Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * Copyright (C) 2013 NVIDIA Corporation
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License version 2 as
   6 * published by the Free Software Foundation.
   7 */
   8
   9#include <linux/clk.h>
  10#include <linux/clk-provider.h>
  11#include <linux/debugfs.h>
  12#include <linux/gpio.h>
  13#include <linux/io.h>
  14#include <linux/of_device.h>
 
  15#include <linux/platform_device.h>
  16#include <linux/pm_runtime.h>
  17#include <linux/regulator/consumer.h>
  18#include <linux/reset.h>
  19
  20#include <soc/tegra/pmc.h>
  21
 
 
  22#include <drm/drm_atomic_helper.h>
  23#include <drm/drm_dp_helper.h>
 
 
 
  24#include <drm/drm_panel.h>
  25#include <drm/drm_scdc_helper.h>
  26
  27#include "dc.h"
 
  28#include "drm.h"
 
  29#include "sor.h"
  30#include "trace.h"
  31
  32/*
  33 * XXX Remove this after the commit adding it to soc/tegra/pmc.h has been
  34 * merged. Having this around after the commit is merged should be safe since
  35 * the preprocessor will effectively replace all occurrences and therefore no
  36 * duplicate will be defined.
  37 */
  38#define TEGRA_IO_PAD_HDMI_DP0 26
  39
  40#define SOR_REKEY 0x38
  41
  42struct tegra_sor_hdmi_settings {
  43	unsigned long frequency;
  44
  45	u8 vcocap;
  46	u8 filter;
  47	u8 ichpmp;
  48	u8 loadadj;
  49	u8 tmds_termadj;
  50	u8 tx_pu_value;
  51	u8 bg_temp_coef;
  52	u8 bg_vref_level;
  53	u8 avdd10_level;
  54	u8 avdd14_level;
  55	u8 sparepll;
  56
  57	u8 drive_current[4];
  58	u8 preemphasis[4];
  59};
  60
  61#if 1
  62static const struct tegra_sor_hdmi_settings tegra210_sor_hdmi_defaults[] = {
  63	{
  64		.frequency = 54000000,
  65		.vcocap = 0x0,
  66		.filter = 0x0,
  67		.ichpmp = 0x1,
  68		.loadadj = 0x3,
  69		.tmds_termadj = 0x9,
  70		.tx_pu_value = 0x10,
  71		.bg_temp_coef = 0x3,
  72		.bg_vref_level = 0x8,
  73		.avdd10_level = 0x4,
  74		.avdd14_level = 0x4,
  75		.sparepll = 0x0,
  76		.drive_current = { 0x33, 0x3a, 0x3a, 0x3a },
  77		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
  78	}, {
  79		.frequency = 75000000,
  80		.vcocap = 0x3,
  81		.filter = 0x0,
  82		.ichpmp = 0x1,
  83		.loadadj = 0x3,
  84		.tmds_termadj = 0x9,
  85		.tx_pu_value = 0x40,
  86		.bg_temp_coef = 0x3,
  87		.bg_vref_level = 0x8,
  88		.avdd10_level = 0x4,
  89		.avdd14_level = 0x4,
  90		.sparepll = 0x0,
  91		.drive_current = { 0x33, 0x3a, 0x3a, 0x3a },
  92		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
  93	}, {
  94		.frequency = 150000000,
  95		.vcocap = 0x3,
  96		.filter = 0x0,
  97		.ichpmp = 0x1,
  98		.loadadj = 0x3,
  99		.tmds_termadj = 0x9,
 100		.tx_pu_value = 0x66,
 101		.bg_temp_coef = 0x3,
 102		.bg_vref_level = 0x8,
 103		.avdd10_level = 0x4,
 104		.avdd14_level = 0x4,
 105		.sparepll = 0x0,
 106		.drive_current = { 0x33, 0x3a, 0x3a, 0x3a },
 107		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 108	}, {
 109		.frequency = 300000000,
 110		.vcocap = 0x3,
 111		.filter = 0x0,
 112		.ichpmp = 0x1,
 113		.loadadj = 0x3,
 114		.tmds_termadj = 0x9,
 115		.tx_pu_value = 0x66,
 116		.bg_temp_coef = 0x3,
 117		.bg_vref_level = 0xa,
 118		.avdd10_level = 0x4,
 119		.avdd14_level = 0x4,
 120		.sparepll = 0x0,
 121		.drive_current = { 0x33, 0x3f, 0x3f, 0x3f },
 122		.preemphasis = { 0x00, 0x17, 0x17, 0x17 },
 123	}, {
 124		.frequency = 600000000,
 125		.vcocap = 0x3,
 126		.filter = 0x0,
 127		.ichpmp = 0x1,
 128		.loadadj = 0x3,
 129		.tmds_termadj = 0x9,
 130		.tx_pu_value = 0x66,
 131		.bg_temp_coef = 0x3,
 132		.bg_vref_level = 0x8,
 133		.avdd10_level = 0x4,
 134		.avdd14_level = 0x4,
 135		.sparepll = 0x0,
 136		.drive_current = { 0x33, 0x3f, 0x3f, 0x3f },
 137		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 138	},
 139};
 140#else
 141static const struct tegra_sor_hdmi_settings tegra210_sor_hdmi_defaults[] = {
 142	{
 143		.frequency = 75000000,
 144		.vcocap = 0x3,
 145		.filter = 0x0,
 146		.ichpmp = 0x1,
 147		.loadadj = 0x3,
 148		.tmds_termadj = 0x9,
 149		.tx_pu_value = 0x40,
 150		.bg_temp_coef = 0x3,
 151		.bg_vref_level = 0x8,
 152		.avdd10_level = 0x4,
 153		.avdd14_level = 0x4,
 154		.sparepll = 0x0,
 155		.drive_current = { 0x29, 0x29, 0x29, 0x29 },
 156		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 157	}, {
 158		.frequency = 150000000,
 159		.vcocap = 0x3,
 160		.filter = 0x0,
 161		.ichpmp = 0x1,
 162		.loadadj = 0x3,
 163		.tmds_termadj = 0x9,
 164		.tx_pu_value = 0x66,
 165		.bg_temp_coef = 0x3,
 166		.bg_vref_level = 0x8,
 167		.avdd10_level = 0x4,
 168		.avdd14_level = 0x4,
 169		.sparepll = 0x0,
 170		.drive_current = { 0x30, 0x37, 0x37, 0x37 },
 171		.preemphasis = { 0x01, 0x02, 0x02, 0x02 },
 172	}, {
 173		.frequency = 300000000,
 174		.vcocap = 0x3,
 175		.filter = 0x0,
 176		.ichpmp = 0x6,
 177		.loadadj = 0x3,
 178		.tmds_termadj = 0x9,
 179		.tx_pu_value = 0x66,
 180		.bg_temp_coef = 0x3,
 181		.bg_vref_level = 0xf,
 182		.avdd10_level = 0x4,
 183		.avdd14_level = 0x4,
 184		.sparepll = 0x0,
 185		.drive_current = { 0x30, 0x37, 0x37, 0x37 },
 186		.preemphasis = { 0x10, 0x3e, 0x3e, 0x3e },
 187	}, {
 188		.frequency = 600000000,
 189		.vcocap = 0x3,
 190		.filter = 0x0,
 191		.ichpmp = 0xa,
 192		.loadadj = 0x3,
 193		.tmds_termadj = 0xb,
 194		.tx_pu_value = 0x66,
 195		.bg_temp_coef = 0x3,
 196		.bg_vref_level = 0xe,
 197		.avdd10_level = 0x4,
 198		.avdd14_level = 0x4,
 199		.sparepll = 0x0,
 200		.drive_current = { 0x35, 0x3e, 0x3e, 0x3e },
 201		.preemphasis = { 0x02, 0x3f, 0x3f, 0x3f },
 202	},
 203};
 204#endif
 205
 206static const struct tegra_sor_hdmi_settings tegra186_sor_hdmi_defaults[] = {
 207	{
 208		.frequency = 54000000,
 209		.vcocap = 0,
 210		.filter = 5,
 211		.ichpmp = 5,
 212		.loadadj = 3,
 213		.tmds_termadj = 0xf,
 214		.tx_pu_value = 0,
 215		.bg_temp_coef = 3,
 216		.bg_vref_level = 8,
 217		.avdd10_level = 4,
 218		.avdd14_level = 4,
 219		.sparepll = 0x54,
 220		.drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
 221		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 222	}, {
 223		.frequency = 75000000,
 224		.vcocap = 1,
 225		.filter = 5,
 226		.ichpmp = 5,
 227		.loadadj = 3,
 228		.tmds_termadj = 0xf,
 229		.tx_pu_value = 0,
 230		.bg_temp_coef = 3,
 231		.bg_vref_level = 8,
 232		.avdd10_level = 4,
 233		.avdd14_level = 4,
 234		.sparepll = 0x44,
 235		.drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
 236		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 237	}, {
 238		.frequency = 150000000,
 239		.vcocap = 3,
 240		.filter = 5,
 241		.ichpmp = 5,
 242		.loadadj = 3,
 243		.tmds_termadj = 15,
 244		.tx_pu_value = 0x66 /* 0 */,
 245		.bg_temp_coef = 3,
 246		.bg_vref_level = 8,
 247		.avdd10_level = 4,
 248		.avdd14_level = 4,
 249		.sparepll = 0x00, /* 0x34 */
 250		.drive_current = { 0x3a, 0x3a, 0x3a, 0x37 },
 251		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 252	}, {
 253		.frequency = 300000000,
 254		.vcocap = 3,
 255		.filter = 5,
 256		.ichpmp = 5,
 257		.loadadj = 3,
 258		.tmds_termadj = 15,
 259		.tx_pu_value = 64,
 260		.bg_temp_coef = 3,
 261		.bg_vref_level = 8,
 262		.avdd10_level = 4,
 263		.avdd14_level = 4,
 264		.sparepll = 0x34,
 265		.drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
 266		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 267	}, {
 268		.frequency = 600000000,
 269		.vcocap = 3,
 270		.filter = 5,
 271		.ichpmp = 5,
 272		.loadadj = 3,
 273		.tmds_termadj = 12,
 274		.tx_pu_value = 96,
 275		.bg_temp_coef = 3,
 276		.bg_vref_level = 8,
 277		.avdd10_level = 4,
 278		.avdd14_level = 4,
 279		.sparepll = 0x34,
 280		.drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
 281		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 282	}
 283};
 284
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 285struct tegra_sor_regs {
 286	unsigned int head_state0;
 287	unsigned int head_state1;
 288	unsigned int head_state2;
 289	unsigned int head_state3;
 290	unsigned int head_state4;
 291	unsigned int head_state5;
 292	unsigned int pll0;
 293	unsigned int pll1;
 294	unsigned int pll2;
 295	unsigned int pll3;
 296	unsigned int dp_padctl0;
 297	unsigned int dp_padctl2;
 298};
 299
 300struct tegra_sor_soc {
 301	bool supports_edp;
 302	bool supports_lvds;
 303	bool supports_hdmi;
 304	bool supports_dp;
 
 
 305
 306	const struct tegra_sor_regs *regs;
 307	bool has_nvdisplay;
 308
 309	const struct tegra_sor_hdmi_settings *settings;
 310	unsigned int num_settings;
 311
 312	const u8 *xbar_cfg;
 
 
 
 
 
 
 313};
 314
 315struct tegra_sor;
 316
 317struct tegra_sor_ops {
 318	const char *name;
 319	int (*probe)(struct tegra_sor *sor);
 320	int (*remove)(struct tegra_sor *sor);
 
 321};
 322
 323struct tegra_sor {
 324	struct host1x_client client;
 325	struct tegra_output output;
 326	struct device *dev;
 327
 328	const struct tegra_sor_soc *soc;
 329	void __iomem *regs;
 330	unsigned int index;
 
 331
 332	struct reset_control *rst;
 333	struct clk *clk_parent;
 334	struct clk *clk_safe;
 335	struct clk *clk_out;
 336	struct clk *clk_pad;
 337	struct clk *clk_dp;
 338	struct clk *clk;
 339
 
 
 
 340	struct drm_dp_aux *aux;
 341
 342	struct drm_info_list *debugfs_files;
 343
 344	const struct tegra_sor_ops *ops;
 345	enum tegra_io_pad pad;
 346
 347	/* for HDMI 2.0 */
 348	struct tegra_sor_hdmi_settings *settings;
 349	unsigned int num_settings;
 350
 351	struct regulator *avdd_io_supply;
 352	struct regulator *vdd_pll_supply;
 353	struct regulator *hdmi_supply;
 354
 355	struct delayed_work scdc;
 356	bool scdc_enabled;
 
 
 357};
 358
 359struct tegra_sor_state {
 360	struct drm_connector_state base;
 361
 362	unsigned int link_speed;
 363	unsigned long pclk;
 364	unsigned int bpc;
 365};
 366
 367static inline struct tegra_sor_state *
 368to_sor_state(struct drm_connector_state *state)
 369{
 370	return container_of(state, struct tegra_sor_state, base);
 371}
 372
 373struct tegra_sor_config {
 374	u32 bits_per_pixel;
 375
 376	u32 active_polarity;
 377	u32 active_count;
 378	u32 tu_size;
 379	u32 active_frac;
 380	u32 watermark;
 381
 382	u32 hblank_symbols;
 383	u32 vblank_symbols;
 384};
 385
 386static inline struct tegra_sor *
 387host1x_client_to_sor(struct host1x_client *client)
 388{
 389	return container_of(client, struct tegra_sor, client);
 390}
 391
 392static inline struct tegra_sor *to_sor(struct tegra_output *output)
 393{
 394	return container_of(output, struct tegra_sor, output);
 395}
 396
 397static inline u32 tegra_sor_readl(struct tegra_sor *sor, unsigned int offset)
 398{
 399	u32 value = readl(sor->regs + (offset << 2));
 400
 401	trace_sor_readl(sor->dev, offset, value);
 402
 403	return value;
 404}
 405
 406static inline void tegra_sor_writel(struct tegra_sor *sor, u32 value,
 407				    unsigned int offset)
 408{
 409	trace_sor_writel(sor->dev, offset, value);
 410	writel(value, sor->regs + (offset << 2));
 411}
 412
 413static int tegra_sor_set_parent_clock(struct tegra_sor *sor, struct clk *parent)
 414{
 415	int err;
 416
 417	clk_disable_unprepare(sor->clk);
 418
 419	err = clk_set_parent(sor->clk_out, parent);
 420	if (err < 0)
 421		return err;
 422
 423	err = clk_prepare_enable(sor->clk);
 424	if (err < 0)
 425		return err;
 426
 427	return 0;
 428}
 429
 430struct tegra_clk_sor_pad {
 431	struct clk_hw hw;
 432	struct tegra_sor *sor;
 433};
 434
 435static inline struct tegra_clk_sor_pad *to_pad(struct clk_hw *hw)
 436{
 437	return container_of(hw, struct tegra_clk_sor_pad, hw);
 438}
 439
 440static const char * const tegra_clk_sor_pad_parents[] = {
 441	"pll_d2_out0", "pll_dp"
 
 442};
 443
 
 
 
 
 
 
 
 
 444static int tegra_clk_sor_pad_set_parent(struct clk_hw *hw, u8 index)
 445{
 446	struct tegra_clk_sor_pad *pad = to_pad(hw);
 447	struct tegra_sor *sor = pad->sor;
 448	u32 value;
 449
 450	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
 451	value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
 452
 453	switch (index) {
 454	case 0:
 455		value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK;
 456		break;
 457
 458	case 1:
 459		value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK;
 460		break;
 461	}
 462
 463	tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
 464
 465	return 0;
 466}
 467
 468static u8 tegra_clk_sor_pad_get_parent(struct clk_hw *hw)
 469{
 470	struct tegra_clk_sor_pad *pad = to_pad(hw);
 471	struct tegra_sor *sor = pad->sor;
 472	u8 parent = U8_MAX;
 473	u32 value;
 474
 475	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
 476
 477	switch (value & SOR_CLK_CNTRL_DP_CLK_SEL_MASK) {
 478	case SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK:
 479	case SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_PCLK:
 480		parent = 0;
 481		break;
 482
 483	case SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK:
 484	case SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_DPCLK:
 485		parent = 1;
 486		break;
 487	}
 488
 489	return parent;
 490}
 491
 492static const struct clk_ops tegra_clk_sor_pad_ops = {
 
 493	.set_parent = tegra_clk_sor_pad_set_parent,
 494	.get_parent = tegra_clk_sor_pad_get_parent,
 495};
 496
 497static struct clk *tegra_clk_sor_pad_register(struct tegra_sor *sor,
 498					      const char *name)
 499{
 500	struct tegra_clk_sor_pad *pad;
 501	struct clk_init_data init;
 502	struct clk *clk;
 503
 504	pad = devm_kzalloc(sor->dev, sizeof(*pad), GFP_KERNEL);
 505	if (!pad)
 506		return ERR_PTR(-ENOMEM);
 507
 508	pad->sor = sor;
 509
 510	init.name = name;
 511	init.flags = 0;
 512	init.parent_names = tegra_clk_sor_pad_parents;
 513	init.num_parents = ARRAY_SIZE(tegra_clk_sor_pad_parents);
 514	init.ops = &tegra_clk_sor_pad_ops;
 515
 516	pad->hw.init = &init;
 517
 518	clk = devm_clk_register(sor->dev, &pad->hw);
 519
 520	return clk;
 521}
 522
 523static int tegra_sor_dp_train_fast(struct tegra_sor *sor,
 524				   struct drm_dp_link *link)
 525{
 
 526	unsigned int i;
 527	u8 pattern;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 528	u32 value;
 529	int err;
 530
 531	/* setup lane parameters */
 532	value = SOR_LANE_DRIVE_CURRENT_LANE3(0x40) |
 533		SOR_LANE_DRIVE_CURRENT_LANE2(0x40) |
 534		SOR_LANE_DRIVE_CURRENT_LANE1(0x40) |
 535		SOR_LANE_DRIVE_CURRENT_LANE0(0x40);
 536	tegra_sor_writel(sor, value, SOR_LANE_DRIVE_CURRENT0);
 537
 538	value = SOR_LANE_PREEMPHASIS_LANE3(0x0f) |
 539		SOR_LANE_PREEMPHASIS_LANE2(0x0f) |
 540		SOR_LANE_PREEMPHASIS_LANE1(0x0f) |
 541		SOR_LANE_PREEMPHASIS_LANE0(0x0f);
 542	tegra_sor_writel(sor, value, SOR_LANE_PREEMPHASIS0);
 
 543
 544	value = SOR_LANE_POSTCURSOR_LANE3(0x00) |
 545		SOR_LANE_POSTCURSOR_LANE2(0x00) |
 546		SOR_LANE_POSTCURSOR_LANE1(0x00) |
 547		SOR_LANE_POSTCURSOR_LANE0(0x00);
 548	tegra_sor_writel(sor, value, SOR_LANE_POSTCURSOR0);
 549
 550	/* disable LVDS mode */
 551	tegra_sor_writel(sor, 0, SOR_LVDS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 552
 
 
 
 
 
 
 
 
 
 553	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
 554	value |= SOR_DP_PADCTL_TX_PU_ENABLE;
 555	value &= ~SOR_DP_PADCTL_TX_PU_MASK;
 556	value |= SOR_DP_PADCTL_TX_PU(2); /* XXX: don't hardcode? */
 557	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
 558
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 559	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
 560	value |= SOR_DP_PADCTL_CM_TXD_3 | SOR_DP_PADCTL_CM_TXD_2 |
 561		 SOR_DP_PADCTL_CM_TXD_1 | SOR_DP_PADCTL_CM_TXD_0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 562	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
 563
 564	usleep_range(10, 100);
 565
 566	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
 567	value &= ~(SOR_DP_PADCTL_CM_TXD_3 | SOR_DP_PADCTL_CM_TXD_2 |
 568		   SOR_DP_PADCTL_CM_TXD_1 | SOR_DP_PADCTL_CM_TXD_0);
 569	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
 
 570
 571	err = drm_dp_aux_prepare(sor->aux, DP_SET_ANSI_8B10B);
 572	if (err < 0)
 573		return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 574
 575	for (i = 0, value = 0; i < link->num_lanes; i++) {
 576		unsigned long lane = SOR_DP_TPG_CHANNEL_CODING |
 577				     SOR_DP_TPG_SCRAMBLER_NONE |
 578				     SOR_DP_TPG_PATTERN_TRAIN1;
 579		value = (value << 8) | lane;
 580	}
 581
 582	tegra_sor_writel(sor, value, SOR_DP_TPG);
 
 
 
 583
 584	pattern = DP_TRAINING_PATTERN_1;
 
 
 
 
 585
 586	err = drm_dp_aux_train(sor->aux, link, pattern);
 587	if (err < 0)
 588		return err;
 
 
 
 
 589
 590	value = tegra_sor_readl(sor, SOR_DP_SPARE0);
 591	value |= SOR_DP_SPARE_SEQ_ENABLE;
 592	value &= ~SOR_DP_SPARE_PANEL_INTERNAL;
 593	value |= SOR_DP_SPARE_MACRO_SOR_CLK;
 594	tegra_sor_writel(sor, value, SOR_DP_SPARE0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 595
 596	for (i = 0, value = 0; i < link->num_lanes; i++) {
 597		unsigned long lane = SOR_DP_TPG_CHANNEL_CODING |
 598				     SOR_DP_TPG_SCRAMBLER_NONE |
 599				     SOR_DP_TPG_PATTERN_TRAIN2;
 600		value = (value << 8) | lane;
 
 
 
 
 
 
 
 
 601	}
 602
 603	tegra_sor_writel(sor, value, SOR_DP_TPG);
 
 604
 605	pattern = DP_LINK_SCRAMBLING_DISABLE | DP_TRAINING_PATTERN_2;
 
 606
 607	err = drm_dp_aux_train(sor->aux, link, pattern);
 608	if (err < 0)
 609		return err;
 610
 611	for (i = 0, value = 0; i < link->num_lanes; i++) {
 612		unsigned long lane = SOR_DP_TPG_CHANNEL_CODING |
 613				     SOR_DP_TPG_SCRAMBLER_GALIOS |
 614				     SOR_DP_TPG_PATTERN_NONE;
 615		value = (value << 8) | lane;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 616	}
 617
 618	tegra_sor_writel(sor, value, SOR_DP_TPG);
 619
 620	pattern = DP_TRAINING_PATTERN_DISABLE;
 
 621
 622	err = drm_dp_aux_train(sor->aux, link, pattern);
 623	if (err < 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 624		return err;
 
 
 
 625
 626	return 0;
 627}
 628
 
 
 
 
 
 629static void tegra_sor_super_update(struct tegra_sor *sor)
 630{
 631	tegra_sor_writel(sor, 0, SOR_SUPER_STATE0);
 632	tegra_sor_writel(sor, 1, SOR_SUPER_STATE0);
 633	tegra_sor_writel(sor, 0, SOR_SUPER_STATE0);
 634}
 635
 636static void tegra_sor_update(struct tegra_sor *sor)
 637{
 638	tegra_sor_writel(sor, 0, SOR_STATE0);
 639	tegra_sor_writel(sor, 1, SOR_STATE0);
 640	tegra_sor_writel(sor, 0, SOR_STATE0);
 641}
 642
 643static int tegra_sor_setup_pwm(struct tegra_sor *sor, unsigned long timeout)
 644{
 645	u32 value;
 646
 647	value = tegra_sor_readl(sor, SOR_PWM_DIV);
 648	value &= ~SOR_PWM_DIV_MASK;
 649	value |= 0x400; /* period */
 650	tegra_sor_writel(sor, value, SOR_PWM_DIV);
 651
 652	value = tegra_sor_readl(sor, SOR_PWM_CTL);
 653	value &= ~SOR_PWM_CTL_DUTY_CYCLE_MASK;
 654	value |= 0x400; /* duty cycle */
 655	value &= ~SOR_PWM_CTL_CLK_SEL; /* clock source: PCLK */
 656	value |= SOR_PWM_CTL_TRIGGER;
 657	tegra_sor_writel(sor, value, SOR_PWM_CTL);
 658
 659	timeout = jiffies + msecs_to_jiffies(timeout);
 660
 661	while (time_before(jiffies, timeout)) {
 662		value = tegra_sor_readl(sor, SOR_PWM_CTL);
 663		if ((value & SOR_PWM_CTL_TRIGGER) == 0)
 664			return 0;
 665
 666		usleep_range(25, 100);
 667	}
 668
 669	return -ETIMEDOUT;
 670}
 671
 672static int tegra_sor_attach(struct tegra_sor *sor)
 673{
 674	unsigned long value, timeout;
 675
 676	/* wake up in normal mode */
 677	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
 678	value |= SOR_SUPER_STATE_HEAD_MODE_AWAKE;
 679	value |= SOR_SUPER_STATE_MODE_NORMAL;
 680	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
 681	tegra_sor_super_update(sor);
 682
 683	/* attach */
 684	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
 685	value |= SOR_SUPER_STATE_ATTACHED;
 686	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
 687	tegra_sor_super_update(sor);
 688
 689	timeout = jiffies + msecs_to_jiffies(250);
 690
 691	while (time_before(jiffies, timeout)) {
 692		value = tegra_sor_readl(sor, SOR_TEST);
 693		if ((value & SOR_TEST_ATTACHED) != 0)
 694			return 0;
 695
 696		usleep_range(25, 100);
 697	}
 698
 699	return -ETIMEDOUT;
 700}
 701
 702static int tegra_sor_wakeup(struct tegra_sor *sor)
 703{
 704	unsigned long value, timeout;
 705
 706	timeout = jiffies + msecs_to_jiffies(250);
 707
 708	/* wait for head to wake up */
 709	while (time_before(jiffies, timeout)) {
 710		value = tegra_sor_readl(sor, SOR_TEST);
 711		value &= SOR_TEST_HEAD_MODE_MASK;
 712
 713		if (value == SOR_TEST_HEAD_MODE_AWAKE)
 714			return 0;
 715
 716		usleep_range(25, 100);
 717	}
 718
 719	return -ETIMEDOUT;
 720}
 721
 722static int tegra_sor_power_up(struct tegra_sor *sor, unsigned long timeout)
 723{
 724	u32 value;
 725
 726	value = tegra_sor_readl(sor, SOR_PWR);
 727	value |= SOR_PWR_TRIGGER | SOR_PWR_NORMAL_STATE_PU;
 728	tegra_sor_writel(sor, value, SOR_PWR);
 729
 730	timeout = jiffies + msecs_to_jiffies(timeout);
 731
 732	while (time_before(jiffies, timeout)) {
 733		value = tegra_sor_readl(sor, SOR_PWR);
 734		if ((value & SOR_PWR_TRIGGER) == 0)
 735			return 0;
 736
 737		usleep_range(25, 100);
 738	}
 739
 740	return -ETIMEDOUT;
 741}
 742
 743struct tegra_sor_params {
 744	/* number of link clocks per line */
 745	unsigned int num_clocks;
 746	/* ratio between input and output */
 747	u64 ratio;
 748	/* precision factor */
 749	u64 precision;
 750
 751	unsigned int active_polarity;
 752	unsigned int active_count;
 753	unsigned int active_frac;
 754	unsigned int tu_size;
 755	unsigned int error;
 756};
 757
 758static int tegra_sor_compute_params(struct tegra_sor *sor,
 759				    struct tegra_sor_params *params,
 760				    unsigned int tu_size)
 761{
 762	u64 active_sym, active_count, frac, approx;
 763	u32 active_polarity, active_frac = 0;
 764	const u64 f = params->precision;
 765	s64 error;
 766
 767	active_sym = params->ratio * tu_size;
 768	active_count = div_u64(active_sym, f) * f;
 769	frac = active_sym - active_count;
 770
 771	/* fraction < 0.5 */
 772	if (frac >= (f / 2)) {
 773		active_polarity = 1;
 774		frac = f - frac;
 775	} else {
 776		active_polarity = 0;
 777	}
 778
 779	if (frac != 0) {
 780		frac = div_u64(f * f,  frac); /* 1/fraction */
 781		if (frac <= (15 * f)) {
 782			active_frac = div_u64(frac, f);
 783
 784			/* round up */
 785			if (active_polarity)
 786				active_frac++;
 787		} else {
 788			active_frac = active_polarity ? 1 : 15;
 789		}
 790	}
 791
 792	if (active_frac == 1)
 793		active_polarity = 0;
 794
 795	if (active_polarity == 1) {
 796		if (active_frac) {
 797			approx = active_count + (active_frac * (f - 1)) * f;
 798			approx = div_u64(approx, active_frac * f);
 799		} else {
 800			approx = active_count + f;
 801		}
 802	} else {
 803		if (active_frac)
 804			approx = active_count + div_u64(f, active_frac);
 805		else
 806			approx = active_count;
 807	}
 808
 809	error = div_s64(active_sym - approx, tu_size);
 810	error *= params->num_clocks;
 811
 812	if (error <= 0 && abs(error) < params->error) {
 813		params->active_count = div_u64(active_count, f);
 814		params->active_polarity = active_polarity;
 815		params->active_frac = active_frac;
 816		params->error = abs(error);
 817		params->tu_size = tu_size;
 818
 819		if (error == 0)
 820			return true;
 821	}
 822
 823	return false;
 824}
 825
 826static int tegra_sor_compute_config(struct tegra_sor *sor,
 827				    const struct drm_display_mode *mode,
 828				    struct tegra_sor_config *config,
 829				    struct drm_dp_link *link)
 830{
 831	const u64 f = 100000, link_rate = link->rate * 1000;
 832	const u64 pclk = mode->clock * 1000;
 833	u64 input, output, watermark, num;
 834	struct tegra_sor_params params;
 835	u32 num_syms_per_line;
 836	unsigned int i;
 837
 838	if (!link_rate || !link->num_lanes || !pclk || !config->bits_per_pixel)
 839		return -EINVAL;
 840
 841	output = link_rate * 8 * link->num_lanes;
 842	input = pclk * config->bits_per_pixel;
 
