Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * property.c - Unified device property interface.
4 *
5 * Copyright (C) 2014, Intel Corporation
6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 * Mika Westerberg <mika.westerberg@linux.intel.com>
8 */
9
10#include <linux/acpi.h>
11#include <linux/export.h>
12#include <linux/kernel.h>
13#include <linux/of.h>
14#include <linux/of_address.h>
15#include <linux/of_graph.h>
16#include <linux/of_irq.h>
17#include <linux/property.h>
18#include <linux/etherdevice.h>
19#include <linux/phy.h>
20
21struct property_set {
22 struct device *dev;
23 struct fwnode_handle fwnode;
24 const struct property_entry *properties;
25};
26
27static const struct fwnode_operations pset_fwnode_ops;
28
29static inline bool is_pset_node(const struct fwnode_handle *fwnode)
30{
31 return !IS_ERR_OR_NULL(fwnode) && fwnode->ops == &pset_fwnode_ops;
32}
33
34#define to_pset_node(__fwnode) \
35 ({ \
36 typeof(__fwnode) __to_pset_node_fwnode = __fwnode; \
37 \
38 is_pset_node(__to_pset_node_fwnode) ? \
39 container_of(__to_pset_node_fwnode, \
40 struct property_set, fwnode) : \
41 NULL; \
42 })
43
44static const struct property_entry *
45pset_prop_get(const struct property_set *pset, const char *name)
46{
47 const struct property_entry *prop;
48
49 if (!pset || !pset->properties)
50 return NULL;
51
52 for (prop = pset->properties; prop->name; prop++)
53 if (!strcmp(name, prop->name))
54 return prop;
55
56 return NULL;
57}
58
59static const void *pset_prop_find(const struct property_set *pset,
60 const char *propname, size_t length)
61{
62 const struct property_entry *prop;
63 const void *pointer;
64
65 prop = pset_prop_get(pset, propname);
66 if (!prop)
67 return ERR_PTR(-EINVAL);
68 if (prop->is_array)
69 pointer = prop->pointer.raw_data;
70 else
71 pointer = &prop->value.raw_data;
72 if (!pointer)
73 return ERR_PTR(-ENODATA);
74 if (length > prop->length)
75 return ERR_PTR(-EOVERFLOW);
76 return pointer;
77}
78
79static int pset_prop_read_u8_array(const struct property_set *pset,
80 const char *propname,
81 u8 *values, size_t nval)
82{
83 const void *pointer;
84 size_t length = nval * sizeof(*values);
85
86 pointer = pset_prop_find(pset, propname, length);
87 if (IS_ERR(pointer))
88 return PTR_ERR(pointer);
89
90 memcpy(values, pointer, length);
91 return 0;
92}
93
94static int pset_prop_read_u16_array(const struct property_set *pset,
95 const char *propname,
96 u16 *values, size_t nval)
97{
98 const void *pointer;
99 size_t length = nval * sizeof(*values);
100
101 pointer = pset_prop_find(pset, propname, length);
102 if (IS_ERR(pointer))
103 return PTR_ERR(pointer);
104
105 memcpy(values, pointer, length);
106 return 0;
107}
108
109static int pset_prop_read_u32_array(const struct property_set *pset,
110 const char *propname,
111 u32 *values, size_t nval)
112{
113 const void *pointer;
114 size_t length = nval * sizeof(*values);
115
116 pointer = pset_prop_find(pset, propname, length);
117 if (IS_ERR(pointer))
118 return PTR_ERR(pointer);
119
120 memcpy(values, pointer, length);
121 return 0;
122}
123
124static int pset_prop_read_u64_array(const struct property_set *pset,
125 const char *propname,
126 u64 *values, size_t nval)
127{
128 const void *pointer;
129 size_t length = nval * sizeof(*values);
130
131 pointer = pset_prop_find(pset, propname, length);
132 if (IS_ERR(pointer))
133 return PTR_ERR(pointer);
134
135 memcpy(values, pointer, length);
136 return 0;
137}
138
139static int pset_prop_count_elems_of_size(const struct property_set *pset,
140 const char *propname, size_t length)
141{
142 const struct property_entry *prop;
143
144 prop = pset_prop_get(pset, propname);
145 if (!prop)
146 return -EINVAL;
147
148 return prop->length / length;
149}
150
151static int pset_prop_read_string_array(const struct property_set *pset,
152 const char *propname,
153 const char **strings, size_t nval)
154{
155 const struct property_entry *prop;
156 const void *pointer;
157 size_t array_len, length;
158
159 /* Find out the array length. */
160 prop = pset_prop_get(pset, propname);
161 if (!prop)
162 return -EINVAL;
163
164 if (!prop->is_array)
165 /* The array length for a non-array string property is 1. */
166 array_len = 1;
167 else
168 /* Find the length of an array. */
169 array_len = pset_prop_count_elems_of_size(pset, propname,
170 sizeof(const char *));
171
172 /* Return how many there are if strings is NULL. */
173 if (!strings)
174 return array_len;
175
176 array_len = min(nval, array_len);
177 length = array_len * sizeof(*strings);
178
179 pointer = pset_prop_find(pset, propname, length);
180 if (IS_ERR(pointer))
181 return PTR_ERR(pointer);
182
183 memcpy(strings, pointer, length);
184
185 return array_len;
186}
187
188struct fwnode_handle *dev_fwnode(struct device *dev)
189{
190 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
191 &dev->of_node->fwnode : dev->fwnode;
192}
193EXPORT_SYMBOL_GPL(dev_fwnode);
194
195static bool pset_fwnode_property_present(const struct fwnode_handle *fwnode,
196 const char *propname)
197{
198 return !!pset_prop_get(to_pset_node(fwnode), propname);
199}
200
201static int pset_fwnode_read_int_array(const struct fwnode_handle *fwnode,
202 const char *propname,
203 unsigned int elem_size, void *val,
204 size_t nval)
205{
206 const struct property_set *node = to_pset_node(fwnode);
207
208 if (!val)
209 return pset_prop_count_elems_of_size(node, propname, elem_size);
210
211 switch (elem_size) {
212 case sizeof(u8):
213 return pset_prop_read_u8_array(node, propname, val, nval);
214 case sizeof(u16):
215 return pset_prop_read_u16_array(node, propname, val, nval);
216 case sizeof(u32):
217 return pset_prop_read_u32_array(node, propname, val, nval);
218 case sizeof(u64):
219 return pset_prop_read_u64_array(node, propname, val, nval);
220 }
221
222 return -ENXIO;
223}
224
225static int
226pset_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
227 const char *propname,
228 const char **val, size_t nval)
229{
230 return pset_prop_read_string_array(to_pset_node(fwnode), propname,
231 val, nval);
232}
233
234static const struct fwnode_operations pset_fwnode_ops = {
235 .property_present = pset_fwnode_property_present,
236 .property_read_int_array = pset_fwnode_read_int_array,
237 .property_read_string_array = pset_fwnode_property_read_string_array,
238};
239
240/**
241 * device_property_present - check if a property of a device is present
242 * @dev: Device whose property is being checked
243 * @propname: Name of the property
244 *
245 * Check if property @propname is present in the device firmware description.
246 */
247bool device_property_present(struct device *dev, const char *propname)
248{
249 return fwnode_property_present(dev_fwnode(dev), propname);
250}
251EXPORT_SYMBOL_GPL(device_property_present);
252
253/**
254 * fwnode_property_present - check if a property of a firmware node is present
255 * @fwnode: Firmware node whose property to check
256 * @propname: Name of the property
257 */
258bool fwnode_property_present(const struct fwnode_handle *fwnode,
259 const char *propname)
260{
261 bool ret;
262
263 ret = fwnode_call_bool_op(fwnode, property_present, propname);
264 if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
265 !IS_ERR_OR_NULL(fwnode->secondary))
266 ret = fwnode_call_bool_op(fwnode->secondary, property_present,
267 propname);
268 return ret;
269}
270EXPORT_SYMBOL_GPL(fwnode_property_present);
271
272/**
273 * device_property_read_u8_array - return a u8 array property of a device
274 * @dev: Device to get the property of
275 * @propname: Name of the property
276 * @val: The values are stored here or %NULL to return the number of values
277 * @nval: Size of the @val array
278 *
279 * Function reads an array of u8 properties with @propname from the device
280 * firmware description and stores them to @val if found.
281 *
282 * Return: number of values if @val was %NULL,
283 * %0 if the property was found (success),
284 * %-EINVAL if given arguments are not valid,
285 * %-ENODATA if the property does not have a value,
286 * %-EPROTO if the property is not an array of numbers,
287 * %-EOVERFLOW if the size of the property is not as expected.
288 * %-ENXIO if no suitable firmware interface is present.
289 */
290int device_property_read_u8_array(struct device *dev, const char *propname,
291 u8 *val, size_t nval)
292{
293 return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
294}
295EXPORT_SYMBOL_GPL(device_property_read_u8_array);
296
297/**
298 * device_property_read_u16_array - return a u16 array property of a device
299 * @dev: Device to get the property of
300 * @propname: Name of the property
301 * @val: The values are stored here or %NULL to return the number of values
302 * @nval: Size of the @val array
303 *
304 * Function reads an array of u16 properties with @propname from the device
305 * firmware description and stores them to @val if found.
306 *
307 * Return: number of values if @val was %NULL,
308 * %0 if the property was found (success),
309 * %-EINVAL if given arguments are not valid,
310 * %-ENODATA if the property does not have a value,
311 * %-EPROTO if the property is not an array of numbers,
312 * %-EOVERFLOW if the size of the property is not as expected.
313 * %-ENXIO if no suitable firmware interface is present.
314 */
315int device_property_read_u16_array(struct device *dev, const char *propname,
316 u16 *val, size_t nval)
317{
318 return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
319}
320EXPORT_SYMBOL_GPL(device_property_read_u16_array);
321
322/**
323 * device_property_read_u32_array - return a u32 array property of a device
324 * @dev: Device to get the property of
325 * @propname: Name of the property
326 * @val: The values are stored here or %NULL to return the number of values
327 * @nval: Size of the @val array
328 *
329 * Function reads an array of u32 properties with @propname from the device
330 * firmware description and stores them to @val if found.
331 *
332 * Return: number of values if @val was %NULL,
333 * %0 if the property was found (success),
334 * %-EINVAL if given arguments are not valid,
335 * %-ENODATA if the property does not have a value,
336 * %-EPROTO if the property is not an array of numbers,
337 * %-EOVERFLOW if the size of the property is not as expected.
338 * %-ENXIO if no suitable firmware interface is present.
339 */
340int device_property_read_u32_array(struct device *dev, const char *propname,
341 u32 *val, size_t nval)
342{
343 return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
344}
345EXPORT_SYMBOL_GPL(device_property_read_u32_array);
346
347/**
348 * device_property_read_u64_array - return a u64 array property of a device
349 * @dev: Device to get the property of
350 * @propname: Name of the property
351 * @val: The values are stored here or %NULL to return the number of values
352 * @nval: Size of the @val array
353 *
354 * Function reads an array of u64 properties with @propname from the device
355 * firmware description and stores them to @val if found.
356 *
357 * Return: number of values if @val was %NULL,
358 * %0 if the property was found (success),
359 * %-EINVAL if given arguments are not valid,
360 * %-ENODATA if the property does not have a value,
361 * %-EPROTO if the property is not an array of numbers,
362 * %-EOVERFLOW if the size of the property is not as expected.
