Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * property.c - Unified device property interface.
   4 *
   5 * Copyright (C) 2014, Intel Corporation
   6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
   7 *          Mika Westerberg <mika.westerberg@linux.intel.com>
 
 
 
 
   8 */
   9
  10#include <linux/acpi.h>
  11#include <linux/export.h>
  12#include <linux/kernel.h>
  13#include <linux/of.h>
  14#include <linux/of_address.h>
  15#include <linux/of_graph.h>
  16#include <linux/of_irq.h>
  17#include <linux/property.h>
  18#include <linux/etherdevice.h>
  19#include <linux/phy.h>
  20
  21struct property_set {
  22	struct device *dev;
  23	struct fwnode_handle fwnode;
  24	const struct property_entry *properties;
  25};
  26
  27static const struct fwnode_operations pset_fwnode_ops;
  28
  29static inline bool is_pset_node(const struct fwnode_handle *fwnode)
  30{
  31	return !IS_ERR_OR_NULL(fwnode) && fwnode->ops == &pset_fwnode_ops;
  32}
  33
  34#define to_pset_node(__fwnode)						\
  35	({								\
  36		typeof(__fwnode) __to_pset_node_fwnode = __fwnode;	\
  37									\
  38		is_pset_node(__to_pset_node_fwnode) ?			\
  39			container_of(__to_pset_node_fwnode,		\
  40				     struct property_set, fwnode) :	\
  41			NULL;						\
  42	})
  43
  44static const struct property_entry *
  45pset_prop_get(const struct property_set *pset, const char *name)
  46{
  47	const struct property_entry *prop;
  48
  49	if (!pset || !pset->properties)
  50		return NULL;
  51
  52	for (prop = pset->properties; prop->name; prop++)
  53		if (!strcmp(name, prop->name))
  54			return prop;
  55
  56	return NULL;
  57}
  58
  59static const void *pset_prop_find(const struct property_set *pset,
  60				  const char *propname, size_t length)
  61{
  62	const struct property_entry *prop;
  63	const void *pointer;
  64
  65	prop = pset_prop_get(pset, propname);
  66	if (!prop)
  67		return ERR_PTR(-EINVAL);
  68	if (prop->is_array)
  69		pointer = prop->pointer.raw_data;
  70	else
  71		pointer = &prop->value.raw_data;
  72	if (!pointer)
  73		return ERR_PTR(-ENODATA);
  74	if (length > prop->length)
  75		return ERR_PTR(-EOVERFLOW);
  76	return pointer;
  77}
  78
  79static int pset_prop_read_u8_array(const struct property_set *pset,
  80				   const char *propname,
  81				   u8 *values, size_t nval)
  82{
  83	const void *pointer;
  84	size_t length = nval * sizeof(*values);
  85
  86	pointer = pset_prop_find(pset, propname, length);
  87	if (IS_ERR(pointer))
  88		return PTR_ERR(pointer);
  89
  90	memcpy(values, pointer, length);
  91	return 0;
  92}
  93
  94static int pset_prop_read_u16_array(const struct property_set *pset,
  95				    const char *propname,
  96				    u16 *values, size_t nval)
  97{
  98	const void *pointer;
  99	size_t length = nval * sizeof(*values);
 100
 101	pointer = pset_prop_find(pset, propname, length);
 102	if (IS_ERR(pointer))
 103		return PTR_ERR(pointer);
 104
 105	memcpy(values, pointer, length);
 106	return 0;
 107}
 108
 109static int pset_prop_read_u32_array(const struct property_set *pset,
 110				    const char *propname,
 111				    u32 *values, size_t nval)
 112{
 113	const void *pointer;
 114	size_t length = nval * sizeof(*values);
 115
 116	pointer = pset_prop_find(pset, propname, length);
 117	if (IS_ERR(pointer))
 118		return PTR_ERR(pointer);
 119
 120	memcpy(values, pointer, length);
 121	return 0;
 122}
 123
 124static int pset_prop_read_u64_array(const struct property_set *pset,
 125				    const char *propname,
 126				    u64 *values, size_t nval)
 127{
 128	const void *pointer;
 129	size_t length = nval * sizeof(*values);
 130
 131	pointer = pset_prop_find(pset, propname, length);
 132	if (IS_ERR(pointer))
 133		return PTR_ERR(pointer);
 134
 135	memcpy(values, pointer, length);
 136	return 0;
 137}
 138
 139static int pset_prop_count_elems_of_size(const struct property_set *pset,
 140					 const char *propname, size_t length)
 141{
 142	const struct property_entry *prop;
 143
 144	prop = pset_prop_get(pset, propname);
 145	if (!prop)
 146		return -EINVAL;
 147
 148	return prop->length / length;
 149}
 150
 151static int pset_prop_read_string_array(const struct property_set *pset,
 152				       const char *propname,
 153				       const char **strings, size_t nval)
 154{
 155	const struct property_entry *prop;
 156	const void *pointer;
 157	size_t array_len, length;
 158
 159	/* Find out the array length. */
 160	prop = pset_prop_get(pset, propname);
 161	if (!prop)
 162		return -EINVAL;
 163
 164	if (!prop->is_array)
 165		/* The array length for a non-array string property is 1. */
 166		array_len = 1;
 167	else
 168		/* Find the length of an array. */
 169		array_len = pset_prop_count_elems_of_size(pset, propname,
 170							  sizeof(const char *));
 171
 172	/* Return how many there are if strings is NULL. */
 173	if (!strings)
 174		return array_len;
 175
 176	array_len = min(nval, array_len);
 177	length = array_len * sizeof(*strings);
 178
 179	pointer = pset_prop_find(pset, propname, length);
 180	if (IS_ERR(pointer))
 181		return PTR_ERR(pointer);
 182
 183	memcpy(strings, pointer, length);
 184
 185	return array_len;
 186}
 187
 188struct fwnode_handle *dev_fwnode(struct device *dev)
 189{
 190	return IS_ENABLED(CONFIG_OF) && dev->of_node ?
 191		&dev->of_node->fwnode : dev->fwnode;
 192}
 193EXPORT_SYMBOL_GPL(dev_fwnode);
 194
 195static bool pset_fwnode_property_present(const struct fwnode_handle *fwnode,
 196					 const char *propname)
 197{
 198	return !!pset_prop_get(to_pset_node(fwnode), propname);
 199}
 200
 201static int pset_fwnode_read_int_array(const struct fwnode_handle *fwnode,
 202				      const char *propname,
 203				      unsigned int elem_size, void *val,
 204				      size_t nval)
 205{
 206	const struct property_set *node = to_pset_node(fwnode);
 207
 208	if (!val)
 209		return pset_prop_count_elems_of_size(node, propname, elem_size);
 210
 211	switch (elem_size) {
 212	case sizeof(u8):
 213		return pset_prop_read_u8_array(node, propname, val, nval);
 214	case sizeof(u16):
 215		return pset_prop_read_u16_array(node, propname, val, nval);
 216	case sizeof(u32):
 217		return pset_prop_read_u32_array(node, propname, val, nval);
 218	case sizeof(u64):
 219		return pset_prop_read_u64_array(node, propname, val, nval);
 
 
 
 
 220	}
 221
 222	return -ENXIO;
 
 223}
 224
 225static int
 226pset_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
 227				       const char *propname,
 228				       const char **val, size_t nval)
 229{
 230	return pset_prop_read_string_array(to_pset_node(fwnode), propname,
 231					   val, nval);
 232}
 233
 234static const struct fwnode_operations pset_fwnode_ops = {
 235	.property_present = pset_fwnode_property_present,
 236	.property_read_int_array = pset_fwnode_read_int_array,
 237	.property_read_string_array = pset_fwnode_property_read_string_array,
 238};
 239
 240/**
 241 * device_property_present - check if a property of a device is present
 242 * @dev: Device whose property is being checked
 243 * @propname: Name of the property
 244 *
 245 * Check if property @propname is present in the device firmware description.
 246 */
 247bool device_property_present(struct device *dev, const char *propname)
 248{
 249	return fwnode_property_present(dev_fwnode(dev), propname);
 250}
 251EXPORT_SYMBOL_GPL(device_property_present);
 252
 
