Loading...
1/*
2 * Copyright (C) 2013 NVIDIA Corporation
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8
9#include <linux/clk.h>
10#include <linux/clk-provider.h>
11#include <linux/debugfs.h>
12#include <linux/gpio.h>
13#include <linux/io.h>
14#include <linux/of_device.h>
15#include <linux/platform_device.h>
16#include <linux/pm_runtime.h>
17#include <linux/regulator/consumer.h>
18#include <linux/reset.h>
19
20#include <soc/tegra/pmc.h>
21
22#include <drm/drm_atomic_helper.h>
23#include <drm/drm_dp_helper.h>
24#include <drm/drm_panel.h>
25#include <drm/drm_scdc_helper.h>
26
27#include "dc.h"
28#include "drm.h"
29#include "sor.h"
30#include "trace.h"
31
32/*
33 * XXX Remove this after the commit adding it to soc/tegra/pmc.h has been
34 * merged. Having this around after the commit is merged should be safe since
35 * the preprocessor will effectively replace all occurrences and therefore no
36 * duplicate will be defined.
37 */
38#define TEGRA_IO_PAD_HDMI_DP0 26
39
40#define SOR_REKEY 0x38
41
42struct tegra_sor_hdmi_settings {
43 unsigned long frequency;
44
45 u8 vcocap;
46 u8 filter;
47 u8 ichpmp;
48 u8 loadadj;
49 u8 tmds_termadj;
50 u8 tx_pu_value;
51 u8 bg_temp_coef;
52 u8 bg_vref_level;
53 u8 avdd10_level;
54 u8 avdd14_level;
55 u8 sparepll;
56
57 u8 drive_current[4];
58 u8 preemphasis[4];
59};
60
61#if 1
62static const struct tegra_sor_hdmi_settings tegra210_sor_hdmi_defaults[] = {
63 {
64 .frequency = 54000000,
65 .vcocap = 0x0,
66 .filter = 0x0,
67 .ichpmp = 0x1,
68 .loadadj = 0x3,
69 .tmds_termadj = 0x9,
70 .tx_pu_value = 0x10,
71 .bg_temp_coef = 0x3,
72 .bg_vref_level = 0x8,
73 .avdd10_level = 0x4,
74 .avdd14_level = 0x4,
75 .sparepll = 0x0,
76 .drive_current = { 0x33, 0x3a, 0x3a, 0x3a },
77 .preemphasis = { 0x00, 0x00, 0x00, 0x00 },
78 }, {
79 .frequency = 75000000,
80 .vcocap = 0x3,
81 .filter = 0x0,
82 .ichpmp = 0x1,
83 .loadadj = 0x3,
84 .tmds_termadj = 0x9,
85 .tx_pu_value = 0x40,
86 .bg_temp_coef = 0x3,
87 .bg_vref_level = 0x8,
88 .avdd10_level = 0x4,
89 .avdd14_level = 0x4,
90 .sparepll = 0x0,
91 .drive_current = { 0x33, 0x3a, 0x3a, 0x3a },
92 .preemphasis = { 0x00, 0x00, 0x00, 0x00 },
93 }, {
94 .frequency = 150000000,
95 .vcocap = 0x3,
96 .filter = 0x0,
97 .ichpmp = 0x1,
98 .loadadj = 0x3,
99 .tmds_termadj = 0x9,
100 .tx_pu_value = 0x66,
101 .bg_temp_coef = 0x3,
102 .bg_vref_level = 0x8,
103 .avdd10_level = 0x4,
104 .avdd14_level = 0x4,
105 .sparepll = 0x0,
106 .drive_current = { 0x33, 0x3a, 0x3a, 0x3a },
107 .preemphasis = { 0x00, 0x00, 0x00, 0x00 },
108 }, {
109 .frequency = 300000000,
110 .vcocap = 0x3,
111 .filter = 0x0,
112 .ichpmp = 0x1,
113 .loadadj = 0x3,
114 .tmds_termadj = 0x9,
115 .tx_pu_value = 0x66,
116 .bg_temp_coef = 0x3,
117 .bg_vref_level = 0xa,
118 .avdd10_level = 0x4,
119 .avdd14_level = 0x4,
120 .sparepll = 0x0,
121 .drive_current = { 0x33, 0x3f, 0x3f, 0x3f },
122 .preemphasis = { 0x00, 0x17, 0x17, 0x17 },
123 }, {
124 .frequency = 600000000,
125 .vcocap = 0x3,
126 .filter = 0x0,
127 .ichpmp = 0x1,
128 .loadadj = 0x3,
129 .tmds_termadj = 0x9,
130 .tx_pu_value = 0x66,
131 .bg_temp_coef = 0x3,
132 .bg_vref_level = 0x8,
133 .avdd10_level = 0x4,
134 .avdd14_level = 0x4,
135 .sparepll = 0x0,
136 .drive_current = { 0x33, 0x3f, 0x3f, 0x3f },
137 .preemphasis = { 0x00, 0x00, 0x00, 0x00 },
138 },
139};
140#else
141static const struct tegra_sor_hdmi_settings tegra210_sor_hdmi_defaults[] = {
142 {
143 .frequency = 75000000,
144 .vcocap = 0x3,
145 .filter = 0x0,
146 .ichpmp = 0x1,
147 .loadadj = 0x3,
148 .tmds_termadj = 0x9,
149 .tx_pu_value = 0x40,
150 .bg_temp_coef = 0x3,
151 .bg_vref_level = 0x8,
152 .avdd10_level = 0x4,
153 .avdd14_level = 0x4,
154 .sparepll = 0x0,
155 .drive_current = { 0x29, 0x29, 0x29, 0x29 },
156 .preemphasis = { 0x00, 0x00, 0x00, 0x00 },
157 }, {
158 .frequency = 150000000,
159 .vcocap = 0x3,
160 .filter = 0x0,
161 .ichpmp = 0x1,
162 .loadadj = 0x3,
163 .tmds_termadj = 0x9,
164 .tx_pu_value = 0x66,
165 .bg_temp_coef = 0x3,
166 .bg_vref_level = 0x8,
167 .avdd10_level = 0x4,
168 .avdd14_level = 0x4,
169 .sparepll = 0x0,
170 .drive_current = { 0x30, 0x37, 0x37, 0x37 },
171 .preemphasis = { 0x01, 0x02, 0x02, 0x02 },
172 }, {
173 .frequency = 300000000,
174 .vcocap = 0x3,
175 .filter = 0x0,
176 .ichpmp = 0x6,
177 .loadadj = 0x3,
178 .tmds_termadj = 0x9,
179 .tx_pu_value = 0x66,
180 .bg_temp_coef = 0x3,
181 .bg_vref_level = 0xf,
182 .avdd10_level = 0x4,
183 .avdd14_level = 0x4,
184 .sparepll = 0x0,
185 .drive_current = { 0x30, 0x37, 0x37, 0x37 },
186 .preemphasis = { 0x10, 0x3e, 0x3e, 0x3e },
187 }, {
188 .frequency = 600000000,
189 .vcocap = 0x3,
190 .filter = 0x0,
191 .ichpmp = 0xa,
192 .loadadj = 0x3,
193 .tmds_termadj = 0xb,
194 .tx_pu_value = 0x66,
195 .bg_temp_coef = 0x3,
196 .bg_vref_level = 0xe,
197 .avdd10_level = 0x4,
198 .avdd14_level = 0x4,
199 .sparepll = 0x0,
200 .drive_current = { 0x35, 0x3e, 0x3e, 0x3e },
201 .preemphasis = { 0x02, 0x3f, 0x3f, 0x3f },
202 },
203};
204#endif
205
206static const struct tegra_sor_hdmi_settings tegra186_sor_hdmi_defaults[] = {
207 {
208 .frequency = 54000000,
209 .vcocap = 0,
210 .filter = 5,
211 .ichpmp = 5,
212 .loadadj = 3,
213 .tmds_termadj = 0xf,
214 .tx_pu_value = 0,
215 .bg_temp_coef = 3,
216 .bg_vref_level = 8,
217 .avdd10_level = 4,
218 .avdd14_level = 4,
219 .sparepll = 0x54,
220 .drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
221 .preemphasis = { 0x00, 0x00, 0x00, 0x00 },
222 }, {
223 .frequency = 75000000,
224 .vcocap = 1,
225 .filter = 5,
226 .ichpmp = 5,
227 .loadadj = 3,
228 .tmds_termadj = 0xf,
229 .tx_pu_value = 0,
230 .bg_temp_coef = 3,
231 .bg_vref_level = 8,
232 .avdd10_level = 4,
233 .avdd14_level = 4,
234 .sparepll = 0x44,
235 .drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
236 .preemphasis = { 0x00, 0x00, 0x00, 0x00 },
237 }, {
238 .frequency = 150000000,
239 .vcocap = 3,
240 .filter = 5,
241 .ichpmp = 5,
242 .loadadj = 3,
243 .tmds_termadj = 15,
244 .tx_pu_value = 0x66 /* 0 */,
245 .bg_temp_coef = 3,
246 .bg_vref_level = 8,
247 .avdd10_level = 4,
248 .avdd14_level = 4,
249 .sparepll = 0x00, /* 0x34 */
250 .drive_current = { 0x3a, 0x3a, 0x3a, 0x37 },
251 .preemphasis = { 0x00, 0x00, 0x00, 0x00 },
252 }, {
253 .frequency = 300000000,
254 .vcocap = 3,
255 .filter = 5,
256 .ichpmp = 5,
257 .loadadj = 3,
258 .tmds_termadj = 15,
259 .tx_pu_value = 64,
260 .bg_temp_coef = 3,
261 .bg_vref_level = 8,
262 .avdd10_level = 4,
263 .avdd14_level = 4,
264 .sparepll = 0x34,
265 .drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
266 .preemphasis = { 0x00, 0x00, 0x00, 0x00 },
267 }, {
268 .frequency = 600000000,
269 .vcocap = 3,
270 .filter = 5,
271 .ichpmp = 5,
272 .loadadj = 3,
273 .tmds_termadj = 12,
274 .tx_pu_value = 96,
275 .bg_temp_coef = 3,
276 .bg_vref_level = 8,
277 .avdd10_level = 4,
278 .avdd14_level = 4,
279 .sparepll = 0x34,
280 .drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
281 .preemphasis = { 0x00, 0x00, 0x00, 0x00 },
282 }
283};
284
285struct tegra_sor_regs {
286 unsigned int head_state0;
287 unsigned int head_state1;
288 unsigned int head_state2;
289 unsigned int head_state3;
290 unsigned int head_state4;
291 unsigned int head_state5;
292 unsigned int pll0;
293 unsigned int pll1;
294 unsigned int pll2;
295 unsigned int pll3;
296 unsigned int dp_padctl0;
297 unsigned int dp_padctl2;
298};
299
300struct tegra_sor_soc {
301 bool supports_edp;
302 bool supports_lvds;
303 bool supports_hdmi;
304 bool supports_dp;
305
306 const struct tegra_sor_regs *regs;
307 bool has_nvdisplay;
308
309 const struct tegra_sor_hdmi_settings *settings;
310 unsigned int num_settings;
311
312 const u8 *xbar_cfg;
313};
314
315struct tegra_sor;
316
317struct tegra_sor_ops {
318 const char *name;
319 int (*probe)(struct tegra_sor *sor);
320 int (*remove)(struct tegra_sor *sor);
321};
322
323struct tegra_sor {
324 struct host1x_client client;
325 struct tegra_output output;
326 struct device *dev;
327
328 const struct tegra_sor_soc *soc;
329 void __iomem *regs;
330 unsigned int index;
331
332 struct reset_control *rst;
333 struct clk *clk_parent;
334 struct clk *clk_safe;
335 struct clk *clk_out;
336 struct clk *clk_pad;
337 struct clk *clk_dp;
338 struct clk *clk;
339
340 struct drm_dp_aux *aux;
341
342 struct drm_info_list *debugfs_files;
343
344 const struct tegra_sor_ops *ops;
345 enum tegra_io_pad pad;
346
347 /* for HDMI 2.0 */
348 struct tegra_sor_hdmi_settings *settings;
349 unsigned int num_settings;
350
351 struct regulator *avdd_io_supply;
352 struct regulator *vdd_pll_supply;
353 struct regulator *hdmi_supply;
354
355 struct delayed_work scdc;
356 bool scdc_enabled;
357};
358
359struct tegra_sor_state {
360 struct drm_connector_state base;
361
362 unsigned int link_speed;
363 unsigned long pclk;
364 unsigned int bpc;
365};
366
367static inline struct tegra_sor_state *
368to_sor_state(struct drm_connector_state *state)
369{
370 return container_of(state, struct tegra_sor_state, base);
371}
372
373struct tegra_sor_config {
374 u32 bits_per_pixel;
375
376 u32 active_polarity;
377 u32 active_count;
378 u32 tu_size;
379 u32 active_frac;
380 u32 watermark;
381
382 u32 hblank_symbols;
383 u32 vblank_symbols;
384};
385
386static inline struct tegra_sor *
387host1x_client_to_sor(struct host1x_client *client)
388{
389 return container_of(client, struct tegra_sor, client);
390}
391
392static inline struct tegra_sor *to_sor(struct tegra_output *output)
393{
394 return container_of(output, struct tegra_sor, output);
395}
396
397static inline u32 tegra_sor_readl(struct tegra_sor *sor, unsigned int offset)
398{
399 u32 value = readl(sor->regs + (offset << 2));
400
401 trace_sor_readl(sor->dev, offset, value);
402
403 return value;
404}
405
406static inline void tegra_sor_writel(struct tegra_sor *sor, u32 value,
407 unsigned int offset)
408{
409 trace_sor_writel(sor->dev, offset, value);
410 writel(value, sor->regs + (offset << 2));
411}
412
413static int tegra_sor_set_parent_clock(struct tegra_sor *sor, struct clk *parent)
414{
415 int err;
416
417 clk_disable_unprepare(sor->clk);
418
419 err = clk_set_parent(sor->clk_out, parent);
420 if (err < 0)
421 return err;
422
423 err = clk_prepare_enable(sor->clk);
424 if (err < 0)
425 return err;
426
427 return 0;
428}
429
430struct tegra_clk_sor_pad {
431 struct clk_hw hw;
432 struct tegra_sor *sor;
433};
434
435static inline struct tegra_clk_sor_pad *to_pad(struct clk_hw *hw)
436{
437 return container_of(hw, struct tegra_clk_sor_pad, hw);
438}
439
440static const char * const tegra_clk_sor_pad_parents[] = {
441 "pll_d2_out0", "pll_dp"
442};
443
444static int tegra_clk_sor_pad_set_parent(struct clk_hw *hw, u8 index)
445{
446 struct tegra_clk_sor_pad *pad = to_pad(hw);
447 struct tegra_sor *sor = pad->sor;
448 u32 value;
449
450 value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
451 value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
452
453 switch (index) {
454 case 0:
455 value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK;
456 break;
457
458 case 1:
459 value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK;
460 break;
461 }
462
463 tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
464
465 return 0;
466}
467
468static u8 tegra_clk_sor_pad_get_parent(struct clk_hw *hw)
469{
470 struct tegra_clk_sor_pad *pad = to_pad(hw);
471 struct tegra_sor *sor = pad->sor;
472 u8 parent = U8_MAX;
473 u32 value;
474
475 value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
476
477 switch (value & SOR_CLK_CNTRL_DP_CLK_SEL_MASK) {
478 case SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK:
479 case SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_PCLK:
480 parent = 0;
481 break;
482
483 case SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK:
484 case SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_DPCLK:
485 parent = 1;
486 break;
487 }
488
489 return parent;
490}
491
492static const struct clk_ops tegra_clk_sor_pad_ops = {
493 .set_parent = tegra_clk_sor_pad_set_parent,
494 .get_parent = tegra_clk_sor_pad_get_parent,
495};
496
497static struct clk *tegra_clk_sor_pad_register(struct tegra_sor *sor,
498 const char *name)
499{
500 struct tegra_clk_sor_pad *pad;
501 struct clk_init_data init;
502 struct clk *clk;
503
504 pad = devm_kzalloc(sor->dev, sizeof(*pad), GFP_KERNEL);
505 if (!pad)
506 return ERR_PTR(-ENOMEM);
507
508 pad->sor = sor;
509
510 init.name = name;
511 init.flags = 0;
512 init.parent_names = tegra_clk_sor_pad_parents;
513 init.num_parents = ARRAY_SIZE(tegra_clk_sor_pad_parents);
514 init.ops = &tegra_clk_sor_pad_ops;
515
516 pad->hw.init = &init;
517
518 clk = devm_clk_register(sor->dev, &pad->hw);
519
520 return clk;
521}
522
523static int tegra_sor_dp_train_fast(struct tegra_sor *sor,
524 struct drm_dp_link *link)
525{
526 unsigned int i;
527 u8 pattern;
528 u32 value;
529 int err;
530
531 /* setup lane parameters */
532 value = SOR_LANE_DRIVE_CURRENT_LANE3(0x40) |
533 SOR_LANE_DRIVE_CURRENT_LANE2(0x40) |
534 SOR_LANE_DRIVE_CURRENT_LANE1(0x40) |
535 SOR_LANE_DRIVE_CURRENT_LANE0(0x40);
536 tegra_sor_writel(sor, value, SOR_LANE_DRIVE_CURRENT0);
537
538 value = SOR_LANE_PREEMPHASIS_LANE3(0x0f) |
539 SOR_LANE_PREEMPHASIS_LANE2(0x0f) |
540 SOR_LANE_PREEMPHASIS_LANE1(0x0f) |
541 SOR_LANE_PREEMPHASIS_LANE0(0x0f);
542 tegra_sor_writel(sor, value, SOR_LANE_PREEMPHASIS0);
543
544 value = SOR_LANE_POSTCURSOR_LANE3(0x00) |
545 SOR_LANE_POSTCURSOR_LANE2(0x00) |
546 SOR_LANE_POSTCURSOR_LANE1(0x00) |
547 SOR_LANE_POSTCURSOR_LANE0(0x00);
548 tegra_sor_writel(sor, value, SOR_LANE_POSTCURSOR0);
549
550 /* disable LVDS mode */
551 tegra_sor_writel(sor, 0, SOR_LVDS);
552
553 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
554 value |= SOR_DP_PADCTL_TX_PU_ENABLE;
555 value &= ~SOR_DP_PADCTL_TX_PU_MASK;
556 value |= SOR_DP_PADCTL_TX_PU(2); /* XXX: don't hardcode? */
557 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
558
559 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
560 value |= SOR_DP_PADCTL_CM_TXD_3 | SOR_DP_PADCTL_CM_TXD_2 |
561 SOR_DP_PADCTL_CM_TXD_1 | SOR_DP_PADCTL_CM_TXD_0;
562 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
563
564 usleep_range(10, 100);
565
566 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
567 value &= ~(SOR_DP_PADCTL_CM_TXD_3 | SOR_DP_PADCTL_CM_TXD_2 |
568 SOR_DP_PADCTL_CM_TXD_1 | SOR_DP_PADCTL_CM_TXD_0);
569 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
570
571 err = drm_dp_aux_prepare(sor->aux, DP_SET_ANSI_8B10B);
572 if (err < 0)
573 return err;
574
575 for (i = 0, value = 0; i < link->num_lanes; i++) {
576 unsigned long lane = SOR_DP_TPG_CHANNEL_CODING |
577 SOR_DP_TPG_SCRAMBLER_NONE |
578 SOR_DP_TPG_PATTERN_TRAIN1;
579 value = (value << 8) | lane;
580 }
581
582 tegra_sor_writel(sor, value, SOR_DP_TPG);
583
584 pattern = DP_TRAINING_PATTERN_1;
585
586 err = drm_dp_aux_train(sor->aux, link, pattern);
587 if (err < 0)
588 return err;
589
590 value = tegra_sor_readl(sor, SOR_DP_SPARE0);
591 value |= SOR_DP_SPARE_SEQ_ENABLE;
592 value &= ~SOR_DP_SPARE_PANEL_INTERNAL;
593 value |= SOR_DP_SPARE_MACRO_SOR_CLK;
594 tegra_sor_writel(sor, value, SOR_DP_SPARE0);
595
596 for (i = 0, value = 0; i < link->num_lanes; i++) {
597 unsigned long lane = SOR_DP_TPG_CHANNEL_CODING |
598 SOR_DP_TPG_SCRAMBLER_NONE |
599 SOR_DP_TPG_PATTERN_TRAIN2;
600 value = (value << 8) | lane;
601 }
602
603 tegra_sor_writel(sor, value, SOR_DP_TPG);
604
605 pattern = DP_LINK_SCRAMBLING_DISABLE | DP_TRAINING_PATTERN_2;
606
607 err = drm_dp_aux_train(sor->aux, link, pattern);
608 if (err < 0)
609 return err;
610
611 for (i = 0, value = 0; i < link->num_lanes; i++) {
612 unsigned long lane = SOR_DP_TPG_CHANNEL_CODING |
613 SOR_DP_TPG_SCRAMBLER_GALIOS |
614 SOR_DP_TPG_PATTERN_NONE;
615 value = (value << 8) | lane;
616 }
617
618 tegra_sor_writel(sor, value, SOR_DP_TPG);
619
620 pattern = DP_TRAINING_PATTERN_DISABLE;
621
622 err = drm_dp_aux_train(sor->aux, link, pattern);
623 if (err < 0)
624 return err;
625
626 return 0;
627}
628
629static void tegra_sor_super_update(struct tegra_sor *sor)
630{
631 tegra_sor_writel(sor, 0, SOR_SUPER_STATE0);
632 tegra_sor_writel(sor, 1, SOR_SUPER_STATE0);
633 tegra_sor_writel(sor, 0, SOR_SUPER_STATE0);
634}
635
636static void tegra_sor_update(struct tegra_sor *sor)
637{
638 tegra_sor_writel(sor, 0, SOR_STATE0);
639 tegra_sor_writel(sor, 1, SOR_STATE0);
640 tegra_sor_writel(sor, 0, SOR_STATE0);
641}
642
643static int tegra_sor_setup_pwm(struct tegra_sor *sor, unsigned long timeout)
644{
645 u32 value;
646
647 value = tegra_sor_readl(sor, SOR_PWM_DIV);
648 value &= ~SOR_PWM_DIV_MASK;
649 value |= 0x400; /* period */
650 tegra_sor_writel(sor, value, SOR_PWM_DIV);
651
652 value = tegra_sor_readl(sor, SOR_PWM_CTL);
653 value &= ~SOR_PWM_CTL_DUTY_CYCLE_MASK;
654 value |= 0x400; /* duty cycle */
655 value &= ~SOR_PWM_CTL_CLK_SEL; /* clock source: PCLK */
656 value |= SOR_PWM_CTL_TRIGGER;
657 tegra_sor_writel(sor, value, SOR_PWM_CTL);
658
659 timeout = jiffies + msecs_to_jiffies(timeout);
660
661 while (time_before(jiffies, timeout)) {
662 value = tegra_sor_readl(sor, SOR_PWM_CTL);
663 if ((value & SOR_PWM_CTL_TRIGGER) == 0)
664 return 0;
665
666 usleep_range(25, 100);
667 }
668
669 return -ETIMEDOUT;
670}
671
672static int tegra_sor_attach(struct tegra_sor *sor)
673{
674 unsigned long value, timeout;
675
676 /* wake up in normal mode */
677 value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
678 value |= SOR_SUPER_STATE_HEAD_MODE_AWAKE;
679 value |= SOR_SUPER_STATE_MODE_NORMAL;
680 tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
681 tegra_sor_super_update(sor);
682
683 /* attach */
684 value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
685 value |= SOR_SUPER_STATE_ATTACHED;
686 tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
687 tegra_sor_super_update(sor);
688
689 timeout = jiffies + msecs_to_jiffies(250);
690
691 while (time_before(jiffies, timeout)) {
692 value = tegra_sor_readl(sor, SOR_TEST);
693 if ((value & SOR_TEST_ATTACHED) != 0)
694 return 0;
695
696 usleep_range(25, 100);
697 }
698
699 return -ETIMEDOUT;
700}
701
702static int tegra_sor_wakeup(struct tegra_sor *sor)
703{
704 unsigned long value, timeout;
705
706 timeout = jiffies + msecs_to_jiffies(250);
707
708 /* wait for head to wake up */
709 while (time_before(jiffies, timeout)) {
710 value = tegra_sor_readl(sor, SOR_TEST);
711 value &= SOR_TEST_HEAD_MODE_MASK;
712
713 if (value == SOR_TEST_HEAD_MODE_AWAKE)
714 return 0;
715
716 usleep_range(25, 100);
717 }
718
719 return -ETIMEDOUT;
720}
721
722static int tegra_sor_power_up(struct tegra_sor *sor, unsigned long timeout)
723{
724 u32 value;
725
726 value = tegra_sor_readl(sor, SOR_PWR);
727 value |= SOR_PWR_TRIGGER | SOR_PWR_NORMAL_STATE_PU;
728 tegra_sor_writel(sor, value, SOR_PWR);
729
730 timeout = jiffies + msecs_to_jiffies(timeout);
731
732 while (time_before(jiffies, timeout)) {
733 value = tegra_sor_readl(sor, SOR_PWR);
734 if ((value & SOR_PWR_TRIGGER) == 0)
735 return 0;
736
737 usleep_range(25, 100);
738 }
739
740 return -ETIMEDOUT;
741}
742
743struct tegra_sor_params {
744 /* number of link clocks per line */
745 unsigned int num_clocks;
746 /* ratio between input and output */
747 u64 ratio;
748 /* precision factor */
749 u64 precision;
750
751 unsigned int active_polarity;
752 unsigned int active_count;
753 unsigned int active_frac;
754 unsigned int tu_size;
755 unsigned int error;
756};
757
758static int tegra_sor_compute_params(struct tegra_sor *sor,
759 struct tegra_sor_params *params,
760 unsigned int tu_size)
761{
762 u64 active_sym, active_count, frac, approx;
763 u32 active_polarity, active_frac = 0;
764 const u64 f = params->precision;
765 s64 error;
766
767 active_sym = params->ratio * tu_size;
768 active_count = div_u64(active_sym, f) * f;
769 frac = active_sym - active_count;
770
771 /* fraction < 0.5 */
772 if (frac >= (f / 2)) {
773 active_polarity = 1;
774 frac = f - frac;
775 } else {
776 active_polarity = 0;
777 }
778
779 if (frac != 0) {
780 frac = div_u64(f * f, frac); /* 1/fraction */
781 if (frac <= (15 * f)) {
782 active_frac = div_u64(frac, f);
783
784 /* round up */
785 if (active_polarity)
786 active_frac++;
787 } else {
788 active_frac = active_polarity ? 1 : 15;
789 }
790 }
791
792 if (active_frac == 1)
793 active_polarity = 0;
794
795 if (active_polarity == 1) {
796 if (active_frac) {
797 approx = active_count + (active_frac * (f - 1)) * f;
798 approx = div_u64(approx, active_frac * f);
799 } else {
800 approx = active_count + f;
801 }
802 } else {
803 if (active_frac)
804 approx = active_count + div_u64(f, active_frac);
805 else
806 approx = active_count;
807 }
808
809 error = div_s64(active_sym - approx, tu_size);
810 error *= params->num_clocks;
811
812 if (error <= 0 && abs(error) < params->error) {
813 params->active_count = div_u64(active_count, f);
814 params->active_polarity = active_polarity;
815 params->active_frac = active_frac;
816 params->error = abs(error);
817 params->tu_size = tu_size;
818
819 if (error == 0)
820 return true;
821 }
822
823 return false;
824}
825
826static int tegra_sor_compute_config(struct tegra_sor *sor,
827 const struct drm_display_mode *mode,
828 struct tegra_sor_config *config,
829 struct drm_dp_link *link)
830{
831 const u64 f = 100000, link_rate = link->rate * 1000;
832 const u64 pclk = mode->clock * 1000;
833 u64 input, output, watermark, num;
834 struct tegra_sor_params params;
835 u32 num_syms_per_line;
836 unsigned int i;
837
838 if (!link_rate || !link->num_lanes || !pclk || !config->bits_per_pixel)
839 return -EINVAL;
840
841 output = link_rate * 8 * link->num_lanes;
842 input = pclk * config->bits_per_pixel;
843
844 if (input >= output)
845 return -ERANGE;
846
847 memset(¶ms, 0, sizeof(params));
848 params.ratio = div64_u64(input * f, output);
849 params.num_clocks = div_u64(link_rate * mode->hdisplay, pclk);
850 params.precision = f;
851 params.error = 64 * f;
852 params.tu_size = 64;
853
854 for (i = params.tu_size; i >= 32; i--)
855 if (tegra_sor_compute_params(sor, ¶ms, i))
856 break;
857
858 if (params.active_frac == 0) {
859 config->active_polarity = 0;
860 config->active_count = params.active_count;
861
862 if (!params.active_polarity)
863 config->active_count--;
864
865 config->tu_size = params.tu_size;
866 config->active_frac = 1;
867 } else {
868 config->active_polarity = params.active_polarity;
869 config->active_count = params.active_count;
870 config->active_frac = params.active_frac;
871 config->tu_size = params.tu_size;
872 }
873
874 dev_dbg(sor->dev,
875 "polarity: %d active count: %d tu size: %d active frac: %d\n",
876 config->active_polarity, config->active_count,
877 config->tu_size, config->active_frac);
878
879 watermark = params.ratio * config->tu_size * (f - params.ratio);
880 watermark = div_u64(watermark, f);
881
882 watermark = div_u64(watermark + params.error, f);
883 config->watermark = watermark + (config->bits_per_pixel / 8) + 2;
884 num_syms_per_line = (mode->hdisplay * config->bits_per_pixel) *
885 (link->num_lanes * 8);
886
887 if (config->watermark > 30) {
888 config->watermark = 30;
889 dev_err(sor->dev,
890 "unable to compute TU size, forcing watermark to %u\n",
891 config->watermark);
892 } else if (config->watermark > num_syms_per_line) {
893 config->watermark = num_syms_per_line;
894 dev_err(sor->dev, "watermark too high, forcing to %u\n",
895 config->watermark);
896 }
897
898 /* compute the number of symbols per horizontal blanking interval */
899 num = ((mode->htotal - mode->hdisplay) - 7) * link_rate;
900 config->hblank_symbols = div_u64(num, pclk);
901
902 if (link->capabilities & DP_LINK_CAP_ENHANCED_FRAMING)
903 config->hblank_symbols -= 3;
904
905 config->hblank_symbols -= 12 / link->num_lanes;
906
907 /* compute the number of symbols per vertical blanking interval */
908 num = (mode->hdisplay - 25) * link_rate;
909 config->vblank_symbols = div_u64(num, pclk);
910 config->vblank_symbols -= 36 / link->num_lanes + 4;
911
912 dev_dbg(sor->dev, "blank symbols: H:%u V:%u\n", config->hblank_symbols,
913 config->vblank_symbols);
914
915 return 0;
916}
917
918static void tegra_sor_apply_config(struct tegra_sor *sor,
919 const struct tegra_sor_config *config)
920{
921 u32 value;
922
923 value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
924 value &= ~SOR_DP_LINKCTL_TU_SIZE_MASK;
925 value |= SOR_DP_LINKCTL_TU_SIZE(config->tu_size);
926 tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
927
928 value = tegra_sor_readl(sor, SOR_DP_CONFIG0);
929 value &= ~SOR_DP_CONFIG_WATERMARK_MASK;
930 value |= SOR_DP_CONFIG_WATERMARK(config->watermark);
931
932 value &= ~SOR_DP_CONFIG_ACTIVE_SYM_COUNT_MASK;
933 value |= SOR_DP_CONFIG_ACTIVE_SYM_COUNT(config->active_count);
934
935 value &= ~SOR_DP_CONFIG_ACTIVE_SYM_FRAC_MASK;
936 value |= SOR_DP_CONFIG_ACTIVE_SYM_FRAC(config->active_frac);
937
938 if (config->active_polarity)
939 value |= SOR_DP_CONFIG_ACTIVE_SYM_POLARITY;
940 else
941 value &= ~SOR_DP_CONFIG_ACTIVE_SYM_POLARITY;
942
943 value |= SOR_DP_CONFIG_ACTIVE_SYM_ENABLE;
944 value |= SOR_DP_CONFIG_DISPARITY_NEGATIVE;
945 tegra_sor_writel(sor, value, SOR_DP_CONFIG0);
946
947 value = tegra_sor_readl(sor, SOR_DP_AUDIO_HBLANK_SYMBOLS);
948 value &= ~SOR_DP_AUDIO_HBLANK_SYMBOLS_MASK;
949 value |= config->hblank_symbols & 0xffff;
950 tegra_sor_writel(sor, value, SOR_DP_AUDIO_HBLANK_SYMBOLS);
951
952 value = tegra_sor_readl(sor, SOR_DP_AUDIO_VBLANK_SYMBOLS);
953 value &= ~SOR_DP_AUDIO_VBLANK_SYMBOLS_MASK;
954 value |= config->vblank_symbols & 0xffff;
955 tegra_sor_writel(sor, value, SOR_DP_AUDIO_VBLANK_SYMBOLS);
956}
957
958static void tegra_sor_mode_set(struct tegra_sor *sor,
959 const struct drm_display_mode *mode,
960 struct tegra_sor_state *state)
961{
962 struct tegra_dc *dc = to_tegra_dc(sor->output.encoder.crtc);
963 unsigned int vbe, vse, hbe, hse, vbs, hbs;
964 u32 value;
965
966 value = tegra_sor_readl(sor, SOR_STATE1);
967 value &= ~SOR_STATE_ASY_PIXELDEPTH_MASK;
968 value &= ~SOR_STATE_ASY_CRC_MODE_MASK;
969 value &= ~SOR_STATE_ASY_OWNER_MASK;
970
971 value |= SOR_STATE_ASY_CRC_MODE_COMPLETE |
972 SOR_STATE_ASY_OWNER(dc->pipe + 1);
973
974 if (mode->flags & DRM_MODE_FLAG_PHSYNC)
975 value &= ~SOR_STATE_ASY_HSYNCPOL;
976
977 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
978 value |= SOR_STATE_ASY_HSYNCPOL;
979
980 if (mode->flags & DRM_MODE_FLAG_PVSYNC)
981 value &= ~SOR_STATE_ASY_VSYNCPOL;
982
983 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
984 value |= SOR_STATE_ASY_VSYNCPOL;
985
986 switch (state->bpc) {
987 case 16:
988 value |= SOR_STATE_ASY_PIXELDEPTH_BPP_48_444;
989 break;
990
991 case 12:
992 value |= SOR_STATE_ASY_PIXELDEPTH_BPP_36_444;
993 break;
994
995 case 10:
996 value |= SOR_STATE_ASY_PIXELDEPTH_BPP_30_444;
997 break;
998
999 case 8:
1000 value |= SOR_STATE_ASY_PIXELDEPTH_BPP_24_444;
1001 break;
1002
1003 case 6:
1004 value |= SOR_STATE_ASY_PIXELDEPTH_BPP_18_444;
1005 break;
1006
1007 default:
1008 value |= SOR_STATE_ASY_PIXELDEPTH_BPP_24_444;
1009 break;
1010 }
1011
1012 tegra_sor_writel(sor, value, SOR_STATE1);
1013
1014 /*
1015 * TODO: The video timing programming below doesn't seem to match the
1016 * register definitions.