363 * %-ENXIO if no suitable firmware interface is present.
364 */
365int device_property_read_u64_array(struct device *dev, const char *propname,
366 u64 *val, size_t nval)
367{
368 return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
369}
370EXPORT_SYMBOL_GPL(device_property_read_u64_array);
371
372/**
373 * device_property_read_string_array - return a string array property of device
374 * @dev: Device to get the property of
375 * @propname: Name of the property
376 * @val: The values are stored here or %NULL to return the number of values
377 * @nval: Size of the @val array
378 *
379 * Function reads an array of string properties with @propname from the device
380 * firmware description and stores them to @val if found.
381 *
382 * Return: number of values read on success if @val is non-NULL,
383 * number of values available on success if @val is NULL,
384 * %-EINVAL if given arguments are not valid,
385 * %-ENODATA if the property does not have a value,
386 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
387 * %-EOVERFLOW if the size of the property is not as expected.
388 * %-ENXIO if no suitable firmware interface is present.
389 */
390int device_property_read_string_array(struct device *dev, const char *propname,
391 const char **val, size_t nval)
392{
393 return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
394}
395EXPORT_SYMBOL_GPL(device_property_read_string_array);
396
397/**
398 * device_property_read_string - return a string property of a device
399 * @dev: Device to get the property of
400 * @propname: Name of the property
401 * @val: The value is stored here
402 *
403 * Function reads property @propname from the device firmware description and
404 * stores the value into @val if found. The value is checked to be a string.
405 *
406 * Return: %0 if the property was found (success),
407 * %-EINVAL if given arguments are not valid,
408 * %-ENODATA if the property does not have a value,
409 * %-EPROTO or %-EILSEQ if the property type is not a string.
410 * %-ENXIO if no suitable firmware interface is present.
411 */
412int device_property_read_string(struct device *dev, const char *propname,
413 const char **val)
414{
415 return fwnode_property_read_string(dev_fwnode(dev), propname, val);
416}
417EXPORT_SYMBOL_GPL(device_property_read_string);
418
419/**
420 * device_property_match_string - find a string in an array and return index
421 * @dev: Device to get the property of
422 * @propname: Name of the property holding the array
423 * @string: String to look for
424 *
425 * Find a given string in a string array and if it is found return the
426 * index back.
427 *
428 * Return: %0 if the property was found (success),
429 * %-EINVAL if given arguments are not valid,
430 * %-ENODATA if the property does not have a value,
431 * %-EPROTO if the property is not an array of strings,
432 * %-ENXIO if no suitable firmware interface is present.
433 */
434int device_property_match_string(struct device *dev, const char *propname,
435 const char *string)
436{
437 return fwnode_property_match_string(dev_fwnode(dev), propname, string);
438}
439EXPORT_SYMBOL_GPL(device_property_match_string);
440
441static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
442 const char *propname,
443 unsigned int elem_size, void *val,
444 size_t nval)
445{
446 int ret;
447
448 ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
449 elem_size, val, nval);
450 if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
451 !IS_ERR_OR_NULL(fwnode->secondary))
452 ret = fwnode_call_int_op(
453 fwnode->secondary, property_read_int_array, propname,
454 elem_size, val, nval);
455
456 return ret;
457}
458
459/**
460 * fwnode_property_read_u8_array - return a u8 array property of firmware node
461 * @fwnode: Firmware node to get the property of
462 * @propname: Name of the property
463 * @val: The values are stored here or %NULL to return the number of values
464 * @nval: Size of the @val array
465 *
466 * Read an array of u8 properties with @propname from @fwnode and stores them to
467 * @val if found.
468 *
469 * Return: number of values if @val was %NULL,
470 * %0 if the property was found (success),
471 * %-EINVAL if given arguments are not valid,
472 * %-ENODATA if the property does not have a value,
473 * %-EPROTO if the property is not an array of numbers,
474 * %-EOVERFLOW if the size of the property is not as expected,
475 * %-ENXIO if no suitable firmware interface is present.
476 */
477int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
478 const char *propname, u8 *val, size_t nval)
479{
480 return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
481 val, nval);
482}
483EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
484
485/**
486 * fwnode_property_read_u16_array - return a u16 array property of firmware node
487 * @fwnode: Firmware node to get the property of
488 * @propname: Name of the property
489 * @val: The values are stored here or %NULL to return the number of values
490 * @nval: Size of the @val array
491 *
492 * Read an array of u16 properties with @propname from @fwnode and store them to
493 * @val if found.
494 *
495 * Return: number of values if @val was %NULL,
496 * %0 if the property was found (success),
497 * %-EINVAL if given arguments are not valid,
498 * %-ENODATA if the property does not have a value,
499 * %-EPROTO if the property is not an array of numbers,
500 * %-EOVERFLOW if the size of the property is not as expected,
501 * %-ENXIO if no suitable firmware interface is present.
502 */
503int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
504 const char *propname, u16 *val, size_t nval)
505{
506 return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
507 val, nval);
508}
509EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
510
511/**
512 * fwnode_property_read_u32_array - return a u32 array property of firmware node
513 * @fwnode: Firmware node to get the property of
514 * @propname: Name of the property
515 * @val: The values are stored here or %NULL to return the number of values
516 * @nval: Size of the @val array
517 *
518 * Read an array of u32 properties with @propname from @fwnode store them to
519 * @val if found.
520 *
521 * Return: number of values if @val was %NULL,
522 * %0 if the property was found (success),
523 * %-EINVAL if given arguments are not valid,
524 * %-ENODATA if the property does not have a value,
525 * %-EPROTO if the property is not an array of numbers,
526 * %-EOVERFLOW if the size of the property is not as expected,
527 * %-ENXIO if no suitable firmware interface is present.
528 */
529int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
530 const char *propname, u32 *val, size_t nval)
531{
532 return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
533 val, nval);
534}
535EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
536
537/**
538 * fwnode_property_read_u64_array - return a u64 array property firmware node
539 * @fwnode: Firmware node to get the property of
540 * @propname: Name of the property
541 * @val: The values are stored here or %NULL to return the number of values
542 * @nval: Size of the @val array
543 *
544 * Read an array of u64 properties with @propname from @fwnode and store them to
545 * @val if found.
546 *
547 * Return: number of values if @val was %NULL,
548 * %0 if the property was found (success),
549 * %-EINVAL if given arguments are not valid,
550 * %-ENODATA if the property does not have a value,
551 * %-EPROTO if the property is not an array of numbers,
552 * %-EOVERFLOW if the size of the property is not as expected,
553 * %-ENXIO if no suitable firmware interface is present.
554 */
555int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
556 const char *propname, u64 *val, size_t nval)
557{
558 return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
559 val, nval);
560}
561EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
562
563/**
564 * fwnode_property_read_string_array - return string array property of a node
565 * @fwnode: Firmware node to get the property of
566 * @propname: Name of the property
567 * @val: The values are stored here or %NULL to return the number of values
568 * @nval: Size of the @val array
569 *
570 * Read an string list property @propname from the given firmware node and store
571 * them to @val if found.
572 *
573 * Return: number of values read on success if @val is non-NULL,
574 * number of values available on success if @val is NULL,
575 * %-EINVAL if given arguments are not valid,
576 * %-ENODATA if the property does not have a value,
577 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
578 * %-EOVERFLOW if the size of the property is not as expected,
579 * %-ENXIO if no suitable firmware interface is present.
580 */
581int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
582 const char *propname, const char **val,
583 size_t nval)
584{
585 int ret;
586
587 ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
588 val, nval);
589 if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
590 !IS_ERR_OR_NULL(fwnode->secondary))
591 ret = fwnode_call_int_op(fwnode->secondary,
592 property_read_string_array, propname,
593 val, nval);
594 return ret;
595}
596EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
597
598/**
599 * fwnode_property_read_string - return a string property of a firmware node
600 * @fwnode: Firmware node to get the property of
601 * @propname: Name of the property
602 * @val: The value is stored here
603 *
604 * Read property @propname from the given firmware node and store the value into
605 * @val if found. The value is checked to be a string.
606 *
607 * Return: %0 if the property was found (success),
608 * %-EINVAL if given arguments are not valid,
609 * %-ENODATA if the property does not have a value,
610 * %-EPROTO or %-EILSEQ if the property is not a string,
611 * %-ENXIO if no suitable firmware interface is present.
612 */
613int fwnode_property_read_string(const struct fwnode_handle *fwnode,
614 const char *propname, const char **val)
615{
616 int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
617
618 return ret < 0 ? ret : 0;
619}
620EXPORT_SYMBOL_GPL(fwnode_property_read_string);
621
622/**
623 * fwnode_property_match_string - find a string in an array and return index
624 * @fwnode: Firmware node to get the property of
625 * @propname: Name of the property holding the array
626 * @string: String to look for
627 *
628 * Find a given string in a string array and if it is found return the
629 * index back.
630 *
631 * Return: %0 if the property was found (success),
632 * %-EINVAL if given arguments are not valid,
633 * %-ENODATA if the property does not have a value,
634 * %-EPROTO if the property is not an array of strings,
635 * %-ENXIO if no suitable firmware interface is present.
636 */
637int fwnode_property_match_string(const struct fwnode_handle *fwnode,
638 const char *propname, const char *string)
639{
640 const char **values;
641 int nval, ret;
642
643 nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
644 if (nval < 0)
645 return nval;
646
647 if (nval == 0)
648 return -ENODATA;
649
650 values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
651 if (!values)
652 return -ENOMEM;
653
654 ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
655 if (ret < 0)
656 goto out;
657
658 ret = match_string(values, nval, string);
659 if (ret < 0)
660 ret = -ENODATA;
661out:
662 kfree(values);
663 return ret;
664}
665EXPORT_SYMBOL_GPL(fwnode_property_match_string);
666
667/**
668 * fwnode_property_get_reference_args() - Find a reference with arguments
669 * @fwnode: Firmware node where to look for the reference
670 * @prop: The name of the property
671 * @nargs_prop: The name of the property telling the number of
672 * arguments in the referred node. NULL if @nargs is known,
673 * otherwise @nargs is ignored. Only relevant on OF.
674 * @nargs: Number of arguments. Ignored if @nargs_prop is non-NULL.
675 * @index: Index of the reference, from zero onwards.
676 * @args: Result structure with reference and integer arguments.
677 *
678 * Obtain a reference based on a named property in an fwnode, with
679 * integer arguments.
680 *
681 * Caller is responsible to call fwnode_handle_put() on the returned
682 * args->fwnode pointer.