 843
 844	if (input >= output)
 845		return -ERANGE;
 846
 847	memset(&params, 0, sizeof(params));
 848	params.ratio = div64_u64(input * f, output);
 849	params.num_clocks = div_u64(link_rate * mode->hdisplay, pclk);
 850	params.precision = f;
 851	params.error = 64 * f;
 852	params.tu_size = 64;
 853
 854	for (i = params.tu_size; i >= 32; i--)
 855		if (tegra_sor_compute_params(sor, &params, i))
 856			break;
 857
 858	if (params.active_frac == 0) {
 859		config->active_polarity = 0;
 860		config->active_count = params.active_count;
 861
 862		if (!params.active_polarity)
 863			config->active_count--;
 864
 865		config->tu_size = params.tu_size;
 866		config->active_frac = 1;
 867	} else {
 868		config->active_polarity = params.active_polarity;
 869		config->active_count = params.active_count;
 870		config->active_frac = params.active_frac;
 871		config->tu_size = params.tu_size;
 872	}
 873
 874	dev_dbg(sor->dev,
 875		"polarity: %d active count: %d tu size: %d active frac: %d\n",
 876		config->active_polarity, config->active_count,
 877		config->tu_size, config->active_frac);
 878
 879	watermark = params.ratio * config->tu_size * (f - params.ratio);
 880	watermark = div_u64(watermark, f);
 881
 882	watermark = div_u64(watermark + params.error, f);
 883	config->watermark = watermark + (config->bits_per_pixel / 8) + 2;
 884	num_syms_per_line = (mode->hdisplay * config->bits_per_pixel) *
 885			    (link->num_lanes * 8);
 886
 887	if (config->watermark > 30) {
 888		config->watermark = 30;
 889		dev_err(sor->dev,
 890			"unable to compute TU size, forcing watermark to %u\n",
 891			config->watermark);
 892	} else if (config->watermark > num_syms_per_line) {
 893		config->watermark = num_syms_per_line;
 894		dev_err(sor->dev, "watermark too high, forcing to %u\n",
 895			config->watermark);
 896	}
 897
 898	/* compute the number of symbols per horizontal blanking interval */
 899	num = ((mode->htotal - mode->hdisplay) - 7) * link_rate;
 900	config->hblank_symbols = div_u64(num, pclk);
 901
 902	if (link->capabilities & DP_LINK_CAP_ENHANCED_FRAMING)
 903		config->hblank_symbols -= 3;
 904
 905	config->hblank_symbols -= 12 / link->num_lanes;
 906
 907	/* compute the number of symbols per vertical blanking interval */
 908	num = (mode->hdisplay - 25) * link_rate;
 909	config->vblank_symbols = div_u64(num, pclk);
 910	config->vblank_symbols -= 36 / link->num_lanes + 4;
 911
 912	dev_dbg(sor->dev, "blank symbols: H:%u V:%u\n", config->hblank_symbols,
 913		config->vblank_symbols);
 914
 915	return 0;
 916}
 917
 918static void tegra_sor_apply_config(struct tegra_sor *sor,
 919				   const struct tegra_sor_config *config)
 920{
 921	u32 value;
 922
 923	value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
 924	value &= ~SOR_DP_LINKCTL_TU_SIZE_MASK;
 925	value |= SOR_DP_LINKCTL_TU_SIZE(config->tu_size);
 926	tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
 927
 928	value = tegra_sor_readl(sor, SOR_DP_CONFIG0);
 929	value &= ~SOR_DP_CONFIG_WATERMARK_MASK;
 930	value |= SOR_DP_CONFIG_WATERMARK(config->watermark);
 931
 932	value &= ~SOR_DP_CONFIG_ACTIVE_SYM_COUNT_MASK;
 933	value |= SOR_DP_CONFIG_ACTIVE_SYM_COUNT(config->active_count);
 934
 935	value &= ~SOR_DP_CONFIG_ACTIVE_SYM_FRAC_MASK;
 936	value |= SOR_DP_CONFIG_ACTIVE_SYM_FRAC(config->active_frac);
 937
 938	if (config->active_polarity)
 939		value |= SOR_DP_CONFIG_ACTIVE_SYM_POLARITY;
 940	else
 941		value &= ~SOR_DP_CONFIG_ACTIVE_SYM_POLARITY;
 942
 943	value |= SOR_DP_CONFIG_ACTIVE_SYM_ENABLE;
 944	value |= SOR_DP_CONFIG_DISPARITY_NEGATIVE;
 945	tegra_sor_writel(sor, value, SOR_DP_CONFIG0);
 946
 947	value = tegra_sor_readl(sor, SOR_DP_AUDIO_HBLANK_SYMBOLS);
 948	value &= ~SOR_DP_AUDIO_HBLANK_SYMBOLS_MASK;
 949	value |= config->hblank_symbols & 0xffff;
 950	tegra_sor_writel(sor, value, SOR_DP_AUDIO_HBLANK_SYMBOLS);
 951
 952	value = tegra_sor_readl(sor, SOR_DP_AUDIO_VBLANK_SYMBOLS);
 953	value &= ~SOR_DP_AUDIO_VBLANK_SYMBOLS_MASK;
 954	value |= config->vblank_symbols & 0xffff;
 955	tegra_sor_writel(sor, value, SOR_DP_AUDIO_VBLANK_SYMBOLS);
 956}
 957
 958static void tegra_sor_mode_set(struct tegra_sor *sor,
 959			       const struct drm_display_mode *mode,
 960			       struct tegra_sor_state *state)
 961{
 962	struct tegra_dc *dc = to_tegra_dc(sor->output.encoder.crtc);
 963	unsigned int vbe, vse, hbe, hse, vbs, hbs;
 964	u32 value;
 965
 966	value = tegra_sor_readl(sor, SOR_STATE1);
 967	value &= ~SOR_STATE_ASY_PIXELDEPTH_MASK;
 968	value &= ~SOR_STATE_ASY_CRC_MODE_MASK;
 969	value &= ~SOR_STATE_ASY_OWNER_MASK;
 970
 971	value |= SOR_STATE_ASY_CRC_MODE_COMPLETE |
 972		 SOR_STATE_ASY_OWNER(dc->pipe + 1);
 973
 974	if (mode->flags & DRM_MODE_FLAG_PHSYNC)
 975		value &= ~SOR_STATE_ASY_HSYNCPOL;
 976
 977	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
 978		value |= SOR_STATE_ASY_HSYNCPOL;
 979
 980	if (mode->flags & DRM_MODE_FLAG_PVSYNC)
 981		value &= ~SOR_STATE_ASY_VSYNCPOL;
 982
 983	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
 984		value |= SOR_STATE_ASY_VSYNCPOL;
 985
 986	switch (state->bpc) {
 987	case 16:
 988		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_48_444;
 989		break;
 990
 991	case 12:
 992		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_36_444;
 993		break;
 994
 995	case 10:
 996		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_30_444;
 997		break;
 998
 999	case 8:
1000		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_24_444;
1001		break;
1002
1003	case 6:
1004		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_18_444;
1005		break;
1006
1007	default:
1008		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_24_444;
1009		break;
1010	}
1011
1012	tegra_sor_writel(sor, value, SOR_STATE1);
1013
1014	/*
1015	 * TODO: The video timing programming below doesn't seem to match the
1016	 * register definitions.
1017	 */
1018
1019	value = ((mode->vtotal & 0x7fff) << 16) | (mode->htotal & 0x7fff);
1020	tegra_sor_writel(sor, value, sor->soc->regs->head_state1 + dc->pipe);
1021
1022	/* sync end = sync width - 1 */
1023	vse = mode->vsync_end - mode->vsync_start - 1;
1024	hse = mode->hsync_end - mode->hsync_start - 1;
1025
1026	value = ((vse & 0x7fff) << 16) | (hse & 0x7fff);
1027	tegra_sor_writel(sor, value, sor->soc->regs->head_state2 + dc->pipe);
1028
1029	/* blank end = sync end + back porch */
1030	vbe = vse + (mode->vtotal - mode->vsync_end);
1031	hbe = hse + (mode->htotal - mode->hsync_end);
1032
1033	value = ((vbe & 0x7fff) << 16) | (hbe & 0x7fff);
1034	tegra_sor_writel(sor, value, sor->soc->regs->head_state3 + dc->pipe);
1035
1036	/* blank start = blank end + active */
1037	vbs = vbe + mode->vdisplay;
1038	hbs = hbe + mode->hdisplay;
1039
1040	value = ((vbs & 0x7fff) << 16) | (hbs & 0x7fff);
1041	tegra_sor_writel(sor, value, sor->soc->regs->head_state4 + dc->pipe);
1042
1043	/* XXX interlacing support */
1044	tegra_sor_writel(sor, 0x001, sor->soc->regs->head_state5 + dc->pipe);
1045}
1046
1047static int tegra_sor_detach(struct tegra_sor *sor)
1048{
1049	unsigned long value, timeout;
1050
1051	/* switch to safe mode */
1052	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1053	value &= ~SOR_SUPER_STATE_MODE_NORMAL;
1054	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1055	tegra_sor_super_update(sor);
1056
1057	timeout = jiffies + msecs_to_jiffies(250);
1058
1059	while (time_before(jiffies, timeout)) {
1060		value = tegra_sor_readl(sor, SOR_PWR);
1061		if (value & SOR_PWR_MODE_SAFE)
1062			break;
1063	}
1064
1065	if ((value & SOR_PWR_MODE_SAFE) == 0)
1066		return -ETIMEDOUT;
1067
1068	/* go to sleep */
1069	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1070	value &= ~SOR_SUPER_STATE_HEAD_MODE_MASK;
1071	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1072	tegra_sor_super_update(sor);
1073
1074	/* detach */
1075	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1076	value &= ~SOR_SUPER_STATE_ATTACHED;
1077	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1078	tegra_sor_super_update(sor);
1079
1080	timeout = jiffies + msecs_to_jiffies(250);
1081
1082	while (time_before(jiffies, timeout)) {
1083		value = tegra_sor_readl(sor, SOR_TEST);
1084		if ((value & SOR_TEST_ATTACHED) == 0)
1085			break;
1086
1087		usleep_range(25, 100);
1088	}
1089
1090	if ((value & SOR_TEST_ATTACHED) != 0)
1091		return -ETIMEDOUT;
1092
1093	return 0;
1094}
1095
1096static int tegra_sor_power_down(struct tegra_sor *sor)
1097{
1098	unsigned long value, timeout;
1099	int err;
1100
1101	value = tegra_sor_readl(sor, SOR_PWR);
1102	value &= ~SOR_PWR_NORMAL_STATE_PU;
1103	value |= SOR_PWR_TRIGGER;
1104	tegra_sor_writel(sor, value, SOR_PWR);
1105
1106	timeout = jiffies + msecs_to_jiffies(250);
1107
1108	while (time_before(jiffies, timeout)) {
1109		value = tegra_sor_readl(sor, SOR_PWR);
1110		if ((value & SOR_PWR_TRIGGER) == 0)
1111			return 0;
1112
1113		usleep_range(25, 100);
1114	}
1115
1116	if ((value & SOR_PWR_TRIGGER) != 0)
1117		return -ETIMEDOUT;
1118
1119	/* switch to safe parent clock */
1120	err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
1121	if (err < 0) {
1122		dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
1123		return err;
1124	}
1125
1126	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
1127	value &= ~(SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_0 |
1128		   SOR_DP_PADCTL_PD_TXD_1 | SOR_DP_PADCTL_PD_TXD_2);
1129	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
1130
1131	/* stop lane sequencer */
1132	value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_UP |
1133		SOR_LANE_SEQ_CTL_POWER_STATE_DOWN;
1134	tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
1135
1136	timeout = jiffies + msecs_to_jiffies(250);
1137
1138	while (time_before(jiffies, timeout)) {
1139		value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
1140		if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
1141			break;
1142
1143		usleep_range(25, 100);
1144	}
1145
1146	if ((value & SOR_LANE_SEQ_CTL_TRIGGER) != 0)
1147		return -ETIMEDOUT;
1148
1149	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
1150	value |= SOR_PLL2_PORT_POWERDOWN;
1151	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
1152
1153	usleep_range(20, 100);
1154
1155	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
1156	value |= SOR_PLL0_VCOPD | SOR_PLL0_PWR;
1157	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
1158
1159	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
1160	value |= SOR_PLL2_SEQ_PLLCAPPD;
1161	value |= SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
1162	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
1163
1164	usleep_range(20, 100);
1165
1166	return 0;
1167}
1168
1169static int tegra_sor_crc_wait(struct tegra_sor *sor, unsigned long timeout)
1170{
1171	u32 value;
1172
1173	timeout = jiffies + msecs_to_jiffies(timeout);
1174
1175	while (time_before(jiffies, timeout)) {
1176		value = tegra_sor_readl(sor, SOR_CRCA);
1177		if (value & SOR_CRCA_VALID)
1178			return 0;
1179
1180		usleep_range(100, 200);
1181	}
1182
1183	return -ETIMEDOUT;
1184}
1185
1186static int tegra_sor_show_crc(struct seq_file *s, void *data)
1187{
1188	struct drm_info_node *node = s->private;
1189	struct tegra_sor *sor = node->info_ent->data;
1190	struct drm_crtc *crtc = sor->output.encoder.crtc;
1191	struct drm_device *drm = node->minor->dev;
1192	int err = 0;
1193	u32 value;
1194
1195	drm_modeset_lock_all(drm);
1196
1197	if (!crtc || !crtc->state->active) {
1198		err = -EBUSY;
1199		goto unlock;
1200	}
1201
1202	value = tegra_sor_readl(sor, SOR_STATE1);
1203	value &= ~SOR_STATE_ASY_CRC_MODE_MASK;
1204	tegra_sor_writel(sor, value, SOR_STATE1);
1205
1206	value = tegra_sor_readl(sor, SOR_CRC_CNTRL);
1207	value |= SOR_CRC_CNTRL_ENABLE;
1208	tegra_sor_writel(sor, value, SOR_CRC_CNTRL);
1209
1210	value = tegra_sor_readl(sor, SOR_TEST);
1211	value &= ~SOR_TEST_CRC_POST_SERIALIZE;
1212	tegra_sor_writel(sor, value, SOR_TEST);
1213
1214	err = tegra_sor_crc_wait(sor, 100);
1215	if (err < 0)
1216		goto unlock;
1217
1218	tegra_sor_writel(sor, SOR_CRCA_RESET, SOR_CRCA);
1219	value = tegra_sor_readl(sor, SOR_CRCB);
1220
1221	seq_printf(s, "%08x\n", value);
1222
1223unlock:
1224	drm_modeset_unlock_all(drm);
1225	return err;
1226}
1227
1228#define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1229
1230static const struct debugfs_reg32 tegra_sor_regs[] = {
1231	DEBUGFS_REG32(SOR_CTXSW),
1232	DEBUGFS_REG32(SOR_SUPER_STATE0),
1233	DEBUGFS_REG32(SOR_SUPER_STATE1),
1234	DEBUGFS_REG32(SOR_STATE0),
1235	DEBUGFS_REG32(SOR_STATE1),
1236	DEBUGFS_REG32(SOR_HEAD_STATE0(0)),
1237	DEBUGFS_REG32(SOR_HEAD_STATE0(1)),
1238	DEBUGFS_REG32(SOR_HEAD_STATE1(0)),
1239	DEBUGFS_REG32(SOR_HEAD_STATE1(1)),
1240	DEBUGFS_REG32(SOR_HEAD_STATE2(0)),
1241	DEBUGFS_REG32(SOR_HEAD_STATE2(1)),
1242	DEBUGFS_REG32(SOR_HEAD_STATE3(0)),
1243	DEBUGFS_REG32(SOR_HEAD_STATE3(1)),
1244	DEBUGFS_REG32(SOR_HEAD_STATE4(0)),
1245	DEBUGFS_REG32(SOR_HEAD_STATE4(1)),
1246	DEBUGFS_REG32(SOR_HEAD_STATE5(0)),
1247	DEBUGFS_REG32(SOR_HEAD_STATE5(1)),
1248	DEBUGFS_REG32(SOR_CRC_CNTRL),
1249	DEBUGFS_REG32(SOR_DP_DEBUG_MVID),
1250	DEBUGFS_REG32(SOR_CLK_CNTRL),
1251	DEBUGFS_REG32(SOR_CAP),
1252	DEBUGFS_REG32(SOR_PWR),
1253	DEBUGFS_REG32(SOR_TEST),
1254	DEBUGFS_REG32(SOR_PLL0),
1255	DEBUGFS_REG32(SOR_PLL1),
1256	DEBUGFS_REG32(SOR_PLL2),
1257	DEBUGFS_REG32(SOR_PLL3),
1258	DEBUGFS_REG32(SOR_CSTM),
1259	DEBUGFS_REG32(SOR_LVDS),
1260	DEBUGFS_REG32(SOR_CRCA),
1261	DEBUGFS_REG32(SOR_CRCB),
1262	DEBUGFS_REG32(SOR_BLANK),
1263	DEBUGFS_REG32(SOR_SEQ_CTL),
1264	DEBUGFS_REG32(SOR_LANE_SEQ_CTL),
1265	DEBUGFS_REG32(SOR_SEQ_INST(0)),
1266	DEBUGFS_REG32(SOR_SEQ_INST(1)),
1267	DEBUGFS_REG32(SOR_SEQ_INST(2)),
1268	DEBUGFS_REG32(SOR_SEQ_INST(3)),
1269	DEBUGFS_REG32(SOR_SEQ_INST(4)),
1270	DEBUGFS_REG32(SOR_SEQ_INST(5)),
1271	DEBUGFS_REG32(SOR_SEQ_INST(6)),
1272	DEBUGFS_REG32(SOR_SEQ_INST(7)),
1273	DEBUGFS_REG32(SOR_SEQ_INST(8)),
1274	DEBUGFS_REG32(SOR_SEQ_INST(9)),
1275	DEBUGFS_REG32(SOR_SEQ_INST(10)),
1276	DEBUGFS_REG32(SOR_SEQ_INST(11)),
1277	DEBUGFS_REG32(SOR_SEQ_INST(12)),
1278	DEBUGFS_REG32(SOR_SEQ_INST(13)),
1279	DEBUGFS_REG32(SOR_SEQ_INST(14)),
1280	DEBUGFS_REG32(SOR_SEQ_INST(15)),
1281	DEBUGFS_REG32(SOR_PWM_DIV),
1282	DEBUGFS_REG32(SOR_PWM_CTL),
1283	DEBUGFS_REG32(SOR_VCRC_A0),
1284	DEBUGFS_REG32(SOR_VCRC_A1),
1285	DEBUGFS_REG32(SOR_VCRC_B0),
1286	DEBUGFS_REG32(SOR_VCRC_B1),
1287	DEBUGFS_REG32(SOR_CCRC_A0),
1288	DEBUGFS_REG32(SOR_CCRC_A1),
1289	DEBUGFS_REG32(SOR_CCRC_B0),
1290	DEBUGFS_REG32(SOR_CCRC_B1),
1291	DEBUGFS_REG32(SOR_EDATA_A0),
1292	DEBUGFS_REG32(SOR_EDATA_A1),
1293	DEBUGFS_REG32(SOR_EDATA_B0),
1294	DEBUGFS_REG32(SOR_EDATA_B1),
1295	DEBUGFS_REG32(SOR_COUNT_A0),
1296	DEBUGFS_REG32(SOR_COUNT_A1),
1297	DEBUGFS_REG32(SOR_COUNT_B0),
1298	DEBUGFS_REG32(SOR_COUNT_B1),
1299	DEBUGFS_REG32(SOR_DEBUG_A0),
1300	DEBUGFS_REG32(SOR_DEBUG_A1),
1301	DEBUGFS_REG32(SOR_DEBUG_B0),
1302	DEBUGFS_REG32(SOR_DEBUG_B1),
1303	DEBUGFS_REG32(SOR_TRIG),
1304	DEBUGFS_REG32(SOR_MSCHECK),
1305	DEBUGFS_REG32(SOR_XBAR_CTRL),
1306	DEBUGFS_REG32(SOR_XBAR_POL),
1307	DEBUGFS_REG32(SOR_DP_LINKCTL0),
1308	DEBUGFS_REG32(SOR_DP_LINKCTL1),
1309	DEBUGFS_REG32(SOR_LANE_DRIVE_CURRENT0),
1310	DEBUGFS_REG32(SOR_LANE_DRIVE_CURRENT1),
1311	DEBUGFS_REG32(SOR_LANE4_DRIVE_CURRENT0),
1312	DEBUGFS_REG32(SOR_LANE4_DRIVE_CURRENT1),
1313	DEBUGFS_REG32(SOR_LANE_PREEMPHASIS0),
1314	DEBUGFS_REG32(SOR_LANE_PREEMPHASIS1),
1315	DEBUGFS_REG32(SOR_LANE4_PREEMPHASIS0),
1316	DEBUGFS_REG32(SOR_LANE4_PREEMPHASIS1),
1317	DEBUGFS_REG32(SOR_LANE_POSTCURSOR0),
1318	DEBUGFS_REG32(SOR_LANE_POSTCURSOR1),
1319	DEBUGFS_REG32(SOR_DP_CONFIG0),
1320	DEBUGFS_REG32(SOR_DP_CONFIG1),
1321	DEBUGFS_REG32(SOR_DP_MN0),
1322	DEBUGFS_REG32(SOR_DP_MN1),
1323	DEBUGFS_REG32(SOR_DP_PADCTL0),
1324	DEBUGFS_REG32(SOR_DP_PADCTL1),
1325	DEBUGFS_REG32(SOR_DP_PADCTL2),
1326	DEBUGFS_REG32(SOR_DP_DEBUG0),
1327	DEBUGFS_REG32(SOR_DP_DEBUG1),
1328	DEBUGFS_REG32(SOR_DP_SPARE0),
1329	DEBUGFS_REG32(SOR_DP_SPARE1),
1330	DEBUGFS_REG32(SOR_DP_AUDIO_CTRL),
1331	DEBUGFS_REG32(SOR_DP_AUDIO_HBLANK_SYMBOLS),
1332	DEBUGFS_REG32(SOR_DP_AUDIO_VBLANK_SYMBOLS),
1333	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_HEADER),
1334	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK0),
1335	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK1),
1336	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK2),
1337	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK3),
1338	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK4),
1339	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK5),
1340	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK6),
1341	DEBUGFS_REG32(SOR_DP_TPG),
1342	DEBUGFS_REG32(SOR_DP_TPG_CONFIG),
1343	DEBUGFS_REG32(SOR_DP_LQ_CSTM0),
1344	DEBUGFS_REG32(SOR_DP_LQ_CSTM1),
1345	DEBUGFS_REG32(SOR_DP_LQ_CSTM2),
1346};
1347
1348static int tegra_sor_show_regs(struct seq_file *s, void *data)
1349{
1350	struct drm_info_node *node = s->private;
1351	struct tegra_sor *sor = node->info_ent->data;
1352	struct drm_crtc *crtc = sor->output.encoder.crtc;
1353	struct drm_device *drm = node->minor->dev;
1354	unsigned int i;
1355	int err = 0;
1356
1357	drm_modeset_lock_all(drm);
1358
1359	if (!crtc || !crtc->state->active) {
1360		err = -EBUSY;
1361		goto unlock;
1362	}
1363
1364	for (i = 0; i < ARRAY_SIZE(tegra_sor_regs); i++) {
1365		unsigned int offset = tegra_sor_regs[i].offset;
1366
1367		seq_printf(s, "%-38s %#05x %08x\n", tegra_sor_regs[i].name,
1368			   offset, tegra_sor_readl(sor, offset));
1369	}
1370
1371unlock:
1372	drm_modeset_unlock_all(drm);
1373	return err;
1374}
1375
1376static const struct drm_info_list debugfs_files[] = {
1377	{ "crc", tegra_sor_show_crc, 0, NULL },
1378	{ "regs", tegra_sor_show_regs, 0, NULL },
1379};
1380
1381static int tegra_sor_late_register(struct drm_connector *connector)
1382{
1383	struct tegra_output *output = connector_to_output(connector);
1384	unsigned int i, count = ARRAY_SIZE(debugfs_files);
1385	struct drm_minor *minor = connector->dev->primary;
1386	struct dentry *root = connector->debugfs_entry;
1387	struct tegra_sor *sor = to_sor(output);
1388	int err;
1389
1390	sor->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1391				     GFP_KERNEL);
1392	if (!sor->debugfs_files)
1393		return -ENOMEM;
1394
1395	for (i = 0; i < count; i++)
1396		sor->debugfs_files[i].data = sor;
1397
1398	err = drm_debugfs_create_files(sor->debugfs_files, count, root, minor);
1399	if (err < 0)
1400		goto free;
1401
1402	return 0;
1403
1404free:
1405	kfree(sor->debugfs_files);
1406	sor->debugfs_files = NULL;
1407
1408	return err;
1409}
1410
1411static void tegra_sor_early_unregister(struct drm_connector *connector)
1412{
1413	struct tegra_output *output = connector_to_output(connector);
1414	unsigned int count = ARRAY_SIZE(debugfs_files);
1415	struct tegra_sor *sor = to_sor(output);
1416
1417	drm_debugfs_remove_files(sor->debugfs_files, count,
 
1418				 connector->dev->primary);
1419	kfree(sor->debugfs_files);
1420	sor->debugfs_files = NULL;
1421}
1422
1423static void tegra_sor_connector_reset(struct drm_connector *connector)
1424{
1425	struct tegra_sor_state *state;
1426
1427	state = kzalloc(sizeof(*state), GFP_KERNEL);
1428	if (!state)
1429		return;
1430
1431	if (connector->state) {
1432		__drm_atomic_helper_connector_destroy_state(connector->state);
1433		kfree(connector->state);
1434	}
1435
1436	__drm_atomic_helper_connector_reset(connector, &state->base);
1437}
1438
1439static enum drm_connector_status
1440tegra_sor_connector_detect(struct drm_connector *connector, bool force)
1441{
1442	struct tegra_output *output = connector_to_output(connector);
1443	struct tegra_sor *sor = to_sor(output);
1444
1445	if (sor->aux)
1446		return drm_dp_aux_detect(sor->aux);
1447
1448	return tegra_output_connector_detect(connector, force);
1449}
1450
1451static struct drm_connector_state *
1452tegra_sor_connector_duplicate_state(struct drm_connector *connector)
1453{
1454	struct tegra_sor_state *state = to_sor_state(connector->state);
1455	struct tegra_sor_state *copy;
1456
1457	copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
1458	if (!copy)
1459		return NULL;
1460
1461	__drm_atomic_helper_connector_duplicate_state(connector, &copy->base);
1462
1463	return &copy->base;
1464}
1465
1466static const struct drm_connector_funcs tegra_sor_connector_funcs = {
1467	.reset = tegra_sor_connector_reset,
1468	.detect = tegra_sor_connector_detect,
1469	.fill_modes = drm_helper_probe_single_connector_modes,
1470	.destroy = tegra_output_connector_destroy,
1471	.atomic_duplicate_state = tegra_sor_connector_duplicate_state,
1472	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
1473	.late_register = tegra_sor_late_register,
1474	.early_unregister = tegra_sor_early_unregister,
1475};
1476
1477static int tegra_sor_connector_get_modes(struct drm_connector *connector)
1478{
1479	struct tegra_output *output = connector_to_output(connector);
1480	struct tegra_sor *sor = to_sor(output);
1481	int err;
1482
1483	if (sor->aux)
1484		drm_dp_aux_enable(sor->aux);
1485
1486	err = tegra_output_connector_get_modes(connector);
1487
1488	if (sor->aux)
1489		drm_dp_aux_disable(sor->aux);
1490
1491	return err;
1492}
1493
1494static enum drm_mode_status
1495tegra_sor_connector_mode_valid(struct drm_connector *connector,
1496			       struct drm_display_mode *mode)
1497{
1498	return MODE_OK;
1499}
1500
1501static const struct drm_connector_helper_funcs tegra_sor_connector_helper_funcs = {
1502	.get_modes = tegra_sor_connector_get_modes,
1503	.mode_valid = tegra_sor_connector_mode_valid,
1504};
1505
1506static const struct drm_encoder_funcs tegra_sor_encoder_funcs = {
1507	.destroy = tegra_output_encoder_destroy,
1508};
1509
1510static void tegra_sor_edp_disable(struct drm_encoder *encoder)
1511{
1512	struct tegra_output *output = encoder_to_output(encoder);
1513	struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
1514	struct tegra_sor *sor = to_sor(output);
1515	u32 value;
1516	int err;
1517
1518	if (output->panel)
1519		drm_panel_disable(output->panel);
1520
1521	err = tegra_sor_detach(sor);
1522	if (err < 0)
1523		dev_err(sor->dev, "failed to detach SOR: %d\n", err);
1524
1525	tegra_sor_writel(sor, 0, SOR_STATE1);
1526	tegra_sor_update(sor);
1527
1528	/*
1529	 * The following accesses registers of the display controller, so make
1530	 * sure it's only executed when the output is attached to one.
1531	 */
1532	if (dc) {
1533		value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
1534		value &= ~SOR_ENABLE(0);
1535		tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
1536
1537		tegra_dc_commit(dc);
1538	}
1539
1540	err = tegra_sor_power_down(sor);
1541	if (err < 0)
1542		dev_err(sor->dev, "failed to power down SOR: %d\n", err);
1543
1544	if (sor->aux) {
1545		err = drm_dp_aux_disable(sor->aux);
1546		if (err < 0)
1547			dev_err(sor->dev, "failed to disable DP: %d\n", err);
1548	}
1549
1550	err = tegra_io_pad_power_disable(sor->pad);
1551	if (err < 0)
1552		dev_err(sor->dev, "failed to power off I/O pad: %d\n", err);
1553
1554	if (output->panel)
1555		drm_panel_unprepare(output->panel);
1556
1557	pm_runtime_put(sor->dev);
1558}
1559
1560#if 0
1561static int calc_h_ref_to_sync(const struct drm_display_mode *mode,
1562			      unsigned int *value)
1563{
1564	unsigned int hfp, hsw, hbp, a = 0, b;
1565
1566	hfp = mode->hsync_start - mode->hdisplay;
1567	hsw = mode->hsync_end - mode->hsync_start;
1568	hbp = mode->htotal - mode->hsync_end;
1569
1570	pr_info("hfp: %u, hsw: %u, hbp: %u\n", hfp, hsw, hbp);
1571
1572	b = hfp - 1;
1573
1574	pr_info("a: %u, b: %u\n", a, b);
1575	pr_info("a + hsw + hbp = %u\n", a + hsw + hbp);
1576
1577	if (a + hsw + hbp <= 11) {
1578		a = 1 + 11 - hsw - hbp;
1579		pr_info("a: %u\n", a);
1580	}
1581
1582	if (a > b)
1583		return -EINVAL;
1584
1585	if (hsw < 1)
1586		return -EINVAL;
1587
1588	if (mode->hdisplay < 16)
1589		return -EINVAL;
1590
1591	if (value) {
1592		if (b > a && a % 2)
1593			*value = a + 1;
1594		else
1595			*value = a;
1596	}
1597
1598	return 0;
1599}
1600#endif
1601
1602static void tegra_sor_edp_enable(struct drm_encoder *encoder)
1603{
1604	struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
1605	struct tegra_output *output = encoder_to_output(encoder);
1606	struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
1607	struct tegra_sor *sor = to_sor(output);
1608	struct tegra_sor_config config;
1609	struct tegra_sor_state *state;
1610	struct drm_dp_link link;
1611	u8 rate, lanes;
1612	unsigned int i;
1613	int err = 0;
1614	u32 value;
1615
1616	state = to_sor_state(output->connector.state);
1617
1618	pm_runtime_get_sync(sor->dev);
1619
1620	if (output->panel)
1621		drm_panel_prepare(output->panel);
1622
1623	err = drm_dp_aux_enable(sor->aux);
1624	if (err < 0)
1625		dev_err(sor->dev, "failed to enable DP: %d\n", err);
1626
1627	err = drm_dp_link_probe(sor->aux, &link);
1628	if (err < 0) {
1629		dev_err(sor->dev, "failed to probe eDP link: %d\n", err);
1630		return;
1631	}
1632
1633	/* switch to safe parent clock */
1634	err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
1635	if (err < 0)
1636		dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
1637
1638	memset(&config, 0, sizeof(config));
1639	config.bits_per_pixel = state->bpc * 3;
1640
1641	err = tegra_sor_compute_config(sor, mode, &config, &link);
1642	if (err < 0)
1643		dev_err(sor->dev, "failed to compute configuration: %d\n", err);
1644
1645	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
1646	value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
1647	value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK;
1648	tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
1649
1650	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
1651	value &= ~SOR_PLL2_BANDGAP_POWERDOWN;
1652	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
1653	usleep_range(20, 100);
1654
1655	value = tegra_sor_readl(sor, sor->soc->regs->pll3);
1656	value |= SOR_PLL3_PLL_VDD_MODE_3V3;
1657	tegra_sor_writel(sor, value, sor->soc->regs->pll3);
1658
1659	value = SOR_PLL0_ICHPMP(0xf) | SOR_PLL0_VCOCAP_RST |
1660		SOR_PLL0_PLLREG_LEVEL_V45 | SOR_PLL0_RESISTOR_EXT;
1661	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
1662
1663	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
1664	value |= SOR_PLL2_SEQ_PLLCAPPD;
1665	value &= ~SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
1666	value |= SOR_PLL2_LVDS_ENABLE;
1667	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
1668
1669	value = SOR_PLL1_TERM_COMPOUT | SOR_PLL1_TMDS_TERM;
1670	tegra_sor_writel(sor, value, sor->soc->regs->pll1);
1671
1672	while (true) {
1673		value = tegra_sor_readl(sor, sor->soc->regs->pll2);
1674		if ((value & SOR_PLL2_SEQ_PLLCAPPD_ENFORCE) == 0)
1675			break;
1676
1677		usleep_range(250, 1000);
1678	}
1679
1680	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
1681	value &= ~SOR_PLL2_POWERDOWN_OVERRIDE;
1682	value &= ~SOR_PLL2_PORT_POWERDOWN;
1683	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
1684
1685	/*
1686	 * power up
1687	 */
1688
1689	/* set safe link bandwidth (1.62 Gbps) */
1690	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
1691	value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK;
1692	value |= SOR_CLK_CNTRL_DP_LINK_SPEED_G1_62;
1693	tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
1694
1695	/* step 1 */
1696	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
1697	value |= SOR_PLL2_SEQ_PLLCAPPD_ENFORCE | SOR_PLL2_PORT_POWERDOWN |
1698		 SOR_PLL2_BANDGAP_POWERDOWN;
1699	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
1700
1701	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
1702	value |= SOR_PLL0_VCOPD | SOR_PLL0_PWR;
1703	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
1704
1705	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
1706	value &= ~SOR_DP_PADCTL_PAD_CAL_PD;
1707	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
1708
1709	/* step 2 */
1710	err = tegra_io_pad_power_enable(sor->pad);
1711	if (err < 0)
1712		dev_err(sor->dev, "failed to power on I/O pad: %d\n", err);
1713
1714	usleep_range(5, 100);
1715
1716	/* step 3 */
1717	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
1718	value &= ~SOR_PLL2_BANDGAP_POWERDOWN;
1719	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
1720
1721	usleep_range(20, 100);
1722
1723	/* step 4 */
1724	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
1725	value &= ~SOR_PLL0_VCOPD;
1726	value &= ~SOR_PLL0_PWR;
1727	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
1728
1729	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
1730	value &= ~SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
1731	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
1732
1733	usleep_range(200, 1000);
1734
1735	/* step 5 */
1736	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
1737	value &= ~SOR_PLL2_PORT_POWERDOWN;
1738	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
1739
1740	/* XXX not in TRM */
1741	for (value = 0, i = 0; i < 5; i++)
1742		value |= SOR_XBAR_CTRL_LINK0_XSEL(i, sor->soc->xbar_cfg[i]) |
1743			 SOR_XBAR_CTRL_LINK1_XSEL(i, i);
1744
1745	tegra_sor_writel(sor, 0x00000000, SOR_XBAR_POL);
1746	tegra_sor_writel(sor, value, SOR_XBAR_CTRL);
1747
1748	/* switch to DP parent clock */
1749	err = tegra_sor_set_parent_clock(sor, sor->clk_dp);
1750	if (err < 0)
1751		dev_err(sor->dev, "failed to set parent clock: %d\n", err);
1752
1753	/* power DP lanes */
1754	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
1755
1756	if (link.num_lanes <= 2)
1757		value &= ~(SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_2);
1758	else
1759		value |= SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_2;
1760
1761	if (link.num_lanes <= 1)
1762		value &= ~SOR_DP_PADCTL_PD_TXD_1;
1763	else
1764		value |= SOR_DP_PADCTL_PD_TXD_1;
1765
1766	if (link.num_lanes == 0)
1767		value &= ~SOR_DP_PADCTL_PD_TXD_0;
1768	else
1769		value |= SOR_DP_PADCTL_PD_TXD_0;
1770
1771	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
1772
1773	value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
1774	value &= ~SOR_DP_LINKCTL_LANE_COUNT_MASK;
1775	value |= SOR_DP_LINKCTL_LANE_COUNT(link.num_lanes);
1776	tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
1777
1778	/* start lane sequencer */
1779	value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_DOWN |
1780		SOR_LANE_SEQ_CTL_POWER_STATE_UP;
1781	tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
1782
1783	while (true) {
1784		value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
1785		if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
1786			break;
1787
1788		usleep_range(250, 1000);
1789	}
1790
1791	/* set link bandwidth */
1792	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
1793	value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK;
1794	value |= drm_dp_link_rate_to_bw_code(link.rate) << 2;
1795	tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
1796
1797	tegra_sor_apply_config(sor, &config);
1798
1799	/* enable link */
1800	value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
1801	value |= SOR_DP_LINKCTL_ENABLE;
1802	value |= SOR_DP_LINKCTL_ENHANCED_FRAME;
1803	tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
1804
1805	for (i = 0, value = 0; i < 4; i++) {
1806		unsigned long lane = SOR_DP_TPG_CHANNEL_CODING |
1807				     SOR_DP_TPG_SCRAMBLER_GALIOS |
1808				     SOR_DP_TPG_PATTERN_NONE;
1809		value = (value << 8) | lane;
1810	}
1811
1812	tegra_sor_writel(sor, value, SOR_DP_TPG);
1813
1814	/* enable pad calibration logic */
1815	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
1816	value |= SOR_DP_PADCTL_PAD_CAL_PD;
1817	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
1818
1819	err = drm_dp_link_probe(sor->aux, &link);
1820	if (err < 0)
1821		dev_err(sor->dev, "failed to probe eDP link: %d\n", err);
1822
1823	err = drm_dp_link_power_up(sor->aux, &link);
1824	if (err < 0)
1825		dev_err(sor->dev, "failed to power up eDP link: %d\n", err);
1826
1827	err = drm_dp_link_configure(sor->aux, &link);
1828	if (err < 0)
1829		dev_err(sor->dev, "failed to configure eDP link: %d\n", err);
1830
1831	rate = drm_dp_link_rate_to_bw_code(link.rate);
1832	lanes = link.num_lanes;
1833
1834	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
1835	value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK;
1836	value |= SOR_CLK_CNTRL_DP_LINK_SPEED(rate);
1837	tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
1838
1839	value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
1840	value &= ~SOR_DP_LINKCTL_LANE_COUNT_MASK;
1841	value |= SOR_DP_LINKCTL_LANE_COUNT(lanes);
1842
1843	if (link.capabilities & DP_LINK_CAP_ENHANCED_FRAMING)
1844		value |= SOR_DP_LINKCTL_ENHANCED_FRAME;
1845
1846	tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
1847
1848	/* disable training pattern generator */
1849
1850	for (i = 0; i < link.num_lanes; i++) {
1851		unsigned long lane = SOR_DP_TPG_CHANNEL_CODING |
1852				     SOR_DP_TPG_SCRAMBLER_GALIOS |
1853				     SOR_DP_TPG_PATTERN_NONE;
1854		value = (value << 8) | lane;
1855	}
1856
1857	tegra_sor_writel(sor, value, SOR_DP_TPG);
1858
1859	err = tegra_sor_dp_train_fast(sor, &link);
1860	if (err < 0)
1861		dev_err(sor->dev, "DP fast link training failed: %d\n", err);
1862
1863	dev_dbg(sor->dev, "fast link training succeeded\n");
1864
1865	err = tegra_sor_power_up(sor, 250);
1866	if (err < 0)
1867		dev_err(sor->dev, "failed to power up SOR: %d\n", err);
1868
1869	/* CSTM (LVDS, link A/B, upper) */
1870	value = SOR_CSTM_LVDS | SOR_CSTM_LINK_ACT_A | SOR_CSTM_LINK_ACT_B |
1871		SOR_CSTM_UPPER;
1872	tegra_sor_writel(sor, value, SOR_CSTM);
1873
1874	/* use DP-A protocol */
1875	value = tegra_sor_readl(sor, SOR_STATE1);
1876	value &= ~SOR_STATE_ASY_PROTOCOL_MASK;
1877	value |= SOR_STATE_ASY_PROTOCOL_DP_A;
1878	tegra_sor_writel(sor, value, SOR_STATE1);
1879
1880	tegra_sor_mode_set(sor, mode, state);
1881
1882	/* PWM setup */
1883	err = tegra_sor_setup_pwm(sor, 250);
1884	if (err < 0)
1885		dev_err(sor->dev, "failed to setup PWM: %d\n", err);
1886
1887	tegra_sor_update(sor);
1888
1889	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
1890	value |= SOR_ENABLE(0);
1891	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
1892
1893	tegra_dc_commit(dc);
1894
1895	err = tegra_sor_attach(sor);
1896	if (err < 0)
1897		dev_err(sor->dev, "failed to attach SOR: %d\n", err);
1898
1899	err = tegra_sor_wakeup(sor);
1900	if (err < 0)
1901		dev_err(sor->dev, "failed to enable DC: %d\n", err);
1902
1903	if (output->panel)
1904		drm_panel_enable(output->panel);
1905}
1906
1907static int
1908tegra_sor_encoder_atomic_check(struct drm_encoder *encoder,
1909			       struct drm_crtc_state *crtc_state,
1910			       struct drm_connector_state *conn_state)
1911{
1912	struct tegra_output *output = encoder_to_output(encoder);
1913	struct tegra_sor_state *state = to_sor_state(conn_state);
1914	struct tegra_dc *dc = to_tegra_dc(conn_state->crtc);
1915	unsigned long pclk = crtc_state->mode.clock * 1000;
1916	struct tegra_sor *sor = to_sor(output);
1917	struct drm_display_info *info;
1918	int err;
1919
1920	info = &output->connector.display_info;
1921
1922	/*
1923	 * For HBR2 modes, the SOR brick needs to use the x20 multiplier, so
1924	 * the pixel clock must be corrected accordingly.
1925	 */
1926	if (pclk >= 340000000) {
1927		state->link_speed = 20;
1928		state->pclk = pclk / 2;
1929	} else {
1930		state->link_speed = 10;
1931		state->pclk = pclk;
1932	}
1933
1934	err = tegra_dc_state_setup_clock(dc, crtc_state, sor->clk_parent,
1935					 pclk, 0);
1936	if (err < 0) {
1937		dev_err(output->dev, "failed to setup CRTC state: %d\n", err);
1938		return err;
1939	}
1940
1941	switch (info->bpc) {
1942	case 8:
1943	case 6:
1944		state->bpc = info->bpc;
1945		break;
1946
1947	default:
1948		DRM_DEBUG_KMS("%u bits-per-color not supported\n", info->bpc);
1949		state->bpc = 8;
1950		break;
1951	}
1952
1953	return 0;
1954}
1955
1956static const struct drm_encoder_helper_funcs tegra_sor_edp_helpers = {
1957	.disable = tegra_sor_edp_disable,
1958	.enable = tegra_sor_edp_enable,
1959	.atomic_check = tegra_sor_encoder_atomic_check,
1960};
1961
1962static inline u32 tegra_sor_hdmi_subpack(const u8 *ptr, size_t size)
1963{
1964	u32 value = 0;
1965	size_t i;
1966
1967	for (i = size; i > 0; i--)
1968		value = (value << 8) | ptr[i - 1];
1969
1970	return value;
1971}
1972
1973static void tegra_sor_hdmi_write_infopack(struct tegra_sor *sor,
1974					  const void *data, size_t size)
1975{
1976	const u8 *ptr = data;
1977	unsigned long offset;
1978	size_t i, j;
1979	u32 value;
1980
1981	switch (ptr[0]) {
1982	case HDMI_INFOFRAME_TYPE_AVI:
1983		offset = SOR_HDMI_AVI_INFOFRAME_HEADER;
1984		break;
1985
1986	case HDMI_INFOFRAME_TYPE_AUDIO:
1987		offset = SOR_HDMI_AUDIO_INFOFRAME_HEADER;
1988		break;
1989
1990	case HDMI_INFOFRAME_TYPE_VENDOR:
1991		offset = SOR_HDMI_VSI_INFOFRAME_HEADER;
1992		break;
1993
1994	default:
1995		dev_err(sor->dev, "unsupported infoframe type: %02x\n",
1996			ptr[0]);
1997		return;
1998	}
1999
2000	value = INFOFRAME_HEADER_TYPE(ptr[0]) |
2001		INFOFRAME_HEADER_VERSION(ptr[1]) |
2002		INFOFRAME_HEADER_LEN(ptr[2]);
2003	tegra_sor_writel(sor, value, offset);
2004	offset++;
2005
2006	/*
2007	 * Each subpack contains 7 bytes, divided into:
2008	 * - subpack_low: bytes 0 - 3
2009	 * - subpack_high: bytes 4 - 6 (with byte 7 padded to 0x00)
2010	 */
2011	for (i = 3, j = 0; i < size; i += 7, j += 8) {
2012		size_t rem = size - i, num = min_t(size_t, rem, 4);
2013
2014		value = tegra_sor_hdmi_subpack(&ptr[i], num);
2015		tegra_sor_writel(sor, value, offset++);
2016
2017		num = min_t(size_t, rem - num, 3);
2018
2019		value = tegra_sor_hdmi_subpack(&ptr[i + 4], num);
2020		tegra_sor_writel(sor, value, offset++);
2021	}
2022}
2023
2024static int
2025tegra_sor_hdmi_setup_avi_infoframe(struct tegra_sor *sor,
2026				   const struct drm_display_mode *mode)
2027{
2028	u8 buffer[HDMI_INFOFRAME_SIZE(AVI)];
2029	struct hdmi_avi_infoframe frame;
2030	u32 value;
2031	int err;
2032
2033	/* disable AVI infoframe */
2034	value = tegra_sor_readl(sor, SOR_HDMI_AVI_INFOFRAME_CTRL);
2035	value &= ~INFOFRAME_CTRL_SINGLE;
2036	value &= ~INFOFRAME_CTRL_OTHER;
2037	value &= ~INFOFRAME_CTRL_ENABLE;
2038	tegra_sor_writel(sor, value, SOR_HDMI_AVI_INFOFRAME_CTRL);
2039
2040	err = drm_hdmi_avi_infoframe_from_display_mode(&frame, mode, false);
 
