Linux Audio

Check our new training course

Loading...
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * linux/fs/ext4/page-io.c
  4 *
  5 * This contains the new page_io functions for ext4
  6 *
  7 * Written by Theodore Ts'o, 2010.
  8 */
  9
 10#include <linux/fs.h>
 11#include <linux/time.h>
 12#include <linux/highuid.h>
 13#include <linux/pagemap.h>
 14#include <linux/quotaops.h>
 15#include <linux/string.h>
 16#include <linux/buffer_head.h>
 17#include <linux/writeback.h>
 18#include <linux/pagevec.h>
 19#include <linux/mpage.h>
 20#include <linux/namei.h>
 21#include <linux/uio.h>
 22#include <linux/bio.h>
 23#include <linux/workqueue.h>
 24#include <linux/kernel.h>
 25#include <linux/slab.h>
 26#include <linux/mm.h>
 27#include <linux/backing-dev.h>
 28
 29#include "ext4_jbd2.h"
 30#include "xattr.h"
 31#include "acl.h"
 32
 33static struct kmem_cache *io_end_cachep;
 
 34
 35int __init ext4_init_pageio(void)
 36{
 37	io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
 38	if (io_end_cachep == NULL)
 39		return -ENOMEM;
 
 
 
 
 
 
 40	return 0;
 41}
 42
 43void ext4_exit_pageio(void)
 44{
 45	kmem_cache_destroy(io_end_cachep);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 46}
 47
 48/*
 49 * Print an buffer I/O error compatible with the fs/buffer.c.  This
 50 * provides compatibility with dmesg scrapers that look for a specific
 51 * buffer I/O error message.  We really need a unified error reporting
 52 * structure to userspace ala Digital Unix's uerf system, but it's
 53 * probably not going to happen in my lifetime, due to LKML politics...
 54 */
 55static void buffer_io_error(struct buffer_head *bh)
 56{
 57	printk_ratelimited(KERN_ERR "Buffer I/O error on device %pg, logical block %llu\n",
 58		       bh->b_bdev,
 59			(unsigned long long)bh->b_blocknr);
 60}
 61
 62static void ext4_finish_bio(struct bio *bio)
 63{
 64	int i;
 65	struct bio_vec *bvec;
 66
 67	bio_for_each_segment_all(bvec, bio, i) {
 68		struct page *page = bvec->bv_page;
 69#ifdef CONFIG_EXT4_FS_ENCRYPTION
 70		struct page *data_page = NULL;
 71#endif
 72		struct buffer_head *bh, *head;
 73		unsigned bio_start = bvec->bv_offset;
 74		unsigned bio_end = bio_start + bvec->bv_len;
 75		unsigned under_io = 0;
 76		unsigned long flags;
 77
 78		if (!page)
 79			continue;
 80
 81#ifdef CONFIG_EXT4_FS_ENCRYPTION
 82		if (!page->mapping) {
 83			/* The bounce data pages are unmapped. */
 84			data_page = page;
 85			fscrypt_pullback_bio_page(&page, false);
 86		}
 87#endif
 88
 89		if (bio->bi_status) {
 90			SetPageError(page);
 91			mapping_set_error(page->mapping, -EIO);
 92		}
 93		bh = head = page_buffers(page);
 94		/*
 95		 * We check all buffers in the page under BH_Uptodate_Lock
 96		 * to avoid races with other end io clearing async_write flags
 97		 */
 98		local_irq_save(flags);
 99		bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
100		do {
101			if (bh_offset(bh) < bio_start ||
102			    bh_offset(bh) + bh->b_size > bio_end) {
103				if (buffer_async_write(bh))
104					under_io++;
105				continue;
106			}
107			clear_buffer_async_write(bh);
108			if (bio->bi_status)
 
109				buffer_io_error(bh);
 
110		} while ((bh = bh->b_this_page) != head);
111		bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
112		local_irq_restore(flags);
113		if (!under_io) {
114#ifdef CONFIG_EXT4_FS_ENCRYPTION
115			if (data_page)
116				fscrypt_restore_control_page(data_page);
117#endif
118			end_page_writeback(page);
119		}
120	}
121}
122
123static void ext4_release_io_end(ext4_io_end_t *io_end)
124{
125	struct bio *bio, *next_bio;
126
127	BUG_ON(!list_empty(&io_end->list));
128	BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
129	WARN_ON(io_end->handle);
130
131	for (bio = io_end->bio; bio; bio = next_bio) {
132		next_bio = bio->bi_private;
133		ext4_finish_bio(bio);
134		bio_put(bio);
135	}
 
