Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * property.c - Unified device property interface.
   4 *
   5 * Copyright (C) 2014, Intel Corporation
   6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
   7 *          Mika Westerberg <mika.westerberg@linux.intel.com>
   8 */
   9
  10#include <linux/acpi.h>
 
  11#include <linux/export.h>
  12#include <linux/kernel.h>
  13#include <linux/of.h>
  14#include <linux/of_address.h>
  15#include <linux/of_graph.h>
  16#include <linux/of_irq.h>
  17#include <linux/property.h>
  18#include <linux/etherdevice.h>
  19#include <linux/phy.h>
 
 
 
  20
  21struct property_set {
  22	struct device *dev;
  23	struct fwnode_handle fwnode;
  24	const struct property_entry *properties;
  25};
  26
  27static const struct fwnode_operations pset_fwnode_ops;
  28
  29static inline bool is_pset_node(const struct fwnode_handle *fwnode)
  30{
  31	return !IS_ERR_OR_NULL(fwnode) && fwnode->ops == &pset_fwnode_ops;
  32}
  33
  34#define to_pset_node(__fwnode)						\
  35	({								\
  36		typeof(__fwnode) __to_pset_node_fwnode = __fwnode;	\
  37									\
  38		is_pset_node(__to_pset_node_fwnode) ?			\
  39			container_of(__to_pset_node_fwnode,		\
  40				     struct property_set, fwnode) :	\
  41			NULL;						\
  42	})
  43
  44static const struct property_entry *
  45pset_prop_get(const struct property_set *pset, const char *name)
  46{
  47	const struct property_entry *prop;
  48
  49	if (!pset || !pset->properties)
  50		return NULL;
  51
  52	for (prop = pset->properties; prop->name; prop++)
  53		if (!strcmp(name, prop->name))
  54			return prop;
  55
  56	return NULL;
  57}
  58
  59static const void *pset_prop_find(const struct property_set *pset,
  60				  const char *propname, size_t length)
  61{
  62	const struct property_entry *prop;
  63	const void *pointer;
  64
  65	prop = pset_prop_get(pset, propname);
  66	if (!prop)
  67		return ERR_PTR(-EINVAL);
  68	if (prop->is_array)
  69		pointer = prop->pointer.raw_data;
  70	else
  71		pointer = &prop->value.raw_data;
  72	if (!pointer)
  73		return ERR_PTR(-ENODATA);
  74	if (length > prop->length)
  75		return ERR_PTR(-EOVERFLOW);
  76	return pointer;
  77}
  78
  79static int pset_prop_read_u8_array(const struct property_set *pset,
  80				   const char *propname,
  81				   u8 *values, size_t nval)
  82{
  83	const void *pointer;
  84	size_t length = nval * sizeof(*values);
  85
  86	pointer = pset_prop_find(pset, propname, length);
  87	if (IS_ERR(pointer))
  88		return PTR_ERR(pointer);
  89
  90	memcpy(values, pointer, length);
  91	return 0;
  92}
  93
  94static int pset_prop_read_u16_array(const struct property_set *pset,
  95				    const char *propname,
  96				    u16 *values, size_t nval)
  97{
  98	const void *pointer;
  99	size_t length = nval * sizeof(*values);
 100
 101	pointer = pset_prop_find(pset, propname, length);
 102	if (IS_ERR(pointer))
 103		return PTR_ERR(pointer);
 104
 105	memcpy(values, pointer, length);
 106	return 0;
 107}
 108
 109static int pset_prop_read_u32_array(const struct property_set *pset,
 110				    const char *propname,
 111				    u32 *values, size_t nval)
 112{
 113	const void *pointer;
 114	size_t length = nval * sizeof(*values);
 115
 116	pointer = pset_prop_find(pset, propname, length);
 117	if (IS_ERR(pointer))
 118		return PTR_ERR(pointer);
 119
 120	memcpy(values, pointer, length);
 121	return 0;
 122}
 123
 124static int pset_prop_read_u64_array(const struct property_set *pset,
 125				    const char *propname,
 126				    u64 *values, size_t nval)
 127{
 128	const void *pointer;
 129	size_t length = nval * sizeof(*values);
 130
 131	pointer = pset_prop_find(pset, propname, length);
 132	if (IS_ERR(pointer))
 133		return PTR_ERR(pointer);
 134
 135	memcpy(values, pointer, length);
 136	return 0;
 137}
 138
 139static int pset_prop_count_elems_of_size(const struct property_set *pset,
 140					 const char *propname, size_t length)
 141{
 142	const struct property_entry *prop;
 143
 144	prop = pset_prop_get(pset, propname);
 145	if (!prop)
 146		return -EINVAL;
 147
 148	return prop->length / length;
 149}
 150
 151static int pset_prop_read_string_array(const struct property_set *pset,
 152				       const char *propname,
 153				       const char **strings, size_t nval)
 154{
 155	const struct property_entry *prop;
 156	const void *pointer;
 157	size_t array_len, length;
 158
 159	/* Find out the array length. */
 160	prop = pset_prop_get(pset, propname);
 161	if (!prop)
 162		return -EINVAL;
 163
 164	if (!prop->is_array)
 165		/* The array length for a non-array string property is 1. */
 166		array_len = 1;
 167	else
 168		/* Find the length of an array. */
 169		array_len = pset_prop_count_elems_of_size(pset, propname,
 170							  sizeof(const char *));
 171
 172	/* Return how many there are if strings is NULL. */
 173	if (!strings)
 174		return array_len;
 175
 176	array_len = min(nval, array_len);
 177	length = array_len * sizeof(*strings);
 178
 179	pointer = pset_prop_find(pset, propname, length);
 180	if (IS_ERR(pointer))
 181		return PTR_ERR(pointer);
 182
 183	memcpy(strings, pointer, length);
 184
 185	return array_len;
 186}
 187
 188struct fwnode_handle *dev_fwnode(struct device *dev)
 189{
 190	return IS_ENABLED(CONFIG_OF) && dev->of_node ?
 191		&dev->of_node->fwnode : dev->fwnode;
 192}
 193EXPORT_SYMBOL_GPL(dev_fwnode);
 194
 195static bool pset_fwnode_property_present(const struct fwnode_handle *fwnode,
 196					 const char *propname)
 197{
 198	return !!pset_prop_get(to_pset_node(fwnode), propname);
 199}
 200
 201static int pset_fwnode_read_int_array(const struct fwnode_handle *fwnode,
 202				      const char *propname,
 203				      unsigned int elem_size, void *val,
 204				      size_t nval)
 205{
 206	const struct property_set *node = to_pset_node(fwnode);
 207
 208	if (!val)
 209		return pset_prop_count_elems_of_size(node, propname, elem_size);
 210
 211	switch (elem_size) {
 212	case sizeof(u8):
 213		return pset_prop_read_u8_array(node, propname, val, nval);
 214	case sizeof(u16):
 215		return pset_prop_read_u16_array(node, propname, val, nval);
 216	case sizeof(u32):
 217		return pset_prop_read_u32_array(node, propname, val, nval);
 218	case sizeof(u64):
 219		return pset_prop_read_u64_array(node, propname, val, nval);
 220	}
 221
 222	return -ENXIO;
 223}
 
 224
 225static int
 226pset_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
 227				       const char *propname,
 228				       const char **val, size_t nval)
 229{
 230	return pset_prop_read_string_array(to_pset_node(fwnode), propname,
 231					   val, nval);
 232}
 233
 234static const struct fwnode_operations pset_fwnode_ops = {
 235	.property_present = pset_fwnode_property_present,
 236	.property_read_int_array = pset_fwnode_read_int_array,
 237	.property_read_string_array = pset_fwnode_property_read_string_array,
 238};
 239
 240/**
 241 * device_property_present - check if a property of a device is present
 242 * @dev: Device whose property is being checked
 243 * @propname: Name of the property
 244 *
 245 * Check if property @propname is present in the device firmware description.
 
 
 246 */
 247bool device_property_present(struct device *dev, const char *propname)
 248{
 249	return fwnode_property_present(dev_fwnode(dev), propname);
 250}
 251EXPORT_SYMBOL_GPL(device_property_present);
 252
 253/**
 254 * fwnode_property_present - check if a property of a firmware node is present
 255 * @fwnode: Firmware node whose property to check
 256 * @propname: Name of the property
 
 
 257 */
 258bool fwnode_property_present(const struct fwnode_handle *fwnode,
 259			     const char *propname)
 260{
 261	bool ret;
 262
 
 
 
 263	ret = fwnode_call_bool_op(fwnode, property_present, propname);
 264	if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
 265	    !IS_ERR_OR_NULL(fwnode->secondary))
 266		ret = fwnode_call_bool_op(fwnode->secondary, property_present,
 267					 propname);
 268	return ret;
 269}
 270EXPORT_SYMBOL_GPL(fwnode_property_present);
 271
 272/**
 273 * device_property_read_u8_array - return a u8 array property of a device
 274 * @dev: Device to get the property of
 275 * @propname: Name of the property
 276 * @val: The values are stored here or %NULL to return the number of values
 277 * @nval: Size of the @val array
 278 *
 279 * Function reads an array of u8 properties with @propname from the device
 280 * firmware description and stores them to @val if found.
 281 *
 
 
 
 282 * Return: number of values if @val was %NULL,
 283 *         %0 if the property was found (success),
 284 *	   %-EINVAL if given arguments are not valid,
 285 *	   %-ENODATA if the property does not have a value,
 286 *	   %-EPROTO if the property is not an array of numbers,
 287 *	   %-EOVERFLOW if the size of the property is not as expected.
 288 *	   %-ENXIO if no suitable firmware interface is present.
 289 */
 290int device_property_read_u8_array(struct device *dev, const char *propname,
 291				  u8 *val, size_t nval)
 292{
 293	return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
 294}
 295EXPORT_SYMBOL_GPL(device_property_read_u8_array);
 296
 297/**
 298 * device_property_read_u16_array - return a u16 array property of a device
 299 * @dev: Device to get the property of
 300 * @propname: Name of the property
 301 * @val: The values are stored here or %NULL to return the number of values
 302 * @nval: Size of the @val array
 303 *
 304 * Function reads an array of u16 properties with @propname from the device
 305 * firmware description and stores them to @val if found.
 306 *
 
 
 
 307 * Return: number of values if @val was %NULL,
 308 *         %0 if the property was found (success),
 309 *	   %-EINVAL if given arguments are not valid,
 310 *	   %-ENODATA if the property does not have a value,
 311 *	   %-EPROTO if the property is not an array of numbers,
 312 *	   %-EOVERFLOW if the size of the property is not as expected.
 313 *	   %-ENXIO if no suitable firmware interface is present.
 314 */
 315int device_property_read_u16_array(struct device *dev, const char *propname,
 316				   u16 *val, size_t nval)
 317{
 318	return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
 319}
 320EXPORT_SYMBOL_GPL(device_property_read_u16_array);
 321
 322/**
 323 * device_property_read_u32_array - return a u32 array property of a device
 324 * @dev: Device to get the property of
 325 * @propname: Name of the property
 326 * @val: The values are stored here or %NULL to return the number of values
 327 * @nval: Size of the @val array
 328 *
 329 * Function reads an array of u32 properties with @propname from the device
 330 * firmware description and stores them to @val if found.
 331 *
 
 
 
 332 * Return: number of values if @val was %NULL,
 333 *         %0 if the property was found (success),
 334 *	   %-EINVAL if given arguments are not valid,
 335 *	   %-ENODATA if the property does not have a value,
 336 *	   %-EPROTO if the property is not an array of numbers,
 337 *	   %-EOVERFLOW if the size of the property is not as expected.
 338 *	   %-ENXIO if no suitable firmware interface is present.
 339 */
 340int device_property_read_u32_array(struct device *dev, const char *propname,
 341				   u32 *val, size_t nval)
 342{
 343	return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
 344}
 345EXPORT_SYMBOL_GPL(device_property_read_u32_array);
 346
 347/**
 348 * device_property_read_u64_array - return a u64 array property of a device
 349 * @dev: Device to get the property of
 350 * @propname: Name of the property
 351 * @val: The values are stored here or %NULL to return the number of values
 352 * @nval: Size of the @val array
 353 *
 354 * Function reads an array of u64 properties with @propname from the device
 355 * firmware description and stores them to @val if found.
 356 *
 
