sdp);
1926	*pos = rgd;
1927	if (rgd != begin) /* If we didn't wrap */
1928		return true;
1929	return false;
1930}
1931
1932/**
1933 * fast_to_acquire - determine if a resource group will be fast to acquire
1934 *
1935 * If this is one of our preferred rgrps, it should be quicker to acquire,
1936 * because we tried to set ourselves up as dlm lock master.
1937 */
1938static inline int fast_to_acquire(struct gfs2_rgrpd *rgd)
1939{
1940	struct gfs2_glock *gl = rgd->rd_gl;
1941
1942	if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) &&
1943	    !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) &&
1944	    !test_bit(GLF_DEMOTE, &gl->gl_flags))
1945		return 1;
1946	if (rgd->rd_flags & GFS2_RDF_PREFERRED)
1947		return 1;
1948	return 0;
1949}
1950
1951/**
1952 * gfs2_inplace_reserve - Reserve space in the filesystem
1953 * @ip: the inode to reserve space for
1954 * @ap: the allocation parameters
1955 *
1956 * We try our best to find an rgrp that has at least ap->target blocks
1957 * available. After a couple of passes (loops == 2), the prospects of finding
1958 * such an rgrp diminish. At this stage, we return the first rgrp that has
1959 * atleast ap->min_target blocks available. Either way, we set ap->allowed to
1960 * the number of blocks available in the chosen rgrp.
1961 *
1962 * Returns: 0 on success,
1963 *          -ENOMEM if a suitable rgrp can't be found
1964 *          errno otherwise
1965 */
1966
1967int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap)
1968{
1969	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1970	struct gfs2_rgrpd *begin = NULL;
1971	struct gfs2_blkreserv *rs = &ip->i_res;
1972	int error = 0, rg_locked, flags = 0;
1973	u64 last_unlinked = NO_BLOCK;
1974	int loops = 0;
1975	u32 skip = 0;
1976
1977	if (sdp->sd_args.ar_rgrplvb)
1978		flags |= GL_SKIP;
1979	if (gfs2_assert_warn(sdp, ap->target))
1980		return -EINVAL;
1981	if (gfs2_rs_active(rs)) {
1982		begin = rs->rs_rbm.rgd;
1983	} else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) {
1984		rs->rs_rbm.rgd = begin = ip->i_rgd;
1985	} else {
1986		check_and_update_goal(ip);
1987		rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
1988	}
1989	if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV))
1990		skip = gfs2_orlov_skip(ip);
1991	if (rs->rs_rbm.rgd == NULL)
1992		return -EBADSLT;
1993
1994	while (loops < 3) {
1995		rg_locked = 1;
1996
1997		if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) {
1998			rg_locked = 0;
1999			if (skip && skip--)
2000				goto next_rgrp;
2001			if (!gfs2_rs_active(rs)) {
2002				if (loops == 0 &&
2003				    !fast_to_acquire(rs->rs_rbm.rgd))
2004					goto next_rgrp;
2005				if ((loops < 2) &&
2006				    gfs2_rgrp_used_recently(rs, 1000) &&
2007				    gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2008					goto next_rgrp;
2009			}
2010			error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl,
2011						   LM_ST_EXCLUSIVE, flags,
2012						   &rs->rs_rgd_gh);
2013			if (unlikely(error))
2014				return error;
2015			if (!gfs2_rs_active(rs) && (loops < 2) &&
2016			    gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2017				goto skip_rgrp;
2018			if (sdp->sd_args.ar_rgrplvb) {
2019				error = update_rgrp_lvb(rs->rs_rbm.rgd);
2020				if (unlikely(error)) {
2021					gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2022					return error;
2023				}
2024			}
2025		}
2026
2027		/* Skip unuseable resource groups */
2028		if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC |
2029						 GFS2_RDF_ERROR)) ||
2030		    (loops == 0 && ap->target > rs->rs_rbm.rgd->rd_extfail_pt))
2031			goto skip_rgrp;
2032
2033		if (sdp->sd_args.ar_rgrplvb)
2034			gfs2_rgrp_bh_get(rs->rs_rbm.rgd);
2035
2036		/* Get a reservation if we don't already have one */
2037		if (!gfs2_rs_active(rs))
2038			rg_mblk_search(rs->rs_rbm.rgd, ip, ap);
2039
2040		/* Skip rgrps when we can't get a reservation on first pass */
2041		if (!gfs2_rs_active(rs) && (loops < 1))
2042			goto check_rgrp;
2043
2044		/* If rgrp has enough free space, use it */
2045		if (rs->rs_rbm.rgd->rd_free_clone >= ap->target ||
2046		    (loops == 2 && ap->min_target &&
2047		     rs->rs_rbm.rgd->rd_free_clone >= ap->min_target)) {
2048			ip->i_rgd = rs->rs_rbm.rgd;
2049			ap->allowed = ip->i_rgd->rd_free_clone;
2050			return 0;
2051		}
2052check_rgrp:
2053		/* Check for unlinked inodes which can be reclaimed */
2054		if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK)
2055			try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked,
2056					ip->i_no_addr);
2057skip_rgrp:
2058		/* Drop reservation, if we couldn't use reserved rgrp */
2059		if (gfs2_rs_active(rs))
2060			gfs2_rs_deltree(rs);
2061
2062		/* Unlock rgrp if required */
2063		if (!rg_locked)
2064			gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2065next_rgrp:
2066		/* Find the next rgrp, and continue looking */
2067		if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin))
2068			continue;
2069		if (skip)
2070			continue;
2071
2072		/* If we've scanned all the rgrps, but found no free blocks
2073		 * then this checks for some less likely conditions before
2074		 * trying again.
