Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/ext4/page-io.c
4 *
5 * This contains the new page_io functions for ext4
6 *
7 * Written by Theodore Ts'o, 2010.
8 */
9
10#include <linux/fs.h>
11#include <linux/time.h>
12#include <linux/highuid.h>
13#include <linux/pagemap.h>
14#include <linux/quotaops.h>
15#include <linux/string.h>
16#include <linux/buffer_head.h>
17#include <linux/writeback.h>
18#include <linux/pagevec.h>
19#include <linux/mpage.h>
20#include <linux/namei.h>
21#include <linux/uio.h>
22#include <linux/bio.h>
23#include <linux/workqueue.h>
24#include <linux/kernel.h>
25#include <linux/slab.h>
26#include <linux/mm.h>
27#include <linux/backing-dev.h>
28
29#include "ext4_jbd2.h"
30#include "xattr.h"
31#include "acl.h"
32
33static struct kmem_cache *io_end_cachep;
34
35int __init ext4_init_pageio(void)
36{
37 io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
38 if (io_end_cachep == NULL)
39 return -ENOMEM;
40 return 0;
41}
42
43void ext4_exit_pageio(void)
44{
45 kmem_cache_destroy(io_end_cachep);
46}
47
48/*
49 * Print an buffer I/O error compatible with the fs/buffer.c. This
50 * provides compatibility with dmesg scrapers that look for a specific
51 * buffer I/O error message. We really need a unified error reporting
52 * structure to userspace ala Digital Unix's uerf system, but it's
53 * probably not going to happen in my lifetime, due to LKML politics...
54 */
55static void buffer_io_error(struct buffer_head *bh)
56{
57 printk_ratelimited(KERN_ERR "Buffer I/O error on device %pg, logical block %llu\n",
58 bh->b_bdev,
59 (unsigned long long)bh->b_blocknr);
60}
61
62static void ext4_finish_bio(struct bio *bio)
63{
64 int i;
65 struct bio_vec *bvec;
66
67 bio_for_each_segment_all(bvec, bio, i) {
68 struct page *page = bvec->bv_page;
69#ifdef CONFIG_EXT4_FS_ENCRYPTION
70 struct page *data_page = NULL;
71#endif
72 struct buffer_head *bh, *head;
73 unsigned bio_start = bvec->bv_offset;
74 unsigned bio_end = bio_start + bvec->bv_len;
75 unsigned under_io = 0;
76 unsigned long flags;
77
78 if (!page)
79 continue;
80
81#ifdef CONFIG_EXT4_FS_ENCRYPTION
82 if (!page->mapping) {
83 /* The bounce data pages are unmapped. */
84 data_page = page;
85 fscrypt_pullback_bio_page(&page, false);
86 }
87#endif
88
89 if (bio->bi_status) {
90 SetPageError(page);
91 mapping_set_error(page->mapping, -EIO);
92 }
93 bh = head = page_buffers(page);
94 /*
95 * We check all buffers in the page under BH_Uptodate_Lock
96 * to avoid races with other end io clearing async_write flags
97 */
98 local_irq_save(flags);
99 bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
100 do {
101 if (bh_offset(bh) < bio_start ||
102 bh_offset(bh) + bh->b_size > bio_end) {
103 if (buffer_async_write(bh))
104 under_io++;
105 continue;
106 }
107 clear_buffer_async_write(bh);
108 if (bio->bi_status)
109 buffer_io_error(bh);
110 } while ((bh = bh->b_this_page) != head);
111 bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
112 local_irq_restore(flags);
113 if (!under_io) {
114#ifdef CONFIG_EXT4_FS_ENCRYPTION
115 if (data_page)
116 fscrypt_restore_control_page(data_page);
117#endif
118 end_page_writeback(page);
119 }
120 }
121}
122
123static void ext4_release_io_end(ext4_io_end_t *io_end)
124{
125 struct bio *bio, *next_bio;
126
127 BUG_ON(!list_empty(&io_end->list));
128 BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
129 WARN_ON(io_end->handle);
130
131 for (bio = io_end->bio; bio; bio = next_bio) {
132 next_bio = bio->bi_private;
133 ext4_finish_bio(bio);
134 bio_put(bio);
135 }
136 kmem_cache_free(io_end_cachep, io_end);
137}
138
139/*
140 * Check a range of space and convert unwritten extents to written. Note that
141 * we are protected from truncate touching same part of extent tree by the
142 * fact that truncate code waits for all DIO to finish (thus exclusion from
143 * direct IO is achieved) and also waits for PageWriteback bits. Thus we
144 * cannot get to ext4_ext_truncate() before all IOs overlapping that range are
145 * completed (happens from ext4_free_ioend()).