 
 
 357 * Return: number of values if @val was %NULL,
 358 *         %0 if the property was found (success),
 359 *	   %-EINVAL if given arguments are not valid,
 360 *	   %-ENODATA if the property does not have a value,
 361 *	   %-EPROTO if the property is not an array of numbers,
 362 *	   %-EOVERFLOW if the size of the property is not as expected.
 363 *	   %-ENXIO if no suitable firmware interface is present.
 364 */
 365int device_property_read_u64_array(struct device *dev, const char *propname,
 366				   u64 *val, size_t nval)
 367{
 368	return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
 369}
 370EXPORT_SYMBOL_GPL(device_property_read_u64_array);
 371
 372/**
 373 * device_property_read_string_array - return a string array property of device
 374 * @dev: Device to get the property of
 375 * @propname: Name of the property
 376 * @val: The values are stored here or %NULL to return the number of values
 377 * @nval: Size of the @val array
 378 *
 379 * Function reads an array of string properties with @propname from the device
 380 * firmware description and stores them to @val if found.
 381 *
 
 
 
 382 * Return: number of values read on success if @val is non-NULL,
 383 *	   number of values available on success if @val is NULL,
 384 *	   %-EINVAL if given arguments are not valid,
 385 *	   %-ENODATA if the property does not have a value,
 386 *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
 387 *	   %-EOVERFLOW if the size of the property is not as expected.
 388 *	   %-ENXIO if no suitable firmware interface is present.
 389 */
 390int device_property_read_string_array(struct device *dev, const char *propname,
 391				      const char **val, size_t nval)
 392{
 393	return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
 394}
 395EXPORT_SYMBOL_GPL(device_property_read_string_array);
 396
 397/**
 398 * device_property_read_string - return a string property of a device
 399 * @dev: Device to get the property of
 400 * @propname: Name of the property
 401 * @val: The value is stored here
 402 *
 403 * Function reads property @propname from the device firmware description and
 404 * stores the value into @val if found. The value is checked to be a string.
 405 *
 406 * Return: %0 if the property was found (success),
 407 *	   %-EINVAL if given arguments are not valid,
 408 *	   %-ENODATA if the property does not have a value,
 409 *	   %-EPROTO or %-EILSEQ if the property type is not a string.
 410 *	   %-ENXIO if no suitable firmware interface is present.
 411 */
 412int device_property_read_string(struct device *dev, const char *propname,
 413				const char **val)
 414{
 415	return fwnode_property_read_string(dev_fwnode(dev), propname, val);
 416}
 417EXPORT_SYMBOL_GPL(device_property_read_string);
 418
 419/**
 420 * device_property_match_string - find a string in an array and return index
 421 * @dev: Device to get the property of
 422 * @propname: Name of the property holding the array
 423 * @string: String to look for
 424 *
 425 * Find a given string in a string array and if it is found return the
 426 * index back.
 427 *
 428 * Return: %0 if the property was found (success),
 429 *	   %-EINVAL if given arguments are not valid,
 430 *	   %-ENODATA if the property does not have a value,
 431 *	   %-EPROTO if the property is not an array of strings,
 432 *	   %-ENXIO if no suitable firmware interface is present.
 433 */
 434int device_property_match_string(struct device *dev, const char *propname,
 435				 const char *string)
 436{
 437	return fwnode_property_match_string(dev_fwnode(dev), propname, string);
 438}
 439EXPORT_SYMBOL_GPL(device_property_match_string);
 440
 441static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
 442					  const char *propname,
 443					  unsigned int elem_size, void *val,
 444					  size_t nval)
 445{
 446	int ret;
 447
 
 
 
 448	ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
 449				 elem_size, val, nval);
 450	if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
 451	    !IS_ERR_OR_NULL(fwnode->secondary))
 452		ret = fwnode_call_int_op(
 453			fwnode->secondary, property_read_int_array, propname,
 454			elem_size, val, nval);
 455
 456	return ret;
 
 457}
 458
 459/**
 460 * fwnode_property_read_u8_array - return a u8 array property of firmware node
 461 * @fwnode: Firmware node to get the property of
 462 * @propname: Name of the property
 463 * @val: The values are stored here or %NULL to return the number of values
 464 * @nval: Size of the @val array
 465 *
 466 * Read an array of u8 properties with @propname from @fwnode and stores them to
 467 * @val if found.
 468 *
 
 
 
 469 * Return: number of values if @val was %NULL,
 470 *         %0 if the property was found (success),
 471 *	   %-EINVAL if given arguments are not valid,
 472 *	   %-ENODATA if the property does not have a value,
 473 *	   %-EPROTO if the property is not an array of numbers,
 474 *	   %-EOVERFLOW if the size of the property is not as expected,
 475 *	   %-ENXIO if no suitable firmware interface is present.
 476 */
 477int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
 478				  const char *propname, u8 *val, size_t nval)
 479{
 480	return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
 481					      val, nval);
 482}
 483EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
 484
 485/**
 486 * fwnode_property_read_u16_array - return a u16 array property of firmware node
 487 * @fwnode: Firmware node to get the property of
 488 * @propname: Name of the property
 489 * @val: The values are stored here or %NULL to return the number of values
 490 * @nval: Size of the @val array
 491 *
 492 * Read an array of u16 properties with @propname from @fwnode and store them to
 493 * @val if found.
 494 *
 
 
 
 495 * Return: number of values if @val was %NULL,
 496 *         %0 if the property was found (success),
 497 *	   %-EINVAL if given arguments are not valid,
 498 *	   %-ENODATA if the property does not have a value,
 499 *	   %-EPROTO if the property is not an array of numbers,
 500 *	   %-EOVERFLOW if the size of the property is not as expected,
 501 *	   %-ENXIO if no suitable firmware interface is present.
 502 */
 503int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
 504				   const char *propname, u16 *val, size_t nval)
 505{
 506	return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
 507					      val, nval);
 508}
 509EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
 510
 511/**
 512 * fwnode_property_read_u32_array - return a u32 array property of firmware node
 513 * @fwnode: Firmware node to get the property of
 514 * @propname: Name of the property
 515 * @val: The values are stored here or %NULL to return the number of values
 516 * @nval: Size of the @val array
 517 *
 518 * Read an array of u32 properties with @propname from @fwnode store them to
 519 * @val if found.
 520 *
 
 
 
 521 * Return: number of values if @val was %NULL,
 522 *         %0 if the property was found (success),
 523 *	   %-EINVAL if given arguments are not valid,
 524 *	   %-ENODATA if the property does not have a value,
 525 *	   %-EPROTO if the property is not an array of numbers,
 526 *	   %-EOVERFLOW if the size of the property is not as expected,
 527 *	   %-ENXIO if no suitable firmware interface is present.
 528 */
 529int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
 530				   const char *propname, u32 *val, size_t nval)
 531{
 532	return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
 533					      val, nval);
 534}
 535EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
 536
 537/**
 538 * fwnode_property_read_u64_array - return a u64 array property firmware node
 539 * @fwnode: Firmware node to get the property of
 540 * @propname: Name of the property
 541 * @val: The values are stored here or %NULL to return the number of values
 542 * @nval: Size of the @val array
 543 *
 544 * Read an array of u64 properties with @propname from @fwnode and store them to
 545 * @val if found.
 546 *
 
 
 
 547 * Return: number of values if @val was %NULL,
 548 *         %0 if the property was found (success),
 549 *	   %-EINVAL if given arguments are not valid,
 550 *	   %-ENODATA if the property does not have a value,
 551 *	   %-EPROTO if the property is not an array of numbers,
 552 *	   %-EOVERFLOW if the size of the property is not as expected,
 553 *	   %-ENXIO if no suitable firmware interface is present.
 554 */
 555int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
 556				   const char *propname, u64 *val, size_t nval)
 557{
 558	return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
 559					      val, nval);
 560}
 561EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
 562
 563/**
 564 * fwnode_property_read_string_array - return string array property of a node
 565 * @fwnode: Firmware node to get the property of
 566 * @propname: Name of the property
 567 * @val: The values are stored here or %NULL to return the number of values
 568 * @nval: Size of the @val array
 569 *
 570 * Read an string list property @propname from the given firmware node and store
 571 * them to @val if found.
 572 *
 
 
 
 573 * Return: number of values read on success if @val is non-NULL,
 574 *	   number of values available on success if @val is NULL,
 575 *	   %-EINVAL if given arguments are not valid,
 576 *	   %-ENODATA if the property does not have a value,
 577 *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
 578 *	   %-EOVERFLOW if the size of the property is not as expected,
 579 *	   %-ENXIO if no suitable firmware interface is present.
 580 */
 581int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
 582				      const char *propname, const char **val,
 583				      size_t nval)
 584{
 585	int ret;
 586
 
 
 
 587	ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
 588				 val, nval);
 589	if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
 590	    !IS_ERR_OR_NULL(fwnode->secondary))
 591		ret = fwnode_call_int_op(fwnode->secondary,
 592					 property_read_string_array, propname,
 593					 val, nval);
 594	return ret;
 595}
 596EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
 597
 598/**
 599 * fwnode_property_read_string - return a string property of a firmware node
 600 * @fwnode: Firmware node to get the property of
 601 * @propname: Name of the property
 602 * @val: The value is stored here
 603 *
 604 * Read property @propname from the given firmware node and store the value into
 605 * @val if found.  The value is checked to be a string.
 606 *
 607 * Return: %0 if the property was found (success),
 608 *	   %-EINVAL if given arguments are not valid,
 609 *	   %-ENODATA if the property does not have a value,
 610 *	   %-EPROTO or %-EILSEQ if the property is not a string,
 611 *	   %-ENXIO if no suitable firmware interface is present.
 612 */
 613int fwnode_property_read_string(const struct fwnode_handle *fwnode,
 614				const char *propname, const char **val)
 615{
 616	int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
 617
 618	return ret < 0 ? ret : 0;
 619}
 620EXPORT_SYMBOL_GPL(fwnode_property_read_string);
 621
 622/**
 623 * fwnode_property_match_string - find a string in an array and return index
 624 * @fwnode: Firmware node to get the property of
 625 * @propname: Name of the property holding the array
 626 * @string: String to look for
 627 *
 628 * Find a given string in a string array and if it is found return the
 629 * index back.
 630 *
 631 * Return: %0 if the property was found (success),
 632 *	   %-EINVAL if given arguments are not valid,
 633 *	   %-ENODATA if the property does not have a value,
 634 *	   %-EPROTO if the property is not an array of strings,
 635 *	   %-ENXIO if no suitable firmware interface is present.
 636 */
 637int fwnode_property_match_string(const struct fwnode_handle *fwnode,
 638	const char *propname, const char *string)
 639{
 640	const char **values;
 641	int nval, ret;
 642
 643	nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
 644	if (nval < 0)
 645		return nval;
 646
 647	if (nval == 0)
 648		return -ENODATA;
 649
 650	values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
 651	if (!values)
 652		return -ENOMEM;
 653
 654	ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
 655	if (ret < 0)
 656		goto out;
 657
 658	ret = match_string(values, nval, string);
 659	if (ret < 0)
 660		ret = -ENODATA;
 661out:
 
 662	kfree(values);
 663	return ret;
 664}
 665EXPORT_SYMBOL_GPL(fwnode_property_match_string);
 666
 667/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 668 * fwnode_property_get_reference_args() - Find a reference with arguments
 669 * @fwnode:	Firmware node where to look for the reference
 670 * @prop:	The name of the property
 671 * @nargs_prop:	The name of the property telling the number of
 672 *		arguments in the referred node. NULL if @nargs is known,
 673 *		otherwise @nargs is ignored. Only relevant on OF.
 674 * @nargs:	Number of arguments. Ignored if @nargs_prop is non-NULL.
 675 * @index:	Index of the reference, from zero onwards.
 676 * @args:	Result structure with reference and integer arguments.
 