 
 
 
 
 
 
 
 
 
 
 
 253/**
 254 * fwnode_property_present - check if a property of a firmware node is present
 255 * @fwnode: Firmware node whose property to check
 256 * @propname: Name of the property
 257 */
 258bool fwnode_property_present(const struct fwnode_handle *fwnode,
 259			     const char *propname)
 260{
 261	bool ret;
 262
 263	ret = fwnode_call_bool_op(fwnode, property_present, propname);
 264	if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
 265	    !IS_ERR_OR_NULL(fwnode->secondary))
 266		ret = fwnode_call_bool_op(fwnode->secondary, property_present,
 267					 propname);
 268	return ret;
 269}
 270EXPORT_SYMBOL_GPL(fwnode_property_present);
 271
 272/**
 273 * device_property_read_u8_array - return a u8 array property of a device
 274 * @dev: Device to get the property of
 275 * @propname: Name of the property
 276 * @val: The values are stored here or %NULL to return the number of values
 277 * @nval: Size of the @val array
 278 *
 279 * Function reads an array of u8 properties with @propname from the device
 280 * firmware description and stores them to @val if found.
 281 *
 282 * Return: number of values if @val was %NULL,
 283 *         %0 if the property was found (success),
 284 *	   %-EINVAL if given arguments are not valid,
 285 *	   %-ENODATA if the property does not have a value,
 286 *	   %-EPROTO if the property is not an array of numbers,
 287 *	   %-EOVERFLOW if the size of the property is not as expected.
 288 *	   %-ENXIO if no suitable firmware interface is present.
 289 */
 290int device_property_read_u8_array(struct device *dev, const char *propname,
 291				  u8 *val, size_t nval)
 292{
 293	return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
 294}
 295EXPORT_SYMBOL_GPL(device_property_read_u8_array);
 296
 297/**
 298 * device_property_read_u16_array - return a u16 array property of a device
 299 * @dev: Device to get the property of
 300 * @propname: Name of the property
 301 * @val: The values are stored here or %NULL to return the number of values
 302 * @nval: Size of the @val array
 303 *
 304 * Function reads an array of u16 properties with @propname from the device
 305 * firmware description and stores them to @val if found.
 306 *
 307 * Return: number of values if @val was %NULL,
 308 *         %0 if the property was found (success),
 309 *	   %-EINVAL if given arguments are not valid,
 310 *	   %-ENODATA if the property does not have a value,
 311 *	   %-EPROTO if the property is not an array of numbers,
 312 *	   %-EOVERFLOW if the size of the property is not as expected.
 313 *	   %-ENXIO if no suitable firmware interface is present.
 314 */
 315int device_property_read_u16_array(struct device *dev, const char *propname,
 316				   u16 *val, size_t nval)
 317{
 318	return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
 319}
 320EXPORT_SYMBOL_GPL(device_property_read_u16_array);
 321
 322/**
 323 * device_property_read_u32_array - return a u32 array property of a device
 324 * @dev: Device to get the property of
 325 * @propname: Name of the property
 326 * @val: The values are stored here or %NULL to return the number of values
 327 * @nval: Size of the @val array
 328 *
 329 * Function reads an array of u32 properties with @propname from the device
 330 * firmware description and stores them to @val if found.
 331 *
 332 * Return: number of values if @val was %NULL,
 333 *         %0 if the property was found (success),
 334 *	   %-EINVAL if given arguments are not valid,
 335 *	   %-ENODATA if the property does not have a value,
 336 *	   %-EPROTO if the property is not an array of numbers,
 337 *	   %-EOVERFLOW if the size of the property is not as expected.
 338 *	   %-ENXIO if no suitable firmware interface is present.
 339 */
 340int device_property_read_u32_array(struct device *dev, const char *propname,
 341				   u32 *val, size_t nval)
 342{
 343	return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
 344}
 345EXPORT_SYMBOL_GPL(device_property_read_u32_array);
 346
 347/**
 348 * device_property_read_u64_array - return a u64 array property of a device
 349 * @dev: Device to get the property of
 350 * @propname: Name of the property
 351 * @val: The values are stored here or %NULL to return the number of values
 352 * @nval: Size of the @val array
 353 *
 354 * Function reads an array of u64 properties with @propname from the device
 355 * firmware description and stores them to @val if found.
 356 *
 357 * Return: number of values if @val was %NULL,
 358 *         %0 if the property was found (success),
 359 *	   %-EINVAL if given arguments are not valid,
 360 *	   %-ENODATA if the property does not have a value,
 361 *	   %-EPROTO if the property is not an array of numbers,
 362 *	   %-EOVERFLOW if the size of the property is not as expected.
 363 *	   %-ENXIO if no suitable firmware interface is present.
 364 */
 365int device_property_read_u64_array(struct device *dev, const char *propname,
 366				   u64 *val, size_t nval)
 367{
 368	return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
 369}
 370EXPORT_SYMBOL_GPL(device_property_read_u64_array);
 371
 372/**
 373 * device_property_read_string_array - return a string array property of device
 374 * @dev: Device to get the property of
 375 * @propname: Name of the property
 376 * @val: The values are stored here or %NULL to return the number of values
 377 * @nval: Size of the @val array
 378 *
 379 * Function reads an array of string properties with @propname from the device
 380 * firmware description and stores them to @val if found.
 381 *
 382 * Return: number of values read on success if @val is non-NULL,
 383 *	   number of values available on success if @val is NULL,
 384 *	   %-EINVAL if given arguments are not valid,
 385 *	   %-ENODATA if the property does not have a value,
 386 *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
 387 *	   %-EOVERFLOW if the size of the property is not as expected.
 388 *	   %-ENXIO if no suitable firmware interface is present.
 389 */
 390int device_property_read_string_array(struct device *dev, const char *propname,
 391				      const char **val, size_t nval)
 392{
 393	return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
 394}
 395EXPORT_SYMBOL_GPL(device_property_read_string_array);
 396
 397/**
 398 * device_property_read_string - return a string property of a device
 399 * @dev: Device to get the property of
 400 * @propname: Name of the property
 401 * @val: The value is stored here
 402 *
 403 * Function reads property @propname from the device firmware description and
 404 * stores the value into @val if found. The value is checked to be a string.
 405 *
 406 * Return: %0 if the property was found (success),
 407 *	   %-EINVAL if given arguments are not valid,
 408 *	   %-ENODATA if the property does not have a value,
 409 *	   %-EPROTO or %-EILSEQ if the property type is not a string.
 410 *	   %-ENXIO if no suitable firmware interface is present.
 411 */
 412int device_property_read_string(struct device *dev, const char *propname,
 413				const char **val)
 414{
 415	return fwnode_property_read_string(dev_fwnode(dev), propname, val);
 416}
 417EXPORT_SYMBOL_GPL(device_property_read_string);
 418
 419/**
 420 * device_property_match_string - find a string in an array and return index
 421 * @dev: Device to get the property of
 422 * @propname: Name of the property holding the array
 423 * @string: String to look for
 424 *
 425 * Find a given string in a string array and if it is found return the
 426 * index back.
 427 *
 428 * Return: %0 if the property was found (success),
 429 *	   %-EINVAL if given arguments are not valid,
 430 *	   %-ENODATA if the property does not have a value,
 431 *	   %-EPROTO if the property is not an array of strings,