2075		 */
2076		loops++;
2077		/* Check that fs hasn't grown if writing to rindex */
2078		if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
2079			error = gfs2_ri_update(ip);
2080			if (error)
2081				return error;
2082		}
2083		/* Flushing the log may release space */
2084		if (loops == 2)
2085			gfs2_log_flush(sdp, NULL, NORMAL_FLUSH);
 
2086	}
2087
2088	return -ENOSPC;
2089}
2090
2091/**
2092 * gfs2_inplace_release - release an inplace reservation
2093 * @ip: the inode the reservation was taken out on
2094 *
2095 * Release a reservation made by gfs2_inplace_reserve().
2096 */
2097
2098void gfs2_inplace_release(struct gfs2_inode *ip)
2099{
2100	struct gfs2_blkreserv *rs = &ip->i_res;
2101
2102	if (gfs2_holder_initialized(&rs->rs_rgd_gh))
2103		gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2104}
2105
2106/**
2107 * gfs2_get_block_type - Check a block in a RG is of given type
2108 * @rgd: the resource group holding the block
2109 * @block: the block number
2110 *
2111 * Returns: The block type (GFS2_BLKST_*)
2112 */
2113
2114static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
2115{
2116	struct gfs2_rbm rbm = { .rgd = rgd, };
2117	int ret;
2118
2119	ret = gfs2_rbm_from_block(&rbm, block);
2120	WARN_ON_ONCE(ret != 0);
2121
2122	return gfs2_testbit(&rbm);
2123}
2124
2125
2126/**
2127 * gfs2_alloc_extent - allocate an extent from a given bitmap
2128 * @rbm: the resource group information
2129 * @dinode: TRUE if the first block we allocate is for a dinode
2130 * @n: The extent length (value/result)
2131 *
2132 * Add the bitmap buffer to the transaction.
2133 * Set the found bits to @new_state to change block's allocation state.
2134 */
2135static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
2136			     unsigned int *n)
2137{
2138	struct gfs2_rbm pos = { .rgd = rbm->rgd, };
2139	const unsigned int elen = *n;
2140	u64 block;
2141	int ret;
2142
2143	*n = 1;
2144	block = gfs2_rbm_to_block(rbm);
2145	gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh);
2146	gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2147	block++;
2148	while (*n < elen) {
2149		ret = gfs2_rbm_from_block(&pos, block);
2150		if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE)
2151			break;
2152		gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh);
2153		gfs2_setbit(&pos, true, GFS2_BLKST_USED);
2154		(*n)++;
2155		block++;
2156	}
2157}
2158
2159/**
2160 * rgblk_free - Change alloc state of given block(s)
2161 * @sdp: the filesystem
2162 * @bstart: the start of a run of blocks to free
2163 * @blen: the length of the block run (all must lie within ONE RG!)