1017 */
1018
1019 value = ((mode->vtotal & 0x7fff) << 16) | (mode->htotal & 0x7fff);
1020 tegra_sor_writel(sor, value, sor->soc->regs->head_state1 + dc->pipe);
1021
1022 /* sync end = sync width - 1 */
1023 vse = mode->vsync_end - mode->vsync_start - 1;
1024 hse = mode->hsync_end - mode->hsync_start - 1;
1025
1026 value = ((vse & 0x7fff) << 16) | (hse & 0x7fff);
1027 tegra_sor_writel(sor, value, sor->soc->regs->head_state2 + dc->pipe);
1028
1029 /* blank end = sync end + back porch */
1030 vbe = vse + (mode->vtotal - mode->vsync_end);
1031 hbe = hse + (mode->htotal - mode->hsync_end);
1032
1033 value = ((vbe & 0x7fff) << 16) | (hbe & 0x7fff);
1034 tegra_sor_writel(sor, value, sor->soc->regs->head_state3 + dc->pipe);
1035
1036 /* blank start = blank end + active */
1037 vbs = vbe + mode->vdisplay;
1038 hbs = hbe + mode->hdisplay;
1039
1040 value = ((vbs & 0x7fff) << 16) | (hbs & 0x7fff);
1041 tegra_sor_writel(sor, value, sor->soc->regs->head_state4 + dc->pipe);
1042
1043 /* XXX interlacing support */
1044 tegra_sor_writel(sor, 0x001, sor->soc->regs->head_state5 + dc->pipe);
1045}
1046
1047static int tegra_sor_detach(struct tegra_sor *sor)
1048{
1049 unsigned long value, timeout;
1050
1051 /* switch to safe mode */
1052 value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1053 value &= ~SOR_SUPER_STATE_MODE_NORMAL;
1054 tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1055 tegra_sor_super_update(sor);
1056
1057 timeout = jiffies + msecs_to_jiffies(250);
1058
1059 while (time_before(jiffies, timeout)) {
1060 value = tegra_sor_readl(sor, SOR_PWR);
1061 if (value & SOR_PWR_MODE_SAFE)
1062 break;
1063 }
1064
1065 if ((value & SOR_PWR_MODE_SAFE) == 0)
1066 return -ETIMEDOUT;
1067
1068 /* go to sleep */
1069 value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1070 value &= ~SOR_SUPER_STATE_HEAD_MODE_MASK;
1071 tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1072 tegra_sor_super_update(sor);
1073
1074 /* detach */
1075 value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1076 value &= ~SOR_SUPER_STATE_ATTACHED;
1077 tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1078 tegra_sor_super_update(sor);
1079
1080 timeout = jiffies + msecs_to_jiffies(250);
1081
1082 while (time_before(jiffies, timeout)) {
1083 value = tegra_sor_readl(sor, SOR_TEST);
1084 if ((value & SOR_TEST_ATTACHED) == 0)
1085 break;
1086
1087 usleep_range(25, 100);
1088 }
1089
1090 if ((value & SOR_TEST_ATTACHED) != 0)
1091 return -ETIMEDOUT;
1092
1093 return 0;
1094}
1095
1096static int tegra_sor_power_down(struct tegra_sor *sor)
1097{
1098 unsigned long value, timeout;
1099 int err;
1100
1101 value = tegra_sor_readl(sor, SOR_PWR);
1102 value &= ~SOR_PWR_NORMAL_STATE_PU;
1103 value |= SOR_PWR_TRIGGER;
1104 tegra_sor_writel(sor, value, SOR_PWR);
1105
1106 timeout = jiffies + msecs_to_jiffies(250);
1107
1108 while (time_before(jiffies, timeout)) {
1109 value = tegra_sor_readl(sor, SOR_PWR);
1110 if ((value & SOR_PWR_TRIGGER) == 0)
1111 return 0;
1112
1113 usleep_range(25, 100);
1114 }
1115
1116 if ((value & SOR_PWR_TRIGGER) != 0)
1117 return -ETIMEDOUT;
1118
1119 /* switch to safe parent clock */
1120 err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
1121 if (err < 0) {
1122 dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
1123 return err;
1124 }
1125
1126 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
1127 value &= ~(SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_0 |
1128 SOR_DP_PADCTL_PD_TXD_1 | SOR_DP_PADCTL_PD_TXD_2);
1129 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
1130
1131 /* stop lane sequencer */
1132 value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_UP |
1133 SOR_LANE_SEQ_CTL_POWER_STATE_DOWN;
1134 tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
1135
1136 timeout = jiffies + msecs_to_jiffies(250);
1137
1138 while (time_before(jiffies, timeout)) {
1139 value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
1140 if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
1141 break;
1142
1143 usleep_range(25, 100);
1144 }
1145
1146 if ((value & SOR_LANE_SEQ_CTL_TRIGGER) != 0)
1147 return -ETIMEDOUT;
1148
1149 value = tegra_sor_readl(sor, sor->soc->regs->pll2);
1150 value |= SOR_PLL2_PORT_POWERDOWN;
1151 tegra_sor_writel(sor, value, sor->soc->regs->pll2);
1152
1153 usleep_range(20, 100);
1154
1155 value = tegra_sor_readl(sor, sor->soc->regs->pll0);
1156 value |= SOR_PLL0_VCOPD | SOR_PLL0_PWR;
1157 tegra_sor_writel(sor, value, sor->soc->regs->pll0);
1158
1159 value = tegra_sor_readl(sor, sor->soc->regs->pll2);
1160 value |= SOR_PLL2_SEQ_PLLCAPPD;
1161 value |= SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
1162 tegra_sor_writel(sor, value, sor->soc->regs->pll2);
1163
1164 usleep_range(20, 100);
1165
1166 return 0;
1167}
1168
1169static int tegra_sor_crc_wait(struct tegra_sor *sor, unsigned long timeout)
1170{
1171 u32 value;
1172
1173 timeout = jiffies + msecs_to_jiffies(timeout);
1174
1175 while (time_before(jiffies, timeout)) {
1176 value = tegra_sor_readl(sor, SOR_CRCA);
1177 if (value & SOR_CRCA_VALID)
1178 return 0;
1179
1180 usleep_range(100, 200);
1181 }
1182
1183 return -ETIMEDOUT;
1184}
1185
1186static int tegra_sor_show_crc(struct seq_file *s, void *data)
1187{
1188 struct drm_info_node *node = s->private;
1189 struct tegra_sor *sor = node->info_ent->data;
1190 struct drm_crtc *crtc = sor->output.encoder.crtc;
1191 struct drm_device *drm = node->minor->dev;
1192 int err = 0;
1193 u32 value;
1194
1195 drm_modeset_lock_all(drm);
1196
1197 if (!crtc || !crtc->state->active) {
1198 err = -EBUSY;
1199 goto unlock;
1200 }
1201
1202 value = tegra_sor_readl(sor, SOR_STATE1);
1203 value &= ~SOR_STATE_ASY_CRC_MODE_MASK;
1204 tegra_sor_writel(sor, value, SOR_STATE1);
1205
1206 value = tegra_sor_readl(sor, SOR_CRC_CNTRL);
1207 value |= SOR_CRC_CNTRL_ENABLE;
1208 tegra_sor_writel(sor, value, SOR_CRC_CNTRL);
1209
1210 value = tegra_sor_readl(sor, SOR_TEST);
1211 value &= ~SOR_TEST_CRC_POST_SERIALIZE;
1212 tegra_sor_writel(sor, value, SOR_TEST);
1213
1214 err = tegra_sor_crc_wait(sor, 100);
1215 if (err < 0)
1216 goto unlock;
1217
1218 tegra_sor_writel(sor, SOR_CRCA_RESET, SOR_CRCA);
1219 value = tegra_sor_readl(sor, SOR_CRCB);
1220
1221 seq_printf(s, "%08x\n", value);
1222
1223unlock:
1224 drm_modeset_unlock_all(drm);
1225 return err;
1226}
1227
1228#define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1229
1230static const struct debugfs_reg32 tegra_sor_regs[] = {
1231 DEBUGFS_REG32(SOR_CTXSW),
1232 DEBUGFS_REG32(SOR_SUPER_STATE0),
1233 DEBUGFS_REG32(SOR_SUPER_STATE1),
1234 DEBUGFS_REG32(SOR_STATE0),
1235 DEBUGFS_REG32(SOR_STATE1),
1236 DEBUGFS_REG32(SOR_HEAD_STATE0(0)),
1237 DEBUGFS_REG32(SOR_HEAD_STATE0(1)),
1238 DEBUGFS_REG32(SOR_HEAD_STATE1(0)),
1239 DEBUGFS_REG32(SOR_HEAD_STATE1(1)),
1240 DEBUGFS_REG32(SOR_HEAD_STATE2(0)),
1241 DEBUGFS_REG32(SOR_HEAD_STATE2(1)),
1242 DEBUGFS_REG32(SOR_HEAD_STATE3(0)),
1243 DEBUGFS_REG32(SOR_HEAD_STATE3(1)),
1244 DEBUGFS_REG32(SOR_HEAD_STATE4(0)),
1245 DEBUGFS_REG32(SOR_HEAD_STATE4(1)),
1246 DEBUGFS_REG32(SOR_HEAD_STATE5(0)),
1247 DEBUGFS_REG32(SOR_HEAD_STATE5(1)),
1248 DEBUGFS_REG32(SOR_CRC_CNTRL),
1249 DEBUGFS_REG32(SOR_DP_DEBUG_MVID),
1250 DEBUGFS_REG32(SOR_CLK_CNTRL),
1251 DEBUGFS_REG32(SOR_CAP),
1252 DEBUGFS_REG32(SOR_PWR),
1253 DEBUGFS_REG32(SOR_TEST),
1254 DEBUGFS_REG32(SOR_PLL0),
1255 DEBUGFS_REG32(SOR_PLL1),
1256 DEBUGFS_REG32(SOR_PLL2),
1257 DEBUGFS_REG32(SOR_PLL3),
1258 DEBUGFS_REG32(SOR_CSTM),
1259 DEBUGFS_REG32(SOR_LVDS),
1260 DEBUGFS_REG32(SOR_CRCA),
1261 DEBUGFS_REG32(SOR_CRCB),
1262 DEBUGFS_REG32(SOR_BLANK),
1263 DEBUGFS_REG32(SOR_SEQ_CTL),
1264 DEBUGFS_REG32(SOR_LANE_SEQ_CTL),
1265 DEBUGFS_REG32(SOR_SEQ_INST(0)),
1266 DEBUGFS_REG32(SOR_SEQ_INST(1)),
1267 DEBUGFS_REG32(SOR_SEQ_INST(2)),
1268 DEBUGFS_REG32(SOR_SEQ_INST(3)),
1269 DEBUGFS_REG32(SOR_SEQ_INST(4)),
1270 DEBUGFS_REG32(SOR_SEQ_INST(5)),
1271 DEBUGFS_REG32(SOR_SEQ_INST(6)),
1272 DEBUGFS_REG32(SOR_SEQ_INST(7)),
1273 DEBUGFS_REG32(SOR_SEQ_INST(8)),
1274 DEBUGFS_REG32(SOR_SEQ_INST(9)),
1275 DEBUGFS_REG32(SOR_SEQ_INST(10)),
1276 DEBUGFS_REG32(SOR_SEQ_INST(11)),
1277 DEBUGFS_REG32(SOR_SEQ_INST(12)),
1278 DEBUGFS_REG32(SOR_SEQ_INST(13)),
1279 DEBUGFS_REG32(SOR_SEQ_INST(14)),
1280 DEBUGFS_REG32(SOR_SEQ_INST(15)),
1281 DEBUGFS_REG32(SOR_PWM_DIV),
1282 DEBUGFS_REG32(SOR_PWM_CTL),
1283 DEBUGFS_REG32(SOR_VCRC_A0),
1284 DEBUGFS_REG32(SOR_VCRC_A1),
1285 DEBUGFS_REG32(SOR_VCRC_B0),
1286 DEBUGFS_REG32(SOR_VCRC_B1),
1287 DEBUGFS_REG32(SOR_CCRC_A0),
1288 DEBUGFS_REG32(SOR_CCRC_A1),
1289 DEBUGFS_REG32(SOR_CCRC_B0),
1290 DEBUGFS_REG32(SOR_CCRC_B1),
1291 DEBUGFS_REG32(SOR_EDATA_A0),
1292 DEBUGFS_REG32(SOR_EDATA_A1),
1293 DEBUGFS_REG32(SOR_EDATA_B0),
1294 DEBUGFS_REG32(SOR_EDATA_B1),
1295 DEBUGFS_REG32(SOR_COUNT_A0),
1296 DEBUGFS_REG32(SOR_COUNT_A1),
1297 DEBUGFS_REG32(SOR_COUNT_B0),
1298 DEBUGFS_REG32(SOR_COUNT_B1),
1299 DEBUGFS_REG32(SOR_DEBUG_A0),
1300 DEBUGFS_REG32(SOR_DEBUG_A1),
1301 DEBUGFS_REG32(SOR_DEBUG_B0),
1302 DEBUGFS_REG32(SOR_DEBUG_B1),
1303 DEBUGFS_REG32(SOR_TRIG),
1304 DEBUGFS_REG32(SOR_MSCHECK),
1305 DEBUGFS_REG32(SOR_XBAR_CTRL),
1306 DEBUGFS_REG32(SOR_XBAR_POL),
1307 DEBUGFS_REG32(SOR_DP_LINKCTL0),
1308 DEBUGFS_REG32(SOR_DP_LINKCTL1),
1309 DEBUGFS_REG32(SOR_LANE_DRIVE_CURRENT0),
1310 DEBUGFS_REG32(SOR_LANE_DRIVE_CURRENT1),
1311 DEBUGFS_REG32(SOR_LANE4_DRIVE_CURRENT0),
1312 DEBUGFS_REG32(SOR_LANE4_DRIVE_CURRENT1),
1313 DEBUGFS_REG32(SOR_LANE_PREEMPHASIS0),
1314 DEBUGFS_REG32(SOR_LANE_PREEMPHASIS1),
1315 DEBUGFS_REG32(SOR_LANE4_PREEMPHASIS0),
1316 DEBUGFS_REG32(SOR_LANE4_PREEMPHASIS1),
1317 DEBUGFS_REG32(SOR_LANE_POSTCURSOR0),
1318 DEBUGFS_REG32(SOR_LANE_POSTCURSOR1),
1319 DEBUGFS_REG32(SOR_DP_CONFIG0),
1320 DEBUGFS_REG32(SOR_DP_CONFIG1),
1321 DEBUGFS_REG32(SOR_DP_MN0),
1322 DEBUGFS_REG32(SOR_DP_MN1),
1323 DEBUGFS_REG32(SOR_DP_PADCTL0),
1324 DEBUGFS_REG32(SOR_DP_PADCTL1),
1325 DEBUGFS_REG32(SOR_DP_PADCTL2),
1326 DEBUGFS_REG32(SOR_DP_DEBUG0),
1327 DEBUGFS_REG32(SOR_DP_DEBUG1),
1328 DEBUGFS_REG32(SOR_DP_SPARE0),
1329 DEBUGFS_REG32(SOR_DP_SPARE1),
1330 DEBUGFS_REG32(SOR_DP_AUDIO_CTRL),
1331 DEBUGFS_REG32(SOR_DP_AUDIO_HBLANK_SYMBOLS),
1332 DEBUGFS_REG32(SOR_DP_AUDIO_VBLANK_SYMBOLS),
1333 DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_HEADER),
1334 DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK0),
1335 DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK1),
1336 DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK2),
1337 DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK3),
1338 DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK4),
1339 DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK5),
1340 DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK6),
1341 DEBUGFS_REG32(SOR_DP_TPG),
1342 DEBUGFS_REG32(SOR_DP_TPG_CONFIG),
1343 DEBUGFS_REG32(SOR_DP_LQ_CSTM0),
1344 DEBUGFS_REG32(SOR_DP_LQ_CSTM1),
1345 DEBUGFS_REG32(SOR_DP_LQ_CSTM2),
1346};
1347
1348static int tegra_sor_show_regs(struct seq_file *s, void *data)
1349{
1350 struct drm_info_node *node = s->private;
1351 struct tegra_sor *sor = node->info_ent->data;
1352 struct drm_crtc *crtc = sor->output.encoder.crtc;
1353 struct drm_device *drm = node->minor->dev;
1354 unsigned int i;
1355 int err = 0;
1356
1357 drm_modeset_lock_all(drm);
1358
1359 if (!crtc || !crtc->state->active) {
1360 err = -EBUSY;
1361 goto unlock;
1362 }
1363
1364 for (i = 0; i < ARRAY_SIZE(tegra_sor_regs); i++) {
1365 unsigned int offset = tegra_sor_regs[i].offset;
1366
1367 seq_printf(s, "%-38s %#05x %08x\n", tegra_sor_regs[i].name,
1368 offset, tegra_sor_readl(sor, offset));
1369 }
1370
1371unlock:
1372 drm_modeset_unlock_all(drm);
1373 return err;
1374}
1375
1376static const struct drm_info_list debugfs_files[] = {
1377 { "crc", tegra_sor_show_crc, 0, NULL },
1378 { "regs", tegra_sor_show_regs, 0, NULL },
1379};
1380
1381static int tegra_sor_late_register(struct drm_connector *connector)
1382{
1383 struct tegra_output *output = connector_to_output(connector);
1384 unsigned int i, count = ARRAY_SIZE(debugfs_files);
1385 struct drm_minor *minor = connector->dev->primary;
1386 struct dentry *root = connector->debugfs_entry;
1387 struct tegra_sor *sor = to_sor(output);
1388 int err;
1389
1390 sor->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1391 GFP_KERNEL);
1392 if (!sor->debugfs_files)
1393 return -ENOMEM;
1394
1395 for (i = 0; i < count; i++)
1396 sor->debugfs_files[i].data = sor;
1397
1398 err = drm_debugfs_create_files(sor->debugfs_files, count, root, minor);
1399 if (err < 0)
1400 goto free;
1401
1402 return 0;
1403
1404free:
1405 kfree(sor->debugfs_files);
1406 sor->debugfs_files = NULL;
1407
1408 return err;
1409}
1410
1411static void tegra_sor_early_unregister(struct drm_connector *connector)
1412{
1413 struct tegra_output *output = connector_to_output(connector);
1414 unsigned int count = ARRAY_SIZE(debugfs_files);
1415 struct tegra_sor *sor = to_sor(output);
1416
1417 drm_debugfs_remove_files(sor->debugfs_files, count,
1418 connector->dev->primary);
1419 kfree(sor->debugfs_files);
1420 sor->debugfs_files = NULL;
1421}
1422
1423static void tegra_sor_connector_reset(struct drm_connector *connector)
1424{
1425 struct tegra_sor_state *state;
1426
1427 state = kzalloc(sizeof(*state), GFP_KERNEL);
1428 if (!state)
1429 return;
1430
1431 if (connector->state) {
1432 __drm_atomic_helper_connector_destroy_state(connector->state);
1433 kfree(connector->state);
1434 }
1435
1436 __drm_atomic_helper_connector_reset(connector, &state->base);
1437}
1438
1439static enum drm_connector_status
1440tegra_sor_connector_detect(struct drm_connector *connector, bool force)
1441{
1442 struct tegra_output *output = connector_to_output(connector);
1443 struct tegra_sor *sor = to_sor(output);
1444
1445 if (sor->aux)
1446 return drm_dp_aux_detect(sor->aux);
1447
1448 return tegra_output_connector_detect(connector, force);
1449}
1450
1451static struct drm_connector_state *
1452tegra_sor_connector_duplicate_state(struct drm_connector *connector)
1453{
1454 struct tegra_sor_state *state = to_sor_state(connector->state);
1455 struct tegra_sor_state *copy;
1456
1457 copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
1458 if (!copy)
1459 return NULL;
1460
1461 __drm_atomic_helper_connector_duplicate_state(connector, ©->base);
1462
1463 return ©->base;
1464}
1465
1466static const struct drm_connector_funcs tegra_sor_connector_funcs = {
1467 .reset = tegra_sor_connector_reset,
1468 .detect = tegra_sor_connector_detect,
1469 .fill_modes = drm_helper_probe_single_connector_modes,
1470 .destroy = tegra_output_connector_destroy,
1471 .atomic_duplicate_state = tegra_sor_connector_duplicate_state,
1472 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
1473 .late_register = tegra_sor_late_register,
1474 .early_unregister = tegra_sor_early_unregister,
1475};
1476
1477static int tegra_sor_connector_get_modes(struct drm_connector *connector)
1478{
1479 struct tegra_output *output = connector_to_output(connector);
1480 struct tegra_sor *sor = to_sor(output);
1481 int err;
1482
1483 if (sor->aux)
1484 drm_dp_aux_enable(sor->aux);
1485
1486 err = tegra_output_connector_get_modes(connector);
1487
1488 if (sor->aux)
1489 drm_dp_aux_disable(sor->aux);
1490
1491 return err;
1492}
1493
1494static enum drm_mode_status
1495tegra_sor_connector_mode_valid(struct drm_connector *connector,
1496 struct drm_display_mode *mode)
1497{
1498 return MODE_OK;
1499}
1500
1501static const struct drm_connector_helper_funcs tegra_sor_connector_helper_funcs = {
1502 .get_modes = tegra_sor_connector_get_modes,
1503 .mode_valid = tegra_sor_connector_mode_valid,
1504};
1505
1506static const struct drm_encoder_funcs tegra_sor_encoder_funcs = {
1507 .destroy = tegra_output_encoder_destroy,
1508};
1509
1510static void tegra_sor_edp_disable(struct drm_encoder *encoder)
1511{
1512 struct tegra_output *output = encoder_to_output(encoder);
1513 struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
1514 struct tegra_sor *sor = to_sor(output);
1515 u32 value;
1516 int err;
1517
1518 if (output->panel)
1519 drm_panel_disable(output->panel);
1520
1521 err = tegra_sor_detach(sor);
1522 if (err < 0)
1523 dev_err(sor->dev, "failed to detach SOR: %d\n", err);
1524
1525 tegra_sor_writel(sor, 0, SOR_STATE1);
1526 tegra_sor_update(sor);
1527
1528 /*
1529 * The following accesses registers of the display controller, so make
1530 * sure it's only executed when the output is attached to one.
1531 */
1532 if (dc) {
1533 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
1534 value &= ~SOR_ENABLE(0);
1535 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
1536
1537 tegra_dc_commit(dc);
1538 }
1539
1540 err = tegra_sor_power_down(sor);
1541 if (err < 0)
1542 dev_err(sor->dev, "failed to power down SOR: %d\n", err);
1543
1544 if (sor->aux) {
1545 err = drm_dp_aux_disable(sor->aux);
1546 if (err < 0)
1547 dev_err(sor->dev, "failed to disable DP: %d\n", err);
1548 }
1549
1550 err = tegra_io_pad_power_disable(sor->pad);
1551 if (err < 0)
1552 dev_err(sor->dev, "failed to power off I/O pad: %d\n", err);
1553
1554 if (output->panel)
1555 drm_panel_unprepare(output->panel);
1556
1557 pm_runtime_put(sor->dev);
1558}
1559
1560#if 0
1561static int calc_h_ref_to_sync(const struct drm_display_mode *mode,
1562 unsigned int *value)
1563{
1564 unsigned int hfp, hsw, hbp, a = 0, b;
1565
1566 hfp = mode->hsync_start - mode->hdisplay;
1567 hsw = mode->hsync_end - mode->hsync_start;
1568 hbp = mode->htotal - mode->hsync_end;
1569
1570 pr_info("hfp: %u, hsw: %u, hbp: %u\n", hfp, hsw, hbp);
1571
1572 b = hfp - 1;
1573
1574 pr_info("a: %u, b: %u\n", a, b);
1575 pr_info("a + hsw + hbp = %u\n", a + hsw + hbp);
1576
1577 if (a + hsw + hbp <= 11) {
1578 a = 1 + 11 - hsw - hbp;
1579 pr_info("a: %u\n", a);
1580 }
1581
1582 if (a > b)
1583 return -EINVAL;
1584
1585 if (hsw < 1)
1586 return -EINVAL;
1587
1588 if (mode->hdisplay < 16)
1589 return -EINVAL;
1590
1591 if (value) {
1592 if (b > a && a % 2)
1593 *value = a + 1;
1594 else
1595 *value = a;
1596 }
1597
1598 return 0;
1599}
1600#endif
1601
1602static void tegra_sor_edp_enable(struct drm_encoder *encoder)
1603{
1604 struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
1605 struct tegra_output *output = encoder_to_output(encoder);
1606 struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
1607 struct tegra_sor *sor = to_sor(output);
1608 struct tegra_sor_config config;
1609 struct tegra_sor_state *state;
1610 struct drm_dp_link link;
1611 u8 rate, lanes;
1612 unsigned int i;
1613 int err = 0;
1614 u32 value;
1615
1616 state = to_sor_state(output->connector.state);
1617
1618 pm_runtime_get_sync(sor->dev);
1619
1620 if (output->panel)
1621 drm_panel_prepare(output->panel);
1622
1623 err = drm_dp_aux_enable(sor->aux);
1624 if (err < 0)
1625 dev_err(sor->dev, "failed to enable DP: %d\n", err);
1626
1627 err = drm_dp_link_probe(sor->aux, &link);
1628 if (err < 0) {
1629 dev_err(sor->dev, "failed to probe eDP link: %d\n", err);
1630 return;
1631 }
1632
1633 /* switch to safe parent clock */
1634 err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
1635 if (err < 0)
1636 dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
1637
1638 memset(&config, 0, sizeof(config));
1639 config.bits_per_pixel = state->bpc * 3;
1640
1641 err = tegra_sor_compute_config(sor, mode, &config, &link);
1642 if (err < 0)
1643 dev_err(sor->dev, "failed to compute configuration: %d\n", err);
1644
1645 value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
1646 value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
1647 value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK;
1648 tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
1649
1650 value = tegra_sor_readl(sor, sor->soc->regs->pll2);
1651 value &= ~SOR_PLL2_BANDGAP_POWERDOWN;
1652 tegra_sor_writel(sor, value, sor->soc->regs->pll2);
1653 usleep_range(20, 100);
1654
1655 value = tegra_sor_readl(sor, sor->soc->regs->pll3);
1656 value |= SOR_PLL3_PLL_VDD_MODE_3V3;
1657 tegra_sor_writel(sor, value, sor->soc->regs->pll3);
1658
1659 value = SOR_PLL0_ICHPMP(0xf) | SOR_PLL0_VCOCAP_RST |
1660 SOR_PLL0_PLLREG_LEVEL_V45 | SOR_PLL0_RESISTOR_EXT;
1661 tegra_sor_writel(sor, value, sor->soc->regs->pll0);
1662
1663 value = tegra_sor_readl(sor, sor->soc->regs->pll2);
1664 value |= SOR_PLL2_SEQ_PLLCAPPD;
1665 value &= ~SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
1666 value |= SOR_PLL2_LVDS_ENABLE;
1667 tegra_sor_writel(sor, value, sor->soc->regs->pll2);
1668
1669 value = SOR_PLL1_TERM_COMPOUT | SOR_PLL1_TMDS_TERM;
1670 tegra_sor_writel(sor, value, sor->soc->regs->pll1);
1671
1672 while (true) {
1673 value = tegra_sor_readl(sor, sor->soc->regs->pll2);
1674 if ((value & SOR_PLL2_SEQ_PLLCAPPD_ENFORCE) == 0)
1675 break;
1676
1677 usleep_range(250, 1000);
1678 }
1679
1680 value = tegra_sor_readl(sor, sor->soc->regs->pll2);
1681 value &= ~SOR_PLL2_POWERDOWN_OVERRIDE;
1682 value &= ~SOR_PLL2_PORT_POWERDOWN;
1683 tegra_sor_writel(sor, value, sor->soc->regs->pll2);
1684
1685 /*
1686 * power up
1687 */
1688
1689 /* set safe link bandwidth (1.62 Gbps) */
1690 value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
1691 value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK;
1692 value |= SOR_CLK_CNTRL_DP_LINK_SPEED_G1_62;
1693 tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
1694
1695 /* step 1 */
1696 value = tegra_sor_readl(sor, sor->soc->regs->pll2);
1697 value |= SOR_PLL2_SEQ_PLLCAPPD_ENFORCE | SOR_PLL2_PORT_POWERDOWN |
1698 SOR_PLL2_BANDGAP_POWERDOWN;
1699 tegra_sor_writel(sor, value, sor->soc->regs->pll2);
1700
1701 value = tegra_sor_readl(sor, sor->soc->regs->pll0);
1702 value |= SOR_PLL0_VCOPD | SOR_PLL0_PWR;
1703 tegra_sor_writel(sor, value, sor->soc->regs->pll0);
1704
1705 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
1706 value &= ~SOR_DP_PADCTL_PAD_CAL_PD;
1707 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
1708
1709 /* step 2 */
1710 err = tegra_io_pad_power_enable(sor->pad);
1711 if (err < 0)
1712 dev_err(sor->dev, "failed to power on I/O pad: %d\n", err);
1713
1714 usleep_range(5, 100);
1715
1716 /* step 3 */
1717 value = tegra_sor_readl(sor, sor->soc->regs->pll2);
1718 value &= ~SOR_PLL2_BANDGAP_POWERDOWN;
1719 tegra_sor_writel(sor, value, sor->soc->regs->pll2);
1720
1721 usleep_range(20, 100);
1722
1723 /* step 4 */
1724 value = tegra_sor_readl(sor, sor->soc->regs->pll0);
1725 value &= ~SOR_PLL0_VCOPD;
1726 value &= ~SOR_PLL0_PWR;
1727 tegra_sor_writel(sor, value, sor->soc->regs->pll0);
1728
1729 value = tegra_sor_readl(sor, sor->soc->regs->pll2);
1730 value &= ~SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
1731 tegra_sor_writel(sor, value, sor->soc->regs->pll2);
1732
1733 usleep_range(200, 1000);
1734
1735 /* step 5 */
1736 value = tegra_sor_readl(sor, sor->soc->regs->pll2);
1737 value &= ~SOR_PLL2_PORT_POWERDOWN;
1738 tegra_sor_writel(sor, value, sor->soc->regs->pll2);
1739
1740 /* XXX not in TRM */
1741 for (value = 0, i = 0; i < 5; i++)
1742 value |= SOR_XBAR_CTRL_LINK0_XSEL(i, sor->soc->xbar_cfg[i]) |
1743 SOR_XBAR_CTRL_LINK1_XSEL(i, i);
1744
1745 tegra_sor_writel(sor, 0x00000000, SOR_XBAR_POL);
1746 tegra_sor_writel(sor, value, SOR_XBAR_CTRL);
1747
1748 /* switch to DP parent clock */
1749 err = tegra_sor_set_parent_clock(sor, sor->clk_dp);
1750 if (err < 0)
1751 dev_err(sor->dev, "failed to set parent clock: %d\n", err);
1752
1753 /* power DP lanes */
1754 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
1755
1756 if (link.num_lanes <= 2)
1757 value &= ~(SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_2);
1758 else
1759 value |= SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_2;
1760
1761 if (link.num_lanes <= 1)
1762 value &= ~SOR_DP_PADCTL_PD_TXD_1;
1763 else
1764 value |= SOR_DP_PADCTL_PD_TXD_1;
1765
1766 if (link.num_lanes == 0)
1767 value &= ~SOR_DP_PADCTL_PD_TXD_0;
1768 else
1769 value |= SOR_DP_PADCTL_PD_TXD_0;
1770
1771 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
1772
1773 value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
1774 value &= ~SOR_DP_LINKCTL_LANE_COUNT_MASK;
1775 value |= SOR_DP_LINKCTL_LANE_COUNT(link.num_lanes);
1776 tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
1777
1778 /* start lane sequencer */
1779 value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_DOWN |
1780 SOR_LANE_SEQ_CTL_POWER_STATE_UP;
1781 tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
1782
1783 while (true) {
1784 value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
1785 if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
1786 break;
1787
1788 usleep_range(250, 1000);
1789 }
1790
1791 /* set link bandwidth */
1792 value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
1793 value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK;
1794 value |= drm_dp_link_rate_to_bw_code(link.rate) << 2;
1795 tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
1796
1797 tegra_sor_apply_config(sor, &config);
1798
1799 /* enable link */
1800 value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
1801 value |= SOR_DP_LINKCTL_ENABLE;
1802 value |= SOR_DP_LINKCTL_ENHANCED_FRAME;
1803 tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
1804
1805 for (i = 0, value = 0; i < 4; i++) {
1806 unsigned long lane = SOR_DP_TPG_CHANNEL_CODING |
1807 SOR_DP_TPG_SCRAMBLER_GALIOS |
1808 SOR_DP_TPG_PATTERN_NONE;
1809 value = (value << 8) | lane;
1810 }
1811
1812 tegra_sor_writel(sor, value, SOR_DP_TPG);
1813
1814 /* enable pad calibration logic */
1815 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
1816 value |= SOR_DP_PADCTL_PAD_CAL_PD;
1817 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
1818
1819 err = drm_dp_link_probe(sor->aux, &link);
1820 if (err < 0)
1821 dev_err(sor->dev, "failed to probe eDP link: %d\n", err);
1822
1823 err = drm_dp_link_power_up(sor->aux, &link);
1824 if (err < 0)
1825 dev_err(sor->dev, "failed to power up eDP link: %d\n", err);
1826
1827 err = drm_dp_link_configure(sor->aux, &link);
1828 if (err < 0)
1829 dev_err(sor->dev, "failed to configure eDP link: %d\n", err);
1830
1831 rate = drm_dp_link_rate_to_bw_code(link.rate);
1832 lanes = link.num_lanes;
1833
1834 value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
1835 value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK;
1836 value |= SOR_CLK_CNTRL_DP_LINK_SPEED(rate);
1837 tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
1838
1839 value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
1840 value &= ~SOR_DP_LINKCTL_LANE_COUNT_MASK;
1841 value |= SOR_DP_LINKCTL_LANE_COUNT(lanes);
1842
1843 if (link.capabilities & DP_LINK_CAP_ENHANCED_FRAMING)
1844 value |= SOR_DP_LINKCTL_ENHANCED_FRAME;
1845
1846 tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
1847
1848 /* disable training pattern generator */
1849
1850 for (i = 0; i < link.num_lanes; i++) {
1851 unsigned long lane = SOR_DP_TPG_CHANNEL_CODING |
1852 SOR_DP_TPG_SCRAMBLER_GALIOS |
1853 SOR_DP_TPG_PATTERN_NONE;
1854 value = (value << 8) | lane;
1855 }
1856
1857 tegra_sor_writel(sor, value, SOR_DP_TPG);
1858
1859 err = tegra_sor_dp_train_fast(sor, &link);
1860 if (err < 0)
1861 dev_err(sor->dev, "DP fast link training failed: %d\n", err);
1862
1863 dev_dbg(sor->dev, "fast link training succeeded\n");
1864
1865 err = tegra_sor_power_up(sor, 250);
1866 if (err < 0)
1867 dev_err(sor->dev, "failed to power up SOR: %d\n", err);
1868
1869 /* CSTM (LVDS, link A/B, upper) */
1870 value = SOR_CSTM_LVDS | SOR_CSTM_LINK_ACT_A | SOR_CSTM_LINK_ACT_B |
1871 SOR_CSTM_UPPER;
1872 tegra_sor_writel(sor, value, SOR_CSTM);
1873
1874 /* use DP-A protocol */
1875 value = tegra_sor_readl(sor, SOR_STATE1);
1876 value &= ~SOR_STATE_ASY_PROTOCOL_MASK;
1877 value |= SOR_STATE_ASY_PROTOCOL_DP_A;
1878 tegra_sor_writel(sor, value, SOR_STATE1);
1879
1880 tegra_sor_mode_set(sor, mode, state);
1881
1882 /* PWM setup */
1883 err = tegra_sor_setup_pwm(sor, 250);
1884 if (err < 0)
1885 dev_err(sor->dev, "failed to setup PWM: %d\n", err);
1886
1887 tegra_sor_update(sor);
1888
1889 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
1890 value |= SOR_ENABLE(0);
1891 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
1892
1893 tegra_dc_commit(dc);
1894
1895 err = tegra_sor_attach(sor);
1896 if (err < 0)
1897 dev_err(sor->dev, "failed to attach SOR: %d\n", err);
1898
1899 err = tegra_sor_wakeup(sor);
1900 if (err < 0)
1901 dev_err(sor->dev, "failed to enable DC: %d\n", err);
1902
1903 if (output->panel)
1904 drm_panel_enable(output->panel);
1905}
1906
1907static int
1908tegra_sor_encoder_atomic_check(struct drm_encoder *encoder,
1909 struct drm_crtc_state *crtc_state,
1910 struct drm_connector_state *conn_state)
1911{
1912 struct tegra_output *output = encoder_to_output(encoder);
1913 struct tegra_sor_state *state = to_sor_state(conn_state);
1914 struct tegra_dc *dc = to_tegra_dc(conn_state->crtc);
1915 unsigned long pclk = crtc_state->mode.clock * 1000;
1916 struct tegra_sor *sor = to_sor(output);
1917 struct drm_display_info *info;
1918 int err;
1919
1920 info = &output->connector.display_info;
1921
1922 /*
1923 * For HBR2 modes, the SOR brick needs to use the x20 multiplier, so
1924 * the pixel clock must be corrected accordingly.