146 */
147static int ext4_end_io(ext4_io_end_t *io)
148{
149 struct inode *inode = io->inode;
150 loff_t offset = io->offset;
151 ssize_t size = io->size;
152 handle_t *handle = io->handle;
153 int ret = 0;
154
155 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
156 "list->prev 0x%p\n",
157 io, inode->i_ino, io->list.next, io->list.prev);
158
159 io->handle = NULL; /* Following call will use up the handle */
160 ret = ext4_convert_unwritten_extents(handle, inode, offset, size);
161 if (ret < 0 && !ext4_forced_shutdown(EXT4_SB(inode->i_sb))) {
162 ext4_msg(inode->i_sb, KERN_EMERG,
163 "failed to convert unwritten extents to written "
164 "extents -- potential data loss! "
165 "(inode %lu, offset %llu, size %zd, error %d)",
166 inode->i_ino, offset, size, ret);
167 }
168 ext4_clear_io_unwritten_flag(io);
169 ext4_release_io_end(io);
170 return ret;
171}
172
173static void dump_completed_IO(struct inode *inode, struct list_head *head)
174{
175#ifdef EXT4FS_DEBUG
176 struct list_head *cur, *before, *after;
177 ext4_io_end_t *io, *io0, *io1;
178
179 if (list_empty(head))
180 return;
181
182 ext4_debug("Dump inode %lu completed io list\n", inode->i_ino);
183 list_for_each_entry(io, head, list) {
184 cur = &io->list;
185 before = cur->prev;
186 io0 = container_of(before, ext4_io_end_t, list);
187 after = cur->next;
188 io1 = container_of(after, ext4_io_end_t, list);
189
190 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
191 io, inode->i_ino, io0, io1);
192 }
193#endif
194}
195
196/* Add the io_end to per-inode completed end_io list. */
197static void ext4_add_complete_io(ext4_io_end_t *io_end)
198{
199 struct ext4_inode_info *ei = EXT4_I(io_end->inode);
200 struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb);
201 struct workqueue_struct *wq;
202 unsigned long flags;
203
204 /* Only reserved conversions from writeback should enter here */
205 WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
206 WARN_ON(!io_end->handle && sbi->s_journal);
207 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
208 wq = sbi->rsv_conversion_wq;
209 if (list_empty(&ei->i_rsv_conversion_list))
210 queue_work(wq, &ei->i_rsv_conversion_work);
211 list_add_tail(&io_end->list, &ei->i_rsv_conversion_list);
212 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
213}
214
215static int ext4_do_flush_completed_IO(struct inode *inode,
216 struct list_head *head)
217{
218 ext4_io_end_t *io;
219 struct list_head unwritten;
220 unsigned long flags;
221 struct ext4_inode_info *ei = EXT4_I(inode);
222 int err, ret = 0;
223
224 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
225 dump_completed_IO(inode, head);
226 list_replace_init(head, &unwritten);
227 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
228
229 while (!list_empty(&unwritten)) {
230 io = list_entry(unwritten.next, ext4_io_end_t, list);
231 BUG_ON(!(io->flag & EXT4_IO_END_UNWRITTEN));
232 list_del_init(&io->list);
233
234 err = ext4_end_io(io);
235 if (unlikely(!ret && err))
236 ret = err;
237 }
238 return ret;
239}
240
241/*
242 * work on completed IO, to convert unwritten extents to extents
243 */
244void ext4_end_io_rsv_work(struct work_struct *work)
245{
246 struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
247 i_rsv_conversion_work);
248 ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list);
249}
250
251ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
252{
253 ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags);
254 if (io) {
255 io->inode = inode;