 432 *	   %-ENXIO if no suitable firmware interface is present.
 433 */
 434int device_property_match_string(struct device *dev, const char *propname,
 435				 const char *string)
 436{
 437	return fwnode_property_match_string(dev_fwnode(dev), propname, string);
 438}
 439EXPORT_SYMBOL_GPL(device_property_match_string);
 440
 441static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
 442					  const char *propname,
 443					  unsigned int elem_size, void *val,
 444					  size_t nval)
 445{
 446	int ret;
 447
 448	ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
 449				 elem_size, val, nval);
 450	if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
 451	    !IS_ERR_OR_NULL(fwnode->secondary))
 452		ret = fwnode_call_int_op(
 453			fwnode->secondary, property_read_int_array, propname,
 454			elem_size, val, nval);
 455
 456	return ret;
 457}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 458
 459/**
 460 * fwnode_property_read_u8_array - return a u8 array property of firmware node
 461 * @fwnode: Firmware node to get the property of
 462 * @propname: Name of the property
 463 * @val: The values are stored here or %NULL to return the number of values
 464 * @nval: Size of the @val array
 465 *
 466 * Read an array of u8 properties with @propname from @fwnode and stores them to
 467 * @val if found.
 468 *
 469 * Return: number of values if @val was %NULL,
 470 *         %0 if the property was found (success),
 471 *	   %-EINVAL if given arguments are not valid,
 472 *	   %-ENODATA if the property does not have a value,
 473 *	   %-EPROTO if the property is not an array of numbers,
 474 *	   %-EOVERFLOW if the size of the property is not as expected,
 475 *	   %-ENXIO if no suitable firmware interface is present.
 476 */
 477int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
 478				  const char *propname, u8 *val, size_t nval)
 479{
 480	return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
 481					      val, nval);
 482}
 483EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
 484
 485/**
 486 * fwnode_property_read_u16_array - return a u16 array property of firmware node
 487 * @fwnode: Firmware node to get the property of
 488 * @propname: Name of the property
 489 * @val: The values are stored here or %NULL to return the number of values
 490 * @nval: Size of the @val array
 491 *
 492 * Read an array of u16 properties with @propname from @fwnode and store them to
 493 * @val if found.
 494 *
 495 * Return: number of values if @val was %NULL,
 496 *         %0 if the property was found (success),
 497 *	   %-EINVAL if given arguments are not valid,
 498 *	   %-ENODATA if the property does not have a value,
 499 *	   %-EPROTO if the property is not an array of numbers,
 500 *	   %-EOVERFLOW if the size of the property is not as expected,
 501 *	   %-ENXIO if no suitable firmware interface is present.
 502 */
 503int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
 504				   const char *propname, u16 *val, size_t nval)
 505{
 506	return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
 507					      val, nval);
 508}
 509EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
 510
 511/**
 512 * fwnode_property_read_u32_array - return a u32 array property of firmware node
 513 * @fwnode: Firmware node to get the property of
 514 * @propname: Name of the property
 515 * @val: The values are stored here or %NULL to return the number of values
 516 * @nval: Size of the @val array
 517 *
 518 * Read an array of u32 properties with @propname from @fwnode store them to
 519 * @val if found.
 520 *
 521 * Return: number of values if @val was %NULL,
 522 *         %0 if the property was found (success),
 523 *	   %-EINVAL if given arguments are not valid,
 524 *	   %-ENODATA if the property does not have a value,
 525 *	   %-EPROTO if the property is not an array of numbers,
 526 *	   %-EOVERFLOW if the size of the property is not as expected,
 527 *	   %-ENXIO if no suitable firmware interface is present.
 528 */
 529int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
 530				   const char *propname, u32 *val, size_t nval)
 531{
 532	return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
 533					      val, nval);
 534}
 535EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
 536
 537/**
 538 * fwnode_property_read_u64_array - return a u64 array property firmware node
 539 * @fwnode: Firmware node to get the property of
 540 * @propname: Name of the property
 541 * @val: The values are stored here or %NULL to return the number of values
 542 * @nval: Size of the @val array
 543 *
 544 * Read an array of u64 properties with @propname from @fwnode and store them to
 545 * @val if found.
 546 *
 547 * Return: number of values if @val was %NULL,
 548 *         %0 if the property was found (success),
 549 *	   %-EINVAL if given arguments are not valid,
 550 *	   %-ENODATA if the property does not have a value,
 551 *	   %-EPROTO if the property is not an array of numbers,
 552 *	   %-EOVERFLOW if the size of the property is not as expected,
 553 *	   %-ENXIO if no suitable firmware interface is present.
 554 */
 555int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
 556				   const char *propname, u64 *val, size_t nval)
 557{
 558	return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
 559					      val, nval);
 560}
 561EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
 562
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 563/**
 564 * fwnode_property_read_string_array - return string array property of a node
 565 * @fwnode: Firmware node to get the property of
 566 * @propname: Name of the property
 567 * @val: The values are stored here or %NULL to return the number of values
 568 * @nval: Size of the @val array
 569 *
 570 * Read an string list property @propname from the given firmware node and store
 571 * them to @val if found.
 572 *
 573 * Return: number of values read on success if @val is non-NULL,
 574 *	   number of values available on success if @val is NULL,
 575 *	   %-EINVAL if given arguments are not valid,
 576 *	   %-ENODATA if the property does not have a value,
 577 *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
 578 *	   %-EOVERFLOW if the size of the property is not as expected,
 579 *	   %-ENXIO if no suitable firmware interface is present.
 580 */
 581int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
 582				      const char *propname, const char **val,
 583				      size_t nval)
 584{
 585	int ret;
 586
 587	ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
 588				 val, nval);
 589	if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
 590	    !IS_ERR_OR_NULL(fwnode->secondary))
 591		ret = fwnode_call_int_op(fwnode->secondary,
 592					 property_read_string_array, propname,
 593					 val, nval);
 594	return ret;
 595}
 596EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
 597
 598/**
 599 * fwnode_property_read_string - return a string property of a firmware node
 600 * @fwnode: Firmware node to get the property of
 601 * @propname: Name of the property
 602 * @val: The value is stored here
 603 *
 604 * Read property @propname from the given firmware node and store the value into
 605 * @val if found.  The value is checked to be a string.
 606 *
 607 * Return: %0 if the property was found (success),
 608 *	   %-EINVAL if given arguments are not valid,
 609 *	   %-ENODATA if the property does not have a value,
 610 *	   %-EPROTO or %-EILSEQ if the property is not a string,
 611 *	   %-ENXIO if no suitable firmware interface is present.
 612 */
 613int fwnode_property_read_string(const struct fwnode_handle *fwnode,
 614				const char *propname, const char **val)
 615{
 616	int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
 617
 618	return ret < 0 ? ret : 0;
 