1925 */
1926 if (pclk >= 340000000) {
1927 state->link_speed = 20;
1928 state->pclk = pclk / 2;
1929 } else {
1930 state->link_speed = 10;
1931 state->pclk = pclk;
1932 }
1933
1934 err = tegra_dc_state_setup_clock(dc, crtc_state, sor->clk_parent,
1935 pclk, 0);
1936 if (err < 0) {
1937 dev_err(output->dev, "failed to setup CRTC state: %d\n", err);
1938 return err;
1939 }
1940
1941 switch (info->bpc) {
1942 case 8:
1943 case 6:
1944 state->bpc = info->bpc;
1945 break;
1946
1947 default:
1948 DRM_DEBUG_KMS("%u bits-per-color not supported\n", info->bpc);
1949 state->bpc = 8;
1950 break;
1951 }
1952
1953 return 0;
1954}
1955
1956static const struct drm_encoder_helper_funcs tegra_sor_edp_helpers = {
1957 .disable = tegra_sor_edp_disable,
1958 .enable = tegra_sor_edp_enable,
1959 .atomic_check = tegra_sor_encoder_atomic_check,
1960};
1961
1962static inline u32 tegra_sor_hdmi_subpack(const u8 *ptr, size_t size)
1963{
1964 u32 value = 0;
1965 size_t i;
1966
1967 for (i = size; i > 0; i--)
1968 value = (value << 8) | ptr[i - 1];
1969
1970 return value;
1971}
1972
1973static void tegra_sor_hdmi_write_infopack(struct tegra_sor *sor,
1974 const void *data, size_t size)
1975{
1976 const u8 *ptr = data;
1977 unsigned long offset;
1978 size_t i, j;
1979 u32 value;
1980
1981 switch (ptr[0]) {
1982 case HDMI_INFOFRAME_TYPE_AVI:
1983 offset = SOR_HDMI_AVI_INFOFRAME_HEADER;
1984 break;
1985
1986 case HDMI_INFOFRAME_TYPE_AUDIO:
1987 offset = SOR_HDMI_AUDIO_INFOFRAME_HEADER;
1988 break;
1989
1990 case HDMI_INFOFRAME_TYPE_VENDOR:
1991 offset = SOR_HDMI_VSI_INFOFRAME_HEADER;
1992 break;
1993
1994 default:
1995 dev_err(sor->dev, "unsupported infoframe type: %02x\n",
1996 ptr[0]);
1997 return;
1998 }
1999
2000 value = INFOFRAME_HEADER_TYPE(ptr[0]) |
2001 INFOFRAME_HEADER_VERSION(ptr[1]) |
2002 INFOFRAME_HEADER_LEN(ptr[2]);
2003 tegra_sor_writel(sor, value, offset);
2004 offset++;
2005
2006 /*
2007 * Each subpack contains 7 bytes, divided into:
2008 * - subpack_low: bytes 0 - 3
2009 * - subpack_high: bytes 4 - 6 (with byte 7 padded to 0x00)
2010 */
2011 for (i = 3, j = 0; i < size; i += 7, j += 8) {
2012 size_t rem = size - i, num = min_t(size_t, rem, 4);
2013
2014 value = tegra_sor_hdmi_subpack(&ptr[i], num);
2015 tegra_sor_writel(sor, value, offset++);
2016
2017 num = min_t(size_t, rem - num, 3);
2018
2019 value = tegra_sor_hdmi_subpack(&ptr[i + 4], num);
2020 tegra_sor_writel(sor, value, offset++);
2021 }
2022}
2023
2024static int
2025tegra_sor_hdmi_setup_avi_infoframe(struct tegra_sor *sor,
2026 const struct drm_display_mode *mode)
2027{
2028 u8 buffer[HDMI_INFOFRAME_SIZE(AVI)];
2029 struct hdmi_avi_infoframe frame;
2030 u32 value;
2031 int err;
2032
2033 /* disable AVI infoframe */
2034 value = tegra_sor_readl(sor, SOR_HDMI_AVI_INFOFRAME_CTRL);
2035 value &= ~INFOFRAME_CTRL_SINGLE;
2036 value &= ~INFOFRAME_CTRL_OTHER;
2037 value &= ~INFOFRAME_CTRL_ENABLE;
2038 tegra_sor_writel(sor, value, SOR_HDMI_AVI_INFOFRAME_CTRL);
2039
2040 err = drm_hdmi_avi_infoframe_from_display_mode(&frame, mode, false);
2041 if (err < 0) {
2042 dev_err(sor->dev, "failed to setup AVI infoframe: %d\n", err);
2043 return err;
2044 }
2045
2046 err = hdmi_avi_infoframe_pack(&frame, buffer, sizeof(buffer));
2047 if (err < 0) {
2048 dev_err(sor->dev, "failed to pack AVI infoframe: %d\n", err);
2049 return err;
2050 }
2051
2052 tegra_sor_hdmi_write_infopack(sor, buffer, err);
2053
2054 /* enable AVI infoframe */
2055 value = tegra_sor_readl(sor, SOR_HDMI_AVI_INFOFRAME_CTRL);
2056 value |= INFOFRAME_CTRL_CHECKSUM_ENABLE;
2057 value |= INFOFRAME_CTRL_ENABLE;
2058 tegra_sor_writel(sor, value, SOR_HDMI_AVI_INFOFRAME_CTRL);
2059
2060 return 0;
2061}
2062
2063static void tegra_sor_hdmi_disable_audio_infoframe(struct tegra_sor *sor)
2064{
2065 u32 value;
2066
2067 value = tegra_sor_readl(sor, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2068 value &= ~INFOFRAME_CTRL_ENABLE;
2069 tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2070}
2071
2072static struct tegra_sor_hdmi_settings *
2073tegra_sor_hdmi_find_settings(struct tegra_sor *sor, unsigned long frequency)
2074{
2075 unsigned int i;
2076
2077 for (i = 0; i < sor->num_settings; i++)
2078 if (frequency <= sor->settings[i].frequency)
2079 return &sor->settings[i];
2080
2081 return NULL;
2082}
2083
2084static void tegra_sor_hdmi_disable_scrambling(struct tegra_sor *sor)
2085{
2086 u32 value;
2087
2088 value = tegra_sor_readl(sor, SOR_HDMI2_CTRL);
2089 value &= ~SOR_HDMI2_CTRL_CLOCK_MODE_DIV_BY_4;
2090 value &= ~SOR_HDMI2_CTRL_SCRAMBLE;
2091 tegra_sor_writel(sor, value, SOR_HDMI2_CTRL);
2092}
2093
2094static void tegra_sor_hdmi_scdc_disable(struct tegra_sor *sor)
2095{
2096 struct i2c_adapter *ddc = sor->output.ddc;
2097
2098 drm_scdc_set_high_tmds_clock_ratio(ddc, false);
2099 drm_scdc_set_scrambling(ddc, false);
2100
2101 tegra_sor_hdmi_disable_scrambling(sor);
2102}
2103
2104static void tegra_sor_hdmi_scdc_stop(struct tegra_sor *sor)
2105{
2106 if (sor->scdc_enabled) {
2107 cancel_delayed_work_sync(&sor->scdc);
2108 tegra_sor_hdmi_scdc_disable(sor);
2109 }
2110}
2111
2112static void tegra_sor_hdmi_enable_scrambling(struct tegra_sor *sor)
2113{
2114 u32 value;
2115
2116 value = tegra_sor_readl(sor, SOR_HDMI2_CTRL);
2117 value |= SOR_HDMI2_CTRL_CLOCK_MODE_DIV_BY_4;
2118 value |= SOR_HDMI2_CTRL_SCRAMBLE;
2119 tegra_sor_writel(sor, value, SOR_HDMI2_CTRL);
2120}
2121
2122static void tegra_sor_hdmi_scdc_enable(struct tegra_sor *sor)
2123{
2124 struct i2c_adapter *ddc = sor->output.ddc;
2125
2126 drm_scdc_set_high_tmds_clock_ratio(ddc, true);
2127 drm_scdc_set_scrambling(ddc, true);
2128
2129 tegra_sor_hdmi_enable_scrambling(sor);
2130}
2131
2132static void tegra_sor_hdmi_scdc_work(struct work_struct *work)
2133{
2134 struct tegra_sor *sor = container_of(work, struct tegra_sor, scdc.work);
2135 struct i2c_adapter *ddc = sor->output.ddc;
2136
2137 if (!drm_scdc_get_scrambling_status(ddc)) {
2138 DRM_DEBUG_KMS("SCDC not scrambled\n");
2139 tegra_sor_hdmi_scdc_enable(sor);
2140 }
2141
2142 schedule_delayed_work(&sor->scdc, msecs_to_jiffies(5000));
2143}
2144
2145static void tegra_sor_hdmi_scdc_start(struct tegra_sor *sor)
2146{
2147 struct drm_scdc *scdc = &sor->output.connector.display_info.hdmi.scdc;
2148 struct drm_display_mode *mode;
2149
2150 mode = &sor->output.encoder.crtc->state->adjusted_mode;
2151
2152 if (mode->clock >= 340000 && scdc->supported) {
2153 schedule_delayed_work(&sor->scdc, msecs_to_jiffies(5000));
2154 tegra_sor_hdmi_scdc_enable(sor);
2155 sor->scdc_enabled = true;
2156 }
2157}
2158
2159static void tegra_sor_hdmi_disable(struct drm_encoder *encoder)
2160{
2161 struct tegra_output *output = encoder_to_output(encoder);
2162 struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2163 struct tegra_sor *sor = to_sor(output);
2164 u32 value;
2165 int err;
2166
2167 tegra_sor_hdmi_scdc_stop(sor);
2168
2169 err = tegra_sor_detach(sor);
2170 if (err < 0)
2171 dev_err(sor->dev, "failed to detach SOR: %d\n", err);
2172
2173 tegra_sor_writel(sor, 0, SOR_STATE1);
2174 tegra_sor_update(sor);
2175
2176 /* disable display to SOR clock */
2177 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2178
2179 if (!sor->soc->has_nvdisplay)
2180 value &= ~(SOR1_TIMING_CYA | SOR_ENABLE(1));
2181 else
2182 value &= ~SOR_ENABLE(sor->index);
2183
2184 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2185
2186 tegra_dc_commit(dc);
2187
2188 err = tegra_sor_power_down(sor);
2189 if (err < 0)
2190 dev_err(sor->dev, "failed to power down SOR: %d\n", err);
2191
2192 err = tegra_io_pad_power_disable(sor->pad);
2193 if (err < 0)
2194 dev_err(sor->dev, "failed to power off I/O pad: %d\n", err);
2195
2196 pm_runtime_put(sor->dev);
2197}
2198
2199static void tegra_sor_hdmi_enable(struct drm_encoder *encoder)
2200{
2201 struct tegra_output *output = encoder_to_output(encoder);
2202 unsigned int h_ref_to_sync = 1, pulse_start, max_ac;
2203 struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2204 struct tegra_sor_hdmi_settings *settings;
2205 struct tegra_sor *sor = to_sor(output);
2206 struct tegra_sor_state *state;
2207 struct drm_display_mode *mode;
2208 unsigned long rate, pclk;
2209 unsigned int div, i;
2210 u32 value;
2211 int err;
2212
2213 state = to_sor_state(output->connector.state);
2214 mode = &encoder->crtc->state->adjusted_mode;
2215 pclk = mode->clock * 1000;
2216
2217 pm_runtime_get_sync(sor->dev);
2218
2219 /* switch to safe parent clock */
2220 err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
2221 if (err < 0) {
2222 dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
2223 return;
2224 }
2225
2226 div = clk_get_rate(sor->clk) / 1000000 * 4;
2227
2228 err = tegra_io_pad_power_enable(sor->pad);
2229 if (err < 0)
2230 dev_err(sor->dev, "failed to power on I/O pad: %d\n", err);
2231
2232 usleep_range(20, 100);
2233
2234 value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2235 value &= ~SOR_PLL2_BANDGAP_POWERDOWN;
2236 tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2237
2238 usleep_range(20, 100);
2239
2240 value = tegra_sor_readl(sor, sor->soc->regs->pll3);
2241 value &= ~SOR_PLL3_PLL_VDD_MODE_3V3;
2242 tegra_sor_writel(sor, value, sor->soc->regs->pll3);
2243
2244 value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2245 value &= ~SOR_PLL0_VCOPD;
2246 value &= ~SOR_PLL0_PWR;
2247 tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2248
2249 value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2250 value &= ~SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
2251 tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2252
2253 usleep_range(200, 400);
2254
2255 value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2256 value &= ~SOR_PLL2_POWERDOWN_OVERRIDE;
2257 value &= ~SOR_PLL2_PORT_POWERDOWN;
2258 tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2259
2260 usleep_range(20, 100);
2261
2262 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2263 value |= SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_0 |
2264 SOR_DP_PADCTL_PD_TXD_1 | SOR_DP_PADCTL_PD_TXD_2;
2265 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2266
2267 while (true) {
2268 value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
2269 if ((value & SOR_LANE_SEQ_CTL_STATE_BUSY) == 0)
2270 break;
2271
2272 usleep_range(250, 1000);
2273 }
2274
2275 value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_DOWN |
2276 SOR_LANE_SEQ_CTL_POWER_STATE_UP | SOR_LANE_SEQ_CTL_DELAY(5);
2277 tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
2278
2279 while (true) {
2280 value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
2281 if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
2282 break;
2283
2284 usleep_range(250, 1000);
2285 }
2286
2287 value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
2288 value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK;
2289 value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
2290
2291 if (mode->clock < 340000) {
2292 DRM_DEBUG_KMS("setting 2.7 GHz link speed\n");
2293 value |= SOR_CLK_CNTRL_DP_LINK_SPEED_G2_70;
2294 } else {
2295 DRM_DEBUG_KMS("setting 5.4 GHz link speed\n");
2296 value |= SOR_CLK_CNTRL_DP_LINK_SPEED_G5_40;
2297 }
2298
2299 value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK;
2300 tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
2301
2302 /* SOR pad PLL stabilization time */
2303 usleep_range(250, 1000);
2304
2305 value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
2306 value &= ~SOR_DP_LINKCTL_LANE_COUNT_MASK;
2307 value |= SOR_DP_LINKCTL_LANE_COUNT(4);
2308 tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
2309
2310 value = tegra_sor_readl(sor, SOR_DP_SPARE0);
2311 value &= ~SOR_DP_SPARE_DISP_VIDEO_PREAMBLE;
2312 value &= ~SOR_DP_SPARE_PANEL_INTERNAL;
2313 value &= ~SOR_DP_SPARE_SEQ_ENABLE;
2314 value &= ~SOR_DP_SPARE_MACRO_SOR_CLK;
2315 tegra_sor_writel(sor, value, SOR_DP_SPARE0);
2316
2317 value = SOR_SEQ_CTL_PU_PC(0) | SOR_SEQ_CTL_PU_PC_ALT(0) |
2318 SOR_SEQ_CTL_PD_PC(8) | SOR_SEQ_CTL_PD_PC_ALT(8);
2319 tegra_sor_writel(sor, value, SOR_SEQ_CTL);
2320
2321 value = SOR_SEQ_INST_DRIVE_PWM_OUT_LO | SOR_SEQ_INST_HALT |
2322 SOR_SEQ_INST_WAIT_VSYNC | SOR_SEQ_INST_WAIT(1);
2323 tegra_sor_writel(sor, value, SOR_SEQ_INST(0));
2324 tegra_sor_writel(sor, value, SOR_SEQ_INST(8));
2325
2326 if (!sor->soc->has_nvdisplay) {
2327 /* program the reference clock */
2328 value = SOR_REFCLK_DIV_INT(div) | SOR_REFCLK_DIV_FRAC(div);
2329 tegra_sor_writel(sor, value, SOR_REFCLK);
2330 }
2331
2332 /* XXX not in TRM */
2333 for (value = 0, i = 0; i < 5; i++)
2334 value |= SOR_XBAR_CTRL_LINK0_XSEL(i, sor->soc->xbar_cfg[i]) |
2335 SOR_XBAR_CTRL_LINK1_XSEL(i, i);
2336
2337 tegra_sor_writel(sor, 0x00000000, SOR_XBAR_POL);
2338 tegra_sor_writel(sor, value, SOR_XBAR_CTRL);
2339
2340 /* switch to parent clock */
2341 err = clk_set_parent(sor->clk, sor->clk_parent);
2342 if (err < 0) {
2343 dev_err(sor->dev, "failed to set parent clock: %d\n", err);
2344 return;
2345 }
2346
2347 err = tegra_sor_set_parent_clock(sor, sor->clk_pad);
2348 if (err < 0) {
2349 dev_err(sor->dev, "failed to set pad clock: %d\n", err);
2350 return;
2351 }
2352
2353 /* adjust clock rate for HDMI 2.0 modes */
2354 rate = clk_get_rate(sor->clk_parent);
2355
2356 if (mode->clock >= 340000)
2357 rate /= 2;
2358
2359 DRM_DEBUG_KMS("setting clock to %lu Hz, mode: %lu Hz\n", rate, pclk);
2360
2361 clk_set_rate(sor->clk, rate);
2362
2363 if (!sor->soc->has_nvdisplay) {
2364 value = SOR_INPUT_CONTROL_HDMI_SRC_SELECT(dc->pipe);
2365
2366 /* XXX is this the proper check? */
2367 if (mode->clock < 75000)
2368 value |= SOR_INPUT_CONTROL_ARM_VIDEO_RANGE_LIMITED;
2369
2370 tegra_sor_writel(sor, value, SOR_INPUT_CONTROL);
2371 }
2372
2373 max_ac = ((mode->htotal - mode->hdisplay) - SOR_REKEY - 18) / 32;
2374
2375 value = SOR_HDMI_CTRL_ENABLE | SOR_HDMI_CTRL_MAX_AC_PACKET(max_ac) |
2376 SOR_HDMI_CTRL_AUDIO_LAYOUT | SOR_HDMI_CTRL_REKEY(SOR_REKEY);
2377 tegra_sor_writel(sor, value, SOR_HDMI_CTRL);
2378
2379 if (!dc->soc->has_nvdisplay) {
2380 /* H_PULSE2 setup */
2381 pulse_start = h_ref_to_sync +
2382 (mode->hsync_end - mode->hsync_start) +
2383 (mode->htotal - mode->hsync_end) - 10;
2384
2385 value = PULSE_LAST_END_A | PULSE_QUAL_VACTIVE |
2386 PULSE_POLARITY_HIGH | PULSE_MODE_NORMAL;
2387 tegra_dc_writel(dc, value, DC_DISP_H_PULSE2_CONTROL);
2388
2389 value = PULSE_END(pulse_start + 8) | PULSE_START(pulse_start);
2390 tegra_dc_writel(dc, value, DC_DISP_H_PULSE2_POSITION_A);
2391
2392 value = tegra_dc_readl(dc, DC_DISP_DISP_SIGNAL_OPTIONS0);
2393 value |= H_PULSE2_ENABLE;
2394 tegra_dc_writel(dc, value, DC_DISP_DISP_SIGNAL_OPTIONS0);
2395 }
2396
2397 /* infoframe setup */
2398 err = tegra_sor_hdmi_setup_avi_infoframe(sor, mode);
2399 if (err < 0)
2400 dev_err(sor->dev, "failed to setup AVI infoframe: %d\n", err);
2401
2402 /* XXX HDMI audio support not implemented yet */
2403 tegra_sor_hdmi_disable_audio_infoframe(sor);
2404
2405 /* use single TMDS protocol */
2406 value = tegra_sor_readl(sor, SOR_STATE1);
2407 value &= ~SOR_STATE_ASY_PROTOCOL_MASK;
2408 value |= SOR_STATE_ASY_PROTOCOL_SINGLE_TMDS_A;
2409 tegra_sor_writel(sor, value, SOR_STATE1);
2410
2411 /* power up pad calibration */
2412 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2413 value &= ~SOR_DP_PADCTL_PAD_CAL_PD;
2414 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2415
2416 /* production settings */
2417 settings = tegra_sor_hdmi_find_settings(sor, mode->clock * 1000);
2418 if (!settings) {
2419 dev_err(sor->dev, "no settings for pixel clock %d Hz\n",
2420 mode->clock * 1000);
2421 return;
2422 }
2423
2424 value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2425 value &= ~SOR_PLL0_ICHPMP_MASK;
2426 value &= ~SOR_PLL0_FILTER_MASK;
2427 value &= ~SOR_PLL0_VCOCAP_MASK;
2428 value |= SOR_PLL0_ICHPMP(settings->ichpmp);
2429 value |= SOR_PLL0_FILTER(settings->filter);
2430 value |= SOR_PLL0_VCOCAP(settings->vcocap);
2431 tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2432
2433 /* XXX not in TRM */
2434 value = tegra_sor_readl(sor, sor->soc->regs->pll1);
2435 value &= ~SOR_PLL1_LOADADJ_MASK;
2436 value &= ~SOR_PLL1_TMDS_TERMADJ_MASK;
2437 value |= SOR_PLL1_LOADADJ(settings->loadadj);
2438 value |= SOR_PLL1_TMDS_TERMADJ(settings->tmds_termadj);
2439 value |= SOR_PLL1_TMDS_TERM;
2440 tegra_sor_writel(sor, value, sor->soc->regs->pll1);
2441
2442 value = tegra_sor_readl(sor, sor->soc->regs->pll3);
2443 value &= ~SOR_PLL3_BG_TEMP_COEF_MASK;
2444 value &= ~SOR_PLL3_BG_VREF_LEVEL_MASK;
2445 value &= ~SOR_PLL3_AVDD10_LEVEL_MASK;
2446 value &= ~SOR_PLL3_AVDD14_LEVEL_MASK;
2447 value |= SOR_PLL3_BG_TEMP_COEF(settings->bg_temp_coef);
2448 value |= SOR_PLL3_BG_VREF_LEVEL(settings->bg_vref_level);
2449 value |= SOR_PLL3_AVDD10_LEVEL(settings->avdd10_level);
2450 value |= SOR_PLL3_AVDD14_LEVEL(settings->avdd14_level);
2451 tegra_sor_writel(sor, value, sor->soc->regs->pll3);
2452
2453 value = settings->drive_current[3] << 24 |
2454 settings->drive_current[2] << 16 |
2455 settings->drive_current[1] << 8 |
2456 settings->drive_current[0] << 0;
2457 tegra_sor_writel(sor, value, SOR_LANE_DRIVE_CURRENT0);
2458
2459 value = settings->preemphasis[3] << 24 |
2460 settings->preemphasis[2] << 16 |
2461 settings->preemphasis[1] << 8 |
2462 settings->preemphasis[0] << 0;
2463 tegra_sor_writel(sor, value, SOR_LANE_PREEMPHASIS0);
2464
2465 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2466 value &= ~SOR_DP_PADCTL_TX_PU_MASK;
2467 value |= SOR_DP_PADCTL_TX_PU_ENABLE;
2468 value |= SOR_DP_PADCTL_TX_PU(settings->tx_pu_value);
2469 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2470
2471 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl2);
2472 value &= ~SOR_DP_PADCTL_SPAREPLL_MASK;
2473 value |= SOR_DP_PADCTL_SPAREPLL(settings->sparepll);
2474 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl2);
2475
2476 /* power down pad calibration */
2477 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2478 value |= SOR_DP_PADCTL_PAD_CAL_PD;
2479 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2480
2481 if (!dc->soc->has_nvdisplay) {
2482 /* miscellaneous display controller settings */
2483 value = VSYNC_H_POSITION(1);
2484 tegra_dc_writel(dc, value, DC_DISP_DISP_TIMING_OPTIONS);
2485 }
2486
2487 value = tegra_dc_readl(dc, DC_DISP_DISP_COLOR_CONTROL);
2488 value &= ~DITHER_CONTROL_MASK;
2489 value &= ~BASE_COLOR_SIZE_MASK;
2490
2491 switch (state->bpc) {
2492 case 6:
2493 value |= BASE_COLOR_SIZE_666;
2494 break;
2495
2496 case 8:
2497 value |= BASE_COLOR_SIZE_888;
2498 break;
2499
2500 case 10:
2501 value |= BASE_COLOR_SIZE_101010;
2502 break;
2503
2504 case 12:
2505 value |= BASE_COLOR_SIZE_121212;
2506 break;
2507
2508 default:
2509 WARN(1, "%u bits-per-color not supported\n", state->bpc);
2510 value |= BASE_COLOR_SIZE_888;
2511 break;
2512 }
2513
2514 tegra_dc_writel(dc, value, DC_DISP_DISP_COLOR_CONTROL);
2515
2516 /* XXX set display head owner */
2517 value = tegra_sor_readl(sor, SOR_STATE1);
2518 value &= ~SOR_STATE_ASY_OWNER_MASK;
2519 value |= SOR_STATE_ASY_OWNER(1 + dc->pipe);
2520 tegra_sor_writel(sor, value, SOR_STATE1);
2521
2522 err = tegra_sor_power_up(sor, 250);
2523 if (err < 0)
2524 dev_err(sor->dev, "failed to power up SOR: %d\n", err);
2525
2526 /* configure dynamic range of output */
2527 value = tegra_sor_readl(sor, sor->soc->regs->head_state0 + dc->pipe);
2528 value &= ~SOR_HEAD_STATE_RANGECOMPRESS_MASK;
2529 value &= ~SOR_HEAD_STATE_DYNRANGE_MASK;
2530 tegra_sor_writel(sor, value, sor->soc->regs->head_state0 + dc->pipe);
2531
2532 /* configure colorspace */
2533 value = tegra_sor_readl(sor, sor->soc->regs->head_state0 + dc->pipe);
2534 value &= ~SOR_HEAD_STATE_COLORSPACE_MASK;
2535 value |= SOR_HEAD_STATE_COLORSPACE_RGB;
2536 tegra_sor_writel(sor, value, sor->soc->regs->head_state0 + dc->pipe);
2537
2538 tegra_sor_mode_set(sor, mode, state);
2539
2540 tegra_sor_update(sor);
2541
2542 /* program preamble timing in SOR (XXX) */
2543 value = tegra_sor_readl(sor, SOR_DP_SPARE0);
2544 value &= ~SOR_DP_SPARE_DISP_VIDEO_PREAMBLE;
2545 tegra_sor_writel(sor, value, SOR_DP_SPARE0);
2546
2547 err = tegra_sor_attach(sor);
2548 if (err < 0)
2549 dev_err(sor->dev, "failed to attach SOR: %d\n", err);
2550
2551 /* enable display to SOR clock and generate HDMI preamble */
2552 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2553
2554 if (!sor->soc->has_nvdisplay)
2555 value |= SOR_ENABLE(1) | SOR1_TIMING_CYA;
2556 else
2557 value |= SOR_ENABLE(sor->index);
2558
2559 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2560
2561 if (dc->soc->has_nvdisplay) {
2562 value = tegra_dc_readl(dc, DC_DISP_CORE_SOR_SET_CONTROL(sor->index));
2563 value &= ~PROTOCOL_MASK;
2564 value |= PROTOCOL_SINGLE_TMDS_A;
2565 tegra_dc_writel(dc, value, DC_DISP_CORE_SOR_SET_CONTROL(sor->index));
2566 }
2567
2568 tegra_dc_commit(dc);
2569
2570 err = tegra_sor_wakeup(sor);
2571 if (err < 0)
2572 dev_err(sor->dev, "failed to wakeup SOR: %d\n", err);
2573
2574 tegra_sor_hdmi_scdc_start(sor);
2575}
2576
2577static const struct drm_encoder_helper_funcs tegra_sor_hdmi_helpers = {
2578 .disable = tegra_sor_hdmi_disable,
2579 .enable = tegra_sor_hdmi_enable,
2580 .atomic_check = tegra_sor_encoder_atomic_check,
2581};
2582
2583static int tegra_sor_init(struct host1x_client *client)
2584{
2585 struct drm_device *drm = dev_get_drvdata(client->parent);
2586 const struct drm_encoder_helper_funcs *helpers = NULL;
2587 struct tegra_sor *sor = host1x_client_to_sor(client);
2588 int connector = DRM_MODE_CONNECTOR_Unknown;
2589 int encoder = DRM_MODE_ENCODER_NONE;
2590 int err;
2591
2592 if (!sor->aux) {
2593 if (sor->soc->supports_hdmi) {
2594 connector = DRM_MODE_CONNECTOR_HDMIA;
2595 encoder = DRM_MODE_ENCODER_TMDS;
2596 helpers = &tegra_sor_hdmi_helpers;
2597 } else if (sor->soc->supports_lvds) {
2598 connector = DRM_MODE_CONNECTOR_LVDS;
2599 encoder = DRM_MODE_ENCODER_LVDS;
2600 }
2601 } else {
2602 if (sor->soc->supports_edp) {
2603 connector = DRM_MODE_CONNECTOR_eDP;
2604 encoder = DRM_MODE_ENCODER_TMDS;
2605 helpers = &tegra_sor_edp_helpers;
2606 } else if (sor->soc->supports_dp) {
2607 connector = DRM_MODE_CONNECTOR_DisplayPort;
2608 encoder = DRM_MODE_ENCODER_TMDS;
2609 }
2610 }
2611
2612 sor->output.dev = sor->dev;
2613
2614 drm_connector_init(drm, &sor->output.connector,
2615 &tegra_sor_connector_funcs,
2616 connector);
2617 drm_connector_helper_add(&sor->output.connector,
2618 &tegra_sor_connector_helper_funcs);
2619 sor->output.connector.dpms = DRM_MODE_DPMS_OFF;
2620
2621 drm_encoder_init(drm, &sor->output.encoder, &tegra_sor_encoder_funcs,
2622 encoder, NULL);
2623 drm_encoder_helper_add(&sor->output.encoder, helpers);
2624
2625 drm_mode_connector_attach_encoder(&sor->output.connector,
2626 &sor->output.encoder);
2627 drm_connector_register(&sor->output.connector);
2628
2629 err = tegra_output_init(drm, &sor->output);
2630 if (err < 0) {
2631 dev_err(client->dev, "failed to initialize output: %d\n", err);
2632 return err;
2633 }
2634
2635 tegra_output_find_possible_crtcs(&sor->output, drm);
2636
2637 if (sor->aux) {
2638 err = drm_dp_aux_attach(sor->aux, &sor->output);
2639 if (err < 0) {
2640 dev_err(sor->dev, "failed to attach DP: %d\n", err);
2641 return err;
2642 }
2643 }
2644
2645 /*
2646 * XXX: Remove this reset once proper hand-over from firmware to
2647 * kernel is possible.