683 *
684 * Returns: %0 on success
685 * %-ENOENT when the index is out of bounds, the index has an empty
686 * reference or the property was not found
687 * %-EINVAL on parse error
688 */
689int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
690 const char *prop, const char *nargs_prop,
691 unsigned int nargs, unsigned int index,
692 struct fwnode_reference_args *args)
693{
694 return fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
695 nargs, index, args);
696}
697EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
698
699static void property_entry_free_data(const struct property_entry *p)
700{
701 size_t i, nval;
702
703 if (p->is_array) {
704 if (p->is_string && p->pointer.str) {
705 nval = p->length / sizeof(const char *);
706 for (i = 0; i < nval; i++)
707 kfree(p->pointer.str[i]);
708 }
709 kfree(p->pointer.raw_data);
710 } else if (p->is_string) {
711 kfree(p->value.str);
712 }
713 kfree(p->name);
714}
715
716static int property_copy_string_array(struct property_entry *dst,
717 const struct property_entry *src)
718{
719 char **d;
720 size_t nval = src->length / sizeof(*d);
721 int i;
722
723 d = kcalloc(nval, sizeof(*d), GFP_KERNEL);
724 if (!d)
725 return -ENOMEM;
726
727 for (i = 0; i < nval; i++) {
728 d[i] = kstrdup(src->pointer.str[i], GFP_KERNEL);
729 if (!d[i] && src->pointer.str[i]) {
730 while (--i >= 0)
731 kfree(d[i]);
732 kfree(d);
733 return -ENOMEM;
734 }
735 }
736
737 dst->pointer.raw_data = d;
738 return 0;
739}
740
741static int property_entry_copy_data(struct property_entry *dst,
742 const struct property_entry *src)
743{
744 int error;
745
746 if (src->is_array) {
747 if (!src->length)
748 return -ENODATA;
749
750 if (src->is_string) {
751 error = property_copy_string_array(dst, src);
752 if (error)
753 return error;
754 } else {
755 dst->pointer.raw_data = kmemdup(src->pointer.raw_data,
756 src->length, GFP_KERNEL);
757 if (!dst->pointer.raw_data)
758 return -ENOMEM;
759 }
760 } else if (src->is_string) {
761 dst->value.str = kstrdup(src->value.str, GFP_KERNEL);
762 if (!dst->value.str && src->value.str)
763 return -ENOMEM;
764 } else {
765 dst->value.raw_data = src->value.raw_data;
766 }
767
768 dst->length = src->length;
769 dst->is_array = src->is_array;
770 dst->is_string = src->is_string;
771
772 dst->name = kstrdup(src->name, GFP_KERNEL);
773 if (!dst->name)
774 goto out_free_data;
775
776 return 0;
777
778out_free_data:
779 property_entry_free_data(dst);
780 return -ENOMEM;
781}
782
783/**
784 * property_entries_dup - duplicate array of properties
785 * @properties: array of properties to copy
786 *
787 * This function creates a deep copy of the given NULL-terminated array
788 * of property entries.
789 */
790struct property_entry *
791property_entries_dup(const struct property_entry *properties)
792{
793 struct property_entry *p;
794 int i, n = 0;
795
796 while (properties[n].name)
797 n++;
798
799 p = kcalloc(n + 1, sizeof(*p), GFP_KERNEL);
800 if (!p)
801 return ERR_PTR(-ENOMEM);
802
803 for (i = 0; i < n; i++) {
804 int ret = property_entry_copy_data(&p[i], &properties[i]);
805 if (ret) {
806 while (--i >= 0)
807 property_entry_free_data(&p[i]);
808 kfree(p);
809 return ERR_PTR(ret);
810 }
811 }
812
813 return p;
814}
815EXPORT_SYMBOL_GPL(property_entries_dup);
816
817/**
818 * property_entries_free - free previously allocated array of properties
819 * @properties: array of properties to destroy
820 *
821 * This function frees given NULL-terminated array of property entries,
822 * along with their data.
823 */
824void property_entries_free(const struct property_entry *properties)
825{
826 const struct property_entry *p;
827
828 for (p = properties; p->name; p++)
829 property_entry_free_data(p);
830
831 kfree(properties);
832}
833EXPORT_SYMBOL_GPL(property_entries_free);
834
835/**
836 * pset_free_set - releases memory allocated for copied property set
837 * @pset: Property set to release
838 *
839 * Function takes previously copied property set and releases all the
840 * memory allocated to it.
841 */
842static void pset_free_set(struct property_set *pset)
843{
844 if (!pset)
845 return;
846
847 property_entries_free(pset->properties);
848 kfree(pset);
849}
850
851/**
852 * pset_copy_set - copies property set
853 * @pset: Property set to copy
854 *
855 * This function takes a deep copy of the given property set and returns
856 * pointer to the copy. Call device_free_property_set() to free resources
857 * allocated in this function.
858 *
859 * Return: Pointer to the new property set or error pointer.
860 */
861static struct property_set *pset_copy_set(const struct property_set *pset)
862{
863 struct property_entry *properties;
864 struct property_set *p;
865
866 p = kzalloc(sizeof(*p), GFP_KERNEL);
867 if (!p)
868 return ERR_PTR(-ENOMEM);
869
870 properties = property_entries_dup(pset->properties);
871 if (IS_ERR(properties)) {
872 kfree(p);
873 return ERR_CAST(properties);
874 }
875
876 p->properties = properties;
877 return p;
878}
879
880/**
881 * device_remove_properties - Remove properties from a device object.
882 * @dev: Device whose properties to remove.
883 *
884 * The function removes properties previously associated to the device
885 * secondary firmware node with device_add_properties(). Memory allocated
886 * to the properties will also be released.
887 */
888void device_remove_properties(struct device *dev)
889{
890 struct fwnode_handle *fwnode;
891 struct property_set *pset;
892
893 fwnode = dev_fwnode(dev);
894 if (!fwnode)
895 return;
896 /*
897 * Pick either primary or secondary node depending which one holds
898 * the pset. If there is no real firmware node (ACPI/DT) primary
899 * will hold the pset.
900 */
901 pset = to_pset_node(fwnode);
902 if (pset) {
903 set_primary_fwnode(dev, NULL);
904 } else {
905 pset = to_pset_node(fwnode->secondary);
906 if (pset && dev == pset->dev)
907 set_secondary_fwnode(dev, NULL);
908 }
909 if (pset && dev == pset->dev)
910 pset_free_set(pset);
911}
912EXPORT_SYMBOL_GPL(device_remove_properties);
913
914/**
915 * device_add_properties - Add a collection of properties to a device object.
916 * @dev: Device to add properties to.
917 * @properties: Collection of properties to add.
918 *
919 * Associate a collection of device properties represented by @properties with
920 * @dev as its secondary firmware node. The function takes a copy of
921 * @properties.
922 */
923int device_add_properties(struct device *dev,
924 const struct property_entry *properties)
925{
926 struct property_set *p, pset;
927
928 if (!properties)
929 return -EINVAL;
930
931 pset.properties = properties;
932
933 p = pset_copy_set(&pset);
934 if (IS_ERR(p))
935 return PTR_ERR(p);
936
937 p->fwnode.ops = &pset_fwnode_ops;
938 set_secondary_fwnode(dev, &p->fwnode);
939 p->dev = dev;
940 return 0;
941}
942EXPORT_SYMBOL_GPL(device_add_properties);
943
944/**
945 * fwnode_get_next_parent - Iterate to the node's parent
946 * @fwnode: Firmware whose parent is retrieved
947 *
948 * This is like fwnode_get_parent() except that it drops the refcount
949 * on the passed node, making it suitable for iterating through a
950 * node's parents.
951 *
952 * Returns a node pointer with refcount incremented, use
953 * fwnode_handle_node() on it when done.
954 */
955struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
956{
957 struct fwnode_handle *parent = fwnode_get_parent(fwnode);
958
959 fwnode_handle_put(fwnode);
960
961 return parent;
962}
963EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
964
965/**
966 * fwnode_get_parent - Return parent firwmare node
967 * @fwnode: Firmware whose parent is retrieved
968 *
969 * Return parent firmware node of the given node if possible or %NULL if no
970 * parent was available.
971 */
972struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
973{
974 return fwnode_call_ptr_op(fwnode, get_parent);
975}
976EXPORT_SYMBOL_GPL(fwnode_get_parent);
977
978/**
979 * fwnode_get_next_child_node - Return the next child node handle for a node
980 * @fwnode: Firmware node to find the next child node for.
981 * @child: Handle to one of the node's child nodes or a %NULL handle.
982 */
983struct fwnode_handle *
984fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
985 struct fwnode_handle *child)
986{
987 return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
988}
989EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
990
991/**
992 * fwnode_get_next_available_child_node - Return the next
993 * available child node handle for a node
994 * @fwnode: Firmware node to find the next child node for.
995 * @child: Handle to one of the node's child nodes or a %NULL handle.
996 */
997struct fwnode_handle *
998fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
999 struct fwnode_handle *child)
1000{
1001 struct fwnode_handle *next_child = child;
1002
1003 if (!fwnode)
1004 return NULL;
1005
1006 do {
1007 next_child = fwnode_get_next_child_node(fwnode, next_child);
1008
1009 if (!next_child || fwnode_device_is_available(next_child))
1010 break;
1011 } while (next_child);
1012
1013 return next_child;
1014}
1015EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
1016
1017/**
1018 * device_get_next_child_node - Return the next child node handle for a device
1019 * @dev: Device to find the next child node for.
1020 * @child: Handle to one of the device's child nodes or a null handle.
1021 */
1022struct fwnode_handle *device_get_next_child_node(struct device *dev,
1023 struct fwnode_handle *child)
1024{
1025 struct acpi_device *adev = ACPI_COMPANION(dev);
1026 struct fwnode_handle *fwnode = NULL;
1027
1028 if (dev->of_node)
1029 fwnode = &dev->of_node->fwnode;
1030 else if (adev)
1031 fwnode = acpi_fwnode_handle(adev);
1032
1033 return fwnode_get_next_child_node(fwnode, child);
1034}
1035EXPORT_SYMBOL_GPL(device_get_next_child_node);
1036
1037/**
1038 * fwnode_get_named_child_node - Return first matching named child node handle
1039 * @fwnode: Firmware node to find the named child node for.
1040 * @childname: String to match child node name against.
1041 */
1042struct fwnode_handle *
1043fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
1044 const char *childname)
1045{
1046 return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
1047}
1048EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
1049
1050/**
1051 * device_get_named_child_node - Return first matching named child node handle
1052 * @dev: Device to find the named child node for.
1053 * @childname: String to match child node name against.
1054 */
1055struct fwnode_handle *device_get_named_child_node(struct device *dev,
1056 const char *childname)
1057{
1058 return fwnode_get_named_child_node(dev_fwnode(dev), childname);
1059}
1060EXPORT_SYMBOL_GPL(device_get_named_child_node);
1061
1062/**
1063 * fwnode_handle_get - Obtain a reference to a device node
1064 * @fwnode: Pointer to the device node to obtain the reference to.
1065 *
1066 * Returns the fwnode handle.
1067 */
1068struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
1069{
1070 if (!fwnode_has_op(fwnode, get))
1071 return fwnode;
1072
1073 return fwnode_call_ptr_op(fwnode, get);
1074}
1075EXPORT_SYMBOL_GPL(fwnode_handle_get);
1076
1077/**
1078 * fwnode_handle_put - Drop reference to a device node
1079 * @fwnode: Pointer to the device node to drop the reference to.
1080 *
1081 * This has to be used when terminating device_for_each_child_node() iteration
1082 * with break or return to prevent stale device node references from being left
1083 * behind.
1084 */
1085void fwnode_handle_put(struct fwnode_handle *fwnode)
1086{
1087 fwnode_call_void_op(fwnode, put);
1088}
1089EXPORT_SYMBOL_GPL(fwnode_handle_put);
1090
1091/**
1092 * fwnode_device_is_available - check if a device is available for use
1093 * @fwnode: Pointer to the fwnode of the device.