256 INIT_LIST_HEAD(&io->list);
257 atomic_set(&io->count, 1);
258 }
259 return io;
260}
261
262void ext4_put_io_end_defer(ext4_io_end_t *io_end)
263{
264 if (atomic_dec_and_test(&io_end->count)) {
265 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) || !io_end->size) {
266 ext4_release_io_end(io_end);
267 return;
268 }
269 ext4_add_complete_io(io_end);
270 }
271}
272
273int ext4_put_io_end(ext4_io_end_t *io_end)
274{
275 int err = 0;
276
277 if (atomic_dec_and_test(&io_end->count)) {
278 if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
279 err = ext4_convert_unwritten_extents(io_end->handle,
280 io_end->inode, io_end->offset,
281 io_end->size);
282 io_end->handle = NULL;
283 ext4_clear_io_unwritten_flag(io_end);
284 }
285 ext4_release_io_end(io_end);
286 }
287 return err;
288}
289
290ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end)
291{
292 atomic_inc(&io_end->count);
293 return io_end;
294}
295
296/* BIO completion function for page writeback */
297static void ext4_end_bio(struct bio *bio)
298{
299 ext4_io_end_t *io_end = bio->bi_private;
300 sector_t bi_sector = bio->bi_iter.bi_sector;
301 char b[BDEVNAME_SIZE];
302
303 if (WARN_ONCE(!io_end, "io_end is NULL: %s: sector %Lu len %u err %d\n",
304 bio_devname(bio, b),
305 (long long) bio->bi_iter.bi_sector,
306 (unsigned) bio_sectors(bio),
307 bio->bi_status)) {
308 ext4_finish_bio(bio);
309 bio_put(bio);
310 return;
311 }
312 bio->bi_end_io = NULL;
313
314 if (bio->bi_status) {
315 struct inode *inode = io_end->inode;
316
317 ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu "
318 "(offset %llu size %ld starting block %llu)",
319 bio->bi_status, inode->i_ino,
320 (unsigned long long) io_end->offset,
321 (long) io_end->size,
322 (unsigned long long)
323 bi_sector >> (inode->i_blkbits - 9));
324 mapping_set_error(inode->i_mapping,
325 blk_status_to_errno(bio->bi_status));
326 }
327
328 if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
329 /*
330 * Link bio into list hanging from io_end. We have to do it
331 * atomically as bio completions can be racing against each
332 * other.
333 */
334 bio->bi_private = xchg(&io_end->bio, bio);
335 ext4_put_io_end_defer(io_end);
336 } else {
337 /*
338 * Drop io_end reference early. Inode can get freed once
339 * we finish the bio.
340 */
341 ext4_put_io_end_defer(io_end);
342 ext4_finish_bio(bio);
343 bio_put(bio);
344 }
345}
346
347void ext4_io_submit(struct ext4_io_submit *io)
348{
349 struct bio *bio = io->io_bio;
350
351 if (bio) {
352 int io_op_flags = io->io_wbc->sync_mode == WB_SYNC_ALL ?
353 REQ_SYNC : 0;
354 io->io_bio->bi_write_hint = io->io_end->inode->i_write_hint;
355 bio_set_op_attrs(io->io_bio, REQ_OP_WRITE, io_op_flags);
356 submit_bio(io->io_bio);
357 }
358 io->io_bio = NULL;
359}
360
361void ext4_io_submit_init(struct ext4_io_submit *io,
362 struct writeback_control *wbc)
363{
364 io->io_wbc = wbc;
365 io->io_bio = NULL;
366 io->io_end = NULL;
367}
368
369static int io_submit_init_bio(struct ext4_io_submit *io,
370 struct buffer_head *bh)
371{
372 struct bio *bio;
373
374 bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES);
375 if (!bio)
376 return -ENOMEM;
377 wbc_init_bio(io->io_wbc, bio);
378 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
379 bio_set_dev(bio, bh->b_bdev);
380 bio->bi_end_io = ext4_end_bio;
381 bio->bi_private = ext4_get_io_end(io->io_end);
382 io->io_bio = bio;
383 io->io_next_block = bh->b_blocknr;
384 return 0;
385}
386
387static int io_submit_add_bh(struct ext4_io_submit *io,
388 struct inode *inode,