2648 */
2649 if (sor->rst) {
2650 err = reset_control_assert(sor->rst);
2651 if (err < 0) {
2652 dev_err(sor->dev, "failed to assert SOR reset: %d\n",
2653 err);
2654 return err;
2655 }
2656 }
2657
2658 err = clk_prepare_enable(sor->clk);
2659 if (err < 0) {
2660 dev_err(sor->dev, "failed to enable clock: %d\n", err);
2661 return err;
2662 }
2663
2664 usleep_range(1000, 3000);
2665
2666 if (sor->rst) {
2667 err = reset_control_deassert(sor->rst);
2668 if (err < 0) {
2669 dev_err(sor->dev, "failed to deassert SOR reset: %d\n",
2670 err);
2671 return err;
2672 }
2673 }
2674
2675 err = clk_prepare_enable(sor->clk_safe);
2676 if (err < 0)
2677 return err;
2678
2679 err = clk_prepare_enable(sor->clk_dp);
2680 if (err < 0)
2681 return err;
2682
2683 return 0;
2684}
2685
2686static int tegra_sor_exit(struct host1x_client *client)
2687{
2688 struct tegra_sor *sor = host1x_client_to_sor(client);
2689 int err;
2690
2691 tegra_output_exit(&sor->output);
2692
2693 if (sor->aux) {
2694 err = drm_dp_aux_detach(sor->aux);
2695 if (err < 0) {
2696 dev_err(sor->dev, "failed to detach DP: %d\n", err);
2697 return err;
2698 }
2699 }
2700
2701 clk_disable_unprepare(sor->clk_safe);
2702 clk_disable_unprepare(sor->clk_dp);
2703 clk_disable_unprepare(sor->clk);
2704
2705 return 0;
2706}
2707
2708static const struct host1x_client_ops sor_client_ops = {
2709 .init = tegra_sor_init,
2710 .exit = tegra_sor_exit,
2711};
2712
2713static const struct tegra_sor_ops tegra_sor_edp_ops = {
2714 .name = "eDP",
2715};
2716
2717static int tegra_sor_hdmi_probe(struct tegra_sor *sor)
2718{
2719 int err;
2720
2721 sor->avdd_io_supply = devm_regulator_get(sor->dev, "avdd-io");
2722 if (IS_ERR(sor->avdd_io_supply)) {
2723 dev_err(sor->dev, "cannot get AVDD I/O supply: %ld\n",
2724 PTR_ERR(sor->avdd_io_supply));
2725 return PTR_ERR(sor->avdd_io_supply);
2726 }
2727
2728 err = regulator_enable(sor->avdd_io_supply);
2729 if (err < 0) {
2730 dev_err(sor->dev, "failed to enable AVDD I/O supply: %d\n",
2731 err);
2732 return err;
2733 }
2734
2735 sor->vdd_pll_supply = devm_regulator_get(sor->dev, "vdd-pll");
2736 if (IS_ERR(sor->vdd_pll_supply)) {
2737 dev_err(sor->dev, "cannot get VDD PLL supply: %ld\n",
2738 PTR_ERR(sor->vdd_pll_supply));
2739 return PTR_ERR(sor->vdd_pll_supply);
2740 }
2741
2742 err = regulator_enable(sor->vdd_pll_supply);
2743 if (err < 0) {
2744 dev_err(sor->dev, "failed to enable VDD PLL supply: %d\n",
2745 err);
2746 return err;
2747 }
2748
2749 sor->hdmi_supply = devm_regulator_get(sor->dev, "hdmi");
2750 if (IS_ERR(sor->hdmi_supply)) {
2751 dev_err(sor->dev, "cannot get HDMI supply: %ld\n",
2752 PTR_ERR(sor->hdmi_supply));
2753 return PTR_ERR(sor->hdmi_supply);
2754 }
2755
2756 err = regulator_enable(sor->hdmi_supply);
2757 if (err < 0) {
2758 dev_err(sor->dev, "failed to enable HDMI supply: %d\n", err);
2759 return err;
2760 }
2761
2762 INIT_DELAYED_WORK(&sor->scdc, tegra_sor_hdmi_scdc_work);
2763
2764 return 0;
2765}
2766
2767static int tegra_sor_hdmi_remove(struct tegra_sor *sor)
2768{
2769 regulator_disable(sor->hdmi_supply);
2770 regulator_disable(sor->vdd_pll_supply);
2771 regulator_disable(sor->avdd_io_supply);
2772
2773 return 0;
2774}
2775
2776static const struct tegra_sor_ops tegra_sor_hdmi_ops = {
2777 .name = "HDMI",
2778 .probe = tegra_sor_hdmi_probe,
2779 .remove = tegra_sor_hdmi_remove,
2780};
2781
2782static const u8 tegra124_sor_xbar_cfg[5] = {
2783 0, 1, 2, 3, 4
2784};
2785
2786static const struct tegra_sor_regs tegra124_sor_regs = {
2787 .head_state0 = 0x05,
2788 .head_state1 = 0x07,
2789 .head_state2 = 0x09,
2790 .head_state3 = 0x0b,
2791 .head_state4 = 0x0d,
2792 .head_state5 = 0x0f,
2793 .pll0 = 0x17,
2794 .pll1 = 0x18,
2795 .pll2 = 0x19,
2796 .pll3 = 0x1a,
2797 .dp_padctl0 = 0x5c,
2798 .dp_padctl2 = 0x73,
2799};
2800
2801static const struct tegra_sor_soc tegra124_sor = {
2802 .supports_edp = true,
2803 .supports_lvds = true,
2804 .supports_hdmi = false,
2805 .supports_dp = false,
2806 .regs = &tegra124_sor_regs,
2807 .has_nvdisplay = false,
2808 .xbar_cfg = tegra124_sor_xbar_cfg,
2809};
2810
2811static const struct tegra_sor_regs tegra210_sor_regs = {
2812 .head_state0 = 0x05,
2813 .head_state1 = 0x07,
2814 .head_state2 = 0x09,
2815 .head_state3 = 0x0b,
2816 .head_state4 = 0x0d,
2817 .head_state5 = 0x0f,
2818 .pll0 = 0x17,
2819 .pll1 = 0x18,
2820 .pll2 = 0x19,
2821 .pll3 = 0x1a,
2822 .dp_padctl0 = 0x5c,
2823 .dp_padctl2 = 0x73,
2824};
2825
2826static const struct tegra_sor_soc tegra210_sor = {
2827 .supports_edp = true,
2828 .supports_lvds = false,
2829 .supports_hdmi = false,
2830 .supports_dp = false,
2831 .regs = &tegra210_sor_regs,
2832 .has_nvdisplay = false,
2833 .xbar_cfg = tegra124_sor_xbar_cfg,
2834};
2835
2836static const u8 tegra210_sor_xbar_cfg[5] = {
2837 2, 1, 0, 3, 4
2838};
2839
2840static const struct tegra_sor_soc tegra210_sor1 = {
2841 .supports_edp = false,
2842 .supports_lvds = false,
2843 .supports_hdmi = true,
2844 .supports_dp = true,
2845
2846 .regs = &tegra210_sor_regs,
2847 .has_nvdisplay = false,
2848
2849 .num_settings = ARRAY_SIZE(tegra210_sor_hdmi_defaults),
2850 .settings = tegra210_sor_hdmi_defaults,
2851
2852 .xbar_cfg = tegra210_sor_xbar_cfg,
2853};
2854
2855static const struct tegra_sor_regs tegra186_sor_regs = {
2856 .head_state0 = 0x151,
2857 .head_state1 = 0x154,
2858 .head_state2 = 0x157,
2859 .head_state3 = 0x15a,
2860 .head_state4 = 0x15d,
2861 .head_state5 = 0x160,
2862 .pll0 = 0x163,
2863 .pll1 = 0x164,
2864 .pll2 = 0x165,
2865 .pll3 = 0x166,
2866 .dp_padctl0 = 0x168,
2867 .dp_padctl2 = 0x16a,
2868};
2869
2870static const struct tegra_sor_soc tegra186_sor = {
2871 .supports_edp = false,
2872 .supports_lvds = false,
2873 .supports_hdmi = false,
2874 .supports_dp = true,
2875
2876 .regs = &tegra186_sor_regs,
2877 .has_nvdisplay = true,
2878
2879 .xbar_cfg = tegra124_sor_xbar_cfg,
2880};
2881
2882static const struct tegra_sor_soc tegra186_sor1 = {
2883 .supports_edp = false,
2884 .supports_lvds = false,
2885 .supports_hdmi = true,
2886 .supports_dp = true,
2887
2888 .regs = &tegra186_sor_regs,
2889 .has_nvdisplay = true,
2890
2891 .num_settings = ARRAY_SIZE(tegra186_sor_hdmi_defaults),
2892 .settings = tegra186_sor_hdmi_defaults,
2893
2894 .xbar_cfg = tegra124_sor_xbar_cfg,
2895};
2896
2897static const struct of_device_id tegra_sor_of_match[] = {
2898 { .compatible = "nvidia,tegra186-sor1", .data = &tegra186_sor1 },
2899 { .compatible = "nvidia,tegra186-sor", .data = &tegra186_sor },
2900 { .compatible = "nvidia,tegra210-sor1", .data = &tegra210_sor1 },
2901 { .compatible = "nvidia,tegra210-sor", .data = &tegra210_sor },
2902 { .compatible = "nvidia,tegra124-sor", .data = &tegra124_sor },
2903 { },
2904};
2905MODULE_DEVICE_TABLE(of, tegra_sor_of_match);
2906
2907static int tegra_sor_parse_dt(struct tegra_sor *sor)
2908{
2909 struct device_node *np = sor->dev->of_node;
2910 u32 value;
2911 int err;
2912
2913 if (sor->soc->has_nvdisplay) {
2914 err = of_property_read_u32(np, "nvidia,interface", &value);
2915 if (err < 0)
2916 return err;
2917
2918 sor->index = value;
2919
2920 /*
2921 * override the default that we already set for Tegra210 and
2922 * earlier
2923 */
2924 sor->pad = TEGRA_IO_PAD_HDMI_DP0 + sor->index;
2925 }
2926
2927 return 0;
2928}
2929
2930static int tegra_sor_probe(struct platform_device *pdev)
2931{
2932 struct device_node *np;
2933 struct tegra_sor *sor;
2934 struct resource *regs;
2935 int err;
2936
2937 sor = devm_kzalloc(&pdev->dev, sizeof(*sor), GFP_KERNEL);
2938 if (!sor)
2939 return -ENOMEM;
2940
2941 sor->soc = of_device_get_match_data(&pdev->dev);
2942 sor->output.dev = sor->dev = &pdev->dev;
2943
2944 sor->settings = devm_kmemdup(&pdev->dev, sor->soc->settings,
2945 sor->soc->num_settings *
2946 sizeof(*sor->settings),
2947 GFP_KERNEL);
2948 if (!sor->settings)
2949 return -ENOMEM;
2950
2951 sor->num_settings = sor->soc->num_settings;
2952
2953 np = of_parse_phandle(pdev->dev.of_node, "nvidia,dpaux", 0);
2954 if (np) {
2955 sor->aux = drm_dp_aux_find_by_of_node(np);
2956 of_node_put(np);
2957
2958 if (!sor->aux)
2959 return -EPROBE_DEFER;
2960 }
2961
2962 if (!sor->aux) {
2963 if (sor->soc->supports_hdmi) {
2964 sor->ops = &tegra_sor_hdmi_ops;
2965 sor->pad = TEGRA_IO_PAD_HDMI;
2966 } else if (sor->soc->supports_lvds) {
2967 dev_err(&pdev->dev, "LVDS not supported yet\n");
2968 return -ENODEV;
2969 } else {
2970 dev_err(&pdev->dev, "unknown (non-DP) support\n");
2971 return -ENODEV;
2972 }
2973 } else {
2974 if (sor->soc->supports_edp) {
2975 sor->ops = &tegra_sor_edp_ops;
2976 sor->pad = TEGRA_IO_PAD_LVDS;
2977 } else if (sor->soc->supports_dp) {
2978 dev_err(&pdev->dev, "DisplayPort not supported yet\n");
2979 return -ENODEV;
2980 } else {
2981 dev_err(&pdev->dev, "unknown (DP) support\n");
2982 return -ENODEV;
2983 }
2984 }
2985
2986 err = tegra_sor_parse_dt(sor);
2987 if (err < 0)
2988 return err;
2989
2990 err = tegra_output_probe(&sor->output);
2991 if (err < 0) {
2992 dev_err(&pdev->dev, "failed to probe output: %d\n", err);
2993 return err;
2994 }
2995
2996 if (sor->ops && sor->ops->probe) {
2997 err = sor->ops->probe(sor);
2998 if (err < 0) {
2999 dev_err(&pdev->dev, "failed to probe %s: %d\n",
3000 sor->ops->name, err);
3001 goto output;
3002 }
3003 }
3004
3005 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3006 sor->regs = devm_ioremap_resource(&pdev->dev, regs);
3007 if (IS_ERR(sor->regs)) {
3008 err = PTR_ERR(sor->regs);
3009 goto remove;
3010 }
3011
3012 if (!pdev->dev.pm_domain) {
3013 sor->rst = devm_reset_control_get(&pdev->dev, "sor");
3014 if (IS_ERR(sor->rst)) {
3015 err = PTR_ERR(sor->rst);
3016 dev_err(&pdev->dev, "failed to get reset control: %d\n",
3017 err);
3018 goto remove;
3019 }
3020 }
3021
3022 sor->clk = devm_clk_get(&pdev->dev, NULL);
3023 if (IS_ERR(sor->clk)) {
3024 err = PTR_ERR(sor->clk);
3025 dev_err(&pdev->dev, "failed to get module clock: %d\n", err);
3026 goto remove;
3027 }
3028
3029 if (sor->soc->supports_hdmi || sor->soc->supports_dp) {
3030 struct device_node *np = pdev->dev.of_node;
3031 const char *name;
3032
3033 /*
3034 * For backwards compatibility with Tegra210 device trees,
3035 * fall back to the old clock name "source" if the new "out"
3036 * clock is not available.
3037 */
3038 if (of_property_match_string(np, "clock-names", "out") < 0)
3039 name = "source";
3040 else
3041 name = "out";
3042
3043 sor->clk_out = devm_clk_get(&pdev->dev, name);
3044 if (IS_ERR(sor->clk_out)) {
3045 err = PTR_ERR(sor->clk_out);
3046 dev_err(sor->dev, "failed to get %s clock: %d\n",
3047 name, err);
3048 goto remove;
3049 }
3050 } else {
3051 /* fall back to the module clock on SOR0 (eDP/LVDS only) */
3052 sor->clk_out = sor->clk;
3053 }
3054
3055 sor->clk_parent = devm_clk_get(&pdev->dev, "parent");
3056 if (IS_ERR(sor->clk_parent)) {
3057 err = PTR_ERR(sor->clk_parent);
3058 dev_err(&pdev->dev, "failed to get parent clock: %d\n", err);
3059 goto remove;
3060 }
3061
3062 sor->clk_safe = devm_clk_get(&pdev->dev, "safe");
3063 if (IS_ERR(sor->clk_safe)) {
3064 err = PTR_ERR(sor->clk_safe);
3065 dev_err(&pdev->dev, "failed to get safe clock: %d\n", err);
3066 goto remove;
3067 }
3068
3069 sor->clk_dp = devm_clk_get(&pdev->dev, "dp");
3070 if (IS_ERR(sor->clk_dp)) {
3071 err = PTR_ERR(sor->clk_dp);
3072 dev_err(&pdev->dev, "failed to get DP clock: %d\n", err);
3073 goto remove;
3074 }
3075
3076 /*
3077 * Starting with Tegra186, the BPMP provides an implementation for
3078 * the pad output clock, so we have to look it up from device tree.
3079 */
3080 sor->clk_pad = devm_clk_get(&pdev->dev, "pad");
3081 if (IS_ERR(sor->clk_pad)) {
3082 if (sor->clk_pad != ERR_PTR(-ENOENT)) {
3083 err = PTR_ERR(sor->clk_pad);
3084 goto remove;
3085 }
3086
3087 /*
3088 * If the pad output clock is not available, then we assume
3089 * we're on Tegra210 or earlier and have to provide our own
3090 * implementation.
3091 */
3092 sor->clk_pad = NULL;
3093 }
3094
3095 /*
3096 * The bootloader may have set up the SOR such that it's module clock
3097 * is sourced by one of the display PLLs. However, that doesn't work
3098 * without properly having set up other bits of the SOR.
3099 */
3100 err = clk_set_parent(sor->clk_out, sor->clk_safe);
3101 if (err < 0) {
3102 dev_err(&pdev->dev, "failed to use safe clock: %d\n", err);
3103 goto remove;
3104 }
3105
3106 platform_set_drvdata(pdev, sor);
3107 pm_runtime_enable(&pdev->dev);
3108
3109 /*
3110 * On Tegra210 and earlier, provide our own implementation for the
3111 * pad output clock.
3112 */
3113 if (!sor->clk_pad) {
3114 err = pm_runtime_get_sync(&pdev->dev);
3115 if (err < 0) {
3116 dev_err(&pdev->dev, "failed to get runtime PM: %d\n",
3117 err);
3118 goto remove;
3119 }
3120
3121 sor->clk_pad = tegra_clk_sor_pad_register(sor,
3122 "sor1_pad_clkout");
3123 pm_runtime_put(&pdev->dev);
3124 }
3125
3126 if (IS_ERR(sor->clk_pad)) {
3127 err = PTR_ERR(sor->clk_pad);
3128 dev_err(&pdev->dev, "failed to register SOR pad clock: %d\n",
3129 err);
3130 goto remove;
3131 }
3132
3133 INIT_LIST_HEAD(&sor->client.list);
3134 sor->client.ops = &sor_client_ops;
3135 sor->client.dev = &pdev->dev;
3136
3137 err = host1x_client_register(&sor->client);
3138 if (err < 0) {
3139 dev_err(&pdev->dev, "failed to register host1x client: %d\n",
3140 err);
3141 goto remove;
3142 }
3143
3144 return 0;
3145
3146remove:
3147 if (sor->ops && sor->ops->remove)
3148 sor->ops->remove(sor);
3149output:
3150 tegra_output_remove(&sor->output);
3151 return err;
3152}
3153
3154static int tegra_sor_remove(struct platform_device *pdev)
3155{
3156 struct tegra_sor *sor = platform_get_drvdata(pdev);
3157 int err;
3158
3159 pm_runtime_disable(&pdev->dev);
3160
3161 err = host1x_client_unregister(&sor->client);
3162 if (err < 0) {
3163 dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
3164 err);
3165 return err;
3166 }
3167
3168 if (sor->ops && sor->ops->remove) {
3169 err = sor->ops->remove(sor);
3170 if (err < 0)
3171 dev_err(&pdev->dev, "failed to remove SOR: %d\n", err);
3172 }
3173
3174 tegra_output_remove(&sor->output);
3175
3176 return 0;
3177}
3178
3179#ifdef CONFIG_PM
3180static int tegra_sor_suspend(struct device *dev)
3181{
3182 struct tegra_sor *sor = dev_get_drvdata(dev);
3183 int err;
3184
3185 if (sor->rst) {
3186 err = reset_control_assert(sor->rst);
3187 if (err < 0) {
3188 dev_err(dev, "failed to assert reset: %d\n", err);
3189 return err;
3190 }
3191 }
3192
3193 usleep_range(1000, 2000);
3194
3195 clk_disable_unprepare(sor->clk);
3196
3197 return 0;
3198}
3199
3200static int tegra_sor_resume(struct device *dev)
3201{
3202 struct tegra_sor *sor = dev_get_drvdata(dev);
3203 int err;
3204
3205 err = clk_prepare_enable(sor->clk);
3206 if (err < 0) {
3207 dev_err(dev, "failed to enable clock: %d\n", err);
3208 return err;
3209 }
3210
3211 usleep_range(1000, 2000);
3212
3213 if (sor->rst) {
3214 err = reset_control_deassert(sor->rst);
3215 if (err < 0) {
3216 dev_err(dev, "failed to deassert reset: %d\n", err);
3217 clk_disable_unprepare(sor->clk);
3218 return err;
3219 }
3220 }
3221
3222 return 0;
3223}
3224#endif
3225
3226static const struct dev_pm_ops tegra_sor_pm_ops = {
3227 SET_RUNTIME_PM_OPS(tegra_sor_suspend, tegra_sor_resume, NULL)
3228};
3229
3230struct platform_driver tegra_sor_driver = {
3231 .driver = {
3232 .name = "tegra-sor",
3233 .of_match_table = tegra_sor_of_match,
3234 .pm = &tegra_sor_pm_ops,
3235 },
3236 .probe = tegra_sor_probe,
3237 .remove = tegra_sor_remove,
3238};
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2013 NVIDIA Corporation
4 */
5
6#include <linux/clk.h>
7#include <linux/clk-provider.h>
8#include <linux/debugfs.h>
9#include <linux/io.h>
10#include <linux/module.h>
11#include <linux/of_device.h>
12#include <linux/platform_device.h>
13#include <linux/pm_runtime.h>
14#include <linux/regulator/consumer.h>
15#include <linux/reset.h>
16
17#include <soc/tegra/pmc.h>
18
19#include <drm/drm_atomic_helper.h>
20#include <drm/drm_debugfs.h>
21#include <drm/drm_dp_helper.h>
22#include <drm/drm_file.h>
23#include <drm/drm_panel.h>
24#include <drm/drm_scdc_helper.h>
25#include <drm/drm_simple_kms_helper.h>
26
27#include "dc.h"
28#include "dp.h"
29#include "drm.h"
30#include "hda.h"
31#include "sor.h"
32#include "trace.h"
33
34#define SOR_REKEY 0x38
35
36struct tegra_sor_hdmi_settings {
37 unsigned long frequency;
38
39 u8 vcocap;
40 u8 filter;
41 u8 ichpmp;
42 u8 loadadj;
43 u8 tmds_termadj;
44 u8 tx_pu_value;
45 u8 bg_temp_coef;
46 u8 bg_vref_level;
47 u8 avdd10_level;
48 u8 avdd14_level;
49 u8 sparepll;
50
51 u8 drive_current[4];
52 u8 preemphasis[4];
53};
54
55#if 1
56static const struct tegra_sor_hdmi_settings tegra210_sor_hdmi_defaults[] = {
57 {
58 .frequency = 54000000,
59 .vcocap = 0x0,
60 .filter = 0x0,
61 .ichpmp = 0x1,
62 .loadadj = 0x3,
63 .tmds_termadj = 0x9,
64 .tx_pu_value = 0x10,
65 .bg_temp_coef = 0x3,
66 .bg_vref_level = 0x8,
67 .avdd10_level = 0x4,
68 .avdd14_level = 0x4,
69 .sparepll = 0x0,
70 .drive_current = { 0x33, 0x3a, 0x3a, 0x3a },
71 .preemphasis = { 0x00, 0x00, 0x00, 0x00 },
72 }, {
73 .frequency = 75000000,
74 .vcocap = 0x3,
75 .filter = 0x0,
76 .ichpmp = 0x1,
77 .loadadj = 0x3,
78 .tmds_termadj = 0x9,
79 .tx_pu_value = 0x40,
80 .bg_temp_coef = 0x3,
81 .bg_vref_level = 0x8,
82 .avdd10_level = 0x4,
83 .avdd14_level = 0x4,
84 .sparepll = 0x0,
85 .drive_current = { 0x33, 0x3a, 0x3a, 0x3a },
86 .preemphasis = { 0x00, 0x00, 0x00, 0x00 },
87 }, {
88 .frequency = 150000000,
89 .vcocap = 0x3,
90 .filter = 0x0,
91 .ichpmp = 0x1,
92 .loadadj = 0x3,
93 .tmds_termadj = 0x9,
94 .tx_pu_value = 0x66,
95 .bg_temp_coef = 0x3,
96 .bg_vref_level = 0x8,
97 .avdd10_level = 0x4,
98 .avdd14_level = 0x4,
99 .sparepll = 0x0,
100 .drive_current = { 0x33, 0x3a, 0x3a, 0x3a },
101 .preemphasis = { 0x00, 0x00, 0x00, 0x00 },
102 }, {
103 .frequency = 300000000,
104 .vcocap = 0x3,
105 .filter = 0x0,
106 .ichpmp = 0x1,
107 .loadadj = 0x3,
108 .tmds_termadj = 0x9,
109 .tx_pu_value = 0x66,
110 .bg_temp_coef = 0x3,
111 .bg_vref_level = 0xa,
112 .avdd10_level = 0x4,
113 .avdd14_level = 0x4,
114 .sparepll = 0x0,
115 .drive_current = { 0x33, 0x3f, 0x3f, 0x3f },
116 .preemphasis = { 0x00, 0x17, 0x17, 0x17 },
117 }, {
118 .frequency = 600000000,
119 .vcocap = 0x3,
120 .filter = 0x0,
121 .ichpmp = 0x1,
122 .loadadj = 0x3,
123 .tmds_termadj = 0x9,
124 .tx_pu_value = 0x66,
125 .bg_temp_coef = 0x3,
126 .bg_vref_level = 0x8,
127 .avdd10_level = 0x4,
128 .avdd14_level = 0x4,
129 .sparepll = 0x0,
130 .drive_current = { 0x33, 0x3f, 0x3f, 0x3f },
131 .preemphasis = { 0x00, 0x00, 0x00, 0x00 },
132 },
133};
134#else
135static const struct tegra_sor_hdmi_settings tegra210_sor_hdmi_defaults[] = {
136 {
137 .frequency = 75000000,
138 .vcocap = 0x3,
139 .filter = 0x0,
140 .ichpmp = 0x1,
141 .loadadj = 0x3,
142 .tmds_termadj = 0x9,
143 .tx_pu_value = 0x40,
144 .bg_temp_coef = 0x3,
145 .bg_vref_level = 0x8,
146 .avdd10_level = 0x4,
147 .avdd14_level = 0x4,
148 .sparepll = 0x0,
149 .drive_current = { 0x29, 0x29, 0x29, 0x29 },
150 .preemphasis = { 0x00, 0x00, 0x00, 0x00 },
151 }, {
152 .frequency = 150000000,
153 .vcocap = 0x3,
154 .filter = 0x0,
155 .ichpmp = 0x1,
156 .loadadj = 0x3,
157 .tmds_termadj = 0x9,
158 .tx_pu_value = 0x66,
159 .bg_temp_coef = 0x3,
160 .bg_vref_level = 0x8,
161 .avdd10_level = 0x4,
162 .avdd14_level = 0x4,
163 .sparepll = 0x0,
164 .drive_current = { 0x30, 0x37, 0x37, 0x37 },
165 .preemphasis = { 0x01, 0x02, 0x02, 0x02 },
166 }, {
167 .frequency = 300000000,
168 .vcocap = 0x3,
169 .filter = 0x0,
170 .ichpmp = 0x6,
171 .loadadj = 0x3,
172 .tmds_termadj = 0x9,
173 .tx_pu_value = 0x66,
174 .bg_temp_coef = 0x3,
175 .bg_vref_level = 0xf,
176 .avdd10_level = 0x4,
177 .avdd14_level = 0x4,
178 .sparepll = 0x0,
179 .drive_current = { 0x30, 0x37, 0x37, 0x37 },
180 .preemphasis = { 0x10, 0x3e, 0x3e, 0x3e },
181 }, {
182 .frequency = 600000000,
183 .vcocap = 0x3,
184 .filter = 0x0,
185 .ichpmp = 0xa,
186 .loadadj = 0x3,
187 .tmds_termadj = 0xb,
188 .tx_pu_value = 0x66,
189 .bg_temp_coef = 0x3,
190 .bg_vref_level = 0xe,
191 .avdd10_level = 0x4,
192 .avdd14_level = 0x4,
193 .sparepll = 0x0,
194 .drive_current = { 0x35, 0x3e, 0x3e, 0x3e },
195 .preemphasis = { 0x02, 0x3f, 0x3f, 0x3f },
196 },
197};
198#endif
199
200static const struct tegra_sor_hdmi_settings tegra186_sor_hdmi_defaults[] = {
201 {
202 .frequency = 54000000,
203 .vcocap = 0,
204 .filter = 5,
205 .ichpmp = 5,
206 .loadadj = 3,
207 .tmds_termadj = 0xf,
208 .tx_pu_value = 0,
209 .bg_temp_coef = 3,
210 .bg_vref_level = 8,
211 .avdd10_level = 4,
212 .avdd14_level = 4,
213 .sparepll = 0x54,
214 .drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
215 .preemphasis = { 0x00, 0x00, 0x00, 0x00 },
216 }, {
217 .frequency = 75000000,
218 .vcocap = 1,
219 .filter = 5,
220 .ichpmp = 5,
221 .loadadj = 3,
222 .tmds_termadj = 0xf,
223 .tx_pu_value = 0,
224 .bg_temp_coef = 3,
225 .bg_vref_level = 8,
226 .avdd10_level = 4,
227 .avdd14_level = 4,
228 .sparepll = 0x44,
229 .drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
230 .preemphasis = { 0x00, 0x00, 0x00, 0x00 },
231 }, {
232 .frequency = 150000000,
233 .vcocap = 3,
234 .filter = 5,
235 .ichpmp = 5,
236 .loadadj = 3,
237 .tmds_termadj = 15,
238 .tx_pu_value = 0x66 /* 0 */,
239 .bg_temp_coef = 3,
240 .bg_vref_level = 8,
241 .avdd10_level = 4,
242 .avdd14_level = 4,
243 .sparepll = 0x00, /* 0x34 */
244 .drive_current = { 0x3a, 0x3a, 0x3a, 0x37 },
245 .preemphasis = { 0x00, 0x00, 0x00, 0x00 },
246 }, {
247 .frequency = 300000000,
248 .vcocap = 3,
249 .filter = 5,
250 .ichpmp = 5,
251 .loadadj = 3,
252 .tmds_termadj = 15,
253 .tx_pu_value = 64,
254 .bg_temp_coef = 3,
255 .bg_vref_level = 8,
256 .avdd10_level = 4,
257 .avdd14_level = 4,
258 .sparepll = 0x34,
259 .drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
260 .preemphasis = { 0x00, 0x00, 0x00, 0x00 },
261 }, {
262 .frequency = 600000000,
263 .vcocap = 3,
264 .filter = 5,
265 .ichpmp = 5,
266 .loadadj = 3,
267 .tmds_termadj = 12,
268 .tx_pu_value = 96,
269 .bg_temp_coef = 3,
270 .bg_vref_level = 8,
271 .avdd10_level = 4,
272 .avdd14_level = 4,
273 .sparepll = 0x34,
274 .drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
275 .preemphasis = { 0x00, 0x00, 0x00, 0x00 },
276 }
277};
278
279static const struct tegra_sor_hdmi_settings tegra194_sor_hdmi_defaults[] = {
280 {
281 .frequency = 54000000,
282 .vcocap = 0,
283 .filter = 5,
284 .ichpmp = 5,
285 .loadadj = 3,
286 .tmds_termadj = 0xf,
287 .tx_pu_value = 0,
288 .bg_temp_coef = 3,
289 .bg_vref_level = 8,
290 .avdd10_level = 4,
291 .avdd14_level = 4,
292 .sparepll = 0x54,
293 .drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
294 .preemphasis = { 0x00, 0x00, 0x00, 0x00 },
295 }, {
296 .frequency = 75000000,
297 .vcocap = 1,
298 .filter = 5,
299 .ichpmp = 5,
300 .loadadj = 3,
301 .tmds_termadj = 0xf,
302 .tx_pu_value = 0,
303 .bg_temp_coef = 3,
304 .bg_vref_level = 8,
305 .avdd10_level = 4,
306 .avdd14_level = 4,
307 .sparepll = 0x44,
308 .drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
309 .preemphasis = { 0x00, 0x00, 0x00, 0x00 },
310 }, {
311 .frequency = 150000000,
312 .vcocap = 3,
313 .filter = 5,
314 .ichpmp = 5,
315 .loadadj = 3,
316 .tmds_termadj = 15,
317 .tx_pu_value = 0x66 /* 0 */,
318 .bg_temp_coef = 3,
319 .bg_vref_level = 8,
320 .avdd10_level = 4,
321 .avdd14_level = 4,
322 .sparepll = 0x00, /* 0x34 */
323 .drive_current = { 0x3a, 0x3a, 0x3a, 0x37 },
324 .preemphasis = { 0x00, 0x00, 0x00, 0x00 },
325 }, {
326 .frequency = 300000000,
327 .vcocap = 3,
328 .filter = 5,
329 .ichpmp = 5,
330 .loadadj = 3,
331 .tmds_termadj = 15,
332 .tx_pu_value = 64,
333 .bg_temp_coef = 3,
334 .bg_vref_level = 8,
335 .avdd10_level = 4,
336 .avdd14_level = 4,
337 .sparepll = 0x34,
338 .drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
339 .preemphasis = { 0x00, 0x00, 0x00, 0x00 },
340 }, {
341 .frequency = 600000000,
342 .vcocap = 3,
343 .filter = 5,
344 .ichpmp = 5,
345 .loadadj = 3,
346 .tmds_termadj = 12,
347 .tx_pu_value = 96,
348 .bg_temp_coef = 3,
349 .bg_vref_level = 8,
350 .avdd10_level = 4,
351 .avdd14_level = 4,
352 .sparepll = 0x34,
353 .drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
354 .preemphasis = { 0x00, 0x00, 0x00, 0x00 },
355 }
356};
357
358struct tegra_sor_regs {
359 unsigned int head_state0;
360 unsigned int head_state1;
361 unsigned int head_state2;
362 unsigned int head_state3;
363 unsigned int head_state4;
364 unsigned int head_state5;
365 unsigned int pll0;
366 unsigned int pll1;
367 unsigned int pll2;
368 unsigned int pll3;
369 unsigned int dp_padctl0;
370 unsigned int dp_padctl2;
371};
372
373struct tegra_sor_soc {
374 bool supports_lvds;
375 bool supports_hdmi;
376 bool supports_dp;
377 bool supports_audio;
378 bool supports_hdcp;
379
380 const struct tegra_sor_regs *regs;
381 bool has_nvdisplay;
382
383 const struct tegra_sor_hdmi_settings *settings;
384 unsigned int num_settings;
385
386 const u8 *xbar_cfg;
387 const u8 *lane_map;
388
389 const u8 (*voltage_swing)[4][4];
390 const u8 (*pre_emphasis)[4][4];
391 const u8 (*post_cursor)[4][4];
392 const u8 (*tx_pu)[4][4];
393};
394
395struct tegra_sor;
396
397struct tegra_sor_ops {
398 const char *name;
399 int (*probe)(struct tegra_sor *sor);
400 int (*remove)(struct tegra_sor *sor);
401 void (*audio_enable)(struct tegra_sor *sor);
402 void (*audio_disable)(struct tegra_sor *sor);
403};
404
405struct tegra_sor {
406 struct host1x_client client;
407 struct tegra_output output;
408 struct device *dev;
409
410 const struct tegra_sor_soc *soc;
411 void __iomem *regs;
412 unsigned int index;
413 unsigned int irq;
414
415 struct reset_control *rst;
416 struct clk *clk_parent;
417 struct clk *clk_safe;
418 struct clk *clk_out;
419 struct clk *clk_pad;
420 struct clk *clk_dp;
421 struct clk *clk;
422
423 u8 xbar_cfg[5];
424
425 struct drm_dp_link link;
426 struct drm_dp_aux *aux;
427
428 struct drm_info_list *debugfs_files;
429
430 const struct tegra_sor_ops *ops;
431 enum tegra_io_pad pad;
432
433 /* for HDMI 2.0 */
434 struct tegra_sor_hdmi_settings *settings;
435 unsigned int num_settings;
436
437 struct regulator *avdd_io_supply;
438 struct regulator *vdd_pll_supply;
439 struct regulator *hdmi_supply;
440
441 struct delayed_work scdc;
442 bool scdc_enabled;
443
444 struct tegra_hda_format format;
445};
446
447struct tegra_sor_state {
448 struct drm_connector_state base;
449
450 unsigned int link_speed;
451 unsigned long pclk;
452 unsigned int bpc;
453};
454
455static inline struct tegra_sor_state *
456to_sor_state(struct drm_connector_state *state)
457{
458 return container_of(state, struct tegra_sor_state, base);
459}
460
461struct tegra_sor_config {
462 u32 bits_per_pixel;
463
464 u32 active_polarity;
465 u32 active_count;
466 u32 tu_size;
467 u32 active_frac;
468 u32 watermark;
469
470 u32 hblank_symbols;
471 u32 vblank_symbols;
472};
473
474static inline struct tegra_sor *
475host1x_client_to_sor(struct host1x_client *client)
476{
477 return container_of(client, struct tegra_sor, client);
478}
479
480static inline struct tegra_sor *to_sor(struct tegra_output *output)
481{
482 return container_of(output, struct tegra_sor, output);
483}
484
485static inline u32 tegra_sor_readl(struct tegra_sor *sor, unsigned int offset)
486{
487 u32 value = readl(sor->regs + (offset << 2));
488
489 trace_sor_readl(sor->dev, offset, value);
490
491 return value;
492}
493
494static inline void tegra_sor_writel(struct tegra_sor *sor, u32 value,
495 unsigned int offset)
496{
497 trace_sor_writel(sor->dev, offset, value);
498 writel(value, sor->regs + (offset << 2));
499}
500
501static int tegra_sor_set_parent_clock(struct tegra_sor *sor, struct clk *parent)
502{
503 int err;
504
505 clk_disable_unprepare(sor->clk);
506
507 err = clk_set_parent(sor->clk_out, parent);
508 if (err < 0)
509 return err;
510
511 err = clk_prepare_enable(sor->clk);
512 if (err < 0)
513 return err;
514
515 return 0;
516}
517
518struct tegra_clk_sor_pad {
519 struct clk_hw hw;
520 struct tegra_sor *sor;
521};
522
523static inline struct tegra_clk_sor_pad *to_pad(struct clk_hw *hw)
524{
525 return container_of(hw, struct tegra_clk_sor_pad, hw);
526}
527
528static const char * const tegra_clk_sor_pad_parents[2][2] = {
529 { "pll_d_out0", "pll_dp" },
530 { "pll_d2_out0", "pll_dp" },
531};
532
533/*
534 * Implementing ->set_parent() here isn't really required because the parent
535 * will be explicitly selected in the driver code via the DP_CLK_SEL mux in
536 * the SOR_CLK_CNTRL register. This is primarily for compatibility with the
537 * Tegra186 and later SoC generations where the BPMP implements this clock
538 * and doesn't expose the mux via the common clock framework.