136	kmem_cache_free(io_end_cachep, io_end);
137}
138
139/*
140 * Check a range of space and convert unwritten extents to written. Note that
141 * we are protected from truncate touching same part of extent tree by the
142 * fact that truncate code waits for all DIO to finish (thus exclusion from
143 * direct IO is achieved) and also waits for PageWriteback bits. Thus we
144 * cannot get to ext4_ext_truncate() before all IOs overlapping that range are
145 * completed (happens from ext4_free_ioend()).
146 */
147static int ext4_end_io(ext4_io_end_t *io)
148{
149	struct inode *inode = io->inode;
150	loff_t offset = io->offset;
151	ssize_t size = io->size;
152	handle_t *handle = io->handle;
153	int ret = 0;
154
155	ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
156		   "list->prev 0x%p\n",
157		   io, inode->i_ino, io->list.next, io->list.prev);
158
159	io->handle = NULL;	/* Following call will use up the handle */
160	ret = ext4_convert_unwritten_extents(handle, inode, offset, size);
161	if (ret < 0 && !ext4_forced_shutdown(EXT4_SB(inode->i_sb))) {
162		ext4_msg(inode->i_sb, KERN_EMERG,
163			 "failed to convert unwritten extents to written "
164			 "extents -- potential data loss!  "
165			 "(inode %lu, offset %llu, size %zd, error %d)",
166			 inode->i_ino, offset, size, ret);
167	}
168	ext4_clear_io_unwritten_flag(io);
169	ext4_release_io_end(io);
170	return ret;
171}
172
173static void dump_completed_IO(struct inode *inode, struct list_head *head)
174{
175#ifdef	EXT4FS_DEBUG
176	struct list_head *cur, *before, *after;
177	ext4_io_end_t *io, *io0, *io1;
178
179	if (list_empty(head))
180		return;
181
182	ext4_debug("Dump inode %lu completed io list\n", inode->i_ino);
183	list_for_each_entry(io, head, list) {
184		cur = &io->list;
185		before = cur->prev;
186		io0 = container_of(before, ext4_io_end_t, list);
187		after = cur->next;
188		io1 = container_of(after, ext4_io_end_t, list);
189
190		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
191			    io, inode->i_ino, io0, io1);
192	}
193#endif
194}
195
196/* Add the io_end to per-inode completed end_io list. */
197static void ext4_add_complete_io(ext4_io_end_t *io_end)
198{
199	struct ext4_inode_info *ei = EXT4_I(io_end->inode);
200	struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb);
201	struct workqueue_struct *wq;
202	unsigned long flags;
203
204	/* Only reserved conversions from writeback should enter here */
205	WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
206	WARN_ON(!io_end->handle && sbi->s_journal);
207	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
208	wq = sbi->rsv_conversion_wq;
209	if (list_empty(&ei->i_rsv_conversion_list))
210		queue_work(wq, &ei->i_rsv_conversion_work);
211	list_add_tail(&io_end->list, &ei->i_rsv_conversion_list);
212	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
213}
214
215static int ext4_do_flush_completed_IO(struct inode *inode,
216				      struct list_head *head)
217{
218	ext4_io_end_t *io;
219	struct list_head unwritten;
220	unsigned long flags;
221	struct ext4_inode_info *ei = EXT4_I(inode);
222	int err, ret = 0;
223
224	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
225	dump_completed_IO(inode, head);
226	list_replace_init(head, &unwritten);
227	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
228
229	while (!list_empty(&unwritten)) {
230		io = list_entry(unwritten.next, ext4_io_end_t, list);
231		BUG_ON(!(io->flag & EXT4_IO_END_UNWRITTEN));
232		list_del_init(&io->list);
233
234		err = ext4_end_io(io);
235		if (unlikely(!ret && err))
236			ret = err;
237	}
238	return ret;
239}
240
241/*
242 * work on completed IO, to convert unwritten extents to extents
243 */
244void ext4_end_io_rsv_work(struct work_struct *work)
245{
246	struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
247						  i_rsv_conversion_work);
248	ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list);
249}
250
251ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
252{
253	ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags);
254	if (io) {
255		io->inode = inode;
256		INIT_LIST_HEAD(&io->list);
257		atomic_set(&io->count, 1);
 
 
258	}
259	return io;
260}
261
262void ext4_put_io_end_defer(ext4_io_end_t *io_end)
263{
264	if (atomic_dec_and_test(&io_end->count)) {
265		if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) || !io_end->size) {
 