 677 *
 678 * Obtain a reference based on a named property in an fwnode, with
 679 * integer arguments.
 680 *
 681 * Caller is responsible to call fwnode_handle_put() on the returned
 682 * args->fwnode pointer.
 683 *
 684 * Returns: %0 on success
 685 *	    %-ENOENT when the index is out of bounds, the index has an empty
 686 *		     reference or the property was not found
 687 *	    %-EINVAL on parse error
 688 */
 689int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
 690				       const char *prop, const char *nargs_prop,
 691				       unsigned int nargs, unsigned int index,
 692				       struct fwnode_reference_args *args)
 693{
 694	return fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
 695				  nargs, index, args);
 696}
 697EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
 698
 699static void property_entry_free_data(const struct property_entry *p)
 700{
 701	size_t i, nval;
 702
 703	if (p->is_array) {
 704		if (p->is_string && p->pointer.str) {
 705			nval = p->length / sizeof(const char *);
 706			for (i = 0; i < nval; i++)
 707				kfree(p->pointer.str[i]);
 708		}
 709		kfree(p->pointer.raw_data);
 710	} else if (p->is_string) {
 711		kfree(p->value.str);
 712	}
 713	kfree(p->name);
 714}
 715
 716static int property_copy_string_array(struct property_entry *dst,
 717				      const struct property_entry *src)
 718{
 719	char **d;
 720	size_t nval = src->length / sizeof(*d);
 721	int i;
 722
 723	d = kcalloc(nval, sizeof(*d), GFP_KERNEL);
 724	if (!d)
 725		return -ENOMEM;
 726
 727	for (i = 0; i < nval; i++) {
 728		d[i] = kstrdup(src->pointer.str[i], GFP_KERNEL);
 729		if (!d[i] && src->pointer.str[i]) {
 730			while (--i >= 0)
 731				kfree(d[i]);
 732			kfree(d);
 733			return -ENOMEM;
 734		}
 735	}
 736
 737	dst->pointer.raw_data = d;
 738	return 0;
 739}
 740
 741static int property_entry_copy_data(struct property_entry *dst,
 742				    const struct property_entry *src)
 743{
 744	int error;
 745
 746	if (src->is_array) {
 747		if (!src->length)
 748			return -ENODATA;
 749
 750		if (src->is_string) {
 751			error = property_copy_string_array(dst, src);
 752			if (error)
 753				return error;
 754		} else {
 755			dst->pointer.raw_data = kmemdup(src->pointer.raw_data,
 756							src->length, GFP_KERNEL);
 757			if (!dst->pointer.raw_data)
 758				return -ENOMEM;
 759		}
 760	} else if (src->is_string) {
 761		dst->value.str = kstrdup(src->value.str, GFP_KERNEL);
 762		if (!dst->value.str && src->value.str)
 763			return -ENOMEM;
 764	} else {
 765		dst->value.raw_data = src->value.raw_data;
 766	}
 767
 768	dst->length = src->length;
 769	dst->is_array = src->is_array;
 770	dst->is_string = src->is_string;
 771
 772	dst->name = kstrdup(src->name, GFP_KERNEL);
 773	if (!dst->name)
 774		goto out_free_data;
 
 775
 776	return 0;
 
 777
 778out_free_data:
 779	property_entry_free_data(dst);
 780	return -ENOMEM;
 781}
 
 782
 783/**
 784 * property_entries_dup - duplicate array of properties
 785 * @properties: array of properties to copy
 
 
 786 *
 787 * This function creates a deep copy of the given NULL-terminated array
 788 * of property entries.
 
 
 
 
 
 789 */
 790struct property_entry *
 791property_entries_dup(const struct property_entry *properties)
 
 792{
 793	struct property_entry *p;
 794	int i, n = 0;
 795
 796	while (properties[n].name)
 797		n++;
 798
 799	p = kcalloc(n + 1, sizeof(*p), GFP_KERNEL);
 800	if (!p)
 801		return ERR_PTR(-ENOMEM);
 802
 803	for (i = 0; i < n; i++) {
 804		int ret = property_entry_copy_data(&p[i], &properties[i]);
 805		if (ret) {
 806			while (--i >= 0)
 807				property_entry_free_data(&p[i]);
 808			kfree(p);
 809			return ERR_PTR(ret);
 810		}
 811	}
 812
 813	return p;
 
 
 814}
 815EXPORT_SYMBOL_GPL(property_entries_dup);
 816
 817/**
 818 * property_entries_free - free previously allocated array of properties
 819 * @properties: array of properties to destroy
 820 *
 821 * This function frees given NULL-terminated array of property entries,
 822 * along with their data.
 823 */
 824void property_entries_free(const struct property_entry *properties)
 825{
 826	const struct property_entry *p;
 827
 828	for (p = properties; p->name; p++)
 829		property_entry_free_data(p);
 830
 831	kfree(properties);
 832}
 833EXPORT_SYMBOL_GPL(property_entries_free);
 834
 835/**
 836 * pset_free_set - releases memory allocated for copied property set
 837 * @pset: Property set to release
 838 *
 839 * Function takes previously copied property set and releases all the
 840 * memory allocated to it.
 841 */
 842static void pset_free_set(struct property_set *pset)
 843{
 844	if (!pset)
 845		return;
 846
 847	property_entries_free(pset->properties);
 848	kfree(pset);
 849}
 850
 851/**
 852 * pset_copy_set - copies property set
 853 * @pset: Property set to copy
 
 854 *
 855 * This function takes a deep copy of the given property set and returns
 856 * pointer to the copy. Call device_free_property_set() to free resources
 857 * allocated in this function.
 
 858 *
 859 * Return: Pointer to the new property set or error pointer.
 
 860 */
 861static struct property_set *pset_copy_set(const struct property_set *pset)
 862{
 863	struct property_entry *properties;
 864	struct property_set *p;
 865
 866	p = kzalloc(sizeof(*p), GFP_KERNEL);
 867	if (!p)
 868		return ERR_PTR(-ENOMEM);
 869
 870	properties = property_entries_dup(pset->properties);
 871	if (IS_ERR(properties)) {
 872		kfree(p);
 873		return ERR_CAST(properties);
 874	}
 875
 876	p->properties = properties;
 877	return p;
 878}
 
 879
 880/**
 881 * device_remove_properties - Remove properties from a device object.
 882 * @dev: Device whose properties to remove.
 883 *
 884 * The function removes properties previously associated to the device
 885 * secondary firmware node with device_add_properties(). Memory allocated
 886 * to the properties will also be released.
 887 */
 888void device_remove_properties(struct device *dev)
 889{
 890	struct fwnode_handle *fwnode;
 891	struct property_set *pset;
 892
 893	fwnode = dev_fwnode(dev);
 894	if (!fwnode)
 895		return;
 896	/*
 897	 * Pick either primary or secondary node depending which one holds
 898	 * the pset. If there is no real firmware node (ACPI/DT) primary
 899	 * will hold the pset.
 900	 */
 901	pset = to_pset_node(fwnode);
 902	if (pset) {
 903		set_primary_fwnode(dev, NULL);
 904	} else {
 905		pset = to_pset_node(fwnode->secondary);
 906		if (pset && dev == pset->dev)
 907			set_secondary_fwnode(dev, NULL);
 908	}
 909	if (pset && dev == pset->dev)
 910		pset_free_set(pset);
 911}
 912EXPORT_SYMBOL_GPL(device_remove_properties);
 913
 914/**
 915 * device_add_properties - Add a collection of properties to a device object.
 916 * @dev: Device to add properties to.
 917 * @properties: Collection of properties to add.
 918 *
 919 * Associate a collection of device properties represented by @properties with
 920 * @dev as its secondary firmware node. The function takes a copy of
 921 * @properties.
 922 */
 923int device_add_properties(struct device *dev,
 924			  const struct property_entry *properties)
 925{
 926	struct property_set *p, pset;
 927
 928	if (!properties)
 929		return -EINVAL;
 930
 931	pset.properties = properties;
 932
 933	p = pset_copy_set(&pset);
 934	if (IS_ERR(p))
 935		return PTR_ERR(p);
 936
 937	p->fwnode.ops = &pset_fwnode_ops;
 938	set_secondary_fwnode(dev, &p->fwnode);
 939	p->dev = dev;
 940	return 0;
 941}
 942EXPORT_SYMBOL_GPL(device_add_properties);
 943
 944/**
 945 * fwnode_get_next_parent - Iterate to the node's parent
 946 * @fwnode: Firmware whose parent is retrieved
 947 *
 948 * This is like fwnode_get_parent() except that it drops the refcount
 949 * on the passed node, making it suitable for iterating through a
 950 * node's parents.
 951 *
 952 * Returns a node pointer with refcount incremented, use
 953 * fwnode_handle_node() on it when done.
 
 
 
 
 954 */
 955struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
 956{
 957	struct fwnode_handle *parent = fwnode_get_parent(fwnode);
 958
 959	fwnode_handle_put(fwnode);
 960
 961	return parent;
 962}
 963EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
 964
 965/**
 966 * fwnode_get_parent - Return parent firwmare node
 967 * @fwnode: Firmware whose parent is retrieved
 968 *
 969 * Return parent firmware node of the given node if possible or %NULL if no
 970 * parent was available.
 971 */
 972struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
 973{
 974	return fwnode_call_ptr_op(fwnode, get_parent);
 
 
 
 
 
 
 975}
 976EXPORT_SYMBOL_GPL(fwnode_get_parent);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 977
 978/**
 979 * fwnode_get_next_child_node - Return the next child node handle for a node
 980 * @fwnode: Firmware node to find the next child node for.
 981 * @child: Handle to one of the node's child nodes or a %NULL handle.
 
 
 
 
 982 */
 983struct fwnode_handle *
 984fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
 985			   struct fwnode_handle *child)
 986{
 987	return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
 988}
 989EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
 990
 991/**
 992 * fwnode_get_next_available_child_node - Return the next
 993 * available child node handle for a node
 994 * @fwnode: Firmware node to find the next child node for.
 995 * @child: Handle to one of the node's child nodes or a %NULL handle.
 
 
 
 
 996 */
 997struct fwnode_handle *
 998fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
 999				     struct fwnode_handle *child)
1000{
1001	struct fwnode_handle *next_child = child;
1002
1003	if (!fwnode)
1004		return NULL;
1005
1006	do {
1007		next_child = fwnode_get_next_child_node(fwnode, next_child);
1008
1009		if (!next_child || fwnode_device_is_available(next_child))
1010			break;
1011	} while (next_child);
1012
1013	return next_child;
1014}
1015EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
1016
1017/**
1018 * device_get_next_child_node - Return the next child node handle for a device
1019 * @dev: Device to find the next child node for.
1020 * @child: Handle to one of the device's child nodes or a null handle.
 
 
 
 
1021 */
1022struct fwnode_handle *device_get_next_child_node(struct device *dev,
1023						 struct fwnode_handle *child)
1024{
1025	struct acpi_device *adev = ACPI_COMPANION(dev);
1026	struct fwnode_handle *fwnode = NULL;
1027
1028	if (dev->of_node)
1029		fwnode = &dev->of_node->fwnode;
1030	else if (adev)
1031		fwnode = acpi_fwnode_handle(adev);
 
 
 
1032
1033	return fwnode_get_next_child_node(fwnode, child);
 
1034}
1035EXPORT_SYMBOL_GPL(device_get_next_child_node);
1036
1037/**
1038 * fwnode_get_named_child_node - Return first matching named child node handle
1039 * @fwnode: Firmware node to find the named child node for.
1040 * @childname: String to match child node name against.
 
 
 
1041 */
1042struct fwnode_handle *
1043fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
1044			    const char *childname)
1045{
1046	return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
1047}
1048EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
1049
1050/**
1051 * device_get_named_child_node - Return first matching named child node handle
1052 * @dev: Device to find the named child node for.
1053 * @childname: String to match child node name against.
 
 
 
1054 */
1055struct fwnode_handle *device_get_named_child_node(struct device *dev,
1056						  const char *childname)
1057{
1058	return fwnode_get_named_child_node(dev_fwnode(dev), childname);
1059}
1060EXPORT_SYMBOL_GPL(device_get_named_child_node);
1061
1062/**
1063 * fwnode_handle_get - Obtain a reference to a device node
1064 * @fwnode: Pointer to the device node to obtain the reference to.
1065 *
1066 * Returns the fwnode handle.
 