2164 * @new_state: GFS2_BLKST_XXX the after-allocation block state
2165 *
2166 * Returns:  Resource group containing the block(s)
2167 */
2168
2169static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
2170				     u32 blen, unsigned char new_state)
2171{
2172	struct gfs2_rbm rbm;
2173	struct gfs2_bitmap *bi, *bi_prev = NULL;
2174
2175	rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1);
2176	if (!rbm.rgd) {
2177		if (gfs2_consist(sdp))
2178			fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
2179		return NULL;
2180	}
2181
2182	gfs2_rbm_from_block(&rbm, bstart);
2183	while (blen--) {
2184		bi = rbm_bi(&rbm);
2185		if (bi != bi_prev) {
2186			if (!bi->bi_clone) {
2187				bi->bi_clone = kmalloc(bi->bi_bh->b_size,
2188						      GFP_NOFS | __GFP_NOFAIL);
2189				memcpy(bi->bi_clone + bi->bi_offset,
2190				       bi->bi_bh->b_data + bi->bi_offset,
2191				       bi->bi_len);
2192			}
2193			gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh);
2194			bi_prev = bi;
2195		}
2196		gfs2_setbit(&rbm, false, new_state);
2197		gfs2_rbm_incr(&rbm);
2198	}
2199
2200	return rbm.rgd;
2201}
2202
2203/**
2204 * gfs2_rgrp_dump - print out an rgrp
2205 * @seq: The iterator
2206 * @gl: The glock in question
2207 *
2208 */
2209
2210void gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
2211{
2212	struct gfs2_rgrpd *rgd = gl->gl_object;
2213	struct gfs2_blkreserv *trs;
2214	const struct rb_node *n;
2215
2216	if (rgd == NULL)
2217		return;
2218	gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n",
2219		       (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2220		       rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2221		       rgd->rd_reserved, rgd->rd_extfail_pt);
2222	spin_lock(&rgd->rd_rsspin);
2223	for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2224		trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2225		dump_rs(seq, trs);
2226	}
2227	spin_unlock(&rgd->rd_rsspin);
2228}
2229
2230static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2231{
2232	struct gfs2_sbd *sdp = rgd->rd_sbd;
2233	fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2234		(unsigned long long)rgd->rd_addr);
2235	fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2236	gfs2_rgrp_dump(NULL, rgd->rd_gl);
2237	rgd->rd_flags |= GFS2_RDF_ERROR;
2238}
2239
2240/**
2241 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2242 * @ip: The inode we have just allocated blocks for
2243 * @rbm: The start of the allocated blocks
2244 * @len: The extent length
2245 *
2246 * Adjusts a reservation after an allocation has taken place. If the
2247 * reservation does not match the allocation, or if it is now empty
2248 * then it is removed.
2249 */
2250
2251static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2252				    const struct gfs2_rbm *rbm, unsigned len)
2253{
2254	struct gfs2_blkreserv *rs = &ip->i_res;
2255	struct gfs2_rgrpd *rgd = rbm->rgd;
2256	unsigned rlen;
2257	u64 block;
2258	int ret;
2259
2260	spin_lock(&rgd->rd_rsspin);
2261	if (gfs2_rs_active(rs)) {
2262		if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) {
2263			block = gfs2_rbm_to_block(rbm);
2264			ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len);
2265			rlen = min(rs->rs_free, len);
2266			rs->rs_free -= rlen;
2267			rgd->rd_reserved -= rlen;
2268			trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2269			if (rs->rs_free && !ret)
2270				goto out;
2271			/* We used up our block reservation, so we should
2272			   reserve more blocks next time. */
2273			atomic_add(RGRP_RSRV_ADDBLKS, &rs->rs_sizehint);
2274		}
2275		__rs_deltree(rs);
2276	}
2277out:
2278	spin_unlock(&rgd->rd_rsspin);
2279}
2280
2281/**
2282 * gfs2_set_alloc_start - Set starting point for block allocation
2283 * @rbm: The rbm which will be set to the required location
2284 * @ip: The gfs2 inode
2285 * @dinode: Flag to say if allocation includes a new inode
2286 *
2287 * This sets the starting point from the reservation if one is active
2288 * otherwise it falls back to guessing a start point based on the
2289 * inode's goal block or the last allocation point in the rgrp.