1094 */
1095bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
1096{
1097 return fwnode_call_bool_op(fwnode, device_is_available);
1098}
1099EXPORT_SYMBOL_GPL(fwnode_device_is_available);
1100
1101/**
1102 * device_get_child_node_count - return the number of child nodes for device
1103 * @dev: Device to cound the child nodes for
1104 */
1105unsigned int device_get_child_node_count(struct device *dev)
1106{
1107 struct fwnode_handle *child;
1108 unsigned int count = 0;
1109
1110 device_for_each_child_node(dev, child)
1111 count++;
1112
1113 return count;
1114}
1115EXPORT_SYMBOL_GPL(device_get_child_node_count);
1116
1117bool device_dma_supported(struct device *dev)
1118{
1119 /* For DT, this is always supported.
1120 * For ACPI, this depends on CCA, which
1121 * is determined by the acpi_dma_supported().
1122 */
1123 if (IS_ENABLED(CONFIG_OF) && dev->of_node)
1124 return true;
1125
1126 return acpi_dma_supported(ACPI_COMPANION(dev));
1127}
1128EXPORT_SYMBOL_GPL(device_dma_supported);
1129
1130enum dev_dma_attr device_get_dma_attr(struct device *dev)
1131{
1132 enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;
1133
1134 if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
1135 if (of_dma_is_coherent(dev->of_node))
1136 attr = DEV_DMA_COHERENT;
1137 else
1138 attr = DEV_DMA_NON_COHERENT;
1139 } else
1140 attr = acpi_get_dma_attr(ACPI_COMPANION(dev));
1141
1142 return attr;
1143}
1144EXPORT_SYMBOL_GPL(device_get_dma_attr);
1145
1146/**
1147 * fwnode_get_phy_mode - Get phy mode for given firmware node
1148 * @fwnode: Pointer to the given node
1149 *
1150 * The function gets phy interface string from property 'phy-mode' or
1151 * 'phy-connection-type', and return its index in phy_modes table, or errno in
1152 * error case.
1153 */
1154int fwnode_get_phy_mode(struct fwnode_handle *fwnode)
1155{
1156 const char *pm;
1157 int err, i;
1158
1159 err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
1160 if (err < 0)
1161 err = fwnode_property_read_string(fwnode,
1162 "phy-connection-type", &pm);
1163 if (err < 0)
1164 return err;
1165
1166 for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
1167 if (!strcasecmp(pm, phy_modes(i)))
1168 return i;
1169
1170 return -ENODEV;
1171}
1172EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
1173
1174/**
1175 * device_get_phy_mode - Get phy mode for given device
1176 * @dev: Pointer to the given device
1177 *
1178 * The function gets phy interface string from property 'phy-mode' or
1179 * 'phy-connection-type', and return its index in phy_modes table, or errno in
1180 * error case.
1181 */
1182int device_get_phy_mode(struct device *dev)
1183{
1184 return fwnode_get_phy_mode(dev_fwnode(dev));
1185}
1186EXPORT_SYMBOL_GPL(device_get_phy_mode);
1187
1188static void *fwnode_get_mac_addr(struct fwnode_handle *fwnode,
1189 const char *name, char *addr,
1190 int alen)
1191{
1192 int ret = fwnode_property_read_u8_array(fwnode, name, addr, alen);
1193
1194 if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
1195 return addr;
1196 return NULL;
1197}
1198
1199/**
1200 * fwnode_get_mac_address - Get the MAC from the firmware node
1201 * @fwnode: Pointer to the firmware node
1202 * @addr: Address of buffer to store the MAC in
1203 * @alen: Length of the buffer pointed to by addr, should be ETH_ALEN
1204 *
1205 * Search the firmware node for the best MAC address to use. 'mac-address' is
1206 * checked first, because that is supposed to contain to "most recent" MAC
1207 * address. If that isn't set, then 'local-mac-address' is checked next,
1208 * because that is the default address. If that isn't set, then the obsolete
1209 * 'address' is checked, just in case we're using an old device tree.
1210 *
1211 * Note that the 'address' property is supposed to contain a virtual address of
1212 * the register set, but some DTS files have redefined that property to be the
1213 * MAC address.
1214 *
1215 * All-zero MAC addresses are rejected, because those could be properties that
1216 * exist in the firmware tables, but were not updated by the firmware. For
1217 * example, the DTS could define 'mac-address' and 'local-mac-address', with
1218 * zero MAC addresses. Some older U-Boots only initialized 'local-mac-address'.
1219 * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
1220 * exists but is all zeros.
1221*/
1222void *fwnode_get_mac_address(struct fwnode_handle *fwnode, char *addr, int alen)
1223{
1224 char *res;
1225
1226 res = fwnode_get_mac_addr(fwnode, "mac-address", addr, alen);
1227 if (res)
1228 return res;
1229
1230 res = fwnode_get_mac_addr(fwnode, "local-mac-address", addr, alen);
1231 if (res)
1232 return res;
1233
1234 return fwnode_get_mac_addr(fwnode, "address", addr, alen);
1235}
1236EXPORT_SYMBOL(fwnode_get_mac_address);
1237
1238/**
1239 * device_get_mac_address - Get the MAC for a given device
1240 * @dev: Pointer to the device
1241 * @addr: Address of buffer to store the MAC in
1242 * @alen: Length of the buffer pointed to by addr, should be ETH_ALEN
1243 */
1244void *device_get_mac_address(struct device *dev, char *addr, int alen)
1245{
1246 return fwnode_get_mac_address(dev_fwnode(dev), addr, alen);
1247}
1248EXPORT_SYMBOL(device_get_mac_address);
1249
1250/**
1251 * fwnode_irq_get - Get IRQ directly from a fwnode
1252 * @fwnode: Pointer to the firmware node
1253 * @index: Zero-based index of the IRQ
1254 *
1255 * Returns Linux IRQ number on success. Other values are determined
1256 * accordingly to acpi_/of_ irq_get() operation.
1257 */
1258int fwnode_irq_get(struct fwnode_handle *fwnode, unsigned int index)
1259{
1260 struct device_node *of_node = to_of_node(fwnode);
1261 struct resource res;
1262 int ret;
1263
1264 if (IS_ENABLED(CONFIG_OF) && of_node)
1265 return of_irq_get(of_node, index);
1266
1267 ret = acpi_irq_get(ACPI_HANDLE_FWNODE(fwnode), index, &res);
1268 if (ret)
1269 return ret;
1270
1271 return res.start;
1272}
1273EXPORT_SYMBOL(fwnode_irq_get);
1274
1275/**
1276 * device_graph_get_next_endpoint - Get next endpoint firmware node
1277 * @fwnode: Pointer to the parent firmware node
1278 * @prev: Previous endpoint node or %NULL to get the first
1279 *
1280 * Returns an endpoint firmware node pointer or %NULL if no more endpoints
1281 * are available.
1282 */
1283struct fwnode_handle *
1284fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1285 struct fwnode_handle *prev)
1286{
1287 return fwnode_call_ptr_op(fwnode, graph_get_next_endpoint, prev);
1288}
1289EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
1290
1291/**
1292 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
1293 * @endpoint: Endpoint firmware node of the port
1294 *
1295 * Return: the firmware node of the device the @endpoint belongs to.
1296 */
1297struct fwnode_handle *
1298fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
1299{
1300 struct fwnode_handle *port, *parent;
1301
1302 port = fwnode_get_parent(endpoint);
1303 parent = fwnode_call_ptr_op(port, graph_get_port_parent);
1304
1305 fwnode_handle_put(port);
1306
1307 return parent;
1308}
1309EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1310
1311/**
1312 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1313 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1314 *
1315 * Extracts firmware node of a remote device the @fwnode points to.
1316 */
1317struct fwnode_handle *
1318fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1319{
1320 struct fwnode_handle *endpoint, *parent;
1321
1322 endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1323 parent = fwnode_graph_get_port_parent(endpoint);
1324
1325 fwnode_handle_put(endpoint);
1326
1327 return parent;
1328}
1329EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1330
1331/**
1332 * fwnode_graph_get_remote_port - Return fwnode of a remote port
1333 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1334 *
1335 * Extracts firmware node of a remote port the @fwnode points to.
1336 */
1337struct fwnode_handle *
1338fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1339{
1340 return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1341}
1342EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1343
1344/**
1345 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1346 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1347 *
1348 * Extracts firmware node of a remote endpoint the @fwnode points to.
1349 */
1350struct fwnode_handle *
1351fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1352{
1353 return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1354}
1355EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1356
1357/**
1358 * fwnode_graph_get_remote_node - get remote parent node for given port/endpoint
1359 * @fwnode: pointer to parent fwnode_handle containing graph port/endpoint
1360 * @port_id: identifier of the parent port node
1361 * @endpoint_id: identifier of the endpoint node
1362 *
1363 * Return: Remote fwnode handle associated with remote endpoint node linked
1364 * to @node. Use fwnode_node_put() on it when done.
1365 */
1366struct fwnode_handle *
1367fwnode_graph_get_remote_node(const struct fwnode_handle *fwnode, u32 port_id,
1368 u32 endpoint_id)
1369{
1370 struct fwnode_handle *endpoint = NULL;
1371
1372 while ((endpoint = fwnode_graph_get_next_endpoint(fwnode, endpoint))) {
1373 struct fwnode_endpoint fwnode_ep;
1374 struct fwnode_handle *remote;
1375 int ret;
1376
1377 ret = fwnode_graph_parse_endpoint(endpoint, &fwnode_ep);
1378 if (ret < 0)
1379 continue;
1380
1381 if (fwnode_ep.port != port_id || fwnode_ep.id != endpoint_id)
1382 continue;
1383
1384 remote = fwnode_graph_get_remote_port_parent(endpoint);
1385 if (!remote)
1386 return NULL;
1387
1388 return fwnode_device_is_available(remote) ? remote : NULL;
1389 }
1390
1391 return NULL;
1392}
1393EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_node);
1394
1395/**
1396 * fwnode_graph_parse_endpoint - parse common endpoint node properties
1397 * @fwnode: pointer to endpoint fwnode_handle
1398 * @endpoint: pointer to the fwnode endpoint data structure
1399 *
1400 * Parse @fwnode representing a graph endpoint node and store the
1401 * information in @endpoint. The caller must hold a reference to
1402 * @fwnode.
1403 */
1404int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1405 struct fwnode_endpoint *endpoint)
1406{
1407 memset(endpoint, 0, sizeof(*endpoint));
1408
1409 return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1410}
1411EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1412
1413const void *device_get_match_data(struct device *dev)
1414{
1415 return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1416}
1417EXPORT_SYMBOL_GPL(device_get_match_data);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * property.c - Unified device property interface.
4 *
5 * Copyright (C) 2014, Intel Corporation
6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 * Mika Westerberg <mika.westerberg@linux.intel.com>
8 */
9
10#include <linux/device.h>
11#include <linux/err.h>
12#include <linux/export.h>
13#include <linux/kconfig.h>
14#include <linux/of.h>
15#include <linux/property.h>
16#include <linux/phy.h>
17#include <linux/slab.h>
18#include <linux/string.h>
19#include <linux/types.h>
20
21struct fwnode_handle *__dev_fwnode(struct device *dev)
22{
23 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
24 of_fwnode_handle(dev->of_node) : dev->fwnode;
25}
26EXPORT_SYMBOL_GPL(__dev_fwnode);
27
28const struct fwnode_handle *__dev_fwnode_const(const struct device *dev)
29{
30 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
31 of_fwnode_handle(dev->of_node) : dev->fwnode;
32}
33EXPORT_SYMBOL_GPL(__dev_fwnode_const);
34
35/**
36 * device_property_present - check if a property of a device is present
37 * @dev: Device whose property is being checked
38 * @propname: Name of the property
39 *
40 * Check if property @propname is present in the device firmware description.