2041	if (err < 0) {
2042		dev_err(sor->dev, "failed to setup AVI infoframe: %d\n", err);
2043		return err;
2044	}
2045
2046	err = hdmi_avi_infoframe_pack(&frame, buffer, sizeof(buffer));
2047	if (err < 0) {
2048		dev_err(sor->dev, "failed to pack AVI infoframe: %d\n", err);
2049		return err;
2050	}
2051
2052	tegra_sor_hdmi_write_infopack(sor, buffer, err);
2053
2054	/* enable AVI infoframe */
2055	value = tegra_sor_readl(sor, SOR_HDMI_AVI_INFOFRAME_CTRL);
2056	value |= INFOFRAME_CTRL_CHECKSUM_ENABLE;
2057	value |= INFOFRAME_CTRL_ENABLE;
2058	tegra_sor_writel(sor, value, SOR_HDMI_AVI_INFOFRAME_CTRL);
2059
2060	return 0;
2061}
2062
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2063static void tegra_sor_hdmi_disable_audio_infoframe(struct tegra_sor *sor)
2064{
2065	u32 value;
2066
2067	value = tegra_sor_readl(sor, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2068	value &= ~INFOFRAME_CTRL_ENABLE;
2069	tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2070}
2071
 
 
 
 
 
2072static struct tegra_sor_hdmi_settings *
2073tegra_sor_hdmi_find_settings(struct tegra_sor *sor, unsigned long frequency)
2074{
2075	unsigned int i;
2076
2077	for (i = 0; i < sor->num_settings; i++)
2078		if (frequency <= sor->settings[i].frequency)
2079			return &sor->settings[i];
2080
2081	return NULL;
2082}
2083
2084static void tegra_sor_hdmi_disable_scrambling(struct tegra_sor *sor)
2085{
2086	u32 value;
2087
2088	value = tegra_sor_readl(sor, SOR_HDMI2_CTRL);
2089	value &= ~SOR_HDMI2_CTRL_CLOCK_MODE_DIV_BY_4;
2090	value &= ~SOR_HDMI2_CTRL_SCRAMBLE;
2091	tegra_sor_writel(sor, value, SOR_HDMI2_CTRL);
2092}
2093
2094static void tegra_sor_hdmi_scdc_disable(struct tegra_sor *sor)
2095{
2096	struct i2c_adapter *ddc = sor->output.ddc;
2097
2098	drm_scdc_set_high_tmds_clock_ratio(ddc, false);
2099	drm_scdc_set_scrambling(ddc, false);
2100
2101	tegra_sor_hdmi_disable_scrambling(sor);
2102}
2103
2104static void tegra_sor_hdmi_scdc_stop(struct tegra_sor *sor)
2105{
2106	if (sor->scdc_enabled) {
2107		cancel_delayed_work_sync(&sor->scdc);
2108		tegra_sor_hdmi_scdc_disable(sor);
2109	}
2110}
2111
2112static void tegra_sor_hdmi_enable_scrambling(struct tegra_sor *sor)
2113{
2114	u32 value;
2115
2116	value = tegra_sor_readl(sor, SOR_HDMI2_CTRL);
2117	value |= SOR_HDMI2_CTRL_CLOCK_MODE_DIV_BY_4;
2118	value |= SOR_HDMI2_CTRL_SCRAMBLE;
2119	tegra_sor_writel(sor, value, SOR_HDMI2_CTRL);
2120}
2121
2122static void tegra_sor_hdmi_scdc_enable(struct tegra_sor *sor)
2123{
2124	struct i2c_adapter *ddc = sor->output.ddc;
2125
2126	drm_scdc_set_high_tmds_clock_ratio(ddc, true);
2127	drm_scdc_set_scrambling(ddc, true);
2128
2129	tegra_sor_hdmi_enable_scrambling(sor);
2130}
2131
2132static void tegra_sor_hdmi_scdc_work(struct work_struct *work)
2133{
2134	struct tegra_sor *sor = container_of(work, struct tegra_sor, scdc.work);
2135	struct i2c_adapter *ddc = sor->output.ddc;
2136
2137	if (!drm_scdc_get_scrambling_status(ddc)) {
2138		DRM_DEBUG_KMS("SCDC not scrambled\n");
2139		tegra_sor_hdmi_scdc_enable(sor);
2140	}
2141
2142	schedule_delayed_work(&sor->scdc, msecs_to_jiffies(5000));
2143}
2144
2145static void tegra_sor_hdmi_scdc_start(struct tegra_sor *sor)
2146{
2147	struct drm_scdc *scdc = &sor->output.connector.display_info.hdmi.scdc;
2148	struct drm_display_mode *mode;
2149
2150	mode = &sor->output.encoder.crtc->state->adjusted_mode;
2151
2152	if (mode->clock >= 340000 && scdc->supported) {
2153		schedule_delayed_work(&sor->scdc, msecs_to_jiffies(5000));
2154		tegra_sor_hdmi_scdc_enable(sor);
2155		sor->scdc_enabled = true;
2156	}
2157}
2158
2159static void tegra_sor_hdmi_disable(struct drm_encoder *encoder)
2160{
2161	struct tegra_output *output = encoder_to_output(encoder);
2162	struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2163	struct tegra_sor *sor = to_sor(output);
2164	u32 value;
2165	int err;
2166
 
2167	tegra_sor_hdmi_scdc_stop(sor);
2168
2169	err = tegra_sor_detach(sor);
2170	if (err < 0)
2171		dev_err(sor->dev, "failed to detach SOR: %d\n", err);
2172
2173	tegra_sor_writel(sor, 0, SOR_STATE1);
2174	tegra_sor_update(sor);
2175
2176	/* disable display to SOR clock */
2177	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2178
2179	if (!sor->soc->has_nvdisplay)
2180		value &= ~(SOR1_TIMING_CYA | SOR_ENABLE(1));
2181	else
2182		value &= ~SOR_ENABLE(sor->index);
2183
2184	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2185
2186	tegra_dc_commit(dc);
2187
2188	err = tegra_sor_power_down(sor);
2189	if (err < 0)
2190		dev_err(sor->dev, "failed to power down SOR: %d\n", err);
2191
2192	err = tegra_io_pad_power_disable(sor->pad);
2193	if (err < 0)
2194		dev_err(sor->dev, "failed to power off I/O pad: %d\n", err);
2195
2196	pm_runtime_put(sor->dev);
2197}
2198
2199static void tegra_sor_hdmi_enable(struct drm_encoder *encoder)
2200{
2201	struct tegra_output *output = encoder_to_output(encoder);
2202	unsigned int h_ref_to_sync = 1, pulse_start, max_ac;
2203	struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2204	struct tegra_sor_hdmi_settings *settings;
2205	struct tegra_sor *sor = to_sor(output);
2206	struct tegra_sor_state *state;
2207	struct drm_display_mode *mode;
2208	unsigned long rate, pclk;
2209	unsigned int div, i;
2210	u32 value;
2211	int err;
2212
2213	state = to_sor_state(output->connector.state);
2214	mode = &encoder->crtc->state->adjusted_mode;
2215	pclk = mode->clock * 1000;
2216
2217	pm_runtime_get_sync(sor->dev);
 
 
 
 
2218
2219	/* switch to safe parent clock */
2220	err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
2221	if (err < 0) {
2222		dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
2223		return;
2224	}
2225
2226	div = clk_get_rate(sor->clk) / 1000000 * 4;
2227
2228	err = tegra_io_pad_power_enable(sor->pad);
2229	if (err < 0)
2230		dev_err(sor->dev, "failed to power on I/O pad: %d\n", err);
2231
2232	usleep_range(20, 100);
2233
2234	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2235	value &= ~SOR_PLL2_BANDGAP_POWERDOWN;
2236	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2237
2238	usleep_range(20, 100);
2239
2240	value = tegra_sor_readl(sor, sor->soc->regs->pll3);
2241	value &= ~SOR_PLL3_PLL_VDD_MODE_3V3;
2242	tegra_sor_writel(sor, value, sor->soc->regs->pll3);
2243
2244	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2245	value &= ~SOR_PLL0_VCOPD;
2246	value &= ~SOR_PLL0_PWR;
2247	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2248
2249	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2250	value &= ~SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
2251	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2252
2253	usleep_range(200, 400);
2254
2255	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2256	value &= ~SOR_PLL2_POWERDOWN_OVERRIDE;
2257	value &= ~SOR_PLL2_PORT_POWERDOWN;
2258	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2259
2260	usleep_range(20, 100);
2261
2262	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2263	value |= SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_0 |
2264		 SOR_DP_PADCTL_PD_TXD_1 | SOR_DP_PADCTL_PD_TXD_2;
2265	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2266
2267	while (true) {
2268		value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
2269		if ((value & SOR_LANE_SEQ_CTL_STATE_BUSY) == 0)
2270			break;
2271
2272		usleep_range(250, 1000);
2273	}
2274
2275	value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_DOWN |
2276		SOR_LANE_SEQ_CTL_POWER_STATE_UP | SOR_LANE_SEQ_CTL_DELAY(5);
2277	tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
2278
2279	while (true) {
2280		value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
2281		if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
2282			break;
2283
2284		usleep_range(250, 1000);
2285	}
2286
2287	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
2288	value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK;
2289	value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
2290
2291	if (mode->clock < 340000) {
2292		DRM_DEBUG_KMS("setting 2.7 GHz link speed\n");
2293		value |= SOR_CLK_CNTRL_DP_LINK_SPEED_G2_70;
2294	} else {
2295		DRM_DEBUG_KMS("setting 5.4 GHz link speed\n");
2296		value |= SOR_CLK_CNTRL_DP_LINK_SPEED_G5_40;
2297	}
2298
2299	value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK;
2300	tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
2301
2302	/* SOR pad PLL stabilization time */
2303	usleep_range(250, 1000);
2304
2305	value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
2306	value &= ~SOR_DP_LINKCTL_LANE_COUNT_MASK;
2307	value |= SOR_DP_LINKCTL_LANE_COUNT(4);
2308	tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
2309
2310	value = tegra_sor_readl(sor, SOR_DP_SPARE0);
2311	value &= ~SOR_DP_SPARE_DISP_VIDEO_PREAMBLE;
2312	value &= ~SOR_DP_SPARE_PANEL_INTERNAL;
2313	value &= ~SOR_DP_SPARE_SEQ_ENABLE;
2314	value &= ~SOR_DP_SPARE_MACRO_SOR_CLK;
2315	tegra_sor_writel(sor, value, SOR_DP_SPARE0);
2316
2317	value = SOR_SEQ_CTL_PU_PC(0) | SOR_SEQ_CTL_PU_PC_ALT(0) |
2318		SOR_SEQ_CTL_PD_PC(8) | SOR_SEQ_CTL_PD_PC_ALT(8);
2319	tegra_sor_writel(sor, value, SOR_SEQ_CTL);
2320
2321	value = SOR_SEQ_INST_DRIVE_PWM_OUT_LO | SOR_SEQ_INST_HALT |
2322		SOR_SEQ_INST_WAIT_VSYNC | SOR_SEQ_INST_WAIT(1);
2323	tegra_sor_writel(sor, value, SOR_SEQ_INST(0));
2324	tegra_sor_writel(sor, value, SOR_SEQ_INST(8));
2325
2326	if (!sor->soc->has_nvdisplay) {
2327		/* program the reference clock */
2328		value = SOR_REFCLK_DIV_INT(div) | SOR_REFCLK_DIV_FRAC(div);
2329		tegra_sor_writel(sor, value, SOR_REFCLK);
2330	}
2331
2332	/* XXX not in TRM */
2333	for (value = 0, i = 0; i < 5; i++)
2334		value |= SOR_XBAR_CTRL_LINK0_XSEL(i, sor->soc->xbar_cfg[i]) |
2335			 SOR_XBAR_CTRL_LINK1_XSEL(i, i);
2336
2337	tegra_sor_writel(sor, 0x00000000, SOR_XBAR_POL);
2338	tegra_sor_writel(sor, value, SOR_XBAR_CTRL);
2339
2340	/* switch to parent clock */
2341	err = clk_set_parent(sor->clk, sor->clk_parent);
 
 
 
 
 
 
2342	if (err < 0) {
2343		dev_err(sor->dev, "failed to set parent clock: %d\n", err);
 
2344		return;
2345	}
 
2346
 
2347	err = tegra_sor_set_parent_clock(sor, sor->clk_pad);
2348	if (err < 0) {
2349		dev_err(sor->dev, "failed to set pad clock: %d\n", err);
 
 
 
 
 
 
 
 
 
2350		return;
2351	}
2352
2353	/* adjust clock rate for HDMI 2.0 modes */
2354	rate = clk_get_rate(sor->clk_parent);
2355
2356	if (mode->clock >= 340000)
2357		rate /= 2;
2358
2359	DRM_DEBUG_KMS("setting clock to %lu Hz, mode: %lu Hz\n", rate, pclk);
2360
2361	clk_set_rate(sor->clk, rate);
2362
2363	if (!sor->soc->has_nvdisplay) {
2364		value = SOR_INPUT_CONTROL_HDMI_SRC_SELECT(dc->pipe);
2365
2366		/* XXX is this the proper check? */
2367		if (mode->clock < 75000)
2368			value |= SOR_INPUT_CONTROL_ARM_VIDEO_RANGE_LIMITED;
2369
2370		tegra_sor_writel(sor, value, SOR_INPUT_CONTROL);
2371	}
2372
2373	max_ac = ((mode->htotal - mode->hdisplay) - SOR_REKEY - 18) / 32;
2374
2375	value = SOR_HDMI_CTRL_ENABLE | SOR_HDMI_CTRL_MAX_AC_PACKET(max_ac) |
2376		SOR_HDMI_CTRL_AUDIO_LAYOUT | SOR_HDMI_CTRL_REKEY(SOR_REKEY);
2377	tegra_sor_writel(sor, value, SOR_HDMI_CTRL);
2378
2379	if (!dc->soc->has_nvdisplay) {
2380		/* H_PULSE2 setup */
2381		pulse_start = h_ref_to_sync +
2382			      (mode->hsync_end - mode->hsync_start) +
2383			      (mode->htotal - mode->hsync_end) - 10;
2384
2385		value = PULSE_LAST_END_A | PULSE_QUAL_VACTIVE |
2386			PULSE_POLARITY_HIGH | PULSE_MODE_NORMAL;
2387		tegra_dc_writel(dc, value, DC_DISP_H_PULSE2_CONTROL);
2388
2389		value = PULSE_END(pulse_start + 8) | PULSE_START(pulse_start);
2390		tegra_dc_writel(dc, value, DC_DISP_H_PULSE2_POSITION_A);
2391
2392		value = tegra_dc_readl(dc, DC_DISP_DISP_SIGNAL_OPTIONS0);
2393		value |= H_PULSE2_ENABLE;
2394		tegra_dc_writel(dc, value, DC_DISP_DISP_SIGNAL_OPTIONS0);
2395	}
2396
2397	/* infoframe setup */
2398	err = tegra_sor_hdmi_setup_avi_infoframe(sor, mode);
2399	if (err < 0)
2400		dev_err(sor->dev, "failed to setup AVI infoframe: %d\n", err);
2401
2402	/* XXX HDMI audio support not implemented yet */
2403	tegra_sor_hdmi_disable_audio_infoframe(sor);
2404
2405	/* use single TMDS protocol */
2406	value = tegra_sor_readl(sor, SOR_STATE1);
2407	value &= ~SOR_STATE_ASY_PROTOCOL_MASK;
2408	value |= SOR_STATE_ASY_PROTOCOL_SINGLE_TMDS_A;
2409	tegra_sor_writel(sor, value, SOR_STATE1);
2410
2411	/* power up pad calibration */
2412	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2413	value &= ~SOR_DP_PADCTL_PAD_CAL_PD;
2414	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2415
2416	/* production settings */
2417	settings = tegra_sor_hdmi_find_settings(sor, mode->clock * 1000);
2418	if (!settings) {
2419		dev_err(sor->dev, "no settings for pixel clock %d Hz\n",
2420			mode->clock * 1000);
2421		return;
2422	}
2423
2424	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2425	value &= ~SOR_PLL0_ICHPMP_MASK;
2426	value &= ~SOR_PLL0_FILTER_MASK;
2427	value &= ~SOR_PLL0_VCOCAP_MASK;
2428	value |= SOR_PLL0_ICHPMP(settings->ichpmp);
2429	value |= SOR_PLL0_FILTER(settings->filter);
2430	value |= SOR_PLL0_VCOCAP(settings->vcocap);
2431	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2432
2433	/* XXX not in TRM */
2434	value = tegra_sor_readl(sor, sor->soc->regs->pll1);
2435	value &= ~SOR_PLL1_LOADADJ_MASK;
2436	value &= ~SOR_PLL1_TMDS_TERMADJ_MASK;
2437	value |= SOR_PLL1_LOADADJ(settings->loadadj);
2438	value |= SOR_PLL1_TMDS_TERMADJ(settings->tmds_termadj);
2439	value |= SOR_PLL1_TMDS_TERM;
2440	tegra_sor_writel(sor, value, sor->soc->regs->pll1);
2441
2442	value = tegra_sor_readl(sor, sor->soc->regs->pll3);
2443	value &= ~SOR_PLL3_BG_TEMP_COEF_MASK;
2444	value &= ~SOR_PLL3_BG_VREF_LEVEL_MASK;
2445	value &= ~SOR_PLL3_AVDD10_LEVEL_MASK;
2446	value &= ~SOR_PLL3_AVDD14_LEVEL_MASK;
2447	value |= SOR_PLL3_BG_TEMP_COEF(settings->bg_temp_coef);
2448	value |= SOR_PLL3_BG_VREF_LEVEL(settings->bg_vref_level);
2449	value |= SOR_PLL3_AVDD10_LEVEL(settings->avdd10_level);
2450	value |= SOR_PLL3_AVDD14_LEVEL(settings->avdd14_level);
2451	tegra_sor_writel(sor, value, sor->soc->regs->pll3);
2452
2453	value = settings->drive_current[3] << 24 |
2454		settings->drive_current[2] << 16 |
2455		settings->drive_current[1] <<  8 |
2456		settings->drive_current[0] <<  0;
2457	tegra_sor_writel(sor, value, SOR_LANE_DRIVE_CURRENT0);
2458
2459	value = settings->preemphasis[3] << 24 |
2460		settings->preemphasis[2] << 16 |
2461		settings->preemphasis[1] <<  8 |
2462		settings->preemphasis[0] <<  0;
2463	tegra_sor_writel(sor, value, SOR_LANE_PREEMPHASIS0);
2464
2465	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2466	value &= ~SOR_DP_PADCTL_TX_PU_MASK;
2467	value |= SOR_DP_PADCTL_TX_PU_ENABLE;
2468	value |= SOR_DP_PADCTL_TX_PU(settings->tx_pu_value);
2469	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2470
2471	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl2);
2472	value &= ~SOR_DP_PADCTL_SPAREPLL_MASK;
2473	value |= SOR_DP_PADCTL_SPAREPLL(settings->sparepll);
2474	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl2);
2475
2476	/* power down pad calibration */
2477	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2478	value |= SOR_DP_PADCTL_PAD_CAL_PD;
2479	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2480
2481	if (!dc->soc->has_nvdisplay) {
2482		/* miscellaneous display controller settings */
2483		value = VSYNC_H_POSITION(1);
2484		tegra_dc_writel(dc, value, DC_DISP_DISP_TIMING_OPTIONS);
2485	}
2486
2487	value = tegra_dc_readl(dc, DC_DISP_DISP_COLOR_CONTROL);
2488	value &= ~DITHER_CONTROL_MASK;
2489	value &= ~BASE_COLOR_SIZE_MASK;
2490
2491	switch (state->bpc) {
2492	case 6:
2493		value |= BASE_COLOR_SIZE_666;
2494		break;
2495
2496	case 8:
2497		value |= BASE_COLOR_SIZE_888;
2498		break;
2499
2500	case 10:
2501		value |= BASE_COLOR_SIZE_101010;
2502		break;
2503
2504	case 12:
2505		value |= BASE_COLOR_SIZE_121212;
2506		break;
2507
2508	default:
2509		WARN(1, "%u bits-per-color not supported\n", state->bpc);
2510		value |= BASE_COLOR_SIZE_888;
2511		break;
2512	}
2513
2514	tegra_dc_writel(dc, value, DC_DISP_DISP_COLOR_CONTROL);
2515
2516	/* XXX set display head owner */
2517	value = tegra_sor_readl(sor, SOR_STATE1);
2518	value &= ~SOR_STATE_ASY_OWNER_MASK;
2519	value |= SOR_STATE_ASY_OWNER(1 + dc->pipe);
2520	tegra_sor_writel(sor, value, SOR_STATE1);
2521
2522	err = tegra_sor_power_up(sor, 250);
2523	if (err < 0)
2524		dev_err(sor->dev, "failed to power up SOR: %d\n", err);
2525
2526	/* configure dynamic range of output */
2527	value = tegra_sor_readl(sor, sor->soc->regs->head_state0 + dc->pipe);
2528	value &= ~SOR_HEAD_STATE_RANGECOMPRESS_MASK;
2529	value &= ~SOR_HEAD_STATE_DYNRANGE_MASK;
2530	tegra_sor_writel(sor, value, sor->soc->regs->head_state0 + dc->pipe);
2531
2532	/* configure colorspace */
2533	value = tegra_sor_readl(sor, sor->soc->regs->head_state0 + dc->pipe);
2534	value &= ~SOR_HEAD_STATE_COLORSPACE_MASK;
2535	value |= SOR_HEAD_STATE_COLORSPACE_RGB;
2536	tegra_sor_writel(sor, value, sor->soc->regs->head_state0 + dc->pipe);
2537
2538	tegra_sor_mode_set(sor, mode, state);
2539
2540	tegra_sor_update(sor);
2541
2542	/* program preamble timing in SOR (XXX) */
2543	value = tegra_sor_readl(sor, SOR_DP_SPARE0);
2544	value &= ~SOR_DP_SPARE_DISP_VIDEO_PREAMBLE;
2545	tegra_sor_writel(sor, value, SOR_DP_SPARE0);
2546
2547	err = tegra_sor_attach(sor);
2548	if (err < 0)
2549		dev_err(sor->dev, "failed to attach SOR: %d\n", err);
2550
2551	/* enable display to SOR clock and generate HDMI preamble */
2552	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2553
2554	if (!sor->soc->has_nvdisplay)
2555		value |= SOR_ENABLE(1) | SOR1_TIMING_CYA;
2556	else
2557		value |= SOR_ENABLE(sor->index);
2558
2559	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2560
2561	if (dc->soc->has_nvdisplay) {
2562		value = tegra_dc_readl(dc, DC_DISP_CORE_SOR_SET_CONTROL(sor->index));
2563		value &= ~PROTOCOL_MASK;
2564		value |= PROTOCOL_SINGLE_TMDS_A;
2565		tegra_dc_writel(dc, value, DC_DISP_CORE_SOR_SET_CONTROL(sor->index));
2566	}
2567
2568	tegra_dc_commit(dc);
2569
2570	err = tegra_sor_wakeup(sor);
2571	if (err < 0)
2572		dev_err(sor->dev, "failed to wakeup SOR: %d\n", err);
2573
2574	tegra_sor_hdmi_scdc_start(sor);
 
2575}
2576
2577static const struct drm_encoder_helper_funcs tegra_sor_hdmi_helpers = {
2578	.disable = tegra_sor_hdmi_disable,
2579	.enable = tegra_sor_hdmi_enable,
2580	.atomic_check = tegra_sor_encoder_atomic_check,
2581};
2582
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2583static int tegra_sor_init(struct host1x_client *client)
2584{
2585	struct drm_device *drm = dev_get_drvdata(client->parent);
2586	const struct drm_encoder_helper_funcs *helpers = NULL;
2587	struct tegra_sor *sor = host1x_client_to_sor(client);
2588	int connector = DRM_MODE_CONNECTOR_Unknown;
2589	int encoder = DRM_MODE_ENCODER_NONE;
2590	int err;
2591
2592	if (!sor->aux) {
2593		if (sor->soc->supports_hdmi) {
2594			connector = DRM_MODE_CONNECTOR_HDMIA;
2595			encoder = DRM_MODE_ENCODER_TMDS;
2596			helpers = &tegra_sor_hdmi_helpers;
2597		} else if (sor->soc->supports_lvds) {
2598			connector = DRM_MODE_CONNECTOR_LVDS;
2599			encoder = DRM_MODE_ENCODER_LVDS;
2600		}
2601	} else {
2602		if (sor->soc->supports_edp) {
2603			connector = DRM_MODE_CONNECTOR_eDP;
2604			encoder = DRM_MODE_ENCODER_TMDS;
2605			helpers = &tegra_sor_edp_helpers;
2606		} else if (sor->soc->supports_dp) {
2607			connector = DRM_MODE_CONNECTOR_DisplayPort;
2608			encoder = DRM_MODE_ENCODER_TMDS;
 
2609		}
 
 
 
2610	}
2611
2612	sor->output.dev = sor->dev;
2613
2614	drm_connector_init(drm, &sor->output.connector,
2615			   &tegra_sor_connector_funcs,
2616			   connector);
 
2617	drm_connector_helper_add(&sor->output.connector,
2618				 &tegra_sor_connector_helper_funcs);
2619	sor->output.connector.dpms = DRM_MODE_DPMS_OFF;
2620
2621	drm_encoder_init(drm, &sor->output.encoder, &tegra_sor_encoder_funcs,
2622			 encoder, NULL);
2623	drm_encoder_helper_add(&sor->output.encoder, helpers);
2624
2625	drm_mode_connector_attach_encoder(&sor->output.connector,
2626					  &sor->output.encoder);
2627	drm_connector_register(&sor->output.connector);
2628
2629	err = tegra_output_init(drm, &sor->output);
2630	if (err < 0) {
2631		dev_err(client->dev, "failed to initialize output: %d\n", err);
2632		return err;
2633	}
2634
2635	tegra_output_find_possible_crtcs(&sor->output, drm);
2636
2637	if (sor->aux) {
2638		err = drm_dp_aux_attach(sor->aux, &sor->output);
2639		if (err < 0) {
2640			dev_err(sor->dev, "failed to attach DP: %d\n", err);
2641			return err;
2642		}
2643	}
2644
2645	/*
2646	 * XXX: Remove this reset once proper hand-over from firmware to
2647	 * kernel is possible.
2648	 */
2649	if (sor->rst) {
 
 
 
 
 
 
 
 
 
 
 
 
 
2650		err = reset_control_assert(sor->rst);
2651		if (err < 0) {
2652			dev_err(sor->dev, "failed to assert SOR reset: %d\n",
2653				err);
2654			return err;
2655		}
2656	}
2657
2658	err = clk_prepare_enable(sor->clk);
2659	if (err < 0) {
2660		dev_err(sor->dev, "failed to enable clock: %d\n", err);
2661		return err;
2662	}
2663
2664	usleep_range(1000, 3000);
2665
2666	if (sor->rst) {
2667		err = reset_control_deassert(sor->rst);
2668		if (err < 0) {
2669			dev_err(sor->dev, "failed to deassert SOR reset: %d\n",
2670				err);
2671			return err;
 
2672		}
 
 
 
2673	}
2674
2675	err = clk_prepare_enable(sor->clk_safe);
2676	if (err < 0)
 
2677		return err;
 
2678
2679	err = clk_prepare_enable(sor->clk_dp);
2680	if (err < 0)
 
 
2681		return err;
 
2682
2683	return 0;
 
 
 
 
 