389 struct page *page,
390 struct buffer_head *bh)
391{
392 int ret;
393
394 if (io->io_bio && bh->b_blocknr != io->io_next_block) {
395submit_and_retry:
396 ext4_io_submit(io);
397 }
398 if (io->io_bio == NULL) {
399 ret = io_submit_init_bio(io, bh);
400 if (ret)
401 return ret;
402 io->io_bio->bi_write_hint = inode->i_write_hint;
403 }
404 ret = bio_add_page(io->io_bio, page, bh->b_size, bh_offset(bh));
405 if (ret != bh->b_size)
406 goto submit_and_retry;
407 wbc_account_io(io->io_wbc, page, bh->b_size);
408 io->io_next_block++;
409 return 0;
410}
411
412int ext4_bio_write_page(struct ext4_io_submit *io,
413 struct page *page,
414 int len,
415 struct writeback_control *wbc,
416 bool keep_towrite)
417{
418 struct page *data_page = NULL;
419 struct inode *inode = page->mapping->host;
420 unsigned block_start;
421 struct buffer_head *bh, *head;
422 int ret = 0;
423 int nr_submitted = 0;
424 int nr_to_submit = 0;
425
426 BUG_ON(!PageLocked(page));
427 BUG_ON(PageWriteback(page));
428
429 if (keep_towrite)
430 set_page_writeback_keepwrite(page);
431 else
432 set_page_writeback(page);
433 ClearPageError(page);
434
435 /*
436 * Comments copied from block_write_full_page:
437 *
438 * The page straddles i_size. It must be zeroed out on each and every
439 * writepage invocation because it may be mmapped. "A file is mapped
440 * in multiples of the page size. For a file that is not a multiple of
441 * the page size, the remaining memory is zeroed when mapped, and
442 * writes to that region are not written out to the file."
443 */
444 if (len < PAGE_SIZE)
445 zero_user_segment(page, len, PAGE_SIZE);
446 /*
447 * In the first loop we prepare and mark buffers to submit. We have to
448 * mark all buffers in the page before submitting so that
449 * end_page_writeback() cannot be called from ext4_bio_end_io() when IO
450 * on the first buffer finishes and we are still working on submitting
451 * the second buffer.
452 */
453 bh = head = page_buffers(page);
454 do {
455 block_start = bh_offset(bh);
456 if (block_start >= len) {
457 clear_buffer_dirty(bh);
458 set_buffer_uptodate(bh);
459 continue;
460 }
461 if (!buffer_dirty(bh) || buffer_delay(bh) ||
462 !buffer_mapped(bh) || buffer_unwritten(bh)) {
463 /* A hole? We can safely clear the dirty bit */
464 if (!buffer_mapped(bh))
465 clear_buffer_dirty(bh);
466 if (io->io_bio)
467 ext4_io_submit(io);
468 continue;
469 }
470 if (buffer_new(bh)) {
471 clear_buffer_new(bh);
472 clean_bdev_bh_alias(bh);
473 }
474 set_buffer_async_write(bh);
475 nr_to_submit++;
476 } while ((bh = bh->b_this_page) != head);
477
478 bh = head = page_buffers(page);
479
480 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode) &&
481 nr_to_submit) {
482 gfp_t gfp_flags = GFP_NOFS;
483
484 retry_encrypt:
485 data_page = fscrypt_encrypt_page(inode, page, PAGE_SIZE, 0,
486 page->index, gfp_flags);
487 if (IS_ERR(data_page)) {
488 ret = PTR_ERR(data_page);
489 if (ret == -ENOMEM && wbc->sync_mode == WB_SYNC_ALL) {
490 if (io->io_bio) {
491 ext4_io_submit(io);
492 congestion_wait(BLK_RW_ASYNC, HZ/50);
493 }
494 gfp_flags |= __GFP_NOFAIL;
495 goto retry_encrypt;
496 }
497 data_page = NULL;
498 goto out;
499 }
500 }
501
502 /* Now submit buffers to write */
503 do {
504 if (!buffer_async_write(bh))
505 continue;
506 ret = io_submit_add_bh(io, inode,
507 data_page ? data_page : page, bh);
508 if (ret) {
509 /*
510 * We only get here on ENOMEM. Not much else
511 * we can do but mark the page as dirty, and
512 * better luck next time.