41 *
42 * Return: true if property @propname is present. Otherwise, returns false.
43 */
44bool device_property_present(const struct device *dev, const char *propname)
45{
46 return fwnode_property_present(dev_fwnode(dev), propname);
47}
48EXPORT_SYMBOL_GPL(device_property_present);
49
50/**
51 * fwnode_property_present - check if a property of a firmware node is present
52 * @fwnode: Firmware node whose property to check
53 * @propname: Name of the property
54 *
55 * Return: true if property @propname is present. Otherwise, returns false.
56 */
57bool fwnode_property_present(const struct fwnode_handle *fwnode,
58 const char *propname)
59{
60 bool ret;
61
62 if (IS_ERR_OR_NULL(fwnode))
63 return false;
64
65 ret = fwnode_call_bool_op(fwnode, property_present, propname);
66 if (ret)
67 return ret;
68
69 return fwnode_call_bool_op(fwnode->secondary, property_present, propname);
70}
71EXPORT_SYMBOL_GPL(fwnode_property_present);
72
73/**
74 * device_property_read_u8_array - return a u8 array property of a device
75 * @dev: Device to get the property of
76 * @propname: Name of the property
77 * @val: The values are stored here or %NULL to return the number of values
78 * @nval: Size of the @val array
79 *
80 * Function reads an array of u8 properties with @propname from the device
81 * firmware description and stores them to @val if found.
82 *
83 * It's recommended to call device_property_count_u8() instead of calling
84 * this function with @val equals %NULL and @nval equals 0.
85 *
86 * Return: number of values if @val was %NULL,
87 * %0 if the property was found (success),
88 * %-EINVAL if given arguments are not valid,
89 * %-ENODATA if the property does not have a value,
90 * %-EPROTO if the property is not an array of numbers,
91 * %-EOVERFLOW if the size of the property is not as expected.
92 * %-ENXIO if no suitable firmware interface is present.
93 */
94int device_property_read_u8_array(const struct device *dev, const char *propname,
95 u8 *val, size_t nval)
96{
97 return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
98}
99EXPORT_SYMBOL_GPL(device_property_read_u8_array);
100
101/**
102 * device_property_read_u16_array - return a u16 array property of a device
103 * @dev: Device to get the property of
104 * @propname: Name of the property
105 * @val: The values are stored here or %NULL to return the number of values
106 * @nval: Size of the @val array
107 *
108 * Function reads an array of u16 properties with @propname from the device
109 * firmware description and stores them to @val if found.
110 *
111 * It's recommended to call device_property_count_u16() instead of calling
112 * this function with @val equals %NULL and @nval equals 0.
113 *
114 * Return: number of values if @val was %NULL,
115 * %0 if the property was found (success),
116 * %-EINVAL if given arguments are not valid,
117 * %-ENODATA if the property does not have a value,
118 * %-EPROTO if the property is not an array of numbers,
119 * %-EOVERFLOW if the size of the property is not as expected.
120 * %-ENXIO if no suitable firmware interface is present.
121 */
122int device_property_read_u16_array(const struct device *dev, const char *propname,
123 u16 *val, size_t nval)
124{
125 return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
126}
127EXPORT_SYMBOL_GPL(device_property_read_u16_array);
128
129/**
130 * device_property_read_u32_array - return a u32 array property of a device
131 * @dev: Device to get the property of
132 * @propname: Name of the property
133 * @val: The values are stored here or %NULL to return the number of values
134 * @nval: Size of the @val array
135 *
136 * Function reads an array of u32 properties with @propname from the device
137 * firmware description and stores them to @val if found.
138 *
139 * It's recommended to call device_property_count_u32() instead of calling
140 * this function with @val equals %NULL and @nval equals 0.
141 *
142 * Return: number of values if @val was %NULL,
143 * %0 if the property was found (success),
144 * %-EINVAL if given arguments are not valid,
145 * %-ENODATA if the property does not have a value,
146 * %-EPROTO if the property is not an array of numbers,
147 * %-EOVERFLOW if the size of the property is not as expected.
148 * %-ENXIO if no suitable firmware interface is present.
149 */
150int device_property_read_u32_array(const struct device *dev, const char *propname,
151 u32 *val, size_t nval)
152{
153 return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
154}
155EXPORT_SYMBOL_GPL(device_property_read_u32_array);
156
157/**
158 * device_property_read_u64_array - return a u64 array property of a device
159 * @dev: Device to get the property of
160 * @propname: Name of the property
161 * @val: The values are stored here or %NULL to return the number of values
162 * @nval: Size of the @val array
163 *
164 * Function reads an array of u64 properties with @propname from the device
165 * firmware description and stores them to @val if found.
166 *
167 * It's recommended to call device_property_count_u64() instead of calling
168 * this function with @val equals %NULL and @nval equals 0.
169 *
170 * Return: number of values if @val was %NULL,
171 * %0 if the property was found (success),
172 * %-EINVAL if given arguments are not valid,
173 * %-ENODATA if the property does not have a value,
174 * %-EPROTO if the property is not an array of numbers,
175 * %-EOVERFLOW if the size of the property is not as expected.
176 * %-ENXIO if no suitable firmware interface is present.
177 */
178int device_property_read_u64_array(const struct device *dev, const char *propname,
179 u64 *val, size_t nval)
180{
181 return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
182}
183EXPORT_SYMBOL_GPL(device_property_read_u64_array);
184
185/**
186 * device_property_read_string_array - return a string array property of device
187 * @dev: Device to get the property of
188 * @propname: Name of the property
189 * @val: The values are stored here or %NULL to return the number of values
190 * @nval: Size of the @val array
191 *
192 * Function reads an array of string properties with @propname from the device
193 * firmware description and stores them to @val if found.
194 *
195 * It's recommended to call device_property_string_array_count() instead of calling
196 * this function with @val equals %NULL and @nval equals 0.
197 *
198 * Return: number of values read on success if @val is non-NULL,
199 * number of values available on success if @val is NULL,
200 * %-EINVAL if given arguments are not valid,
201 * %-ENODATA if the property does not have a value,
202 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
203 * %-EOVERFLOW if the size of the property is not as expected.
204 * %-ENXIO if no suitable firmware interface is present.
205 */
206int device_property_read_string_array(const struct device *dev, const char *propname,
207 const char **val, size_t nval)
208{
209 return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
210}
211EXPORT_SYMBOL_GPL(device_property_read_string_array);
212
213/**
214 * device_property_read_string - return a string property of a device
215 * @dev: Device to get the property of
216 * @propname: Name of the property
217 * @val: The value is stored here
218 *
219 * Function reads property @propname from the device firmware description and
220 * stores the value into @val if found. The value is checked to be a string.
221 *
222 * Return: %0 if the property was found (success),
223 * %-EINVAL if given arguments are not valid,
224 * %-ENODATA if the property does not have a value,
225 * %-EPROTO or %-EILSEQ if the property type is not a string.
226 * %-ENXIO if no suitable firmware interface is present.
227 */
228int device_property_read_string(const struct device *dev, const char *propname,
229 const char **val)
230{
231 return fwnode_property_read_string(dev_fwnode(dev), propname, val);
232}
233EXPORT_SYMBOL_GPL(device_property_read_string);
234
235/**
236 * device_property_match_string - find a string in an array and return index
237 * @dev: Device to get the property of
238 * @propname: Name of the property holding the array
239 * @string: String to look for
240 *
241 * Find a given string in a string array and if it is found return the
242 * index back.
243 *
244 * Return: index, starting from %0, if the property was found (success),
245 * %-EINVAL if given arguments are not valid,
246 * %-ENODATA if the property does not have a value,
247 * %-EPROTO if the property is not an array of strings,
248 * %-ENXIO if no suitable firmware interface is present.
249 */
250int device_property_match_string(const struct device *dev, const char *propname,
251 const char *string)
252{
253 return fwnode_property_match_string(dev_fwnode(dev), propname, string);
254}
255EXPORT_SYMBOL_GPL(device_property_match_string);
256
257static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
258 const char *propname,
259 unsigned int elem_size, void *val,
260 size_t nval)
261{
262 int ret;
263
264 if (IS_ERR_OR_NULL(fwnode))
265 return -EINVAL;
266
267 ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
268 elem_size, val, nval);
269 if (ret != -EINVAL)
270 return ret;
271
272 return fwnode_call_int_op(fwnode->secondary, property_read_int_array, propname,
273 elem_size, val, nval);
274}
275
276/**
277 * fwnode_property_read_u8_array - return a u8 array property of firmware node
278 * @fwnode: Firmware node to get the property of
279 * @propname: Name of the property
280 * @val: The values are stored here or %NULL to return the number of values
281 * @nval: Size of the @val array
282 *
283 * Read an array of u8 properties with @propname from @fwnode and stores them to
284 * @val if found.
285 *
286 * It's recommended to call fwnode_property_count_u8() instead of calling
287 * this function with @val equals %NULL and @nval equals 0.
288 *
289 * Return: number of values if @val was %NULL,
290 * %0 if the property was found (success),
291 * %-EINVAL if given arguments are not valid,
292 * %-ENODATA if the property does not have a value,
293 * %-EPROTO if the property is not an array of numbers,
294 * %-EOVERFLOW if the size of the property is not as expected,
295 * %-ENXIO if no suitable firmware interface is present.
296 */
297int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
298 const char *propname, u8 *val, size_t nval)
299{
300 return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
301 val, nval);
302}
303EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
304
305/**
306 * fwnode_property_read_u16_array - return a u16 array property of firmware node
307 * @fwnode: Firmware node to get the property of
308 * @propname: Name of the property
309 * @val: The values are stored here or %NULL to return the number of values
310 * @nval: Size of the @val array
311 *
312 * Read an array of u16 properties with @propname from @fwnode and store them to
313 * @val if found.
314 *
315 * It's recommended to call fwnode_property_count_u16() instead of calling
316 * this function with @val equals %NULL and @nval equals 0.
317 *
318 * Return: number of values if @val was %NULL,
319 * %0 if the property was found (success),
320 * %-EINVAL if given arguments are not valid,
321 * %-ENODATA if the property does not have a value,
322 * %-EPROTO if the property is not an array of numbers,
323 * %-EOVERFLOW if the size of the property is not as expected,
324 * %-ENXIO if no suitable firmware interface is present.
325 */
326int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
327 const char *propname, u16 *val, size_t nval)
328{
329 return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
330 val, nval);
331}
332EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
333
334/**
335 * fwnode_property_read_u32_array - return a u32 array property of firmware node
336 * @fwnode: Firmware node to get the property of
337 * @propname: Name of the property
338 * @val: The values are stored here or %NULL to return the number of values
339 * @nval: Size of the @val array
340 *
341 * Read an array of u32 properties with @propname from @fwnode store them to
342 * @val if found.
343 *
344 * It's recommended to call fwnode_property_count_u32() instead of calling
345 * this function with @val equals %NULL and @nval equals 0.