 
 
 
 
 619}
 620EXPORT_SYMBOL_GPL(fwnode_property_read_string);
 621
 622/**
 623 * fwnode_property_match_string - find a string in an array and return index
 624 * @fwnode: Firmware node to get the property of
 625 * @propname: Name of the property holding the array
 626 * @string: String to look for
 627 *
 628 * Find a given string in a string array and if it is found return the
 629 * index back.
 630 *
 631 * Return: %0 if the property was found (success),
 632 *	   %-EINVAL if given arguments are not valid,
 633 *	   %-ENODATA if the property does not have a value,
 634 *	   %-EPROTO if the property is not an array of strings,
 635 *	   %-ENXIO if no suitable firmware interface is present.
 636 */
 637int fwnode_property_match_string(const struct fwnode_handle *fwnode,
 638	const char *propname, const char *string)
 639{
 640	const char **values;
 641	int nval, ret;
 642
 643	nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
 644	if (nval < 0)
 645		return nval;
 646
 647	if (nval == 0)
 648		return -ENODATA;
 649
 650	values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
 651	if (!values)
 652		return -ENOMEM;
 653
 654	ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
 655	if (ret < 0)
 656		goto out;
 657
 658	ret = match_string(values, nval, string);
 659	if (ret < 0)
 660		ret = -ENODATA;
 661out:
 662	kfree(values);
 663	return ret;
 664}
 665EXPORT_SYMBOL_GPL(fwnode_property_match_string);
 666
 667/**
 668 * fwnode_property_get_reference_args() - Find a reference with arguments
 669 * @fwnode:	Firmware node where to look for the reference
 670 * @prop:	The name of the property
 671 * @nargs_prop:	The name of the property telling the number of
 672 *		arguments in the referred node. NULL if @nargs is known,
 673 *		otherwise @nargs is ignored. Only relevant on OF.
 674 * @nargs:	Number of arguments. Ignored if @nargs_prop is non-NULL.
 675 * @index:	Index of the reference, from zero onwards.
 676 * @args:	Result structure with reference and integer arguments.
 677 *
 678 * Obtain a reference based on a named property in an fwnode, with
 679 * integer arguments.
 680 *
 681 * Caller is responsible to call fwnode_handle_put() on the returned
 682 * args->fwnode pointer.
 683 *
 684 * Returns: %0 on success
 685 *	    %-ENOENT when the index is out of bounds, the index has an empty
 686 *		     reference or the property was not found
 687 *	    %-EINVAL on parse error
 688 */
 689int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
 690				       const char *prop, const char *nargs_prop,
 691				       unsigned int nargs, unsigned int index,
 692				       struct fwnode_reference_args *args)
 693{
 694	return fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
 695				  nargs, index, args);
 696}
 697EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
 698
 699static void property_entry_free_data(const struct property_entry *p)
 700{
 
 701	size_t i, nval;
 702
 703	if (p->is_array) {
 704		if (p->is_string && p->pointer.str) {
 705			nval = p->length / sizeof(const char *);
 706			for (i = 0; i < nval; i++)
 707				kfree(p->pointer.str[i]);
 708		}
 709		kfree(p->pointer.raw_data);
 710	} else if (p->is_string) {
 711		kfree(p->value.str);
 712	}
 713	kfree(p->name);
 714}
 715
 716static int property_copy_string_array(struct property_entry *dst,
 717				      const struct property_entry *src)
 718{
 719	char **d;
 720	size_t nval = src->length / sizeof(*d);
 721	int i;
 722
 723	d = kcalloc(nval, sizeof(*d), GFP_KERNEL);
 724	if (!d)
 725		return -ENOMEM;
 726
 727	for (i = 0; i < nval; i++) {
 728		d[i] = kstrdup(src->pointer.str[i], GFP_KERNEL);
 729		if (!d[i] && src->pointer.str[i]) {
 730			while (--i >= 0)
 731				kfree(d[i]);
 732			kfree(d);
 733			return -ENOMEM;
 
 
 
 734		}
 
 735	}
 736
 737	dst->pointer.raw_data = d;
 738	return 0;
 739}
 740
 741static int property_entry_copy_data(struct property_entry *dst,
 742				    const struct property_entry *src)
 743{
 744	int error;
 
 
 
 
 
 745
 746	if (src->is_array) {
 747		if (!src->length)
 748			return -ENODATA;
 749
 750		if (src->is_string) {
 751			error = property_copy_string_array(dst, src);
 752			if (error)
 753				return error;
 
 
 
 
 
 
 
 
 
 
 754		} else {
 755			dst->pointer.raw_data = kmemdup(src->pointer.raw_data,
 756							src->length, GFP_KERNEL);
 757			if (!dst->pointer.raw_data)
 758				return -ENOMEM;
 759		}
 760	} else if (src->is_string) {
 761		dst->value.str = kstrdup(src->value.str, GFP_KERNEL);
 762		if (!dst->value.str && src->value.str)
 763			return -ENOMEM;
 764	} else {
 765		dst->value.raw_data = src->value.raw_data;
 766	}
 767
 768	dst->length = src->length;
 769	dst->is_array = src->is_array;
 770	dst->is_string = src->is_string;
 771
 772	dst->name = kstrdup(src->name, GFP_KERNEL);
 773	if (!dst->name)
 774		goto out_free_data;
 775
 776	return 0;
 777
 778out_free_data:
 779	property_entry_free_data(dst);
 780	return -ENOMEM;
 781}
 782
 783/**
 784 * property_entries_dup - duplicate array of properties
 785 * @properties: array of properties to copy
 786 *
 787 * This function creates a deep copy of the given NULL-terminated array
 788 * of property entries.
 789 */
 790struct property_entry *
 791property_entries_dup(const struct property_entry *properties)
 792{
 793	struct property_entry *p;
 794	int i, n = 0;
 795
 796	while (properties[n].name)
 797		n++;
 798
 799	p = kcalloc(n + 1, sizeof(*p), GFP_KERNEL);
 800	if (!p)
 801		return ERR_PTR(-ENOMEM);
 802
 803	for (i = 0; i < n; i++) {
 804		int ret = property_entry_copy_data(&p[i], &properties[i]);
 805		if (ret) {
 806			while (--i >= 0)
 807				property_entry_free_data(&p[i]);
 808			kfree(p);
 809			return ERR_PTR(ret);
 810		}
 811	}
 812
 813	return p;
 814}
 815EXPORT_SYMBOL_GPL(property_entries_dup);
 816
 817/**
 818 * property_entries_free - free previously allocated array of properties
 819 * @properties: array of properties to destroy
 820 *
 821 * This function frees given NULL-terminated array of property entries,
 822 * along with their data.
 823 */
 824void property_entries_free(const struct property_entry *properties)
 825{
 826	const struct property_entry *p;
 827
 828	for (p = properties; p->name; p++)
 829		property_entry_free_data(p);
 830
 831	kfree(properties);
 832}
 833EXPORT_SYMBOL_GPL(property_entries_free);
 834
 835/**
 836 * pset_free_set - releases memory allocated for copied property set
 837 * @pset: Property set to release
 838 *
 839 * Function takes previously copied property set and releases all the
 840 * memory allocated to it.
 841 */
 842static void pset_free_set(struct property_set *pset)
 843{
 844	if (!pset)
 845		return;
 846
 847	property_entries_free(pset->properties);
 848	kfree(pset);
 849}
 850
 851/**
 852 * pset_copy_set - copies property set
 853 * @pset: Property set to copy
 854 *
 855 * This function takes a deep copy of the given property set and returns
 856 * pointer to the copy. Call device_free_property_set() to free resources
 857 * allocated in this function.
 858 *
 859 * Return: Pointer to the new property set or error pointer.
 860 */
 861static struct property_set *pset_copy_set(const struct property_set *pset)
 862{
 863	struct property_entry *properties;
 864	struct property_set *p;
 
 865
 866	p = kzalloc(sizeof(*p), GFP_KERNEL);
 867	if (!p)
 868		return ERR_PTR(-ENOMEM);
 869
 870	properties = property_entries_dup(pset->properties);
 871	if (IS_ERR(properties)) {
 
 
 
 872		kfree(p);
 873		return ERR_CAST(properties);
 
 
 
 
 
 
 
 
 
 874	}
 875
 876	p->properties = properties;
 877	return p;
 878}
 879
 880/**
 881 * device_remove_properties - Remove properties from a device object.
 882 * @dev: Device whose properties to remove.
 883 *
 884 * The function removes properties previously associated to the device
 885 * secondary firmware node with device_add_properties(). Memory allocated
 886 * to the properties will also be released.
 887 */
 888void device_remove_properties(struct device *dev)
 889{
 890	struct fwnode_handle *fwnode;
 891	struct property_set *pset;
 892
 893	fwnode = dev_fwnode(dev);
 894	if (!fwnode)
 895		return;
 896	/*
 897	 * Pick either primary or secondary node depending which one holds
 898	 * the pset. If there is no real firmware node (ACPI/DT) primary
 899	 * will hold the pset.
 900	 */
 901	pset = to_pset_node(fwnode);
 902	if (pset) {
 903		set_primary_fwnode(dev, NULL);
 