266			ext4_release_io_end(io_end);
267			return;
268		}
269		ext4_add_complete_io(io_end);
270	}
271}
272
273int ext4_put_io_end(ext4_io_end_t *io_end)
274{
275	int err = 0;
276
277	if (atomic_dec_and_test(&io_end->count)) {
278		if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
279			err = ext4_convert_unwritten_extents(io_end->handle,
280						io_end->inode, io_end->offset,
281						io_end->size);
282			io_end->handle = NULL;
283			ext4_clear_io_unwritten_flag(io_end);
284		}
285		ext4_release_io_end(io_end);
286	}
287	return err;
288}
289
290ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end)
291{
292	atomic_inc(&io_end->count);
293	return io_end;
294}
295
296/* BIO completion function for page writeback */
297static void ext4_end_bio(struct bio *bio)
298{
299	ext4_io_end_t *io_end = bio->bi_private;
300	sector_t bi_sector = bio->bi_iter.bi_sector;
301	char b[BDEVNAME_SIZE];
302
303	if (WARN_ONCE(!io_end, "io_end is NULL: %s: sector %Lu len %u err %d\n",
304		      bio_devname(bio, b),
305		      (long long) bio->bi_iter.bi_sector,
306		      (unsigned) bio_sectors(bio),
307		      bio->bi_status)) {
308		ext4_finish_bio(bio);
309		bio_put(bio);
310		return;
311	}
312	bio->bi_end_io = NULL;
313
314	if (bio->bi_status) {
315		struct inode *inode = io_end->inode;
316
317		ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu "
318			     "(offset %llu size %ld starting block %llu)",
319			     bio->bi_status, inode->i_ino,
320			     (unsigned long long) io_end->offset,
321			     (long) io_end->size,
322			     (unsigned long long)
323			     bi_sector >> (inode->i_blkbits - 9));
324		mapping_set_error(inode->i_mapping,
325				blk_status_to_errno(bio->bi_status));
326	}
327
328	if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
329		/*
330		 * Link bio into list hanging from io_end. We have to do it
331		 * atomically as bio completions can be racing against each
332		 * other.
333		 */
334		bio->bi_private = xchg(&io_end->bio, bio);
335		ext4_put_io_end_defer(io_end);
336	} else {
337		/*
338		 * Drop io_end reference early. Inode can get freed once
339		 * we finish the bio.
340		 */
341		ext4_put_io_end_defer(io_end);
342		ext4_finish_bio(bio);
343		bio_put(bio);
344	}
345}
346
347void ext4_io_submit(struct ext4_io_submit *io)
348{
349	struct bio *bio = io->io_bio;
350
351	if (bio) {
352		int io_op_flags = io->io_wbc->sync_mode == WB_SYNC_ALL ?
353				  REQ_SYNC : 0;
354		io->io_bio->bi_write_hint = io->io_end->inode->i_write_hint;
355		bio_set_op_attrs(io->io_bio, REQ_OP_WRITE, io_op_flags);
356		submit_bio(io->io_bio);
357	}
358	io->io_bio = NULL;
359}
360
361void ext4_io_submit_init(struct ext4_io_submit *io,
362			 struct writeback_control *wbc)
363{
364	io->io_wbc = wbc;
365	io->io_bio = NULL;
366	io->io_end = NULL;
367}
368
369static int io_submit_init_bio(struct ext4_io_submit *io,
370			      struct buffer_head *bh)
371{
372	struct bio *bio;
373
374	bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES);
375	if (!bio)
376		return -ENOMEM;
377	wbc_init_bio(io->io_wbc, bio);
 
 
378	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
379	bio_set_dev(bio, bh->b_bdev);
380	bio->bi_end_io = ext4_end_bio;
381	bio->bi_private = ext4_get_io_end(io->io_end);
382	io->io_bio = bio;
383	io->io_next_block = bh->b_blocknr;
384	return 0;
385}
386
387static int io_submit_add_bh(struct ext4_io_submit *io,
388			    struct inode *inode,
389			    struct page *page,
390			    struct buffer_head *bh)
 
391{
392	int ret;
393
394	if (io->io_bio && bh->b_blocknr != io->io_next_block) {
395submit_and_retry:
396		ext4_io_submit(io);
397	}
398	if (io->io_bio == NULL) {
399		ret = io_submit_init_bio(io, bh);
400		if (ret)
401			return ret;
402		io->io_bio->bi_write_hint = inode->i_write_hint;
403	}
404	ret = bio_add_page(io->io_bio, page, bh->b_size, bh_offset(bh));
405	if (ret != bh->b_size)
406		goto submit_and_retry;
407	wbc_account_io(io->io_wbc, page, bh->b_size);
408	io->io_next_block++;
409	return 0;
410}
411
412int ext4_bio_write_page(struct ext4_io_submit *io,
413			struct page *page,
414			int len,
415			struct writeback_control *wbc,
416			bool keep_towrite)
417{
418	struct page *data_page = NULL;
419	struct inode *inode = page->mapping->host;
420	unsigned block_start;
421	struct buffer_head *bh, *head;
422	int ret = 0;
423	int nr_submitted = 0;
424	int nr_to_submit = 0;
 