346 *
347 * Return: number of values if @val was %NULL,
348 * %0 if the property was found (success),
349 * %-EINVAL if given arguments are not valid,
350 * %-ENODATA if the property does not have a value,
351 * %-EPROTO if the property is not an array of numbers,
352 * %-EOVERFLOW if the size of the property is not as expected,
353 * %-ENXIO if no suitable firmware interface is present.
354 */
355int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
356 const char *propname, u32 *val, size_t nval)
357{
358 return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
359 val, nval);
360}
361EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
362
363/**
364 * fwnode_property_read_u64_array - return a u64 array property firmware node
365 * @fwnode: Firmware node to get the property of
366 * @propname: Name of the property
367 * @val: The values are stored here or %NULL to return the number of values
368 * @nval: Size of the @val array
369 *
370 * Read an array of u64 properties with @propname from @fwnode and store them to
371 * @val if found.
372 *
373 * It's recommended to call fwnode_property_count_u64() instead of calling
374 * this function with @val equals %NULL and @nval equals 0.
375 *
376 * Return: number of values if @val was %NULL,
377 * %0 if the property was found (success),
378 * %-EINVAL if given arguments are not valid,
379 * %-ENODATA if the property does not have a value,
380 * %-EPROTO if the property is not an array of numbers,
381 * %-EOVERFLOW if the size of the property is not as expected,
382 * %-ENXIO if no suitable firmware interface is present.
383 */
384int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
385 const char *propname, u64 *val, size_t nval)
386{
387 return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
388 val, nval);
389}
390EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
391
392/**
393 * fwnode_property_read_string_array - return string array property of a node
394 * @fwnode: Firmware node to get the property of
395 * @propname: Name of the property
396 * @val: The values are stored here or %NULL to return the number of values
397 * @nval: Size of the @val array
398 *
399 * Read an string list property @propname from the given firmware node and store
400 * them to @val if found.
401 *
402 * It's recommended to call fwnode_property_string_array_count() instead of calling
403 * this function with @val equals %NULL and @nval equals 0.
404 *
405 * Return: number of values read on success if @val is non-NULL,
406 * number of values available on success if @val is NULL,
407 * %-EINVAL if given arguments are not valid,
408 * %-ENODATA if the property does not have a value,
409 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
410 * %-EOVERFLOW if the size of the property is not as expected,
411 * %-ENXIO if no suitable firmware interface is present.
412 */
413int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
414 const char *propname, const char **val,
415 size_t nval)
416{
417 int ret;
418
419 if (IS_ERR_OR_NULL(fwnode))
420 return -EINVAL;
421
422 ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
423 val, nval);
424 if (ret != -EINVAL)
425 return ret;
426
427 return fwnode_call_int_op(fwnode->secondary, property_read_string_array, propname,
428 val, nval);
429}
430EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
431
432/**
433 * fwnode_property_read_string - return a string property of a firmware node
434 * @fwnode: Firmware node to get the property of
435 * @propname: Name of the property
436 * @val: The value is stored here
437 *
438 * Read property @propname from the given firmware node and store the value into
439 * @val if found. The value is checked to be a string.
440 *
441 * Return: %0 if the property was found (success),
442 * %-EINVAL if given arguments are not valid,
443 * %-ENODATA if the property does not have a value,
444 * %-EPROTO or %-EILSEQ if the property is not a string,
445 * %-ENXIO if no suitable firmware interface is present.
446 */
447int fwnode_property_read_string(const struct fwnode_handle *fwnode,
448 const char *propname, const char **val)
449{
450 int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
451
452 return ret < 0 ? ret : 0;
453}
454EXPORT_SYMBOL_GPL(fwnode_property_read_string);
455
456/**
457 * fwnode_property_match_string - find a string in an array and return index
458 * @fwnode: Firmware node to get the property of
459 * @propname: Name of the property holding the array
460 * @string: String to look for
461 *
462 * Find a given string in a string array and if it is found return the
463 * index back.
464 *
465 * Return: index, starting from %0, if the property was found (success),
466 * %-EINVAL if given arguments are not valid,
467 * %-ENODATA if the property does not have a value,
468 * %-EPROTO if the property is not an array of strings,
469 * %-ENXIO if no suitable firmware interface is present.
470 */
471int fwnode_property_match_string(const struct fwnode_handle *fwnode,
472 const char *propname, const char *string)
473{
474 const char **values;
475 int nval, ret;
476
477 nval = fwnode_property_string_array_count(fwnode, propname);
478 if (nval < 0)
479 return nval;
480
481 if (nval == 0)
482 return -ENODATA;
483
484 values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
485 if (!values)
486 return -ENOMEM;
487
488 ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
489 if (ret < 0)
490 goto out_free;
491
492 ret = match_string(values, nval, string);
493 if (ret < 0)
494 ret = -ENODATA;
495
496out_free:
497 kfree(values);
498 return ret;
499}
500EXPORT_SYMBOL_GPL(fwnode_property_match_string);
501
502/**
503 * fwnode_property_match_property_string - find a property string value in an array and return index
504 * @fwnode: Firmware node to get the property of
505 * @propname: Name of the property holding the string value
506 * @array: String array to search in
507 * @n: Size of the @array
508 *
509 * Find a property string value in a given @array and if it is found return
510 * the index back.
511 *
512 * Return: index, starting from %0, if the string value was found in the @array (success),
513 * %-ENOENT when the string value was not found in the @array,
514 * %-EINVAL if given arguments are not valid,
515 * %-ENODATA if the property does not have a value,
516 * %-EPROTO or %-EILSEQ if the property is not a string,
517 * %-ENXIO if no suitable firmware interface is present.
518 */
519int fwnode_property_match_property_string(const struct fwnode_handle *fwnode,
520 const char *propname, const char * const *array, size_t n)
521{
522 const char *string;
523 int ret;
524
525 ret = fwnode_property_read_string(fwnode, propname, &string);
526 if (ret)
527 return ret;
528
529 ret = match_string(array, n, string);
530 if (ret < 0)
531 ret = -ENOENT;
532
533 return ret;
534}
535EXPORT_SYMBOL_GPL(fwnode_property_match_property_string);
536
537/**
538 * fwnode_property_get_reference_args() - Find a reference with arguments
539 * @fwnode: Firmware node where to look for the reference
540 * @prop: The name of the property
541 * @nargs_prop: The name of the property telling the number of
542 * arguments in the referred node. NULL if @nargs is known,
543 * otherwise @nargs is ignored. Only relevant on OF.
544 * @nargs: Number of arguments. Ignored if @nargs_prop is non-NULL.
545 * @index: Index of the reference, from zero onwards.
546 * @args: Result structure with reference and integer arguments.
547 * May be NULL.
548 *
549 * Obtain a reference based on a named property in an fwnode, with
550 * integer arguments.
551 *
552 * The caller is responsible for calling fwnode_handle_put() on the returned
553 * @args->fwnode pointer.
554 *
555 * Return: %0 on success
556 * %-ENOENT when the index is out of bounds, the index has an empty
557 * reference or the property was not found
558 * %-EINVAL on parse error
559 */
560int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
561 const char *prop, const char *nargs_prop,
562 unsigned int nargs, unsigned int index,
563 struct fwnode_reference_args *args)
564{
565 int ret;
566
567 if (IS_ERR_OR_NULL(fwnode))
568 return -ENOENT;
569
570 ret = fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
571 nargs, index, args);
572 if (ret == 0)
573 return ret;
574
575 if (IS_ERR_OR_NULL(fwnode->secondary))
576 return ret;
577
578 return fwnode_call_int_op(fwnode->secondary, get_reference_args, prop, nargs_prop,
579 nargs, index, args);
580}
581EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
582
583/**
584 * fwnode_find_reference - Find named reference to a fwnode_handle
585 * @fwnode: Firmware node where to look for the reference
586 * @name: The name of the reference
587 * @index: Index of the reference
588 *
589 * @index can be used when the named reference holds a table of references.
590 *
591 * The caller is responsible for calling fwnode_handle_put() on the returned
592 * fwnode pointer.
593 *
594 * Return: a pointer to the reference fwnode, when found. Otherwise,
595 * returns an error pointer.
596 */
597struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode,
598 const char *name,
599 unsigned int index)
600{
601 struct fwnode_reference_args args;
602 int ret;
603
604 ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index,
605 &args);
606 return ret ? ERR_PTR(ret) : args.fwnode;
607}
608EXPORT_SYMBOL_GPL(fwnode_find_reference);
609
610/**
611 * fwnode_get_name - Return the name of a node
612 * @fwnode: The firmware node
613 *
614 * Return: a pointer to the node name, or %NULL.
615 */
616const char *fwnode_get_name(const struct fwnode_handle *fwnode)
617{
618 return fwnode_call_ptr_op(fwnode, get_name);
619}
620EXPORT_SYMBOL_GPL(fwnode_get_name);
621
622/**
623 * fwnode_get_name_prefix - Return the prefix of node for printing purposes
624 * @fwnode: The firmware node
625 *
626 * Return: the prefix of a node, intended to be printed right before the node.
627 * The prefix works also as a separator between the nodes.
628 */
629const char *fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
630{
631 return fwnode_call_ptr_op(fwnode, get_name_prefix);
632}
633
634/**
635 * fwnode_name_eq - Return true if node name is equal
636 * @fwnode: The firmware node
637 * @name: The name to which to compare the node name
638 *
639 * Compare the name provided as an argument to the name of the node, stopping
640 * the comparison at either NUL or '@' character, whichever comes first. This
641 * function is generally used for comparing node names while ignoring the
642 * possible unit address of the node.
643 *
644 * Return: true if the node name matches with the name provided in the @name
645 * argument, false otherwise.
646 */
647bool fwnode_name_eq(const struct fwnode_handle *fwnode, const char *name)
648{
649 const char *node_name;
650 ptrdiff_t len;
651
652 node_name = fwnode_get_name(fwnode);
653 if (!node_name)
654 return false;
655
656 len = strchrnul(node_name, '@') - node_name;
657
658 return str_has_prefix(node_name, name) == len;
659}
660EXPORT_SYMBOL_GPL(fwnode_name_eq);
661
662/**
663 * fwnode_get_parent - Return parent firwmare node
664 * @fwnode: Firmware whose parent is retrieved
665 *
666 * The caller is responsible for calling fwnode_handle_put() on the returned
667 * fwnode pointer.
668 *
669 * Return: parent firmware node of the given node if possible or %NULL if no
670 * parent was available.
671 */
672struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
673{
674 return fwnode_call_ptr_op(fwnode, get_parent);
675}
676EXPORT_SYMBOL_GPL(fwnode_get_parent);
677
678/**
679 * fwnode_get_next_parent - Iterate to the node's parent
680 * @fwnode: Firmware whose parent is retrieved
681 *
682 * This is like fwnode_get_parent() except that it drops the refcount
683 * on the passed node, making it suitable for iterating through a
684 * node's parents.
685 *
686 * The caller is responsible for calling fwnode_handle_put() on the returned
687 * fwnode pointer. Note that this function also puts a reference to @fwnode
688 * unconditionally.
689 *
690 * Return: parent firmware node of the given node if possible or %NULL if no
691 * parent was available.