513 */
514 break;
515 }
516 nr_submitted++;
517 clear_buffer_dirty(bh);
518 } while ((bh = bh->b_this_page) != head);
519
520 /* Error stopped previous loop? Clean up buffers... */
521 if (ret) {
522 out:
523 if (data_page)
524 fscrypt_restore_control_page(data_page);
525 printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret);
526 redirty_page_for_writepage(wbc, page);
527 do {
528 clear_buffer_async_write(bh);
529 bh = bh->b_this_page;
530 } while (bh != head);
531 }
532 unlock_page(page);
533 /* Nothing submitted - we have to end page writeback */
534 if (!nr_submitted)
535 end_page_writeback(page);
536 return ret;
537}
1/*
2 * linux/fs/ext4/page-io.c
3 *
4 * This contains the new page_io functions for ext4
5 *
6 * Written by Theodore Ts'o, 2010.
7 */
8
9#include <linux/fs.h>
10#include <linux/time.h>
11#include <linux/jbd2.h>
12#include <linux/highuid.h>
13#include <linux/pagemap.h>
14#include <linux/quotaops.h>
15#include <linux/string.h>
16#include <linux/buffer_head.h>
17#include <linux/writeback.h>
18#include <linux/pagevec.h>
19#include <linux/mpage.h>
20#include <linux/namei.h>
21#include <linux/aio.h>
22#include <linux/uio.h>
23#include <linux/bio.h>
24#include <linux/workqueue.h>
25#include <linux/kernel.h>
26#include <linux/slab.h>
27#include <linux/mm.h>
28#include <linux/ratelimit.h>
29
30#include "ext4_jbd2.h"
31#include "xattr.h"
32#include "acl.h"
33
34static struct kmem_cache *io_end_cachep;
35
36int __init ext4_init_pageio(void)
37{
38 io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
39 if (io_end_cachep == NULL)
40 return -ENOMEM;
41 return 0;
42}
43
44void ext4_exit_pageio(void)
45{
46 kmem_cache_destroy(io_end_cachep);
47}
48
49/*
50 * Print an buffer I/O error compatible with the fs/buffer.c. This
51 * provides compatibility with dmesg scrapers that look for a specific
52 * buffer I/O error message. We really need a unified error reporting
53 * structure to userspace ala Digital Unix's uerf system, but it's
54 * probably not going to happen in my lifetime, due to LKML politics...
55 */
56static void buffer_io_error(struct buffer_head *bh)
57{
58 char b[BDEVNAME_SIZE];
59 printk_ratelimited(KERN_ERR "Buffer I/O error on device %s, logical block %llu\n",
60 bdevname(bh->b_bdev, b),
61 (unsigned long long)bh->b_blocknr);
62}
63
64static void ext4_finish_bio(struct bio *bio)
65{
66 int i;
67 int error = !test_bit(BIO_UPTODATE, &bio->bi_flags);
68 struct bio_vec *bvec;
69
70 bio_for_each_segment_all(bvec, bio, i) {
71 struct page *page = bvec->bv_page;
72 struct buffer_head *bh, *head;
73 unsigned bio_start = bvec->bv_offset;
74 unsigned bio_end = bio_start + bvec->bv_len;
75 unsigned under_io = 0;
76 unsigned long flags;
77
78 if (!page)
79 continue;
80
81 if (error) {
82 SetPageError(page);
83 set_bit(AS_EIO, &page->mapping->flags);
84 }
85 bh = head = page_buffers(page);
86 /*
87 * We check all buffers in the page under BH_Uptodate_Lock
88 * to avoid races with other end io clearing async_write flags
89 */
90 local_irq_save(flags);
91 bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
92 do {
93 if (bh_offset(bh) < bio_start ||
94 bh_offset(bh) + bh->b_size > bio_end) {
95 if (buffer_async_write(bh))
96 under_io++;
97 continue;
98 }
99 clear_buffer_async_write(bh);
100 if (error)
101 buffer_io_error(bh);
102 } while ((bh = bh->b_this_page) != head);
103 bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
104 local_irq_restore(flags);
105 if (!under_io)