 
425
426	BUG_ON(!PageLocked(page));
427	BUG_ON(PageWriteback(page));
428
429	if (keep_towrite)
430		set_page_writeback_keepwrite(page);
431	else
432		set_page_writeback(page);
433	ClearPageError(page);
434
435	/*
436	 * Comments copied from block_write_full_page:
437	 *
438	 * The page straddles i_size.  It must be zeroed out on each and every
439	 * writepage invocation because it may be mmapped.  "A file is mapped
440	 * in multiples of the page size.  For a file that is not a multiple of
441	 * the page size, the remaining memory is zeroed when mapped, and
442	 * writes to that region are not written out to the file."
443	 */
444	if (len < PAGE_SIZE)
445		zero_user_segment(page, len, PAGE_SIZE);
446	/*
447	 * In the first loop we prepare and mark buffers to submit. We have to
448	 * mark all buffers in the page before submitting so that
449	 * end_page_writeback() cannot be called from ext4_bio_end_io() when IO
450	 * on the first buffer finishes and we are still working on submitting
451	 * the second buffer.
452	 */
453	bh = head = page_buffers(page);
454	do {
455		block_start = bh_offset(bh);
456		if (block_start >= len) {
457			clear_buffer_dirty(bh);
458			set_buffer_uptodate(bh);
459			continue;
460		}
461		if (!buffer_dirty(bh) || buffer_delay(bh) ||
462		    !buffer_mapped(bh) || buffer_unwritten(bh)) {
463			/* A hole? We can safely clear the dirty bit */
464			if (!buffer_mapped(bh))
465				clear_buffer_dirty(bh);
466			if (io->io_bio)
467				ext4_io_submit(io);
 
 
 
 
 
 
 
 
 
 
 
 
468			continue;
469		}
470		if (buffer_new(bh)) {
471			clear_buffer_new(bh);
472			clean_bdev_bh_alias(bh);
473		}
474		set_buffer_async_write(bh);
 
475		nr_to_submit++;
476	} while ((bh = bh->b_this_page) != head);
477
478	bh = head = page_buffers(page);
 
 
 
 
479
480	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode) &&
481	    nr_to_submit) {
 
 
 
 
 
 
482		gfp_t gfp_flags = GFP_NOFS;
 
 
483
 
 
 
 
 
 
 
484	retry_encrypt:
485		data_page = fscrypt_encrypt_page(inode, page, PAGE_SIZE, 0,
486						page->index, gfp_flags);
487		if (IS_ERR(data_page)) {
488			ret = PTR_ERR(data_page);
489			if (ret == -ENOMEM && wbc->sync_mode == WB_SYNC_ALL) {
490				if (io->io_bio) {
 
 
491					ext4_io_submit(io);
492					congestion_wait(BLK_RW_ASYNC, HZ/50);
493				}
494				gfp_flags |= __GFP_NOFAIL;
 
495				goto retry_encrypt;
496			}
497			data_page = NULL;
498			goto out;
 
 
 
 
 
 
 
 
 