 
2684}
2685
2686static int tegra_sor_exit(struct host1x_client *client)
2687{
2688	struct tegra_sor *sor = host1x_client_to_sor(client);
2689	int err;
2690
2691	tegra_output_exit(&sor->output);
2692
2693	if (sor->aux) {
2694		err = drm_dp_aux_detach(sor->aux);
2695		if (err < 0) {
2696			dev_err(sor->dev, "failed to detach DP: %d\n", err);
2697			return err;
2698		}
2699	}
2700
2701	clk_disable_unprepare(sor->clk_safe);
2702	clk_disable_unprepare(sor->clk_dp);
2703	clk_disable_unprepare(sor->clk);
2704
2705	return 0;
2706}
2707
2708static const struct host1x_client_ops sor_client_ops = {
2709	.init = tegra_sor_init,
2710	.exit = tegra_sor_exit,
2711};
2712
2713static const struct tegra_sor_ops tegra_sor_edp_ops = {
2714	.name = "eDP",
2715};
2716
2717static int tegra_sor_hdmi_probe(struct tegra_sor *sor)
2718{
 
 
2719	int err;
2720
2721	sor->avdd_io_supply = devm_regulator_get(sor->dev, "avdd-io");
2722	if (IS_ERR(sor->avdd_io_supply)) {
2723		dev_err(sor->dev, "cannot get AVDD I/O supply: %ld\n",
2724			PTR_ERR(sor->avdd_io_supply));
2725		return PTR_ERR(sor->avdd_io_supply);
2726	}
2727
2728	err = regulator_enable(sor->avdd_io_supply);
2729	if (err < 0) {
2730		dev_err(sor->dev, "failed to enable AVDD I/O supply: %d\n",
2731			err);
2732		return err;
2733	}
2734
2735	sor->vdd_pll_supply = devm_regulator_get(sor->dev, "vdd-pll");
2736	if (IS_ERR(sor->vdd_pll_supply)) {
2737		dev_err(sor->dev, "cannot get VDD PLL supply: %ld\n",
2738			PTR_ERR(sor->vdd_pll_supply));
2739		return PTR_ERR(sor->vdd_pll_supply);
2740	}
 
 
 
 
 
 
 
2741
2742	err = regulator_enable(sor->vdd_pll_supply);
2743	if (err < 0) {
2744		dev_err(sor->dev, "failed to enable VDD PLL supply: %d\n",
2745			err);
2746		return err;
2747	}
2748
2749	sor->hdmi_supply = devm_regulator_get(sor->dev, "hdmi");
2750	if (IS_ERR(sor->hdmi_supply)) {
2751		dev_err(sor->dev, "cannot get HDMI supply: %ld\n",
2752			PTR_ERR(sor->hdmi_supply));
2753		return PTR_ERR(sor->hdmi_supply);
2754	}
2755
2756	err = regulator_enable(sor->hdmi_supply);
2757	if (err < 0) {
2758		dev_err(sor->dev, "failed to enable HDMI supply: %d\n", err);
2759		return err;
2760	}
2761
2762	INIT_DELAYED_WORK(&sor->scdc, tegra_sor_hdmi_scdc_work);
2763
2764	return 0;
2765}
 
 
 
 
2766
2767static int tegra_sor_hdmi_remove(struct tegra_sor *sor)
2768{
2769	regulator_disable(sor->hdmi_supply);
2770	regulator_disable(sor->vdd_pll_supply);
2771	regulator_disable(sor->avdd_io_supply);
 
2772
2773	return 0;
 
 
 
 
 
 
 
 
2774}
2775
2776static const struct tegra_sor_ops tegra_sor_hdmi_ops = {
2777	.name = "HDMI",
2778	.probe = tegra_sor_hdmi_probe,
2779	.remove = tegra_sor_hdmi_remove,
 
2780};
2781
2782static const u8 tegra124_sor_xbar_cfg[5] = {
2783	0, 1, 2, 3, 4
2784};
2785
2786static const struct tegra_sor_regs tegra124_sor_regs = {
2787	.head_state0 = 0x05,
2788	.head_state1 = 0x07,
2789	.head_state2 = 0x09,
2790	.head_state3 = 0x0b,
2791	.head_state4 = 0x0d,
2792	.head_state5 = 0x0f,
2793	.pll0 = 0x17,
2794	.pll1 = 0x18,
2795	.pll2 = 0x19,
2796	.pll3 = 0x1a,
2797	.dp_padctl0 = 0x5c,
2798	.dp_padctl2 = 0x73,
2799};
2800
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2801static const struct tegra_sor_soc tegra124_sor = {
2802	.supports_edp = true,
2803	.supports_lvds = true,
2804	.supports_hdmi = false,
2805	.supports_dp = false,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2806	.regs = &tegra124_sor_regs,
2807	.has_nvdisplay = false,
2808	.xbar_cfg = tegra124_sor_xbar_cfg,
 
 
 
 
 
2809};
2810
2811static const struct tegra_sor_regs tegra210_sor_regs = {
2812	.head_state0 = 0x05,
2813	.head_state1 = 0x07,
2814	.head_state2 = 0x09,
2815	.head_state3 = 0x0b,
2816	.head_state4 = 0x0d,
2817	.head_state5 = 0x0f,
2818	.pll0 = 0x17,
2819	.pll1 = 0x18,
2820	.pll2 = 0x19,
2821	.pll3 = 0x1a,
2822	.dp_padctl0 = 0x5c,
2823	.dp_padctl2 = 0x73,
2824};
2825
 
 
 
 
 
 
 
 
2826static const struct tegra_sor_soc tegra210_sor = {
2827	.supports_edp = true,
2828	.supports_lvds = false,
2829	.supports_hdmi = false,
2830	.supports_dp = false,
 
 
 
2831	.regs = &tegra210_sor_regs,
2832	.has_nvdisplay = false,
2833	.xbar_cfg = tegra124_sor_xbar_cfg,
2834};
2835
2836static const u8 tegra210_sor_xbar_cfg[5] = {
2837	2, 1, 0, 3, 4
 
 
 
 
2838};
2839
2840static const struct tegra_sor_soc tegra210_sor1 = {
2841	.supports_edp = false,
2842	.supports_lvds = false,
2843	.supports_hdmi = true,
2844	.supports_dp = true,
 
 
2845
2846	.regs = &tegra210_sor_regs,
2847	.has_nvdisplay = false,
2848
2849	.num_settings = ARRAY_SIZE(tegra210_sor_hdmi_defaults),
2850	.settings = tegra210_sor_hdmi_defaults,
2851
2852	.xbar_cfg = tegra210_sor_xbar_cfg,
 
 
 
 
 
2853};
2854
2855static const struct tegra_sor_regs tegra186_sor_regs = {
2856	.head_state0 = 0x151,
2857	.head_state1 = 0x154,
2858	.head_state2 = 0x157,
2859	.head_state3 = 0x15a,
2860	.head_state4 = 0x15d,
2861	.head_state5 = 0x160,
2862	.pll0 = 0x163,
2863	.pll1 = 0x164,
2864	.pll2 = 0x165,
2865	.pll3 = 0x166,
2866	.dp_padctl0 = 0x168,
2867	.dp_padctl2 = 0x16a,
2868};
2869
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2870static const struct tegra_sor_soc tegra186_sor = {
2871	.supports_edp = false,
2872	.supports_lvds = false,
2873	.supports_hdmi = false,
2874	.supports_dp = true,
 
 
2875
2876	.regs = &tegra186_sor_regs,
2877	.has_nvdisplay = true,
2878
 
 
2879	.xbar_cfg = tegra124_sor_xbar_cfg,
 
 
 
 
 
2880};
2881
2882static const struct tegra_sor_soc tegra186_sor1 = {
2883	.supports_edp = false,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2884	.supports_lvds = false,
2885	.supports_hdmi = true,
2886	.supports_dp = true,
 
 
2887
2888	.regs = &tegra186_sor_regs,
2889	.has_nvdisplay = true,
2890
2891	.num_settings = ARRAY_SIZE(tegra186_sor_hdmi_defaults),
2892	.settings = tegra186_sor_hdmi_defaults,
2893
2894	.xbar_cfg = tegra124_sor_xbar_cfg,
 
 
 
 
 
2895};
2896
2897static const struct of_device_id tegra_sor_of_match[] = {
2898	{ .compatible = "nvidia,tegra186-sor1", .data = &tegra186_sor1 },
2899	{ .compatible = "nvidia,tegra186-sor", .data = &tegra186_sor },
2900	{ .compatible = "nvidia,tegra210-sor1", .data = &tegra210_sor1 },
2901	{ .compatible = "nvidia,tegra210-sor", .data = &tegra210_sor },
 
2902	{ .compatible = "nvidia,tegra124-sor", .data = &tegra124_sor },
2903	{ },
2904};
2905MODULE_DEVICE_TABLE(of, tegra_sor_of_match);
2906
2907static int tegra_sor_parse_dt(struct tegra_sor *sor)
2908{
2909	struct device_node *np = sor->dev->of_node;
 
 
2910	u32 value;
2911	int err;
2912
2913	if (sor->soc->has_nvdisplay) {
2914		err = of_property_read_u32(np, "nvidia,interface", &value);
2915		if (err < 0)
2916			return err;
2917
2918		sor->index = value;
2919
2920		/*
2921		 * override the default that we already set for Tegra210 and
2922		 * earlier
2923		 */
2924		sor->pad = TEGRA_IO_PAD_HDMI_DP0 + sor->index;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2925	}
2926
2927	return 0;
2928}
2929
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2930static int tegra_sor_probe(struct platform_device *pdev)
2931{
2932	struct device_node *np;
2933	struct tegra_sor *sor;
2934	struct resource *regs;
2935	int err;
2936
2937	sor = devm_kzalloc(&pdev->dev, sizeof(*sor), GFP_KERNEL);
2938	if (!sor)
2939		return -ENOMEM;
2940
2941	sor->soc = of_device_get_match_data(&pdev->dev);
2942	sor->output.dev = sor->dev = &pdev->dev;
2943
2944	sor->settings = devm_kmemdup(&pdev->dev, sor->soc->settings,
2945				     sor->soc->num_settings *
2946					sizeof(*sor->settings),
2947				     GFP_KERNEL);
2948	if (!sor->settings)
2949		return -ENOMEM;
2950
2951	sor->num_settings = sor->soc->num_settings;
2952
2953	np = of_parse_phandle(pdev->dev.of_node, "nvidia,dpaux", 0);
2954	if (np) {
2955		sor->aux = drm_dp_aux_find_by_of_node(np);
2956		of_node_put(np);
2957
2958		if (!sor->aux)
2959			return -EPROBE_DEFER;
 
 
 
2960	}
2961
2962	if (!sor->aux) {
2963		if (sor->soc->supports_hdmi) {
2964			sor->ops = &tegra_sor_hdmi_ops;
2965			sor->pad = TEGRA_IO_PAD_HDMI;
2966		} else if (sor->soc->supports_lvds) {
2967			dev_err(&pdev->dev, "LVDS not supported yet\n");
2968			return -ENODEV;
2969		} else {
2970			dev_err(&pdev->dev, "unknown (non-DP) support\n");
2971			return -ENODEV;
2972		}
2973	} else {
2974		if (sor->soc->supports_edp) {
2975			sor->ops = &tegra_sor_edp_ops;
2976			sor->pad = TEGRA_IO_PAD_LVDS;
2977		} else if (sor->soc->supports_dp) {
2978			dev_err(&pdev->dev, "DisplayPort not supported yet\n");
2979			return -ENODEV;
2980		} else {
2981			dev_err(&pdev->dev, "unknown (DP) support\n");
2982			return -ENODEV;
2983		}
2984	}
2985
2986	err = tegra_sor_parse_dt(sor);
2987	if (err < 0)
2988		return err;
2989
2990	err = tegra_output_probe(&sor->output);
2991	if (err < 0) {
2992		dev_err(&pdev->dev, "failed to probe output: %d\n", err);
2993		return err;
2994	}
2995
2996	if (sor->ops && sor->ops->probe) {
2997		err = sor->ops->probe(sor);
2998		if (err < 0) {
2999			dev_err(&pdev->dev, "failed to probe %s: %d\n",
3000				sor->ops->name, err);
3001			goto output;
3002		}
3003	}
3004
3005	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3006	sor->regs = devm_ioremap_resource(&pdev->dev, regs);
3007	if (IS_ERR(sor->regs)) {
3008		err = PTR_ERR(sor->regs);
3009		goto remove;
3010	}
3011
3012	if (!pdev->dev.pm_domain) {
3013		sor->rst = devm_reset_control_get(&pdev->dev, "sor");
3014		if (IS_ERR(sor->rst)) {
3015			err = PTR_ERR(sor->rst);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3016			dev_err(&pdev->dev, "failed to get reset control: %d\n",
3017				err);
3018			goto remove;
3019		}
 
 
 
 
 
 
 
 
3020	}
3021
3022	sor->clk = devm_clk_get(&pdev->dev, NULL);
3023	if (IS_ERR(sor->clk)) {
3024		err = PTR_ERR(sor->clk);
3025		dev_err(&pdev->dev, "failed to get module clock: %d\n", err);
3026		goto remove;
3027	}
3028
3029	if (sor->soc->supports_hdmi || sor->soc->supports_dp) {
3030		struct device_node *np = pdev->dev.of_node;
3031		const char *name;
3032
3033		/*
3034		 * For backwards compatibility with Tegra210 device trees,
3035		 * fall back to the old clock name "source" if the new "out"
3036		 * clock is not available.
3037		 */
3038		if (of_property_match_string(np, "clock-names", "out") < 0)
3039			name = "source";
3040		else
3041			name = "out";
3042
3043		sor->clk_out = devm_clk_get(&pdev->dev, name);
3044		if (IS_ERR(sor->clk_out)) {
3045			err = PTR_ERR(sor->clk_out);
3046			dev_err(sor->dev, "failed to get %s clock: %d\n",
3047				name, err);
3048			goto remove;
3049		}
3050	} else {
3051		/* fall back to the module clock on SOR0 (eDP/LVDS only) */
3052		sor->clk_out = sor->clk;
3053	}
3054
3055	sor->clk_parent = devm_clk_get(&pdev->dev, "parent");
3056	if (IS_ERR(sor->clk_parent)) {
3057		err = PTR_ERR(sor->clk_parent);
3058		dev_err(&pdev->dev, "failed to get parent clock: %d\n", err);
3059		goto remove;
3060	}
3061
3062	sor->clk_safe = devm_clk_get(&pdev->dev, "safe");
3063	if (IS_ERR(sor->clk_safe)) {
3064		err = PTR_ERR(sor->clk_safe);
3065		dev_err(&pdev->dev, "failed to get safe clock: %d\n", err);
3066		goto remove;
3067	}
3068
3069	sor->clk_dp = devm_clk_get(&pdev->dev, "dp");
3070	if (IS_ERR(sor->clk_dp)) {
3071		err = PTR_ERR(sor->clk_dp);
3072		dev_err(&pdev->dev, "failed to get DP clock: %d\n", err);
3073		goto remove;
3074	}
3075
3076	/*
3077	 * Starting with Tegra186, the BPMP provides an implementation for
3078	 * the pad output clock, so we have to look it up from device tree.
3079	 */
3080	sor->clk_pad = devm_clk_get(&pdev->dev, "pad");
3081	if (IS_ERR(sor->clk_pad)) {
3082		if (sor->clk_pad != ERR_PTR(-ENOENT)) {
3083			err = PTR_ERR(sor->clk_pad);
3084			goto remove;
3085		}
3086
3087		/*
3088		 * If the pad output clock is not available, then we assume
3089		 * we're on Tegra210 or earlier and have to provide our own
3090		 * implementation.
3091		 */
3092		sor->clk_pad = NULL;
3093	}
3094
3095	/*
3096	 * The bootloader may have set up the SOR such that it's module clock
3097	 * is sourced by one of the display PLLs. However, that doesn't work
3098	 * without properly having set up other bits of the SOR.
3099	 */
3100	err = clk_set_parent(sor->clk_out, sor->clk_safe);
3101	if (err < 0) {
3102		dev_err(&pdev->dev, "failed to use safe clock: %d\n", err);
3103		goto remove;
3104	}
3105
3106	platform_set_drvdata(pdev, sor);
3107	pm_runtime_enable(&pdev->dev);
3108
 
 
 
 
3109	/*
3110	 * On Tegra210 and earlier, provide our own implementation for the
3111	 * pad output clock.
3112	 */
3113	if (!sor->clk_pad) {
3114		err = pm_runtime_get_sync(&pdev->dev);
 
 
 
 
 
 
 
 
 
3115		if (err < 0) {
3116			dev_err(&pdev->dev, "failed to get runtime PM: %d\n",
3117				err);
3118			goto remove;
3119		}
3120
3121		sor->clk_pad = tegra_clk_sor_pad_register(sor,
3122							  "sor1_pad_clkout");
3123		pm_runtime_put(&pdev->dev);
3124	}
3125
3126	if (IS_ERR(sor->clk_pad)) {
3127		err = PTR_ERR(sor->clk_pad);
3128		dev_err(&pdev->dev, "failed to register SOR pad clock: %d\n",
3129			err);
3130		goto remove;
3131	}
3132
3133	INIT_LIST_HEAD(&sor->client.list);
3134	sor->client.ops = &sor_client_ops;
3135	sor->client.dev = &pdev->dev;
3136
3137	err = host1x_client_register(&sor->client);
3138	if (err < 0) {
3139		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
3140			err);
3141		goto remove;
3142	}
3143
3144	return 0;
3145
 
 
 
3146remove:
3147	if (sor->ops && sor->ops->remove)
3148		sor->ops->remove(sor);
3149output:
3150	tegra_output_remove(&sor->output);
 
 
 
 
3151	return err;
3152}
3153
3154static int tegra_sor_remove(struct platform_device *pdev)
3155{
3156	struct tegra_sor *sor = platform_get_drvdata(pdev);
3157	int err;
3158
3159	pm_runtime_disable(&pdev->dev);
3160
3161	err = host1x_client_unregister(&sor->client);
3162	if (err < 0) {
3163		dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
3164			err);
3165		return err;
3166	}
3167
3168	if (sor->ops && sor->ops->remove) {
3169		err = sor->ops->remove(sor);
3170		if (err < 0)
3171			dev_err(&pdev->dev, "failed to remove SOR: %d\n", err);
3172	}
3173
3174	tegra_output_remove(&sor->output);
3175
3176	return 0;
3177}
3178
3179#ifdef CONFIG_PM
3180static int tegra_sor_suspend(struct device *dev)
3181{
3182	struct tegra_sor *sor = dev_get_drvdata(dev);
3183	int err;
3184
3185	if (sor->rst) {
3186		err = reset_control_assert(sor->rst);
 
 
 
 
 
 
3187		if (err < 0) {
3188			dev_err(dev, "failed to assert reset: %d\n", err);
3189			return err;
3190		}
3191	}
3192
3193	usleep_range(1000, 2000);
3194
3195	clk_disable_unprepare(sor->clk);
3196
3197	return 0;
3198}
3199
3200static int tegra_sor_resume(struct device *dev)
3201{
3202	struct tegra_sor *sor = dev_get_drvdata(dev);
3203	int err;
3204
3205	err = clk_prepare_enable(sor->clk);
3206	if (err < 0) {
3207		dev_err(dev, "failed to enable clock: %d\n", err);
3208		return err;
3209	}
3210
3211	usleep_range(1000, 2000);
 
 
3212
3213	if (sor->rst) {
3214		err = reset_control_deassert(sor->rst);
3215		if (err < 0) {
3216			dev_err(dev, "failed to deassert reset: %d\n", err);
3217			clk_disable_unprepare(sor->clk);
3218			return err;
3219		}
3220	}
3221
3222	return 0;
3223}
3224#endif
3225
3226static const struct dev_pm_ops tegra_sor_pm_ops = {
3227	SET_RUNTIME_PM_OPS(tegra_sor_suspend, tegra_sor_resume, NULL)
3228};
3229
3230struct platform_driver tegra_sor_driver = {
3231	.driver = {
3232		.name = "tegra-sor",
3233		.of_match_table = tegra_sor_of_match,
3234		.pm = &tegra_sor_pm_ops,
3235	},
3236	.probe = tegra_sor_probe,
3237	.remove = tegra_sor_remove,
3238};
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2013 NVIDIA Corporation
 
 
 
 
   4 */
   5
   6#include <linux/clk.h>
   7#include <linux/clk-provider.h>
   8#include <linux/debugfs.h>
 
   9#include <linux/io.h>
  10#include <linux/module.h>
  11#include <linux/of.h>
  12#include <linux/platform_device.h>
  13#include <linux/pm_runtime.h>
  14#include <linux/regulator/consumer.h>
  15#include <linux/reset.h>
  16
  17#include <soc/tegra/pmc.h>
  18
  19#include <drm/display/drm_dp_helper.h>
  20#include <drm/display/drm_scdc_helper.h>
  21#include <drm/drm_atomic_helper.h>
  22#include <drm/drm_debugfs.h>
  23#include <drm/drm_edid.h>
  24#include <drm/drm_eld.h>
  25#include <drm/drm_file.h>
  26#include <drm/drm_panel.h>
  27#include <drm/drm_simple_kms_helper.h>
  28
  29#include "dc.h"
  30#include "dp.h"
  31#include "drm.h"
  32#include "hda.h"
  33#include "sor.h"
  34#include "trace.h"
  35
 
 
 
 
 
 
 
 
  36#define SOR_REKEY 0x38
  37
  38struct tegra_sor_hdmi_settings {
  39	unsigned long frequency;
  40
  41	u8 vcocap;
  42	u8 filter;
  43	u8 ichpmp;
  44	u8 loadadj;
  45	u8 tmds_termadj;
  46	u8 tx_pu_value;
  47	u8 bg_temp_coef;
  48	u8 bg_vref_level;
  49	u8 avdd10_level;
  50	u8 avdd14_level;
  51	u8 sparepll;
  52
  53	u8 drive_current[4];
  54	u8 preemphasis[4];
  55};
  56
  57#if 1
  58static const struct tegra_sor_hdmi_settings tegra210_sor_hdmi_defaults[] = {
  59	{
  60		.frequency = 54000000,
  61		.vcocap = 0x0,
  62		.filter = 0x0,
  63		.ichpmp = 0x1,
  64		.loadadj = 0x3,
  65		.tmds_termadj = 0x9,
  66		.tx_pu_value = 0x10,
  67		.bg_temp_coef = 0x3,
  68		.bg_vref_level = 0x8,
  69		.avdd10_level = 0x4,
  70		.avdd14_level = 0x4,
  71		.sparepll = 0x0,
  72		.drive_current = { 0x33, 0x3a, 0x3a, 0x3a },
  73		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
  74	}, {
  75		.frequency = 75000000,
  76		.vcocap = 0x3,
  77		.filter = 0x0,
  78		.ichpmp = 0x1,
  79		.loadadj = 0x3,
  80		.tmds_termadj = 0x9,
  81		.tx_pu_value = 0x40,
  82		.bg_temp_coef = 0x3,
  83		.bg_vref_level = 0x8,
  84		.avdd10_level = 0x4,
  85		.avdd14_level = 0x4,
  86		.sparepll = 0x0,
  87		.drive_current = { 0x33, 0x3a, 0x3a, 0x3a },
  88		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
  89	}, {
  90		.frequency = 150000000,
  91		.vcocap = 0x3,
  92		.filter = 0x0,
  93		.ichpmp = 0x1,
  94		.loadadj = 0x3,
  95		.tmds_termadj = 0x9,
  96		.tx_pu_value = 0x66,
  97		.bg_temp_coef = 0x3,
  98		.bg_vref_level = 0x8,
  99		.avdd10_level = 0x4,
 100		.avdd14_level = 0x4,
 101		.sparepll = 0x0,
 102		.drive_current = { 0x33, 0x3a, 0x3a, 0x3a },
 103		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 104	}, {
 105		.frequency = 300000000,
 106		.vcocap = 0x3,
 107		.filter = 0x0,
 108		.ichpmp = 0x1,
 109		.loadadj = 0x3,
 110		.tmds_termadj = 0x9,
 111		.tx_pu_value = 0x66,
 112		.bg_temp_coef = 0x3,
 113		.bg_vref_level = 0xa,
 114		.avdd10_level = 0x4,
 115		.avdd14_level = 0x4,
 116		.sparepll = 0x0,
 117		.drive_current = { 0x33, 0x3f, 0x3f, 0x3f },
 118		.preemphasis = { 0x00, 0x17, 0x17, 0x17 },
 119	}, {
 120		.frequency = 600000000,
 121		.vcocap = 0x3,
 122		.filter = 0x0,
 123		.ichpmp = 0x1,
 124		.loadadj = 0x3,
 125		.tmds_termadj = 0x9,
 126		.tx_pu_value = 0x66,
 127		.bg_temp_coef = 0x3,
 128		.bg_vref_level = 0x8,
 129		.avdd10_level = 0x4,
 130		.avdd14_level = 0x4,
 131		.sparepll = 0x0,
 132		.drive_current = { 0x33, 0x3f, 0x3f, 0x3f },
 133		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 134	},
 135};
 136#else
 137static const struct tegra_sor_hdmi_settings tegra210_sor_hdmi_defaults[] = {
 138	{
 139		.frequency = 75000000,
 140		.vcocap = 0x3,
 141		.filter = 0x0,
 142		.ichpmp = 0x1,
 143		.loadadj = 0x3,
 144		.tmds_termadj = 0x9,
 145		.tx_pu_value = 0x40,
 146		.bg_temp_coef = 0x3,
 147		.bg_vref_level = 0x8,
 148		.avdd10_level = 0x4,
 149		.avdd14_level = 0x4,
 150		.sparepll = 0x0,
 151		.drive_current = { 0x29, 0x29, 0x29, 0x29 },
 152		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 153	}, {
 154		.frequency = 150000000,
 155		.vcocap = 0x3,
 156		.filter = 0x0,
 157		.ichpmp = 0x1,
 158		.loadadj = 0x3,
 159		.tmds_termadj = 0x9,
 160		.tx_pu_value = 0x66,
 161		.bg_temp_coef = 0x3,
 162		.bg_vref_level = 0x8,
 163		.avdd10_level = 0x4,
 164		.avdd14_level = 0x4,
 165		.sparepll = 0x0,
 166		.drive_current = { 0x30, 0x37, 0x37, 0x37 },
 167		.preemphasis = { 0x01, 0x02, 0x02, 0x02 },
 168	}, {
 169		.frequency = 300000000,
 170		.vcocap = 0x3,
 171		.filter = 0x0,
 172		.ichpmp = 0x6,
 173		.loadadj = 0x3,
 174		.tmds_termadj = 0x9,
 175		.tx_pu_value = 0x66,
 176		.bg_temp_coef = 0x3,
 177		.bg_vref_level = 0xf,
 178		.avdd10_level = 0x4,
 179		.avdd14_level = 0x4,
 180		.sparepll = 0x0,
 181		.drive_current = { 0x30, 0x37, 0x37, 0x37 },
 182		.preemphasis = { 0x10, 0x3e, 0x3e, 0x3e },
 183	}, {
 184		.frequency = 600000000,
 185		.vcocap = 0x3,
 186		.filter = 0x0,
 187		.ichpmp = 0xa,
 188		.loadadj = 0x3,
 189		.tmds_termadj = 0xb,
 190		.tx_pu_value = 0x66,
 191		.bg_temp_coef = 0x3,
 192		.bg_vref_level = 0xe,
 193		.avdd10_level = 0x4,
 194		.avdd14_level = 0x4,
 195		.sparepll = 0x0,
 196		.drive_current = { 0x35, 0x3e, 0x3e, 0x3e },
 197		.preemphasis = { 0x02, 0x3f, 0x3f, 0x3f },
 198	},
 199};
 200#endif
 201
 202static const struct tegra_sor_hdmi_settings tegra186_sor_hdmi_defaults[] = {
 203	{
 204		.frequency = 54000000,
 205		.vcocap = 0,
 206		.filter = 5,
 207		.ichpmp = 5,
 208		.loadadj = 3,
 209		.tmds_termadj = 0xf,
 210		.tx_pu_value = 0,
 211		.bg_temp_coef = 3,
 212		.bg_vref_level = 8,
 213		.avdd10_level = 4,
 214		.avdd14_level = 4,
 215		.sparepll = 0x54,
 216		.drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
 217		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 218	}, {
 219		.frequency = 75000000,
 220		.vcocap = 1,
 221		.filter = 5,
 222		.ichpmp = 5,
 223		.loadadj = 3,
 224		.tmds_termadj = 0xf,
 225		.tx_pu_value = 0,
 226		.bg_temp_coef = 3,
 227		.bg_vref_level = 8,
 228		.avdd10_level = 4,
 229		.avdd14_level = 4,
 230		.sparepll = 0x44,
 231		.drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
 232		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 233	}, {
 234		.frequency = 150000000,
 235		.vcocap = 3,
 236		.filter = 5,
 237		.ichpmp = 5,
 238		.loadadj = 3,
 239		.tmds_termadj = 15,
 240		.tx_pu_value = 0x66 /* 0 */,
 241		.bg_temp_coef = 3,
 242		.bg_vref_level = 8,
 243		.avdd10_level = 4,
 244		.avdd14_level = 4,
 245		.sparepll = 0x00, /* 0x34 */
 246		.drive_current = { 0x3a, 0x3a, 0x3a, 0x37 },
 247		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 248	}, {
 249		.frequency = 300000000,
 250		.vcocap = 3,
 251		.filter = 5,
 252		.ichpmp = 5,
 253		.loadadj = 3,
 254		.tmds_termadj = 15,
 255		.tx_pu_value = 64,
 256		.bg_temp_coef = 3,
 257		.bg_vref_level = 8,
 258		.avdd10_level = 4,
 259		.avdd14_level = 4,
 260		.sparepll = 0x34,
 261		.drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
 262		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 263	}, {
 264		.frequency = 600000000,
 265		.vcocap = 3,
 266		.filter = 5,
 267		.ichpmp = 5,
 268		.loadadj = 3,
 269		.tmds_termadj = 12,
 270		.tx_pu_value = 96,
 271		.bg_temp_coef = 3,
 272		.bg_vref_level = 8,
 273		.avdd10_level = 4,
 274		.avdd14_level = 4,
 275		.sparepll = 0x34,
 276		.drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
 277		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 278	}
 279};
 280
 281static const struct tegra_sor_hdmi_settings tegra194_sor_hdmi_defaults[] = {
 282	{
 283		.frequency = 54000000,
 284		.vcocap = 0,
 285		.filter = 5,
 286		.ichpmp = 5,
 287		.loadadj = 3,
 288		.tmds_termadj = 0xf,
 289		.tx_pu_value = 0,
 290		.bg_temp_coef = 3,
 291		.bg_vref_level = 8,
 292		.avdd10_level = 4,
 293		.avdd14_level = 4,
 294		.sparepll = 0x54,
 295		.drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
 296		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 297	}, {
 298		.frequency = 75000000,
 299		.vcocap = 1,
 300		.filter = 5,
 301		.ichpmp = 5,
 302		.loadadj = 3,
 303		.tmds_termadj = 0xf,
 304		.tx_pu_value = 0,
 305		.bg_temp_coef = 3,
 306		.bg_vref_level = 8,
 307		.avdd10_level = 4,
 308		.avdd14_level = 4,
 309		.sparepll = 0x44,
 310		.drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
 311		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 312	}, {
 313		.frequency = 150000000,
 314		.vcocap = 3,
 315		.filter = 5,
 316		.ichpmp = 5,
 317		.loadadj = 3,
 318		.tmds_termadj = 15,
 319		.tx_pu_value = 0x66 /* 0 */,
 320		.bg_temp_coef = 3,
 321		.bg_vref_level = 8,
 322		.avdd10_level = 4,
 323		.avdd14_level = 4,
 324		.sparepll = 0x00, /* 0x34 */
 325		.drive_current = { 0x3a, 0x3a, 0x3a, 0x37 },
 326		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 327	}, {
 328		.frequency = 300000000,
 329		.vcocap = 3,
 330		.filter = 5,
 331		.ichpmp = 5,
 332		.loadadj = 3,
 333		.tmds_termadj = 15,
 334		.tx_pu_value = 64,
 335		.bg_temp_coef = 3,
 336		.bg_vref_level = 8,
 337		.avdd10_level = 4,
 338		.avdd14_level = 4,
 339		.sparepll = 0x34,
 340		.drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
 341		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 342	}, {
 343		.frequency = 600000000,
 344		.vcocap = 3,
 345		.filter = 5,
 346		.ichpmp = 5,
 347		.loadadj = 3,
 348		.tmds_termadj = 12,
 349		.tx_pu_value = 96,
 350		.bg_temp_coef = 3,
 351		.bg_vref_level = 8,
 352		.avdd10_level = 4,
 353		.avdd14_level = 4,
 354		.sparepll = 0x34,
 355		.drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
 356		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 357	}
 358};
 359
 360struct tegra_sor_regs {
 361	unsigned int head_state0;
 362	unsigned int head_state1;
 363	unsigned int head_state2;
 364	unsigned int head_state3;
 365	unsigned int head_state4;
 366	unsigned int head_state5;
 367	unsigned int pll0;
 368	unsigned int pll1;
 369	unsigned int pll2;
 370	unsigned int pll3;
 371	unsigned int dp_padctl0;
 372	unsigned int dp_padctl2;
 373};
 374
 375struct tegra_sor_soc {
 