2290 */
2291
2292static void gfs2_set_alloc_start(struct gfs2_rbm *rbm,
2293				 const struct gfs2_inode *ip, bool dinode)
2294{
2295	u64 goal;
2296
2297	if (gfs2_rs_active(&ip->i_res)) {
2298		*rbm = ip->i_res.rs_rbm;
2299		return;
2300	}
2301
2302	if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal))
2303		goal = ip->i_goal;
2304	else
2305		goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0;
2306
2307	gfs2_rbm_from_block(rbm, goal);
2308}
2309
2310/**
2311 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2312 * @ip: the inode to allocate the block for
2313 * @bn: Used to return the starting block number
2314 * @nblocks: requested number of blocks/extent length (value/result)
2315 * @dinode: 1 if we're allocating a dinode block, else 0
2316 * @generation: the generation number of the inode
2317 *
2318 * Returns: 0 or error
2319 */
2320
2321int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2322		      bool dinode, u64 *generation)
2323{
2324	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2325	struct buffer_head *dibh;
2326	struct gfs2_rbm rbm = { .rgd = ip->i_rgd, };
2327	unsigned int ndata;
2328	u64 block; /* block, within the file system scope */
2329	int error;
2330
2331	gfs2_set_alloc_start(&rbm, ip, dinode);
2332	error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false);
2333
2334	if (error == -ENOSPC) {
2335		gfs2_set_alloc_start(&rbm, ip, dinode);
2336		error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false);
2337	}
2338
2339	/* Since all blocks are reserved in advance, this shouldn't happen */
2340	if (error) {
2341		fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2342			(unsigned long long)ip->i_no_addr, error, *nblocks,
2343			test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags),
2344			rbm.rgd->rd_extfail_pt);
2345		goto rgrp_error;
2346	}
2347
2348	gfs2_alloc_extent(&rbm, dinode, nblocks);
2349	block = gfs2_rbm_to_block(&rbm);
2350	rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2351	if (gfs2_rs_active(&ip->i_res))
2352		gfs2_adjust_reservation(ip, &rbm, *nblocks);
2353	ndata = *nblocks;
2354	if (dinode)
2355		ndata--;
2356
2357	if (!dinode) {
2358		ip->i_goal = block + ndata - 1;
2359		error = gfs2_meta_inode_buffer(ip, &dibh);
2360		if (error == 0) {
2361			struct gfs2_dinode *di =
2362				(struct gfs2_dinode *)dibh->b_data;
2363			gfs2_trans_add_meta(ip->i_gl, dibh);
2364			di->di_goal_meta = di->di_goal_data =
2365				cpu_to_be64(ip->i_goal);
2366			brelse(dibh);
2367		}
2368	}
2369	if (rbm.rgd->rd_free < *nblocks) {
2370		pr_warn("nblocks=%u\n", *nblocks);
2371		goto rgrp_error;
2372	}
2373
2374	rbm.rgd->rd_free -= *nblocks;
2375	if (dinode) {
2376		rbm.rgd->rd_dinodes++;
2377		*generation = rbm.rgd->rd_igeneration++;
2378		if (*generation == 0)
2379			*generation = rbm.rgd->rd_igeneration++;
2380	}
2381
2382	gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2383	gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2384	gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data);
2385
2386	gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2387	if (dinode)
2388		gfs2_trans_add_unrevoke(sdp, block, *nblocks);
2389
2390	gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
2391
2392	rbm.rgd->rd_free_clone -= *nblocks;
2393	trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2394			       dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2395	*bn = block;
2396	return 0;
2397
2398rgrp_error:
2399	gfs2_rgrp_error(rbm.rgd);
2400	return -EIO;
2401}
2402
2403/**
2404 * __gfs2_free_blocks - free a contiguous run of block(s)
2405 * @ip: the inode these blocks are being freed from
2406 * @bstart: first block of a run of contiguous blocks
2407 * @blen: the length of the block run
2408 * @meta: 1 if the blocks represent metadata
2409 *
2410 */
2411
2412void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
2413{
2414	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2415	struct gfs2_rgrpd *rgd;
2416
2417	rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
2418	if (!rgd)
2419		return;
2420	trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2421	rgd->rd_free += blen;
2422	rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2423	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2424	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2425	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2426
2427	/* Directories keep their data in the metadata address space */
2428	if (meta || ip->i_depth)
2429		gfs2_meta_wipe(ip, bstart, blen);
2430}
2431
2432/**
2433 * gfs2_free_meta - free a contiguous run of data block(s)
2434 * @ip: the inode these blocks are being freed from
2435 * @bstart: first block of a run of contiguous blocks
2436 * @blen: the length of the block run
2437 *
2438 */
2439
2440void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
2441{
2442	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2443
2444	__gfs2_free_blocks(ip, bstart, blen, 1);
2445	gfs2_statfs_change(sdp, 0, +blen, 0);
2446	gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2447}