 904	} else {
 905		pset = to_pset_node(fwnode->secondary);
 906		if (pset && dev == pset->dev)
 907			set_secondary_fwnode(dev, NULL);
 
 
 908	}
 909	if (pset && dev == pset->dev)
 910		pset_free_set(pset);
 911}
 912EXPORT_SYMBOL_GPL(device_remove_properties);
 913
 914/**
 915 * device_add_properties - Add a collection of properties to a device object.
 916 * @dev: Device to add properties to.
 917 * @properties: Collection of properties to add.
 918 *
 919 * Associate a collection of device properties represented by @properties with
 920 * @dev as its secondary firmware node. The function takes a copy of
 921 * @properties.
 922 */
 923int device_add_properties(struct device *dev,
 924			  const struct property_entry *properties)
 925{
 926	struct property_set *p, pset;
 927
 928	if (!properties)
 929		return -EINVAL;
 930
 931	pset.properties = properties;
 932
 933	p = pset_copy_set(&pset);
 934	if (IS_ERR(p))
 935		return PTR_ERR(p);
 936
 937	p->fwnode.ops = &pset_fwnode_ops;
 938	set_secondary_fwnode(dev, &p->fwnode);
 939	p->dev = dev;
 940	return 0;
 941}
 942EXPORT_SYMBOL_GPL(device_add_properties);
 943
 944/**
 945 * fwnode_get_next_parent - Iterate to the node's parent
 946 * @fwnode: Firmware whose parent is retrieved
 947 *
 948 * This is like fwnode_get_parent() except that it drops the refcount
 949 * on the passed node, making it suitable for iterating through a
 950 * node's parents.
 951 *
 952 * Returns a node pointer with refcount incremented, use
 953 * fwnode_handle_node() on it when done.
 954 */
 955struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
 956{
 957	struct fwnode_handle *parent = fwnode_get_parent(fwnode);
 958
 959	fwnode_handle_put(fwnode);
 960
 961	return parent;
 962}
 963EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
 964
 965/**
 966 * fwnode_get_parent - Return parent firwmare node
 967 * @fwnode: Firmware whose parent is retrieved
 968 *
 969 * Return parent firmware node of the given node if possible or %NULL if no
 970 * parent was available.
 971 */
 972struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
 973{
 974	return fwnode_call_ptr_op(fwnode, get_parent);
 975}
 976EXPORT_SYMBOL_GPL(fwnode_get_parent);
 977
 978/**
 979 * fwnode_get_next_child_node - Return the next child node handle for a node
 980 * @fwnode: Firmware node to find the next child node for.
 981 * @child: Handle to one of the node's child nodes or a %NULL handle.
 982 */
 983struct fwnode_handle *
 984fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
 985			   struct fwnode_handle *child)
 986{
 987	return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
 988}
 989EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
 990
 991/**
 992 * fwnode_get_next_available_child_node - Return the next
 993 * available child node handle for a node
 994 * @fwnode: Firmware node to find the next child node for.
 995 * @child: Handle to one of the node's child nodes or a %NULL handle.
 996 */
 997struct fwnode_handle *
 998fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
 999				     struct fwnode_handle *child)
1000{
1001	struct fwnode_handle *next_child = child;
1002
1003	if (!fwnode)
1004		return NULL;
1005
1006	do {
1007		next_child = fwnode_get_next_child_node(fwnode, next_child);
1008
1009		if (!next_child || fwnode_device_is_available(next_child))
1010			break;
1011	} while (next_child);
1012
1013	return next_child;
1014}
1015EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
1016
1017/**
1018 * device_get_next_child_node - Return the next child node handle for a device
1019 * @dev: Device to find the next child node for.
1020 * @child: Handle to one of the device's child nodes or a null handle.
1021 */
1022struct fwnode_handle *device_get_next_child_node(struct device *dev,
1023						 struct fwnode_handle *child)
1024{
1025	struct acpi_device *adev = ACPI_COMPANION(dev);
1026	struct fwnode_handle *fwnode = NULL;
1027
1028	if (dev->of_node)
1029		fwnode = &dev->of_node->fwnode;
1030	else if (adev)
1031		fwnode = acpi_fwnode_handle(adev);
1032
1033	return fwnode_get_next_child_node(fwnode, child);
 
 
 
 
 
 
1034}
1035EXPORT_SYMBOL_GPL(device_get_next_child_node);
1036
1037/**
1038 * fwnode_get_named_child_node - Return first matching named child node handle
1039 * @fwnode: Firmware node to find the named child node for.
1040 * @childname: String to match child node name against.
1041 */
1042struct fwnode_handle *
1043fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
1044			    const char *childname)
1045{
1046	return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
1047}
1048EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
1049
1050/**
1051 * device_get_named_child_node - Return first matching named child node handle
1052 * @dev: Device to find the named child node for.
1053 * @childname: String to match child node name against.
1054 */
1055struct fwnode_handle *device_get_named_child_node(struct device *dev,
1056						  const char *childname)
1057{
1058	return fwnode_get_named_child_node(dev_fwnode(dev), childname);
1059}
1060EXPORT_SYMBOL_GPL(device_get_named_child_node);
1061
1062/**
1063 * fwnode_handle_get - Obtain a reference to a device node
1064 * @fwnode: Pointer to the device node to obtain the reference to.
1065 *
1066 * Returns the fwnode handle.
1067 */
1068struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
1069{
1070	if (!fwnode_has_op(fwnode, get))
1071		return fwnode;
 
 
 
1072
1073	return fwnode_call_ptr_op(fwnode, get);
1074}
1075EXPORT_SYMBOL_GPL(fwnode_handle_get);
1076
1077/**
1078 * fwnode_handle_put - Drop reference to a device node
1079 * @fwnode: Pointer to the device node to drop the reference to.
1080 *
1081 * This has to be used when terminating device_for_each_child_node() iteration
1082 * with break or return to prevent stale device node references from being left
1083 * behind.
1084 */
1085void fwnode_handle_put(struct fwnode_handle *fwnode)
1086{
1087	fwnode_call_void_op(fwnode, put);
 