692 */
693struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
694{
695 struct fwnode_handle *parent = fwnode_get_parent(fwnode);
696
697 fwnode_handle_put(fwnode);
698
699 return parent;
700}
701EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
702
703/**
704 * fwnode_count_parents - Return the number of parents a node has
705 * @fwnode: The node the parents of which are to be counted
706 *
707 * Return: the number of parents a node has.
708 */
709unsigned int fwnode_count_parents(const struct fwnode_handle *fwnode)
710{
711 struct fwnode_handle *parent;
712 unsigned int count = 0;
713
714 fwnode_for_each_parent_node(fwnode, parent)
715 count++;
716
717 return count;
718}
719EXPORT_SYMBOL_GPL(fwnode_count_parents);
720
721/**
722 * fwnode_get_nth_parent - Return an nth parent of a node
723 * @fwnode: The node the parent of which is requested
724 * @depth: Distance of the parent from the node
725 *
726 * The caller is responsible for calling fwnode_handle_put() on the returned
727 * fwnode pointer.
728 *
729 * Return: the nth parent of a node. If there is no parent at the requested
730 * @depth, %NULL is returned. If @depth is 0, the functionality is equivalent to
731 * fwnode_handle_get(). For @depth == 1, it is fwnode_get_parent() and so on.
732 */
733struct fwnode_handle *fwnode_get_nth_parent(struct fwnode_handle *fwnode,
734 unsigned int depth)
735{
736 struct fwnode_handle *parent;
737
738 if (depth == 0)
739 return fwnode_handle_get(fwnode);
740
741 fwnode_for_each_parent_node(fwnode, parent) {
742 if (--depth == 0)
743 return parent;
744 }
745 return NULL;
746}
747EXPORT_SYMBOL_GPL(fwnode_get_nth_parent);
748
749/**
750 * fwnode_get_next_child_node - Return the next child node handle for a node
751 * @fwnode: Firmware node to find the next child node for.
752 * @child: Handle to one of the node's child nodes or a %NULL handle.
753 *
754 * The caller is responsible for calling fwnode_handle_put() on the returned
755 * fwnode pointer. Note that this function also puts a reference to @child
756 * unconditionally.
757 */
758struct fwnode_handle *
759fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
760 struct fwnode_handle *child)
761{
762 return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
763}
764EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
765
766/**
767 * fwnode_get_next_available_child_node - Return the next available child node handle for a node
768 * @fwnode: Firmware node to find the next child node for.
769 * @child: Handle to one of the node's child nodes or a %NULL handle.
770 *
771 * The caller is responsible for calling fwnode_handle_put() on the returned
772 * fwnode pointer. Note that this function also puts a reference to @child
773 * unconditionally.
774 */
775struct fwnode_handle *
776fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
777 struct fwnode_handle *child)
778{
779 struct fwnode_handle *next_child = child;
780
781 if (IS_ERR_OR_NULL(fwnode))
782 return NULL;
783
784 do {
785 next_child = fwnode_get_next_child_node(fwnode, next_child);
786 if (!next_child)
787 return NULL;
788 } while (!fwnode_device_is_available(next_child));
789
790 return next_child;
791}
792EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
793
794/**
795 * device_get_next_child_node - Return the next child node handle for a device
796 * @dev: Device to find the next child node for.
797 * @child: Handle to one of the device's child nodes or a %NULL handle.
798 *
799 * The caller is responsible for calling fwnode_handle_put() on the returned
800 * fwnode pointer. Note that this function also puts a reference to @child
801 * unconditionally.
802 */
803struct fwnode_handle *device_get_next_child_node(const struct device *dev,
804 struct fwnode_handle *child)
805{
806 const struct fwnode_handle *fwnode = dev_fwnode(dev);
807 struct fwnode_handle *next;
808
809 if (IS_ERR_OR_NULL(fwnode))
810 return NULL;
811
812 /* Try to find a child in primary fwnode */
813 next = fwnode_get_next_child_node(fwnode, child);
814 if (next)
815 return next;
816
817 /* When no more children in primary, continue with secondary */
818 return fwnode_get_next_child_node(fwnode->secondary, child);
819}
820EXPORT_SYMBOL_GPL(device_get_next_child_node);
821
822/**
823 * fwnode_get_named_child_node - Return first matching named child node handle
824 * @fwnode: Firmware node to find the named child node for.
825 * @childname: String to match child node name against.
826 *
827 * The caller is responsible for calling fwnode_handle_put() on the returned
828 * fwnode pointer.
829 */
830struct fwnode_handle *
831fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
832 const char *childname)
833{
834 return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
835}
836EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
837
838/**
839 * device_get_named_child_node - Return first matching named child node handle
840 * @dev: Device to find the named child node for.
841 * @childname: String to match child node name against.
842 *
843 * The caller is responsible for calling fwnode_handle_put() on the returned
844 * fwnode pointer.
845 */
846struct fwnode_handle *device_get_named_child_node(const struct device *dev,
847 const char *childname)
848{
849 return fwnode_get_named_child_node(dev_fwnode(dev), childname);
850}
851EXPORT_SYMBOL_GPL(device_get_named_child_node);
852
853/**
854 * fwnode_handle_get - Obtain a reference to a device node
855 * @fwnode: Pointer to the device node to obtain the reference to.
856 *
857 * The caller is responsible for calling fwnode_handle_put() on the returned
858 * fwnode pointer.
859 *
860 * Return: the fwnode handle.
861 */
862struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
863{
864 if (!fwnode_has_op(fwnode, get))
865 return fwnode;
866
867 return fwnode_call_ptr_op(fwnode, get);
868}
869EXPORT_SYMBOL_GPL(fwnode_handle_get);
870
871/**
872 * fwnode_device_is_available - check if a device is available for use
873 * @fwnode: Pointer to the fwnode of the device.
874 *
875 * Return: true if device is available for use. Otherwise, returns false.
876 *
877 * For fwnode node types that don't implement the .device_is_available()
878 * operation, this function returns true.
879 */
880bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
881{
882 if (IS_ERR_OR_NULL(fwnode))
883 return false;
884
885 if (!fwnode_has_op(fwnode, device_is_available))
886 return true;
887
888 return fwnode_call_bool_op(fwnode, device_is_available);
889}
890EXPORT_SYMBOL_GPL(fwnode_device_is_available);
891
892/**
893 * device_get_child_node_count - return the number of child nodes for device
894 * @dev: Device to count the child nodes for
895 *
896 * Return: the number of child nodes for a given device.
897 */
898unsigned int device_get_child_node_count(const struct device *dev)
899{
900 struct fwnode_handle *child;
901 unsigned int count = 0;
902
903 device_for_each_child_node(dev, child)
904 count++;
905
906 return count;
907}
908EXPORT_SYMBOL_GPL(device_get_child_node_count);
909
910bool device_dma_supported(const struct device *dev)
911{
912 return fwnode_call_bool_op(dev_fwnode(dev), device_dma_supported);
913}
914EXPORT_SYMBOL_GPL(device_dma_supported);
915
916enum dev_dma_attr device_get_dma_attr(const struct device *dev)
917{
918 if (!fwnode_has_op(dev_fwnode(dev), device_get_dma_attr))
919 return DEV_DMA_NOT_SUPPORTED;
920
921 return fwnode_call_int_op(dev_fwnode(dev), device_get_dma_attr);
922}
923EXPORT_SYMBOL_GPL(device_get_dma_attr);
924
925/**
926 * fwnode_get_phy_mode - Get phy mode for given firmware node
927 * @fwnode: Pointer to the given node
928 *
929 * The function gets phy interface string from property 'phy-mode' or
930 * 'phy-connection-type', and return its index in phy_modes table, or errno in
931 * error case.
932 */
933int fwnode_get_phy_mode(const struct fwnode_handle *fwnode)
934{
935 const char *pm;
936 int err, i;
937
938 err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
939 if (err < 0)
940 err = fwnode_property_read_string(fwnode,
941 "phy-connection-type", &pm);
942 if (err < 0)
943 return err;
944
945 for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
946 if (!strcasecmp(pm, phy_modes(i)))
947 return i;
948
949 return -ENODEV;
950}
951EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
952
953/**
954 * device_get_phy_mode - Get phy mode for given device
955 * @dev: Pointer to the given device
956 *
957 * The function gets phy interface string from property 'phy-mode' or
958 * 'phy-connection-type', and return its index in phy_modes table, or errno in
959 * error case.
960 */
961int device_get_phy_mode(struct device *dev)
962{
963 return fwnode_get_phy_mode(dev_fwnode(dev));
964}
965EXPORT_SYMBOL_GPL(device_get_phy_mode);
966
967/**
968 * fwnode_iomap - Maps the memory mapped IO for a given fwnode
969 * @fwnode: Pointer to the firmware node
970 * @index: Index of the IO range
971 *
972 * Return: a pointer to the mapped memory.
973 */
974void __iomem *fwnode_iomap(struct fwnode_handle *fwnode, int index)
975{
976 return fwnode_call_ptr_op(fwnode, iomap, index);
977}
978EXPORT_SYMBOL(fwnode_iomap);
979
980/**
981 * fwnode_irq_get - Get IRQ directly from a fwnode
982 * @fwnode: Pointer to the firmware node
983 * @index: Zero-based index of the IRQ
984 *
985 * Return: Linux IRQ number on success. Negative errno on failure.
986 */
987int fwnode_irq_get(const struct fwnode_handle *fwnode, unsigned int index)
988{
989 int ret;
990
991 ret = fwnode_call_int_op(fwnode, irq_get, index);
992 /* We treat mapping errors as invalid case */
993 if (ret == 0)
994 return -EINVAL;
995
996 return ret;
997}
998EXPORT_SYMBOL(fwnode_irq_get);
999
1000/**
1001 * fwnode_irq_get_byname - Get IRQ from a fwnode using its name
1002 * @fwnode: Pointer to the firmware node
1003 * @name: IRQ name
1004 *
1005 * Description:
1006 * Find a match to the string @name in the 'interrupt-names' string array
1007 * in _DSD for ACPI, or of_node for Device Tree. Then get the Linux IRQ
1008 * number of the IRQ resource corresponding to the index of the matched
1009 * string.
1010 *
1011 * Return: Linux IRQ number on success, or negative errno otherwise.
1012 */
1013int fwnode_irq_get_byname(const struct fwnode_handle *fwnode, const char *name)
1014{
1015 int index;
1016
1017 if (!name)
1018 return -EINVAL;
1019
1020 index = fwnode_property_match_string(fwnode, "interrupt-names", name);
1021 if (index < 0)
1022 return index;
1023
1024 return fwnode_irq_get(fwnode, index);
1025}
1026EXPORT_SYMBOL(fwnode_irq_get_byname);
1027
1028/**
1029 * fwnode_graph_get_next_endpoint - Get next endpoint firmware node
1030 * @fwnode: Pointer to the parent firmware node
1031 * @prev: Previous endpoint node or %NULL to get the first
1032 *
1033 * The caller is responsible for calling fwnode_handle_put() on the returned
1034 * fwnode pointer. Note that this function also puts a reference to @prev
1035 * unconditionally.
1036 *
1037 * Return: an endpoint firmware node pointer or %NULL if no more endpoints
1038 * are available.
1039 */
1040struct fwnode_handle *
1041fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1042 struct fwnode_handle *prev)
1043{
1044 struct fwnode_handle *ep, *port_parent = NULL;
1045 const struct fwnode_handle *parent;
1046
1047 /*
1048 * If this function is in a loop and the previous iteration returned
1049 * an endpoint from fwnode->secondary, then we need to use the secondary
1050 * as parent rather than @fwnode.