 376	bool supports_lvds;
 377	bool supports_hdmi;
 378	bool supports_dp;
 379	bool supports_audio;
 380	bool supports_hdcp;
 381
 382	const struct tegra_sor_regs *regs;
 383	bool has_nvdisplay;
 384
 385	const struct tegra_sor_hdmi_settings *settings;
 386	unsigned int num_settings;
 387
 388	const u8 *xbar_cfg;
 389	const u8 *lane_map;
 390
 391	const u8 (*voltage_swing)[4][4];
 392	const u8 (*pre_emphasis)[4][4];
 393	const u8 (*post_cursor)[4][4];
 394	const u8 (*tx_pu)[4][4];
 395};
 396
 397struct tegra_sor;
 398
 399struct tegra_sor_ops {
 400	const char *name;
 401	int (*probe)(struct tegra_sor *sor);
 402	void (*audio_enable)(struct tegra_sor *sor);
 403	void (*audio_disable)(struct tegra_sor *sor);
 404};
 405
 406struct tegra_sor {
 407	struct host1x_client client;
 408	struct tegra_output output;
 409	struct device *dev;
 410
 411	const struct tegra_sor_soc *soc;
 412	void __iomem *regs;
 413	unsigned int index;
 414	unsigned int irq;
 415
 416	struct reset_control *rst;
 417	struct clk *clk_parent;
 418	struct clk *clk_safe;
 419	struct clk *clk_out;
 420	struct clk *clk_pad;
 421	struct clk *clk_dp;
 422	struct clk *clk;
 423
 424	u8 xbar_cfg[5];
 425
 426	struct drm_dp_link link;
 427	struct drm_dp_aux *aux;
 428
 429	struct drm_info_list *debugfs_files;
 430
 431	const struct tegra_sor_ops *ops;
 432	enum tegra_io_pad pad;
 433
 434	/* for HDMI 2.0 */
 435	struct tegra_sor_hdmi_settings *settings;
 436	unsigned int num_settings;
 437
 438	struct regulator *avdd_io_supply;
 439	struct regulator *vdd_pll_supply;
 440	struct regulator *hdmi_supply;
 441
 442	struct delayed_work scdc;
 443	bool scdc_enabled;
 444
 445	struct tegra_hda_format format;
 446};
 447
 448struct tegra_sor_state {
 449	struct drm_connector_state base;
 450
 451	unsigned int link_speed;
 452	unsigned long pclk;
 453	unsigned int bpc;
 454};
 455
 456static inline struct tegra_sor_state *
 457to_sor_state(struct drm_connector_state *state)
 458{
 459	return container_of(state, struct tegra_sor_state, base);
 460}
 461
 462struct tegra_sor_config {
 463	u32 bits_per_pixel;
 464
 465	u32 active_polarity;
 466	u32 active_count;
 467	u32 tu_size;
 468	u32 active_frac;
 469	u32 watermark;
 470
 471	u32 hblank_symbols;
 472	u32 vblank_symbols;
 473};
 474
 475static inline struct tegra_sor *
 476host1x_client_to_sor(struct host1x_client *client)
 477{
 478	return container_of(client, struct tegra_sor, client);
 479}
 480
 481static inline struct tegra_sor *to_sor(struct tegra_output *output)
 482{
 483	return container_of(output, struct tegra_sor, output);
 484}
 485
 486static inline u32 tegra_sor_readl(struct tegra_sor *sor, unsigned int offset)
 487{
 488	u32 value = readl(sor->regs + (offset << 2));
 489
 490	trace_sor_readl(sor->dev, offset, value);
 491
 492	return value;
 493}
 494
 495static inline void tegra_sor_writel(struct tegra_sor *sor, u32 value,
 496				    unsigned int offset)
 497{
 498	trace_sor_writel(sor->dev, offset, value);
 499	writel(value, sor->regs + (offset << 2));
 500}
 501
 502static int tegra_sor_set_parent_clock(struct tegra_sor *sor, struct clk *parent)
 503{
 504	int err;
 505
 506	clk_disable_unprepare(sor->clk);
 507
 508	err = clk_set_parent(sor->clk_out, parent);
 509	if (err < 0)
 510		return err;
 511
 512	err = clk_prepare_enable(sor->clk);
 513	if (err < 0)
 514		return err;
 515
 516	return 0;
 517}
 518
 519struct tegra_clk_sor_pad {
 520	struct clk_hw hw;
 521	struct tegra_sor *sor;
 522};
 523
 524static inline struct tegra_clk_sor_pad *to_pad(struct clk_hw *hw)
 525{
 526	return container_of(hw, struct tegra_clk_sor_pad, hw);
 527}
 528
 529static const char * const tegra_clk_sor_pad_parents[2][2] = {
 530	{ "pll_d_out0", "pll_dp" },
 531	{ "pll_d2_out0", "pll_dp" },
 532};
 533
 534/*
 535 * Implementing ->set_parent() here isn't really required because the parent
 536 * will be explicitly selected in the driver code via the DP_CLK_SEL mux in
 537 * the SOR_CLK_CNTRL register. This is primarily for compatibility with the
 538 * Tegra186 and later SoC generations where the BPMP implements this clock
 539 * and doesn't expose the mux via the common clock framework.
 540 */
 541
 542static int tegra_clk_sor_pad_set_parent(struct clk_hw *hw, u8 index)
 543{
 544	struct tegra_clk_sor_pad *pad = to_pad(hw);
 545	struct tegra_sor *sor = pad->sor;
 546	u32 value;
 547
 548	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
 549	value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
 550
 551	switch (index) {
 552	case 0:
 553		value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK;
 554		break;
 555
 556	case 1:
 557		value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK;
 558		break;
 559	}
 560
 561	tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
 562
 563	return 0;
 564}
 565
 566static u8 tegra_clk_sor_pad_get_parent(struct clk_hw *hw)
 567{
 568	struct tegra_clk_sor_pad *pad = to_pad(hw);
 569	struct tegra_sor *sor = pad->sor;
 570	u8 parent = U8_MAX;
 571	u32 value;
 572
 573	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
 574
 575	switch (value & SOR_CLK_CNTRL_DP_CLK_SEL_MASK) {
 576	case SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK:
 577	case SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_PCLK:
 578		parent = 0;
 579		break;
 580
 581	case SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK:
 582	case SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_DPCLK:
 583		parent = 1;
 584		break;
 585	}
 586
 587	return parent;
 588}
 589
 590static const struct clk_ops tegra_clk_sor_pad_ops = {
 591	.determine_rate = clk_hw_determine_rate_no_reparent,
 592	.set_parent = tegra_clk_sor_pad_set_parent,
 593	.get_parent = tegra_clk_sor_pad_get_parent,
 594};
 595
 596static struct clk *tegra_clk_sor_pad_register(struct tegra_sor *sor,
 597					      const char *name)
 598{
 599	struct tegra_clk_sor_pad *pad;
 600	struct clk_init_data init;
 601	struct clk *clk;
 602
 603	pad = devm_kzalloc(sor->dev, sizeof(*pad), GFP_KERNEL);
 604	if (!pad)
 605		return ERR_PTR(-ENOMEM);
 606
 607	pad->sor = sor;
 608
 609	init.name = name;
 610	init.flags = 0;
 611	init.parent_names = tegra_clk_sor_pad_parents[sor->index];
 612	init.num_parents = ARRAY_SIZE(tegra_clk_sor_pad_parents[sor->index]);
 613	init.ops = &tegra_clk_sor_pad_ops;
 614
 615	pad->hw.init = &init;
 616
 617	clk = devm_clk_register(sor->dev, &pad->hw);
 618
 619	return clk;
 620}
 621
 622static void tegra_sor_filter_rates(struct tegra_sor *sor)
 
 623{
 624	struct drm_dp_link *link = &sor->link;
 625	unsigned int i;
 626
 627	/* Tegra only supports RBR, HBR and HBR2 */
 628	for (i = 0; i < link->num_rates; i++) {
 629		switch (link->rates[i]) {
 630		case 1620000:
 631		case 2700000:
 632		case 5400000:
 633			break;
 634
 635		default:
 636			DRM_DEBUG_KMS("link rate %lu kHz not supported\n",
 637				      link->rates[i]);
 638			link->rates[i] = 0;
 639			break;
 640		}
 641	}
 642
 643	drm_dp_link_update_rates(link);
 644}
 645
 646static int tegra_sor_power_up_lanes(struct tegra_sor *sor, unsigned int lanes)
 647{
 648	unsigned long timeout;
 649	u32 value;
 
 650
 651	/*
 652	 * Clear or set the PD_TXD bit corresponding to each lane, depending
 653	 * on whether it is used or not.
 654	 */
 655	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
 
 656
 657	if (lanes <= 2)
 658		value &= ~(SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[3]) |
 659			   SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[2]));
 660	else
 661		value |= SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[3]) |
 662			 SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[2]);
 663
 664	if (lanes <= 1)
 665		value &= ~SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[1]);
 666	else
 667		value |= SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[1]);
 
 668
 669	if (lanes == 0)
 670		value &= ~SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[0]);
 671	else
 672		value |= SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[0]);
 673
 674	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
 675
 676	/* start lane sequencer */
 677	value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_DOWN |
 678		SOR_LANE_SEQ_CTL_POWER_STATE_UP;
 679	tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
 680
 681	timeout = jiffies + msecs_to_jiffies(250);
 682
 683	while (time_before(jiffies, timeout)) {
 684		value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
 685		if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
 686			break;
 687
 688		usleep_range(250, 1000);
 689	}
 690
 691	if ((value & SOR_LANE_SEQ_CTL_TRIGGER) != 0)
 692		return -ETIMEDOUT;
 693
 694	return 0;
 695}
 696
 697static int tegra_sor_power_down_lanes(struct tegra_sor *sor)
 698{
 699	unsigned long timeout;
 700	u32 value;
 701
 702	/* power down all lanes */
 703	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
 704	value &= ~(SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_0 |
 705		   SOR_DP_PADCTL_PD_TXD_1 | SOR_DP_PADCTL_PD_TXD_2);
 
 706	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
 707
 708	/* start lane sequencer */
 709	value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_UP |
 710		SOR_LANE_SEQ_CTL_POWER_STATE_DOWN;
 711	tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
 712
 713	timeout = jiffies + msecs_to_jiffies(250);
 714
 715	while (time_before(jiffies, timeout)) {
 716		value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
 717		if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
 718			break;
 719
 720		usleep_range(25, 100);
 721	}
 722
 723	if ((value & SOR_LANE_SEQ_CTL_TRIGGER) != 0)
 724		return -ETIMEDOUT;
 725
 726	return 0;
 727}
 728
 729static void tegra_sor_dp_precharge(struct tegra_sor *sor, unsigned int lanes)
 730{
 731	u32 value;
 732
 733	/* pre-charge all used lanes */
 734	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
 735
 736	if (lanes <= 2)
 737		value &= ~(SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[3]) |
 738			   SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[2]));
 739	else
 740		value |= SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[3]) |
 741			 SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[2]);
 742
 743	if (lanes <= 1)
 744		value &= ~SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[1]);
 745	else
 746		value |= SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[1]);
 747
 748	if (lanes == 0)
 749		value &= ~SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[0]);
 750	else
 751		value |= SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[0]);
 752
 753	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
 754
 755	usleep_range(15, 100);
 756
 757	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
 758	value &= ~(SOR_DP_PADCTL_CM_TXD_3 | SOR_DP_PADCTL_CM_TXD_2 |
 759		   SOR_DP_PADCTL_CM_TXD_1 | SOR_DP_PADCTL_CM_TXD_0);
 760	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
 761}
 762
 763static void tegra_sor_dp_term_calibrate(struct tegra_sor *sor)
 764{
 765	u32 mask = 0x08, adj = 0, value;
 766
 767	/* enable pad calibration logic */
 768	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
 769	value &= ~SOR_DP_PADCTL_PAD_CAL_PD;
 770	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
 771
 772	value = tegra_sor_readl(sor, sor->soc->regs->pll1);
 773	value |= SOR_PLL1_TMDS_TERM;
 774	tegra_sor_writel(sor, value, sor->soc->regs->pll1);
 775
 776	while (mask) {
 777		adj |= mask;
 778
 779		value = tegra_sor_readl(sor, sor->soc->regs->pll1);
 780		value &= ~SOR_PLL1_TMDS_TERMADJ_MASK;
 781		value |= SOR_PLL1_TMDS_TERMADJ(adj);
 782		tegra_sor_writel(sor, value, sor->soc->regs->pll1);
 783
 784		usleep_range(100, 200);
 785
 786		value = tegra_sor_readl(sor, sor->soc->regs->pll1);
 787		if (value & SOR_PLL1_TERM_COMPOUT)
 788			adj &= ~mask;
 789
 790		mask >>= 1;
 
 
 
 
 791	}
 792
 793	value = tegra_sor_readl(sor, sor->soc->regs->pll1);
 794	value &= ~SOR_PLL1_TMDS_TERMADJ_MASK;
 795	value |= SOR_PLL1_TMDS_TERMADJ(adj);
 796	tegra_sor_writel(sor, value, sor->soc->regs->pll1);
 797
 798	/* disable pad calibration logic */
 799	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
 800	value |= SOR_DP_PADCTL_PAD_CAL_PD;
 801	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
 802}
 803
 804static int tegra_sor_dp_link_apply_training(struct drm_dp_link *link)
 805{
 806	struct tegra_sor *sor = container_of(link, struct tegra_sor, link);
 807	u32 voltage_swing = 0, pre_emphasis = 0, post_cursor = 0;
 808	const struct tegra_sor_soc *soc = sor->soc;
 809	u32 pattern = 0, tx_pu = 0, value;
 810	unsigned int i;
 811
 812	for (value = 0, i = 0; i < link->lanes; i++) {
 813		u8 vs = link->train.request.voltage_swing[i];
 814		u8 pe = link->train.request.pre_emphasis[i];
 815		u8 pc = link->train.request.post_cursor[i];
 816		u8 shift = sor->soc->lane_map[i] << 3;
 817
 818		voltage_swing |= soc->voltage_swing[pc][vs][pe] << shift;
 819		pre_emphasis |= soc->pre_emphasis[pc][vs][pe] << shift;
 820		post_cursor |= soc->post_cursor[pc][vs][pe] << shift;
 821
 822		if (sor->soc->tx_pu[pc][vs][pe] > tx_pu)
 823			tx_pu = sor->soc->tx_pu[pc][vs][pe];
 824
 825		switch (link->train.pattern) {
 826		case DP_TRAINING_PATTERN_DISABLE:
 827			value = SOR_DP_TPG_SCRAMBLER_GALIOS |
 828				SOR_DP_TPG_PATTERN_NONE;
 829			break;
 830
 831		case DP_TRAINING_PATTERN_1:
 832			value = SOR_DP_TPG_SCRAMBLER_NONE |
 833				SOR_DP_TPG_PATTERN_TRAIN1;
 834			break;
 835
 836		case DP_TRAINING_PATTERN_2:
 837			value = SOR_DP_TPG_SCRAMBLER_NONE |
 838				SOR_DP_TPG_PATTERN_TRAIN2;
 839			break;
 840
 841		case DP_TRAINING_PATTERN_3:
 842			value = SOR_DP_TPG_SCRAMBLER_NONE |
 843				SOR_DP_TPG_PATTERN_TRAIN3;
 844			break;
 845
 846		default:
 847			return -EINVAL;
 848		}
 849
 850		if (link->caps.channel_coding)
 851			value |= SOR_DP_TPG_CHANNEL_CODING;
 852
 853		pattern = pattern << 8 | value;
 854	}
 855
 856	tegra_sor_writel(sor, voltage_swing, SOR_LANE_DRIVE_CURRENT0);
 857	tegra_sor_writel(sor, pre_emphasis, SOR_LANE_PREEMPHASIS0);
 858
 859	if (link->caps.tps3_supported)
 860		tegra_sor_writel(sor, post_cursor, SOR_LANE_POSTCURSOR0);
 861
 862	tegra_sor_writel(sor, pattern, SOR_DP_TPG);
 
 
 863
 864	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
 865	value &= ~SOR_DP_PADCTL_TX_PU_MASK;
 866	value |= SOR_DP_PADCTL_TX_PU_ENABLE;
 867	value |= SOR_DP_PADCTL_TX_PU(tx_pu);
 868	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
 869
 870	usleep_range(20, 100);
 871
 872	return 0;
 873}
 874
 875static int tegra_sor_dp_link_configure(struct drm_dp_link *link)
 876{
 877	struct tegra_sor *sor = container_of(link, struct tegra_sor, link);
 878	unsigned int rate, lanes;
 879	u32 value;
 880	int err;
 881
 882	rate = drm_dp_link_rate_to_bw_code(link->rate);
 883	lanes = link->lanes;
 884
 885	/* configure link speed and lane count */
 886	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
 887	value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK;
 888	value |= SOR_CLK_CNTRL_DP_LINK_SPEED(rate);
 889	tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
 890
 891	value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
 892	value &= ~SOR_DP_LINKCTL_LANE_COUNT_MASK;
 893	value |= SOR_DP_LINKCTL_LANE_COUNT(lanes);
 894
 895	if (link->caps.enhanced_framing)
 896		value |= SOR_DP_LINKCTL_ENHANCED_FRAME;
 897
 898	tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
 899
 900	usleep_range(400, 1000);
 901
 902	/* configure load pulse position adjustment */
 903	value = tegra_sor_readl(sor, sor->soc->regs->pll1);
 904	value &= ~SOR_PLL1_LOADADJ_MASK;
 905
 906	switch (rate) {
 907	case DP_LINK_BW_1_62:
 908		value |= SOR_PLL1_LOADADJ(0x3);
 909		break;
 910
 911	case DP_LINK_BW_2_7:
 912		value |= SOR_PLL1_LOADADJ(0x4);
 913		break;
 914
 915	case DP_LINK_BW_5_4:
 916		value |= SOR_PLL1_LOADADJ(0x6);
 917		break;
 918	}
 919
 920	tegra_sor_writel(sor, value, sor->soc->regs->pll1);
 921
 922	/* use alternate scrambler reset for eDP */
 923	value = tegra_sor_readl(sor, SOR_DP_SPARE0);
 924
 925	if (link->edp == 0)
 926		value &= ~SOR_DP_SPARE_PANEL_INTERNAL;
 927	else
 928		value |= SOR_DP_SPARE_PANEL_INTERNAL;
 929
 930	tegra_sor_writel(sor, value, SOR_DP_SPARE0);
 931
 932	err = tegra_sor_power_down_lanes(sor);
 933	if (err < 0) {
 934		dev_err(sor->dev, "failed to power down lanes: %d\n", err);
 935		return err;
 936	}
 937
 938	/* power up and pre-charge lanes */
 939	err = tegra_sor_power_up_lanes(sor, lanes);
 940	if (err < 0) {
 941		dev_err(sor->dev, "failed to power up %u lane%s: %d\n",
 942			lanes, (lanes != 1) ? "s" : "", err);
 943		return err;
 944	}
 945
 946	tegra_sor_dp_precharge(sor, lanes);
 947
 948	return 0;
 949}
 950
 951static const struct drm_dp_link_ops tegra_sor_dp_link_ops = {
 952	.apply_training = tegra_sor_dp_link_apply_training,
 953	.configure = tegra_sor_dp_link_configure,
 954};
 955
 956static void tegra_sor_super_update(struct tegra_sor *sor)
 957{
 958	tegra_sor_writel(sor, 0, SOR_SUPER_STATE0);
 959	tegra_sor_writel(sor, 1, SOR_SUPER_STATE0);
 960	tegra_sor_writel(sor, 0, SOR_SUPER_STATE0);
 961}
 962
 963static void tegra_sor_update(struct tegra_sor *sor)
 964{
 965	tegra_sor_writel(sor, 0, SOR_STATE0);
 966	tegra_sor_writel(sor, 1, SOR_STATE0);
 967	tegra_sor_writel(sor, 0, SOR_STATE0);
 968}
 969
 970static int tegra_sor_setup_pwm(struct tegra_sor *sor, unsigned long timeout)
 971{
 972	u32 value;
 973
 974	value = tegra_sor_readl(sor, SOR_PWM_DIV);
 975	value &= ~SOR_PWM_DIV_MASK;
 976	value |= 0x400; /* period */
 977	tegra_sor_writel(sor, value, SOR_PWM_DIV);
 978
 979	value = tegra_sor_readl(sor, SOR_PWM_CTL);
 980	value &= ~SOR_PWM_CTL_DUTY_CYCLE_MASK;
 981	value |= 0x400; /* duty cycle */
 982	value &= ~SOR_PWM_CTL_CLK_SEL; /* clock source: PCLK */
 983	value |= SOR_PWM_CTL_TRIGGER;
 984	tegra_sor_writel(sor, value, SOR_PWM_CTL);
 985
 986	timeout = jiffies + msecs_to_jiffies(timeout);
 987
 988	while (time_before(jiffies, timeout)) {
 989		value = tegra_sor_readl(sor, SOR_PWM_CTL);
 990		if ((value & SOR_PWM_CTL_TRIGGER) == 0)
 991			return 0;
 992
 993		usleep_range(25, 100);
 994	}
 995
 996	return -ETIMEDOUT;
 997}
 998
 999static int tegra_sor_attach(struct tegra_sor *sor)
1000{
1001	unsigned long value, timeout;
1002
1003	/* wake up in normal mode */
1004	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1005	value |= SOR_SUPER_STATE_HEAD_MODE_AWAKE;
1006	value |= SOR_SUPER_STATE_MODE_NORMAL;
1007	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1008	tegra_sor_super_update(sor);
1009
1010	/* attach */
1011	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1012	value |= SOR_SUPER_STATE_ATTACHED;
1013	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1014	tegra_sor_super_update(sor);
1015
1016	timeout = jiffies + msecs_to_jiffies(250);
1017
1018	while (time_before(jiffies, timeout)) {
1019		value = tegra_sor_readl(sor, SOR_TEST);
1020		if ((value & SOR_TEST_ATTACHED) != 0)
1021			return 0;
1022
1023		usleep_range(25, 100);
1024	}
1025
1026	return -ETIMEDOUT;
1027}
1028
1029static int tegra_sor_wakeup(struct tegra_sor *sor)
1030{
1031	unsigned long value, timeout;
1032
1033	timeout = jiffies + msecs_to_jiffies(250);
1034
1035	/* wait for head to wake up */
1036	while (time_before(jiffies, timeout)) {
1037		value = tegra_sor_readl(sor, SOR_TEST);
1038		value &= SOR_TEST_HEAD_MODE_MASK;
1039
1040		if (value == SOR_TEST_HEAD_MODE_AWAKE)
1041			return 0;
1042
1043		usleep_range(25, 100);
1044	}
1045
1046	return -ETIMEDOUT;
1047}
1048
1049static int tegra_sor_power_up(struct tegra_sor *sor, unsigned long timeout)
1050{
1051	u32 value;
1052
1053	value = tegra_sor_readl(sor, SOR_PWR);
1054	value |= SOR_PWR_TRIGGER | SOR_PWR_NORMAL_STATE_PU;
1055	tegra_sor_writel(sor, value, SOR_PWR);
1056
1057	timeout = jiffies + msecs_to_jiffies(timeout);
1058
1059	while (time_before(jiffies, timeout)) {
1060		value = tegra_sor_readl(sor, SOR_PWR);
1061		if ((value & SOR_PWR_TRIGGER) == 0)
1062			return 0;
1063
1064		usleep_range(25, 100);
1065	}
1066
1067	return -ETIMEDOUT;
1068}
1069
1070struct tegra_sor_params {
1071	/* number of link clocks per line */
1072	unsigned int num_clocks;
1073	/* ratio between input and output */
1074	u64 ratio;
1075	/* precision factor */
1076	u64 precision;
1077
1078	unsigned int active_polarity;
1079	unsigned int active_count;
1080	unsigned int active_frac;
1081	unsigned int tu_size;
1082	unsigned int error;
1083};
1084
1085static int tegra_sor_compute_params(struct tegra_sor *sor,
1086				    struct tegra_sor_params *params,
1087				    unsigned int tu_size)
1088{
1089	u64 active_sym, active_count, frac, approx;
1090	u32 active_polarity, active_frac = 0;
1091	const u64 f = params->precision;
1092	s64 error;
1093
1094	active_sym = params->ratio * tu_size;
1095	active_count = div_u64(active_sym, f) * f;
1096	frac = active_sym - active_count;
1097
1098	/* fraction < 0.5 */
1099	if (frac >= (f / 2)) {
1100		active_polarity = 1;
1101		frac = f - frac;
1102	} else {
1103		active_polarity = 0;
1104	}
1105
1106	if (frac != 0) {
1107		frac = div_u64(f * f,  frac); /* 1/fraction */
1108		if (frac <= (15 * f)) {
1109			active_frac = div_u64(frac, f);
1110
1111			/* round up */
1112			if (active_polarity)
1113				active_frac++;
1114		} else {
1115			active_frac = active_polarity ? 1 : 15;
1116		}
1117	}
1118
1119	if (active_frac == 1)
1120		active_polarity = 0;
1121
1122	if (active_polarity == 1) {
1123		if (active_frac) {
1124			approx = active_count + (active_frac * (f - 1)) * f;
1125			approx = div_u64(approx, active_frac * f);
1126		} else {
1127			approx = active_count + f;
1128		}
1129	} else {
1130		if (active_frac)
1131			approx = active_count + div_u64(f, active_frac);
1132		else
1133			approx = active_count;
1134	}
1135
1136	error = div_s64(active_sym - approx, tu_size);
1137	error *= params->num_clocks;
1138
1139	if (error <= 0 && abs(error) < params->error) {
1140		params->active_count = div_u64(active_count, f);
1141		params->active_polarity = active_polarity;
1142		params->active_frac = active_frac;
1143		params->error = abs(error);
1144		params->tu_size = tu_size;
1145
1146		if (error == 0)
1147			return true;
1148	}
1149
1150	return false;
1151}
1152
1153static int tegra_sor_compute_config(struct tegra_sor *sor,
1154				    const struct drm_display_mode *mode,
1155				    struct tegra_sor_config *config,
1156				    struct drm_dp_link *link)
1157{
1158	const u64 f = 100000, link_rate = link->rate * 1000;
1159	const u64 pclk = (u64)mode->clock * 1000;
1160	u64 input, output, watermark, num;
1161	struct tegra_sor_params params;
1162	u32 num_syms_per_line;
1163	unsigned int i;
1164
1165	if (!link_rate || !link->lanes || !pclk || !config->bits_per_pixel)
1166		return -EINVAL;
1167
 