1088}
1089EXPORT_SYMBOL_GPL(fwnode_handle_put);
1090
1091/**
1092 * fwnode_device_is_available - check if a device is available for use
1093 * @fwnode: Pointer to the fwnode of the device.
1094 */
1095bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
1096{
1097	return fwnode_call_bool_op(fwnode, device_is_available);
1098}
1099EXPORT_SYMBOL_GPL(fwnode_device_is_available);
1100
1101/**
1102 * device_get_child_node_count - return the number of child nodes for device
1103 * @dev: Device to cound the child nodes for
1104 */
1105unsigned int device_get_child_node_count(struct device *dev)
1106{
1107	struct fwnode_handle *child;
1108	unsigned int count = 0;
1109
1110	device_for_each_child_node(dev, child)
1111		count++;
1112
1113	return count;
1114}
1115EXPORT_SYMBOL_GPL(device_get_child_node_count);
1116
1117bool device_dma_supported(struct device *dev)
1118{
1119	/* For DT, this is always supported.
1120	 * For ACPI, this depends on CCA, which
1121	 * is determined by the acpi_dma_supported().
1122	 */
1123	if (IS_ENABLED(CONFIG_OF) && dev->of_node)
1124		return true;
1125
1126	return acpi_dma_supported(ACPI_COMPANION(dev));
1127}
1128EXPORT_SYMBOL_GPL(device_dma_supported);
1129
1130enum dev_dma_attr device_get_dma_attr(struct device *dev)
1131{
1132	enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;
1133
1134	if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
1135		if (of_dma_is_coherent(dev->of_node))
1136			attr = DEV_DMA_COHERENT;
1137		else
1138			attr = DEV_DMA_NON_COHERENT;
1139	} else
1140		attr = acpi_get_dma_attr(ACPI_COMPANION(dev));
1141
1142	return attr;
1143}
1144EXPORT_SYMBOL_GPL(device_get_dma_attr);
1145
1146/**
1147 * fwnode_get_phy_mode - Get phy mode for given firmware node
1148 * @fwnode:	Pointer to the given node
1149 *
1150 * The function gets phy interface string from property 'phy-mode' or
1151 * 'phy-connection-type', and return its index in phy_modes table, or errno in
1152 * error case.
1153 */
1154int fwnode_get_phy_mode(struct fwnode_handle *fwnode)
1155{
1156	const char *pm;
1157	int err, i;
1158
1159	err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
1160	if (err < 0)
1161		err = fwnode_property_read_string(fwnode,
1162						  "phy-connection-type", &pm);
1163	if (err < 0)
1164		return err;
1165
1166	for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
1167		if (!strcasecmp(pm, phy_modes(i)))
1168			return i;
1169
1170	return -ENODEV;
1171}
1172EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
1173
1174/**
1175 * device_get_phy_mode - Get phy mode for given device
1176 * @dev:	Pointer to the given device
1177 *
1178 * The function gets phy interface string from property 'phy-mode' or
1179 * 'phy-connection-type', and return its index in phy_modes table, or errno in
1180 * error case.
1181 */
1182int device_get_phy_mode(struct device *dev)
1183{
1184	return fwnode_get_phy_mode(dev_fwnode(dev));
1185}
1186EXPORT_SYMBOL_GPL(device_get_phy_mode);
1187
1188static void *fwnode_get_mac_addr(struct fwnode_handle *fwnode,
1189				 const char *name, char *addr,
1190				 int alen)
1191{
1192	int ret = fwnode_property_read_u8_array(fwnode, name, addr, alen);
1193
1194	if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
1195		return addr;
1196	return NULL;
1197}
1198
1199/**
1200 * fwnode_get_mac_address - Get the MAC from the firmware node
1201 * @fwnode:	Pointer to the firmware node
1202 * @addr:	Address of buffer to store the MAC in
1203 * @alen:	Length of the buffer pointed to by addr, should be ETH_ALEN
1204 *
1205 * Search the firmware node for the best MAC address to use.  'mac-address' is
1206 * checked first, because that is supposed to contain to "most recent" MAC
1207 * address. If that isn't set, then 'local-mac-address' is checked next,
1208 * because that is the default address.  If that isn't set, then the obsolete
1209 * 'address' is checked, just in case we're using an old device tree.
1210 *
1211 * Note that the 'address' property is supposed to contain a virtual address of
1212 * the register set, but some DTS files have redefined that property to be the
1213 * MAC address.
1214 *
1215 * All-zero MAC addresses are rejected, because those could be properties that
1216 * exist in the firmware tables, but were not updated by the firmware.  For
1217 * example, the DTS could define 'mac-address' and 'local-mac-address', with
1218 * zero MAC addresses.  Some older U-Boots only initialized 'local-mac-address'.
1219 * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
1220 * exists but is all zeros.
1221*/
1222void *fwnode_get_mac_address(struct fwnode_handle *fwnode, char *addr, int alen)
1223{
1224	char *res;
1225
1226	res = fwnode_get_mac_addr(fwnode, "mac-address", addr, alen);
1227	if (res)
1228		return res;
1229
1230	res = fwnode_get_mac_addr(fwnode, "local-mac-address", addr, alen);
1231	if (res)
1232		return res;
1233
1234	return fwnode_get_mac_addr(fwnode, "address", addr, alen);
1235}
1236EXPORT_SYMBOL(fwnode_get_mac_address);
1237
1238/**
1239 * device_get_mac_address - Get the MAC for a given device
1240 * @dev:	Pointer to the device
1241 * @addr:	Address of buffer to store the MAC in
1242 * @alen:	Length of the buffer pointed to by addr, should be ETH_ALEN
1243 */
1244void *device_get_mac_address(struct device *dev, char *addr, int alen)
1245{
1246	return fwnode_get_mac_address(dev_fwnode(dev), addr, alen);
1247}
1248EXPORT_SYMBOL(device_get_mac_address);
1249
1250/**
1251 * fwnode_irq_get - Get IRQ directly from a fwnode
1252 * @fwnode:	Pointer to the firmware node
1253 * @index:	Zero-based index of the IRQ
1254 *
1255 * Returns Linux IRQ number on success. Other values are determined
1256 * accordingly to acpi_/of_ irq_get() operation.
1257 */
1258int fwnode_irq_get(struct fwnode_handle *fwnode, unsigned int index)
1259{
1260	struct device_node *of_node = to_of_node(fwnode);
1261	struct resource res;
1262	int ret;
1263
1264	if (IS_ENABLED(CONFIG_OF) && of_node)
1265		return of_irq_get(of_node, index);
1266
1267	ret = acpi_irq_get(ACPI_HANDLE_FWNODE(fwnode), index, &res);
1268	if (ret)
1269		return ret;
1270
1271	return res.start;
1272}
1273EXPORT_SYMBOL(fwnode_irq_get);
1274
1275/**
1276 * device_graph_get_next_endpoint - Get next endpoint firmware node
1277 * @fwnode: Pointer to the parent firmware node
1278 * @prev: Previous endpoint node or %NULL to get the first
1279 *
1280 * Returns an endpoint firmware node pointer or %NULL if no more endpoints
1281 * are available.
1282 */
1283struct fwnode_handle *
1284fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1285			       struct fwnode_handle *prev)
1286{
1287	return fwnode_call_ptr_op(fwnode, graph_get_next_endpoint, prev);
1288}
1289EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
1290
1291/**
1292 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
1293 * @endpoint: Endpoint firmware node of the port
1294 *
1295 * Return: the firmware node of the device the @endpoint belongs to.
1296 */
1297struct fwnode_handle *
1298fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
1299{
1300	struct fwnode_handle *port, *parent;
1301
1302	port = fwnode_get_parent(endpoint);
1303	parent = fwnode_call_ptr_op(port, graph_get_port_parent);
1304
1305	fwnode_handle_put(port);
1306
1307	return parent;
1308}
1309EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1310
1311/**
1312 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1313 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1314 *
1315 * Extracts firmware node of a remote device the @fwnode points to.
1316 */
1317struct fwnode_handle *
1318fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1319{
1320	struct fwnode_handle *endpoint, *parent;
1321
1322	endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1323	parent = fwnode_graph_get_port_parent(endpoint);
1324
1325	fwnode_handle_put(endpoint);
1326
1327	return parent;
1328}
1329EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1330
1331/**
1332 * fwnode_graph_get_remote_port - Return fwnode of a remote port
1333 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1334 *
1335 * Extracts firmware node of a remote port the @fwnode points to.
1336 */
1337struct fwnode_handle *
1338fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1339{
1340	return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1341}
1342EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1343
1344/**
1345 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1346 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1347 *
1348 * Extracts firmware node of a remote endpoint the @fwnode points to.
1349 */
1350struct fwnode_handle *
1351fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1352{
1353	return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1354}
1355EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1356
1357/**
1358 * fwnode_graph_get_remote_node - get remote parent node for given port/endpoint
1359 * @fwnode: pointer to parent fwnode_handle containing graph port/endpoint
1360 * @port_id: identifier of the parent port node
1361 * @endpoint_id: identifier of the endpoint node
1362 *
1363 * Return: Remote fwnode handle associated with remote endpoint node linked
1364 *	   to @node. Use fwnode_node_put() on it when done.
1365 */
1366struct fwnode_handle *
1367fwnode_graph_get_remote_node(const struct fwnode_handle *fwnode, u32 port_id,
1368			     u32 endpoint_id)
1369{
1370	struct fwnode_handle *endpoint = NULL;
1371
1372	while ((endpoint = fwnode_graph_get_next_endpoint(fwnode, endpoint))) {
1373		struct fwnode_endpoint fwnode_ep;
1374		struct fwnode_handle *remote;
1375		int ret;
1376
1377		ret = fwnode_graph_parse_endpoint(endpoint, &fwnode_ep);
1378		if (ret < 0)
1379			continue;
1380
1381		if (fwnode_ep.port != port_id || fwnode_ep.id != endpoint_id)
1382			continue;
1383
1384		remote = fwnode_graph_get_remote_port_parent(endpoint);
1385		if (!remote)
1386			return NULL;
1387
1388		return fwnode_device_is_available(remote) ? remote : NULL;
1389	}
1390
1391	return NULL;
1392}
1393EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_node);
1394
1395/**
1396 * fwnode_graph_parse_endpoint - parse common endpoint node properties
1397 * @fwnode: pointer to endpoint fwnode_handle
1398 * @endpoint: pointer to the fwnode endpoint data structure
1399 *
1400 * Parse @fwnode representing a graph endpoint node and store the
1401 * information in @endpoint. The caller must hold a reference to
1402 * @fwnode.
1403 */
1404int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1405				struct fwnode_endpoint *endpoint)
1406{
1407	memset(endpoint, 0, sizeof(*endpoint));
1408
1409	return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1410}
1411EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1412
1413const void *device_get_match_data(struct device *dev)
1414{
1415	return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1416}
1417EXPORT_SYMBOL_GPL(device_get_match_data);
v4.10.11
 