1051 */
1052 if (prev) {
1053 port_parent = fwnode_graph_get_port_parent(prev);
1054 parent = port_parent;
1055 } else {
1056 parent = fwnode;
1057 }
1058 if (IS_ERR_OR_NULL(parent))
1059 return NULL;
1060
1061 ep = fwnode_call_ptr_op(parent, graph_get_next_endpoint, prev);
1062 if (ep)
1063 goto out_put_port_parent;
1064
1065 ep = fwnode_graph_get_next_endpoint(parent->secondary, NULL);
1066
1067out_put_port_parent:
1068 fwnode_handle_put(port_parent);
1069 return ep;
1070}
1071EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
1072
1073/**
1074 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
1075 * @endpoint: Endpoint firmware node of the port
1076 *
1077 * The caller is responsible for calling fwnode_handle_put() on the returned
1078 * fwnode pointer.
1079 *
1080 * Return: the firmware node of the device the @endpoint belongs to.
1081 */
1082struct fwnode_handle *
1083fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
1084{
1085 struct fwnode_handle *port, *parent;
1086
1087 port = fwnode_get_parent(endpoint);
1088 parent = fwnode_call_ptr_op(port, graph_get_port_parent);
1089
1090 fwnode_handle_put(port);
1091
1092 return parent;
1093}
1094EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1095
1096/**
1097 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1098 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1099 *
1100 * Extracts firmware node of a remote device the @fwnode points to.
1101 *
1102 * The caller is responsible for calling fwnode_handle_put() on the returned
1103 * fwnode pointer.
1104 */
1105struct fwnode_handle *
1106fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1107{
1108 struct fwnode_handle *endpoint, *parent;
1109
1110 endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1111 parent = fwnode_graph_get_port_parent(endpoint);
1112
1113 fwnode_handle_put(endpoint);
1114
1115 return parent;
1116}
1117EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1118
1119/**
1120 * fwnode_graph_get_remote_port - Return fwnode of a remote port
1121 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1122 *
1123 * Extracts firmware node of a remote port the @fwnode points to.
1124 *
1125 * The caller is responsible for calling fwnode_handle_put() on the returned
1126 * fwnode pointer.
1127 */
1128struct fwnode_handle *
1129fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1130{
1131 return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1132}
1133EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1134
1135/**
1136 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1137 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1138 *
1139 * Extracts firmware node of a remote endpoint the @fwnode points to.
1140 *
1141 * The caller is responsible for calling fwnode_handle_put() on the returned
1142 * fwnode pointer.
1143 */
1144struct fwnode_handle *
1145fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1146{
1147 return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1148}
1149EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1150
1151static bool fwnode_graph_remote_available(struct fwnode_handle *ep)
1152{
1153 struct fwnode_handle *dev_node;
1154 bool available;
1155
1156 dev_node = fwnode_graph_get_remote_port_parent(ep);
1157 available = fwnode_device_is_available(dev_node);
1158 fwnode_handle_put(dev_node);
1159
1160 return available;
1161}
1162
1163/**
1164 * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers
1165 * @fwnode: parent fwnode_handle containing the graph
1166 * @port: identifier of the port node
1167 * @endpoint: identifier of the endpoint node under the port node
1168 * @flags: fwnode lookup flags
1169 *
1170 * The caller is responsible for calling fwnode_handle_put() on the returned
1171 * fwnode pointer.
1172 *
1173 * Return: the fwnode handle of the local endpoint corresponding the port and
1174 * endpoint IDs or %NULL if not found.
1175 *
1176 * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint
1177 * has not been found, look for the closest endpoint ID greater than the
1178 * specified one and return the endpoint that corresponds to it, if present.
1179 *
1180 * Does not return endpoints that belong to disabled devices or endpoints that
1181 * are unconnected, unless FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags.
1182 */
1183struct fwnode_handle *
1184fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode,
1185 u32 port, u32 endpoint, unsigned long flags)
1186{
1187 struct fwnode_handle *ep, *best_ep = NULL;
1188 unsigned int best_ep_id = 0;
1189 bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT;
1190 bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED);
1191
1192 fwnode_graph_for_each_endpoint(fwnode, ep) {
1193 struct fwnode_endpoint fwnode_ep = { 0 };
1194 int ret;
1195
1196 if (enabled_only && !fwnode_graph_remote_available(ep))
1197 continue;
1198
1199 ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep);
1200 if (ret < 0)
1201 continue;
1202
1203 if (fwnode_ep.port != port)
1204 continue;
1205
1206 if (fwnode_ep.id == endpoint)
1207 return ep;
1208
1209 if (!endpoint_next)
1210 continue;
1211
1212 /*
1213 * If the endpoint that has just been found is not the first
1214 * matching one and the ID of the one found previously is closer
1215 * to the requested endpoint ID, skip it.
1216 */
1217 if (fwnode_ep.id < endpoint ||
1218 (best_ep && best_ep_id < fwnode_ep.id))
1219 continue;
1220
1221 fwnode_handle_put(best_ep);
1222 best_ep = fwnode_handle_get(ep);
1223 best_ep_id = fwnode_ep.id;
1224 }
1225
1226 return best_ep;
1227}
1228EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id);
1229
1230/**
1231 * fwnode_graph_get_endpoint_count - Count endpoints on a device node
1232 * @fwnode: The node related to a device
1233 * @flags: fwnode lookup flags
1234 * Count endpoints in a device node.
1235 *
1236 * If FWNODE_GRAPH_DEVICE_DISABLED flag is specified, also unconnected endpoints
1237 * and endpoints connected to disabled devices are counted.
1238 */
1239unsigned int fwnode_graph_get_endpoint_count(const struct fwnode_handle *fwnode,
1240 unsigned long flags)
1241{
1242 struct fwnode_handle *ep;
1243 unsigned int count = 0;
1244
1245 fwnode_graph_for_each_endpoint(fwnode, ep) {
1246 if (flags & FWNODE_GRAPH_DEVICE_DISABLED ||
1247 fwnode_graph_remote_available(ep))
1248 count++;
1249 }
1250
1251 return count;
1252}
1253EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_count);
1254
1255/**
1256 * fwnode_graph_parse_endpoint - parse common endpoint node properties
1257 * @fwnode: pointer to endpoint fwnode_handle
1258 * @endpoint: pointer to the fwnode endpoint data structure
1259 *
1260 * Parse @fwnode representing a graph endpoint node and store the
1261 * information in @endpoint. The caller must hold a reference to
1262 * @fwnode.
1263 */
1264int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1265 struct fwnode_endpoint *endpoint)
1266{
1267 memset(endpoint, 0, sizeof(*endpoint));
1268
1269 return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1270}
1271EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1272
1273const void *device_get_match_data(const struct device *dev)
1274{
1275 return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1276}
1277EXPORT_SYMBOL_GPL(device_get_match_data);
1278
1279static unsigned int fwnode_graph_devcon_matches(const struct fwnode_handle *fwnode,
1280 const char *con_id, void *data,
1281 devcon_match_fn_t match,
1282 void **matches,
1283 unsigned int matches_len)
1284{
1285 struct fwnode_handle *node;
1286 struct fwnode_handle *ep;
1287 unsigned int count = 0;
1288 void *ret;
1289
1290 fwnode_graph_for_each_endpoint(fwnode, ep) {
1291 if (matches && count >= matches_len) {
1292 fwnode_handle_put(ep);
1293 break;
1294 }
1295
1296 node = fwnode_graph_get_remote_port_parent(ep);
1297 if (!fwnode_device_is_available(node)) {
1298 fwnode_handle_put(node);
1299 continue;
1300 }
1301
1302 ret = match(node, con_id, data);
1303 fwnode_handle_put(node);
1304 if (ret) {
1305 if (matches)
1306 matches[count] = ret;
1307 count++;
1308 }
1309 }
1310 return count;
1311}
1312
1313static unsigned int fwnode_devcon_matches(const struct fwnode_handle *fwnode,
1314 const char *con_id, void *data,
1315 devcon_match_fn_t match,
1316 void **matches,
1317 unsigned int matches_len)
1318{
1319 struct fwnode_handle *node;
1320 unsigned int count = 0;
1321 unsigned int i;
1322 void *ret;
1323
1324 for (i = 0; ; i++) {
1325 if (matches && count >= matches_len)
1326 break;
1327
1328 node = fwnode_find_reference(fwnode, con_id, i);
1329 if (IS_ERR(node))
1330 break;
1331
1332 ret = match(node, NULL, data);
1333 fwnode_handle_put(node);
1334 if (ret) {
1335 if (matches)
1336 matches[count] = ret;
1337 count++;
1338 }
1339 }
1340
1341 return count;
1342}
1343
1344/**
1345 * fwnode_connection_find_match - Find connection from a device node
1346 * @fwnode: Device node with the connection
1347 * @con_id: Identifier for the connection
1348 * @data: Data for the match function
1349 * @match: Function to check and convert the connection description
1350 *
1351 * Find a connection with unique identifier @con_id between @fwnode and another
1352 * device node. @match will be used to convert the connection description to
1353 * data the caller is expecting to be returned.
1354 */
1355void *fwnode_connection_find_match(const struct fwnode_handle *fwnode,
1356 const char *con_id, void *data,
1357 devcon_match_fn_t match)
1358{
1359 unsigned int count;
1360 void *ret;
1361
1362 if (!fwnode || !match)
1363 return NULL;
1364
1365 count = fwnode_graph_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1366 if (count)
1367 return ret;
1368
1369 count = fwnode_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1370 return count ? ret : NULL;
1371}
1372EXPORT_SYMBOL_GPL(fwnode_connection_find_match);
1373
1374/**
1375 * fwnode_connection_find_matches - Find connections from a device node
1376 * @fwnode: Device node with the connection
1377 * @con_id: Identifier for the connection
1378 * @data: Data for the match function
1379 * @match: Function to check and convert the connection description
1380 * @matches: (Optional) array of pointers to fill with matches
1381 * @matches_len: Length of @matches
1382 *
1383 * Find up to @matches_len connections with unique identifier @con_id between
1384 * @fwnode and other device nodes. @match will be used to convert the
1385 * connection description to data the caller is expecting to be returned
1386 * through the @matches array.
1387 *
1388 * If @matches is %NULL @matches_len is ignored and the total number of resolved
1389 * matches is returned.
1390 *
1391 * Return: Number of matches resolved, or negative errno.
1392 */
1393int fwnode_connection_find_matches(const struct fwnode_handle *fwnode,
1394 const char *con_id, void *data,
1395 devcon_match_fn_t match,
1396 void **matches, unsigned int matches_len)
1397{
1398 unsigned int count_graph;
1399 unsigned int count_ref;
1400
1401 if (!fwnode || !match)
1402 return -EINVAL;
1403
1404 count_graph = fwnode_graph_devcon_matches(fwnode, con_id, data, match,
1405 matches, matches_len);
1406
1407 if (matches) {
1408 matches += count_graph;
1409 matches_len -= count_graph;
1410 }
1411
1412 count_ref = fwnode_devcon_matches(fwnode, con_id, data, match,
1413 matches, matches_len);
1414
1415 return count_graph + count_ref;
1416}
1417EXPORT_SYMBOL_GPL(fwnode_connection_find_matches);