 
499		}
 
500	}
501
 
 
502	/* Now submit buffers to write */
503	do {
504		if (!buffer_async_write(bh))
505			continue;
506		ret = io_submit_add_bh(io, inode,
507				       data_page ? data_page : page, bh);
508		if (ret) {
509			/*
510			 * We only get here on ENOMEM.  Not much else
511			 * we can do but mark the page as dirty, and
512			 * better luck next time.
513			 */
514			break;
515		}
516		nr_submitted++;
517		clear_buffer_dirty(bh);
518	} while ((bh = bh->b_this_page) != head);
519
520	/* Error stopped previous loop? Clean up buffers... */
521	if (ret) {
522	out:
523		if (data_page)
524			fscrypt_restore_control_page(data_page);
525		printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret);
526		redirty_page_for_writepage(wbc, page);
527		do {
528			clear_buffer_async_write(bh);
529			bh = bh->b_this_page;
530		} while (bh != head);
531	}
532	unlock_page(page);
533	/* Nothing submitted - we have to end page writeback */
534	if (!nr_submitted)
535		end_page_writeback(page);
536	return ret;
537}
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * linux/fs/ext4/page-io.c
  4 *
  5 * This contains the new page_io functions for ext4
  6 *
  7 * Written by Theodore Ts'o, 2010.
  8 */
  9
 10#include <linux/fs.h>
 11#include <linux/time.h>
 12#include <linux/highuid.h>
 13#include <linux/pagemap.h>
 14#include <linux/quotaops.h>
 15#include <linux/string.h>
 16#include <linux/buffer_head.h>
 17#include <linux/writeback.h>
 18#include <linux/pagevec.h>
 19#include <linux/mpage.h>
 20#include <linux/namei.h>
 21#include <linux/uio.h>
 22#include <linux/bio.h>
 23#include <linux/workqueue.h>
 24#include <linux/kernel.h>
 25#include <linux/slab.h>
 26#include <linux/mm.h>
 27#include <linux/sched/mm.h>
 28
 29#include "ext4_jbd2.h"
 30#include "xattr.h"
 31#include "acl.h"
 32
 33static struct kmem_cache *io_end_cachep;
 34static struct kmem_cache *io_end_vec_cachep;
 35
 36int __init ext4_init_pageio(void)
 37{
 38	io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
 39	if (io_end_cachep == NULL)
 40		return -ENOMEM;
 41
 42	io_end_vec_cachep = KMEM_CACHE(ext4_io_end_vec, 0);
 43	if (io_end_vec_cachep == NULL) {
 44		kmem_cache_destroy(io_end_cachep);
 45		return -ENOMEM;
 46	}
 47	return 0;
 48}
 49
 50void ext4_exit_pageio(void)
 51{
 52	kmem_cache_destroy(io_end_cachep);
 53	kmem_cache_destroy(io_end_vec_cachep);
 54}
 55
 56struct ext4_io_end_vec *ext4_alloc_io_end_vec(ext4_io_end_t *io_end)
 57{
 58	struct ext4_io_end_vec *io_end_vec;
 59
 60	io_end_vec = kmem_cache_zalloc(io_end_vec_cachep, GFP_NOFS);
 61	if (!io_end_vec)
 62		return ERR_PTR(-ENOMEM);
 63	INIT_LIST_HEAD(&io_end_vec->list);
 64	list_add_tail(&io_end_vec->list, &io_end->list_vec);
 65	return io_end_vec;
 66}
 67
 68static void ext4_free_io_end_vec(ext4_io_end_t *io_end)
 69{
 70	struct ext4_io_end_vec *io_end_vec, *tmp;
 71
 72	if (list_empty(&io_end->list_vec))
 73		return;
 74	list_for_each_entry_safe(io_end_vec, tmp, &io_end->list_vec, list) {
 75		list_del(&io_end_vec->list);
 76		kmem_cache_free(io_end_vec_cachep, io_end_vec);
 77	}
 78}
 79
 80struct ext4_io_end_vec *ext4_last_io_end_vec(ext4_io_end_t *io_end)
 81{
 82	BUG_ON(list_empty(&io_end->list_vec));
 83	return list_last_entry(&io_end->list_vec, struct ext4_io_end_vec, list);
 84}
 85
 86/*
 87 * Print an buffer I/O error compatible with the fs/buffer.c.  This
 88 * provides compatibility with dmesg scrapers that look for a specific
 89 * buffer I/O error message.  We really need a unified error reporting
 90 * structure to userspace ala Digital Unix's uerf system, but it's
 91 * probably not going to happen in my lifetime, due to LKML politics...
 92 */
 93static void buffer_io_error(struct buffer_head *bh)
 94{
 95	printk_ratelimited(KERN_ERR "Buffer I/O error on device %pg, logical block %llu\n",
 96		       bh->b_bdev,
 97			(unsigned long long)bh->b_blocknr);
 98}
 99
100static void ext4_finish_bio(struct bio *bio)
101{
102	struct folio_iter fi;
 
103
104	bio_for_each_folio_all(fi, bio) {
105		struct folio *folio = fi.folio;
106		struct folio *io_folio = NULL;
 
 
107		struct buffer_head *bh, *head;
108		size_t bio_start = fi.offset;
109		size_t bio_end = bio_start + fi.length;
110		unsigned under_io = 0;
111		unsigned long flags;
112
113		if (fscrypt_is_bounce_folio(folio)) {
114			io_folio = folio;
115			folio = fscrypt_pagecache_folio(folio);
 
 
 
 
 
116		}
 
117
118		if (bio->bi_status) {
119			int err = blk_status_to_errno(bio->bi_status);
120			mapping_set_error(folio->mapping, err);
121		}
122		bh = head = folio_buffers(folio);
123		/*
124		 * We check all buffers in the folio under b_uptodate_lock
125		 * to avoid races with other end io clearing async_write flags
126		 */
127		spin_lock_irqsave(&head->b_uptodate_lock, flags);
 
128		do {
129			if (bh_offset(bh) < bio_start ||
130			    bh_offset(bh) + bh->b_size > bio_end) {
131				if (buffer_async_write(bh))
132					under_io++;
133				continue;
134			}
135			clear_buffer_async_write(bh);
136			if (bio->bi_status) {
137				set_buffer_write_io_error(bh);
138				buffer_io_error(bh);
139			}
140		} while ((bh = bh->b_this_page) != head);
141		spin_unlock_irqrestore(&head->b_uptodate_lock, flags);
 
142		if (!under_io) {
143			fscrypt_free_bounce_page(&io_folio->page);
144			folio_end_writeback(folio);
 
 
 
145		}
146	}
147}
148
149static void ext4_release_io_end(ext4_io_end_t *io_end)
150{
151	struct bio *bio, *next_bio;
152
153	BUG_ON(!list_empty(&io_end->list));
154	BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
155	WARN_ON(io_end->handle);
156
157	for (bio = io_end->bio; bio; bio = next_bio) {
158		next_bio = bio->bi_private;
159		ext4_finish_bio(bio);
160		bio_put(bio);
161	}
162	ext4_free_io_end_vec(io_end);
163	kmem_cache_free(io_end_cachep, io_end);
164}
165
166/*
167 * Check a range of space and convert unwritten extents to written. Note that
168 * we are protected from truncate touching same part of extent tree by the
169 * fact that truncate code waits for all DIO to finish (thus exclusion from
170 * direct IO is achieved) and also waits for PageWriteback bits. Thus we
171 * cannot get to ext4_ext_truncate() before all IOs overlapping that range are
172 * completed (happens from ext4_free_ioend()).
173 */
174static int ext4_end_io_end(ext4_io_end_t *io_end)
175{
176	struct inode *inode = io_end->inode;
177	handle_t *handle = io_end->handle;
 