 
 
1067 */
1068struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
1069{
1070	if (!fwnode_has_op(fwnode, get))
1071		return fwnode;
1072
1073	return fwnode_call_ptr_op(fwnode, get);
1074}
1075EXPORT_SYMBOL_GPL(fwnode_handle_get);
1076
1077/**
1078 * fwnode_handle_put - Drop reference to a device node
1079 * @fwnode: Pointer to the device node to drop the reference to.
1080 *
1081 * This has to be used when terminating device_for_each_child_node() iteration
1082 * with break or return to prevent stale device node references from being left
1083 * behind.
1084 */
1085void fwnode_handle_put(struct fwnode_handle *fwnode)
1086{
1087	fwnode_call_void_op(fwnode, put);
1088}
1089EXPORT_SYMBOL_GPL(fwnode_handle_put);
1090
1091/**
1092 * fwnode_device_is_available - check if a device is available for use
1093 * @fwnode: Pointer to the fwnode of the device.
 
 
 
 
 
1094 */
1095bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
1096{
 
 
 
 
 
 
1097	return fwnode_call_bool_op(fwnode, device_is_available);
1098}
1099EXPORT_SYMBOL_GPL(fwnode_device_is_available);
1100
1101/**
1102 * device_get_child_node_count - return the number of child nodes for device
1103 * @dev: Device to cound the child nodes for
 
 
1104 */
1105unsigned int device_get_child_node_count(struct device *dev)
1106{
1107	struct fwnode_handle *child;
1108	unsigned int count = 0;
1109
1110	device_for_each_child_node(dev, child)
1111		count++;
1112
1113	return count;
1114}
1115EXPORT_SYMBOL_GPL(device_get_child_node_count);
1116
1117bool device_dma_supported(struct device *dev)
1118{
1119	/* For DT, this is always supported.
1120	 * For ACPI, this depends on CCA, which
1121	 * is determined by the acpi_dma_supported().
1122	 */
1123	if (IS_ENABLED(CONFIG_OF) && dev->of_node)
1124		return true;
1125
1126	return acpi_dma_supported(ACPI_COMPANION(dev));
1127}
1128EXPORT_SYMBOL_GPL(device_dma_supported);
1129
1130enum dev_dma_attr device_get_dma_attr(struct device *dev)
1131{
1132	enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;
 
1133
1134	if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
1135		if (of_dma_is_coherent(dev->of_node))
1136			attr = DEV_DMA_COHERENT;
1137		else
1138			attr = DEV_DMA_NON_COHERENT;
1139	} else
1140		attr = acpi_get_dma_attr(ACPI_COMPANION(dev));
1141
1142	return attr;
1143}
1144EXPORT_SYMBOL_GPL(device_get_dma_attr);
1145
1146/**
1147 * fwnode_get_phy_mode - Get phy mode for given firmware node
1148 * @fwnode:	Pointer to the given node
1149 *
1150 * The function gets phy interface string from property 'phy-mode' or
1151 * 'phy-connection-type', and return its index in phy_modes table, or errno in
1152 * error case.
1153 */
1154int fwnode_get_phy_mode(struct fwnode_handle *fwnode)
1155{
1156	const char *pm;
1157	int err, i;
1158
1159	err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
1160	if (err < 0)
1161		err = fwnode_property_read_string(fwnode,
1162						  "phy-connection-type", &pm);
1163	if (err < 0)
1164		return err;
1165
1166	for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
1167		if (!strcasecmp(pm, phy_modes(i)))
1168			return i;
1169
1170	return -ENODEV;
1171}
1172EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
1173
1174/**
1175 * device_get_phy_mode - Get phy mode for given device
1176 * @dev:	Pointer to the given device
1177 *
1178 * The function gets phy interface string from property 'phy-mode' or
1179 * 'phy-connection-type', and return its index in phy_modes table, or errno in
1180 * error case.
1181 */
1182int device_get_phy_mode(struct device *dev)
1183{
1184	return fwnode_get_phy_mode(dev_fwnode(dev));
1185}
1186EXPORT_SYMBOL_GPL(device_get_phy_mode);
1187
1188static void *fwnode_get_mac_addr(struct fwnode_handle *fwnode,
1189				 const char *name, char *addr,
1190				 int alen)
1191{
1192	int ret = fwnode_property_read_u8_array(fwnode, name, addr, alen);
1193
1194	if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
1195		return addr;
1196	return NULL;
1197}
1198
1199/**
1200 * fwnode_get_mac_address - Get the MAC from the firmware node
1201 * @fwnode:	Pointer to the firmware node
1202 * @addr:	Address of buffer to store the MAC in
1203 * @alen:	Length of the buffer pointed to by addr, should be ETH_ALEN
1204 *
1205 * Search the firmware node for the best MAC address to use.  'mac-address' is
1206 * checked first, because that is supposed to contain to "most recent" MAC
1207 * address. If that isn't set, then 'local-mac-address' is checked next,
1208 * because that is the default address.  If that isn't set, then the obsolete
1209 * 'address' is checked, just in case we're using an old device tree.
1210 *
1211 * Note that the 'address' property is supposed to contain a virtual address of
1212 * the register set, but some DTS files have redefined that property to be the
1213 * MAC address.
1214 *
1215 * All-zero MAC addresses are rejected, because those could be properties that
1216 * exist in the firmware tables, but were not updated by the firmware.  For
1217 * example, the DTS could define 'mac-address' and 'local-mac-address', with
1218 * zero MAC addresses.  Some older U-Boots only initialized 'local-mac-address'.
1219 * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
1220 * exists but is all zeros.
1221*/
1222void *fwnode_get_mac_address(struct fwnode_handle *fwnode, char *addr, int alen)
1223{
1224	char *res;
1225
1226	res = fwnode_get_mac_addr(fwnode, "mac-address", addr, alen);
1227	if (res)
1228		return res;
1229
1230	res = fwnode_get_mac_addr(fwnode, "local-mac-address", addr, alen);
1231	if (res)
1232		return res;
1233
1234	return fwnode_get_mac_addr(fwnode, "address", addr, alen);
1235}
1236EXPORT_SYMBOL(fwnode_get_mac_address);
1237
1238/**
1239 * device_get_mac_address - Get the MAC for a given device
1240 * @dev:	Pointer to the device
1241 * @addr:	Address of buffer to store the MAC in
1242 * @alen:	Length of the buffer pointed to by addr, should be ETH_ALEN
 
1243 */
1244void *device_get_mac_address(struct device *dev, char *addr, int alen)
1245{
1246	return fwnode_get_mac_address(dev_fwnode(dev), addr, alen);
 
 
 
 
 
 
 
1247}
1248EXPORT_SYMBOL(device_get_mac_address);
1249
1250/**
1251 * fwnode_irq_get - Get IRQ directly from a fwnode
1252 * @fwnode:	Pointer to the firmware node
1253 * @index:	Zero-based index of the IRQ
1254 *
1255 * Returns Linux IRQ number on success. Other values are determined
1256 * accordingly to acpi_/of_ irq_get() operation.
 
 
 
 
 
1257 */
1258int fwnode_irq_get(struct fwnode_handle *fwnode, unsigned int index)
1259{
1260	struct device_node *of_node = to_of_node(fwnode);
1261	struct resource res;
1262	int ret;
1263
1264	if (IS_ENABLED(CONFIG_OF) && of_node)
1265		return of_irq_get(of_node, index);
1266
1267	ret = acpi_irq_get(ACPI_HANDLE_FWNODE(fwnode), index, &res);
1268	if (ret)
1269		return ret;
1270
1271	return res.start;
1272}
1273EXPORT_SYMBOL(fwnode_irq_get);
1274
1275/**
1276 * device_graph_get_next_endpoint - Get next endpoint firmware node
1277 * @fwnode: Pointer to the parent firmware node
1278 * @prev: Previous endpoint node or %NULL to get the first
1279 *
1280 * Returns an endpoint firmware node pointer or %NULL if no more endpoints
 
 
 
 
1281 * are available.
1282 */
1283struct fwnode_handle *
1284fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1285			       struct fwnode_handle *prev)
1286{
1287	return fwnode_call_ptr_op(fwnode, graph_get_next_endpoint, prev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1288}
1289EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
1290
1291/**
1292 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
1293 * @endpoint: Endpoint firmware node of the port
1294 *
 
 
 
1295 * Return: the firmware node of the device the @endpoint belongs to.
1296 */
1297struct fwnode_handle *
1298fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
1299{
1300	struct fwnode_handle *port, *parent;
1301
1302	port = fwnode_get_parent(endpoint);
1303	parent = fwnode_call_ptr_op(port, graph_get_port_parent);
1304
1305	fwnode_handle_put(port);
1306
1307	return parent;
1308}
1309EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1310
1311/**
1312 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1313 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1314 *
1315 * Extracts firmware node of a remote device the @fwnode points to.
 
 
 
1316 */
1317struct fwnode_handle *
1318fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1319{
1320	struct fwnode_handle *endpoint, *parent;
1321
1322	endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1323	parent = fwnode_graph_get_port_parent(endpoint);
1324
1325	fwnode_handle_put(endpoint);
1326
1327	return parent;
1328}
1329EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1330
1331/**
1332 * fwnode_graph_get_remote_port - Return fwnode of a remote port
1333 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1334 *
1335 * Extracts firmware node of a remote port the @fwnode points to.
 
 
 
1336 */
1337struct fwnode_handle *
1338fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1339{
1340	return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1341}
1342EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1343
1344/**
1345 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1346 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1347 *
1348 * Extracts firmware node of a remote endpoint the @fwnode points to.
 
 
 
1349 */
1350struct fwnode_handle *
1351fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1352{
1353	return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1354}
1355EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1356
 
 
 
 
 
 
 
 
 
 
 
 
1357/**
1358 * fwnode_graph_get_remote_node - get remote parent node for given port/endpoint
1359 * @fwnode: pointer to parent fwnode_handle containing graph port/endpoint
1360 * @port_id: identifier of the parent port node
1361 * @endpoint_id: identifier of the endpoint node
 
 
 
 
 
 
 
1362 *
1363 * Return: Remote fwnode handle associated with remote endpoint node linked
1364 *	   to @node. Use fwnode_node_put() on it when done.
 
 
 
 
1365 */
1366struct fwnode_handle *
1367fwnode_graph_get_remote_node(const struct fwnode_handle *fwnode, u32 port_id,
1368			     u32 endpoint_id)
1369{
1370	struct fwnode_handle *endpoint = NULL;
 
 
 
1371
1372	while ((endpoint = fwnode_graph_get_next_endpoint(fwnode, endpoint))) {
1373		struct fwnode_endpoint fwnode_ep;
1374		struct fwnode_handle *remote;
1375		int ret;
1376
1377		ret = fwnode_graph_parse_endpoint(endpoint, &fwnode_ep);
 
 
 
1378		if (ret < 0)
1379			continue;
1380
1381		if (fwnode_ep.port != port_id || fwnode_ep.id != endpoint_id)
1382			continue;
1383
1384		remote = fwnode_graph_get_remote_port_parent(endpoint);
1385		if (!remote)
1386			return NULL;
 
 
 
 
 
 
 
 
 
 
 
1387
1388		return fwnode_device_is_available(remote) ? remote : NULL;
 
 
1389	}
1390
1391	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1392}
1393EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_node);
1394
1395/**
1396 * fwnode_graph_parse_endpoint - parse common endpoint node properties
1397 * @fwnode: pointer to endpoint fwnode_handle
1398 * @endpoint: pointer to the fwnode endpoint data structure
1399 *
1400 * Parse @fwnode representing a graph endpoint node and store the
1401 * information in @endpoint. The caller must hold a reference to
1402 * @fwnode.
1403 */
1404int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1405				struct fwnode_endpoint *endpoint)
1406{
1407	memset(endpoint, 0, sizeof(*endpoint));
1408
1409	return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1410}
1411EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1412
1413const void *device_get_match_data(struct device *dev)
1414{
1415	return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1416}
1417EXPORT_SYMBOL_GPL(device_get_match_data);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * property.c - Unified device property interface.
   4 *
   5 * Copyright (C) 2014, Intel Corporation
   6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
   7 *          Mika Westerberg <mika.westerberg@linux.intel.com>
   8 */
   9
  10#include <linux/device.h>
  11#include <linux/err.h>
  12#include <linux/export.h>
  13#include <linux/kconfig.h>
  14#include <linux/of.h>
 
 
 