106 end_page_writeback(page);
107 }
108}
109
110static void ext4_release_io_end(ext4_io_end_t *io_end)
111{
112 struct bio *bio, *next_bio;
113
114 BUG_ON(!list_empty(&io_end->list));
115 BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
116 WARN_ON(io_end->handle);
117
118 if (atomic_dec_and_test(&EXT4_I(io_end->inode)->i_ioend_count))
119 wake_up_all(ext4_ioend_wq(io_end->inode));
120
121 for (bio = io_end->bio; bio; bio = next_bio) {
122 next_bio = bio->bi_private;
123 ext4_finish_bio(bio);
124 bio_put(bio);
125 }
126 kmem_cache_free(io_end_cachep, io_end);
127}
128
129static void ext4_clear_io_unwritten_flag(ext4_io_end_t *io_end)
130{
131 struct inode *inode = io_end->inode;
132
133 io_end->flag &= ~EXT4_IO_END_UNWRITTEN;
134 /* Wake up anyone waiting on unwritten extent conversion */
135 if (atomic_dec_and_test(&EXT4_I(inode)->i_unwritten))
136 wake_up_all(ext4_ioend_wq(inode));
137}
138
139/*
140 * Check a range of space and convert unwritten extents to written. Note that
141 * we are protected from truncate touching same part of extent tree by the
142 * fact that truncate code waits for all DIO to finish (thus exclusion from
143 * direct IO is achieved) and also waits for PageWriteback bits. Thus we
144 * cannot get to ext4_ext_truncate() before all IOs overlapping that range are
145 * completed (happens from ext4_free_ioend()).
146 */
147static int ext4_end_io(ext4_io_end_t *io)
148{
149 struct inode *inode = io->inode;
150 loff_t offset = io->offset;
151 ssize_t size = io->size;
152 handle_t *handle = io->handle;
153 int ret = 0;
154
155 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
156 "list->prev 0x%p\n",
157 io, inode->i_ino, io->list.next, io->list.prev);
158
159 io->handle = NULL; /* Following call will use up the handle */
160 ret = ext4_convert_unwritten_extents(handle, inode, offset, size);
161 if (ret < 0) {
162 ext4_msg(inode->i_sb, KERN_EMERG,
163 "failed to convert unwritten extents to written "
164 "extents -- potential data loss! "
165 "(inode %lu, offset %llu, size %zd, error %d)",
166 inode->i_ino, offset, size, ret);
167 }
168 ext4_clear_io_unwritten_flag(io);
169 ext4_release_io_end(io);
170 return ret;
171}
172
173static void dump_completed_IO(struct inode *inode, struct list_head *head)
174{
175#ifdef EXT4FS_DEBUG
176 struct list_head *cur, *before, *after;
177 ext4_io_end_t *io, *io0, *io1;
178
179 if (list_empty(head))
180 return;
181
182 ext4_debug("Dump inode %lu completed io list\n", inode->i_ino);
183 list_for_each_entry(io, head, list) {
184 cur = &io->list;
185 before = cur->prev;
186 io0 = container_of(before, ext4_io_end_t, list);
187 after = cur->next;
188 io1 = container_of(after, ext4_io_end_t, list);
189
190 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
191 io, inode->i_ino, io0, io1);
192 }
193#endif
194}
195
196/* Add the io_end to per-inode completed end_io list. */
197static void ext4_add_complete_io(ext4_io_end_t *io_end)
198{
199 struct ext4_inode_info *ei = EXT4_I(io_end->inode);
200 struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb);
201 struct workqueue_struct *wq;
202 unsigned long flags;
203
204 /* Only reserved conversions from writeback should enter here */
205 WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
206 WARN_ON(!io_end->handle && sbi->s_journal);
207 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
208 wq = sbi->rsv_conversion_wq;
209 if (list_empty(&ei->i_rsv_conversion_list))