539 */
540
541static int tegra_clk_sor_pad_set_parent(struct clk_hw *hw, u8 index)
542{
543 struct tegra_clk_sor_pad *pad = to_pad(hw);
544 struct tegra_sor *sor = pad->sor;
545 u32 value;
546
547 value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
548 value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
549
550 switch (index) {
551 case 0:
552 value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK;
553 break;
554
555 case 1:
556 value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK;
557 break;
558 }
559
560 tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
561
562 return 0;
563}
564
565static u8 tegra_clk_sor_pad_get_parent(struct clk_hw *hw)
566{
567 struct tegra_clk_sor_pad *pad = to_pad(hw);
568 struct tegra_sor *sor = pad->sor;
569 u8 parent = U8_MAX;
570 u32 value;
571
572 value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
573
574 switch (value & SOR_CLK_CNTRL_DP_CLK_SEL_MASK) {
575 case SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK:
576 case SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_PCLK:
577 parent = 0;
578 break;
579
580 case SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK:
581 case SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_DPCLK:
582 parent = 1;
583 break;
584 }
585
586 return parent;
587}
588
589static const struct clk_ops tegra_clk_sor_pad_ops = {
590 .set_parent = tegra_clk_sor_pad_set_parent,
591 .get_parent = tegra_clk_sor_pad_get_parent,
592};
593
594static struct clk *tegra_clk_sor_pad_register(struct tegra_sor *sor,
595 const char *name)
596{
597 struct tegra_clk_sor_pad *pad;
598 struct clk_init_data init;
599 struct clk *clk;
600
601 pad = devm_kzalloc(sor->dev, sizeof(*pad), GFP_KERNEL);
602 if (!pad)
603 return ERR_PTR(-ENOMEM);
604
605 pad->sor = sor;
606
607 init.name = name;
608 init.flags = 0;
609 init.parent_names = tegra_clk_sor_pad_parents[sor->index];
610 init.num_parents = ARRAY_SIZE(tegra_clk_sor_pad_parents[sor->index]);
611 init.ops = &tegra_clk_sor_pad_ops;
612
613 pad->hw.init = &init;
614
615 clk = devm_clk_register(sor->dev, &pad->hw);
616
617 return clk;
618}
619
620static void tegra_sor_filter_rates(struct tegra_sor *sor)
621{
622 struct drm_dp_link *link = &sor->link;
623 unsigned int i;
624
625 /* Tegra only supports RBR, HBR and HBR2 */
626 for (i = 0; i < link->num_rates; i++) {
627 switch (link->rates[i]) {
628 case 1620000:
629 case 2700000:
630 case 5400000:
631 break;
632
633 default:
634 DRM_DEBUG_KMS("link rate %lu kHz not supported\n",
635 link->rates[i]);
636 link->rates[i] = 0;
637 break;
638 }
639 }
640
641 drm_dp_link_update_rates(link);
642}
643
644static int tegra_sor_power_up_lanes(struct tegra_sor *sor, unsigned int lanes)
645{
646 unsigned long timeout;
647 u32 value;
648
649 /*
650 * Clear or set the PD_TXD bit corresponding to each lane, depending
651 * on whether it is used or not.
652 */
653 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
654
655 if (lanes <= 2)
656 value &= ~(SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[3]) |
657 SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[2]));
658 else
659 value |= SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[3]) |
660 SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[2]);
661
662 if (lanes <= 1)
663 value &= ~SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[1]);
664 else
665 value |= SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[1]);
666
667 if (lanes == 0)
668 value &= ~SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[0]);
669 else
670 value |= SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[0]);
671
672 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
673
674 /* start lane sequencer */
675 value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_DOWN |
676 SOR_LANE_SEQ_CTL_POWER_STATE_UP;
677 tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
678
679 timeout = jiffies + msecs_to_jiffies(250);
680
681 while (time_before(jiffies, timeout)) {
682 value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
683 if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
684 break;
685
686 usleep_range(250, 1000);
687 }
688
689 if ((value & SOR_LANE_SEQ_CTL_TRIGGER) != 0)
690 return -ETIMEDOUT;
691
692 return 0;
693}
694
695static int tegra_sor_power_down_lanes(struct tegra_sor *sor)
696{
697 unsigned long timeout;
698 u32 value;
699
700 /* power down all lanes */
701 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
702 value &= ~(SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_0 |
703 SOR_DP_PADCTL_PD_TXD_1 | SOR_DP_PADCTL_PD_TXD_2);
704 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
705
706 /* start lane sequencer */
707 value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_UP |
708 SOR_LANE_SEQ_CTL_POWER_STATE_DOWN;
709 tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
710
711 timeout = jiffies + msecs_to_jiffies(250);
712
713 while (time_before(jiffies, timeout)) {
714 value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
715 if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
716 break;
717
718 usleep_range(25, 100);
719 }
720
721 if ((value & SOR_LANE_SEQ_CTL_TRIGGER) != 0)
722 return -ETIMEDOUT;
723
724 return 0;
725}
726
727static void tegra_sor_dp_precharge(struct tegra_sor *sor, unsigned int lanes)
728{
729 u32 value;
730
731 /* pre-charge all used lanes */
732 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
733
734 if (lanes <= 2)
735 value &= ~(SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[3]) |
736 SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[2]));
737 else
738 value |= SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[3]) |
739 SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[2]);
740
741 if (lanes <= 1)
742 value &= ~SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[1]);
743 else
744 value |= SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[1]);
745
746 if (lanes == 0)
747 value &= ~SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[0]);
748 else
749 value |= SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[0]);
750
751 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
752
753 usleep_range(15, 100);
754
755 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
756 value &= ~(SOR_DP_PADCTL_CM_TXD_3 | SOR_DP_PADCTL_CM_TXD_2 |
757 SOR_DP_PADCTL_CM_TXD_1 | SOR_DP_PADCTL_CM_TXD_0);
758 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
759}
760
761static void tegra_sor_dp_term_calibrate(struct tegra_sor *sor)
762{
763 u32 mask = 0x08, adj = 0, value;
764
765 /* enable pad calibration logic */
766 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
767 value &= ~SOR_DP_PADCTL_PAD_CAL_PD;
768 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
769
770 value = tegra_sor_readl(sor, sor->soc->regs->pll1);
771 value |= SOR_PLL1_TMDS_TERM;
772 tegra_sor_writel(sor, value, sor->soc->regs->pll1);
773
774 while (mask) {
775 adj |= mask;
776
777 value = tegra_sor_readl(sor, sor->soc->regs->pll1);
778 value &= ~SOR_PLL1_TMDS_TERMADJ_MASK;
779 value |= SOR_PLL1_TMDS_TERMADJ(adj);
780 tegra_sor_writel(sor, value, sor->soc->regs->pll1);
781
782 usleep_range(100, 200);
783
784 value = tegra_sor_readl(sor, sor->soc->regs->pll1);
785 if (value & SOR_PLL1_TERM_COMPOUT)
786 adj &= ~mask;
787
788 mask >>= 1;
789 }
790
791 value = tegra_sor_readl(sor, sor->soc->regs->pll1);
792 value &= ~SOR_PLL1_TMDS_TERMADJ_MASK;
793 value |= SOR_PLL1_TMDS_TERMADJ(adj);
794 tegra_sor_writel(sor, value, sor->soc->regs->pll1);
795
796 /* disable pad calibration logic */
797 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
798 value |= SOR_DP_PADCTL_PAD_CAL_PD;
799 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
800}
801
802static int tegra_sor_dp_link_apply_training(struct drm_dp_link *link)
803{
804 struct tegra_sor *sor = container_of(link, struct tegra_sor, link);
805 u32 voltage_swing = 0, pre_emphasis = 0, post_cursor = 0;
806 const struct tegra_sor_soc *soc = sor->soc;
807 u32 pattern = 0, tx_pu = 0, value;
808 unsigned int i;
809
810 for (value = 0, i = 0; i < link->lanes; i++) {
811 u8 vs = link->train.request.voltage_swing[i];
812 u8 pe = link->train.request.pre_emphasis[i];
813 u8 pc = link->train.request.post_cursor[i];
814 u8 shift = sor->soc->lane_map[i] << 3;
815
816 voltage_swing |= soc->voltage_swing[pc][vs][pe] << shift;
817 pre_emphasis |= soc->pre_emphasis[pc][vs][pe] << shift;
818 post_cursor |= soc->post_cursor[pc][vs][pe] << shift;
819
820 if (sor->soc->tx_pu[pc][vs][pe] > tx_pu)
821 tx_pu = sor->soc->tx_pu[pc][vs][pe];
822
823 switch (link->train.pattern) {
824 case DP_TRAINING_PATTERN_DISABLE:
825 value = SOR_DP_TPG_SCRAMBLER_GALIOS |
826 SOR_DP_TPG_PATTERN_NONE;
827 break;
828
829 case DP_TRAINING_PATTERN_1:
830 value = SOR_DP_TPG_SCRAMBLER_NONE |
831 SOR_DP_TPG_PATTERN_TRAIN1;
832 break;
833
834 case DP_TRAINING_PATTERN_2:
835 value = SOR_DP_TPG_SCRAMBLER_NONE |
836 SOR_DP_TPG_PATTERN_TRAIN2;
837 break;
838
839 case DP_TRAINING_PATTERN_3:
840 value = SOR_DP_TPG_SCRAMBLER_NONE |
841 SOR_DP_TPG_PATTERN_TRAIN3;
842 break;
843
844 default:
845 return -EINVAL;
846 }
847
848 if (link->caps.channel_coding)
849 value |= SOR_DP_TPG_CHANNEL_CODING;
850
851 pattern = pattern << 8 | value;
852 }
853
854 tegra_sor_writel(sor, voltage_swing, SOR_LANE_DRIVE_CURRENT0);
855 tegra_sor_writel(sor, pre_emphasis, SOR_LANE_PREEMPHASIS0);
856
857 if (link->caps.tps3_supported)
858 tegra_sor_writel(sor, post_cursor, SOR_LANE_POSTCURSOR0);
859
860 tegra_sor_writel(sor, pattern, SOR_DP_TPG);
861
862 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
863 value &= ~SOR_DP_PADCTL_TX_PU_MASK;
864 value |= SOR_DP_PADCTL_TX_PU_ENABLE;
865 value |= SOR_DP_PADCTL_TX_PU(tx_pu);
866 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
867
868 usleep_range(20, 100);
869
870 return 0;
871}
872
873static int tegra_sor_dp_link_configure(struct drm_dp_link *link)
874{
875 struct tegra_sor *sor = container_of(link, struct tegra_sor, link);
876 unsigned int rate, lanes;
877 u32 value;
878 int err;
879
880 rate = drm_dp_link_rate_to_bw_code(link->rate);
881 lanes = link->lanes;
882
883 /* configure link speed and lane count */
884 value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
885 value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK;
886 value |= SOR_CLK_CNTRL_DP_LINK_SPEED(rate);
887 tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
888
889 value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
890 value &= ~SOR_DP_LINKCTL_LANE_COUNT_MASK;
891 value |= SOR_DP_LINKCTL_LANE_COUNT(lanes);
892
893 if (link->caps.enhanced_framing)
894 value |= SOR_DP_LINKCTL_ENHANCED_FRAME;
895
896 tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
897
898 usleep_range(400, 1000);
899
900 /* configure load pulse position adjustment */
901 value = tegra_sor_readl(sor, sor->soc->regs->pll1);
902 value &= ~SOR_PLL1_LOADADJ_MASK;
903
904 switch (rate) {
905 case DP_LINK_BW_1_62:
906 value |= SOR_PLL1_LOADADJ(0x3);
907 break;
908
909 case DP_LINK_BW_2_7:
910 value |= SOR_PLL1_LOADADJ(0x4);
911 break;
912
913 case DP_LINK_BW_5_4:
914 value |= SOR_PLL1_LOADADJ(0x6);
915 break;
916 }
917
918 tegra_sor_writel(sor, value, sor->soc->regs->pll1);
919
920 /* use alternate scrambler reset for eDP */
921 value = tegra_sor_readl(sor, SOR_DP_SPARE0);
922
923 if (link->edp == 0)
924 value &= ~SOR_DP_SPARE_PANEL_INTERNAL;
925 else
926 value |= SOR_DP_SPARE_PANEL_INTERNAL;
927
928 tegra_sor_writel(sor, value, SOR_DP_SPARE0);
929
930 err = tegra_sor_power_down_lanes(sor);
931 if (err < 0) {
932 dev_err(sor->dev, "failed to power down lanes: %d\n", err);
933 return err;
934 }
935
936 /* power up and pre-charge lanes */
937 err = tegra_sor_power_up_lanes(sor, lanes);
938 if (err < 0) {
939 dev_err(sor->dev, "failed to power up %u lane%s: %d\n",
940 lanes, (lanes != 1) ? "s" : "", err);
941 return err;
942 }
943
944 tegra_sor_dp_precharge(sor, lanes);
945
946 return 0;
947}
948
949static const struct drm_dp_link_ops tegra_sor_dp_link_ops = {
950 .apply_training = tegra_sor_dp_link_apply_training,
951 .configure = tegra_sor_dp_link_configure,
952};
953
954static void tegra_sor_super_update(struct tegra_sor *sor)
955{
956 tegra_sor_writel(sor, 0, SOR_SUPER_STATE0);
957 tegra_sor_writel(sor, 1, SOR_SUPER_STATE0);
958 tegra_sor_writel(sor, 0, SOR_SUPER_STATE0);
959}
960
961static void tegra_sor_update(struct tegra_sor *sor)
962{
963 tegra_sor_writel(sor, 0, SOR_STATE0);
964 tegra_sor_writel(sor, 1, SOR_STATE0);
965 tegra_sor_writel(sor, 0, SOR_STATE0);
966}
967
968static int tegra_sor_setup_pwm(struct tegra_sor *sor, unsigned long timeout)
969{
970 u32 value;
971
972 value = tegra_sor_readl(sor, SOR_PWM_DIV);
973 value &= ~SOR_PWM_DIV_MASK;
974 value |= 0x400; /* period */
975 tegra_sor_writel(sor, value, SOR_PWM_DIV);
976
977 value = tegra_sor_readl(sor, SOR_PWM_CTL);
978 value &= ~SOR_PWM_CTL_DUTY_CYCLE_MASK;
979 value |= 0x400; /* duty cycle */
980 value &= ~SOR_PWM_CTL_CLK_SEL; /* clock source: PCLK */
981 value |= SOR_PWM_CTL_TRIGGER;
982 tegra_sor_writel(sor, value, SOR_PWM_CTL);
983
984 timeout = jiffies + msecs_to_jiffies(timeout);
985
986 while (time_before(jiffies, timeout)) {
987 value = tegra_sor_readl(sor, SOR_PWM_CTL);
988 if ((value & SOR_PWM_CTL_TRIGGER) == 0)
989 return 0;
990
991 usleep_range(25, 100);
992 }
993
994 return -ETIMEDOUT;
995}
996
997static int tegra_sor_attach(struct tegra_sor *sor)
998{
999 unsigned long value, timeout;
1000
1001 /* wake up in normal mode */
1002 value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1003 value |= SOR_SUPER_STATE_HEAD_MODE_AWAKE;
1004 value |= SOR_SUPER_STATE_MODE_NORMAL;
1005 tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1006 tegra_sor_super_update(sor);
1007
1008 /* attach */
1009 value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1010 value |= SOR_SUPER_STATE_ATTACHED;
1011 tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1012 tegra_sor_super_update(sor);
1013
1014 timeout = jiffies + msecs_to_jiffies(250);
1015
1016 while (time_before(jiffies, timeout)) {
1017 value = tegra_sor_readl(sor, SOR_TEST);
1018 if ((value & SOR_TEST_ATTACHED) != 0)
1019 return 0;
1020
1021 usleep_range(25, 100);
1022 }
1023
1024 return -ETIMEDOUT;
1025}
1026
1027static int tegra_sor_wakeup(struct tegra_sor *sor)
1028{
1029 unsigned long value, timeout;
1030
1031 timeout = jiffies + msecs_to_jiffies(250);
1032
1033 /* wait for head to wake up */
1034 while (time_before(jiffies, timeout)) {
1035 value = tegra_sor_readl(sor, SOR_TEST);
1036 value &= SOR_TEST_HEAD_MODE_MASK;
1037
1038 if (value == SOR_TEST_HEAD_MODE_AWAKE)
1039 return 0;
1040
1041 usleep_range(25, 100);
1042 }
1043
1044 return -ETIMEDOUT;
1045}
1046
1047static int tegra_sor_power_up(struct tegra_sor *sor, unsigned long timeout)
1048{
1049 u32 value;
1050
1051 value = tegra_sor_readl(sor, SOR_PWR);
1052 value |= SOR_PWR_TRIGGER | SOR_PWR_NORMAL_STATE_PU;
1053 tegra_sor_writel(sor, value, SOR_PWR);
1054
1055 timeout = jiffies + msecs_to_jiffies(timeout);
1056
1057 while (time_before(jiffies, timeout)) {
1058 value = tegra_sor_readl(sor, SOR_PWR);
1059 if ((value & SOR_PWR_TRIGGER) == 0)
1060 return 0;
1061
1062 usleep_range(25, 100);
1063 }
1064
1065 return -ETIMEDOUT;
1066}
1067
1068struct tegra_sor_params {
1069 /* number of link clocks per line */
1070 unsigned int num_clocks;
1071 /* ratio between input and output */
1072 u64 ratio;
1073 /* precision factor */
1074 u64 precision;
1075
1076 unsigned int active_polarity;
1077 unsigned int active_count;
1078 unsigned int active_frac;
1079 unsigned int tu_size;
1080 unsigned int error;
1081};
1082
1083static int tegra_sor_compute_params(struct tegra_sor *sor,
1084 struct tegra_sor_params *params,
1085 unsigned int tu_size)
1086{
1087 u64 active_sym, active_count, frac, approx;
1088 u32 active_polarity, active_frac = 0;
1089 const u64 f = params->precision;
1090 s64 error;
1091
1092 active_sym = params->ratio * tu_size;
1093 active_count = div_u64(active_sym, f) * f;
1094 frac = active_sym - active_count;
1095
1096 /* fraction < 0.5 */
1097 if (frac >= (f / 2)) {
1098 active_polarity = 1;
1099 frac = f - frac;
1100 } else {
1101 active_polarity = 0;
1102 }
1103
1104 if (frac != 0) {
1105 frac = div_u64(f * f, frac); /* 1/fraction */
1106 if (frac <= (15 * f)) {
1107 active_frac = div_u64(frac, f);
1108
1109 /* round up */
1110 if (active_polarity)
1111 active_frac++;
1112 } else {
1113 active_frac = active_polarity ? 1 : 15;
1114 }
1115 }
1116
1117 if (active_frac == 1)
1118 active_polarity = 0;
1119
1120 if (active_polarity == 1) {
1121 if (active_frac) {
1122 approx = active_count + (active_frac * (f - 1)) * f;
1123 approx = div_u64(approx, active_frac * f);
1124 } else {
1125 approx = active_count + f;
1126 }
1127 } else {
1128 if (active_frac)
1129 approx = active_count + div_u64(f, active_frac);
1130 else
1131 approx = active_count;
1132 }
1133
1134 error = div_s64(active_sym - approx, tu_size);
1135 error *= params->num_clocks;
1136
1137 if (error <= 0 && abs(error) < params->error) {
1138 params->active_count = div_u64(active_count, f);
1139 params->active_polarity = active_polarity;
1140 params->active_frac = active_frac;
1141 params->error = abs(error);
1142 params->tu_size = tu_size;
1143
1144 if (error == 0)
1145 return true;
1146 }
1147
1148 return false;
1149}
1150
1151static int tegra_sor_compute_config(struct tegra_sor *sor,
1152 const struct drm_display_mode *mode,
1153 struct tegra_sor_config *config,
1154 struct drm_dp_link *link)
1155{
1156 const u64 f = 100000, link_rate = link->rate * 1000;
1157 const u64 pclk = mode->clock * 1000;
1158 u64 input, output, watermark, num;
1159 struct tegra_sor_params params;
1160 u32 num_syms_per_line;
1161 unsigned int i;
1162
1163 if (!link_rate || !link->lanes || !pclk || !config->bits_per_pixel)
1164 return -EINVAL;
1165
1166 input = pclk * config->bits_per_pixel;
1167 output = link_rate * 8 * link->lanes;
1168
1169 if (input >= output)
1170 return -ERANGE;
1171
1172 memset(¶ms, 0, sizeof(params));
1173 params.ratio = div64_u64(input * f, output);
1174 params.num_clocks = div_u64(link_rate * mode->hdisplay, pclk);
1175 params.precision = f;
1176 params.error = 64 * f;
1177 params.tu_size = 64;
1178
1179 for (i = params.tu_size; i >= 32; i--)
1180 if (tegra_sor_compute_params(sor, ¶ms, i))
1181 break;
1182
1183 if (params.active_frac == 0) {
1184 config->active_polarity = 0;
1185 config->active_count = params.active_count;
1186
1187 if (!params.active_polarity)
1188 config->active_count--;
1189
1190 config->tu_size = params.tu_size;
1191 config->active_frac = 1;
1192 } else {
1193 config->active_polarity = params.active_polarity;
1194 config->active_count = params.active_count;
1195 config->active_frac = params.active_frac;
1196 config->tu_size = params.tu_size;
1197 }
1198
1199 dev_dbg(sor->dev,
1200 "polarity: %d active count: %d tu size: %d active frac: %d\n",
1201 config->active_polarity, config->active_count,
1202 config->tu_size, config->active_frac);
1203
1204 watermark = params.ratio * config->tu_size * (f - params.ratio);
1205 watermark = div_u64(watermark, f);
1206
1207 watermark = div_u64(watermark + params.error, f);
1208 config->watermark = watermark + (config->bits_per_pixel / 8) + 2;
1209 num_syms_per_line = (mode->hdisplay * config->bits_per_pixel) *
1210 (link->lanes * 8);
1211
1212 if (config->watermark > 30) {
1213 config->watermark = 30;
1214 dev_err(sor->dev,
1215 "unable to compute TU size, forcing watermark to %u\n",
1216 config->watermark);
1217 } else if (config->watermark > num_syms_per_line) {
1218 config->watermark = num_syms_per_line;
1219 dev_err(sor->dev, "watermark too high, forcing to %u\n",
1220 config->watermark);
1221 }
1222
1223 /* compute the number of symbols per horizontal blanking interval */
1224 num = ((mode->htotal - mode->hdisplay) - 7) * link_rate;
1225 config->hblank_symbols = div_u64(num, pclk);
1226
1227 if (link->caps.enhanced_framing)
1228 config->hblank_symbols -= 3;
1229
1230 config->hblank_symbols -= 12 / link->lanes;
1231
1232 /* compute the number of symbols per vertical blanking interval */
1233 num = (mode->hdisplay - 25) * link_rate;
1234 config->vblank_symbols = div_u64(num, pclk);
1235 config->vblank_symbols -= 36 / link->lanes + 4;
1236
1237 dev_dbg(sor->dev, "blank symbols: H:%u V:%u\n", config->hblank_symbols,
1238 config->vblank_symbols);
1239
1240 return 0;
1241}
1242
1243static void tegra_sor_apply_config(struct tegra_sor *sor,
1244 const struct tegra_sor_config *config)
1245{
1246 u32 value;
1247
1248 value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
1249 value &= ~SOR_DP_LINKCTL_TU_SIZE_MASK;
1250 value |= SOR_DP_LINKCTL_TU_SIZE(config->tu_size);
1251 tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
1252
1253 value = tegra_sor_readl(sor, SOR_DP_CONFIG0);
1254 value &= ~SOR_DP_CONFIG_WATERMARK_MASK;
1255 value |= SOR_DP_CONFIG_WATERMARK(config->watermark);
1256
1257 value &= ~SOR_DP_CONFIG_ACTIVE_SYM_COUNT_MASK;
1258 value |= SOR_DP_CONFIG_ACTIVE_SYM_COUNT(config->active_count);
1259
1260 value &= ~SOR_DP_CONFIG_ACTIVE_SYM_FRAC_MASK;
1261 value |= SOR_DP_CONFIG_ACTIVE_SYM_FRAC(config->active_frac);
1262
1263 if (config->active_polarity)
1264 value |= SOR_DP_CONFIG_ACTIVE_SYM_POLARITY;
1265 else
1266 value &= ~SOR_DP_CONFIG_ACTIVE_SYM_POLARITY;
1267
1268 value |= SOR_DP_CONFIG_ACTIVE_SYM_ENABLE;
1269 value |= SOR_DP_CONFIG_DISPARITY_NEGATIVE;
1270 tegra_sor_writel(sor, value, SOR_DP_CONFIG0);
1271
1272 value = tegra_sor_readl(sor, SOR_DP_AUDIO_HBLANK_SYMBOLS);
1273 value &= ~SOR_DP_AUDIO_HBLANK_SYMBOLS_MASK;
1274 value |= config->hblank_symbols & 0xffff;
1275 tegra_sor_writel(sor, value, SOR_DP_AUDIO_HBLANK_SYMBOLS);
1276
1277 value = tegra_sor_readl(sor, SOR_DP_AUDIO_VBLANK_SYMBOLS);
1278 value &= ~SOR_DP_AUDIO_VBLANK_SYMBOLS_MASK;
1279 value |= config->vblank_symbols & 0xffff;
1280 tegra_sor_writel(sor, value, SOR_DP_AUDIO_VBLANK_SYMBOLS);
1281}
1282
1283static void tegra_sor_mode_set(struct tegra_sor *sor,
1284 const struct drm_display_mode *mode,
1285 struct tegra_sor_state *state)
1286{
1287 struct tegra_dc *dc = to_tegra_dc(sor->output.encoder.crtc);
1288 unsigned int vbe, vse, hbe, hse, vbs, hbs;
1289 u32 value;
1290
1291 value = tegra_sor_readl(sor, SOR_STATE1);
1292 value &= ~SOR_STATE_ASY_PIXELDEPTH_MASK;
1293 value &= ~SOR_STATE_ASY_CRC_MODE_MASK;
1294 value &= ~SOR_STATE_ASY_OWNER_MASK;
1295
1296 value |= SOR_STATE_ASY_CRC_MODE_COMPLETE |
1297 SOR_STATE_ASY_OWNER(dc->pipe + 1);
1298
1299 if (mode->flags & DRM_MODE_FLAG_PHSYNC)
1300 value &= ~SOR_STATE_ASY_HSYNCPOL;
1301
1302 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1303 value |= SOR_STATE_ASY_HSYNCPOL;
1304
1305 if (mode->flags & DRM_MODE_FLAG_PVSYNC)
1306 value &= ~SOR_STATE_ASY_VSYNCPOL;
1307
1308 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1309 value |= SOR_STATE_ASY_VSYNCPOL;
1310
1311 switch (state->bpc) {
1312 case 16:
1313 value |= SOR_STATE_ASY_PIXELDEPTH_BPP_48_444;
1314 break;
1315
1316 case 12:
1317 value |= SOR_STATE_ASY_PIXELDEPTH_BPP_36_444;
1318 break;
1319
1320 case 10:
1321 value |= SOR_STATE_ASY_PIXELDEPTH_BPP_30_444;
1322 break;
1323
1324 case 8:
1325 value |= SOR_STATE_ASY_PIXELDEPTH_BPP_24_444;
1326 break;
1327
1328 case 6:
1329 value |= SOR_STATE_ASY_PIXELDEPTH_BPP_18_444;
1330 break;
1331
1332 default:
1333 value |= SOR_STATE_ASY_PIXELDEPTH_BPP_24_444;
1334 break;
1335 }
1336
1337 tegra_sor_writel(sor, value, SOR_STATE1);
1338
1339 /*
1340 * TODO: The video timing programming below doesn't seem to match the
1341 * register definitions.