  15#include <linux/property.h>
 
  16#include <linux/phy.h>
  17#include <linux/slab.h>
  18#include <linux/string.h>
  19#include <linux/types.h>
  20
  21struct fwnode_handle *__dev_fwnode(struct device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  22{
  23	return IS_ENABLED(CONFIG_OF) && dev->of_node ?
  24		of_fwnode_handle(dev->of_node) : dev->fwnode;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  25}
  26EXPORT_SYMBOL_GPL(__dev_fwnode);
  27
  28const struct fwnode_handle *__dev_fwnode_const(const struct device *dev)
 
 
 
  29{
  30	return IS_ENABLED(CONFIG_OF) && dev->of_node ?
  31		of_fwnode_handle(dev->of_node) : dev->fwnode;
  32}
  33EXPORT_SYMBOL_GPL(__dev_fwnode_const);
 
 
 
 
 
  34
  35/**
  36 * device_property_present - check if a property of a device is present
  37 * @dev: Device whose property is being checked
  38 * @propname: Name of the property
  39 *
  40 * Check if property @propname is present in the device firmware description.
  41 *
  42 * Return: true if property @propname is present. Otherwise, returns false.
  43 */
  44bool device_property_present(const struct device *dev, const char *propname)
  45{
  46	return fwnode_property_present(dev_fwnode(dev), propname);
  47}
  48EXPORT_SYMBOL_GPL(device_property_present);
  49
  50/**
  51 * fwnode_property_present - check if a property of a firmware node is present
  52 * @fwnode: Firmware node whose property to check
  53 * @propname: Name of the property
  54 *
  55 * Return: true if property @propname is present. Otherwise, returns false.
  56 */
  57bool fwnode_property_present(const struct fwnode_handle *fwnode,
  58			     const char *propname)
  59{
  60	bool ret;
  61
  62	if (IS_ERR_OR_NULL(fwnode))
  63		return false;
  64
  65	ret = fwnode_call_bool_op(fwnode, property_present, propname);
  66	if (ret)
  67		return ret;
  68
  69	return fwnode_call_bool_op(fwnode->secondary, property_present, propname);
 
  70}
  71EXPORT_SYMBOL_GPL(fwnode_property_present);
  72
  73/**
  74 * device_property_read_u8_array - return a u8 array property of a device
  75 * @dev: Device to get the property of
  76 * @propname: Name of the property
  77 * @val: The values are stored here or %NULL to return the number of values
  78 * @nval: Size of the @val array
  79 *
  80 * Function reads an array of u8 properties with @propname from the device
  81 * firmware description and stores them to @val if found.
  82 *
  83 * It's recommended to call device_property_count_u8() instead of calling
  84 * this function with @val equals %NULL and @nval equals 0.
  85 *
  86 * Return: number of values if @val was %NULL,
  87 *         %0 if the property was found (success),
  88 *	   %-EINVAL if given arguments are not valid,
  89 *	   %-ENODATA if the property does not have a value,
  90 *	   %-EPROTO if the property is not an array of numbers,
  91 *	   %-EOVERFLOW if the size of the property is not as expected.
  92 *	   %-ENXIO if no suitable firmware interface is present.
  93 */
  94int device_property_read_u8_array(const struct device *dev, const char *propname,
  95				  u8 *val, size_t nval)
  96{
  97	return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
  98}
  99EXPORT_SYMBOL_GPL(device_property_read_u8_array);
 100
 101/**
 102 * device_property_read_u16_array - return a u16 array property of a device
 103 * @dev: Device to get the property of
 104 * @propname: Name of the property
 105 * @val: The values are stored here or %NULL to return the number of values
 106 * @nval: Size of the @val array
 107 *
 108 * Function reads an array of u16 properties with @propname from the device
 109 * firmware description and stores them to @val if found.
 110 *
 111 * It's recommended to call device_property_count_u16() instead of calling
 112 * this function with @val equals %NULL and @nval equals 0.
 113 *
 114 * Return: number of values if @val was %NULL,
 115 *         %0 if the property was found (success),
 116 *	   %-EINVAL if given arguments are not valid,
 117 *	   %-ENODATA if the property does not have a value,
 118 *	   %-EPROTO if the property is not an array of numbers,
 119 *	   %-EOVERFLOW if the size of the property is not as expected.
 120 *	   %-ENXIO if no suitable firmware interface is present.
 121 */
 122int device_property_read_u16_array(const struct device *dev, const char *propname,
 123				   u16 *val, size_t nval)
 124{
 125	return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
 126}
 127EXPORT_SYMBOL_GPL(device_property_read_u16_array);
 128
 129/**
 130 * device_property_read_u32_array - return a u32 array property of a device
 131 * @dev: Device to get the property of
 132 * @propname: Name of the property
 133 * @val: The values are stored here or %NULL to return the number of values
 134 * @nval: Size of the @val array
 135 *
 136 * Function reads an array of u32 properties with @propname from the device
 137 * firmware description and stores them to @val if found.
 138 *
 139 * It's recommended to call device_property_count_u32() instead of calling
 140 * this function with @val equals %NULL and @nval equals 0.
 141 *
 142 * Return: number of values if @val was %NULL,
 143 *         %0 if the property was found (success),
 144 *	   %-EINVAL if given arguments are not valid,
 145 *	   %-ENODATA if the property does not have a value,
 146 *	   %-EPROTO if the property is not an array of numbers,
 147 *	   %-EOVERFLOW if the size of the property is not as expected.
 148 *	   %-ENXIO if no suitable firmware interface is present.
 149 */
 150int device_property_read_u32_array(const struct device *dev, const char *propname,
 151				   u32 *val, size_t nval)
 152{
 153	return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
 154}
 155EXPORT_SYMBOL_GPL(device_property_read_u32_array);
 156
 157/**
 158 * device_property_read_u64_array - return a u64 array property of a device
 159 * @dev: Device to get the property of
 160 * @propname: Name of the property
 161 * @val: The values are stored here or %NULL to return the number of values
 162 * @nval: Size of the @val array
 163 *
 164 * Function reads an array of u64 properties with @propname from the device
 165 * firmware description and stores them to @val if found.
 166 *
 167 * It's recommended to call device_property_count_u64() instead of calling
 168 * this function with @val equals %NULL and @nval equals 0.
 169 *
 170 * Return: number of values if @val was %NULL,
 171 *         %0 if the property was found (success),
 172 *	   %-EINVAL if given arguments are not valid,
 173 *	   %-ENODATA if the property does not have a value,
 174 *	   %-EPROTO if the property is not an array of numbers,
 175 *	   %-EOVERFLOW if the size of the property is not as expected.
 176 *	   %-ENXIO if no suitable firmware interface is present.
 177 */
 178int device_property_read_u64_array(const struct device *dev, const char *propname,
 179				   u64 *val, size_t nval)
 180{
 181	return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
 182}
 183EXPORT_SYMBOL_GPL(device_property_read_u64_array);
 184
 185/**
 186 * device_property_read_string_array - return a string array property of device
 187 * @dev: Device to get the property of
 188 * @propname: Name of the property
 189 * @val: The values are stored here or %NULL to return the number of values
 190 * @nval: Size of the @val array
 191 *
 192 * Function reads an array of string properties with @propname from the device
 193 * firmware description and stores them to @val if found.
 194 *
 195 * It's recommended to call device_property_string_array_count() instead of calling
 196 * this function with @val equals %NULL and @nval equals 0.
 197 *
 198 * Return: number of values read on success if @val is non-NULL,
 199 *	   number of values available on success if @val is NULL,
 200 *	   %-EINVAL if given arguments are not valid,
 201 *	   %-ENODATA if the property does not have a value,
 202 *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
 203 *	   %-EOVERFLOW if the size of the property is not as expected.
 204 *	   %-ENXIO if no suitable firmware interface is present.
 205 */
 206int device_property_read_string_array(const struct device *dev, const char *propname,
 207				      const char **val, size_t nval)
 208{
 209	return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
 210}
 211EXPORT_SYMBOL_GPL(device_property_read_string_array);
 212
 213/**
 214 * device_property_read_string - return a string property of a device
 215 * @dev: Device to get the property of
 216 * @propname: Name of the property
 217 * @val: The value is stored here
 218 *
 219 * Function reads property @propname from the device firmware description and
 220 * stores the value into @val if found. The value is checked to be a string.
 221 *
 222 * Return: %0 if the property was found (success),
 223 *	   %-EINVAL if given arguments are not valid,
 224 *	   %-ENODATA if the property does not have a value,
 225 *	   %-EPROTO or %-EILSEQ if the property type is not a string.
 226 *	   %-ENXIO if no suitable firmware interface is present.
 227 */
 228int device_property_read_string(const struct device *dev, const char *propname,
 229				const char **val)
 230{
 231	return fwnode_property_read_string(dev_fwnode(dev), propname, val);
 232}
 233EXPORT_SYMBOL_GPL(device_property_read_string);
 234
 235/**
 236 * device_property_match_string - find a string in an array and return index
 237 * @dev: Device to get the property of
 238 * @propname: Name of the property holding the array
 239 * @string: String to look for
 240 *
 241 * Find a given string in a string array and if it is found return the
 242 * index back.
 243 *
 244 * Return: index, starting from %0, if the property was found (success),
 245 *	   %-EINVAL if given arguments are not valid,
 246 *	   %-ENODATA if the property does not have a value,
 247 *	   %-EPROTO if the property is not an array of strings,
 248 *	   %-ENXIO if no suitable firmware interface is present.
 249 */
 250int device_property_match_string(const struct device *dev, const char *propname,
 251				 const char *string)
 252{
 253	return fwnode_property_match_string(dev_fwnode(dev), propname, string);
 254}
 255EXPORT_SYMBOL_GPL(device_property_match_string);
 256
 257static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
 258					  const char *propname,
 259					  unsigned int elem_size, void *val,
 260					  size_t nval)
 261{
 262	int ret;
 263
 264	if (IS_ERR_OR_NULL(fwnode))
 265		return -EINVAL;
 266
 267	ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
 268				 elem_size, val, nval);
 269	if (ret != -EINVAL)
 270		return ret;
 
 
 