1168	input = pclk * config->bits_per_pixel;
1169	output = link_rate * 8 * link->lanes;
1170
1171	if (input >= output)
1172		return -ERANGE;
1173
1174	memset(&params, 0, sizeof(params));
1175	params.ratio = div64_u64(input * f, output);
1176	params.num_clocks = div_u64(link_rate * mode->hdisplay, pclk);
1177	params.precision = f;
1178	params.error = 64 * f;
1179	params.tu_size = 64;
1180
1181	for (i = params.tu_size; i >= 32; i--)
1182		if (tegra_sor_compute_params(sor, &params, i))
1183			break;
1184
1185	if (params.active_frac == 0) {
1186		config->active_polarity = 0;
1187		config->active_count = params.active_count;
1188
1189		if (!params.active_polarity)
1190			config->active_count--;
1191
1192		config->tu_size = params.tu_size;
1193		config->active_frac = 1;
1194	} else {
1195		config->active_polarity = params.active_polarity;
1196		config->active_count = params.active_count;
1197		config->active_frac = params.active_frac;
1198		config->tu_size = params.tu_size;
1199	}
1200
1201	dev_dbg(sor->dev,
1202		"polarity: %d active count: %d tu size: %d active frac: %d\n",
1203		config->active_polarity, config->active_count,
1204		config->tu_size, config->active_frac);
1205
1206	watermark = params.ratio * config->tu_size * (f - params.ratio);
1207	watermark = div_u64(watermark, f);
1208
1209	watermark = div_u64(watermark + params.error, f);
1210	config->watermark = watermark + (config->bits_per_pixel / 8) + 2;
1211	num_syms_per_line = (mode->hdisplay * config->bits_per_pixel) *
1212			    (link->lanes * 8);
1213
1214	if (config->watermark > 30) {
1215		config->watermark = 30;
1216		dev_err(sor->dev,
1217			"unable to compute TU size, forcing watermark to %u\n",
1218			config->watermark);
1219	} else if (config->watermark > num_syms_per_line) {
1220		config->watermark = num_syms_per_line;
1221		dev_err(sor->dev, "watermark too high, forcing to %u\n",
1222			config->watermark);
1223	}
1224
1225	/* compute the number of symbols per horizontal blanking interval */
1226	num = ((mode->htotal - mode->hdisplay) - 7) * link_rate;
1227	config->hblank_symbols = div_u64(num, pclk);
1228
1229	if (link->caps.enhanced_framing)
1230		config->hblank_symbols -= 3;
1231
1232	config->hblank_symbols -= 12 / link->lanes;
1233
1234	/* compute the number of symbols per vertical blanking interval */
1235	num = (mode->hdisplay - 25) * link_rate;
1236	config->vblank_symbols = div_u64(num, pclk);
1237	config->vblank_symbols -= 36 / link->lanes + 4;
1238
1239	dev_dbg(sor->dev, "blank symbols: H:%u V:%u\n", config->hblank_symbols,
1240		config->vblank_symbols);
1241
1242	return 0;
1243}
1244
1245static void tegra_sor_apply_config(struct tegra_sor *sor,
1246				   const struct tegra_sor_config *config)
1247{
1248	u32 value;
1249
1250	value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
1251	value &= ~SOR_DP_LINKCTL_TU_SIZE_MASK;
1252	value |= SOR_DP_LINKCTL_TU_SIZE(config->tu_size);
1253	tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
1254
1255	value = tegra_sor_readl(sor, SOR_DP_CONFIG0);
1256	value &= ~SOR_DP_CONFIG_WATERMARK_MASK;
1257	value |= SOR_DP_CONFIG_WATERMARK(config->watermark);
1258
1259	value &= ~SOR_DP_CONFIG_ACTIVE_SYM_COUNT_MASK;
1260	value |= SOR_DP_CONFIG_ACTIVE_SYM_COUNT(config->active_count);
1261
1262	value &= ~SOR_DP_CONFIG_ACTIVE_SYM_FRAC_MASK;
1263	value |= SOR_DP_CONFIG_ACTIVE_SYM_FRAC(config->active_frac);
1264
1265	if (config->active_polarity)
1266		value |= SOR_DP_CONFIG_ACTIVE_SYM_POLARITY;
1267	else
1268		value &= ~SOR_DP_CONFIG_ACTIVE_SYM_POLARITY;
1269
1270	value |= SOR_DP_CONFIG_ACTIVE_SYM_ENABLE;
1271	value |= SOR_DP_CONFIG_DISPARITY_NEGATIVE;
1272	tegra_sor_writel(sor, value, SOR_DP_CONFIG0);
1273
1274	value = tegra_sor_readl(sor, SOR_DP_AUDIO_HBLANK_SYMBOLS);
1275	value &= ~SOR_DP_AUDIO_HBLANK_SYMBOLS_MASK;
1276	value |= config->hblank_symbols & 0xffff;
1277	tegra_sor_writel(sor, value, SOR_DP_AUDIO_HBLANK_SYMBOLS);
1278
1279	value = tegra_sor_readl(sor, SOR_DP_AUDIO_VBLANK_SYMBOLS);
1280	value &= ~SOR_DP_AUDIO_VBLANK_SYMBOLS_MASK;
1281	value |= config->vblank_symbols & 0xffff;
1282	tegra_sor_writel(sor, value, SOR_DP_AUDIO_VBLANK_SYMBOLS);
1283}
1284
1285static void tegra_sor_mode_set(struct tegra_sor *sor,
1286			       const struct drm_display_mode *mode,
1287			       struct tegra_sor_state *state)
1288{
1289	struct tegra_dc *dc = to_tegra_dc(sor->output.encoder.crtc);
1290	unsigned int vbe, vse, hbe, hse, vbs, hbs;
1291	u32 value;
1292
1293	value = tegra_sor_readl(sor, SOR_STATE1);
1294	value &= ~SOR_STATE_ASY_PIXELDEPTH_MASK;
1295	value &= ~SOR_STATE_ASY_CRC_MODE_MASK;
1296	value &= ~SOR_STATE_ASY_OWNER_MASK;
1297
1298	value |= SOR_STATE_ASY_CRC_MODE_COMPLETE |
1299		 SOR_STATE_ASY_OWNER(dc->pipe + 1);
1300
1301	if (mode->flags & DRM_MODE_FLAG_PHSYNC)
1302		value &= ~SOR_STATE_ASY_HSYNCPOL;
1303
1304	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1305		value |= SOR_STATE_ASY_HSYNCPOL;
1306
1307	if (mode->flags & DRM_MODE_FLAG_PVSYNC)
1308		value &= ~SOR_STATE_ASY_VSYNCPOL;
1309
1310	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1311		value |= SOR_STATE_ASY_VSYNCPOL;
1312
1313	switch (state->bpc) {
1314	case 16:
1315		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_48_444;
1316		break;
1317
1318	case 12:
1319		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_36_444;
1320		break;
1321
1322	case 10:
1323		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_30_444;
1324		break;
1325
1326	case 8:
1327		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_24_444;
1328		break;
1329
1330	case 6:
1331		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_18_444;
1332		break;
1333
1334	default:
1335		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_24_444;
1336		break;
1337	}
1338
1339	tegra_sor_writel(sor, value, SOR_STATE1);
1340
1341	/*
1342	 * TODO: The video timing programming below doesn't seem to match the
1343	 * register definitions.
1344	 */
1345
1346	value = ((mode->vtotal & 0x7fff) << 16) | (mode->htotal & 0x7fff);
1347	tegra_sor_writel(sor, value, sor->soc->regs->head_state1 + dc->pipe);
1348
1349	/* sync end = sync width - 1 */
1350	vse = mode->vsync_end - mode->vsync_start - 1;
1351	hse = mode->hsync_end - mode->hsync_start - 1;
1352
1353	value = ((vse & 0x7fff) << 16) | (hse & 0x7fff);
1354	tegra_sor_writel(sor, value, sor->soc->regs->head_state2 + dc->pipe);
1355
1356	/* blank end = sync end + back porch */
1357	vbe = vse + (mode->vtotal - mode->vsync_end);
1358	hbe = hse + (mode->htotal - mode->hsync_end);
1359
1360	value = ((vbe & 0x7fff) << 16) | (hbe & 0x7fff);
1361	tegra_sor_writel(sor, value, sor->soc->regs->head_state3 + dc->pipe);
1362
1363	/* blank start = blank end + active */
1364	vbs = vbe + mode->vdisplay;
1365	hbs = hbe + mode->hdisplay;
1366
1367	value = ((vbs & 0x7fff) << 16) | (hbs & 0x7fff);
1368	tegra_sor_writel(sor, value, sor->soc->regs->head_state4 + dc->pipe);
1369
1370	/* XXX interlacing support */
1371	tegra_sor_writel(sor, 0x001, sor->soc->regs->head_state5 + dc->pipe);
1372}
1373
1374static int tegra_sor_detach(struct tegra_sor *sor)
1375{
1376	unsigned long value, timeout;
1377
1378	/* switch to safe mode */
1379	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1380	value &= ~SOR_SUPER_STATE_MODE_NORMAL;
1381	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1382	tegra_sor_super_update(sor);
1383
1384	timeout = jiffies + msecs_to_jiffies(250);
1385
1386	while (time_before(jiffies, timeout)) {
1387		value = tegra_sor_readl(sor, SOR_PWR);
1388		if (value & SOR_PWR_MODE_SAFE)
1389			break;
1390	}
1391
1392	if ((value & SOR_PWR_MODE_SAFE) == 0)
1393		return -ETIMEDOUT;
1394
1395	/* go to sleep */
1396	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1397	value &= ~SOR_SUPER_STATE_HEAD_MODE_MASK;
1398	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1399	tegra_sor_super_update(sor);
1400
1401	/* detach */
1402	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1403	value &= ~SOR_SUPER_STATE_ATTACHED;
1404	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1405	tegra_sor_super_update(sor);
1406
1407	timeout = jiffies + msecs_to_jiffies(250);
1408
1409	while (time_before(jiffies, timeout)) {
1410		value = tegra_sor_readl(sor, SOR_TEST);
1411		if ((value & SOR_TEST_ATTACHED) == 0)
1412			break;
1413
1414		usleep_range(25, 100);
1415	}
1416
1417	if ((value & SOR_TEST_ATTACHED) != 0)
1418		return -ETIMEDOUT;
1419
1420	return 0;
1421}
1422
1423static int tegra_sor_power_down(struct tegra_sor *sor)
1424{
1425	unsigned long value, timeout;
1426	int err;
1427
1428	value = tegra_sor_readl(sor, SOR_PWR);
1429	value &= ~SOR_PWR_NORMAL_STATE_PU;
1430	value |= SOR_PWR_TRIGGER;
1431	tegra_sor_writel(sor, value, SOR_PWR);
1432
1433	timeout = jiffies + msecs_to_jiffies(250);
1434
1435	while (time_before(jiffies, timeout)) {
1436		value = tegra_sor_readl(sor, SOR_PWR);
1437		if ((value & SOR_PWR_TRIGGER) == 0)
1438			return 0;
1439
1440		usleep_range(25, 100);
1441	}
1442
1443	if ((value & SOR_PWR_TRIGGER) != 0)
1444		return -ETIMEDOUT;
1445
1446	/* switch to safe parent clock */
1447	err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
1448	if (err < 0) {
1449		dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
1450		return err;
1451	}
1452
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1453	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
1454	value |= SOR_PLL2_PORT_POWERDOWN;
1455	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
1456
1457	usleep_range(20, 100);
1458
1459	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
1460	value |= SOR_PLL0_VCOPD | SOR_PLL0_PWR;
1461	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
1462
1463	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
1464	value |= SOR_PLL2_SEQ_PLLCAPPD;
1465	value |= SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
1466	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
1467
1468	usleep_range(20, 100);
1469
1470	return 0;
1471}
1472
1473static int tegra_sor_crc_wait(struct tegra_sor *sor, unsigned long timeout)
1474{
1475	u32 value;
1476
1477	timeout = jiffies + msecs_to_jiffies(timeout);
1478
1479	while (time_before(jiffies, timeout)) {
1480		value = tegra_sor_readl(sor, SOR_CRCA);
1481		if (value & SOR_CRCA_VALID)
1482			return 0;
1483
1484		usleep_range(100, 200);
1485	}
1486
1487	return -ETIMEDOUT;
1488}
1489
1490static int tegra_sor_show_crc(struct seq_file *s, void *data)
1491{
1492	struct drm_info_node *node = s->private;
1493	struct tegra_sor *sor = node->info_ent->data;
1494	struct drm_crtc *crtc = sor->output.encoder.crtc;
1495	struct drm_device *drm = node->minor->dev;
1496	int err = 0;
1497	u32 value;
1498
1499	drm_modeset_lock_all(drm);
1500
1501	if (!crtc || !crtc->state->active) {
1502		err = -EBUSY;
1503		goto unlock;
1504	}
1505
1506	value = tegra_sor_readl(sor, SOR_STATE1);
1507	value &= ~SOR_STATE_ASY_CRC_MODE_MASK;
1508	tegra_sor_writel(sor, value, SOR_STATE1);
1509
1510	value = tegra_sor_readl(sor, SOR_CRC_CNTRL);
1511	value |= SOR_CRC_CNTRL_ENABLE;
1512	tegra_sor_writel(sor, value, SOR_CRC_CNTRL);
1513
1514	value = tegra_sor_readl(sor, SOR_TEST);
1515	value &= ~SOR_TEST_CRC_POST_SERIALIZE;
1516	tegra_sor_writel(sor, value, SOR_TEST);
1517
1518	err = tegra_sor_crc_wait(sor, 100);
1519	if (err < 0)
1520		goto unlock;
1521
1522	tegra_sor_writel(sor, SOR_CRCA_RESET, SOR_CRCA);
1523	value = tegra_sor_readl(sor, SOR_CRCB);
1524
1525	seq_printf(s, "%08x\n", value);
1526
1527unlock:
1528	drm_modeset_unlock_all(drm);
1529	return err;
1530}
1531
1532#define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1533
1534static const struct debugfs_reg32 tegra_sor_regs[] = {
1535	DEBUGFS_REG32(SOR_CTXSW),
1536	DEBUGFS_REG32(SOR_SUPER_STATE0),
1537	DEBUGFS_REG32(SOR_SUPER_STATE1),
1538	DEBUGFS_REG32(SOR_STATE0),
1539	DEBUGFS_REG32(SOR_STATE1),
1540	DEBUGFS_REG32(SOR_HEAD_STATE0(0)),
1541	DEBUGFS_REG32(SOR_HEAD_STATE0(1)),
1542	DEBUGFS_REG32(SOR_HEAD_STATE1(0)),
1543	DEBUGFS_REG32(SOR_HEAD_STATE1(1)),
1544	DEBUGFS_REG32(SOR_HEAD_STATE2(0)),
1545	DEBUGFS_REG32(SOR_HEAD_STATE2(1)),
1546	DEBUGFS_REG32(SOR_HEAD_STATE3(0)),
1547	DEBUGFS_REG32(SOR_HEAD_STATE3(1)),
1548	DEBUGFS_REG32(SOR_HEAD_STATE4(0)),
1549	DEBUGFS_REG32(SOR_HEAD_STATE4(1)),
1550	DEBUGFS_REG32(SOR_HEAD_STATE5(0)),
1551	DEBUGFS_REG32(SOR_HEAD_STATE5(1)),
1552	DEBUGFS_REG32(SOR_CRC_CNTRL),
1553	DEBUGFS_REG32(SOR_DP_DEBUG_MVID),
1554	DEBUGFS_REG32(SOR_CLK_CNTRL),
1555	DEBUGFS_REG32(SOR_CAP),
1556	DEBUGFS_REG32(SOR_PWR),
1557	DEBUGFS_REG32(SOR_TEST),
1558	DEBUGFS_REG32(SOR_PLL0),
1559	DEBUGFS_REG32(SOR_PLL1),
1560	DEBUGFS_REG32(SOR_PLL2),
1561	DEBUGFS_REG32(SOR_PLL3),
1562	DEBUGFS_REG32(SOR_CSTM),
1563	DEBUGFS_REG32(SOR_LVDS),
1564	DEBUGFS_REG32(SOR_CRCA),
1565	DEBUGFS_REG32(SOR_CRCB),
1566	DEBUGFS_REG32(SOR_BLANK),
1567	DEBUGFS_REG32(SOR_SEQ_CTL),
1568	DEBUGFS_REG32(SOR_LANE_SEQ_CTL),
1569	DEBUGFS_REG32(SOR_SEQ_INST(0)),
1570	DEBUGFS_REG32(SOR_SEQ_INST(1)),
1571	DEBUGFS_REG32(SOR_SEQ_INST(2)),
1572	DEBUGFS_REG32(SOR_SEQ_INST(3)),
1573	DEBUGFS_REG32(SOR_SEQ_INST(4)),
1574	DEBUGFS_REG32(SOR_SEQ_INST(5)),
1575	DEBUGFS_REG32(SOR_SEQ_INST(6)),
1576	DEBUGFS_REG32(SOR_SEQ_INST(7)),
1577	DEBUGFS_REG32(SOR_SEQ_INST(8)),
1578	DEBUGFS_REG32(SOR_SEQ_INST(9)),
1579	DEBUGFS_REG32(SOR_SEQ_INST(10)),
1580	DEBUGFS_REG32(SOR_SEQ_INST(11)),
1581	DEBUGFS_REG32(SOR_SEQ_INST(12)),
1582	DEBUGFS_REG32(SOR_SEQ_INST(13)),
1583	DEBUGFS_REG32(SOR_SEQ_INST(14)),
1584	DEBUGFS_REG32(SOR_SEQ_INST(15)),
1585	DEBUGFS_REG32(SOR_PWM_DIV),
1586	DEBUGFS_REG32(SOR_PWM_CTL),
1587	DEBUGFS_REG32(SOR_VCRC_A0),
1588	DEBUGFS_REG32(SOR_VCRC_A1),
1589	DEBUGFS_REG32(SOR_VCRC_B0),
1590	DEBUGFS_REG32(SOR_VCRC_B1),
1591	DEBUGFS_REG32(SOR_CCRC_A0),
1592	DEBUGFS_REG32(SOR_CCRC_A1),
1593	DEBUGFS_REG32(SOR_CCRC_B0),
1594	DEBUGFS_REG32(SOR_CCRC_B1),
1595	DEBUGFS_REG32(SOR_EDATA_A0),
1596	DEBUGFS_REG32(SOR_EDATA_A1),
1597	DEBUGFS_REG32(SOR_EDATA_B0),
1598	DEBUGFS_REG32(SOR_EDATA_B1),
1599	DEBUGFS_REG32(SOR_COUNT_A0),
1600	DEBUGFS_REG32(SOR_COUNT_A1),
1601	DEBUGFS_REG32(SOR_COUNT_B0),
1602	DEBUGFS_REG32(SOR_COUNT_B1),
1603	DEBUGFS_REG32(SOR_DEBUG_A0),
1604	DEBUGFS_REG32(SOR_DEBUG_A1),
1605	DEBUGFS_REG32(SOR_DEBUG_B0),
1606	DEBUGFS_REG32(SOR_DEBUG_B1),
1607	DEBUGFS_REG32(SOR_TRIG),
1608	DEBUGFS_REG32(SOR_MSCHECK),
1609	DEBUGFS_REG32(SOR_XBAR_CTRL),
1610	DEBUGFS_REG32(SOR_XBAR_POL),
1611	DEBUGFS_REG32(SOR_DP_LINKCTL0),
1612	DEBUGFS_REG32(SOR_DP_LINKCTL1),
1613	DEBUGFS_REG32(SOR_LANE_DRIVE_CURRENT0),
1614	DEBUGFS_REG32(SOR_LANE_DRIVE_CURRENT1),
1615	DEBUGFS_REG32(SOR_LANE4_DRIVE_CURRENT0),
1616	DEBUGFS_REG32(SOR_LANE4_DRIVE_CURRENT1),
1617	DEBUGFS_REG32(SOR_LANE_PREEMPHASIS0),
1618	DEBUGFS_REG32(SOR_LANE_PREEMPHASIS1),
1619	DEBUGFS_REG32(SOR_LANE4_PREEMPHASIS0),
1620	DEBUGFS_REG32(SOR_LANE4_PREEMPHASIS1),
1621	DEBUGFS_REG32(SOR_LANE_POSTCURSOR0),
1622	DEBUGFS_REG32(SOR_LANE_POSTCURSOR1),
1623	DEBUGFS_REG32(SOR_DP_CONFIG0),
1624	DEBUGFS_REG32(SOR_DP_CONFIG1),
1625	DEBUGFS_REG32(SOR_DP_MN0),
1626	DEBUGFS_REG32(SOR_DP_MN1),
1627	DEBUGFS_REG32(SOR_DP_PADCTL0),
1628	DEBUGFS_REG32(SOR_DP_PADCTL1),
1629	DEBUGFS_REG32(SOR_DP_PADCTL2),
1630	DEBUGFS_REG32(SOR_DP_DEBUG0),
1631	DEBUGFS_REG32(SOR_DP_DEBUG1),
1632	DEBUGFS_REG32(SOR_DP_SPARE0),
1633	DEBUGFS_REG32(SOR_DP_SPARE1),
1634	DEBUGFS_REG32(SOR_DP_AUDIO_CTRL),
1635	DEBUGFS_REG32(SOR_DP_AUDIO_HBLANK_SYMBOLS),
1636	DEBUGFS_REG32(SOR_DP_AUDIO_VBLANK_SYMBOLS),
1637	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_HEADER),
1638	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK0),
1639	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK1),
1640	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK2),
1641	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK3),
1642	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK4),
1643	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK5),
1644	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK6),
1645	DEBUGFS_REG32(SOR_DP_TPG),
1646	DEBUGFS_REG32(SOR_DP_TPG_CONFIG),
1647	DEBUGFS_REG32(SOR_DP_LQ_CSTM0),
1648	DEBUGFS_REG32(SOR_DP_LQ_CSTM1),
1649	DEBUGFS_REG32(SOR_DP_LQ_CSTM2),
1650};
1651
1652static int tegra_sor_show_regs(struct seq_file *s, void *data)
1653{
1654	struct drm_info_node *node = s->private;
1655	struct tegra_sor *sor = node->info_ent->data;
1656	struct drm_crtc *crtc = sor->output.encoder.crtc;
1657	struct drm_device *drm = node->minor->dev;
1658	unsigned int i;
1659	int err = 0;
1660
1661	drm_modeset_lock_all(drm);
1662
1663	if (!crtc || !crtc->state->active) {
1664		err = -EBUSY;
1665		goto unlock;
1666	}
1667
1668	for (i = 0; i < ARRAY_SIZE(tegra_sor_regs); i++) {
1669		unsigned int offset = tegra_sor_regs[i].offset;
1670
1671		seq_printf(s, "%-38s %#05x %08x\n", tegra_sor_regs[i].name,
1672			   offset, tegra_sor_readl(sor, offset));
1673	}
1674
1675unlock:
1676	drm_modeset_unlock_all(drm);
1677	return err;
1678}
1679
1680static const struct drm_info_list debugfs_files[] = {
1681	{ "crc", tegra_sor_show_crc, 0, NULL },
1682	{ "regs", tegra_sor_show_regs, 0, NULL },
1683};
1684
1685static int tegra_sor_late_register(struct drm_connector *connector)
1686{
1687	struct tegra_output *output = connector_to_output(connector);
1688	unsigned int i, count = ARRAY_SIZE(debugfs_files);
1689	struct drm_minor *minor = connector->dev->primary;
1690	struct dentry *root = connector->debugfs_entry;
1691	struct tegra_sor *sor = to_sor(output);
 
1692
1693	sor->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1694				     GFP_KERNEL);
1695	if (!sor->debugfs_files)
1696		return -ENOMEM;
1697
1698	for (i = 0; i < count; i++)
1699		sor->debugfs_files[i].data = sor;
1700
1701	drm_debugfs_create_files(sor->debugfs_files, count, root, minor);
 
 
1702
1703	return 0;
 
 
 
 
 
 
1704}
1705
1706static void tegra_sor_early_unregister(struct drm_connector *connector)
1707{
1708	struct tegra_output *output = connector_to_output(connector);
1709	unsigned int count = ARRAY_SIZE(debugfs_files);
1710	struct tegra_sor *sor = to_sor(output);
1711
1712	drm_debugfs_remove_files(sor->debugfs_files, count,
1713				 connector->debugfs_entry,
1714				 connector->dev->primary);
1715	kfree(sor->debugfs_files);
1716	sor->debugfs_files = NULL;
1717}
1718
1719static void tegra_sor_connector_reset(struct drm_connector *connector)
1720{
1721	struct tegra_sor_state *state;
1722
1723	state = kzalloc(sizeof(*state), GFP_KERNEL);
1724	if (!state)
1725		return;
1726
1727	if (connector->state) {
1728		__drm_atomic_helper_connector_destroy_state(connector->state);
1729		kfree(connector->state);
1730	}
1731
1732	__drm_atomic_helper_connector_reset(connector, &state->base);
1733}
1734
1735static enum drm_connector_status
1736tegra_sor_connector_detect(struct drm_connector *connector, bool force)
1737{
1738	struct tegra_output *output = connector_to_output(connector);
1739	struct tegra_sor *sor = to_sor(output);
1740
1741	if (sor->aux)
1742		return drm_dp_aux_detect(sor->aux);
1743
1744	return tegra_output_connector_detect(connector, force);
1745}
1746
1747static struct drm_connector_state *
1748tegra_sor_connector_duplicate_state(struct drm_connector *connector)
1749{
1750	struct tegra_sor_state *state = to_sor_state(connector->state);
1751	struct tegra_sor_state *copy;
1752
1753	copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
1754	if (!copy)
1755		return NULL;
1756
1757	__drm_atomic_helper_connector_duplicate_state(connector, &copy->base);
1758
1759	return &copy->base;
1760}
1761
1762static const struct drm_connector_funcs tegra_sor_connector_funcs = {
1763	.reset = tegra_sor_connector_reset,
1764	.detect = tegra_sor_connector_detect,
1765	.fill_modes = drm_helper_probe_single_connector_modes,
1766	.destroy = tegra_output_connector_destroy,
1767	.atomic_duplicate_state = tegra_sor_connector_duplicate_state,
1768	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
1769	.late_register = tegra_sor_late_register,
1770	.early_unregister = tegra_sor_early_unregister,
1771};
1772
1773static int tegra_sor_connector_get_modes(struct drm_connector *connector)
1774{
1775	struct tegra_output *output = connector_to_output(connector);
1776	struct tegra_sor *sor = to_sor(output);
1777	int err;
1778
1779	if (sor->aux)
1780		drm_dp_aux_enable(sor->aux);
1781
1782	err = tegra_output_connector_get_modes(connector);
1783
1784	if (sor->aux)
1785		drm_dp_aux_disable(sor->aux);
1786
1787	return err;
1788}
1789
1790static enum drm_mode_status
1791tegra_sor_connector_mode_valid(struct drm_connector *connector,
1792			       struct drm_display_mode *mode)
1793{
1794	return MODE_OK;
1795}
1796
1797static const struct drm_connector_helper_funcs tegra_sor_connector_helper_funcs = {
1798	.get_modes = tegra_sor_connector_get_modes,
1799	.mode_valid = tegra_sor_connector_mode_valid,
1800};
1801
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1802static int
1803tegra_sor_encoder_atomic_check(struct drm_encoder *encoder,
1804			       struct drm_crtc_state *crtc_state,
1805			       struct drm_connector_state *conn_state)
1806{
1807	struct tegra_output *output = encoder_to_output(encoder);
1808	struct tegra_sor_state *state = to_sor_state(conn_state);
1809	struct tegra_dc *dc = to_tegra_dc(conn_state->crtc);
1810	unsigned long pclk = crtc_state->mode.clock * 1000;
1811	struct tegra_sor *sor = to_sor(output);
1812	struct drm_display_info *info;
1813	int err;
1814
1815	info = &output->connector.display_info;
1816
1817	/*
1818	 * For HBR2 modes, the SOR brick needs to use the x20 multiplier, so
1819	 * the pixel clock must be corrected accordingly.
1820	 */
1821	if (pclk >= 340000000) {
1822		state->link_speed = 20;
1823		state->pclk = pclk / 2;
1824	} else {
1825		state->link_speed = 10;
1826		state->pclk = pclk;
1827	}
1828
1829	err = tegra_dc_state_setup_clock(dc, crtc_state, sor->clk_parent,
1830					 pclk, 0);
1831	if (err < 0) {
1832		dev_err(output->dev, "failed to setup CRTC state: %d\n", err);
1833		return err;
1834	}
1835
1836	switch (info->bpc) {
1837	case 8:
1838	case 6:
1839		state->bpc = info->bpc;
1840		break;
1841
1842	default:
1843		DRM_DEBUG_KMS("%u bits-per-color not supported\n", info->bpc);
1844		state->bpc = 8;
1845		break;
1846	}
1847
1848	return 0;
1849}
1850
 
 
 
 
 
 
1851static inline u32 tegra_sor_hdmi_subpack(const u8 *ptr, size_t size)
1852{
1853	u32 value = 0;
1854	size_t i;
1855
1856	for (i = size; i > 0; i--)
1857		value = (value << 8) | ptr[i - 1];
1858
1859	return value;
1860}
1861
1862static void tegra_sor_hdmi_write_infopack(struct tegra_sor *sor,
1863					  const void *data, size_t size)
1864{
1865	const u8 *ptr = data;
1866	unsigned long offset;
1867	size_t i, j;
1868	u32 value;
1869
1870	switch (ptr[0]) {
1871	case HDMI_INFOFRAME_TYPE_AVI:
1872		offset = SOR_HDMI_AVI_INFOFRAME_HEADER;
1873		break;
1874
1875	case HDMI_INFOFRAME_TYPE_AUDIO:
1876		offset = SOR_HDMI_AUDIO_INFOFRAME_HEADER;
1877		break;
1878
1879	case HDMI_INFOFRAME_TYPE_VENDOR:
1880		offset = SOR_HDMI_VSI_INFOFRAME_HEADER;
1881		break;
1882
1883	default:
1884		dev_err(sor->dev, "unsupported infoframe type: %02x\n",
1885			ptr[0]);
1886		return;
1887	}
1888
1889	value = INFOFRAME_HEADER_TYPE(ptr[0]) |
1890		INFOFRAME_HEADER_VERSION(ptr[1]) |
1891		INFOFRAME_HEADER_LEN(ptr[2]);
1892	tegra_sor_writel(sor, value, offset);
1893	offset++;
1894
1895	/*
1896	 * Each subpack contains 7 bytes, divided into:
1897	 * - subpack_low: bytes 0 - 3
1898	 * - subpack_high: bytes 4 - 6 (with byte 7 padded to 0x00)
1899	 */
1900	for (i = 3, j = 0; i < size; i += 7, j += 8) {
1901		size_t rem = size - i, num = min_t(size_t, rem, 4);
1902
1903		value = tegra_sor_hdmi_subpack(&ptr[i], num);
1904		tegra_sor_writel(sor, value, offset++);
1905
1906		num = min_t(size_t, rem - num, 3);
1907
1908		value = tegra_sor_hdmi_subpack(&ptr[i + 4], num);
1909		tegra_sor_writel(sor, value, offset++);
1910	}
1911}
1912
1913static int
1914tegra_sor_hdmi_setup_avi_infoframe(struct tegra_sor *sor,
1915				   const struct drm_display_mode *mode)
1916{
1917	u8 buffer[HDMI_INFOFRAME_SIZE(AVI)];
1918	struct hdmi_avi_infoframe frame;
1919	u32 value;
1920	int err;
1921
1922	/* disable AVI infoframe */
1923	value = tegra_sor_readl(sor, SOR_HDMI_AVI_INFOFRAME_CTRL);
1924	value &= ~INFOFRAME_CTRL_SINGLE;
1925	value &= ~INFOFRAME_CTRL_OTHER;
1926	value &= ~INFOFRAME_CTRL_ENABLE;
1927	tegra_sor_writel(sor, value, SOR_HDMI_AVI_INFOFRAME_CTRL);
1928
1929	err = drm_hdmi_avi_infoframe_from_display_mode(&frame,
1930						       &sor->output.connector, mode);
1931	if (err < 0) {
1932		dev_err(sor->dev, "failed to setup AVI infoframe: %d\n", err);
1933		return err;
1934	}
1935
1936	err = hdmi_avi_infoframe_pack(&frame, buffer, sizeof(buffer));
1937	if (err < 0) {
1938		dev_err(sor->dev, "failed to pack AVI infoframe: %d\n", err);
1939		return err;
1940	}
1941
1942	tegra_sor_hdmi_write_infopack(sor, buffer, err);
1943
1944	/* enable AVI infoframe */
1945	value = tegra_sor_readl(sor, SOR_HDMI_AVI_INFOFRAME_CTRL);
1946	value |= INFOFRAME_CTRL_CHECKSUM_ENABLE;
1947	value |= INFOFRAME_CTRL_ENABLE;
1948	tegra_sor_writel(sor, value, SOR_HDMI_AVI_INFOFRAME_CTRL);
1949
1950	return 0;
1951}
1952
1953static void tegra_sor_write_eld(struct tegra_sor *sor)
1954{
1955	size_t length = drm_eld_size(sor->output.connector.eld), i;
1956
1957	for (i = 0; i < length; i++)
1958		tegra_sor_writel(sor, i << 8 | sor->output.connector.eld[i],
1959				 SOR_AUDIO_HDA_ELD_BUFWR);
1960
1961	/*
1962	 * The HDA codec will always report an ELD buffer size of 96 bytes and
1963	 * the HDA codec driver will check that each byte read from the buffer
1964	 * is valid. Therefore every byte must be written, even if no 96 bytes
1965	 * were parsed from EDID.
1966	 */
1967	for (i = length; i < 96; i++)
1968		tegra_sor_writel(sor, i << 8 | 0, SOR_AUDIO_HDA_ELD_BUFWR);
1969}
1970
1971static void tegra_sor_audio_prepare(struct tegra_sor *sor)
1972{
1973	u32 value;
1974
1975	/*
1976	 * Enable and unmask the HDA codec SCRATCH0 register interrupt. This
1977	 * is used for interoperability between the HDA codec driver and the
1978	 * HDMI/DP driver.
1979	 */
1980	value = SOR_INT_CODEC_SCRATCH1 | SOR_INT_CODEC_SCRATCH0;
1981	tegra_sor_writel(sor, value, SOR_INT_ENABLE);
1982	tegra_sor_writel(sor, value, SOR_INT_MASK);
1983
1984	tegra_sor_write_eld(sor);
1985
1986	value = SOR_AUDIO_HDA_PRESENSE_ELDV | SOR_AUDIO_HDA_PRESENSE_PD;
1987	tegra_sor_writel(sor, value, SOR_AUDIO_HDA_PRESENSE);
1988}
1989
1990static void tegra_sor_audio_unprepare(struct tegra_sor *sor)
1991{
1992	tegra_sor_writel(sor, 0, SOR_AUDIO_HDA_PRESENSE);
1993	tegra_sor_writel(sor, 0, SOR_INT_MASK);
1994	tegra_sor_writel(sor, 0, SOR_INT_ENABLE);
1995}
1996
1997static void tegra_sor_audio_enable(struct tegra_sor *sor)
1998{
1999	u32 value;
2000
2001	value = tegra_sor_readl(sor, SOR_AUDIO_CNTRL);
2002
2003	/* select HDA audio input */
2004	value &= ~SOR_AUDIO_CNTRL_SOURCE_SELECT(SOURCE_SELECT_MASK);
2005	value |= SOR_AUDIO_CNTRL_SOURCE_SELECT(SOURCE_SELECT_HDA);
2006
2007	/* inject null samples */
2008	if (sor->format.channels != 2)
2009		value &= ~SOR_AUDIO_CNTRL_INJECT_NULLSMPL;
2010	else
2011		value |= SOR_AUDIO_CNTRL_INJECT_NULLSMPL;
2012
2013	value |= SOR_AUDIO_CNTRL_AFIFO_FLUSH;
2014
2015	tegra_sor_writel(sor, value, SOR_AUDIO_CNTRL);
2016
2017	/* enable advertising HBR capability */
2018	tegra_sor_writel(sor, SOR_AUDIO_SPARE_HBR_ENABLE, SOR_AUDIO_SPARE);
2019}
2020
2021static int tegra_sor_hdmi_enable_audio_infoframe(struct tegra_sor *sor)
2022{
2023	u8 buffer[HDMI_INFOFRAME_SIZE(AUDIO)];
2024	struct hdmi_audio_infoframe frame;
2025	u32 value;
2026	int err;
2027
2028	err = hdmi_audio_infoframe_init(&frame);
2029	if (err < 0) {
2030		dev_err(sor->dev, "failed to setup audio infoframe: %d\n", err);
2031		return err;
2032	}
2033
2034	frame.channels = sor->format.channels;
2035
2036	err = hdmi_audio_infoframe_pack(&frame, buffer, sizeof(buffer));
2037	if (err < 0) {
2038		dev_err(sor->dev, "failed to pack audio infoframe: %d\n", err);
2039		return err;
2040	}
2041
2042	tegra_sor_hdmi_write_infopack(sor, buffer, err);
2043
2044	value = tegra_sor_readl(sor, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2045	value |= INFOFRAME_CTRL_CHECKSUM_ENABLE;
2046	value |= INFOFRAME_CTRL_ENABLE;
2047	tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2048
2049	return 0;
2050}
2051
2052static void tegra_sor_hdmi_audio_enable(struct tegra_sor *sor)
2053{
2054	u32 value;
2055
2056	tegra_sor_audio_enable(sor);
2057
2058	tegra_sor_writel(sor, 0, SOR_HDMI_ACR_CTRL);
2059
2060	value = SOR_HDMI_SPARE_ACR_PRIORITY_HIGH |
2061		SOR_HDMI_SPARE_CTS_RESET(1) |
2062		SOR_HDMI_SPARE_HW_CTS_ENABLE;
2063	tegra_sor_writel(sor, value, SOR_HDMI_SPARE);
2064
2065	/* enable HW CTS */
2066	value = SOR_HDMI_ACR_SUBPACK_LOW_SB1(0);
2067	tegra_sor_writel(sor, value, SOR_HDMI_ACR_0441_SUBPACK_LOW);
2068
2069	/* allow packet to be sent */
2070	value = SOR_HDMI_ACR_SUBPACK_HIGH_ENABLE;
2071	tegra_sor_writel(sor, value, SOR_HDMI_ACR_0441_SUBPACK_HIGH);
2072
2073	/* reset N counter and enable lookup */
2074	value = SOR_HDMI_AUDIO_N_RESET | SOR_HDMI_AUDIO_N_LOOKUP;
2075	tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_N);
2076
2077	value = (24000 * 4096) / (128 * sor->format.sample_rate / 1000);
2078	tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_0320);
2079	tegra_sor_writel(sor, 4096, SOR_AUDIO_NVAL_0320);
2080
2081	tegra_sor_writel(sor, 20000, SOR_AUDIO_AVAL_0441);
2082	tegra_sor_writel(sor, 4704, SOR_AUDIO_NVAL_0441);
2083
2084	tegra_sor_writel(sor, 20000, SOR_AUDIO_AVAL_0882);
2085	tegra_sor_writel(sor, 9408, SOR_AUDIO_NVAL_0882);
2086
2087	tegra_sor_writel(sor, 20000, SOR_AUDIO_AVAL_1764);
2088	tegra_sor_writel(sor, 18816, SOR_AUDIO_NVAL_1764);
2089
2090	value = (24000 * 6144) / (128 * sor->format.sample_rate / 1000);
2091	tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_0480);
2092	tegra_sor_writel(sor, 6144, SOR_AUDIO_NVAL_0480);
2093
2094	value = (24000 * 12288) / (128 * sor->format.sample_rate / 1000);
2095	tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_0960);
2096	tegra_sor_writel(sor, 12288, SOR_AUDIO_NVAL_0960);
2097
2098	value = (24000 * 24576) / (128 * sor->format.sample_rate / 1000);
2099	tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_1920);
2100	tegra_sor_writel(sor, 24576, SOR_AUDIO_NVAL_1920);
2101
2102	value = tegra_sor_readl(sor, SOR_HDMI_AUDIO_N);
2103	value &= ~SOR_HDMI_AUDIO_N_RESET;
2104	tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_N);
2105
2106	tegra_sor_hdmi_enable_audio_infoframe(sor);
2107}
2108
2109static void tegra_sor_hdmi_disable_audio_infoframe(struct tegra_sor *sor)
2110{
2111	u32 value;
2112
2113	value = tegra_sor_readl(sor, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2114	value &= ~INFOFRAME_CTRL_ENABLE;
2115	tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2116}
2117
2118static void tegra_sor_hdmi_audio_disable(struct tegra_sor *sor)
2119{
2120	tegra_sor_hdmi_disable_audio_infoframe(sor);
2121}
2122
2123static struct tegra_sor_hdmi_settings *
2124tegra_sor_hdmi_find_settings(struct tegra_sor *sor, unsigned long frequency)
2125{
2126	unsigned int i;
2127
2128	for (i = 0; i < sor->num_settings; i++)
2129		if (frequency <= sor->settings[i].frequency)
2130			return &sor->settings[i];
2131
2132	return NULL;
2133}
2134
2135static void tegra_sor_hdmi_disable_scrambling(struct tegra_sor *sor)
2136{
2137	u32 value;
2138
2139	value = tegra_sor_readl(sor, SOR_HDMI2_CTRL);
2140	value &= ~SOR_HDMI2_CTRL_CLOCK_MODE_DIV_BY_4;
2141	value &= ~SOR_HDMI2_CTRL_SCRAMBLE;
2142	tegra_sor_writel(sor, value, SOR_HDMI2_CTRL);
2143}
2144
2145static void tegra_sor_hdmi_scdc_disable(struct tegra_sor *sor)
2146{
2147	drm_scdc_set_high_tmds_clock_ratio(&sor->output.connector, false);
2148	drm_scdc_set_scrambling(&sor->output.connector, false);
 
 
2149
2150	tegra_sor_hdmi_disable_scrambling(sor);
2151}
2152
2153static void tegra_sor_hdmi_scdc_stop(struct tegra_sor *sor)
2154{
2155	if (sor->scdc_enabled) {
2156		cancel_delayed_work_sync(&sor->scdc);
2157		tegra_sor_hdmi_scdc_disable(sor);
2158	}
2159}
2160
2161static void tegra_sor_hdmi_enable_scrambling(struct tegra_sor *sor)
2162{
2163	u32 value;
2164
2165	value = tegra_sor_readl(sor, SOR_HDMI2_CTRL);
2166	value |= SOR_HDMI2_CTRL_CLOCK_MODE_DIV_BY_4;
2167	value |= SOR_HDMI2_CTRL_SCRAMBLE;
2168	tegra_sor_writel(sor, value, SOR_HDMI2_CTRL);
2169}
2170
2171static void tegra_sor_hdmi_scdc_enable(struct tegra_sor *sor)
2172{
2173	drm_scdc_set_high_tmds_clock_ratio(&sor->output.connector, true);
2174	drm_scdc_set_scrambling(&sor->output.connector, true);
 
 
2175
2176	tegra_sor_hdmi_enable_scrambling(sor);
2177}
2178
2179static void tegra_sor_hdmi_scdc_work(struct work_struct *work)
2180{
2181	struct tegra_sor *sor = container_of(work, struct tegra_sor, scdc.work);
 