   1/*
   2 * property.c - Unified device property interface.
   3 *
   4 * Copyright (C) 2014, Intel Corporation
   5 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
   6 *          Mika Westerberg <mika.westerberg@linux.intel.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12
  13#include <linux/acpi.h>
  14#include <linux/export.h>
  15#include <linux/kernel.h>
  16#include <linux/of.h>
  17#include <linux/of_address.h>
 
 
  18#include <linux/property.h>
  19#include <linux/etherdevice.h>
  20#include <linux/phy.h>
  21
  22struct property_set {
 
  23	struct fwnode_handle fwnode;
  24	struct property_entry *properties;
  25};
  26
  27static inline bool is_pset_node(struct fwnode_handle *fwnode)
 
 
  28{
  29	return !IS_ERR_OR_NULL(fwnode) && fwnode->type == FWNODE_PDATA;
  30}
  31
  32static inline struct property_set *to_pset_node(struct fwnode_handle *fwnode)
  33{
  34	return is_pset_node(fwnode) ?
  35		container_of(fwnode, struct property_set, fwnode) : NULL;
  36}
 
 
 
 
  37
  38static struct property_entry *pset_prop_get(struct property_set *pset,
  39					    const char *name)
  40{
  41	struct property_entry *prop;
  42
  43	if (!pset || !pset->properties)
  44		return NULL;
  45
  46	for (prop = pset->properties; prop->name; prop++)
  47		if (!strcmp(name, prop->name))
  48			return prop;
  49
  50	return NULL;
  51}
  52
  53static void *pset_prop_find(struct property_set *pset, const char *propname,
  54			    size_t length)
  55{
  56	struct property_entry *prop;
  57	void *pointer;
  58
  59	prop = pset_prop_get(pset, propname);
  60	if (!prop)
  61		return ERR_PTR(-EINVAL);
  62	if (prop->is_array)
  63		pointer = prop->pointer.raw_data;
  64	else
  65		pointer = &prop->value.raw_data;
  66	if (!pointer)
  67		return ERR_PTR(-ENODATA);
  68	if (length > prop->length)
  69		return ERR_PTR(-EOVERFLOW);
  70	return pointer;
  71}
  72
  73static int pset_prop_read_u8_array(struct property_set *pset,
  74				   const char *propname,
  75				   u8 *values, size_t nval)
  76{
  77	void *pointer;
  78	size_t length = nval * sizeof(*values);
  79
  80	pointer = pset_prop_find(pset, propname, length);
  81	if (IS_ERR(pointer))
  82		return PTR_ERR(pointer);
  83
  84	memcpy(values, pointer, length);
  85	return 0;
  86}
  87
  88static int pset_prop_read_u16_array(struct property_set *pset,
  89				    const char *propname,
  90				    u16 *values, size_t nval)
  91{
  92	void *pointer;
  93	size_t length = nval * sizeof(*values);
  94
  95	pointer = pset_prop_find(pset, propname, length);
  96	if (IS_ERR(pointer))
  97		return PTR_ERR(pointer);
  98
  99	memcpy(values, pointer, length);
 100	return 0;
 101}
 102
 103static int pset_prop_read_u32_array(struct property_set *pset,
 104				    const char *propname,
 105				    u32 *values, size_t nval)
 106{
 107	void *pointer;
 108	size_t length = nval * sizeof(*values);
 109
 110	pointer = pset_prop_find(pset, propname, length);
 111	if (IS_ERR(pointer))
 112		return PTR_ERR(pointer);
 113
 114	memcpy(values, pointer, length);
 115	return 0;
 116}
 117
 118static int pset_prop_read_u64_array(struct property_set *pset,
 119				    const char *propname,
 120				    u64 *values, size_t nval)
 121{
 122	void *pointer;
 123	size_t length = nval * sizeof(*values);
 124
 125	pointer = pset_prop_find(pset, propname, length);
 126	if (IS_ERR(pointer))
 127		return PTR_ERR(pointer);
 128
 129	memcpy(values, pointer, length);
 130	return 0;
 131}
 132
 133static int pset_prop_count_elems_of_size(struct property_set *pset,
 134					 const char *propname, size_t length)
 135{
 136	struct property_entry *prop;
 137
 138	prop = pset_prop_get(pset, propname);
 139	if (!prop)
 140		return -EINVAL;
 141
 142	return prop->length / length;
 143}
 144
 145static int pset_prop_read_string_array(struct property_set *pset,
 146				       const char *propname,
 147				       const char **strings, size_t nval)
 148{
 149	void *pointer;
 150	size_t length = nval * sizeof(*strings);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 151
 152	pointer = pset_prop_find(pset, propname, length);
 153	if (IS_ERR(pointer))
 154		return PTR_ERR(pointer);
 155
 156	memcpy(strings, pointer, length);
 157	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 158}
 159
 160static int pset_prop_read_string(struct property_set *pset,
 161				 const char *propname, const char **strings)
 
 
 162{
 163	struct property_entry *prop;
 164	const char **pointer;
 
 
 165
 166	prop = pset_prop_get(pset, propname);
 167	if (!prop)
 168		return -EINVAL;
 169	if (!prop->is_string)
 170		return -EILSEQ;
 171	if (prop->is_array) {
 172		pointer = prop->pointer.str;
 173		if (!pointer)
 174			return -ENODATA;
 175	} else {
 176		pointer = &prop->value.str;
 177		if (*pointer && strnlen(*pointer, prop->length) >= prop->length)
 178			return -EILSEQ;
 179	}
 180
 181	*strings = *pointer;
 182	return 0;
 183}
 184
 185static inline struct fwnode_handle *dev_fwnode(struct device *dev)
 
 
 
 186{
 187	return IS_ENABLED(CONFIG_OF) && dev->of_node ?
 188		&dev->of_node->fwnode : dev->fwnode;
 189}
 190
 
 
 
 
 
 
 191/**
 192 * device_property_present - check if a property of a device is present
 193 * @dev: Device whose property is being checked
 194 * @propname: Name of the property
 195 *
 196 * Check if property @propname is present in the device firmware description.
 197 */
 198bool device_property_present(struct device *dev, const char *propname)
 199{
 200	return fwnode_property_present(dev_fwnode(dev), propname);
 201}
 202EXPORT_SYMBOL_GPL(device_property_present);
 203
 204static bool __fwnode_property_present(struct fwnode_handle *fwnode,
 205				      const char *propname)
 206{
 207	if (is_of_node(fwnode))
 208		return of_property_read_bool(to_of_node(fwnode), propname);
 209	else if (is_acpi_node(fwnode))
 210		return !acpi_node_prop_get(fwnode, propname, NULL);
 211	else if (is_pset_node(fwnode))
 212		return !!pset_prop_get(to_pset_node(fwnode), propname);
 213	return false;
 214}
 215
 216/**
 217 * fwnode_property_present - check if a property of a firmware node is present
 218 * @fwnode: Firmware node whose property to check
 219 * @propname: Name of the property
 220 */
 221bool fwnode_property_present(struct fwnode_handle *fwnode, const char *propname)
 