 271
 272	return fwnode_call_int_op(fwnode->secondary, property_read_int_array, propname,
 273				  elem_size, val, nval);
 274}
 275
 276/**
 277 * fwnode_property_read_u8_array - return a u8 array property of firmware node
 278 * @fwnode: Firmware node to get the property of
 279 * @propname: Name of the property
 280 * @val: The values are stored here or %NULL to return the number of values
 281 * @nval: Size of the @val array
 282 *
 283 * Read an array of u8 properties with @propname from @fwnode and stores them to
 284 * @val if found.
 285 *
 286 * It's recommended to call fwnode_property_count_u8() instead of calling
 287 * this function with @val equals %NULL and @nval equals 0.
 288 *
 289 * Return: number of values if @val was %NULL,
 290 *         %0 if the property was found (success),
 291 *	   %-EINVAL if given arguments are not valid,
 292 *	   %-ENODATA if the property does not have a value,
 293 *	   %-EPROTO if the property is not an array of numbers,
 294 *	   %-EOVERFLOW if the size of the property is not as expected,
 295 *	   %-ENXIO if no suitable firmware interface is present.
 296 */
 297int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
 298				  const char *propname, u8 *val, size_t nval)
 299{
 300	return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
 301					      val, nval);
 302}
 303EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
 304
 305/**
 306 * fwnode_property_read_u16_array - return a u16 array property of firmware node
 307 * @fwnode: Firmware node to get the property of
 308 * @propname: Name of the property
 309 * @val: The values are stored here or %NULL to return the number of values
 310 * @nval: Size of the @val array
 311 *
 312 * Read an array of u16 properties with @propname from @fwnode and store them to
 313 * @val if found.
 314 *
 315 * It's recommended to call fwnode_property_count_u16() instead of calling
 316 * this function with @val equals %NULL and @nval equals 0.
 317 *
 318 * Return: number of values if @val was %NULL,
 319 *         %0 if the property was found (success),
 320 *	   %-EINVAL if given arguments are not valid,
 321 *	   %-ENODATA if the property does not have a value,
 322 *	   %-EPROTO if the property is not an array of numbers,
 323 *	   %-EOVERFLOW if the size of the property is not as expected,
 324 *	   %-ENXIO if no suitable firmware interface is present.
 325 */
 326int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
 327				   const char *propname, u16 *val, size_t nval)
 328{
 329	return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
 330					      val, nval);
 331}
 332EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
 333
 334/**
 335 * fwnode_property_read_u32_array - return a u32 array property of firmware node
 336 * @fwnode: Firmware node to get the property of
 337 * @propname: Name of the property
 338 * @val: The values are stored here or %NULL to return the number of values
 339 * @nval: Size of the @val array
 340 *
 341 * Read an array of u32 properties with @propname from @fwnode store them to
 342 * @val if found.
 343 *
 344 * It's recommended to call fwnode_property_count_u32() instead of calling
 345 * this function with @val equals %NULL and @nval equals 0.
 346 *
 347 * Return: number of values if @val was %NULL,
 348 *         %0 if the property was found (success),
 349 *	   %-EINVAL if given arguments are not valid,
 350 *	   %-ENODATA if the property does not have a value,
 351 *	   %-EPROTO if the property is not an array of numbers,
 352 *	   %-EOVERFLOW if the size of the property is not as expected,
 353 *	   %-ENXIO if no suitable firmware interface is present.
 354 */
 355int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
 356				   const char *propname, u32 *val, size_t nval)
 357{
 358	return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
 359					      val, nval);
 360}
 361EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
 362
 363/**
 364 * fwnode_property_read_u64_array - return a u64 array property firmware node
 365 * @fwnode: Firmware node to get the property of
 366 * @propname: Name of the property
 367 * @val: The values are stored here or %NULL to return the number of values
 368 * @nval: Size of the @val array
 369 *
 370 * Read an array of u64 properties with @propname from @fwnode and store them to
 371 * @val if found.
 372 *
 373 * It's recommended to call fwnode_property_count_u64() instead of calling
 374 * this function with @val equals %NULL and @nval equals 0.
 375 *
 376 * Return: number of values if @val was %NULL,
 377 *         %0 if the property was found (success),
 378 *	   %-EINVAL if given arguments are not valid,
 379 *	   %-ENODATA if the property does not have a value,
 380 *	   %-EPROTO if the property is not an array of numbers,
 381 *	   %-EOVERFLOW if the size of the property is not as expected,
 382 *	   %-ENXIO if no suitable firmware interface is present.
 383 */
 384int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
 385				   const char *propname, u64 *val, size_t nval)
 386{
 387	return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
 388					      val, nval);
 389}
 390EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
 391
 392/**
 393 * fwnode_property_read_string_array - return string array property of a node
 394 * @fwnode: Firmware node to get the property of
 395 * @propname: Name of the property
 396 * @val: The values are stored here or %NULL to return the number of values
 397 * @nval: Size of the @val array
 398 *
 399 * Read an string list property @propname from the given firmware node and store
 400 * them to @val if found.
 401 *
 402 * It's recommended to call fwnode_property_string_array_count() instead of calling
 403 * this function with @val equals %NULL and @nval equals 0.
 404 *
 405 * Return: number of values read on success if @val is non-NULL,
 406 *	   number of values available on success if @val is NULL,
 407 *	   %-EINVAL if given arguments are not valid,
 408 *	   %-ENODATA if the property does not have a value,
 409 *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
 410 *	   %-EOVERFLOW if the size of the property is not as expected,
 411 *	   %-ENXIO if no suitable firmware interface is present.
 412 */
 413int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
 414				      const char *propname, const char **val,
 415				      size_t nval)
 416{
 417	int ret;
 418
 419	if (IS_ERR_OR_NULL(fwnode))
 420		return -EINVAL;
 421
 422	ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
 423				 val, nval);
 424	if (ret != -EINVAL)
 425		return ret;
 426
 427	return fwnode_call_int_op(fwnode->secondary, property_read_string_array, propname,
 428				  val, nval);
 
 429}
 430EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
 431
 432/**
 433 * fwnode_property_read_string - return a string property of a firmware node
 434 * @fwnode: Firmware node to get the property of
 435 * @propname: Name of the property
 436 * @val: The value is stored here
 437 *
 438 * Read property @propname from the given firmware node and store the value into
 439 * @val if found.  The value is checked to be a string.
 440 *
 441 * Return: %0 if the property was found (success),
 442 *	   %-EINVAL if given arguments are not valid,
 443 *	   %-ENODATA if the property does not have a value,
 444 *	   %-EPROTO or %-EILSEQ if the property is not a string,
 445 *	   %-ENXIO if no suitable firmware interface is present.
 446 */
 447int fwnode_property_read_string(const struct fwnode_handle *fwnode,
 448				const char *propname, const char **val)
 449{
 450	int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
 451
 452	return ret < 0 ? ret : 0;
 453}
 454EXPORT_SYMBOL_GPL(fwnode_property_read_string);
 455
 456/**
 457 * fwnode_property_match_string - find a string in an array and return index
 458 * @fwnode: Firmware node to get the property of
 459 * @propname: Name of the property holding the array
 460 * @string: String to look for
 461 *
 462 * Find a given string in a string array and if it is found return the
 463 * index back.
 464 *
 465 * Return: index, starting from %0, if the property was found (success),
 466 *	   %-EINVAL if given arguments are not valid,
 467 *	   %-ENODATA if the property does not have a value,
 468 *	   %-EPROTO if the property is not an array of strings,
 469 *	   %-ENXIO if no suitable firmware interface is present.
 470 */
 471int fwnode_property_match_string(const struct fwnode_handle *fwnode,
 472	const char *propname, const char *string)
 473{
 474	const char **values;
 475	int nval, ret;
 476
 477	nval = fwnode_property_string_array_count(fwnode, propname);
 478	if (nval < 0)
 479		return nval;
 480
 481	if (nval == 0)
 482		return -ENODATA;
 483
 484	values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
 485	if (!values)
 486		return -ENOMEM;
 487
 488	ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
 489	if (ret < 0)
 490		goto out_free;
 491
 492	ret = match_string(values, nval, string);
 493	if (ret < 0)
 494		ret = -ENODATA;
 495
 496out_free:
 497	kfree(values);
 498	return ret;
 499}
 500EXPORT_SYMBOL_GPL(fwnode_property_match_string);
 501
 502/**
 503 * fwnode_property_match_property_string - find a property string value in an array and return index
 504 * @fwnode: Firmware node to get the property of
 505 * @propname: Name of the property holding the string value
 506 * @array: String array to search in
 507 * @n: Size of the @array
 508 *
 509 * Find a property string value in a given @array and if it is found return
 510 * the index back.
 511 *
 512 * Return: index, starting from %0, if the string value was found in the @array (success),
 513 *	   %-ENOENT when the string value was not found in the @array,
 514 *	   %-EINVAL if given arguments are not valid,
 515 *	   %-ENODATA if the property does not have a value,
 516 *	   %-EPROTO or %-EILSEQ if the property is not a string,
 517 *	   %-ENXIO if no suitable firmware interface is present.
 518 */
 519int fwnode_property_match_property_string(const struct fwnode_handle *fwnode,
 520	const char *propname, const char * const *array, size_t n)
 521{
 522	const char *string;
 523	int ret;
 524
 525	ret = fwnode_property_read_string(fwnode, propname, &string);
 526	if (ret)
 527		return ret;
 528
 529	ret = match_string(array, n, string);
 530	if (ret < 0)
 531		ret = -ENOENT;
 532
 533	return ret;
 534}
 535EXPORT_SYMBOL_GPL(fwnode_property_match_property_string);
 536
 537/**
 538 * fwnode_property_get_reference_args() - Find a reference with arguments
 539 * @fwnode:	Firmware node where to look for the reference
 540 * @prop:	The name of the property
 541 * @nargs_prop:	The name of the property telling the number of
 542 *		arguments in the referred node. NULL if @nargs is known,
 543 *		otherwise @nargs is ignored. Only relevant on OF.
 544 * @nargs:	Number of arguments. Ignored if @nargs_prop is non-NULL.
 545 * @index:	Index of the reference, from zero onwards.
 546 * @args:	Result structure with reference and integer arguments.
 547 *		May be NULL.
 548 *
 549 * Obtain a reference based on a named property in an fwnode, with
 550 * integer arguments.
 551 *
 552 * The caller is responsible for calling fwnode_handle_put() on the returned
 553 * @args->fwnode pointer.
 554 *
 555 * Return: %0 on success
 556 *	    %-ENOENT when the index is out of bounds, the index has an empty
 557 *		     reference or the property was not found
 558 *	    %-EINVAL on parse error
 559 */
 560int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
 561				       const char *prop, const char *nargs_prop,
 562				       unsigned int nargs, unsigned int index,
 563				       struct fwnode_reference_args *args)
 564{
 565	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 566
 567	if (IS_ERR_OR_NULL(fwnode))
 568		return -ENOENT;
 
 569
 570	ret = fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
 571				 nargs, index, args);
 572	if (ret == 0)
 573		return ret;
 574
 575	if (IS_ERR_OR_NULL(fwnode->secondary))
 576		return ret;
 577
 578	return fwnode_call_int_op(fwnode->secondary, get_reference_args, prop, nargs_prop,
 579				  nargs, index, args);
 
 580}
 581EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
 582
 583/**
 584 * fwnode_find_reference - Find named reference to a fwnode_handle
 585 * @fwnode: Firmware node where to look for the reference
 586 * @name: The name of the reference
 587 * @index: Index of the reference
 588 *
 589 * @index can be used when the named reference holds a table of references.
 590 *
 591 * The caller is responsible for calling fwnode_handle_put() on the returned
 592 * fwnode pointer.
 593 *
 594 * Return: a pointer to the reference fwnode, when found. Otherwise,
 595 * returns an error pointer.
 596 */
 597struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode,
 598					    const char *name,
 599					    unsigned int index)
 600{
 601	struct fwnode_reference_args args;
 602	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 603
 604	ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index,
 605						 &args);
 606	return ret ? ERR_PTR(ret) : args.fwnode;
 607}
 608EXPORT_SYMBOL_GPL(fwnode_find_reference);
 609
 610/**
 611 * fwnode_get_name - Return the name of a node
 612 * @fwnode: The firmware node
 613 *
 614 * Return: a pointer to the node name, or %NULL.
 
 615 */
 616const char *fwnode_get_name(const struct fwnode_handle *fwnode)
 617{
 618	return fwnode_call_ptr_op(fwnode, get_name);
 
 
 
 
 
 619}
 620EXPORT_SYMBOL_GPL(fwnode_get_name);
 621
 622/**
 623 * fwnode_get_name_prefix - Return the prefix of node for printing purposes
 624 * @fwnode: The firmware node
 625 *
 626 * Return: the prefix of a node, intended to be printed right before the node.
 627 * The prefix works also as a separator between the nodes.
 628 */
 629const char *fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
 630{
 631	return fwnode_call_ptr_op(fwnode, get_name_prefix);
 
 
 
 
 632}
 633
 634/**
 635 * fwnode_name_eq - Return true if node name is equal
 636 * @fwnode: The firmware node
 637 * @name: The name to which to compare the node name
 638 *
 639 * Compare the name provided as an argument to the name of the node, stopping
 640 * the comparison at either NUL or '@' character, whichever comes first. This
 641 * function is generally used for comparing node names while ignoring the
 642 * possible unit address of the node.
 643 *
 644 * Return: true if the node name matches with the name provided in the @name
 645 * argument, false otherwise.
 646 */
 647bool fwnode_name_eq(const struct fwnode_handle *fwnode, const char *name)
 648{
 649	const char *node_name;
 650	ptrdiff_t len;
 651
 652	node_name = fwnode_get_name(fwnode);
 653	if (!node_name)
 654		return false;
 655
 656	len = strchrnul(node_name, '@') - node_name;
 
 
 
 
 657
 658	return str_has_prefix(node_name, name) == len;
 
 659}
 660EXPORT_SYMBOL_GPL(fwnode_name_eq);
 661
 662/**
 663 * fwnode_get_parent - Return parent firwmare node
 664 * @fwnode: Firmware whose parent is retrieved
 665 *
 666 * The caller is responsible for calling fwnode_handle_put() on the returned
 667 * fwnode pointer.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 668 *
 669 * Return: parent firmware node of the given node if possible or %NULL if no
 670 * parent was available.
 