 
178	int ret = 0;
179
180	ext4_debug("ext4_end_io_nolock: io_end 0x%p from inode %lu,list->next 0x%p,"
181		   "list->prev 0x%p\n",
182		   io_end, inode->i_ino, io_end->list.next, io_end->list.prev);
183
184	io_end->handle = NULL;	/* Following call will use up the handle */
185	ret = ext4_convert_unwritten_io_end_vec(handle, io_end);
186	if (ret < 0 && !ext4_forced_shutdown(inode->i_sb)) {
187		ext4_msg(inode->i_sb, KERN_EMERG,
188			 "failed to convert unwritten extents to written "
189			 "extents -- potential data loss!  "
190			 "(inode %lu, error %d)", inode->i_ino, ret);
 
191	}
192	ext4_clear_io_unwritten_flag(io_end);
193	ext4_release_io_end(io_end);
194	return ret;
195}
196
197static void dump_completed_IO(struct inode *inode, struct list_head *head)
198{
199#ifdef	EXT4FS_DEBUG
200	struct list_head *cur, *before, *after;
201	ext4_io_end_t *io_end, *io_end0, *io_end1;
202
203	if (list_empty(head))
204		return;
205
206	ext4_debug("Dump inode %lu completed io list\n", inode->i_ino);
207	list_for_each_entry(io_end, head, list) {
208		cur = &io_end->list;
209		before = cur->prev;
210		io_end0 = container_of(before, ext4_io_end_t, list);
211		after = cur->next;
212		io_end1 = container_of(after, ext4_io_end_t, list);
213
214		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
215			    io_end, inode->i_ino, io_end0, io_end1);
216	}
217#endif
218}
219
220/* Add the io_end to per-inode completed end_io list. */
221static void ext4_add_complete_io(ext4_io_end_t *io_end)
222{
223	struct ext4_inode_info *ei = EXT4_I(io_end->inode);
224	struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb);
225	struct workqueue_struct *wq;
226	unsigned long flags;
227
228	/* Only reserved conversions from writeback should enter here */
229	WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
230	WARN_ON(!io_end->handle && sbi->s_journal);
231	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
232	wq = sbi->rsv_conversion_wq;
233	if (list_empty(&ei->i_rsv_conversion_list))
234		queue_work(wq, &ei->i_rsv_conversion_work);
235	list_add_tail(&io_end->list, &ei->i_rsv_conversion_list);
236	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
237}
238
239static int ext4_do_flush_completed_IO(struct inode *inode,
240				      struct list_head *head)
241{
242	ext4_io_end_t *io_end;
243	struct list_head unwritten;
244	unsigned long flags;
245	struct ext4_inode_info *ei = EXT4_I(inode);
246	int err, ret = 0;
247
248	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
249	dump_completed_IO(inode, head);
250	list_replace_init(head, &unwritten);
251	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
252
253	while (!list_empty(&unwritten)) {
254		io_end = list_entry(unwritten.next, ext4_io_end_t, list);
255		BUG_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
256		list_del_init(&io_end->list);
257
258		err = ext4_end_io_end(io_end);
259		if (unlikely(!ret && err))
260			ret = err;
261	}
262	return ret;
263}
264
265/*
266 * work on completed IO, to convert unwritten extents to extents
267 */
268void ext4_end_io_rsv_work(struct work_struct *work)
269{
270	struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
271						  i_rsv_conversion_work);
272	ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list);
273}
274
275ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
276{
277	ext4_io_end_t *io_end = kmem_cache_zalloc(io_end_cachep, flags);
278
279	if (io_end) {
280		io_end->inode = inode;
281		INIT_LIST_HEAD(&io_end->list);
282		INIT_LIST_HEAD(&io_end->list_vec);
283		refcount_set(&io_end->count, 1);
284	}
285	return io_end;
286}
287
288void ext4_put_io_end_defer(ext4_io_end_t *io_end)
289{
290	if (refcount_dec_and_test(&io_end->count)) {
291		if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) ||
292				list_empty(&io_end->list_vec)) {
293			ext4_release_io_end(io_end);
294			return;
295		}
296		ext4_add_complete_io(io_end);
297	}
298}
299
300int ext4_put_io_end(ext4_io_end_t *io_end)
301{
302	int err = 0;
303
304	if (refcount_dec_and_test(&io_end->count)) {
305		if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
306			err = ext4_convert_unwritten_io_end_vec(io_end->handle,
307								io_end);
 