2182
2183	if (!drm_scdc_get_scrambling_status(&sor->output.connector)) {
2184		DRM_DEBUG_KMS("SCDC not scrambled\n");
2185		tegra_sor_hdmi_scdc_enable(sor);
2186	}
2187
2188	schedule_delayed_work(&sor->scdc, msecs_to_jiffies(5000));
2189}
2190
2191static void tegra_sor_hdmi_scdc_start(struct tegra_sor *sor)
2192{
2193	struct drm_scdc *scdc = &sor->output.connector.display_info.hdmi.scdc;
2194	struct drm_display_mode *mode;
2195
2196	mode = &sor->output.encoder.crtc->state->adjusted_mode;
2197
2198	if (mode->clock >= 340000 && scdc->supported) {
2199		schedule_delayed_work(&sor->scdc, msecs_to_jiffies(5000));
2200		tegra_sor_hdmi_scdc_enable(sor);
2201		sor->scdc_enabled = true;
2202	}
2203}
2204
2205static void tegra_sor_hdmi_disable(struct drm_encoder *encoder)
2206{
2207	struct tegra_output *output = encoder_to_output(encoder);
2208	struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2209	struct tegra_sor *sor = to_sor(output);
2210	u32 value;
2211	int err;
2212
2213	tegra_sor_audio_unprepare(sor);
2214	tegra_sor_hdmi_scdc_stop(sor);
2215
2216	err = tegra_sor_detach(sor);
2217	if (err < 0)
2218		dev_err(sor->dev, "failed to detach SOR: %d\n", err);
2219
2220	tegra_sor_writel(sor, 0, SOR_STATE1);
2221	tegra_sor_update(sor);
2222
2223	/* disable display to SOR clock */
2224	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2225
2226	if (!sor->soc->has_nvdisplay)
2227		value &= ~SOR1_TIMING_CYA;
2228
2229	value &= ~SOR_ENABLE(sor->index);
2230
2231	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2232
2233	tegra_dc_commit(dc);
2234
2235	err = tegra_sor_power_down(sor);
2236	if (err < 0)
2237		dev_err(sor->dev, "failed to power down SOR: %d\n", err);
2238
2239	err = tegra_io_pad_power_disable(sor->pad);
2240	if (err < 0)
2241		dev_err(sor->dev, "failed to power off I/O pad: %d\n", err);
2242
2243	host1x_client_suspend(&sor->client);
2244}
2245
2246static void tegra_sor_hdmi_enable(struct drm_encoder *encoder)
2247{
2248	struct tegra_output *output = encoder_to_output(encoder);
2249	unsigned int h_ref_to_sync = 1, pulse_start, max_ac;
2250	struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2251	struct tegra_sor_hdmi_settings *settings;
2252	struct tegra_sor *sor = to_sor(output);
2253	struct tegra_sor_state *state;
2254	struct drm_display_mode *mode;
2255	unsigned long rate, pclk;
2256	unsigned int div, i;
2257	u32 value;
2258	int err;
2259
2260	state = to_sor_state(output->connector.state);
2261	mode = &encoder->crtc->state->adjusted_mode;
2262	pclk = mode->clock * 1000;
2263
2264	err = host1x_client_resume(&sor->client);
2265	if (err < 0) {
2266		dev_err(sor->dev, "failed to resume: %d\n", err);
2267		return;
2268	}
2269
2270	/* switch to safe parent clock */
2271	err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
2272	if (err < 0) {
2273		dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
2274		return;
2275	}
2276
2277	div = clk_get_rate(sor->clk) / 1000000 * 4;
2278
2279	err = tegra_io_pad_power_enable(sor->pad);
2280	if (err < 0)
2281		dev_err(sor->dev, "failed to power on I/O pad: %d\n", err);
2282
2283	usleep_range(20, 100);
2284
2285	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2286	value &= ~SOR_PLL2_BANDGAP_POWERDOWN;
2287	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2288
2289	usleep_range(20, 100);
2290
2291	value = tegra_sor_readl(sor, sor->soc->regs->pll3);
2292	value &= ~SOR_PLL3_PLL_VDD_MODE_3V3;
2293	tegra_sor_writel(sor, value, sor->soc->regs->pll3);
2294
2295	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2296	value &= ~SOR_PLL0_VCOPD;
2297	value &= ~SOR_PLL0_PWR;
2298	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2299
2300	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2301	value &= ~SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
2302	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2303
2304	usleep_range(200, 400);
2305
2306	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2307	value &= ~SOR_PLL2_POWERDOWN_OVERRIDE;
2308	value &= ~SOR_PLL2_PORT_POWERDOWN;
2309	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2310
2311	usleep_range(20, 100);
2312
2313	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2314	value |= SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_0 |
2315		 SOR_DP_PADCTL_PD_TXD_1 | SOR_DP_PADCTL_PD_TXD_2;
2316	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2317
2318	while (true) {
2319		value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
2320		if ((value & SOR_LANE_SEQ_CTL_STATE_BUSY) == 0)
2321			break;
2322
2323		usleep_range(250, 1000);
2324	}
2325
2326	value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_DOWN |
2327		SOR_LANE_SEQ_CTL_POWER_STATE_UP | SOR_LANE_SEQ_CTL_DELAY(5);
2328	tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
2329
2330	while (true) {
2331		value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
2332		if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
2333			break;
2334
2335		usleep_range(250, 1000);
2336	}
2337
2338	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
2339	value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK;
2340	value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
2341
2342	if (mode->clock < 340000) {
2343		DRM_DEBUG_KMS("setting 2.7 GHz link speed\n");
2344		value |= SOR_CLK_CNTRL_DP_LINK_SPEED_G2_70;
2345	} else {
2346		DRM_DEBUG_KMS("setting 5.4 GHz link speed\n");
2347		value |= SOR_CLK_CNTRL_DP_LINK_SPEED_G5_40;
2348	}
2349
2350	value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK;
2351	tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
2352
2353	/* SOR pad PLL stabilization time */
2354	usleep_range(250, 1000);
2355
2356	value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
2357	value &= ~SOR_DP_LINKCTL_LANE_COUNT_MASK;
2358	value |= SOR_DP_LINKCTL_LANE_COUNT(4);
2359	tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
2360
2361	value = tegra_sor_readl(sor, SOR_DP_SPARE0);
2362	value &= ~SOR_DP_SPARE_DISP_VIDEO_PREAMBLE;
2363	value &= ~SOR_DP_SPARE_PANEL_INTERNAL;
2364	value &= ~SOR_DP_SPARE_SEQ_ENABLE;
2365	value &= ~SOR_DP_SPARE_MACRO_SOR_CLK;
2366	tegra_sor_writel(sor, value, SOR_DP_SPARE0);
2367
2368	value = SOR_SEQ_CTL_PU_PC(0) | SOR_SEQ_CTL_PU_PC_ALT(0) |
2369		SOR_SEQ_CTL_PD_PC(8) | SOR_SEQ_CTL_PD_PC_ALT(8);
2370	tegra_sor_writel(sor, value, SOR_SEQ_CTL);
2371
2372	value = SOR_SEQ_INST_DRIVE_PWM_OUT_LO | SOR_SEQ_INST_HALT |
2373		SOR_SEQ_INST_WAIT_VSYNC | SOR_SEQ_INST_WAIT(1);
2374	tegra_sor_writel(sor, value, SOR_SEQ_INST(0));
2375	tegra_sor_writel(sor, value, SOR_SEQ_INST(8));
2376
2377	if (!sor->soc->has_nvdisplay) {
2378		/* program the reference clock */
2379		value = SOR_REFCLK_DIV_INT(div) | SOR_REFCLK_DIV_FRAC(div);
2380		tegra_sor_writel(sor, value, SOR_REFCLK);
2381	}
2382
2383	/* XXX not in TRM */
2384	for (value = 0, i = 0; i < 5; i++)
2385		value |= SOR_XBAR_CTRL_LINK0_XSEL(i, sor->xbar_cfg[i]) |
2386			 SOR_XBAR_CTRL_LINK1_XSEL(i, i);
2387
2388	tegra_sor_writel(sor, 0x00000000, SOR_XBAR_POL);
2389	tegra_sor_writel(sor, value, SOR_XBAR_CTRL);
2390
2391	/*
2392	 * Switch the pad clock to the DP clock. Note that we cannot actually
2393	 * do this because Tegra186 and later don't support clk_set_parent()
2394	 * on the sorX_pad_clkout clocks. We already do the equivalent above
2395	 * using the DP_CLK_SEL mux of the SOR_CLK_CNTRL register.
2396	 */
2397#if 0
2398	err = clk_set_parent(sor->clk_pad, sor->clk_dp);
2399	if (err < 0) {
2400		dev_err(sor->dev, "failed to select pad parent clock: %d\n",
2401			err);
2402		return;
2403	}
2404#endif
2405
2406	/* switch the SOR clock to the pad clock */
2407	err = tegra_sor_set_parent_clock(sor, sor->clk_pad);
2408	if (err < 0) {
2409		dev_err(sor->dev, "failed to select SOR parent clock: %d\n",
2410			err);
2411		return;
2412	}
2413
2414	/* switch the output clock to the parent pixel clock */
2415	err = clk_set_parent(sor->clk, sor->clk_parent);
2416	if (err < 0) {
2417		dev_err(sor->dev, "failed to select output parent clock: %d\n",
2418			err);
2419		return;
2420	}
2421
2422	/* adjust clock rate for HDMI 2.0 modes */
2423	rate = clk_get_rate(sor->clk_parent);
2424
2425	if (mode->clock >= 340000)
2426		rate /= 2;
2427
2428	DRM_DEBUG_KMS("setting clock to %lu Hz, mode: %lu Hz\n", rate, pclk);
2429
2430	clk_set_rate(sor->clk, rate);
2431
2432	if (!sor->soc->has_nvdisplay) {
2433		value = SOR_INPUT_CONTROL_HDMI_SRC_SELECT(dc->pipe);
2434
2435		/* XXX is this the proper check? */
2436		if (mode->clock < 75000)
2437			value |= SOR_INPUT_CONTROL_ARM_VIDEO_RANGE_LIMITED;
2438
2439		tegra_sor_writel(sor, value, SOR_INPUT_CONTROL);
2440	}
2441
2442	max_ac = ((mode->htotal - mode->hdisplay) - SOR_REKEY - 18) / 32;
2443
2444	value = SOR_HDMI_CTRL_ENABLE | SOR_HDMI_CTRL_MAX_AC_PACKET(max_ac) |
2445		SOR_HDMI_CTRL_AUDIO_LAYOUT | SOR_HDMI_CTRL_REKEY(SOR_REKEY);
2446	tegra_sor_writel(sor, value, SOR_HDMI_CTRL);
2447
2448	if (!dc->soc->has_nvdisplay) {
2449		/* H_PULSE2 setup */
2450		pulse_start = h_ref_to_sync +
2451			      (mode->hsync_end - mode->hsync_start) +
2452			      (mode->htotal - mode->hsync_end) - 10;
2453
2454		value = PULSE_LAST_END_A | PULSE_QUAL_VACTIVE |
2455			PULSE_POLARITY_HIGH | PULSE_MODE_NORMAL;
2456		tegra_dc_writel(dc, value, DC_DISP_H_PULSE2_CONTROL);
2457
2458		value = PULSE_END(pulse_start + 8) | PULSE_START(pulse_start);
2459		tegra_dc_writel(dc, value, DC_DISP_H_PULSE2_POSITION_A);
2460
2461		value = tegra_dc_readl(dc, DC_DISP_DISP_SIGNAL_OPTIONS0);
2462		value |= H_PULSE2_ENABLE;
2463		tegra_dc_writel(dc, value, DC_DISP_DISP_SIGNAL_OPTIONS0);
2464	}
2465
2466	/* infoframe setup */
2467	err = tegra_sor_hdmi_setup_avi_infoframe(sor, mode);
2468	if (err < 0)
2469		dev_err(sor->dev, "failed to setup AVI infoframe: %d\n", err);
2470
2471	/* XXX HDMI audio support not implemented yet */
2472	tegra_sor_hdmi_disable_audio_infoframe(sor);
2473
2474	/* use single TMDS protocol */
2475	value = tegra_sor_readl(sor, SOR_STATE1);
2476	value &= ~SOR_STATE_ASY_PROTOCOL_MASK;
2477	value |= SOR_STATE_ASY_PROTOCOL_SINGLE_TMDS_A;
2478	tegra_sor_writel(sor, value, SOR_STATE1);
2479
2480	/* power up pad calibration */
2481	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2482	value &= ~SOR_DP_PADCTL_PAD_CAL_PD;
2483	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2484
2485	/* production settings */
2486	settings = tegra_sor_hdmi_find_settings(sor, mode->clock * 1000);
2487	if (!settings) {
2488		dev_err(sor->dev, "no settings for pixel clock %d Hz\n",
2489			mode->clock * 1000);
2490		return;
2491	}
2492
2493	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2494	value &= ~SOR_PLL0_ICHPMP_MASK;
2495	value &= ~SOR_PLL0_FILTER_MASK;
2496	value &= ~SOR_PLL0_VCOCAP_MASK;
2497	value |= SOR_PLL0_ICHPMP(settings->ichpmp);
2498	value |= SOR_PLL0_FILTER(settings->filter);
2499	value |= SOR_PLL0_VCOCAP(settings->vcocap);
2500	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2501
2502	/* XXX not in TRM */
2503	value = tegra_sor_readl(sor, sor->soc->regs->pll1);
2504	value &= ~SOR_PLL1_LOADADJ_MASK;
2505	value &= ~SOR_PLL1_TMDS_TERMADJ_MASK;
2506	value |= SOR_PLL1_LOADADJ(settings->loadadj);
2507	value |= SOR_PLL1_TMDS_TERMADJ(settings->tmds_termadj);
2508	value |= SOR_PLL1_TMDS_TERM;
2509	tegra_sor_writel(sor, value, sor->soc->regs->pll1);
2510
2511	value = tegra_sor_readl(sor, sor->soc->regs->pll3);
2512	value &= ~SOR_PLL3_BG_TEMP_COEF_MASK;
2513	value &= ~SOR_PLL3_BG_VREF_LEVEL_MASK;
2514	value &= ~SOR_PLL3_AVDD10_LEVEL_MASK;
2515	value &= ~SOR_PLL3_AVDD14_LEVEL_MASK;
2516	value |= SOR_PLL3_BG_TEMP_COEF(settings->bg_temp_coef);
2517	value |= SOR_PLL3_BG_VREF_LEVEL(settings->bg_vref_level);
2518	value |= SOR_PLL3_AVDD10_LEVEL(settings->avdd10_level);
2519	value |= SOR_PLL3_AVDD14_LEVEL(settings->avdd14_level);
2520	tegra_sor_writel(sor, value, sor->soc->regs->pll3);
2521
2522	value = settings->drive_current[3] << 24 |
2523		settings->drive_current[2] << 16 |
2524		settings->drive_current[1] <<  8 |
2525		settings->drive_current[0] <<  0;
2526	tegra_sor_writel(sor, value, SOR_LANE_DRIVE_CURRENT0);
2527
2528	value = settings->preemphasis[3] << 24 |
2529		settings->preemphasis[2] << 16 |
2530		settings->preemphasis[1] <<  8 |
2531		settings->preemphasis[0] <<  0;
2532	tegra_sor_writel(sor, value, SOR_LANE_PREEMPHASIS0);
2533
2534	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2535	value &= ~SOR_DP_PADCTL_TX_PU_MASK;
2536	value |= SOR_DP_PADCTL_TX_PU_ENABLE;
2537	value |= SOR_DP_PADCTL_TX_PU(settings->tx_pu_value);
2538	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2539
2540	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl2);
2541	value &= ~SOR_DP_PADCTL_SPAREPLL_MASK;
2542	value |= SOR_DP_PADCTL_SPAREPLL(settings->sparepll);
2543	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl2);
2544
2545	/* power down pad calibration */
2546	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2547	value |= SOR_DP_PADCTL_PAD_CAL_PD;
2548	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2549
2550	if (!dc->soc->has_nvdisplay) {
2551		/* miscellaneous display controller settings */
2552		value = VSYNC_H_POSITION(1);
2553		tegra_dc_writel(dc, value, DC_DISP_DISP_TIMING_OPTIONS);
2554	}
2555
2556	value = tegra_dc_readl(dc, DC_DISP_DISP_COLOR_CONTROL);
2557	value &= ~DITHER_CONTROL_MASK;
2558	value &= ~BASE_COLOR_SIZE_MASK;
2559
2560	switch (state->bpc) {
2561	case 6:
2562		value |= BASE_COLOR_SIZE_666;
2563		break;
2564
2565	case 8:
2566		value |= BASE_COLOR_SIZE_888;
2567		break;
2568
2569	case 10:
2570		value |= BASE_COLOR_SIZE_101010;
2571		break;
2572
2573	case 12:
2574		value |= BASE_COLOR_SIZE_121212;
2575		break;
2576
2577	default:
2578		WARN(1, "%u bits-per-color not supported\n", state->bpc);
2579		value |= BASE_COLOR_SIZE_888;
2580		break;
2581	}
2582
2583	tegra_dc_writel(dc, value, DC_DISP_DISP_COLOR_CONTROL);
2584
2585	/* XXX set display head owner */
2586	value = tegra_sor_readl(sor, SOR_STATE1);
2587	value &= ~SOR_STATE_ASY_OWNER_MASK;
2588	value |= SOR_STATE_ASY_OWNER(1 + dc->pipe);
2589	tegra_sor_writel(sor, value, SOR_STATE1);
2590
2591	err = tegra_sor_power_up(sor, 250);
2592	if (err < 0)
2593		dev_err(sor->dev, "failed to power up SOR: %d\n", err);
2594
2595	/* configure dynamic range of output */
2596	value = tegra_sor_readl(sor, sor->soc->regs->head_state0 + dc->pipe);
2597	value &= ~SOR_HEAD_STATE_RANGECOMPRESS_MASK;
2598	value &= ~SOR_HEAD_STATE_DYNRANGE_MASK;
2599	tegra_sor_writel(sor, value, sor->soc->regs->head_state0 + dc->pipe);
2600
2601	/* configure colorspace */
2602	value = tegra_sor_readl(sor, sor->soc->regs->head_state0 + dc->pipe);
2603	value &= ~SOR_HEAD_STATE_COLORSPACE_MASK;
2604	value |= SOR_HEAD_STATE_COLORSPACE_RGB;
2605	tegra_sor_writel(sor, value, sor->soc->regs->head_state0 + dc->pipe);
2606
2607	tegra_sor_mode_set(sor, mode, state);
2608
2609	tegra_sor_update(sor);
2610
2611	/* program preamble timing in SOR (XXX) */
2612	value = tegra_sor_readl(sor, SOR_DP_SPARE0);
2613	value &= ~SOR_DP_SPARE_DISP_VIDEO_PREAMBLE;
2614	tegra_sor_writel(sor, value, SOR_DP_SPARE0);
2615
2616	err = tegra_sor_attach(sor);
2617	if (err < 0)
2618		dev_err(sor->dev, "failed to attach SOR: %d\n", err);
2619
2620	/* enable display to SOR clock and generate HDMI preamble */
2621	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2622
2623	if (!sor->soc->has_nvdisplay)
2624		value |= SOR1_TIMING_CYA;
2625
2626	value |= SOR_ENABLE(sor->index);
2627
2628	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2629
2630	if (dc->soc->has_nvdisplay) {
2631		value = tegra_dc_readl(dc, DC_DISP_CORE_SOR_SET_CONTROL(sor->index));
2632		value &= ~PROTOCOL_MASK;
2633		value |= PROTOCOL_SINGLE_TMDS_A;
2634		tegra_dc_writel(dc, value, DC_DISP_CORE_SOR_SET_CONTROL(sor->index));
2635	}
2636
2637	tegra_dc_commit(dc);
2638
2639	err = tegra_sor_wakeup(sor);
2640	if (err < 0)
2641		dev_err(sor->dev, "failed to wakeup SOR: %d\n", err);
2642
2643	tegra_sor_hdmi_scdc_start(sor);
2644	tegra_sor_audio_prepare(sor);
2645}
2646
2647static const struct drm_encoder_helper_funcs tegra_sor_hdmi_helpers = {
2648	.disable = tegra_sor_hdmi_disable,
2649	.enable = tegra_sor_hdmi_enable,
2650	.atomic_check = tegra_sor_encoder_atomic_check,
2651};
2652
2653static void tegra_sor_dp_disable(struct drm_encoder *encoder)
2654{
2655	struct tegra_output *output = encoder_to_output(encoder);
2656	struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2657	struct tegra_sor *sor = to_sor(output);
2658	u32 value;
2659	int err;
2660
2661	if (output->panel)
2662		drm_panel_disable(output->panel);
2663
2664	/*
2665	 * Do not attempt to power down a DP link if we're not connected since
2666	 * the AUX transactions would just be timing out.
2667	 */
2668	if (output->connector.status != connector_status_disconnected) {
2669		err = drm_dp_link_power_down(sor->aux, &sor->link);
2670		if (err < 0)
2671			dev_err(sor->dev, "failed to power down link: %d\n",
2672				err);
2673	}
2674
2675	err = tegra_sor_detach(sor);
2676	if (err < 0)
2677		dev_err(sor->dev, "failed to detach SOR: %d\n", err);
2678
2679	tegra_sor_writel(sor, 0, SOR_STATE1);
2680	tegra_sor_update(sor);
2681
2682	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2683	value &= ~SOR_ENABLE(sor->index);
2684	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2685	tegra_dc_commit(dc);
2686
2687	value = tegra_sor_readl(sor, SOR_STATE1);
2688	value &= ~SOR_STATE_ASY_PROTOCOL_MASK;
2689	value &= ~SOR_STATE_ASY_SUBOWNER_MASK;
2690	value &= ~SOR_STATE_ASY_OWNER_MASK;
2691	tegra_sor_writel(sor, value, SOR_STATE1);
2692	tegra_sor_update(sor);
2693
2694	/* switch to safe parent clock */
2695	err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
2696	if (err < 0)
2697		dev_err(sor->dev, "failed to set safe clock: %d\n", err);
2698
2699	err = tegra_sor_power_down(sor);
2700	if (err < 0)
2701		dev_err(sor->dev, "failed to power down SOR: %d\n", err);
2702
2703	err = tegra_io_pad_power_disable(sor->pad);
2704	if (err < 0)
2705		dev_err(sor->dev, "failed to power off I/O pad: %d\n", err);
2706
2707	err = drm_dp_aux_disable(sor->aux);
2708	if (err < 0)
2709		dev_err(sor->dev, "failed disable DPAUX: %d\n", err);
2710
2711	if (output->panel)
2712		drm_panel_unprepare(output->panel);
2713
2714	host1x_client_suspend(&sor->client);
2715}
2716
2717static void tegra_sor_dp_enable(struct drm_encoder *encoder)
2718{
2719	struct tegra_output *output = encoder_to_output(encoder);
2720	struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2721	struct tegra_sor *sor = to_sor(output);
2722	struct tegra_sor_config config;
2723	struct tegra_sor_state *state;
2724	struct drm_display_mode *mode;
2725	struct drm_display_info *info;
2726	unsigned int i;
2727	u32 value;
2728	int err;
2729
2730	state = to_sor_state(output->connector.state);
2731	mode = &encoder->crtc->state->adjusted_mode;
2732	info = &output->connector.display_info;
2733
2734	err = host1x_client_resume(&sor->client);
2735	if (err < 0) {
2736		dev_err(sor->dev, "failed to resume: %d\n", err);
2737		return;
2738	}
2739
2740	/* switch to safe parent clock */
2741	err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
2742	if (err < 0)
2743		dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
2744
2745	err = tegra_io_pad_power_enable(sor->pad);
2746	if (err < 0)
2747		dev_err(sor->dev, "failed to power on LVDS rail: %d\n", err);
2748
2749	usleep_range(20, 100);
2750
2751	err = drm_dp_aux_enable(sor->aux);
2752	if (err < 0)
2753		dev_err(sor->dev, "failed to enable DPAUX: %d\n", err);
2754
2755	err = drm_dp_link_probe(sor->aux, &sor->link);
2756	if (err < 0)
2757		dev_err(sor->dev, "failed to probe DP link: %d\n", err);
2758
2759	tegra_sor_filter_rates(sor);
2760
2761	err = drm_dp_link_choose(&sor->link, mode, info);
2762	if (err < 0)
2763		dev_err(sor->dev, "failed to choose link: %d\n", err);
2764
2765	if (output->panel)
2766		drm_panel_prepare(output->panel);
2767
2768	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2769	value &= ~SOR_PLL2_BANDGAP_POWERDOWN;
2770	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2771
2772	usleep_range(20, 40);
2773
2774	value = tegra_sor_readl(sor, sor->soc->regs->pll3);
2775	value |= SOR_PLL3_PLL_VDD_MODE_3V3;
2776	tegra_sor_writel(sor, value, sor->soc->regs->pll3);
2777
2778	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2779	value &= ~(SOR_PLL0_VCOPD | SOR_PLL0_PWR);
2780	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2781
2782	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2783	value &= ~SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
2784	value |= SOR_PLL2_SEQ_PLLCAPPD;
2785	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2786
2787	usleep_range(200, 400);
2788
2789	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2790	value &= ~SOR_PLL2_POWERDOWN_OVERRIDE;
2791	value &= ~SOR_PLL2_PORT_POWERDOWN;
2792	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2793
2794	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
2795	value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
2796
2797	if (output->panel)
2798		value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK;
2799	else
2800		value |= SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_DPCLK;
2801
2802	tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
2803
2804	usleep_range(200, 400);
2805
2806	value = tegra_sor_readl(sor, SOR_DP_SPARE0);
2807	/* XXX not in TRM */
2808	if (output->panel)
2809		value |= SOR_DP_SPARE_PANEL_INTERNAL;
2810	else
2811		value &= ~SOR_DP_SPARE_PANEL_INTERNAL;
2812
2813	value |= SOR_DP_SPARE_SEQ_ENABLE;
2814	tegra_sor_writel(sor, value, SOR_DP_SPARE0);
2815
2816	/* XXX not in TRM */
2817	tegra_sor_writel(sor, 0, SOR_LVDS);
2818
2819	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2820	value &= ~SOR_PLL0_ICHPMP_MASK;
2821	value &= ~SOR_PLL0_VCOCAP_MASK;
2822	value |= SOR_PLL0_ICHPMP(0x1);
2823	value |= SOR_PLL0_VCOCAP(0x3);
2824	value |= SOR_PLL0_RESISTOR_EXT;
2825	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2826
2827	/* XXX not in TRM */
2828	for (value = 0, i = 0; i < 5; i++)
2829		value |= SOR_XBAR_CTRL_LINK0_XSEL(i, sor->soc->xbar_cfg[i]) |
2830			 SOR_XBAR_CTRL_LINK1_XSEL(i, i);
2831
2832	tegra_sor_writel(sor, 0x00000000, SOR_XBAR_POL);
2833	tegra_sor_writel(sor, value, SOR_XBAR_CTRL);
2834
2835	/*
2836	 * Switch the pad clock to the DP clock. Note that we cannot actually
2837	 * do this because Tegra186 and later don't support clk_set_parent()
2838	 * on the sorX_pad_clkout clocks. We already do the equivalent above
2839	 * using the DP_CLK_SEL mux of the SOR_CLK_CNTRL register.
2840	 */
2841#if 0
2842	err = clk_set_parent(sor->clk_pad, sor->clk_parent);
2843	if (err < 0) {
2844		dev_err(sor->dev, "failed to select pad parent clock: %d\n",
2845			err);
2846		return;
2847	}
2848#endif
2849
2850	/* switch the SOR clock to the pad clock */
2851	err = tegra_sor_set_parent_clock(sor, sor->clk_pad);
2852	if (err < 0) {
2853		dev_err(sor->dev, "failed to select SOR parent clock: %d\n",
2854			err);
2855		return;
2856	}
2857
2858	/* switch the output clock to the parent pixel clock */
2859	err = clk_set_parent(sor->clk, sor->clk_parent);
2860	if (err < 0) {
2861		dev_err(sor->dev, "failed to select output parent clock: %d\n",
2862			err);
2863		return;
2864	}
2865
2866	/* use DP-A protocol */
2867	value = tegra_sor_readl(sor, SOR_STATE1);
2868	value &= ~SOR_STATE_ASY_PROTOCOL_MASK;
2869	value |= SOR_STATE_ASY_PROTOCOL_DP_A;
2870	tegra_sor_writel(sor, value, SOR_STATE1);
2871
2872	/* enable port */
2873	value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
2874	value |= SOR_DP_LINKCTL_ENABLE;
2875	tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
2876
2877	tegra_sor_dp_term_calibrate(sor);
2878
2879	err = drm_dp_link_train(&sor->link);
2880	if (err < 0)
2881		dev_err(sor->dev, "link training failed: %d\n", err);
2882	else
2883		dev_dbg(sor->dev, "link training succeeded\n");
2884
2885	err = drm_dp_link_power_up(sor->aux, &sor->link);
2886	if (err < 0)
2887		dev_err(sor->dev, "failed to power up DP link: %d\n", err);
2888
2889	/* compute configuration */
2890	memset(&config, 0, sizeof(config));
2891	config.bits_per_pixel = state->bpc * 3;
2892
2893	err = tegra_sor_compute_config(sor, mode, &config, &sor->link);
2894	if (err < 0)
2895		dev_err(sor->dev, "failed to compute configuration: %d\n", err);
2896
2897	tegra_sor_apply_config(sor, &config);
2898	tegra_sor_mode_set(sor, mode, state);
2899
2900	if (output->panel) {
2901		/* CSTM (LVDS, link A/B, upper) */
2902		value = SOR_CSTM_LVDS | SOR_CSTM_LINK_ACT_A | SOR_CSTM_LINK_ACT_B |
2903			SOR_CSTM_UPPER;
2904		tegra_sor_writel(sor, value, SOR_CSTM);
2905
2906		/* PWM setup */
2907		err = tegra_sor_setup_pwm(sor, 250);
2908		if (err < 0)
2909			dev_err(sor->dev, "failed to setup PWM: %d\n", err);
2910	}
2911
2912	tegra_sor_update(sor);
2913
2914	err = tegra_sor_power_up(sor, 250);
2915	if (err < 0)
2916		dev_err(sor->dev, "failed to power up SOR: %d\n", err);
2917
2918	/* attach and wake up */
2919	err = tegra_sor_attach(sor);
2920	if (err < 0)
2921		dev_err(sor->dev, "failed to attach SOR: %d\n", err);
2922
2923	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2924	value |= SOR_ENABLE(sor->index);
2925	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2926
2927	tegra_dc_commit(dc);
2928
2929	err = tegra_sor_wakeup(sor);
2930	if (err < 0)
2931		dev_err(sor->dev, "failed to wakeup SOR: %d\n", err);
2932
2933	if (output->panel)
2934		drm_panel_enable(output->panel);
2935}
2936
2937static const struct drm_encoder_helper_funcs tegra_sor_dp_helpers = {
2938	.disable = tegra_sor_dp_disable,
2939	.enable = tegra_sor_dp_enable,
2940	.atomic_check = tegra_sor_encoder_atomic_check,
2941};
2942
2943static void tegra_sor_disable_regulator(void *data)
2944{
2945	struct regulator *reg = data;
2946
2947	regulator_disable(reg);
2948}
2949
2950static int tegra_sor_enable_regulator(struct tegra_sor *sor, struct regulator *reg)
2951{
2952	int err;
2953
2954	err = regulator_enable(reg);
2955	if (err)
2956		return err;
2957
2958	return devm_add_action_or_reset(sor->dev, tegra_sor_disable_regulator, reg);
2959}
2960
2961static int tegra_sor_hdmi_probe(struct tegra_sor *sor)
2962{
2963	int err;
2964
2965	sor->avdd_io_supply = devm_regulator_get(sor->dev, "avdd-io-hdmi-dp");
2966	if (IS_ERR(sor->avdd_io_supply))
2967		return dev_err_probe(sor->dev, PTR_ERR(sor->avdd_io_supply),
2968				     "cannot get AVDD I/O supply\n");
2969
2970	err = tegra_sor_enable_regulator(sor, sor->avdd_io_supply);
2971	if (err < 0) {
2972		dev_err(sor->dev, "failed to enable AVDD I/O supply: %d\n",
2973			err);
2974		return err;
2975	}
2976
2977	sor->vdd_pll_supply = devm_regulator_get(sor->dev, "vdd-hdmi-dp-pll");
2978	if (IS_ERR(sor->vdd_pll_supply))
2979		return dev_err_probe(sor->dev, PTR_ERR(sor->vdd_pll_supply),
2980				     "cannot get VDD PLL supply\n");
2981
2982	err = tegra_sor_enable_regulator(sor, sor->vdd_pll_supply);
2983	if (err < 0) {
2984		dev_err(sor->dev, "failed to enable VDD PLL supply: %d\n",
2985			err);
2986		return err;
2987	}
2988
2989	sor->hdmi_supply = devm_regulator_get(sor->dev, "hdmi");
2990	if (IS_ERR(sor->hdmi_supply))
2991		return dev_err_probe(sor->dev, PTR_ERR(sor->hdmi_supply),
2992				     "cannot get HDMI supply\n");
2993
2994	err = tegra_sor_enable_regulator(sor, sor->hdmi_supply);
2995	if (err < 0) {
2996		dev_err(sor->dev, "failed to enable HDMI supply: %d\n", err);
2997		return err;
2998	}
2999
3000	INIT_DELAYED_WORK(&sor->scdc, tegra_sor_hdmi_scdc_work);
3001
3002	return 0;
3003}
3004
3005static const struct tegra_sor_ops tegra_sor_hdmi_ops = {
3006	.name = "HDMI",
3007	.probe = tegra_sor_hdmi_probe,
3008	.audio_enable = tegra_sor_hdmi_audio_enable,
3009	.audio_disable = tegra_sor_hdmi_audio_disable,
3010};
3011
3012static int tegra_sor_dp_probe(struct tegra_sor *sor)
3013{
3014	int err;
3015
3016	sor->avdd_io_supply = devm_regulator_get(sor->dev, "avdd-io-hdmi-dp");
3017	if (IS_ERR(sor->avdd_io_supply))
3018		return PTR_ERR(sor->avdd_io_supply);
3019
3020	err = tegra_sor_enable_regulator(sor, sor->avdd_io_supply);
3021	if (err < 0)
3022		return err;
3023
3024	sor->vdd_pll_supply = devm_regulator_get(sor->dev, "vdd-hdmi-dp-pll");
3025	if (IS_ERR(sor->vdd_pll_supply))
3026		return PTR_ERR(sor->vdd_pll_supply);
3027
3028	err = tegra_sor_enable_regulator(sor, sor->vdd_pll_supply);
3029	if (err < 0)
3030		return err;
3031
3032	return 0;
3033}
3034
3035static const struct tegra_sor_ops tegra_sor_dp_ops = {
3036	.name = "DP",
3037	.probe = tegra_sor_dp_probe,
3038};
3039
3040static int tegra_sor_init(struct host1x_client *client)
3041{
3042	struct drm_device *drm = dev_get_drvdata(client->host);
3043	const struct drm_encoder_helper_funcs *helpers = NULL;
3044	struct tegra_sor *sor = host1x_client_to_sor(client);
3045	int connector = DRM_MODE_CONNECTOR_Unknown;
3046	int encoder = DRM_MODE_ENCODER_NONE;
3047	int err;
3048
3049	if (!sor->aux) {
3050		if (sor->ops == &tegra_sor_hdmi_ops) {
3051			connector = DRM_MODE_CONNECTOR_HDMIA;
3052			encoder = DRM_MODE_ENCODER_TMDS;
3053			helpers = &tegra_sor_hdmi_helpers;
3054		} else if (sor->soc->supports_lvds) {
3055			connector = DRM_MODE_CONNECTOR_LVDS;
3056			encoder = DRM_MODE_ENCODER_LVDS;
3057		}
3058	} else {
3059		if (sor->output.panel) {
3060			connector = DRM_MODE_CONNECTOR_eDP;
3061			encoder = DRM_MODE_ENCODER_TMDS;
3062			helpers = &tegra_sor_dp_helpers;
3063		} else {
3064			connector = DRM_MODE_CONNECTOR_DisplayPort;
3065			encoder = DRM_MODE_ENCODER_TMDS;
3066			helpers = &tegra_sor_dp_helpers;
3067		}
3068
3069		sor->link.ops = &tegra_sor_dp_link_ops;
3070		sor->link.aux = sor->aux;
3071	}
3072
3073	sor->output.dev = sor->dev;
3074
3075	drm_connector_init_with_ddc(drm, &sor->output.connector,
3076				    &tegra_sor_connector_funcs,
3077				    connector,
3078				    sor->output.ddc);
3079	drm_connector_helper_add(&sor->output.connector,
3080				 &tegra_sor_connector_helper_funcs);
3081	sor->output.connector.dpms = DRM_MODE_DPMS_OFF;
3082
3083	drm_simple_encoder_init(drm, &sor->output.encoder, encoder);
 