 671 */
 672struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
 
 673{
 674	return fwnode_call_ptr_op(fwnode, get_parent);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 675}
 676EXPORT_SYMBOL_GPL(fwnode_get_parent);
 677
 678/**
 679 * fwnode_get_next_parent - Iterate to the node's parent
 680 * @fwnode: Firmware whose parent is retrieved
 681 *
 682 * This is like fwnode_get_parent() except that it drops the refcount
 683 * on the passed node, making it suitable for iterating through a
 684 * node's parents.
 685 *
 686 * The caller is responsible for calling fwnode_handle_put() on the returned
 687 * fwnode pointer. Note that this function also puts a reference to @fwnode
 688 * unconditionally.
 689 *
 690 * Return: parent firmware node of the given node if possible or %NULL if no
 691 * parent was available.
 692 */
 693struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
 694{
 695	struct fwnode_handle *parent = fwnode_get_parent(fwnode);
 696
 697	fwnode_handle_put(fwnode);
 698
 699	return parent;
 700}
 701EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
 702
 703/**
 704 * fwnode_count_parents - Return the number of parents a node has
 705 * @fwnode: The node the parents of which are to be counted
 706 *
 707 * Return: the number of parents a node has.
 
 708 */
 709unsigned int fwnode_count_parents(const struct fwnode_handle *fwnode)
 710{
 711	struct fwnode_handle *parent;
 712	unsigned int count = 0;
 713
 714	fwnode_for_each_parent_node(fwnode, parent)
 715		count++;
 716
 717	return count;
 718}
 719EXPORT_SYMBOL_GPL(fwnode_count_parents);
 720
 721/**
 722 * fwnode_get_nth_parent - Return an nth parent of a node
 723 * @fwnode: The node the parent of which is requested
 724 * @depth: Distance of the parent from the node
 725 *
 726 * The caller is responsible for calling fwnode_handle_put() on the returned
 727 * fwnode pointer.
 728 *
 729 * Return: the nth parent of a node. If there is no parent at the requested
 730 * @depth, %NULL is returned. If @depth is 0, the functionality is equivalent to
 731 * fwnode_handle_get(). For @depth == 1, it is fwnode_get_parent() and so on.
 732 */
 733struct fwnode_handle *fwnode_get_nth_parent(struct fwnode_handle *fwnode,
 734					    unsigned int depth)
 735{
 736	struct fwnode_handle *parent;
 737
 738	if (depth == 0)
 739		return fwnode_handle_get(fwnode);
 740
 741	fwnode_for_each_parent_node(fwnode, parent) {
 742		if (--depth == 0)
 743			return parent;
 744	}
 745	return NULL;
 746}
 747EXPORT_SYMBOL_GPL(fwnode_get_nth_parent);
 748
 749/**
 750 * fwnode_get_next_child_node - Return the next child node handle for a node
 751 * @fwnode: Firmware node to find the next child node for.
 752 * @child: Handle to one of the node's child nodes or a %NULL handle.
 753 *
 754 * The caller is responsible for calling fwnode_handle_put() on the returned
 755 * fwnode pointer. Note that this function also puts a reference to @child
 756 * unconditionally.
 757 */
 758struct fwnode_handle *
 759fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
 760			   struct fwnode_handle *child)
 761{
 762	return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
 763}
 764EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
 765
 766/**
 767 * fwnode_get_next_available_child_node - Return the next available child node handle for a node
 
 768 * @fwnode: Firmware node to find the next child node for.
 769 * @child: Handle to one of the node's child nodes or a %NULL handle.
 770 *
 771 * The caller is responsible for calling fwnode_handle_put() on the returned
 772 * fwnode pointer. Note that this function also puts a reference to @child
 773 * unconditionally.
 774 */
 775struct fwnode_handle *
 776fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
 777				     struct fwnode_handle *child)
 778{
 779	struct fwnode_handle *next_child = child;
 780
 781	if (IS_ERR_OR_NULL(fwnode))
 782		return NULL;
 783
 784	do {
 785		next_child = fwnode_get_next_child_node(fwnode, next_child);
 786		if (!next_child)
 787			return NULL;
 788	} while (!fwnode_device_is_available(next_child));
 
 789
 790	return next_child;
 791}
 792EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
 793
 794/**
 795 * device_get_next_child_node - Return the next child node handle for a device
 796 * @dev: Device to find the next child node for.
 797 * @child: Handle to one of the device's child nodes or a %NULL handle.
 798 *
 799 * The caller is responsible for calling fwnode_handle_put() on the returned
 800 * fwnode pointer. Note that this function also puts a reference to @child
 801 * unconditionally.
 802 */
 803struct fwnode_handle *device_get_next_child_node(const struct device *dev,
 804						 struct fwnode_handle *child)
 805{
 806	const struct fwnode_handle *fwnode = dev_fwnode(dev);
 807	struct fwnode_handle *next;
 808
 809	if (IS_ERR_OR_NULL(fwnode))
 810		return NULL;
 811
 812	/* Try to find a child in primary fwnode */
 813	next = fwnode_get_next_child_node(fwnode, child);
 814	if (next)
 815		return next;
 816
 817	/* When no more children in primary, continue with secondary */
 818	return fwnode_get_next_child_node(fwnode->secondary, child);
 819}
 820EXPORT_SYMBOL_GPL(device_get_next_child_node);
 821
 822/**
 823 * fwnode_get_named_child_node - Return first matching named child node handle
 824 * @fwnode: Firmware node to find the named child node for.
 825 * @childname: String to match child node name against.
 826 *
 827 * The caller is responsible for calling fwnode_handle_put() on the returned
 828 * fwnode pointer.
 829 */
 830struct fwnode_handle *
 831fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
 832			    const char *childname)
 833{
 834	return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
 835}
 836EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
 837
 838/**
 839 * device_get_named_child_node - Return first matching named child node handle
 840 * @dev: Device to find the named child node for.
 841 * @childname: String to match child node name against.
 842 *
 843 * The caller is responsible for calling fwnode_handle_put() on the returned
 844 * fwnode pointer.
 845 */
 846struct fwnode_handle *device_get_named_child_node(const struct device *dev,
 847						  const char *childname)
 848{
 849	return fwnode_get_named_child_node(dev_fwnode(dev), childname);
 850}
 851EXPORT_SYMBOL_GPL(device_get_named_child_node);
 852
 853/**
 854 * fwnode_handle_get - Obtain a reference to a device node
 855 * @fwnode: Pointer to the device node to obtain the reference to.
 856 *
 857 * The caller is responsible for calling fwnode_handle_put() on the returned
 858 * fwnode pointer.
 859 *
 860 * Return: the fwnode handle.
 861 */
 862struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
 863{
 864	if (!fwnode_has_op(fwnode, get))
 865		return fwnode;
 866
 867	return fwnode_call_ptr_op(fwnode, get);
 868}
 869EXPORT_SYMBOL_GPL(fwnode_handle_get);
 870
 871/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 872 * fwnode_device_is_available - check if a device is available for use
 873 * @fwnode: Pointer to the fwnode of the device.
 874 *
 875 * Return: true if device is available for use. Otherwise, returns false.
 876 *
 877 * For fwnode node types that don't implement the .device_is_available()
 878 * operation, this function returns true.
 879 */
 880bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
 881{
 882	if (IS_ERR_OR_NULL(fwnode))
 883		return false;
 884
 885	if (!fwnode_has_op(fwnode, device_is_available))
 886		return true;
 887
 888	return fwnode_call_bool_op(fwnode, device_is_available);
 889}
 890EXPORT_SYMBOL_GPL(fwnode_device_is_available);
 891
 892/**
 893 * device_get_child_node_count - return the number of child nodes for device
 894 * @dev: Device to count the child nodes for
 895 *
 896 * Return: the number of child nodes for a given device.
 897 */
 898unsigned int device_get_child_node_count(const struct device *dev)
 899{
 900	struct fwnode_handle *child;
 901	unsigned int count = 0;
 902
 903	device_for_each_child_node(dev, child)
 904		count++;
 905
 906	return count;
 907}
 908EXPORT_SYMBOL_GPL(device_get_child_node_count);
 909
 910bool device_dma_supported(const struct device *dev)
 911{
 912	return fwnode_call_bool_op(dev_fwnode(dev), device_dma_supported);
 
 
 
 
 
 
 
 913}
 914EXPORT_SYMBOL_GPL(device_dma_supported);
 915
 916enum dev_dma_attr device_get_dma_attr(const struct device *dev)
 917{
 918	if (!fwnode_has_op(dev_fwnode(dev), device_get_dma_attr))
 919		return DEV_DMA_NOT_SUPPORTED;
 920
 921	return fwnode_call_int_op(dev_fwnode(dev), device_get_dma_attr);
 
 
 
 
 
 
 
 
 922}
 923EXPORT_SYMBOL_GPL(device_get_dma_attr);
 924
 925/**
 926 * fwnode_get_phy_mode - Get phy mode for given firmware node
 927 * @fwnode:	Pointer to the given node
 928 *
 929 * The function gets phy interface string from property 'phy-mode' or
 930 * 'phy-connection-type', and return its index in phy_modes table, or errno in
 931 * error case.
 932 */
 933int fwnode_get_phy_mode(const struct fwnode_handle *fwnode)
 934{
 935	const char *pm;
 936	int err, i;
 937
 938	err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
 939	if (err < 0)
 940		err = fwnode_property_read_string(fwnode,
 941						  "phy-connection-type", &pm);
 942	if (err < 0)
 943		return err;
 944
 945	for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
 946		if (!strcasecmp(pm, phy_modes(i)))
 947			return i;
 948
 949	return -ENODEV;
 950}
 951EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
 952
 953/**
 954 * device_get_phy_mode - Get phy mode for given device
 955 * @dev:	Pointer to the given device
 956 *
 957 * The function gets phy interface string from property 'phy-mode' or
 958 * 'phy-connection-type', and return its index in phy_modes table, or errno in
 959 * error case.
 960 */
 961int device_get_phy_mode(struct device *dev)
 962{
 963	return fwnode_get_phy_mode(dev_fwnode(dev));
 964}
 965EXPORT_SYMBOL_GPL(device_get_phy_mode);
 966
 
 
 
 
 
 
 
 
 
 
 
 967/**
 968 * fwnode_iomap - Maps the memory mapped IO for a given fwnode
 969 * @fwnode:	Pointer to the firmware node
 970 * @index:	Index of the IO range
 
 
 
 
 
 
 
 
 
 
 
 971 *
 972 * Return: a pointer to the mapped memory.
 973 */
 974void __iomem *fwnode_iomap(struct fwnode_handle *fwnode, int index)
 
 
 
 
 
 975{
 976	return fwnode_call_ptr_op(fwnode, iomap, index);
 
 
 
 
 
 
 
 
 
 
 977}
 978EXPORT_SYMBOL(fwnode_iomap);
 979
 980/**
 981 * fwnode_irq_get - Get IRQ directly from a fwnode
 982 * @fwnode:	Pointer to the firmware node
 983 * @index:	Zero-based index of the IRQ
 984 *
 985 * Return: Linux IRQ number on success. Negative errno on failure.
 986 */
 987int fwnode_irq_get(const struct fwnode_handle *fwnode, unsigned int index)
 988{
 989	int ret;
 990
 991	ret = fwnode_call_int_op(fwnode, irq_get, index);
 992	/* We treat mapping errors as invalid case */
 993	if (ret == 0)
 994		return -EINVAL;
 995
 996	return ret;
 997}
 998EXPORT_SYMBOL(fwnode_irq_get);
 999
1000/**
1001 * fwnode_irq_get_byname - Get IRQ from a fwnode using its name
1002 * @fwnode:	Pointer to the firmware node
1003 * @name:	IRQ name
1004 *
1005 * Description:
1006 * Find a match to the string @name in the 'interrupt-names' string array
1007 * in _DSD for ACPI, or of_node for Device Tree. Then get the Linux IRQ
1008 * number of the IRQ resource corresponding to the index of the matched
1009 * string.
1010 *
1011 * Return: Linux IRQ number on success, or negative errno otherwise.
1012 */
1013int fwnode_irq_get_byname(const struct fwnode_handle *fwnode, const char *name)
1014{
1015	int index;
 