1342 */
1343
1344 value = ((mode->vtotal & 0x7fff) << 16) | (mode->htotal & 0x7fff);
1345 tegra_sor_writel(sor, value, sor->soc->regs->head_state1 + dc->pipe);
1346
1347 /* sync end = sync width - 1 */
1348 vse = mode->vsync_end - mode->vsync_start - 1;
1349 hse = mode->hsync_end - mode->hsync_start - 1;
1350
1351 value = ((vse & 0x7fff) << 16) | (hse & 0x7fff);
1352 tegra_sor_writel(sor, value, sor->soc->regs->head_state2 + dc->pipe);
1353
1354 /* blank end = sync end + back porch */
1355 vbe = vse + (mode->vtotal - mode->vsync_end);
1356 hbe = hse + (mode->htotal - mode->hsync_end);
1357
1358 value = ((vbe & 0x7fff) << 16) | (hbe & 0x7fff);
1359 tegra_sor_writel(sor, value, sor->soc->regs->head_state3 + dc->pipe);
1360
1361 /* blank start = blank end + active */
1362 vbs = vbe + mode->vdisplay;
1363 hbs = hbe + mode->hdisplay;
1364
1365 value = ((vbs & 0x7fff) << 16) | (hbs & 0x7fff);
1366 tegra_sor_writel(sor, value, sor->soc->regs->head_state4 + dc->pipe);
1367
1368 /* XXX interlacing support */
1369 tegra_sor_writel(sor, 0x001, sor->soc->regs->head_state5 + dc->pipe);
1370}
1371
1372static int tegra_sor_detach(struct tegra_sor *sor)
1373{
1374 unsigned long value, timeout;
1375
1376 /* switch to safe mode */
1377 value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1378 value &= ~SOR_SUPER_STATE_MODE_NORMAL;
1379 tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1380 tegra_sor_super_update(sor);
1381
1382 timeout = jiffies + msecs_to_jiffies(250);
1383
1384 while (time_before(jiffies, timeout)) {
1385 value = tegra_sor_readl(sor, SOR_PWR);
1386 if (value & SOR_PWR_MODE_SAFE)
1387 break;
1388 }
1389
1390 if ((value & SOR_PWR_MODE_SAFE) == 0)
1391 return -ETIMEDOUT;
1392
1393 /* go to sleep */
1394 value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1395 value &= ~SOR_SUPER_STATE_HEAD_MODE_MASK;
1396 tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1397 tegra_sor_super_update(sor);
1398
1399 /* detach */
1400 value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1401 value &= ~SOR_SUPER_STATE_ATTACHED;
1402 tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1403 tegra_sor_super_update(sor);
1404
1405 timeout = jiffies + msecs_to_jiffies(250);
1406
1407 while (time_before(jiffies, timeout)) {
1408 value = tegra_sor_readl(sor, SOR_TEST);
1409 if ((value & SOR_TEST_ATTACHED) == 0)
1410 break;
1411
1412 usleep_range(25, 100);
1413 }
1414
1415 if ((value & SOR_TEST_ATTACHED) != 0)
1416 return -ETIMEDOUT;
1417
1418 return 0;
1419}
1420
1421static int tegra_sor_power_down(struct tegra_sor *sor)
1422{
1423 unsigned long value, timeout;
1424 int err;
1425
1426 value = tegra_sor_readl(sor, SOR_PWR);
1427 value &= ~SOR_PWR_NORMAL_STATE_PU;
1428 value |= SOR_PWR_TRIGGER;
1429 tegra_sor_writel(sor, value, SOR_PWR);
1430
1431 timeout = jiffies + msecs_to_jiffies(250);
1432
1433 while (time_before(jiffies, timeout)) {
1434 value = tegra_sor_readl(sor, SOR_PWR);
1435 if ((value & SOR_PWR_TRIGGER) == 0)
1436 return 0;
1437
1438 usleep_range(25, 100);
1439 }
1440
1441 if ((value & SOR_PWR_TRIGGER) != 0)
1442 return -ETIMEDOUT;
1443
1444 /* switch to safe parent clock */
1445 err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
1446 if (err < 0) {
1447 dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
1448 return err;
1449 }
1450
1451 value = tegra_sor_readl(sor, sor->soc->regs->pll2);
1452 value |= SOR_PLL2_PORT_POWERDOWN;
1453 tegra_sor_writel(sor, value, sor->soc->regs->pll2);
1454
1455 usleep_range(20, 100);
1456
1457 value = tegra_sor_readl(sor, sor->soc->regs->pll0);
1458 value |= SOR_PLL0_VCOPD | SOR_PLL0_PWR;
1459 tegra_sor_writel(sor, value, sor->soc->regs->pll0);
1460
1461 value = tegra_sor_readl(sor, sor->soc->regs->pll2);
1462 value |= SOR_PLL2_SEQ_PLLCAPPD;
1463 value |= SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
1464 tegra_sor_writel(sor, value, sor->soc->regs->pll2);
1465
1466 usleep_range(20, 100);
1467
1468 return 0;
1469}
1470
1471static int tegra_sor_crc_wait(struct tegra_sor *sor, unsigned long timeout)
1472{
1473 u32 value;
1474
1475 timeout = jiffies + msecs_to_jiffies(timeout);
1476
1477 while (time_before(jiffies, timeout)) {
1478 value = tegra_sor_readl(sor, SOR_CRCA);
1479 if (value & SOR_CRCA_VALID)
1480 return 0;
1481
1482 usleep_range(100, 200);
1483 }
1484
1485 return -ETIMEDOUT;
1486}
1487
1488static int tegra_sor_show_crc(struct seq_file *s, void *data)
1489{
1490 struct drm_info_node *node = s->private;
1491 struct tegra_sor *sor = node->info_ent->data;
1492 struct drm_crtc *crtc = sor->output.encoder.crtc;
1493 struct drm_device *drm = node->minor->dev;
1494 int err = 0;
1495 u32 value;
1496
1497 drm_modeset_lock_all(drm);
1498
1499 if (!crtc || !crtc->state->active) {
1500 err = -EBUSY;
1501 goto unlock;
1502 }
1503
1504 value = tegra_sor_readl(sor, SOR_STATE1);
1505 value &= ~SOR_STATE_ASY_CRC_MODE_MASK;
1506 tegra_sor_writel(sor, value, SOR_STATE1);
1507
1508 value = tegra_sor_readl(sor, SOR_CRC_CNTRL);
1509 value |= SOR_CRC_CNTRL_ENABLE;
1510 tegra_sor_writel(sor, value, SOR_CRC_CNTRL);
1511
1512 value = tegra_sor_readl(sor, SOR_TEST);
1513 value &= ~SOR_TEST_CRC_POST_SERIALIZE;
1514 tegra_sor_writel(sor, value, SOR_TEST);
1515
1516 err = tegra_sor_crc_wait(sor, 100);
1517 if (err < 0)
1518 goto unlock;
1519
1520 tegra_sor_writel(sor, SOR_CRCA_RESET, SOR_CRCA);
1521 value = tegra_sor_readl(sor, SOR_CRCB);
1522
1523 seq_printf(s, "%08x\n", value);
1524
1525unlock:
1526 drm_modeset_unlock_all(drm);
1527 return err;
1528}
1529
1530#define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1531
1532static const struct debugfs_reg32 tegra_sor_regs[] = {
1533 DEBUGFS_REG32(SOR_CTXSW),
1534 DEBUGFS_REG32(SOR_SUPER_STATE0),
1535 DEBUGFS_REG32(SOR_SUPER_STATE1),
1536 DEBUGFS_REG32(SOR_STATE0),
1537 DEBUGFS_REG32(SOR_STATE1),
1538 DEBUGFS_REG32(SOR_HEAD_STATE0(0)),
1539 DEBUGFS_REG32(SOR_HEAD_STATE0(1)),
1540 DEBUGFS_REG32(SOR_HEAD_STATE1(0)),
1541 DEBUGFS_REG32(SOR_HEAD_STATE1(1)),
1542 DEBUGFS_REG32(SOR_HEAD_STATE2(0)),
1543 DEBUGFS_REG32(SOR_HEAD_STATE2(1)),
1544 DEBUGFS_REG32(SOR_HEAD_STATE3(0)),
1545 DEBUGFS_REG32(SOR_HEAD_STATE3(1)),
1546 DEBUGFS_REG32(SOR_HEAD_STATE4(0)),
1547 DEBUGFS_REG32(SOR_HEAD_STATE4(1)),
1548 DEBUGFS_REG32(SOR_HEAD_STATE5(0)),
1549 DEBUGFS_REG32(SOR_HEAD_STATE5(1)),
1550 DEBUGFS_REG32(SOR_CRC_CNTRL),
1551 DEBUGFS_REG32(SOR_DP_DEBUG_MVID),
1552 DEBUGFS_REG32(SOR_CLK_CNTRL),
1553 DEBUGFS_REG32(SOR_CAP),
1554 DEBUGFS_REG32(SOR_PWR),
1555 DEBUGFS_REG32(SOR_TEST),
1556 DEBUGFS_REG32(SOR_PLL0),
1557 DEBUGFS_REG32(SOR_PLL1),
1558 DEBUGFS_REG32(SOR_PLL2),
1559 DEBUGFS_REG32(SOR_PLL3),
1560 DEBUGFS_REG32(SOR_CSTM),
1561 DEBUGFS_REG32(SOR_LVDS),
1562 DEBUGFS_REG32(SOR_CRCA),
1563 DEBUGFS_REG32(SOR_CRCB),
1564 DEBUGFS_REG32(SOR_BLANK),
1565 DEBUGFS_REG32(SOR_SEQ_CTL),
1566 DEBUGFS_REG32(SOR_LANE_SEQ_CTL),
1567 DEBUGFS_REG32(SOR_SEQ_INST(0)),
1568 DEBUGFS_REG32(SOR_SEQ_INST(1)),
1569 DEBUGFS_REG32(SOR_SEQ_INST(2)),
1570 DEBUGFS_REG32(SOR_SEQ_INST(3)),
1571 DEBUGFS_REG32(SOR_SEQ_INST(4)),
1572 DEBUGFS_REG32(SOR_SEQ_INST(5)),
1573 DEBUGFS_REG32(SOR_SEQ_INST(6)),
1574 DEBUGFS_REG32(SOR_SEQ_INST(7)),
1575 DEBUGFS_REG32(SOR_SEQ_INST(8)),
1576 DEBUGFS_REG32(SOR_SEQ_INST(9)),
1577 DEBUGFS_REG32(SOR_SEQ_INST(10)),
1578 DEBUGFS_REG32(SOR_SEQ_INST(11)),
1579 DEBUGFS_REG32(SOR_SEQ_INST(12)),
1580 DEBUGFS_REG32(SOR_SEQ_INST(13)),
1581 DEBUGFS_REG32(SOR_SEQ_INST(14)),
1582 DEBUGFS_REG32(SOR_SEQ_INST(15)),
1583 DEBUGFS_REG32(SOR_PWM_DIV),
1584 DEBUGFS_REG32(SOR_PWM_CTL),
1585 DEBUGFS_REG32(SOR_VCRC_A0),
1586 DEBUGFS_REG32(SOR_VCRC_A1),
1587 DEBUGFS_REG32(SOR_VCRC_B0),
1588 DEBUGFS_REG32(SOR_VCRC_B1),
1589 DEBUGFS_REG32(SOR_CCRC_A0),
1590 DEBUGFS_REG32(SOR_CCRC_A1),
1591 DEBUGFS_REG32(SOR_CCRC_B0),
1592 DEBUGFS_REG32(SOR_CCRC_B1),
1593 DEBUGFS_REG32(SOR_EDATA_A0),
1594 DEBUGFS_REG32(SOR_EDATA_A1),
1595 DEBUGFS_REG32(SOR_EDATA_B0),
1596 DEBUGFS_REG32(SOR_EDATA_B1),
1597 DEBUGFS_REG32(SOR_COUNT_A0),
1598 DEBUGFS_REG32(SOR_COUNT_A1),
1599 DEBUGFS_REG32(SOR_COUNT_B0),
1600 DEBUGFS_REG32(SOR_COUNT_B1),
1601 DEBUGFS_REG32(SOR_DEBUG_A0),
1602 DEBUGFS_REG32(SOR_DEBUG_A1),
1603 DEBUGFS_REG32(SOR_DEBUG_B0),
1604 DEBUGFS_REG32(SOR_DEBUG_B1),
1605 DEBUGFS_REG32(SOR_TRIG),
1606 DEBUGFS_REG32(SOR_MSCHECK),
1607 DEBUGFS_REG32(SOR_XBAR_CTRL),
1608 DEBUGFS_REG32(SOR_XBAR_POL),
1609 DEBUGFS_REG32(SOR_DP_LINKCTL0),
1610 DEBUGFS_REG32(SOR_DP_LINKCTL1),
1611 DEBUGFS_REG32(SOR_LANE_DRIVE_CURRENT0),
1612 DEBUGFS_REG32(SOR_LANE_DRIVE_CURRENT1),
1613 DEBUGFS_REG32(SOR_LANE4_DRIVE_CURRENT0),
1614 DEBUGFS_REG32(SOR_LANE4_DRIVE_CURRENT1),
1615 DEBUGFS_REG32(SOR_LANE_PREEMPHASIS0),
1616 DEBUGFS_REG32(SOR_LANE_PREEMPHASIS1),
1617 DEBUGFS_REG32(SOR_LANE4_PREEMPHASIS0),
1618 DEBUGFS_REG32(SOR_LANE4_PREEMPHASIS1),
1619 DEBUGFS_REG32(SOR_LANE_POSTCURSOR0),
1620 DEBUGFS_REG32(SOR_LANE_POSTCURSOR1),
1621 DEBUGFS_REG32(SOR_DP_CONFIG0),
1622 DEBUGFS_REG32(SOR_DP_CONFIG1),
1623 DEBUGFS_REG32(SOR_DP_MN0),
1624 DEBUGFS_REG32(SOR_DP_MN1),
1625 DEBUGFS_REG32(SOR_DP_PADCTL0),
1626 DEBUGFS_REG32(SOR_DP_PADCTL1),
1627 DEBUGFS_REG32(SOR_DP_PADCTL2),
1628 DEBUGFS_REG32(SOR_DP_DEBUG0),
1629 DEBUGFS_REG32(SOR_DP_DEBUG1),
1630 DEBUGFS_REG32(SOR_DP_SPARE0),
1631 DEBUGFS_REG32(SOR_DP_SPARE1),
1632 DEBUGFS_REG32(SOR_DP_AUDIO_CTRL),
1633 DEBUGFS_REG32(SOR_DP_AUDIO_HBLANK_SYMBOLS),
1634 DEBUGFS_REG32(SOR_DP_AUDIO_VBLANK_SYMBOLS),
1635 DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_HEADER),
1636 DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK0),
1637 DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK1),
1638 DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK2),
1639 DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK3),
1640 DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK4),
1641 DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK5),
1642 DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK6),
1643 DEBUGFS_REG32(SOR_DP_TPG),
1644 DEBUGFS_REG32(SOR_DP_TPG_CONFIG),
1645 DEBUGFS_REG32(SOR_DP_LQ_CSTM0),
1646 DEBUGFS_REG32(SOR_DP_LQ_CSTM1),
1647 DEBUGFS_REG32(SOR_DP_LQ_CSTM2),
1648};
1649
1650static int tegra_sor_show_regs(struct seq_file *s, void *data)
1651{
1652 struct drm_info_node *node = s->private;
1653 struct tegra_sor *sor = node->info_ent->data;
1654 struct drm_crtc *crtc = sor->output.encoder.crtc;
1655 struct drm_device *drm = node->minor->dev;
1656 unsigned int i;
1657 int err = 0;
1658
1659 drm_modeset_lock_all(drm);
1660
1661 if (!crtc || !crtc->state->active) {
1662 err = -EBUSY;
1663 goto unlock;
1664 }
1665
1666 for (i = 0; i < ARRAY_SIZE(tegra_sor_regs); i++) {
1667 unsigned int offset = tegra_sor_regs[i].offset;
1668
1669 seq_printf(s, "%-38s %#05x %08x\n", tegra_sor_regs[i].name,
1670 offset, tegra_sor_readl(sor, offset));
1671 }
1672
1673unlock:
1674 drm_modeset_unlock_all(drm);
1675 return err;
1676}
1677
1678static const struct drm_info_list debugfs_files[] = {
1679 { "crc", tegra_sor_show_crc, 0, NULL },
1680 { "regs", tegra_sor_show_regs, 0, NULL },
1681};
1682
1683static int tegra_sor_late_register(struct drm_connector *connector)
1684{
1685 struct tegra_output *output = connector_to_output(connector);
1686 unsigned int i, count = ARRAY_SIZE(debugfs_files);
1687 struct drm_minor *minor = connector->dev->primary;
1688 struct dentry *root = connector->debugfs_entry;
1689 struct tegra_sor *sor = to_sor(output);
1690
1691 sor->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1692 GFP_KERNEL);
1693 if (!sor->debugfs_files)
1694 return -ENOMEM;
1695
1696 for (i = 0; i < count; i++)
1697 sor->debugfs_files[i].data = sor;
1698
1699 drm_debugfs_create_files(sor->debugfs_files, count, root, minor);
1700
1701 return 0;
1702}
1703
1704static void tegra_sor_early_unregister(struct drm_connector *connector)
1705{
1706 struct tegra_output *output = connector_to_output(connector);
1707 unsigned int count = ARRAY_SIZE(debugfs_files);
1708 struct tegra_sor *sor = to_sor(output);
1709
1710 drm_debugfs_remove_files(sor->debugfs_files, count,
1711 connector->dev->primary);
1712 kfree(sor->debugfs_files);
1713 sor->debugfs_files = NULL;
1714}
1715
1716static void tegra_sor_connector_reset(struct drm_connector *connector)
1717{
1718 struct tegra_sor_state *state;
1719
1720 state = kzalloc(sizeof(*state), GFP_KERNEL);
1721 if (!state)
1722 return;
1723
1724 if (connector->state) {
1725 __drm_atomic_helper_connector_destroy_state(connector->state);
1726 kfree(connector->state);
1727 }
1728
1729 __drm_atomic_helper_connector_reset(connector, &state->base);
1730}
1731
1732static enum drm_connector_status
1733tegra_sor_connector_detect(struct drm_connector *connector, bool force)
1734{
1735 struct tegra_output *output = connector_to_output(connector);
1736 struct tegra_sor *sor = to_sor(output);
1737
1738 if (sor->aux)
1739 return drm_dp_aux_detect(sor->aux);
1740
1741 return tegra_output_connector_detect(connector, force);
1742}
1743
1744static struct drm_connector_state *
1745tegra_sor_connector_duplicate_state(struct drm_connector *connector)
1746{
1747 struct tegra_sor_state *state = to_sor_state(connector->state);
1748 struct tegra_sor_state *copy;
1749
1750 copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
1751 if (!copy)
1752 return NULL;
1753
1754 __drm_atomic_helper_connector_duplicate_state(connector, ©->base);
1755
1756 return ©->base;
1757}
1758
1759static const struct drm_connector_funcs tegra_sor_connector_funcs = {
1760 .reset = tegra_sor_connector_reset,
1761 .detect = tegra_sor_connector_detect,
1762 .fill_modes = drm_helper_probe_single_connector_modes,
1763 .destroy = tegra_output_connector_destroy,
1764 .atomic_duplicate_state = tegra_sor_connector_duplicate_state,
1765 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
1766 .late_register = tegra_sor_late_register,
1767 .early_unregister = tegra_sor_early_unregister,
1768};
1769
1770static int tegra_sor_connector_get_modes(struct drm_connector *connector)
1771{
1772 struct tegra_output *output = connector_to_output(connector);
1773 struct tegra_sor *sor = to_sor(output);
1774 int err;
1775
1776 if (sor->aux)
1777 drm_dp_aux_enable(sor->aux);
1778
1779 err = tegra_output_connector_get_modes(connector);
1780
1781 if (sor->aux)
1782 drm_dp_aux_disable(sor->aux);
1783
1784 return err;
1785}
1786
1787static enum drm_mode_status
1788tegra_sor_connector_mode_valid(struct drm_connector *connector,
1789 struct drm_display_mode *mode)
1790{
1791 return MODE_OK;
1792}
1793
1794static const struct drm_connector_helper_funcs tegra_sor_connector_helper_funcs = {
1795 .get_modes = tegra_sor_connector_get_modes,
1796 .mode_valid = tegra_sor_connector_mode_valid,
1797};
1798
1799static int
1800tegra_sor_encoder_atomic_check(struct drm_encoder *encoder,
1801 struct drm_crtc_state *crtc_state,
1802 struct drm_connector_state *conn_state)
1803{
1804 struct tegra_output *output = encoder_to_output(encoder);
1805 struct tegra_sor_state *state = to_sor_state(conn_state);
1806 struct tegra_dc *dc = to_tegra_dc(conn_state->crtc);
1807 unsigned long pclk = crtc_state->mode.clock * 1000;
1808 struct tegra_sor *sor = to_sor(output);
1809 struct drm_display_info *info;
1810 int err;
1811
1812 info = &output->connector.display_info;
1813
1814 /*
1815 * For HBR2 modes, the SOR brick needs to use the x20 multiplier, so
1816 * the pixel clock must be corrected accordingly.
1817 */
1818 if (pclk >= 340000000) {
1819 state->link_speed = 20;
1820 state->pclk = pclk / 2;
1821 } else {
1822 state->link_speed = 10;
1823 state->pclk = pclk;
1824 }
1825
1826 err = tegra_dc_state_setup_clock(dc, crtc_state, sor->clk_parent,
1827 pclk, 0);
1828 if (err < 0) {
1829 dev_err(output->dev, "failed to setup CRTC state: %d\n", err);
1830 return err;
1831 }
1832
1833 switch (info->bpc) {
1834 case 8:
1835 case 6:
1836 state->bpc = info->bpc;
1837 break;
1838
1839 default:
1840 DRM_DEBUG_KMS("%u bits-per-color not supported\n", info->bpc);
1841 state->bpc = 8;
1842 break;
1843 }
1844
1845 return 0;
1846}
1847
1848static inline u32 tegra_sor_hdmi_subpack(const u8 *ptr, size_t size)
1849{
1850 u32 value = 0;
1851 size_t i;
1852
1853 for (i = size; i > 0; i--)
1854 value = (value << 8) | ptr[i - 1];
1855
1856 return value;
1857}
1858
1859static void tegra_sor_hdmi_write_infopack(struct tegra_sor *sor,
1860 const void *data, size_t size)
1861{
1862 const u8 *ptr = data;
1863 unsigned long offset;
1864 size_t i, j;
1865 u32 value;
1866
1867 switch (ptr[0]) {
1868 case HDMI_INFOFRAME_TYPE_AVI:
1869 offset = SOR_HDMI_AVI_INFOFRAME_HEADER;
1870 break;
1871
1872 case HDMI_INFOFRAME_TYPE_AUDIO:
1873 offset = SOR_HDMI_AUDIO_INFOFRAME_HEADER;
1874 break;
1875
1876 case HDMI_INFOFRAME_TYPE_VENDOR:
1877 offset = SOR_HDMI_VSI_INFOFRAME_HEADER;
1878 break;
1879
1880 default:
1881 dev_err(sor->dev, "unsupported infoframe type: %02x\n",
1882 ptr[0]);
1883 return;
1884 }
1885
1886 value = INFOFRAME_HEADER_TYPE(ptr[0]) |
1887 INFOFRAME_HEADER_VERSION(ptr[1]) |
1888 INFOFRAME_HEADER_LEN(ptr[2]);
1889 tegra_sor_writel(sor, value, offset);
1890 offset++;
1891
1892 /*
1893 * Each subpack contains 7 bytes, divided into:
1894 * - subpack_low: bytes 0 - 3
1895 * - subpack_high: bytes 4 - 6 (with byte 7 padded to 0x00)
1896 */
1897 for (i = 3, j = 0; i < size; i += 7, j += 8) {
1898 size_t rem = size - i, num = min_t(size_t, rem, 4);
1899
1900 value = tegra_sor_hdmi_subpack(&ptr[i], num);
1901 tegra_sor_writel(sor, value, offset++);
1902
1903 num = min_t(size_t, rem - num, 3);
1904
1905 value = tegra_sor_hdmi_subpack(&ptr[i + 4], num);
1906 tegra_sor_writel(sor, value, offset++);
1907 }
1908}
1909
1910static int
1911tegra_sor_hdmi_setup_avi_infoframe(struct tegra_sor *sor,
1912 const struct drm_display_mode *mode)
1913{
1914 u8 buffer[HDMI_INFOFRAME_SIZE(AVI)];
1915 struct hdmi_avi_infoframe frame;
1916 u32 value;
1917 int err;
1918
1919 /* disable AVI infoframe */
1920 value = tegra_sor_readl(sor, SOR_HDMI_AVI_INFOFRAME_CTRL);
1921 value &= ~INFOFRAME_CTRL_SINGLE;
1922 value &= ~INFOFRAME_CTRL_OTHER;
1923 value &= ~INFOFRAME_CTRL_ENABLE;
1924 tegra_sor_writel(sor, value, SOR_HDMI_AVI_INFOFRAME_CTRL);
1925
1926 err = drm_hdmi_avi_infoframe_from_display_mode(&frame,
1927 &sor->output.connector, mode);
1928 if (err < 0) {
1929 dev_err(sor->dev, "failed to setup AVI infoframe: %d\n", err);
1930 return err;
1931 }
1932
1933 err = hdmi_avi_infoframe_pack(&frame, buffer, sizeof(buffer));
1934 if (err < 0) {
1935 dev_err(sor->dev, "failed to pack AVI infoframe: %d\n", err);
1936 return err;
1937 }
1938
1939 tegra_sor_hdmi_write_infopack(sor, buffer, err);
1940
1941 /* enable AVI infoframe */
1942 value = tegra_sor_readl(sor, SOR_HDMI_AVI_INFOFRAME_CTRL);
1943 value |= INFOFRAME_CTRL_CHECKSUM_ENABLE;
1944 value |= INFOFRAME_CTRL_ENABLE;
1945 tegra_sor_writel(sor, value, SOR_HDMI_AVI_INFOFRAME_CTRL);
1946
1947 return 0;
1948}
1949
1950static void tegra_sor_write_eld(struct tegra_sor *sor)
1951{
1952 size_t length = drm_eld_size(sor->output.connector.eld), i;
1953
1954 for (i = 0; i < length; i++)
1955 tegra_sor_writel(sor, i << 8 | sor->output.connector.eld[i],
1956 SOR_AUDIO_HDA_ELD_BUFWR);
1957
1958 /*
1959 * The HDA codec will always report an ELD buffer size of 96 bytes and
1960 * the HDA codec driver will check that each byte read from the buffer
1961 * is valid. Therefore every byte must be written, even if no 96 bytes
1962 * were parsed from EDID.
1963 */
1964 for (i = length; i < 96; i++)
1965 tegra_sor_writel(sor, i << 8 | 0, SOR_AUDIO_HDA_ELD_BUFWR);
1966}
1967
1968static void tegra_sor_audio_prepare(struct tegra_sor *sor)
1969{
1970 u32 value;
1971
1972 /*
1973 * Enable and unmask the HDA codec SCRATCH0 register interrupt. This
1974 * is used for interoperability between the HDA codec driver and the
1975 * HDMI/DP driver.
1976 */
1977 value = SOR_INT_CODEC_SCRATCH1 | SOR_INT_CODEC_SCRATCH0;
1978 tegra_sor_writel(sor, value, SOR_INT_ENABLE);
1979 tegra_sor_writel(sor, value, SOR_INT_MASK);
1980
1981 tegra_sor_write_eld(sor);
1982
1983 value = SOR_AUDIO_HDA_PRESENSE_ELDV | SOR_AUDIO_HDA_PRESENSE_PD;
1984 tegra_sor_writel(sor, value, SOR_AUDIO_HDA_PRESENSE);
1985}
1986
1987static void tegra_sor_audio_unprepare(struct tegra_sor *sor)
1988{
1989 tegra_sor_writel(sor, 0, SOR_AUDIO_HDA_PRESENSE);
1990 tegra_sor_writel(sor, 0, SOR_INT_MASK);
1991 tegra_sor_writel(sor, 0, SOR_INT_ENABLE);
1992}
1993
1994static void tegra_sor_audio_enable(struct tegra_sor *sor)
1995{
1996 u32 value;
1997
1998 value = tegra_sor_readl(sor, SOR_AUDIO_CNTRL);
1999
2000 /* select HDA audio input */
2001 value &= ~SOR_AUDIO_CNTRL_SOURCE_SELECT(SOURCE_SELECT_MASK);
2002 value |= SOR_AUDIO_CNTRL_SOURCE_SELECT(SOURCE_SELECT_HDA);
2003
2004 /* inject null samples */
2005 if (sor->format.channels != 2)
2006 value &= ~SOR_AUDIO_CNTRL_INJECT_NULLSMPL;
2007 else
2008 value |= SOR_AUDIO_CNTRL_INJECT_NULLSMPL;
2009
2010 value |= SOR_AUDIO_CNTRL_AFIFO_FLUSH;
2011
2012 tegra_sor_writel(sor, value, SOR_AUDIO_CNTRL);
2013
2014 /* enable advertising HBR capability */
2015 tegra_sor_writel(sor, SOR_AUDIO_SPARE_HBR_ENABLE, SOR_AUDIO_SPARE);
2016}
2017
2018static int tegra_sor_hdmi_enable_audio_infoframe(struct tegra_sor *sor)
2019{
2020 u8 buffer[HDMI_INFOFRAME_SIZE(AUDIO)];
2021 struct hdmi_audio_infoframe frame;
2022 u32 value;
2023 int err;
2024
2025 err = hdmi_audio_infoframe_init(&frame);
2026 if (err < 0) {
2027 dev_err(sor->dev, "failed to setup audio infoframe: %d\n", err);
2028 return err;
2029 }
2030
2031 frame.channels = sor->format.channels;
2032
2033 err = hdmi_audio_infoframe_pack(&frame, buffer, sizeof(buffer));
2034 if (err < 0) {
2035 dev_err(sor->dev, "failed to pack audio infoframe: %d\n", err);
2036 return err;
2037 }
2038
2039 tegra_sor_hdmi_write_infopack(sor, buffer, err);
2040
2041 value = tegra_sor_readl(sor, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2042 value |= INFOFRAME_CTRL_CHECKSUM_ENABLE;
2043 value |= INFOFRAME_CTRL_ENABLE;
2044 tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2045
2046 return 0;
2047}
2048
2049static void tegra_sor_hdmi_audio_enable(struct tegra_sor *sor)
2050{
2051 u32 value;
2052
2053 tegra_sor_audio_enable(sor);
2054
2055 tegra_sor_writel(sor, 0, SOR_HDMI_ACR_CTRL);
2056
2057 value = SOR_HDMI_SPARE_ACR_PRIORITY_HIGH |
2058 SOR_HDMI_SPARE_CTS_RESET(1) |
2059 SOR_HDMI_SPARE_HW_CTS_ENABLE;
2060 tegra_sor_writel(sor, value, SOR_HDMI_SPARE);
2061
2062 /* enable HW CTS */
2063 value = SOR_HDMI_ACR_SUBPACK_LOW_SB1(0);
2064 tegra_sor_writel(sor, value, SOR_HDMI_ACR_0441_SUBPACK_LOW);
2065
2066 /* allow packet to be sent */
2067 value = SOR_HDMI_ACR_SUBPACK_HIGH_ENABLE;
2068 tegra_sor_writel(sor, value, SOR_HDMI_ACR_0441_SUBPACK_HIGH);
2069
2070 /* reset N counter and enable lookup */
2071 value = SOR_HDMI_AUDIO_N_RESET | SOR_HDMI_AUDIO_N_LOOKUP;
2072 tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_N);
2073
2074 value = (24000 * 4096) / (128 * sor->format.sample_rate / 1000);
2075 tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_0320);
2076 tegra_sor_writel(sor, 4096, SOR_AUDIO_NVAL_0320);
2077
2078 tegra_sor_writel(sor, 20000, SOR_AUDIO_AVAL_0441);
2079 tegra_sor_writel(sor, 4704, SOR_AUDIO_NVAL_0441);
2080
2081 tegra_sor_writel(sor, 20000, SOR_AUDIO_AVAL_0882);
2082 tegra_sor_writel(sor, 9408, SOR_AUDIO_NVAL_0882);
2083
2084 tegra_sor_writel(sor, 20000, SOR_AUDIO_AVAL_1764);
2085 tegra_sor_writel(sor, 18816, SOR_AUDIO_NVAL_1764);
2086
2087 value = (24000 * 6144) / (128 * sor->format.sample_rate / 1000);
2088 tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_0480);
2089 tegra_sor_writel(sor, 6144, SOR_AUDIO_NVAL_0480);
2090
2091 value = (24000 * 12288) / (128 * sor->format.sample_rate / 1000);
2092 tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_0960);
2093 tegra_sor_writel(sor, 12288, SOR_AUDIO_NVAL_0960);
2094
2095 value = (24000 * 24576) / (128 * sor->format.sample_rate / 1000);
2096 tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_1920);
2097 tegra_sor_writel(sor, 24576, SOR_AUDIO_NVAL_1920);
2098
2099 value = tegra_sor_readl(sor, SOR_HDMI_AUDIO_N);
2100 value &= ~SOR_HDMI_AUDIO_N_RESET;
2101 tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_N);
2102
2103 tegra_sor_hdmi_enable_audio_infoframe(sor);
2104}
2105
2106static void tegra_sor_hdmi_disable_audio_infoframe(struct tegra_sor *sor)
2107{
2108 u32 value;
2109
2110 value = tegra_sor_readl(sor, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2111 value &= ~INFOFRAME_CTRL_ENABLE;
2112 tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2113}
2114
2115static void tegra_sor_hdmi_audio_disable(struct tegra_sor *sor)
2116{
2117 tegra_sor_hdmi_disable_audio_infoframe(sor);
2118}
2119
2120static struct tegra_sor_hdmi_settings *
2121tegra_sor_hdmi_find_settings(struct tegra_sor *sor, unsigned long frequency)
2122{
2123 unsigned int i;
2124
2125 for (i = 0; i < sor->num_settings; i++)
2126 if (frequency <= sor->settings[i].frequency)
2127 return &sor->settings[i];
2128
2129 return NULL;
2130}
2131
2132static void tegra_sor_hdmi_disable_scrambling(struct tegra_sor *sor)
2133{
2134 u32 value;
2135
2136 value = tegra_sor_readl(sor, SOR_HDMI2_CTRL);
2137 value &= ~SOR_HDMI2_CTRL_CLOCK_MODE_DIV_BY_4;
2138 value &= ~SOR_HDMI2_CTRL_SCRAMBLE;
2139 tegra_sor_writel(sor, value, SOR_HDMI2_CTRL);
2140}
2141
2142static void tegra_sor_hdmi_scdc_disable(struct tegra_sor *sor)
2143{
2144 struct i2c_adapter *ddc = sor->output.ddc;
2145
2146 drm_scdc_set_high_tmds_clock_ratio(ddc, false);
2147 drm_scdc_set_scrambling(ddc, false);
2148
2149 tegra_sor_hdmi_disable_scrambling(sor);
2150}
2151
2152static void tegra_sor_hdmi_scdc_stop(struct tegra_sor *sor)
2153{
2154 if (sor->scdc_enabled) {
2155 cancel_delayed_work_sync(&sor->scdc);
2156 tegra_sor_hdmi_scdc_disable(sor);
2157 }
2158}
2159
2160static void tegra_sor_hdmi_enable_scrambling(struct tegra_sor *sor)
2161{
2162 u32 value;
2163
2164 value = tegra_sor_readl(sor, SOR_HDMI2_CTRL);
2165 value |= SOR_HDMI2_CTRL_CLOCK_MODE_DIV_BY_4;
2166 value |= SOR_HDMI2_CTRL_SCRAMBLE;
2167 tegra_sor_writel(sor, value, SOR_HDMI2_CTRL);
2168}
2169
2170static void tegra_sor_hdmi_scdc_enable(struct tegra_sor *sor)
2171{
2172 struct i2c_adapter *ddc = sor->output.ddc;
2173
2174 drm_scdc_set_high_tmds_clock_ratio(ddc, true);
2175 drm_scdc_set_scrambling(ddc, true);
2176
2177 tegra_sor_hdmi_enable_scrambling(sor);
2178}
2179
2180static void tegra_sor_hdmi_scdc_work(struct work_struct *work)
2181{
2182 struct tegra_sor *sor = container_of(work, struct tegra_sor, scdc.work);
2183 struct i2c_adapter *ddc = sor->output.ddc;
2184
2185 if (!drm_scdc_get_scrambling_status(ddc)) {
2186 DRM_DEBUG_KMS("SCDC not scrambled\n");
2187 tegra_sor_hdmi_scdc_enable(sor);
2188 }
2189
2190 schedule_delayed_work(&sor->scdc, msecs_to_jiffies(5000));
2191}
2192
2193static void tegra_sor_hdmi_scdc_start(struct tegra_sor *sor)
2194{
2195 struct drm_scdc *scdc = &sor->output.connector.display_info.hdmi.scdc;
2196 struct drm_display_mode *mode;
2197
2198 mode = &sor->output.encoder.crtc->state->adjusted_mode;
2199
2200 if (mode->clock >= 340000 && scdc->supported) {
2201 schedule_delayed_work(&sor->scdc, msecs_to_jiffies(5000));
2202 tegra_sor_hdmi_scdc_enable(sor);
2203 sor->scdc_enabled = true;
2204 }
2205}
2206
2207static void tegra_sor_hdmi_disable(struct drm_encoder *encoder)
2208{
2209 struct tegra_output *output = encoder_to_output(encoder);
2210 struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2211 struct tegra_sor *sor = to_sor(output);
2212 u32 value;
2213 int err;
2214
2215 tegra_sor_audio_unprepare(sor);
2216 tegra_sor_hdmi_scdc_stop(sor);
2217
2218 err = tegra_sor_detach(sor);
2219 if (err < 0)
2220 dev_err(sor->dev, "failed to detach SOR: %d\n", err);
2221
2222 tegra_sor_writel(sor, 0, SOR_STATE1);
2223 tegra_sor_update(sor);
2224
2225 /* disable display to SOR clock */
2226 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2227
2228 if (!sor->soc->has_nvdisplay)
2229 value &= ~SOR1_TIMING_CYA;
2230
2231 value &= ~SOR_ENABLE(sor->index);
2232
2233 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2234
2235 tegra_dc_commit(dc);
2236
2237 err = tegra_sor_power_down(sor);
2238 if (err < 0)
2239 dev_err(sor->dev, "failed to power down SOR: %d\n", err);
2240
2241 err = tegra_io_pad_power_disable(sor->pad);
2242 if (err < 0)
2243 dev_err(sor->dev, "failed to power off I/O pad: %d\n", err);
2244
2245 host1x_client_suspend(&sor->client);
2246}
2247
2248static void tegra_sor_hdmi_enable(struct drm_encoder *encoder)
2249{
2250 struct tegra_output *output = encoder_to_output(encoder);
2251 unsigned int h_ref_to_sync = 1, pulse_start, max_ac;
2252 struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2253 struct tegra_sor_hdmi_settings *settings;
2254 struct tegra_sor *sor = to_sor(output);
2255 struct tegra_sor_state *state;
2256 struct drm_display_mode *mode;
2257 unsigned long rate, pclk;
2258 unsigned int div, i;
2259 u32 value;
2260 int err;
2261
2262 state = to_sor_state(output->connector.state);
2263 mode = &encoder->crtc->state->adjusted_mode;
2264 pclk = mode->clock * 1000;
2265
2266 err = host1x_client_resume(&sor->client);
2267 if (err < 0) {
2268 dev_err(sor->dev, "failed to resume: %d\n", err);
2269 return;
2270 }
2271
2272 /* switch to safe parent clock */
2273 err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
2274 if (err < 0) {
2275 dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
2276 return;
2277 }
2278
2279 div = clk_get_rate(sor->clk) / 1000000 * 4;
2280
2281 err = tegra_io_pad_power_enable(sor->pad);
2282 if (err < 0)
2283 dev_err(sor->dev, "failed to power on I/O pad: %d\n", err);
2284
2285 usleep_range(20, 100);
2286
2287 value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2288 value &= ~SOR_PLL2_BANDGAP_POWERDOWN;
2289 tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2290
2291 usleep_range(20, 100);
2292
2293 value = tegra_sor_readl(sor, sor->soc->regs->pll3);
2294 value &= ~SOR_PLL3_PLL_VDD_MODE_3V3;
2295 tegra_sor_writel(sor, value, sor->soc->regs->pll3);
2296
2297 value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2298 value &= ~SOR_PLL0_VCOPD;
2299 value &= ~SOR_PLL0_PWR;
2300 tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2301
2302 value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2303 value &= ~SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
2304 tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2305
2306 usleep_range(200, 400);
2307
2308 value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2309 value &= ~SOR_PLL2_POWERDOWN_OVERRIDE;
2310 value &= ~SOR_PLL2_PORT_POWERDOWN;
2311 tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2312
2313 usleep_range(20, 100);
2314
2315 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2316 value |= SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_0 |
2317 SOR_DP_PADCTL_PD_TXD_1 | SOR_DP_PADCTL_PD_TXD_2;
2318 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2319
2320 while (true) {
2321 value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
2322 if ((value & SOR_LANE_SEQ_CTL_STATE_BUSY) == 0)
2323 break;
2324
2325 usleep_range(250, 1000);
2326 }
2327
2328 value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_DOWN |
2329 SOR_LANE_SEQ_CTL_POWER_STATE_UP | SOR_LANE_SEQ_CTL_DELAY(5);
2330 tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
2331
2332 while (true) {
2333 value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
2334 if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
2335 break;
2336
2337 usleep_range(250, 1000);
2338 }
2339
2340 value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
2341 value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK;
2342 value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
2343
2344 if (mode->clock < 340000) {
2345 DRM_DEBUG_KMS("setting 2.7 GHz link speed\n");
2346 value |= SOR_CLK_CNTRL_DP_LINK_SPEED_G2_70;
2347 } else {
2348 DRM_DEBUG_KMS("setting 5.4 GHz link speed\n");
2349 value |= SOR_CLK_CNTRL_DP_LINK_SPEED_G5_40;
2350 }
2351
2352 value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK;
2353 tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
2354
2355 /* SOR pad PLL stabilization time */
2356 usleep_range(250, 1000);
2357
2358 value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
2359 value &= ~SOR_DP_LINKCTL_LANE_COUNT_MASK;
2360 value |= SOR_DP_LINKCTL_LANE_COUNT(4);
2361 tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
2362
2363 value = tegra_sor_readl(sor, SOR_DP_SPARE0);
2364 value &= ~SOR_DP_SPARE_DISP_VIDEO_PREAMBLE;
2365 value &= ~SOR_DP_SPARE_PANEL_INTERNAL;
2366 value &= ~SOR_DP_SPARE_SEQ_ENABLE;
2367 value &= ~SOR_DP_SPARE_MACRO_SOR_CLK;
2368 tegra_sor_writel(sor, value, SOR_DP_SPARE0);
2369
2370 value = SOR_SEQ_CTL_PU_PC(0) | SOR_SEQ_CTL_PU_PC_ALT(0) |
2371 SOR_SEQ_CTL_PD_PC(8) | SOR_SEQ_CTL_PD_PC_ALT(8);
2372 tegra_sor_writel(sor, value, SOR_SEQ_CTL);
2373
2374 value = SOR_SEQ_INST_DRIVE_PWM_OUT_LO | SOR_SEQ_INST_HALT |
2375 SOR_SEQ_INST_WAIT_VSYNC | SOR_SEQ_INST_WAIT(1);
2376 tegra_sor_writel(sor, value, SOR_SEQ_INST(0));
2377 tegra_sor_writel(sor, value, SOR_SEQ_INST(8));
2378
2379 if (!sor->soc->has_nvdisplay) {
2380 /* program the reference clock */
2381 value = SOR_REFCLK_DIV_INT(div) | SOR_REFCLK_DIV_FRAC(div);
2382 tegra_sor_writel(sor, value, SOR_REFCLK);
2383 }
2384
2385 /* XXX not in TRM */
2386 for (value = 0, i = 0; i < 5; i++)
2387 value |= SOR_XBAR_CTRL_LINK0_XSEL(i, sor->xbar_cfg[i]) |
2388 SOR_XBAR_CTRL_LINK1_XSEL(i, i);
2389
2390 tegra_sor_writel(sor, 0x00000000, SOR_XBAR_POL);
2391 tegra_sor_writel(sor, value, SOR_XBAR_CTRL);
2392
2393 /*
2394 * Switch the pad clock to the DP clock. Note that we cannot actually
2395 * do this because Tegra186 and later don't support clk_set_parent()
2396 * on the sorX_pad_clkout clocks. We already do the equivalent above
2397 * using the DP_CLK_SEL mux of the SOR_CLK_CNTRL register.