3084	drm_encoder_helper_add(&sor->output.encoder, helpers);
3085
3086	drm_connector_attach_encoder(&sor->output.connector,
3087					  &sor->output.encoder);
3088	drm_connector_register(&sor->output.connector);
3089
3090	err = tegra_output_init(drm, &sor->output);
3091	if (err < 0) {
3092		dev_err(client->dev, "failed to initialize output: %d\n", err);
3093		return err;
3094	}
3095
3096	tegra_output_find_possible_crtcs(&sor->output, drm);
3097
3098	if (sor->aux) {
3099		err = drm_dp_aux_attach(sor->aux, &sor->output);
3100		if (err < 0) {
3101			dev_err(sor->dev, "failed to attach DP: %d\n", err);
3102			return err;
3103		}
3104	}
3105
3106	/*
3107	 * XXX: Remove this reset once proper hand-over from firmware to
3108	 * kernel is possible.
3109	 */
3110	if (sor->rst) {
3111		err = pm_runtime_resume_and_get(sor->dev);
3112		if (err < 0) {
3113			dev_err(sor->dev, "failed to get runtime PM: %d\n", err);
3114			return err;
3115		}
3116
3117		err = reset_control_acquire(sor->rst);
3118		if (err < 0) {
3119			dev_err(sor->dev, "failed to acquire SOR reset: %d\n",
3120				err);
3121			goto rpm_put;
3122		}
3123
3124		err = reset_control_assert(sor->rst);
3125		if (err < 0) {
3126			dev_err(sor->dev, "failed to assert SOR reset: %d\n",
3127				err);
3128			goto rpm_put;
3129		}
3130	}
3131
3132	err = clk_prepare_enable(sor->clk);
3133	if (err < 0) {
3134		dev_err(sor->dev, "failed to enable clock: %d\n", err);
3135		goto rpm_put;
3136	}
3137
3138	usleep_range(1000, 3000);
3139
3140	if (sor->rst) {
3141		err = reset_control_deassert(sor->rst);
3142		if (err < 0) {
3143			dev_err(sor->dev, "failed to deassert SOR reset: %d\n",
3144				err);
3145			clk_disable_unprepare(sor->clk);
3146			goto rpm_put;
3147		}
3148
3149		reset_control_release(sor->rst);
3150		pm_runtime_put(sor->dev);
3151	}
3152
3153	err = clk_prepare_enable(sor->clk_safe);
3154	if (err < 0) {
3155		clk_disable_unprepare(sor->clk);
3156		return err;
3157	}
3158
3159	err = clk_prepare_enable(sor->clk_dp);
3160	if (err < 0) {
3161		clk_disable_unprepare(sor->clk_safe);
3162		clk_disable_unprepare(sor->clk);
3163		return err;
3164	}
3165
3166	return 0;
3167
3168rpm_put:
3169	if (sor->rst)
3170		pm_runtime_put(sor->dev);
3171
3172	return err;
3173}
3174
3175static int tegra_sor_exit(struct host1x_client *client)
3176{
3177	struct tegra_sor *sor = host1x_client_to_sor(client);
3178	int err;
3179
3180	tegra_output_exit(&sor->output);
3181
3182	if (sor->aux) {
3183		err = drm_dp_aux_detach(sor->aux);
3184		if (err < 0) {
3185			dev_err(sor->dev, "failed to detach DP: %d\n", err);
3186			return err;
3187		}
3188	}
3189
3190	clk_disable_unprepare(sor->clk_safe);
3191	clk_disable_unprepare(sor->clk_dp);
3192	clk_disable_unprepare(sor->clk);
3193
3194	return 0;
3195}
3196
3197static int tegra_sor_runtime_suspend(struct host1x_client *client)
 
 
 
 
 
 
 
 
 
3198{
3199	struct tegra_sor *sor = host1x_client_to_sor(client);
3200	struct device *dev = client->dev;
3201	int err;
3202
3203	if (sor->rst) {
3204		err = reset_control_assert(sor->rst);
3205		if (err < 0) {
3206			dev_err(dev, "failed to assert reset: %d\n", err);
3207			return err;
3208		}
3209
3210		reset_control_release(sor->rst);
 
 
 
 
3211	}
3212
3213	usleep_range(1000, 2000);
3214
3215	clk_disable_unprepare(sor->clk);
3216	pm_runtime_put_sync(dev);
3217
3218	return 0;
3219}
3220
3221static int tegra_sor_runtime_resume(struct host1x_client *client)
3222{
3223	struct tegra_sor *sor = host1x_client_to_sor(client);
3224	struct device *dev = client->dev;
3225	int err;
3226
3227	err = pm_runtime_resume_and_get(dev);
3228	if (err < 0) {
3229		dev_err(dev, "failed to get runtime PM: %d\n", err);
 
3230		return err;
3231	}
3232
3233	err = clk_prepare_enable(sor->clk);
 
 
 
 
 
 
 
3234	if (err < 0) {
3235		dev_err(dev, "failed to enable clock: %d\n", err);
3236		goto put_rpm;
3237	}
3238
3239	usleep_range(1000, 2000);
3240
3241	if (sor->rst) {
3242		err = reset_control_acquire(sor->rst);
3243		if (err < 0) {
3244			dev_err(dev, "failed to acquire reset: %d\n", err);
3245			goto disable_clk;
3246		}
3247
3248		err = reset_control_deassert(sor->rst);
3249		if (err < 0) {
3250			dev_err(dev, "failed to deassert reset: %d\n", err);
3251			goto release_reset;
3252		}
3253	}
3254
3255	return 0;
3256
3257release_reset:
3258	reset_control_release(sor->rst);
3259disable_clk:
3260	clk_disable_unprepare(sor->clk);
3261put_rpm:
3262	pm_runtime_put_sync(dev);
3263	return err;
3264}
3265
3266static const struct host1x_client_ops sor_client_ops = {
3267	.init = tegra_sor_init,
3268	.exit = tegra_sor_exit,
3269	.suspend = tegra_sor_runtime_suspend,
3270	.resume = tegra_sor_runtime_resume,
3271};
3272
3273static const u8 tegra124_sor_xbar_cfg[5] = {
3274	0, 1, 2, 3, 4
3275};
3276
3277static const struct tegra_sor_regs tegra124_sor_regs = {
3278	.head_state0 = 0x05,
3279	.head_state1 = 0x07,
3280	.head_state2 = 0x09,
3281	.head_state3 = 0x0b,
3282	.head_state4 = 0x0d,
3283	.head_state5 = 0x0f,
3284	.pll0 = 0x17,
3285	.pll1 = 0x18,
3286	.pll2 = 0x19,
3287	.pll3 = 0x1a,
3288	.dp_padctl0 = 0x5c,
3289	.dp_padctl2 = 0x73,
3290};
3291
3292/* Tegra124 and Tegra132 have lanes 0 and 2 swapped. */
3293static const u8 tegra124_sor_lane_map[4] = {
3294	2, 1, 0, 3,
3295};
3296
3297static const u8 tegra124_sor_voltage_swing[4][4][4] = {
3298	{
3299		{ 0x13, 0x19, 0x1e, 0x28 },
3300		{ 0x1e, 0x25, 0x2d, },
3301		{ 0x28, 0x32, },
3302		{ 0x3c, },
3303	}, {
3304		{ 0x12, 0x17, 0x1b, 0x25 },
3305		{ 0x1c, 0x23, 0x2a, },
3306		{ 0x25, 0x2f, },
3307		{ 0x39, }
3308	}, {
3309		{ 0x12, 0x16, 0x1a, 0x22 },
3310		{ 0x1b, 0x20, 0x27, },
3311		{ 0x24, 0x2d, },
3312		{ 0x36, },
3313	}, {
3314		{ 0x11, 0x14, 0x17, 0x1f },
3315		{ 0x19, 0x1e, 0x24, },
3316		{ 0x22, 0x2a, },
3317		{ 0x32, },
3318	},
3319};
3320
3321static const u8 tegra124_sor_pre_emphasis[4][4][4] = {
3322	{
3323		{ 0x00, 0x09, 0x13, 0x25 },
3324		{ 0x00, 0x0f, 0x1e, },
3325		{ 0x00, 0x14, },
3326		{ 0x00, },
3327	}, {
3328		{ 0x00, 0x0a, 0x14, 0x28 },
3329		{ 0x00, 0x0f, 0x1e, },
3330		{ 0x00, 0x14, },
3331		{ 0x00 },
3332	}, {
3333		{ 0x00, 0x0a, 0x14, 0x28 },
3334		{ 0x00, 0x0f, 0x1e, },
3335		{ 0x00, 0x14, },
3336		{ 0x00, },
3337	}, {
3338		{ 0x00, 0x0a, 0x14, 0x28 },
3339		{ 0x00, 0x0f, 0x1e, },
3340		{ 0x00, 0x14, },
3341		{ 0x00, },
3342	},
3343};
3344
3345static const u8 tegra124_sor_post_cursor[4][4][4] = {
3346	{
3347		{ 0x00, 0x00, 0x00, 0x00 },
3348		{ 0x00, 0x00, 0x00, },
3349		{ 0x00, 0x00, },
3350		{ 0x00, },
3351	}, {
3352		{ 0x02, 0x02, 0x04, 0x05 },
3353		{ 0x02, 0x04, 0x05, },
3354		{ 0x04, 0x05, },
3355		{ 0x05, },
3356	}, {
3357		{ 0x04, 0x05, 0x08, 0x0b },
3358		{ 0x05, 0x09, 0x0b, },
3359		{ 0x08, 0x0a, },
3360		{ 0x0b, },
3361	}, {
3362		{ 0x05, 0x09, 0x0b, 0x12 },
3363		{ 0x09, 0x0d, 0x12, },
3364		{ 0x0b, 0x0f, },
3365		{ 0x12, },
3366	},
3367};
3368
3369static const u8 tegra124_sor_tx_pu[4][4][4] = {
3370	{
3371		{ 0x20, 0x30, 0x40, 0x60 },
3372		{ 0x30, 0x40, 0x60, },
3373		{ 0x40, 0x60, },
3374		{ 0x60, },
3375	}, {
3376		{ 0x20, 0x20, 0x30, 0x50 },
3377		{ 0x30, 0x40, 0x50, },
3378		{ 0x40, 0x50, },
3379		{ 0x60, },
3380	}, {
3381		{ 0x20, 0x20, 0x30, 0x40, },
3382		{ 0x30, 0x30, 0x40, },
3383		{ 0x40, 0x50, },
3384		{ 0x60, },
3385	}, {
3386		{ 0x20, 0x20, 0x20, 0x40, },
3387		{ 0x30, 0x30, 0x40, },
3388		{ 0x40, 0x40, },
3389		{ 0x60, },
3390	},
3391};
3392
3393static const struct tegra_sor_soc tegra124_sor = {
 
3394	.supports_lvds = true,
3395	.supports_hdmi = false,
3396	.supports_dp = true,
3397	.supports_audio = false,
3398	.supports_hdcp = false,
3399	.regs = &tegra124_sor_regs,
3400	.has_nvdisplay = false,
3401	.xbar_cfg = tegra124_sor_xbar_cfg,
3402	.lane_map = tegra124_sor_lane_map,
3403	.voltage_swing = tegra124_sor_voltage_swing,
3404	.pre_emphasis = tegra124_sor_pre_emphasis,
3405	.post_cursor = tegra124_sor_post_cursor,
3406	.tx_pu = tegra124_sor_tx_pu,
3407};
3408
3409static const u8 tegra132_sor_pre_emphasis[4][4][4] = {
3410	{
3411		{ 0x00, 0x08, 0x12, 0x24 },
3412		{ 0x01, 0x0e, 0x1d, },
3413		{ 0x01, 0x13, },
3414		{ 0x00, },
3415	}, {
3416		{ 0x00, 0x08, 0x12, 0x24 },
3417		{ 0x00, 0x0e, 0x1d, },
3418		{ 0x00, 0x13, },
3419		{ 0x00 },
3420	}, {
3421		{ 0x00, 0x08, 0x12, 0x24 },
3422		{ 0x00, 0x0e, 0x1d, },
3423		{ 0x00, 0x13, },
3424		{ 0x00, },
3425	}, {
3426		{ 0x00, 0x08, 0x12, 0x24 },
3427		{ 0x00, 0x0e, 0x1d, },
3428		{ 0x00, 0x13, },
3429		{ 0x00, },
3430	},
3431};
3432
3433static const struct tegra_sor_soc tegra132_sor = {
3434	.supports_lvds = true,
3435	.supports_hdmi = false,
3436	.supports_dp = true,
3437	.supports_audio = false,
3438	.supports_hdcp = false,
3439	.regs = &tegra124_sor_regs,
3440	.has_nvdisplay = false,
3441	.xbar_cfg = tegra124_sor_xbar_cfg,
3442	.lane_map = tegra124_sor_lane_map,
3443	.voltage_swing = tegra124_sor_voltage_swing,
3444	.pre_emphasis = tegra132_sor_pre_emphasis,
3445	.post_cursor = tegra124_sor_post_cursor,
3446	.tx_pu = tegra124_sor_tx_pu,
3447};
3448
3449static const struct tegra_sor_regs tegra210_sor_regs = {
3450	.head_state0 = 0x05,
3451	.head_state1 = 0x07,
3452	.head_state2 = 0x09,
3453	.head_state3 = 0x0b,
3454	.head_state4 = 0x0d,
3455	.head_state5 = 0x0f,
3456	.pll0 = 0x17,
3457	.pll1 = 0x18,
3458	.pll2 = 0x19,
3459	.pll3 = 0x1a,
3460	.dp_padctl0 = 0x5c,
3461	.dp_padctl2 = 0x73,
3462};
3463
3464static const u8 tegra210_sor_xbar_cfg[5] = {
3465	2, 1, 0, 3, 4
3466};
3467
3468static const u8 tegra210_sor_lane_map[4] = {
3469	0, 1, 2, 3,
3470};
3471
3472static const struct tegra_sor_soc tegra210_sor = {
 
3473	.supports_lvds = false,
3474	.supports_hdmi = false,
3475	.supports_dp = true,
3476	.supports_audio = false,
3477	.supports_hdcp = false,
3478
3479	.regs = &tegra210_sor_regs,
3480	.has_nvdisplay = false,
 
 
3481
3482	.xbar_cfg = tegra210_sor_xbar_cfg,
3483	.lane_map = tegra210_sor_lane_map,
3484	.voltage_swing = tegra124_sor_voltage_swing,
3485	.pre_emphasis = tegra124_sor_pre_emphasis,
3486	.post_cursor = tegra124_sor_post_cursor,
3487	.tx_pu = tegra124_sor_tx_pu,
3488};
3489
3490static const struct tegra_sor_soc tegra210_sor1 = {
 
3491	.supports_lvds = false,
3492	.supports_hdmi = true,
3493	.supports_dp = true,
3494	.supports_audio = true,
3495	.supports_hdcp = true,
3496
3497	.regs = &tegra210_sor_regs,
3498	.has_nvdisplay = false,
3499
3500	.num_settings = ARRAY_SIZE(tegra210_sor_hdmi_defaults),
3501	.settings = tegra210_sor_hdmi_defaults,
 
3502	.xbar_cfg = tegra210_sor_xbar_cfg,
3503	.lane_map = tegra210_sor_lane_map,
3504	.voltage_swing = tegra124_sor_voltage_swing,
3505	.pre_emphasis = tegra124_sor_pre_emphasis,
3506	.post_cursor = tegra124_sor_post_cursor,
3507	.tx_pu = tegra124_sor_tx_pu,
3508};
3509
3510static const struct tegra_sor_regs tegra186_sor_regs = {
3511	.head_state0 = 0x151,
3512	.head_state1 = 0x154,
3513	.head_state2 = 0x157,
3514	.head_state3 = 0x15a,
3515	.head_state4 = 0x15d,
3516	.head_state5 = 0x160,
3517	.pll0 = 0x163,
3518	.pll1 = 0x164,
3519	.pll2 = 0x165,
3520	.pll3 = 0x166,
3521	.dp_padctl0 = 0x168,
3522	.dp_padctl2 = 0x16a,
3523};
3524
3525static const u8 tegra186_sor_voltage_swing[4][4][4] = {
3526	{
3527		{ 0x13, 0x19, 0x1e, 0x28 },
3528		{ 0x1e, 0x25, 0x2d, },
3529		{ 0x28, 0x32, },
3530		{ 0x39, },
3531	}, {
3532		{ 0x12, 0x16, 0x1b, 0x25 },
3533		{ 0x1c, 0x23, 0x2a, },
3534		{ 0x25, 0x2f, },
3535		{ 0x37, }
3536	}, {
3537		{ 0x12, 0x16, 0x1a, 0x22 },
3538		{ 0x1b, 0x20, 0x27, },
3539		{ 0x24, 0x2d, },
3540		{ 0x35, },
3541	}, {
3542		{ 0x11, 0x14, 0x17, 0x1f },
3543		{ 0x19, 0x1e, 0x24, },
3544		{ 0x22, 0x2a, },
3545		{ 0x32, },
3546	},
3547};
3548
3549static const u8 tegra186_sor_pre_emphasis[4][4][4] = {
3550	{
3551		{ 0x00, 0x08, 0x12, 0x24 },
3552		{ 0x01, 0x0e, 0x1d, },
3553		{ 0x01, 0x13, },
3554		{ 0x00, },
3555	}, {
3556		{ 0x00, 0x08, 0x12, 0x24 },
3557		{ 0x00, 0x0e, 0x1d, },
3558		{ 0x00, 0x13, },
3559		{ 0x00 },
3560	}, {
3561		{ 0x00, 0x08, 0x14, 0x24 },
3562		{ 0x00, 0x0e, 0x1d, },
3563		{ 0x00, 0x13, },
3564		{ 0x00, },
3565	}, {
3566		{ 0x00, 0x08, 0x12, 0x24 },
3567		{ 0x00, 0x0e, 0x1d, },
3568		{ 0x00, 0x13, },
3569		{ 0x00, },
3570	},
3571};
3572
3573static const struct tegra_sor_soc tegra186_sor = {
 
3574	.supports_lvds = false,
3575	.supports_hdmi = true,
3576	.supports_dp = true,
3577	.supports_audio = true,
3578	.supports_hdcp = true,
3579
3580	.regs = &tegra186_sor_regs,
3581	.has_nvdisplay = true,
3582
3583	.num_settings = ARRAY_SIZE(tegra186_sor_hdmi_defaults),
3584	.settings = tegra186_sor_hdmi_defaults,
3585	.xbar_cfg = tegra124_sor_xbar_cfg,
3586	.lane_map = tegra124_sor_lane_map,
3587	.voltage_swing = tegra186_sor_voltage_swing,
3588	.pre_emphasis = tegra186_sor_pre_emphasis,
3589	.post_cursor = tegra124_sor_post_cursor,
3590	.tx_pu = tegra124_sor_tx_pu,
3591};
3592
3593static const struct tegra_sor_regs tegra194_sor_regs = {
3594	.head_state0 = 0x151,
3595	.head_state1 = 0x155,
3596	.head_state2 = 0x159,
3597	.head_state3 = 0x15d,
3598	.head_state4 = 0x161,
3599	.head_state5 = 0x165,
3600	.pll0 = 0x169,
3601	.pll1 = 0x16a,
3602	.pll2 = 0x16b,
3603	.pll3 = 0x16c,
3604	.dp_padctl0 = 0x16e,
3605	.dp_padctl2 = 0x16f,
3606};
3607
3608static const struct tegra_sor_soc tegra194_sor = {
3609	.supports_lvds = false,
3610	.supports_hdmi = true,
3611	.supports_dp = true,
3612	.supports_audio = true,
3613	.supports_hdcp = true,
3614
3615	.regs = &tegra194_sor_regs,
3616	.has_nvdisplay = true,
3617
3618	.num_settings = ARRAY_SIZE(tegra194_sor_hdmi_defaults),
3619	.settings = tegra194_sor_hdmi_defaults,
3620
3621	.xbar_cfg = tegra210_sor_xbar_cfg,
3622	.lane_map = tegra124_sor_lane_map,
3623	.voltage_swing = tegra186_sor_voltage_swing,
3624	.pre_emphasis = tegra186_sor_pre_emphasis,
3625	.post_cursor = tegra124_sor_post_cursor,
3626	.tx_pu = tegra124_sor_tx_pu,
3627};
3628
3629static const struct of_device_id tegra_sor_of_match[] = {
3630	{ .compatible = "nvidia,tegra194-sor", .data = &tegra194_sor },
3631	{ .compatible = "nvidia,tegra186-sor", .data = &tegra186_sor },
3632	{ .compatible = "nvidia,tegra210-sor1", .data = &tegra210_sor1 },
3633	{ .compatible = "nvidia,tegra210-sor", .data = &tegra210_sor },
3634	{ .compatible = "nvidia,tegra132-sor", .data = &tegra132_sor },
3635	{ .compatible = "nvidia,tegra124-sor", .data = &tegra124_sor },
3636	{ },
3637};
3638MODULE_DEVICE_TABLE(of, tegra_sor_of_match);
3639
3640static int tegra_sor_parse_dt(struct tegra_sor *sor)
3641{
3642	struct device_node *np = sor->dev->of_node;
3643	u32 xbar_cfg[5];
3644	unsigned int i;
3645	u32 value;
3646	int err;
3647
3648	if (sor->soc->has_nvdisplay) {
3649		err = of_property_read_u32(np, "nvidia,interface", &value);
3650		if (err < 0)
3651			return err;
3652
3653		sor->index = value;
3654
3655		/*
3656		 * override the default that we already set for Tegra210 and
3657		 * earlier
3658		 */
3659		sor->pad = TEGRA_IO_PAD_HDMI_DP0 + sor->index;
3660	} else {
3661		if (!sor->soc->supports_audio)
3662			sor->index = 0;
3663		else
3664			sor->index = 1;
3665	}
3666
3667	err = of_property_read_u32_array(np, "nvidia,xbar-cfg", xbar_cfg, 5);
3668	if (err < 0) {
3669		/* fall back to default per-SoC XBAR configuration */
3670		for (i = 0; i < 5; i++)
3671			sor->xbar_cfg[i] = sor->soc->xbar_cfg[i];
3672	} else {
3673		/* copy cells to SOR XBAR configuration */
3674		for (i = 0; i < 5; i++)
3675			sor->xbar_cfg[i] = xbar_cfg[i];
3676	}
3677
3678	return 0;
3679}
3680
3681static irqreturn_t tegra_sor_irq(int irq, void *data)
3682{
3683	struct tegra_sor *sor = data;
3684	u32 value;
3685
3686	value = tegra_sor_readl(sor, SOR_INT_STATUS);
3687	tegra_sor_writel(sor, value, SOR_INT_STATUS);
3688
3689	if (value & SOR_INT_CODEC_SCRATCH0) {
3690		value = tegra_sor_readl(sor, SOR_AUDIO_HDA_CODEC_SCRATCH0);
3691
3692		if (value & SOR_AUDIO_HDA_CODEC_SCRATCH0_VALID) {
3693			unsigned int format;
3694
3695			format = value & SOR_AUDIO_HDA_CODEC_SCRATCH0_FMT_MASK;
3696
3697			tegra_hda_parse_format(format, &sor->format);
3698
3699			if (sor->ops->audio_enable)
3700				sor->ops->audio_enable(sor);
3701		} else {
3702			if (sor->ops->audio_disable)
3703				sor->ops->audio_disable(sor);
3704		}
3705	}
3706
3707	return IRQ_HANDLED;
3708}
3709
3710static int tegra_sor_probe(struct platform_device *pdev)
3711{
3712	struct device_node *np;
3713	struct tegra_sor *sor;
 
3714	int err;
3715
3716	sor = devm_kzalloc(&pdev->dev, sizeof(*sor), GFP_KERNEL);
3717	if (!sor)
3718		return -ENOMEM;
3719
3720	sor->soc = of_device_get_match_data(&pdev->dev);
3721	sor->output.dev = sor->dev = &pdev->dev;
3722
3723	sor->settings = devm_kmemdup(&pdev->dev, sor->soc->settings,
3724				     sor->soc->num_settings *
3725					sizeof(*sor->settings),
3726				     GFP_KERNEL);
3727	if (!sor->settings)
3728		return -ENOMEM;
3729
3730	sor->num_settings = sor->soc->num_settings;
3731
3732	np = of_parse_phandle(pdev->dev.of_node, "nvidia,dpaux", 0);
3733	if (np) {
3734		sor->aux = drm_dp_aux_find_by_of_node(np);
3735		of_node_put(np);
3736
3737		if (!sor->aux)
3738			return -EPROBE_DEFER;
3739
3740		if (get_device(sor->aux->dev))
3741			sor->output.ddc = &sor->aux->ddc;
3742	}
3743
3744	if (!sor->aux) {
3745		if (sor->soc->supports_hdmi) {
3746			sor->ops = &tegra_sor_hdmi_ops;
3747			sor->pad = TEGRA_IO_PAD_HDMI;
3748		} else if (sor->soc->supports_lvds) {
3749			dev_err(&pdev->dev, "LVDS not supported yet\n");
3750			return -ENODEV;
3751		} else {
3752			dev_err(&pdev->dev, "unknown (non-DP) support\n");
3753			return -ENODEV;
3754		}
3755	} else {
3756		np = of_parse_phandle(pdev->dev.of_node, "nvidia,panel", 0);
3757		/*
3758		 * No need to keep this around since we only use it as a check
3759		 * to see if a panel is connected (eDP) or not (DP).
3760		 */
3761		of_node_put(np);
3762
3763		sor->ops = &tegra_sor_dp_ops;
3764		sor->pad = TEGRA_IO_PAD_LVDS;
 
3765	}
3766
3767	err = tegra_sor_parse_dt(sor);
3768	if (err < 0)
3769		goto put_aux;
3770
3771	err = tegra_output_probe(&sor->output);
3772	if (err < 0) {
3773		dev_err_probe(&pdev->dev, err, "failed to probe output\n");
3774		goto put_aux;
3775	}
3776
3777	if (sor->ops && sor->ops->probe) {
3778		err = sor->ops->probe(sor);
3779		if (err < 0) {
3780			dev_err(&pdev->dev, "failed to probe %s: %d\n",
3781				sor->ops->name, err);
3782			goto remove;
3783		}
3784	}
3785
3786	sor->regs = devm_platform_ioremap_resource(pdev, 0);
 
3787	if (IS_ERR(sor->regs)) {
3788		err = PTR_ERR(sor->regs);
3789		goto remove;
3790	}
3791
3792	err = platform_get_irq(pdev, 0);
3793	if (err < 0)
3794		goto remove;
3795
3796	sor->irq = err;
3797
3798	err = devm_request_irq(sor->dev, sor->irq, tegra_sor_irq, 0,
3799			       dev_name(sor->dev), sor);
3800	if (err < 0) {
3801		dev_err(&pdev->dev, "failed to request IRQ: %d\n", err);
3802		goto remove;
3803	}
3804
3805	sor->rst = devm_reset_control_get_exclusive_released(&pdev->dev, "sor");
3806	if (IS_ERR(sor->rst)) {
3807		err = PTR_ERR(sor->rst);
3808
3809		if (err != -EBUSY || WARN_ON(!pdev->dev.pm_domain)) {
3810			dev_err(&pdev->dev, "failed to get reset control: %d\n",
3811				err);
3812			goto remove;
3813		}
3814
3815		/*
3816		 * At this point, the reset control is most likely being used
3817		 * by the generic power domain implementation. With any luck
3818		 * the power domain will have taken care of resetting the SOR
3819		 * and we don't have to do anything.
3820		 */
3821		sor->rst = NULL;
3822	}
3823
3824	sor->clk = devm_clk_get(&pdev->dev, NULL);
3825	if (IS_ERR(sor->clk)) {
3826		err = PTR_ERR(sor->clk);
3827		dev_err(&pdev->dev, "failed to get module clock: %d\n", err);
3828		goto remove;
3829	}
3830
3831	if (sor->soc->supports_hdmi || sor->soc->supports_dp) {
3832		struct device_node *np = pdev->dev.of_node;
3833		const char *name;
3834
3835		/*
3836		 * For backwards compatibility with Tegra210 device trees,
3837		 * fall back to the old clock name "source" if the new "out"
3838		 * clock is not available.
3839		 */
3840		if (of_property_match_string(np, "clock-names", "out") < 0)
3841			name = "source";
3842		else
3843			name = "out";
3844
3845		sor->clk_out = devm_clk_get(&pdev->dev, name);
3846		if (IS_ERR(sor->clk_out)) {
3847			err = PTR_ERR(sor->clk_out);
3848			dev_err(sor->dev, "failed to get %s clock: %d\n",
3849				name, err);
3850			goto remove;
3851		}
3852	} else {
3853		/* fall back to the module clock on SOR0 (eDP/LVDS only) */
3854		sor->clk_out = sor->clk;
3855	}
3856
3857	sor->clk_parent = devm_clk_get(&pdev->dev, "parent");
3858	if (IS_ERR(sor->clk_parent)) {
3859		err = PTR_ERR(sor->clk_parent);
3860		dev_err(&pdev->dev, "failed to get parent clock: %d\n", err);
3861		goto remove;
3862	}
3863
3864	sor->clk_safe = devm_clk_get(&pdev->dev, "safe");
3865	if (IS_ERR(sor->clk_safe)) {
3866		err = PTR_ERR(sor->clk_safe);
3867		dev_err(&pdev->dev, "failed to get safe clock: %d\n", err);
3868		goto remove;
3869	}
3870
3871	sor->clk_dp = devm_clk_get(&pdev->dev, "dp");
3872	if (IS_ERR(sor->clk_dp)) {
3873		err = PTR_ERR(sor->clk_dp);
3874		dev_err(&pdev->dev, "failed to get DP clock: %d\n", err);
3875		goto remove;
3876	}
3877
3878	/*
3879	 * Starting with Tegra186, the BPMP provides an implementation for
3880	 * the pad output clock, so we have to look it up from device tree.
3881	 */
3882	sor->clk_pad = devm_clk_get(&pdev->dev, "pad");
3883	if (IS_ERR(sor->clk_pad)) {
3884		if (sor->clk_pad != ERR_PTR(-ENOENT)) {
3885			err = PTR_ERR(sor->clk_pad);
3886			goto remove;
3887		}
3888
3889		/*
3890		 * If the pad output clock is not available, then we assume
3891		 * we're on Tegra210 or earlier and have to provide our own
3892		 * implementation.
3893		 */
3894		sor->clk_pad = NULL;
3895	}
3896
3897	/*
3898	 * The bootloader may have set up the SOR such that it's module clock
3899	 * is sourced by one of the display PLLs. However, that doesn't work
3900	 * without properly having set up other bits of the SOR.
3901	 */
3902	err = clk_set_parent(sor->clk_out, sor->clk_safe);
3903	if (err < 0) {
3904		dev_err(&pdev->dev, "failed to use safe clock: %d\n", err);
3905		goto remove;
3906	}
3907
3908	platform_set_drvdata(pdev, sor);
3909	pm_runtime_enable(&pdev->dev);
3910
3911	host1x_client_init(&sor->client);
3912	sor->client.ops = &sor_client_ops;
3913	sor->client.dev = &pdev->dev;
3914
3915	/*
3916	 * On Tegra210 and earlier, provide our own implementation for the
3917	 * pad output clock.
3918	 */
3919	if (!sor->clk_pad) {
3920		char *name;
3921
3922		name = devm_kasprintf(sor->dev, GFP_KERNEL, "sor%u_pad_clkout",
3923				      sor->index);
3924		if (!name) {
3925			err = -ENOMEM;
3926			goto uninit;
3927		}
3928
3929		err = host1x_client_resume(&sor->client);
3930		if (err < 0) {
3931			dev_err(sor->dev, "failed to resume: %d\n", err);
3932			goto uninit;
 
3933		}
3934
3935		sor->clk_pad = tegra_clk_sor_pad_register(sor, name);
3936		host1x_client_suspend(&sor->client);
 
3937	}
3938
3939	if (IS_ERR(sor->clk_pad)) {
3940		err = PTR_ERR(sor->clk_pad);
3941		dev_err(sor->dev, "failed to register SOR pad clock: %d\n",
3942			err);
3943		goto uninit;
3944	}
3945
3946	err = __host1x_client_register(&sor->client);
 
 
 
 
3947	if (err < 0) {
3948		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
3949			err);
3950		goto uninit;
3951	}
3952
3953	return 0;
3954
3955uninit:
3956	host1x_client_exit(&sor->client);
3957	pm_runtime_disable(&pdev->dev);
3958remove:
3959	if (sor->aux)
3960		sor->output.ddc = NULL;
3961
3962	tegra_output_remove(&sor->output);
3963put_aux:
3964	if (sor->aux)
3965		put_device(sor->aux->dev);
3966
3967	return err;
3968}
3969
3970static void tegra_sor_remove(struct platform_device *pdev)
3971{
3972	struct tegra_sor *sor = platform_get_drvdata(pdev);
 
3973
3974	host1x_client_unregister(&sor->client);
3975
3976	pm_runtime_disable(&pdev->dev);
 
 
 
 
 
3977
3978	if (sor->aux) {
3979		put_device(sor->aux->dev);
3980		sor->output.ddc = NULL;
 
3981	}
3982
3983	tegra_output_remove(&sor->output);
 
 
3984}
3985
3986static int __maybe_unused tegra_sor_suspend(struct device *dev)
 
3987{
3988	struct tegra_sor *sor = dev_get_drvdata(dev);
3989	int err;
3990
3991	err = tegra_output_suspend(&sor->output);
3992	if (err < 0) {
3993		dev_err(dev, "failed to suspend output: %d\n", err);
3994		return err;
3995	}
3996
3997	if (sor->hdmi_supply) {
3998		err = regulator_disable(sor->hdmi_supply);
3999		if (err < 0) {
4000			tegra_output_resume(&sor->output);
4001			return err;
4002		}
4003	}
4004
 
 
 
 
4005	return 0;
4006}
4007
4008static int __maybe_unused tegra_sor_resume(struct device *dev)
4009{
4010	struct tegra_sor *sor = dev_get_drvdata(dev);
4011	int err;
4012
4013	if (sor->hdmi_supply) {
4014		err = regulator_enable(sor->hdmi_supply);
4015		if (err < 0)
4016			return err;
4017	}
4018
4019	err = tegra_output_resume(&sor->output);
4020	if (err < 0) {
4021		dev_err(dev, "failed to resume output: %d\n", err);
4022
4023		if (sor->hdmi_supply)
4024			regulator_disable(sor->hdmi_supply);
4025
4026		return err;
 
 
 
4027	}
4028
4029	return 0;
4030}
 
4031
4032static const struct dev_pm_ops tegra_sor_pm_ops = {
4033	SET_SYSTEM_SLEEP_PM_OPS(tegra_sor_suspend, tegra_sor_resume)
4034};
4035
4036struct platform_driver tegra_sor_driver = {
4037	.driver = {
4038		.name = "tegra-sor",
4039		.of_match_table = tegra_sor_of_match,
4040		.pm = &tegra_sor_pm_ops,
4041	},
4042	.probe = tegra_sor_probe,
4043	.remove = tegra_sor_remove,
4044};