210 queue_work(wq, &ei->i_rsv_conversion_work);
211 list_add_tail(&io_end->list, &ei->i_rsv_conversion_list);
212 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
213}
214
215static int ext4_do_flush_completed_IO(struct inode *inode,
216 struct list_head *head)
217{
218 ext4_io_end_t *io;
219 struct list_head unwritten;
220 unsigned long flags;
221 struct ext4_inode_info *ei = EXT4_I(inode);
222 int err, ret = 0;
223
224 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
225 dump_completed_IO(inode, head);
226 list_replace_init(head, &unwritten);
227 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
228
229 while (!list_empty(&unwritten)) {
230 io = list_entry(unwritten.next, ext4_io_end_t, list);
231 BUG_ON(!(io->flag & EXT4_IO_END_UNWRITTEN));
232 list_del_init(&io->list);
233
234 err = ext4_end_io(io);
235 if (unlikely(!ret && err))
236 ret = err;
237 }
238 return ret;
239}
240
241/*
242 * work on completed IO, to convert unwritten extents to extents
243 */
244void ext4_end_io_rsv_work(struct work_struct *work)
245{
246 struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
247 i_rsv_conversion_work);
248 ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list);
249}
250
251ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
252{
253 ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags);
254 if (io) {
255 atomic_inc(&EXT4_I(inode)->i_ioend_count);
256 io->inode = inode;
257 INIT_LIST_HEAD(&io->list);
258 atomic_set(&io->count, 1);
259 }
260 return io;
261}
262
263void ext4_put_io_end_defer(ext4_io_end_t *io_end)
264{
265 if (atomic_dec_and_test(&io_end->count)) {
266 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) || !io_end->size) {
267 ext4_release_io_end(io_end);
268 return;
269 }
270 ext4_add_complete_io(io_end);
271 }
272}
273
274int ext4_put_io_end(ext4_io_end_t *io_end)
275{
276 int err = 0;
277
278 if (atomic_dec_and_test(&io_end->count)) {
279 if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
280 err = ext4_convert_unwritten_extents(io_end->handle,
281 io_end->inode, io_end->offset,
282 io_end->size);
283 io_end->handle = NULL;
284 ext4_clear_io_unwritten_flag(io_end);
285 }
286 ext4_release_io_end(io_end);
287 }
288 return err;
289}
290
291ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end)
292{
293 atomic_inc(&io_end->count);
294 return io_end;
295}
296
297/* BIO completion function for page writeback */
298static void ext4_end_bio(struct bio *bio, int error)
299{
300 ext4_io_end_t *io_end = bio->bi_private;
301 sector_t bi_sector = bio->bi_iter.bi_sector;
302
303 BUG_ON(!io_end);
304 bio->bi_end_io = NULL;
305 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
306 error = 0;
307
308 if (error) {
309 struct inode *inode = io_end->inode;
310
311 ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu "
312 "(offset %llu size %ld starting block %llu)",
313 error, inode->i_ino,
314 (unsigned long long) io_end->offset,
315 (long) io_end->size,
316 (unsigned long long)
317 bi_sector >> (inode->i_blkbits - 9));
318 mapping_set_error(inode->i_mapping, error);
319 }
320
321 if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
322 /*
323 * Link bio into list hanging from io_end. We have to do it
324 * atomically as bio completions can be racing against each
325 * other.
326 */
327 bio->bi_private = xchg(&io_end->bio, bio);
328 ext4_put_io_end_defer(io_end);
329 } else {
330 /*
331 * Drop io_end reference early. Inode can get freed once
332 * we finish the bio.