2398 */
2399#if 0
2400 err = clk_set_parent(sor->clk_pad, sor->clk_dp);
2401 if (err < 0) {
2402 dev_err(sor->dev, "failed to select pad parent clock: %d\n",
2403 err);
2404 return;
2405 }
2406#endif
2407
2408 /* switch the SOR clock to the pad clock */
2409 err = tegra_sor_set_parent_clock(sor, sor->clk_pad);
2410 if (err < 0) {
2411 dev_err(sor->dev, "failed to select SOR parent clock: %d\n",
2412 err);
2413 return;
2414 }
2415
2416 /* switch the output clock to the parent pixel clock */
2417 err = clk_set_parent(sor->clk, sor->clk_parent);
2418 if (err < 0) {
2419 dev_err(sor->dev, "failed to select output parent clock: %d\n",
2420 err);
2421 return;
2422 }
2423
2424 /* adjust clock rate for HDMI 2.0 modes */
2425 rate = clk_get_rate(sor->clk_parent);
2426
2427 if (mode->clock >= 340000)
2428 rate /= 2;
2429
2430 DRM_DEBUG_KMS("setting clock to %lu Hz, mode: %lu Hz\n", rate, pclk);
2431
2432 clk_set_rate(sor->clk, rate);
2433
2434 if (!sor->soc->has_nvdisplay) {
2435 value = SOR_INPUT_CONTROL_HDMI_SRC_SELECT(dc->pipe);
2436
2437 /* XXX is this the proper check? */
2438 if (mode->clock < 75000)
2439 value |= SOR_INPUT_CONTROL_ARM_VIDEO_RANGE_LIMITED;
2440
2441 tegra_sor_writel(sor, value, SOR_INPUT_CONTROL);
2442 }
2443
2444 max_ac = ((mode->htotal - mode->hdisplay) - SOR_REKEY - 18) / 32;
2445
2446 value = SOR_HDMI_CTRL_ENABLE | SOR_HDMI_CTRL_MAX_AC_PACKET(max_ac) |
2447 SOR_HDMI_CTRL_AUDIO_LAYOUT | SOR_HDMI_CTRL_REKEY(SOR_REKEY);
2448 tegra_sor_writel(sor, value, SOR_HDMI_CTRL);
2449
2450 if (!dc->soc->has_nvdisplay) {
2451 /* H_PULSE2 setup */
2452 pulse_start = h_ref_to_sync +
2453 (mode->hsync_end - mode->hsync_start) +
2454 (mode->htotal - mode->hsync_end) - 10;
2455
2456 value = PULSE_LAST_END_A | PULSE_QUAL_VACTIVE |
2457 PULSE_POLARITY_HIGH | PULSE_MODE_NORMAL;
2458 tegra_dc_writel(dc, value, DC_DISP_H_PULSE2_CONTROL);
2459
2460 value = PULSE_END(pulse_start + 8) | PULSE_START(pulse_start);
2461 tegra_dc_writel(dc, value, DC_DISP_H_PULSE2_POSITION_A);
2462
2463 value = tegra_dc_readl(dc, DC_DISP_DISP_SIGNAL_OPTIONS0);
2464 value |= H_PULSE2_ENABLE;
2465 tegra_dc_writel(dc, value, DC_DISP_DISP_SIGNAL_OPTIONS0);
2466 }
2467
2468 /* infoframe setup */
2469 err = tegra_sor_hdmi_setup_avi_infoframe(sor, mode);
2470 if (err < 0)
2471 dev_err(sor->dev, "failed to setup AVI infoframe: %d\n", err);
2472
2473 /* XXX HDMI audio support not implemented yet */
2474 tegra_sor_hdmi_disable_audio_infoframe(sor);
2475
2476 /* use single TMDS protocol */
2477 value = tegra_sor_readl(sor, SOR_STATE1);
2478 value &= ~SOR_STATE_ASY_PROTOCOL_MASK;
2479 value |= SOR_STATE_ASY_PROTOCOL_SINGLE_TMDS_A;
2480 tegra_sor_writel(sor, value, SOR_STATE1);
2481
2482 /* power up pad calibration */
2483 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2484 value &= ~SOR_DP_PADCTL_PAD_CAL_PD;
2485 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2486
2487 /* production settings */
2488 settings = tegra_sor_hdmi_find_settings(sor, mode->clock * 1000);
2489 if (!settings) {
2490 dev_err(sor->dev, "no settings for pixel clock %d Hz\n",
2491 mode->clock * 1000);
2492 return;
2493 }
2494
2495 value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2496 value &= ~SOR_PLL0_ICHPMP_MASK;
2497 value &= ~SOR_PLL0_FILTER_MASK;
2498 value &= ~SOR_PLL0_VCOCAP_MASK;
2499 value |= SOR_PLL0_ICHPMP(settings->ichpmp);
2500 value |= SOR_PLL0_FILTER(settings->filter);
2501 value |= SOR_PLL0_VCOCAP(settings->vcocap);
2502 tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2503
2504 /* XXX not in TRM */
2505 value = tegra_sor_readl(sor, sor->soc->regs->pll1);
2506 value &= ~SOR_PLL1_LOADADJ_MASK;
2507 value &= ~SOR_PLL1_TMDS_TERMADJ_MASK;
2508 value |= SOR_PLL1_LOADADJ(settings->loadadj);
2509 value |= SOR_PLL1_TMDS_TERMADJ(settings->tmds_termadj);
2510 value |= SOR_PLL1_TMDS_TERM;
2511 tegra_sor_writel(sor, value, sor->soc->regs->pll1);
2512
2513 value = tegra_sor_readl(sor, sor->soc->regs->pll3);
2514 value &= ~SOR_PLL3_BG_TEMP_COEF_MASK;
2515 value &= ~SOR_PLL3_BG_VREF_LEVEL_MASK;
2516 value &= ~SOR_PLL3_AVDD10_LEVEL_MASK;
2517 value &= ~SOR_PLL3_AVDD14_LEVEL_MASK;
2518 value |= SOR_PLL3_BG_TEMP_COEF(settings->bg_temp_coef);
2519 value |= SOR_PLL3_BG_VREF_LEVEL(settings->bg_vref_level);
2520 value |= SOR_PLL3_AVDD10_LEVEL(settings->avdd10_level);
2521 value |= SOR_PLL3_AVDD14_LEVEL(settings->avdd14_level);
2522 tegra_sor_writel(sor, value, sor->soc->regs->pll3);
2523
2524 value = settings->drive_current[3] << 24 |
2525 settings->drive_current[2] << 16 |
2526 settings->drive_current[1] << 8 |
2527 settings->drive_current[0] << 0;
2528 tegra_sor_writel(sor, value, SOR_LANE_DRIVE_CURRENT0);
2529
2530 value = settings->preemphasis[3] << 24 |
2531 settings->preemphasis[2] << 16 |
2532 settings->preemphasis[1] << 8 |
2533 settings->preemphasis[0] << 0;
2534 tegra_sor_writel(sor, value, SOR_LANE_PREEMPHASIS0);
2535
2536 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2537 value &= ~SOR_DP_PADCTL_TX_PU_MASK;
2538 value |= SOR_DP_PADCTL_TX_PU_ENABLE;
2539 value |= SOR_DP_PADCTL_TX_PU(settings->tx_pu_value);
2540 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2541
2542 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl2);
2543 value &= ~SOR_DP_PADCTL_SPAREPLL_MASK;
2544 value |= SOR_DP_PADCTL_SPAREPLL(settings->sparepll);
2545 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl2);
2546
2547 /* power down pad calibration */
2548 value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2549 value |= SOR_DP_PADCTL_PAD_CAL_PD;
2550 tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2551
2552 if (!dc->soc->has_nvdisplay) {
2553 /* miscellaneous display controller settings */
2554 value = VSYNC_H_POSITION(1);
2555 tegra_dc_writel(dc, value, DC_DISP_DISP_TIMING_OPTIONS);
2556 }
2557
2558 value = tegra_dc_readl(dc, DC_DISP_DISP_COLOR_CONTROL);
2559 value &= ~DITHER_CONTROL_MASK;
2560 value &= ~BASE_COLOR_SIZE_MASK;
2561
2562 switch (state->bpc) {
2563 case 6:
2564 value |= BASE_COLOR_SIZE_666;
2565 break;
2566
2567 case 8:
2568 value |= BASE_COLOR_SIZE_888;
2569 break;
2570
2571 case 10:
2572 value |= BASE_COLOR_SIZE_101010;
2573 break;
2574
2575 case 12:
2576 value |= BASE_COLOR_SIZE_121212;
2577 break;
2578
2579 default:
2580 WARN(1, "%u bits-per-color not supported\n", state->bpc);
2581 value |= BASE_COLOR_SIZE_888;
2582 break;
2583 }
2584
2585 tegra_dc_writel(dc, value, DC_DISP_DISP_COLOR_CONTROL);
2586
2587 /* XXX set display head owner */
2588 value = tegra_sor_readl(sor, SOR_STATE1);
2589 value &= ~SOR_STATE_ASY_OWNER_MASK;
2590 value |= SOR_STATE_ASY_OWNER(1 + dc->pipe);
2591 tegra_sor_writel(sor, value, SOR_STATE1);
2592
2593 err = tegra_sor_power_up(sor, 250);
2594 if (err < 0)
2595 dev_err(sor->dev, "failed to power up SOR: %d\n", err);
2596
2597 /* configure dynamic range of output */
2598 value = tegra_sor_readl(sor, sor->soc->regs->head_state0 + dc->pipe);
2599 value &= ~SOR_HEAD_STATE_RANGECOMPRESS_MASK;
2600 value &= ~SOR_HEAD_STATE_DYNRANGE_MASK;
2601 tegra_sor_writel(sor, value, sor->soc->regs->head_state0 + dc->pipe);
2602
2603 /* configure colorspace */
2604 value = tegra_sor_readl(sor, sor->soc->regs->head_state0 + dc->pipe);
2605 value &= ~SOR_HEAD_STATE_COLORSPACE_MASK;
2606 value |= SOR_HEAD_STATE_COLORSPACE_RGB;
2607 tegra_sor_writel(sor, value, sor->soc->regs->head_state0 + dc->pipe);
2608
2609 tegra_sor_mode_set(sor, mode, state);
2610
2611 tegra_sor_update(sor);
2612
2613 /* program preamble timing in SOR (XXX) */
2614 value = tegra_sor_readl(sor, SOR_DP_SPARE0);
2615 value &= ~SOR_DP_SPARE_DISP_VIDEO_PREAMBLE;
2616 tegra_sor_writel(sor, value, SOR_DP_SPARE0);
2617
2618 err = tegra_sor_attach(sor);
2619 if (err < 0)
2620 dev_err(sor->dev, "failed to attach SOR: %d\n", err);
2621
2622 /* enable display to SOR clock and generate HDMI preamble */
2623 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2624
2625 if (!sor->soc->has_nvdisplay)
2626 value |= SOR1_TIMING_CYA;
2627
2628 value |= SOR_ENABLE(sor->index);
2629
2630 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2631
2632 if (dc->soc->has_nvdisplay) {
2633 value = tegra_dc_readl(dc, DC_DISP_CORE_SOR_SET_CONTROL(sor->index));
2634 value &= ~PROTOCOL_MASK;
2635 value |= PROTOCOL_SINGLE_TMDS_A;
2636 tegra_dc_writel(dc, value, DC_DISP_CORE_SOR_SET_CONTROL(sor->index));
2637 }
2638
2639 tegra_dc_commit(dc);
2640
2641 err = tegra_sor_wakeup(sor);
2642 if (err < 0)
2643 dev_err(sor->dev, "failed to wakeup SOR: %d\n", err);
2644
2645 tegra_sor_hdmi_scdc_start(sor);
2646 tegra_sor_audio_prepare(sor);
2647}
2648
2649static const struct drm_encoder_helper_funcs tegra_sor_hdmi_helpers = {
2650 .disable = tegra_sor_hdmi_disable,
2651 .enable = tegra_sor_hdmi_enable,
2652 .atomic_check = tegra_sor_encoder_atomic_check,
2653};
2654
2655static void tegra_sor_dp_disable(struct drm_encoder *encoder)
2656{
2657 struct tegra_output *output = encoder_to_output(encoder);
2658 struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2659 struct tegra_sor *sor = to_sor(output);
2660 u32 value;
2661 int err;
2662
2663 if (output->panel)
2664 drm_panel_disable(output->panel);
2665
2666 /*
2667 * Do not attempt to power down a DP link if we're not connected since
2668 * the AUX transactions would just be timing out.
2669 */
2670 if (output->connector.status != connector_status_disconnected) {
2671 err = drm_dp_link_power_down(sor->aux, &sor->link);
2672 if (err < 0)
2673 dev_err(sor->dev, "failed to power down link: %d\n",
2674 err);
2675 }
2676
2677 err = tegra_sor_detach(sor);
2678 if (err < 0)
2679 dev_err(sor->dev, "failed to detach SOR: %d\n", err);
2680
2681 tegra_sor_writel(sor, 0, SOR_STATE1);
2682 tegra_sor_update(sor);
2683
2684 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2685 value &= ~SOR_ENABLE(sor->index);
2686 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2687 tegra_dc_commit(dc);
2688
2689 value = tegra_sor_readl(sor, SOR_STATE1);
2690 value &= ~SOR_STATE_ASY_PROTOCOL_MASK;
2691 value &= ~SOR_STATE_ASY_SUBOWNER_MASK;
2692 value &= ~SOR_STATE_ASY_OWNER_MASK;
2693 tegra_sor_writel(sor, value, SOR_STATE1);
2694 tegra_sor_update(sor);
2695
2696 /* switch to safe parent clock */
2697 err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
2698 if (err < 0)
2699 dev_err(sor->dev, "failed to set safe clock: %d\n", err);
2700
2701 err = tegra_sor_power_down(sor);
2702 if (err < 0)
2703 dev_err(sor->dev, "failed to power down SOR: %d\n", err);
2704
2705 err = tegra_io_pad_power_disable(sor->pad);
2706 if (err < 0)
2707 dev_err(sor->dev, "failed to power off I/O pad: %d\n", err);
2708
2709 err = drm_dp_aux_disable(sor->aux);
2710 if (err < 0)
2711 dev_err(sor->dev, "failed disable DPAUX: %d\n", err);
2712
2713 if (output->panel)
2714 drm_panel_unprepare(output->panel);
2715
2716 host1x_client_suspend(&sor->client);
2717}
2718
2719static void tegra_sor_dp_enable(struct drm_encoder *encoder)
2720{
2721 struct tegra_output *output = encoder_to_output(encoder);
2722 struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2723 struct tegra_sor *sor = to_sor(output);
2724 struct tegra_sor_config config;
2725 struct tegra_sor_state *state;
2726 struct drm_display_mode *mode;
2727 struct drm_display_info *info;
2728 unsigned int i;
2729 u32 value;
2730 int err;
2731
2732 state = to_sor_state(output->connector.state);
2733 mode = &encoder->crtc->state->adjusted_mode;
2734 info = &output->connector.display_info;
2735
2736 err = host1x_client_resume(&sor->client);
2737 if (err < 0) {
2738 dev_err(sor->dev, "failed to resume: %d\n", err);
2739 return;
2740 }
2741
2742 /* switch to safe parent clock */
2743 err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
2744 if (err < 0)
2745 dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
2746
2747 err = tegra_io_pad_power_enable(sor->pad);
2748 if (err < 0)
2749 dev_err(sor->dev, "failed to power on LVDS rail: %d\n", err);
2750
2751 usleep_range(20, 100);
2752
2753 err = drm_dp_aux_enable(sor->aux);
2754 if (err < 0)
2755 dev_err(sor->dev, "failed to enable DPAUX: %d\n", err);
2756
2757 err = drm_dp_link_probe(sor->aux, &sor->link);
2758 if (err < 0)
2759 dev_err(sor->dev, "failed to probe DP link: %d\n", err);
2760
2761 tegra_sor_filter_rates(sor);
2762
2763 err = drm_dp_link_choose(&sor->link, mode, info);
2764 if (err < 0)
2765 dev_err(sor->dev, "failed to choose link: %d\n", err);
2766
2767 if (output->panel)
2768 drm_panel_prepare(output->panel);
2769
2770 value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2771 value &= ~SOR_PLL2_BANDGAP_POWERDOWN;
2772 tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2773
2774 usleep_range(20, 40);
2775
2776 value = tegra_sor_readl(sor, sor->soc->regs->pll3);
2777 value |= SOR_PLL3_PLL_VDD_MODE_3V3;
2778 tegra_sor_writel(sor, value, sor->soc->regs->pll3);
2779
2780 value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2781 value &= ~(SOR_PLL0_VCOPD | SOR_PLL0_PWR);
2782 tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2783
2784 value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2785 value &= ~SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
2786 value |= SOR_PLL2_SEQ_PLLCAPPD;
2787 tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2788
2789 usleep_range(200, 400);
2790
2791 value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2792 value &= ~SOR_PLL2_POWERDOWN_OVERRIDE;
2793 value &= ~SOR_PLL2_PORT_POWERDOWN;
2794 tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2795
2796 value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
2797 value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
2798
2799 if (output->panel)
2800 value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK;
2801 else
2802 value |= SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_DPCLK;
2803
2804 tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
2805
2806 usleep_range(200, 400);
2807
2808 value = tegra_sor_readl(sor, SOR_DP_SPARE0);
2809 /* XXX not in TRM */
2810 if (output->panel)
2811 value |= SOR_DP_SPARE_PANEL_INTERNAL;
2812 else
2813 value &= ~SOR_DP_SPARE_PANEL_INTERNAL;
2814
2815 value |= SOR_DP_SPARE_SEQ_ENABLE;
2816 tegra_sor_writel(sor, value, SOR_DP_SPARE0);
2817
2818 /* XXX not in TRM */
2819 tegra_sor_writel(sor, 0, SOR_LVDS);
2820
2821 value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2822 value &= ~SOR_PLL0_ICHPMP_MASK;
2823 value &= ~SOR_PLL0_VCOCAP_MASK;
2824 value |= SOR_PLL0_ICHPMP(0x1);
2825 value |= SOR_PLL0_VCOCAP(0x3);
2826 value |= SOR_PLL0_RESISTOR_EXT;
2827 tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2828
2829 /* XXX not in TRM */
2830 for (value = 0, i = 0; i < 5; i++)
2831 value |= SOR_XBAR_CTRL_LINK0_XSEL(i, sor->soc->xbar_cfg[i]) |
2832 SOR_XBAR_CTRL_LINK1_XSEL(i, i);
2833
2834 tegra_sor_writel(sor, 0x00000000, SOR_XBAR_POL);
2835 tegra_sor_writel(sor, value, SOR_XBAR_CTRL);
2836
2837 /*
2838 * Switch the pad clock to the DP clock. Note that we cannot actually
2839 * do this because Tegra186 and later don't support clk_set_parent()
2840 * on the sorX_pad_clkout clocks. We already do the equivalent above
2841 * using the DP_CLK_SEL mux of the SOR_CLK_CNTRL register.
2842 */
2843#if 0
2844 err = clk_set_parent(sor->clk_pad, sor->clk_parent);
2845 if (err < 0) {
2846 dev_err(sor->dev, "failed to select pad parent clock: %d\n",
2847 err);
2848 return;
2849 }
2850#endif
2851
2852 /* switch the SOR clock to the pad clock */
2853 err = tegra_sor_set_parent_clock(sor, sor->clk_pad);
2854 if (err < 0) {
2855 dev_err(sor->dev, "failed to select SOR parent clock: %d\n",
2856 err);
2857 return;
2858 }
2859
2860 /* switch the output clock to the parent pixel clock */
2861 err = clk_set_parent(sor->clk, sor->clk_parent);
2862 if (err < 0) {
2863 dev_err(sor->dev, "failed to select output parent clock: %d\n",
2864 err);
2865 return;
2866 }
2867
2868 /* use DP-A protocol */
2869 value = tegra_sor_readl(sor, SOR_STATE1);
2870 value &= ~SOR_STATE_ASY_PROTOCOL_MASK;
2871 value |= SOR_STATE_ASY_PROTOCOL_DP_A;
2872 tegra_sor_writel(sor, value, SOR_STATE1);
2873
2874 /* enable port */
2875 value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
2876 value |= SOR_DP_LINKCTL_ENABLE;
2877 tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
2878
2879 tegra_sor_dp_term_calibrate(sor);
2880
2881 err = drm_dp_link_train(&sor->link);
2882 if (err < 0)
2883 dev_err(sor->dev, "link training failed: %d\n", err);
2884 else
2885 dev_dbg(sor->dev, "link training succeeded\n");
2886
2887 err = drm_dp_link_power_up(sor->aux, &sor->link);
2888 if (err < 0)
2889 dev_err(sor->dev, "failed to power up DP link: %d\n", err);
2890
2891 /* compute configuration */
2892 memset(&config, 0, sizeof(config));
2893 config.bits_per_pixel = state->bpc * 3;
2894
2895 err = tegra_sor_compute_config(sor, mode, &config, &sor->link);
2896 if (err < 0)
2897 dev_err(sor->dev, "failed to compute configuration: %d\n", err);
2898
2899 tegra_sor_apply_config(sor, &config);
2900 tegra_sor_mode_set(sor, mode, state);
2901
2902 if (output->panel) {
2903 /* CSTM (LVDS, link A/B, upper) */
2904 value = SOR_CSTM_LVDS | SOR_CSTM_LINK_ACT_A | SOR_CSTM_LINK_ACT_B |
2905 SOR_CSTM_UPPER;
2906 tegra_sor_writel(sor, value, SOR_CSTM);
2907
2908 /* PWM setup */
2909 err = tegra_sor_setup_pwm(sor, 250);
2910 if (err < 0)
2911 dev_err(sor->dev, "failed to setup PWM: %d\n", err);
2912 }
2913
2914 tegra_sor_update(sor);
2915
2916 err = tegra_sor_power_up(sor, 250);
2917 if (err < 0)
2918 dev_err(sor->dev, "failed to power up SOR: %d\n", err);
2919
2920 /* attach and wake up */
2921 err = tegra_sor_attach(sor);
2922 if (err < 0)
2923 dev_err(sor->dev, "failed to attach SOR: %d\n", err);
2924
2925 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2926 value |= SOR_ENABLE(sor->index);
2927 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2928
2929 tegra_dc_commit(dc);
2930
2931 err = tegra_sor_wakeup(sor);
2932 if (err < 0)
2933 dev_err(sor->dev, "failed to wakeup SOR: %d\n", err);
2934
2935 if (output->panel)
2936 drm_panel_enable(output->panel);
2937}
2938
2939static const struct drm_encoder_helper_funcs tegra_sor_dp_helpers = {
2940 .disable = tegra_sor_dp_disable,
2941 .enable = tegra_sor_dp_enable,
2942 .atomic_check = tegra_sor_encoder_atomic_check,
2943};
2944
2945static int tegra_sor_hdmi_probe(struct tegra_sor *sor)
2946{
2947 int err;
2948
2949 sor->avdd_io_supply = devm_regulator_get(sor->dev, "avdd-io-hdmi-dp");
2950 if (IS_ERR(sor->avdd_io_supply)) {
2951 dev_err(sor->dev, "cannot get AVDD I/O supply: %ld\n",
2952 PTR_ERR(sor->avdd_io_supply));
2953 return PTR_ERR(sor->avdd_io_supply);
2954 }
2955
2956 err = regulator_enable(sor->avdd_io_supply);
2957 if (err < 0) {
2958 dev_err(sor->dev, "failed to enable AVDD I/O supply: %d\n",
2959 err);
2960 return err;
2961 }
2962
2963 sor->vdd_pll_supply = devm_regulator_get(sor->dev, "vdd-hdmi-dp-pll");
2964 if (IS_ERR(sor->vdd_pll_supply)) {
2965 dev_err(sor->dev, "cannot get VDD PLL supply: %ld\n",
2966 PTR_ERR(sor->vdd_pll_supply));
2967 return PTR_ERR(sor->vdd_pll_supply);
2968 }
2969
2970 err = regulator_enable(sor->vdd_pll_supply);
2971 if (err < 0) {
2972 dev_err(sor->dev, "failed to enable VDD PLL supply: %d\n",
2973 err);
2974 return err;
2975 }
2976
2977 sor->hdmi_supply = devm_regulator_get(sor->dev, "hdmi");
2978 if (IS_ERR(sor->hdmi_supply)) {
2979 dev_err(sor->dev, "cannot get HDMI supply: %ld\n",
2980 PTR_ERR(sor->hdmi_supply));
2981 return PTR_ERR(sor->hdmi_supply);
2982 }
2983
2984 err = regulator_enable(sor->hdmi_supply);
2985 if (err < 0) {
2986 dev_err(sor->dev, "failed to enable HDMI supply: %d\n", err);
2987 return err;
2988 }
2989
2990 INIT_DELAYED_WORK(&sor->scdc, tegra_sor_hdmi_scdc_work);
2991
2992 return 0;
2993}
2994
2995static int tegra_sor_hdmi_remove(struct tegra_sor *sor)
2996{
2997 regulator_disable(sor->hdmi_supply);
2998 regulator_disable(sor->vdd_pll_supply);
2999 regulator_disable(sor->avdd_io_supply);
3000
3001 return 0;
3002}
3003
3004static const struct tegra_sor_ops tegra_sor_hdmi_ops = {
3005 .name = "HDMI",
3006 .probe = tegra_sor_hdmi_probe,
3007 .remove = tegra_sor_hdmi_remove,
3008 .audio_enable = tegra_sor_hdmi_audio_enable,
3009 .audio_disable = tegra_sor_hdmi_audio_disable,
3010};
3011
3012static int tegra_sor_dp_probe(struct tegra_sor *sor)
3013{
3014 int err;
3015
3016 sor->avdd_io_supply = devm_regulator_get(sor->dev, "avdd-io-hdmi-dp");
3017 if (IS_ERR(sor->avdd_io_supply))
3018 return PTR_ERR(sor->avdd_io_supply);
3019
3020 err = regulator_enable(sor->avdd_io_supply);
3021 if (err < 0)
3022 return err;
3023
3024 sor->vdd_pll_supply = devm_regulator_get(sor->dev, "vdd-hdmi-dp-pll");
3025 if (IS_ERR(sor->vdd_pll_supply))
3026 return PTR_ERR(sor->vdd_pll_supply);
3027
3028 err = regulator_enable(sor->vdd_pll_supply);
3029 if (err < 0)
3030 return err;
3031
3032 return 0;
3033}
3034
3035static int tegra_sor_dp_remove(struct tegra_sor *sor)
3036{
3037 regulator_disable(sor->vdd_pll_supply);
3038 regulator_disable(sor->avdd_io_supply);
3039
3040 return 0;
3041}
3042
3043static const struct tegra_sor_ops tegra_sor_dp_ops = {
3044 .name = "DP",
3045 .probe = tegra_sor_dp_probe,
3046 .remove = tegra_sor_dp_remove,
3047};
3048
3049static int tegra_sor_init(struct host1x_client *client)
3050{
3051 struct drm_device *drm = dev_get_drvdata(client->host);
3052 const struct drm_encoder_helper_funcs *helpers = NULL;
3053 struct tegra_sor *sor = host1x_client_to_sor(client);
3054 int connector = DRM_MODE_CONNECTOR_Unknown;
3055 int encoder = DRM_MODE_ENCODER_NONE;
3056 int err;
3057
3058 if (!sor->aux) {
3059 if (sor->ops == &tegra_sor_hdmi_ops) {
3060 connector = DRM_MODE_CONNECTOR_HDMIA;
3061 encoder = DRM_MODE_ENCODER_TMDS;
3062 helpers = &tegra_sor_hdmi_helpers;
3063 } else if (sor->soc->supports_lvds) {
3064 connector = DRM_MODE_CONNECTOR_LVDS;
3065 encoder = DRM_MODE_ENCODER_LVDS;
3066 }
3067 } else {
3068 if (sor->output.panel) {
3069 connector = DRM_MODE_CONNECTOR_eDP;
3070 encoder = DRM_MODE_ENCODER_TMDS;
3071 helpers = &tegra_sor_dp_helpers;
3072 } else {
3073 connector = DRM_MODE_CONNECTOR_DisplayPort;
3074 encoder = DRM_MODE_ENCODER_TMDS;
3075 helpers = &tegra_sor_dp_helpers;
3076 }
3077
3078 sor->link.ops = &tegra_sor_dp_link_ops;
3079 sor->link.aux = sor->aux;
3080 }
3081
3082 sor->output.dev = sor->dev;
3083
3084 drm_connector_init_with_ddc(drm, &sor->output.connector,
3085 &tegra_sor_connector_funcs,
3086 connector,
3087 sor->output.ddc);
3088 drm_connector_helper_add(&sor->output.connector,
3089 &tegra_sor_connector_helper_funcs);
3090 sor->output.connector.dpms = DRM_MODE_DPMS_OFF;
3091
3092 drm_simple_encoder_init(drm, &sor->output.encoder, encoder);
3093 drm_encoder_helper_add(&sor->output.encoder, helpers);
3094
3095 drm_connector_attach_encoder(&sor->output.connector,
3096 &sor->output.encoder);
3097 drm_connector_register(&sor->output.connector);
3098
3099 err = tegra_output_init(drm, &sor->output);
3100 if (err < 0) {
3101 dev_err(client->dev, "failed to initialize output: %d\n", err);
3102 return err;
3103 }
3104
3105 tegra_output_find_possible_crtcs(&sor->output, drm);
3106
3107 if (sor->aux) {
3108 err = drm_dp_aux_attach(sor->aux, &sor->output);
3109 if (err < 0) {
3110 dev_err(sor->dev, "failed to attach DP: %d\n", err);
3111 return err;
3112 }
3113 }
3114
3115 /*
3116 * XXX: Remove this reset once proper hand-over from firmware to
3117 * kernel is possible.