308			io_end->handle = NULL;
309			ext4_clear_io_unwritten_flag(io_end);
310		}
311		ext4_release_io_end(io_end);
312	}
313	return err;
314}
315
316ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end)
317{
318	refcount_inc(&io_end->count);
319	return io_end;
320}
321
322/* BIO completion function for page writeback */
323static void ext4_end_bio(struct bio *bio)
324{
325	ext4_io_end_t *io_end = bio->bi_private;
326	sector_t bi_sector = bio->bi_iter.bi_sector;
 
327
328	if (WARN_ONCE(!io_end, "io_end is NULL: %pg: sector %Lu len %u err %d\n",
329		      bio->bi_bdev,
330		      (long long) bio->bi_iter.bi_sector,
331		      (unsigned) bio_sectors(bio),
332		      bio->bi_status)) {
333		ext4_finish_bio(bio);
334		bio_put(bio);
335		return;
336	}
337	bio->bi_end_io = NULL;
338
339	if (bio->bi_status) {
340		struct inode *inode = io_end->inode;
341
342		ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu "
343			     "starting block %llu)",
344			     bio->bi_status, inode->i_ino,
 
 
345			     (unsigned long long)
346			     bi_sector >> (inode->i_blkbits - 9));
347		mapping_set_error(inode->i_mapping,
348				blk_status_to_errno(bio->bi_status));
349	}
350
351	if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
352		/*
353		 * Link bio into list hanging from io_end. We have to do it
354		 * atomically as bio completions can be racing against each
355		 * other.
356		 */
357		bio->bi_private = xchg(&io_end->bio, bio);
358		ext4_put_io_end_defer(io_end);
359	} else {
360		/*
361		 * Drop io_end reference early. Inode can get freed once
362		 * we finish the bio.
363		 */
364		ext4_put_io_end_defer(io_end);
365		ext4_finish_bio(bio);
366		bio_put(bio);
367	}
368}
369
370void ext4_io_submit(struct ext4_io_submit *io)
371{
372	struct bio *bio = io->io_bio;
373
374	if (bio) {
375		if (io->io_wbc->sync_mode == WB_SYNC_ALL)
376			io->io_bio->bi_opf |= REQ_SYNC;
 
 
377		submit_bio(io->io_bio);
378	}
379	io->io_bio = NULL;
380}
381
382void ext4_io_submit_init(struct ext4_io_submit *io,
383			 struct writeback_control *wbc)
384{
385	io->io_wbc = wbc;
386	io->io_bio = NULL;
387	io->io_end = NULL;
388}
389
390static void io_submit_init_bio(struct ext4_io_submit *io,
391			       struct buffer_head *bh)
392{
393	struct bio *bio;
394
395	/*
396	 * bio_alloc will _always_ be able to allocate a bio if
397	 * __GFP_DIRECT_RECLAIM is set, see comments for bio_alloc_bioset().
398	 */
399	bio = bio_alloc(bh->b_bdev, BIO_MAX_VECS, REQ_OP_WRITE, GFP_NOIO);
400	fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
401	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
 
402	bio->bi_end_io = ext4_end_bio;
403	bio->bi_private = ext4_get_io_end(io->io_end);
404	io->io_bio = bio;
405	io->io_next_block = bh->b_blocknr;
406	wbc_init_bio(io->io_wbc, bio);
407}
408
409static void io_submit_add_bh(struct ext4_io_submit *io,
410			     struct inode *inode,
411			     struct folio *folio,
412			     struct folio *io_folio,
413			     struct buffer_head *bh)
414{
415	if (io->io_bio && (bh->b_blocknr != io->io_next_block ||
416			   !fscrypt_mergeable_bio_bh(io->io_bio, bh))) {
 
417submit_and_retry:
418		ext4_io_submit(io);
419	}
420	if (io->io_bio == NULL) {
421		io_submit_init_bio(io, bh);
 
 
422		io->io_bio->bi_write_hint = inode->i_write_hint;
423	}
424	if (!bio_add_folio(io->io_bio, io_folio, bh->b_size, bh_offset(bh)))
 
425		goto submit_and_retry;
426	wbc_account_cgroup_owner(io->io_wbc, folio, bh->b_size);
427	io->io_next_block++;
 
428}
429
430int ext4_bio_write_folio(struct ext4_io_submit *io, struct folio *folio,
431		size_t len)
 
 
 
432{
433	struct folio *io_folio = folio;
434	struct inode *inode = folio->mapping->host;
435	unsigned block_start;
436	struct buffer_head *bh, *head;
437	int ret = 0;
 
438	int nr_to_submit = 0;
439	struct writeback_control *wbc = io->io_wbc;
440	bool keep_towrite = false;
441
442	BUG_ON(!folio_test_locked(folio));
443	BUG_ON(folio_test_writeback(folio));
 