2448
2449void gfs2_unlink_di(struct inode *inode)
2450{
2451	struct gfs2_inode *ip = GFS2_I(inode);
2452	struct gfs2_sbd *sdp = GFS2_SB(inode);
2453	struct gfs2_rgrpd *rgd;
2454	u64 blkno = ip->i_no_addr;
2455
2456	rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
2457	if (!rgd)
2458		return;
2459	trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2460	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2461	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2462	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2463	update_rgrp_lvb_unlinked(rgd, 1);
2464}
2465
2466static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno)
2467{
2468	struct gfs2_sbd *sdp = rgd->rd_sbd;
2469	struct gfs2_rgrpd *tmp_rgd;
2470
2471	tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE);
2472	if (!tmp_rgd)
2473		return;
2474	gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
2475
2476	if (!rgd->rd_dinodes)
2477		gfs2_consist_rgrpd(rgd);
2478	rgd->rd_dinodes--;
2479	rgd->rd_free++;
2480
2481	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2482	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2483	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2484	update_rgrp_lvb_unlinked(rgd, -1);
2485
2486	gfs2_statfs_change(sdp, 0, +1, -1);
2487}
2488
2489
2490void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2491{
2492	gfs2_free_uninit_di(rgd, ip->i_no_addr);
2493	trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2494	gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2495	gfs2_meta_wipe(ip, ip->i_no_addr, 1);
2496}
2497
2498/**
2499 * gfs2_check_blk_type - Check the type of a block
2500 * @sdp: The superblock
2501 * @no_addr: The block number to check
2502 * @type: The block type we are looking for
2503 *
2504 * Returns: 0 if the block type matches the expected type
2505 *          -ESTALE if it doesn't match
2506 *          or -ve errno if something went wrong while checking
2507 */
2508
2509int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2510{
2511	struct gfs2_rgrpd *rgd;
2512	struct gfs2_holder rgd_gh;
2513	int error = -EINVAL;
2514
2515	rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2516	if (!rgd)
2517		goto fail;
2518
2519	error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2520	if (error)
2521		goto fail;
2522
2523	if (gfs2_get_block_type(rgd, no_addr) != type)
2524		error = -ESTALE;
2525
2526	gfs2_glock_dq_uninit(&rgd_gh);
2527fail:
2528	return error;
2529}
2530
2531/**
2532 * gfs2_rlist_add - add a RG to a list of RGs
2533 * @ip: the inode
2534 * @rlist: the list of resource groups
2535 * @block: the block
2536 *
2537 * Figure out what RG a block belongs to and add that RG to the list
2538 *
2539 * FIXME: Don't use NOFAIL
2540 *
2541 */
2542
2543void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2544		    u64 block)
2545{
2546	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2547	struct gfs2_rgrpd *rgd;
2548	struct gfs2_rgrpd **tmp;
2549	unsigned int new_space;
2550	unsigned int x;
2551
2552	if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2553		return;
2554
2555	if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
2556		rgd = ip->i_rgd;
2557	else
2558		rgd = gfs2_blk2rgrpd(sdp, block, 1);
2559	if (!rgd) {
2560		fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
2561		return;
2562	}
2563	ip->i_rgd = rgd;
2564
2565	for (x = 0; x < rlist->rl_rgrps; x++)
2566		if (rlist->rl_rgd[x] == rgd)
2567			return;
2568
2569	if (rlist->rl_rgrps == rlist->rl_space) {
2570		new_space = rlist->rl_space + 10;
2571
2572		tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2573			      GFP_NOFS | __GFP_NOFAIL);
2574
2575		if (rlist->rl_rgd) {
2576			memcpy(tmp, rlist->rl_rgd,
2577			       rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2578			kfree(rlist->rl_rgd);
2579		}
2580
2581		rlist->rl_space = new_space;
2582		rlist->rl_rgd = tmp;
2583	}
2584
2585	rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2586}
2587
2588/**
2589 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2590 *      and initialize an array of glock holders for them
2591 * @rlist: the list of resource groups
2592 * @state: the lock state to acquire the RG lock in
2593 *
2594 * FIXME: Don't use NOFAIL
2595 *
2596 */
2597
2598void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
2599{
2600	unsigned int x;
2601
2602	rlist->rl_ghs = kmalloc(rlist->rl_rgrps * sizeof(struct gfs2_holder),
2603				GFP_NOFS | __GFP_NOFAIL);
2604	for (x = 0; x < rlist->rl_rgrps; x++)
2605		gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
2606				state, 0,
2607				&rlist->rl_ghs[x]);
2608}
2609
2610/**
2611 * gfs2_rlist_free - free a resource group list
2612 * @rlist: the list of resource groups
2613 *
2614 */
2615
2616void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2617{
2618	unsigned int x;
2619
2620	kfree(rlist->rl_rgd);
2621
2622	if (rlist->rl_ghs) {
2623		for (x = 0; x < rlist->rl_rgrps; x++)
2624			gfs2_holder_uninit(&rlist->rl_ghs[x]);
2625		kfree(rlist->rl_ghs);
2626		rlist->rl_ghs = NULL;
2627	}
2628}
2629