333 */
334 ext4_put_io_end_defer(io_end);
335 ext4_finish_bio(bio);
336 bio_put(bio);
337 }
338}
339
340void ext4_io_submit(struct ext4_io_submit *io)
341{
342 struct bio *bio = io->io_bio;
343
344 if (bio) {
345 bio_get(io->io_bio);
346 submit_bio(io->io_op, io->io_bio);
347 BUG_ON(bio_flagged(io->io_bio, BIO_EOPNOTSUPP));
348 bio_put(io->io_bio);
349 }
350 io->io_bio = NULL;
351}
352
353void ext4_io_submit_init(struct ext4_io_submit *io,
354 struct writeback_control *wbc)
355{
356 io->io_op = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE);
357 io->io_bio = NULL;
358 io->io_end = NULL;
359}
360
361static int io_submit_init_bio(struct ext4_io_submit *io,
362 struct buffer_head *bh)
363{
364 int nvecs = bio_get_nr_vecs(bh->b_bdev);
365 struct bio *bio;
366
367 bio = bio_alloc(GFP_NOIO, min(nvecs, BIO_MAX_PAGES));
368 if (!bio)
369 return -ENOMEM;
370 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
371 bio->bi_bdev = bh->b_bdev;
372 bio->bi_end_io = ext4_end_bio;
373 bio->bi_private = ext4_get_io_end(io->io_end);
374 io->io_bio = bio;
375 io->io_next_block = bh->b_blocknr;
376 return 0;
377}
378
379static int io_submit_add_bh(struct ext4_io_submit *io,
380 struct inode *inode,
381 struct buffer_head *bh)
382{
383 int ret;
384
385 if (io->io_bio && bh->b_blocknr != io->io_next_block) {
386submit_and_retry:
387 ext4_io_submit(io);
388 }
389 if (io->io_bio == NULL) {
390 ret = io_submit_init_bio(io, bh);
391 if (ret)
392 return ret;
393 }
394 ret = bio_add_page(io->io_bio, bh->b_page, bh->b_size, bh_offset(bh));
395 if (ret != bh->b_size)
396 goto submit_and_retry;
397 io->io_next_block++;
398 return 0;
399}
400
401int ext4_bio_write_page(struct ext4_io_submit *io,
402 struct page *page,
403 int len,
404 struct writeback_control *wbc)
405{
406 struct inode *inode = page->mapping->host;
407 unsigned block_start, blocksize;
408 struct buffer_head *bh, *head;
409 int ret = 0;
410 int nr_submitted = 0;
411
412 blocksize = 1 << inode->i_blkbits;
413
414 BUG_ON(!PageLocked(page));
415 BUG_ON(PageWriteback(page));
416
417 set_page_writeback(page);
418 ClearPageError(page);
419
420 /*
421 * In the first loop we prepare and mark buffers to submit. We have to
422 * mark all buffers in the page before submitting so that
423 * end_page_writeback() cannot be called from ext4_bio_end_io() when IO
424 * on the first buffer finishes and we are still working on submitting
425 * the second buffer.
426 */
427 bh = head = page_buffers(page);
428 do {
429 block_start = bh_offset(bh);
430 if (block_start >= len) {
431 /*
432 * Comments copied from block_write_full_page_endio:
433 *
434 * The page straddles i_size. It must be zeroed out on
435 * each and every writepage invocation because it may
436 * be mmapped. "A file is mapped in multiples of the
437 * page size. For a file that is not a multiple of
438 * the page size, the remaining memory is zeroed when
439 * mapped, and writes to that region are not written
440 * out to the file."
441 */
442 zero_user_segment(page, block_start,
443 block_start + blocksize);
444 clear_buffer_dirty(bh);
445 set_buffer_uptodate(bh);
446 continue;
447 }
448 if (!buffer_dirty(bh) || buffer_delay(bh) ||
449 !buffer_mapped(bh) || buffer_unwritten(bh)) {
450 /* A hole? We can safely clear the dirty bit */
451 if (!buffer_mapped(bh))
452 clear_buffer_dirty(bh);
453 if (io->io_bio)
454 ext4_io_submit(io);
455 continue;
456 }
457 if (buffer_new(bh)) {
458 clear_buffer_new(bh);
459 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
460 }
461 set_buffer_async_write(bh);
462 } while ((bh = bh->b_this_page) != head);
463
464 /* Now submit buffers to write */
465 bh = head = page_buffers(page);
466 do {
467 if (!buffer_async_write(bh))
468 continue;
469 ret = io_submit_add_bh(io, inode, bh);
470 if (ret) {
471 /*
472 * We only get here on ENOMEM. Not much else
473 * we can do but mark the page as dirty, and
474 * better luck next time.
475 */
476 redirty_page_for_writepage(wbc, page);
477 break;
478 }
479 nr_submitted++;
480 clear_buffer_dirty(bh);
481 } while ((bh = bh->b_this_page) != head);
482
483 /* Error stopped previous loop? Clean up buffers... */
484 if (ret) {
485 do {
486 clear_buffer_async_write(bh);
487 bh = bh->b_this_page;
488 } while (bh != head);
489 }
490 unlock_page(page);
491 /* Nothing submitted - we have to end page writeback */
492 if (!nr_submitted)
493 end_page_writeback(page);
494 return ret;
495}