3118 */
3119 if (sor->rst) {
3120 err = reset_control_acquire(sor->rst);
3121 if (err < 0) {
3122 dev_err(sor->dev, "failed to acquire SOR reset: %d\n",
3123 err);
3124 return err;
3125 }
3126
3127 err = reset_control_assert(sor->rst);
3128 if (err < 0) {
3129 dev_err(sor->dev, "failed to assert SOR reset: %d\n",
3130 err);
3131 return err;
3132 }
3133 }
3134
3135 err = clk_prepare_enable(sor->clk);
3136 if (err < 0) {
3137 dev_err(sor->dev, "failed to enable clock: %d\n", err);
3138 return err;
3139 }
3140
3141 usleep_range(1000, 3000);
3142
3143 if (sor->rst) {
3144 err = reset_control_deassert(sor->rst);
3145 if (err < 0) {
3146 dev_err(sor->dev, "failed to deassert SOR reset: %d\n",
3147 err);
3148 return err;
3149 }
3150
3151 reset_control_release(sor->rst);
3152 }
3153
3154 err = clk_prepare_enable(sor->clk_safe);
3155 if (err < 0)
3156 return err;
3157
3158 err = clk_prepare_enable(sor->clk_dp);
3159 if (err < 0)
3160 return err;
3161
3162 return 0;
3163}
3164
3165static int tegra_sor_exit(struct host1x_client *client)
3166{
3167 struct tegra_sor *sor = host1x_client_to_sor(client);
3168 int err;
3169
3170 tegra_output_exit(&sor->output);
3171
3172 if (sor->aux) {
3173 err = drm_dp_aux_detach(sor->aux);
3174 if (err < 0) {
3175 dev_err(sor->dev, "failed to detach DP: %d\n", err);
3176 return err;
3177 }
3178 }
3179
3180 clk_disable_unprepare(sor->clk_safe);
3181 clk_disable_unprepare(sor->clk_dp);
3182 clk_disable_unprepare(sor->clk);
3183
3184 return 0;
3185}
3186
3187static int tegra_sor_runtime_suspend(struct host1x_client *client)
3188{
3189 struct tegra_sor *sor = host1x_client_to_sor(client);
3190 struct device *dev = client->dev;
3191 int err;
3192
3193 if (sor->rst) {
3194 err = reset_control_assert(sor->rst);
3195 if (err < 0) {
3196 dev_err(dev, "failed to assert reset: %d\n", err);
3197 return err;
3198 }
3199
3200 reset_control_release(sor->rst);
3201 }
3202
3203 usleep_range(1000, 2000);
3204
3205 clk_disable_unprepare(sor->clk);
3206 pm_runtime_put_sync(dev);
3207
3208 return 0;
3209}
3210
3211static int tegra_sor_runtime_resume(struct host1x_client *client)
3212{
3213 struct tegra_sor *sor = host1x_client_to_sor(client);
3214 struct device *dev = client->dev;
3215 int err;
3216
3217 err = pm_runtime_get_sync(dev);
3218 if (err < 0) {
3219 dev_err(dev, "failed to get runtime PM: %d\n", err);
3220 return err;
3221 }
3222
3223 err = clk_prepare_enable(sor->clk);
3224 if (err < 0) {
3225 dev_err(dev, "failed to enable clock: %d\n", err);
3226 goto put_rpm;
3227 }
3228
3229 usleep_range(1000, 2000);
3230
3231 if (sor->rst) {
3232 err = reset_control_acquire(sor->rst);
3233 if (err < 0) {
3234 dev_err(dev, "failed to acquire reset: %d\n", err);
3235 goto disable_clk;
3236 }
3237
3238 err = reset_control_deassert(sor->rst);
3239 if (err < 0) {
3240 dev_err(dev, "failed to deassert reset: %d\n", err);
3241 goto release_reset;
3242 }
3243 }
3244
3245 return 0;
3246
3247release_reset:
3248 reset_control_release(sor->rst);
3249disable_clk:
3250 clk_disable_unprepare(sor->clk);
3251put_rpm:
3252 pm_runtime_put_sync(dev);
3253 return err;
3254}
3255
3256static const struct host1x_client_ops sor_client_ops = {
3257 .init = tegra_sor_init,
3258 .exit = tegra_sor_exit,
3259 .suspend = tegra_sor_runtime_suspend,
3260 .resume = tegra_sor_runtime_resume,
3261};
3262
3263static const u8 tegra124_sor_xbar_cfg[5] = {
3264 0, 1, 2, 3, 4
3265};
3266
3267static const struct tegra_sor_regs tegra124_sor_regs = {
3268 .head_state0 = 0x05,
3269 .head_state1 = 0x07,
3270 .head_state2 = 0x09,
3271 .head_state3 = 0x0b,
3272 .head_state4 = 0x0d,
3273 .head_state5 = 0x0f,
3274 .pll0 = 0x17,
3275 .pll1 = 0x18,
3276 .pll2 = 0x19,
3277 .pll3 = 0x1a,
3278 .dp_padctl0 = 0x5c,
3279 .dp_padctl2 = 0x73,
3280};
3281
3282/* Tegra124 and Tegra132 have lanes 0 and 2 swapped. */
3283static const u8 tegra124_sor_lane_map[4] = {
3284 2, 1, 0, 3,
3285};
3286
3287static const u8 tegra124_sor_voltage_swing[4][4][4] = {
3288 {
3289 { 0x13, 0x19, 0x1e, 0x28 },
3290 { 0x1e, 0x25, 0x2d, },
3291 { 0x28, 0x32, },
3292 { 0x3c, },
3293 }, {
3294 { 0x12, 0x17, 0x1b, 0x25 },
3295 { 0x1c, 0x23, 0x2a, },
3296 { 0x25, 0x2f, },
3297 { 0x39, }
3298 }, {
3299 { 0x12, 0x16, 0x1a, 0x22 },
3300 { 0x1b, 0x20, 0x27, },
3301 { 0x24, 0x2d, },
3302 { 0x36, },
3303 }, {
3304 { 0x11, 0x14, 0x17, 0x1f },
3305 { 0x19, 0x1e, 0x24, },
3306 { 0x22, 0x2a, },
3307 { 0x32, },
3308 },
3309};
3310
3311static const u8 tegra124_sor_pre_emphasis[4][4][4] = {
3312 {
3313 { 0x00, 0x09, 0x13, 0x25 },
3314 { 0x00, 0x0f, 0x1e, },
3315 { 0x00, 0x14, },
3316 { 0x00, },
3317 }, {
3318 { 0x00, 0x0a, 0x14, 0x28 },
3319 { 0x00, 0x0f, 0x1e, },
3320 { 0x00, 0x14, },
3321 { 0x00 },
3322 }, {
3323 { 0x00, 0x0a, 0x14, 0x28 },
3324 { 0x00, 0x0f, 0x1e, },
3325 { 0x00, 0x14, },
3326 { 0x00, },
3327 }, {
3328 { 0x00, 0x0a, 0x14, 0x28 },
3329 { 0x00, 0x0f, 0x1e, },
3330 { 0x00, 0x14, },
3331 { 0x00, },
3332 },
3333};
3334
3335static const u8 tegra124_sor_post_cursor[4][4][4] = {
3336 {
3337 { 0x00, 0x00, 0x00, 0x00 },
3338 { 0x00, 0x00, 0x00, },
3339 { 0x00, 0x00, },
3340 { 0x00, },
3341 }, {
3342 { 0x02, 0x02, 0x04, 0x05 },
3343 { 0x02, 0x04, 0x05, },
3344 { 0x04, 0x05, },
3345 { 0x05, },
3346 }, {
3347 { 0x04, 0x05, 0x08, 0x0b },
3348 { 0x05, 0x09, 0x0b, },
3349 { 0x08, 0x0a, },
3350 { 0x0b, },
3351 }, {
3352 { 0x05, 0x09, 0x0b, 0x12 },
3353 { 0x09, 0x0d, 0x12, },
3354 { 0x0b, 0x0f, },
3355 { 0x12, },
3356 },
3357};
3358
3359static const u8 tegra124_sor_tx_pu[4][4][4] = {
3360 {
3361 { 0x20, 0x30, 0x40, 0x60 },
3362 { 0x30, 0x40, 0x60, },
3363 { 0x40, 0x60, },
3364 { 0x60, },
3365 }, {
3366 { 0x20, 0x20, 0x30, 0x50 },
3367 { 0x30, 0x40, 0x50, },
3368 { 0x40, 0x50, },
3369 { 0x60, },
3370 }, {
3371 { 0x20, 0x20, 0x30, 0x40, },
3372 { 0x30, 0x30, 0x40, },
3373 { 0x40, 0x50, },
3374 { 0x60, },
3375 }, {
3376 { 0x20, 0x20, 0x20, 0x40, },
3377 { 0x30, 0x30, 0x40, },
3378 { 0x40, 0x40, },
3379 { 0x60, },
3380 },
3381};
3382
3383static const struct tegra_sor_soc tegra124_sor = {
3384 .supports_lvds = true,
3385 .supports_hdmi = false,
3386 .supports_dp = true,
3387 .supports_audio = false,
3388 .supports_hdcp = false,
3389 .regs = &tegra124_sor_regs,
3390 .has_nvdisplay = false,
3391 .xbar_cfg = tegra124_sor_xbar_cfg,
3392 .lane_map = tegra124_sor_lane_map,
3393 .voltage_swing = tegra124_sor_voltage_swing,
3394 .pre_emphasis = tegra124_sor_pre_emphasis,
3395 .post_cursor = tegra124_sor_post_cursor,
3396 .tx_pu = tegra124_sor_tx_pu,
3397};
3398
3399static const u8 tegra132_sor_pre_emphasis[4][4][4] = {
3400 {
3401 { 0x00, 0x08, 0x12, 0x24 },
3402 { 0x01, 0x0e, 0x1d, },
3403 { 0x01, 0x13, },
3404 { 0x00, },
3405 }, {
3406 { 0x00, 0x08, 0x12, 0x24 },
3407 { 0x00, 0x0e, 0x1d, },
3408 { 0x00, 0x13, },
3409 { 0x00 },
3410 }, {
3411 { 0x00, 0x08, 0x12, 0x24 },
3412 { 0x00, 0x0e, 0x1d, },
3413 { 0x00, 0x13, },
3414 { 0x00, },
3415 }, {
3416 { 0x00, 0x08, 0x12, 0x24 },
3417 { 0x00, 0x0e, 0x1d, },
3418 { 0x00, 0x13, },
3419 { 0x00, },
3420 },
3421};
3422
3423static const struct tegra_sor_soc tegra132_sor = {
3424 .supports_lvds = true,
3425 .supports_hdmi = false,
3426 .supports_dp = true,
3427 .supports_audio = false,
3428 .supports_hdcp = false,
3429 .regs = &tegra124_sor_regs,
3430 .has_nvdisplay = false,
3431 .xbar_cfg = tegra124_sor_xbar_cfg,
3432 .lane_map = tegra124_sor_lane_map,
3433 .voltage_swing = tegra124_sor_voltage_swing,
3434 .pre_emphasis = tegra132_sor_pre_emphasis,
3435 .post_cursor = tegra124_sor_post_cursor,
3436 .tx_pu = tegra124_sor_tx_pu,
3437};
3438
3439static const struct tegra_sor_regs tegra210_sor_regs = {
3440 .head_state0 = 0x05,
3441 .head_state1 = 0x07,
3442 .head_state2 = 0x09,
3443 .head_state3 = 0x0b,
3444 .head_state4 = 0x0d,
3445 .head_state5 = 0x0f,
3446 .pll0 = 0x17,
3447 .pll1 = 0x18,
3448 .pll2 = 0x19,
3449 .pll3 = 0x1a,
3450 .dp_padctl0 = 0x5c,
3451 .dp_padctl2 = 0x73,
3452};
3453
3454static const u8 tegra210_sor_xbar_cfg[5] = {
3455 2, 1, 0, 3, 4
3456};
3457
3458static const u8 tegra210_sor_lane_map[4] = {
3459 0, 1, 2, 3,
3460};
3461
3462static const struct tegra_sor_soc tegra210_sor = {
3463 .supports_lvds = false,
3464 .supports_hdmi = false,
3465 .supports_dp = true,
3466 .supports_audio = false,
3467 .supports_hdcp = false,
3468
3469 .regs = &tegra210_sor_regs,
3470 .has_nvdisplay = false,
3471
3472 .xbar_cfg = tegra210_sor_xbar_cfg,
3473 .lane_map = tegra210_sor_lane_map,
3474 .voltage_swing = tegra124_sor_voltage_swing,
3475 .pre_emphasis = tegra124_sor_pre_emphasis,
3476 .post_cursor = tegra124_sor_post_cursor,
3477 .tx_pu = tegra124_sor_tx_pu,
3478};
3479
3480static const struct tegra_sor_soc tegra210_sor1 = {
3481 .supports_lvds = false,
3482 .supports_hdmi = true,
3483 .supports_dp = true,
3484 .supports_audio = true,
3485 .supports_hdcp = true,
3486
3487 .regs = &tegra210_sor_regs,
3488 .has_nvdisplay = false,
3489
3490 .num_settings = ARRAY_SIZE(tegra210_sor_hdmi_defaults),
3491 .settings = tegra210_sor_hdmi_defaults,
3492 .xbar_cfg = tegra210_sor_xbar_cfg,
3493 .lane_map = tegra210_sor_lane_map,
3494 .voltage_swing = tegra124_sor_voltage_swing,
3495 .pre_emphasis = tegra124_sor_pre_emphasis,
3496 .post_cursor = tegra124_sor_post_cursor,
3497 .tx_pu = tegra124_sor_tx_pu,
3498};
3499
3500static const struct tegra_sor_regs tegra186_sor_regs = {
3501 .head_state0 = 0x151,
3502 .head_state1 = 0x154,
3503 .head_state2 = 0x157,
3504 .head_state3 = 0x15a,
3505 .head_state4 = 0x15d,
3506 .head_state5 = 0x160,
3507 .pll0 = 0x163,
3508 .pll1 = 0x164,
3509 .pll2 = 0x165,
3510 .pll3 = 0x166,
3511 .dp_padctl0 = 0x168,
3512 .dp_padctl2 = 0x16a,
3513};
3514
3515static const u8 tegra186_sor_voltage_swing[4][4][4] = {
3516 {
3517 { 0x13, 0x19, 0x1e, 0x28 },
3518 { 0x1e, 0x25, 0x2d, },
3519 { 0x28, 0x32, },
3520 { 0x39, },
3521 }, {
3522 { 0x12, 0x16, 0x1b, 0x25 },
3523 { 0x1c, 0x23, 0x2a, },
3524 { 0x25, 0x2f, },
3525 { 0x37, }
3526 }, {
3527 { 0x12, 0x16, 0x1a, 0x22 },
3528 { 0x1b, 0x20, 0x27, },
3529 { 0x24, 0x2d, },
3530 { 0x35, },
3531 }, {
3532 { 0x11, 0x14, 0x17, 0x1f },
3533 { 0x19, 0x1e, 0x24, },
3534 { 0x22, 0x2a, },
3535 { 0x32, },
3536 },
3537};
3538
3539static const u8 tegra186_sor_pre_emphasis[4][4][4] = {
3540 {
3541 { 0x00, 0x08, 0x12, 0x24 },
3542 { 0x01, 0x0e, 0x1d, },
3543 { 0x01, 0x13, },
3544 { 0x00, },
3545 }, {
3546 { 0x00, 0x08, 0x12, 0x24 },
3547 { 0x00, 0x0e, 0x1d, },
3548 { 0x00, 0x13, },
3549 { 0x00 },
3550 }, {
3551 { 0x00, 0x08, 0x14, 0x24 },
3552 { 0x00, 0x0e, 0x1d, },
3553 { 0x00, 0x13, },
3554 { 0x00, },
3555 }, {
3556 { 0x00, 0x08, 0x12, 0x24 },
3557 { 0x00, 0x0e, 0x1d, },
3558 { 0x00, 0x13, },
3559 { 0x00, },
3560 },
3561};
3562
3563static const struct tegra_sor_soc tegra186_sor = {
3564 .supports_lvds = false,
3565 .supports_hdmi = true,
3566 .supports_dp = true,
3567 .supports_audio = true,
3568 .supports_hdcp = true,
3569
3570 .regs = &tegra186_sor_regs,
3571 .has_nvdisplay = true,
3572
3573 .num_settings = ARRAY_SIZE(tegra186_sor_hdmi_defaults),
3574 .settings = tegra186_sor_hdmi_defaults,
3575 .xbar_cfg = tegra124_sor_xbar_cfg,
3576 .lane_map = tegra124_sor_lane_map,
3577 .voltage_swing = tegra186_sor_voltage_swing,
3578 .pre_emphasis = tegra186_sor_pre_emphasis,
3579 .post_cursor = tegra124_sor_post_cursor,
3580 .tx_pu = tegra124_sor_tx_pu,
3581};
3582
3583static const struct tegra_sor_regs tegra194_sor_regs = {
3584 .head_state0 = 0x151,
3585 .head_state1 = 0x155,
3586 .head_state2 = 0x159,
3587 .head_state3 = 0x15d,
3588 .head_state4 = 0x161,
3589 .head_state5 = 0x165,
3590 .pll0 = 0x169,
3591 .pll1 = 0x16a,
3592 .pll2 = 0x16b,
3593 .pll3 = 0x16c,
3594 .dp_padctl0 = 0x16e,
3595 .dp_padctl2 = 0x16f,
3596};
3597
3598static const struct tegra_sor_soc tegra194_sor = {
3599 .supports_lvds = false,
3600 .supports_hdmi = true,
3601 .supports_dp = true,
3602 .supports_audio = true,
3603 .supports_hdcp = true,
3604
3605 .regs = &tegra194_sor_regs,
3606 .has_nvdisplay = true,
3607
3608 .num_settings = ARRAY_SIZE(tegra194_sor_hdmi_defaults),
3609 .settings = tegra194_sor_hdmi_defaults,
3610
3611 .xbar_cfg = tegra210_sor_xbar_cfg,
3612 .lane_map = tegra124_sor_lane_map,
3613 .voltage_swing = tegra186_sor_voltage_swing,
3614 .pre_emphasis = tegra186_sor_pre_emphasis,
3615 .post_cursor = tegra124_sor_post_cursor,
3616 .tx_pu = tegra124_sor_tx_pu,
3617};
3618
3619static const struct of_device_id tegra_sor_of_match[] = {
3620 { .compatible = "nvidia,tegra194-sor", .data = &tegra194_sor },
3621 { .compatible = "nvidia,tegra186-sor", .data = &tegra186_sor },
3622 { .compatible = "nvidia,tegra210-sor1", .data = &tegra210_sor1 },
3623 { .compatible = "nvidia,tegra210-sor", .data = &tegra210_sor },
3624 { .compatible = "nvidia,tegra132-sor", .data = &tegra132_sor },
3625 { .compatible = "nvidia,tegra124-sor", .data = &tegra124_sor },
3626 { },
3627};
3628MODULE_DEVICE_TABLE(of, tegra_sor_of_match);
3629
3630static int tegra_sor_parse_dt(struct tegra_sor *sor)
3631{
3632 struct device_node *np = sor->dev->of_node;
3633 u32 xbar_cfg[5];
3634 unsigned int i;
3635 u32 value;
3636 int err;
3637
3638 if (sor->soc->has_nvdisplay) {
3639 err = of_property_read_u32(np, "nvidia,interface", &value);
3640 if (err < 0)
3641 return err;
3642
3643 sor->index = value;
3644
3645 /*
3646 * override the default that we already set for Tegra210 and
3647 * earlier
3648 */
3649 sor->pad = TEGRA_IO_PAD_HDMI_DP0 + sor->index;
3650 } else {
3651 if (!sor->soc->supports_audio)
3652 sor->index = 0;
3653 else
3654 sor->index = 1;
3655 }
3656
3657 err = of_property_read_u32_array(np, "nvidia,xbar-cfg", xbar_cfg, 5);
3658 if (err < 0) {
3659 /* fall back to default per-SoC XBAR configuration */
3660 for (i = 0; i < 5; i++)
3661 sor->xbar_cfg[i] = sor->soc->xbar_cfg[i];
3662 } else {
3663 /* copy cells to SOR XBAR configuration */
3664 for (i = 0; i < 5; i++)
3665 sor->xbar_cfg[i] = xbar_cfg[i];
3666 }
3667
3668 return 0;
3669}
3670
3671static irqreturn_t tegra_sor_irq(int irq, void *data)
3672{
3673 struct tegra_sor *sor = data;
3674 u32 value;
3675
3676 value = tegra_sor_readl(sor, SOR_INT_STATUS);
3677 tegra_sor_writel(sor, value, SOR_INT_STATUS);
3678
3679 if (value & SOR_INT_CODEC_SCRATCH0) {
3680 value = tegra_sor_readl(sor, SOR_AUDIO_HDA_CODEC_SCRATCH0);
3681
3682 if (value & SOR_AUDIO_HDA_CODEC_SCRATCH0_VALID) {
3683 unsigned int format;
3684
3685 format = value & SOR_AUDIO_HDA_CODEC_SCRATCH0_FMT_MASK;
3686
3687 tegra_hda_parse_format(format, &sor->format);
3688
3689 if (sor->ops->audio_enable)
3690 sor->ops->audio_enable(sor);
3691 } else {
3692 if (sor->ops->audio_disable)
3693 sor->ops->audio_disable(sor);
3694 }
3695 }
3696
3697 return IRQ_HANDLED;
3698}
3699
3700static int tegra_sor_probe(struct platform_device *pdev)
3701{
3702 struct device_node *np;
3703 struct tegra_sor *sor;
3704 struct resource *regs;
3705 int err;
3706
3707 sor = devm_kzalloc(&pdev->dev, sizeof(*sor), GFP_KERNEL);
3708 if (!sor)
3709 return -ENOMEM;
3710
3711 sor->soc = of_device_get_match_data(&pdev->dev);
3712 sor->output.dev = sor->dev = &pdev->dev;
3713
3714 sor->settings = devm_kmemdup(&pdev->dev, sor->soc->settings,
3715 sor->soc->num_settings *
3716 sizeof(*sor->settings),
3717 GFP_KERNEL);
3718 if (!sor->settings)
3719 return -ENOMEM;
3720
3721 sor->num_settings = sor->soc->num_settings;
3722
3723 np = of_parse_phandle(pdev->dev.of_node, "nvidia,dpaux", 0);
3724 if (np) {
3725 sor->aux = drm_dp_aux_find_by_of_node(np);
3726 of_node_put(np);
3727
3728 if (!sor->aux)
3729 return -EPROBE_DEFER;
3730
3731 sor->output.ddc = &sor->aux->ddc;
3732 }
3733
3734 if (!sor->aux) {
3735 if (sor->soc->supports_hdmi) {
3736 sor->ops = &tegra_sor_hdmi_ops;
3737 sor->pad = TEGRA_IO_PAD_HDMI;
3738 } else if (sor->soc->supports_lvds) {
3739 dev_err(&pdev->dev, "LVDS not supported yet\n");
3740 return -ENODEV;
3741 } else {
3742 dev_err(&pdev->dev, "unknown (non-DP) support\n");
3743 return -ENODEV;
3744 }
3745 } else {
3746 np = of_parse_phandle(pdev->dev.of_node, "nvidia,panel", 0);
3747 /*
3748 * No need to keep this around since we only use it as a check
3749 * to see if a panel is connected (eDP) or not (DP).
3750 */
3751 of_node_put(np);
3752
3753 sor->ops = &tegra_sor_dp_ops;
3754 sor->pad = TEGRA_IO_PAD_LVDS;
3755 }
3756
3757 err = tegra_sor_parse_dt(sor);
3758 if (err < 0)
3759 return err;
3760
3761 err = tegra_output_probe(&sor->output);
3762 if (err < 0) {
3763 dev_err(&pdev->dev, "failed to probe output: %d\n", err);
3764 return err;
3765 }
3766
3767 if (sor->ops && sor->ops->probe) {
3768 err = sor->ops->probe(sor);
3769 if (err < 0) {
3770 dev_err(&pdev->dev, "failed to probe %s: %d\n",
3771 sor->ops->name, err);
3772 goto output;
3773 }
3774 }
3775
3776 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3777 sor->regs = devm_ioremap_resource(&pdev->dev, regs);
3778 if (IS_ERR(sor->regs)) {
3779 err = PTR_ERR(sor->regs);
3780 goto remove;
3781 }
3782
3783 err = platform_get_irq(pdev, 0);
3784 if (err < 0) {
3785 dev_err(&pdev->dev, "failed to get IRQ: %d\n", err);
3786 goto remove;
3787 }
3788
3789 sor->irq = err;
3790
3791 err = devm_request_irq(sor->dev, sor->irq, tegra_sor_irq, 0,
3792 dev_name(sor->dev), sor);
3793 if (err < 0) {
3794 dev_err(&pdev->dev, "failed to request IRQ: %d\n", err);
3795 goto remove;
3796 }
3797
3798 sor->rst = devm_reset_control_get_exclusive_released(&pdev->dev, "sor");
3799 if (IS_ERR(sor->rst)) {
3800 err = PTR_ERR(sor->rst);
3801
3802 if (err != -EBUSY || WARN_ON(!pdev->dev.pm_domain)) {
3803 dev_err(&pdev->dev, "failed to get reset control: %d\n",
3804 err);
3805 goto remove;
3806 }
3807
3808 /*
3809 * At this point, the reset control is most likely being used
3810 * by the generic power domain implementation. With any luck
3811 * the power domain will have taken care of resetting the SOR
3812 * and we don't have to do anything.
3813 */
3814 sor->rst = NULL;
3815 }
3816
3817 sor->clk = devm_clk_get(&pdev->dev, NULL);
3818 if (IS_ERR(sor->clk)) {
3819 err = PTR_ERR(sor->clk);
3820 dev_err(&pdev->dev, "failed to get module clock: %d\n", err);
3821 goto remove;
3822 }
3823
3824 if (sor->soc->supports_hdmi || sor->soc->supports_dp) {
3825 struct device_node *np = pdev->dev.of_node;
3826 const char *name;
3827
3828 /*
3829 * For backwards compatibility with Tegra210 device trees,
3830 * fall back to the old clock name "source" if the new "out"
3831 * clock is not available.
3832 */
3833 if (of_property_match_string(np, "clock-names", "out") < 0)
3834 name = "source";
3835 else
3836 name = "out";
3837
3838 sor->clk_out = devm_clk_get(&pdev->dev, name);
3839 if (IS_ERR(sor->clk_out)) {
3840 err = PTR_ERR(sor->clk_out);
3841 dev_err(sor->dev, "failed to get %s clock: %d\n",
3842 name, err);
3843 goto remove;
3844 }
3845 } else {
3846 /* fall back to the module clock on SOR0 (eDP/LVDS only) */
3847 sor->clk_out = sor->clk;
3848 }
3849
3850 sor->clk_parent = devm_clk_get(&pdev->dev, "parent");
3851 if (IS_ERR(sor->clk_parent)) {
3852 err = PTR_ERR(sor->clk_parent);
3853 dev_err(&pdev->dev, "failed to get parent clock: %d\n", err);
3854 goto remove;
3855 }
3856
3857 sor->clk_safe = devm_clk_get(&pdev->dev, "safe");
3858 if (IS_ERR(sor->clk_safe)) {
3859 err = PTR_ERR(sor->clk_safe);
3860 dev_err(&pdev->dev, "failed to get safe clock: %d\n", err);
3861 goto remove;
3862 }
3863
3864 sor->clk_dp = devm_clk_get(&pdev->dev, "dp");
3865 if (IS_ERR(sor->clk_dp)) {
3866 err = PTR_ERR(sor->clk_dp);
3867 dev_err(&pdev->dev, "failed to get DP clock: %d\n", err);
3868 goto remove;
3869 }
3870
3871 /*
3872 * Starting with Tegra186, the BPMP provides an implementation for
3873 * the pad output clock, so we have to look it up from device tree.
3874 */
3875 sor->clk_pad = devm_clk_get(&pdev->dev, "pad");
3876 if (IS_ERR(sor->clk_pad)) {
3877 if (sor->clk_pad != ERR_PTR(-ENOENT)) {
3878 err = PTR_ERR(sor->clk_pad);
3879 goto remove;
3880 }
3881
3882 /*
3883 * If the pad output clock is not available, then we assume
3884 * we're on Tegra210 or earlier and have to provide our own
3885 * implementation.
3886 */
3887 sor->clk_pad = NULL;
3888 }
3889
3890 /*
3891 * The bootloader may have set up the SOR such that it's module clock
3892 * is sourced by one of the display PLLs. However, that doesn't work
3893 * without properly having set up other bits of the SOR.
3894 */
3895 err = clk_set_parent(sor->clk_out, sor->clk_safe);
3896 if (err < 0) {
3897 dev_err(&pdev->dev, "failed to use safe clock: %d\n", err);
3898 goto remove;
3899 }
3900
3901 platform_set_drvdata(pdev, sor);
3902 pm_runtime_enable(&pdev->dev);
3903
3904 INIT_LIST_HEAD(&sor->client.list);
3905 sor->client.ops = &sor_client_ops;
3906 sor->client.dev = &pdev->dev;
3907
3908 err = host1x_client_register(&sor->client);
3909 if (err < 0) {
3910 dev_err(&pdev->dev, "failed to register host1x client: %d\n",
3911 err);
3912 goto rpm_disable;
3913 }
3914
3915 /*
3916 * On Tegra210 and earlier, provide our own implementation for the
3917 * pad output clock.
3918 */
3919 if (!sor->clk_pad) {
3920 char *name;
3921
3922 name = devm_kasprintf(sor->dev, GFP_KERNEL, "sor%u_pad_clkout",
3923 sor->index);
3924 if (!name) {
3925 err = -ENOMEM;
3926 goto unregister;
3927 }
3928
3929 err = host1x_client_resume(&sor->client);
3930 if (err < 0) {
3931 dev_err(sor->dev, "failed to resume: %d\n", err);
3932 goto unregister;
3933 }
3934
3935 sor->clk_pad = tegra_clk_sor_pad_register(sor, name);
3936 host1x_client_suspend(&sor->client);
3937 }
3938
3939 if (IS_ERR(sor->clk_pad)) {
3940 err = PTR_ERR(sor->clk_pad);
3941 dev_err(sor->dev, "failed to register SOR pad clock: %d\n",
3942 err);
3943 goto unregister;
3944 }
3945
3946 return 0;
3947
3948unregister:
3949 host1x_client_unregister(&sor->client);
3950rpm_disable:
3951 pm_runtime_disable(&pdev->dev);
3952remove:
3953 if (sor->ops && sor->ops->remove)
3954 sor->ops->remove(sor);
3955output:
3956 tegra_output_remove(&sor->output);
3957 return err;
3958}
3959
3960static int tegra_sor_remove(struct platform_device *pdev)
3961{
3962 struct tegra_sor *sor = platform_get_drvdata(pdev);
3963 int err;
3964
3965 err = host1x_client_unregister(&sor->client);
3966 if (err < 0) {
3967 dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
3968 err);
3969 return err;
3970 }
3971
3972 pm_runtime_disable(&pdev->dev);
3973
3974 if (sor->ops && sor->ops->remove) {
3975 err = sor->ops->remove(sor);
3976 if (err < 0)
3977 dev_err(&pdev->dev, "failed to remove SOR: %d\n", err);
3978 }
3979
3980 tegra_output_remove(&sor->output);
3981
3982 return 0;
3983}
3984
3985static int __maybe_unused tegra_sor_suspend(struct device *dev)
3986{
3987 struct tegra_sor *sor = dev_get_drvdata(dev);
3988 int err;
3989
3990 err = tegra_output_suspend(&sor->output);
3991 if (err < 0) {
3992 dev_err(dev, "failed to suspend output: %d\n", err);
3993 return err;
3994 }
3995
3996 if (sor->hdmi_supply) {
3997 err = regulator_disable(sor->hdmi_supply);
3998 if (err < 0) {
3999 tegra_output_resume(&sor->output);
4000 return err;
4001 }
4002 }
4003
4004 return 0;
4005}
4006
4007static int __maybe_unused tegra_sor_resume(struct device *dev)
4008{
4009 struct tegra_sor *sor = dev_get_drvdata(dev);
4010 int err;
4011
4012 if (sor->hdmi_supply) {
4013 err = regulator_enable(sor->hdmi_supply);
4014 if (err < 0)
4015 return err;
4016 }
4017
4018 err = tegra_output_resume(&sor->output);
4019 if (err < 0) {
4020 dev_err(dev, "failed to resume output: %d\n", err);
4021
4022 if (sor->hdmi_supply)
4023 regulator_disable(sor->hdmi_supply);
4024
4025 return err;
4026 }
4027
4028 return 0;
4029}
4030
4031static const struct dev_pm_ops tegra_sor_pm_ops = {
4032 SET_SYSTEM_SLEEP_PM_OPS(tegra_sor_suspend, tegra_sor_resume)
4033};
4034
4035struct platform_driver tegra_sor_driver = {
4036 .driver = {
4037 .name = "tegra-sor",
4038 .of_match_table = tegra_sor_of_match,
4039 .pm = &tegra_sor_pm_ops,
4040 },
4041 .probe = tegra_sor_probe,
4042 .remove = tegra_sor_remove,
4043};