 
1016
1017	if (!name)
1018		return -EINVAL;
1019
1020	index = fwnode_property_match_string(fwnode, "interrupt-names",  name);
1021	if (index < 0)
1022		return index;
1023
1024	return fwnode_irq_get(fwnode, index);
1025}
1026EXPORT_SYMBOL(fwnode_irq_get_byname);
1027
1028/**
1029 * fwnode_graph_get_next_endpoint - Get next endpoint firmware node
1030 * @fwnode: Pointer to the parent firmware node
1031 * @prev: Previous endpoint node or %NULL to get the first
1032 *
1033 * The caller is responsible for calling fwnode_handle_put() on the returned
1034 * fwnode pointer. Note that this function also puts a reference to @prev
1035 * unconditionally.
1036 *
1037 * Return: an endpoint firmware node pointer or %NULL if no more endpoints
1038 * are available.
1039 */
1040struct fwnode_handle *
1041fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1042			       struct fwnode_handle *prev)
1043{
1044	struct fwnode_handle *ep, *port_parent = NULL;
1045	const struct fwnode_handle *parent;
1046
1047	/*
1048	 * If this function is in a loop and the previous iteration returned
1049	 * an endpoint from fwnode->secondary, then we need to use the secondary
1050	 * as parent rather than @fwnode.
1051	 */
1052	if (prev) {
1053		port_parent = fwnode_graph_get_port_parent(prev);
1054		parent = port_parent;
1055	} else {
1056		parent = fwnode;
1057	}
1058	if (IS_ERR_OR_NULL(parent))
1059		return NULL;
1060
1061	ep = fwnode_call_ptr_op(parent, graph_get_next_endpoint, prev);
1062	if (ep)
1063		goto out_put_port_parent;
1064
1065	ep = fwnode_graph_get_next_endpoint(parent->secondary, NULL);
1066
1067out_put_port_parent:
1068	fwnode_handle_put(port_parent);
1069	return ep;
1070}
1071EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
1072
1073/**
1074 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
1075 * @endpoint: Endpoint firmware node of the port
1076 *
1077 * The caller is responsible for calling fwnode_handle_put() on the returned
1078 * fwnode pointer.
1079 *
1080 * Return: the firmware node of the device the @endpoint belongs to.
1081 */
1082struct fwnode_handle *
1083fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
1084{
1085	struct fwnode_handle *port, *parent;
1086
1087	port = fwnode_get_parent(endpoint);
1088	parent = fwnode_call_ptr_op(port, graph_get_port_parent);
1089
1090	fwnode_handle_put(port);
1091
1092	return parent;
1093}
1094EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1095
1096/**
1097 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1098 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1099 *
1100 * Extracts firmware node of a remote device the @fwnode points to.
1101 *
1102 * The caller is responsible for calling fwnode_handle_put() on the returned
1103 * fwnode pointer.
1104 */
1105struct fwnode_handle *
1106fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1107{
1108	struct fwnode_handle *endpoint, *parent;
1109
1110	endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1111	parent = fwnode_graph_get_port_parent(endpoint);
1112
1113	fwnode_handle_put(endpoint);
1114
1115	return parent;
1116}
1117EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1118
1119/**
1120 * fwnode_graph_get_remote_port - Return fwnode of a remote port
1121 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1122 *
1123 * Extracts firmware node of a remote port the @fwnode points to.
1124 *
1125 * The caller is responsible for calling fwnode_handle_put() on the returned
1126 * fwnode pointer.
1127 */
1128struct fwnode_handle *
1129fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1130{
1131	return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1132}
1133EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1134
1135/**
1136 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1137 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1138 *
1139 * Extracts firmware node of a remote endpoint the @fwnode points to.
1140 *
1141 * The caller is responsible for calling fwnode_handle_put() on the returned
1142 * fwnode pointer.
1143 */
1144struct fwnode_handle *
1145fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1146{
1147	return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1148}
1149EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1150
1151static bool fwnode_graph_remote_available(struct fwnode_handle *ep)
1152{
1153	struct fwnode_handle *dev_node;
1154	bool available;
1155
1156	dev_node = fwnode_graph_get_remote_port_parent(ep);
1157	available = fwnode_device_is_available(dev_node);
1158	fwnode_handle_put(dev_node);
1159
1160	return available;
1161}
1162
1163/**
1164 * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers
1165 * @fwnode: parent fwnode_handle containing the graph
1166 * @port: identifier of the port node
1167 * @endpoint: identifier of the endpoint node under the port node
1168 * @flags: fwnode lookup flags
1169 *
1170 * The caller is responsible for calling fwnode_handle_put() on the returned
1171 * fwnode pointer.
1172 *
1173 * Return: the fwnode handle of the local endpoint corresponding the port and
1174 * endpoint IDs or %NULL if not found.
1175 *
1176 * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint
1177 * has not been found, look for the closest endpoint ID greater than the
1178 * specified one and return the endpoint that corresponds to it, if present.
1179 *
1180 * Does not return endpoints that belong to disabled devices or endpoints that
1181 * are unconnected, unless FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags.
1182 */
1183struct fwnode_handle *
1184fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode,
1185				u32 port, u32 endpoint, unsigned long flags)
1186{
1187	struct fwnode_handle *ep, *best_ep = NULL;
1188	unsigned int best_ep_id = 0;
1189	bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT;
1190	bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED);
1191
1192	fwnode_graph_for_each_endpoint(fwnode, ep) {
1193		struct fwnode_endpoint fwnode_ep = { 0 };
 
1194		int ret;
1195
1196		if (enabled_only && !fwnode_graph_remote_available(ep))
1197			continue;
1198
1199		ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep);
1200		if (ret < 0)
1201			continue;
1202
1203		if (fwnode_ep.port != port)
1204			continue;
1205
1206		if (fwnode_ep.id == endpoint)
1207			return ep;
1208
1209		if (!endpoint_next)
1210			continue;
1211
1212		/*
1213		 * If the endpoint that has just been found is not the first
1214		 * matching one and the ID of the one found previously is closer
1215		 * to the requested endpoint ID, skip it.
1216		 */
1217		if (fwnode_ep.id < endpoint ||
1218		    (best_ep && best_ep_id < fwnode_ep.id))
1219			continue;
1220
1221		fwnode_handle_put(best_ep);
1222		best_ep = fwnode_handle_get(ep);
1223		best_ep_id = fwnode_ep.id;
1224	}
1225
1226	return best_ep;
1227}
1228EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id);
1229
1230/**
1231 * fwnode_graph_get_endpoint_count - Count endpoints on a device node
1232 * @fwnode: The node related to a device
1233 * @flags: fwnode lookup flags
1234 * Count endpoints in a device node.
1235 *
1236 * If FWNODE_GRAPH_DEVICE_DISABLED flag is specified, also unconnected endpoints
1237 * and endpoints connected to disabled devices are counted.
1238 */
1239unsigned int fwnode_graph_get_endpoint_count(const struct fwnode_handle *fwnode,
1240					     unsigned long flags)
1241{
1242	struct fwnode_handle *ep;
1243	unsigned int count = 0;
1244
1245	fwnode_graph_for_each_endpoint(fwnode, ep) {
1246		if (flags & FWNODE_GRAPH_DEVICE_DISABLED ||
1247		    fwnode_graph_remote_available(ep))
1248			count++;
1249	}
1250
1251	return count;
1252}
1253EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_count);
1254
1255/**
1256 * fwnode_graph_parse_endpoint - parse common endpoint node properties
1257 * @fwnode: pointer to endpoint fwnode_handle
1258 * @endpoint: pointer to the fwnode endpoint data structure
1259 *
1260 * Parse @fwnode representing a graph endpoint node and store the
1261 * information in @endpoint. The caller must hold a reference to
1262 * @fwnode.
1263 */
1264int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1265				struct fwnode_endpoint *endpoint)
1266{
1267	memset(endpoint, 0, sizeof(*endpoint));
1268
1269	return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1270}
1271EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1272
1273const void *device_get_match_data(const struct device *dev)
1274{
1275	return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1276}
1277EXPORT_SYMBOL_GPL(device_get_match_data);
1278
1279static unsigned int fwnode_graph_devcon_matches(const struct fwnode_handle *fwnode,
1280						const char *con_id, void *data,
1281						devcon_match_fn_t match,
1282						void **matches,
1283						unsigned int matches_len)
1284{
1285	struct fwnode_handle *node;
1286	struct fwnode_handle *ep;
1287	unsigned int count = 0;
1288	void *ret;
1289
1290	fwnode_graph_for_each_endpoint(fwnode, ep) {
1291		if (matches && count >= matches_len) {
1292			fwnode_handle_put(ep);
1293			break;
1294		}
1295
1296		node = fwnode_graph_get_remote_port_parent(ep);
1297		if (!fwnode_device_is_available(node)) {
1298			fwnode_handle_put(node);
1299			continue;
1300		}
1301
1302		ret = match(node, con_id, data);
1303		fwnode_handle_put(node);
1304		if (ret) {
1305			if (matches)
1306				matches[count] = ret;
1307			count++;
1308		}
1309	}
1310	return count;
1311}
1312
1313static unsigned int fwnode_devcon_matches(const struct fwnode_handle *fwnode,
1314					  const char *con_id, void *data,
1315					  devcon_match_fn_t match,
1316					  void **matches,
1317					  unsigned int matches_len)
1318{
1319	struct fwnode_handle *node;
1320	unsigned int count = 0;
1321	unsigned int i;
1322	void *ret;
1323
1324	for (i = 0; ; i++) {
1325		if (matches && count >= matches_len)
1326			break;
1327
1328		node = fwnode_find_reference(fwnode, con_id, i);
1329		if (IS_ERR(node))
1330			break;
1331
1332		ret = match(node, NULL, data);
1333		fwnode_handle_put(node);
1334		if (ret) {
1335			if (matches)
1336				matches[count] = ret;
1337			count++;
1338		}
1339	}
1340
1341	return count;
1342}
1343
1344/**
1345 * fwnode_connection_find_match - Find connection from a device node
1346 * @fwnode: Device node with the connection
1347 * @con_id: Identifier for the connection
1348 * @data: Data for the match function
1349 * @match: Function to check and convert the connection description
1350 *
1351 * Find a connection with unique identifier @con_id between @fwnode and another
1352 * device node. @match will be used to convert the connection description to
1353 * data the caller is expecting to be returned.
1354 */
1355void *fwnode_connection_find_match(const struct fwnode_handle *fwnode,
1356				   const char *con_id, void *data,
1357				   devcon_match_fn_t match)
1358{
1359	unsigned int count;
1360	void *ret;
1361
1362	if (!fwnode || !match)
1363		return NULL;
1364
1365	count = fwnode_graph_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1366	if (count)
1367		return ret;
1368
1369	count = fwnode_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1370	return count ? ret : NULL;
1371}
1372EXPORT_SYMBOL_GPL(fwnode_connection_find_match);
1373
1374/**
1375 * fwnode_connection_find_matches - Find connections from a device node
1376 * @fwnode: Device node with the connection
1377 * @con_id: Identifier for the connection
1378 * @data: Data for the match function
1379 * @match: Function to check and convert the connection description
1380 * @matches: (Optional) array of pointers to fill with matches
1381 * @matches_len: Length of @matches
1382 *
1383 * Find up to @matches_len connections with unique identifier @con_id between
1384 * @fwnode and other device nodes. @match will be used to convert the
1385 * connection description to data the caller is expecting to be returned
1386 * through the @matches array.
1387 *
1388 * If @matches is %NULL @matches_len is ignored and the total number of resolved
1389 * matches is returned.
1390 *
1391 * Return: Number of matches resolved, or negative errno.
1392 */
1393int fwnode_connection_find_matches(const struct fwnode_handle *fwnode,
1394				   const char *con_id, void *data,
1395				   devcon_match_fn_t match,
1396				   void **matches, unsigned int matches_len)
1397{
1398	unsigned int count_graph;
1399	unsigned int count_ref;
1400
1401	if (!fwnode || !match)
1402		return -EINVAL;
1403
1404	count_graph = fwnode_graph_devcon_matches(fwnode, con_id, data, match,
1405						  matches, matches_len);
1406
1407	if (matches) {
1408		matches += count_graph;
1409		matches_len -= count_graph;
1410	}
1411
1412	count_ref = fwnode_devcon_matches(fwnode, con_id, data, match,
1413					  matches, matches_len);
1414
1415	return count_graph + count_ref;
1416}
1417EXPORT_SYMBOL_GPL(fwnode_connection_find_matches);