 
 
 
 
 
444
445	/*
446	 * Comments copied from block_write_full_folio:
447	 *
448	 * The folio straddles i_size.  It must be zeroed out on each and every
449	 * writepage invocation because it may be mmapped.  "A file is mapped
450	 * in multiples of the page size.  For a file that is not a multiple of
451	 * the page size, the remaining memory is zeroed when mapped, and
452	 * writes to that region are not written out to the file."
453	 */
454	if (len < folio_size(folio))
455		folio_zero_segment(folio, len, folio_size(folio));
456	/*
457	 * In the first loop we prepare and mark buffers to submit. We have to
458	 * mark all buffers in the folio before submitting so that
459	 * folio_end_writeback() cannot be called from ext4_end_bio() when IO
460	 * on the first buffer finishes and we are still working on submitting
461	 * the second buffer.
462	 */
463	bh = head = folio_buffers(folio);
464	do {
465		block_start = bh_offset(bh);
466		if (block_start >= len) {
467			clear_buffer_dirty(bh);
468			set_buffer_uptodate(bh);
469			continue;
470		}
471		if (!buffer_dirty(bh) || buffer_delay(bh) ||
472		    !buffer_mapped(bh) || buffer_unwritten(bh)) {
473			/* A hole? We can safely clear the dirty bit */
474			if (!buffer_mapped(bh))
475				clear_buffer_dirty(bh);
476			/*
477			 * Keeping dirty some buffer we cannot write? Make sure
478			 * to redirty the folio and keep TOWRITE tag so that
479			 * racing WB_SYNC_ALL writeback does not skip the folio.
480			 * This happens e.g. when doing writeout for
481			 * transaction commit or when journalled data is not
482			 * yet committed.
483			 */
484			if (buffer_dirty(bh) ||
485			    (buffer_jbd(bh) && buffer_jbddirty(bh))) {
486				if (!folio_test_dirty(folio))
487					folio_redirty_for_writepage(wbc, folio);
488				keep_towrite = true;
489			}
490			continue;
491		}
492		if (buffer_new(bh))
493			clear_buffer_new(bh);
 
 
494		set_buffer_async_write(bh);
495		clear_buffer_dirty(bh);
496		nr_to_submit++;
497	} while ((bh = bh->b_this_page) != head);
498
499	/* Nothing to submit? Just unlock the folio... */
500	if (!nr_to_submit)
501		return 0;
502
503	bh = head = folio_buffers(folio);
504
505	/*
506	 * If any blocks are being written to an encrypted file, encrypt them
507	 * into a bounce page.  For simplicity, just encrypt until the last
508	 * block which might be needed.  This may cause some unneeded blocks
509	 * (e.g. holes) to be unnecessarily encrypted, but this is rare and
510	 * can't happen in the common case of blocksize == PAGE_SIZE.
511	 */
512	if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
513		gfp_t gfp_flags = GFP_NOFS;
514		unsigned int enc_bytes = round_up(len, i_blocksize(inode));
515		struct page *bounce_page;
516
517		/*
518		 * Since bounce page allocation uses a mempool, we can only use
519		 * a waiting mask (i.e. request guaranteed allocation) on the
520		 * first page of the bio.  Otherwise it can deadlock.
521		 */
522		if (io->io_bio)
523			gfp_flags = GFP_NOWAIT | __GFP_NOWARN;
524	retry_encrypt:
525		bounce_page = fscrypt_encrypt_pagecache_blocks(&folio->page,
526					enc_bytes, 0, gfp_flags);
527		if (IS_ERR(bounce_page)) {
528			ret = PTR_ERR(bounce_page);
529			if (ret == -ENOMEM &&
530			    (io->io_bio || wbc->sync_mode == WB_SYNC_ALL)) {
531				gfp_t new_gfp_flags = GFP_NOFS;
532				if (io->io_bio)
533					ext4_io_submit(io);
534				else
535					new_gfp_flags |= __GFP_NOFAIL;
536				memalloc_retry_wait(gfp_flags);
537				gfp_flags = new_gfp_flags;
538				goto retry_encrypt;
539			}
540
541			printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret);
542			folio_redirty_for_writepage(wbc, folio);
543			do {
544				if (buffer_async_write(bh)) {
545					clear_buffer_async_write(bh);
546					set_buffer_dirty(bh);
547				}
548				bh = bh->b_this_page;
549			} while (bh != head);
550
551			return ret;
552		}
553		io_folio = page_folio(bounce_page);
554	}
555
556	__folio_start_writeback(folio, keep_towrite);
557
558	/* Now submit buffers to write */
559	do {
560		if (!buffer_async_write(bh))
561			continue;
562		io_submit_add_bh(io, inode, folio, io_folio, bh);
 
 
 
 
 
 
 
 
 
 
 
563	} while ((bh = bh->b_this_page) != head);
564
565	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
566}