 222{
 223	bool ret;
 224
 225	ret = __fwnode_property_present(fwnode, propname);
 226	if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
 227	    !IS_ERR_OR_NULL(fwnode->secondary))
 228		ret = __fwnode_property_present(fwnode->secondary, propname);
 
 229	return ret;
 230}
 231EXPORT_SYMBOL_GPL(fwnode_property_present);
 232
 233/**
 234 * device_property_read_u8_array - return a u8 array property of a device
 235 * @dev: Device to get the property of
 236 * @propname: Name of the property
 237 * @val: The values are stored here or %NULL to return the number of values
 238 * @nval: Size of the @val array
 239 *
 240 * Function reads an array of u8 properties with @propname from the device
 241 * firmware description and stores them to @val if found.
 242 *
 243 * Return: number of values if @val was %NULL,
 244 *         %0 if the property was found (success),
 245 *	   %-EINVAL if given arguments are not valid,
 246 *	   %-ENODATA if the property does not have a value,
 247 *	   %-EPROTO if the property is not an array of numbers,
 248 *	   %-EOVERFLOW if the size of the property is not as expected.
 249 *	   %-ENXIO if no suitable firmware interface is present.
 250 */
 251int device_property_read_u8_array(struct device *dev, const char *propname,
 252				  u8 *val, size_t nval)
 253{
 254	return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
 255}
 256EXPORT_SYMBOL_GPL(device_property_read_u8_array);
 257
 258/**
 259 * device_property_read_u16_array - return a u16 array property of a device
 260 * @dev: Device to get the property of
 261 * @propname: Name of the property
 262 * @val: The values are stored here or %NULL to return the number of values
 263 * @nval: Size of the @val array
 264 *
 265 * Function reads an array of u16 properties with @propname from the device
 266 * firmware description and stores them to @val if found.
 267 *
 268 * Return: number of values if @val was %NULL,
 269 *         %0 if the property was found (success),
 270 *	   %-EINVAL if given arguments are not valid,
 271 *	   %-ENODATA if the property does not have a value,
 272 *	   %-EPROTO if the property is not an array of numbers,
 273 *	   %-EOVERFLOW if the size of the property is not as expected.
 274 *	   %-ENXIO if no suitable firmware interface is present.
 275 */
 276int device_property_read_u16_array(struct device *dev, const char *propname,
 277				   u16 *val, size_t nval)
 278{
 279	return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
 280}
 281EXPORT_SYMBOL_GPL(device_property_read_u16_array);
 282
 283/**
 284 * device_property_read_u32_array - return a u32 array property of a device
 285 * @dev: Device to get the property of
 286 * @propname: Name of the property
 287 * @val: The values are stored here or %NULL to return the number of values
 288 * @nval: Size of the @val array
 289 *
 290 * Function reads an array of u32 properties with @propname from the device
 291 * firmware description and stores them to @val if found.
 292 *
 293 * Return: number of values if @val was %NULL,
 294 *         %0 if the property was found (success),
 295 *	   %-EINVAL if given arguments are not valid,
 296 *	   %-ENODATA if the property does not have a value,
 297 *	   %-EPROTO if the property is not an array of numbers,
 298 *	   %-EOVERFLOW if the size of the property is not as expected.
 299 *	   %-ENXIO if no suitable firmware interface is present.
 300 */
 301int device_property_read_u32_array(struct device *dev, const char *propname,
 302				   u32 *val, size_t nval)
 303{
 304	return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
 305}
 306EXPORT_SYMBOL_GPL(device_property_read_u32_array);
 307
 308/**
 309 * device_property_read_u64_array - return a u64 array property of a device
 310 * @dev: Device to get the property of
 311 * @propname: Name of the property
 312 * @val: The values are stored here or %NULL to return the number of values
 313 * @nval: Size of the @val array
 314 *
 315 * Function reads an array of u64 properties with @propname from the device
 316 * firmware description and stores them to @val if found.
 317 *
 318 * Return: number of values if @val was %NULL,
 319 *         %0 if the property was found (success),
 320 *	   %-EINVAL if given arguments are not valid,
 321 *	   %-ENODATA if the property does not have a value,
 322 *	   %-EPROTO if the property is not an array of numbers,
 323 *	   %-EOVERFLOW if the size of the property is not as expected.
 324 *	   %-ENXIO if no suitable firmware interface is present.
 325 */
 326int device_property_read_u64_array(struct device *dev, const char *propname,
 327				   u64 *val, size_t nval)
 328{
 329	return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
 330}
 331EXPORT_SYMBOL_GPL(device_property_read_u64_array);
 332
 333/**
 334 * device_property_read_string_array - return a string array property of device
 335 * @dev: Device to get the property of
 336 * @propname: Name of the property
 337 * @val: The values are stored here or %NULL to return the number of values
 338 * @nval: Size of the @val array
 339 *
 340 * Function reads an array of string properties with @propname from the device
 341 * firmware description and stores them to @val if found.
 342 *
 343 * Return: number of values if @val was %NULL,
 344 *         %0 if the property was found (success),
 345 *	   %-EINVAL if given arguments are not valid,
 346 *	   %-ENODATA if the property does not have a value,
 347 *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
 348 *	   %-EOVERFLOW if the size of the property is not as expected.
 349 *	   %-ENXIO if no suitable firmware interface is present.
 350 */
 351int device_property_read_string_array(struct device *dev, const char *propname,
 352				      const char **val, size_t nval)
 353{
 354	return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
 355}
 356EXPORT_SYMBOL_GPL(device_property_read_string_array);
 357
 358/**
 359 * device_property_read_string - return a string property of a device
 360 * @dev: Device to get the property of
 361 * @propname: Name of the property
 362 * @val: The value is stored here
 363 *
 364 * Function reads property @propname from the device firmware description and
 365 * stores the value into @val if found. The value is checked to be a string.
 366 *
 367 * Return: %0 if the property was found (success),
 368 *	   %-EINVAL if given arguments are not valid,
 369 *	   %-ENODATA if the property does not have a value,
 370 *	   %-EPROTO or %-EILSEQ if the property type is not a string.
 371 *	   %-ENXIO if no suitable firmware interface is present.
 372 */
 373int device_property_read_string(struct device *dev, const char *propname,
 374				const char **val)
 375{
 376	return fwnode_property_read_string(dev_fwnode(dev), propname, val);
 377}
 378EXPORT_SYMBOL_GPL(device_property_read_string);
 379
 380/**
 381 * device_property_match_string - find a string in an array and return index
 382 * @dev: Device to get the property of
 383 * @propname: Name of the property holding the array
 384 * @string: String to look for
 385 *
 386 * Find a given string in a string array and if it is found return the
 387 * index back.
 388 *
 389 * Return: %0 if the property was found (success),
 390 *	   %-EINVAL if given arguments are not valid,
 391 *	   %-ENODATA if the property does not have a value,
 392 *	   %-EPROTO if the property is not an array of strings,
 393 *	   %-ENXIO if no suitable firmware interface is present.
 394 */
 395int device_property_match_string(struct device *dev, const char *propname,
 396				 const char *string)
 397{
 398	return fwnode_property_match_string(dev_fwnode(dev), propname, string);
 399}
 400EXPORT_SYMBOL_GPL(device_property_match_string);
 401
 402#define OF_DEV_PROP_READ_ARRAY(node, propname, type, val, nval)				\
 403	(val) ? of_property_read_##type##_array((node), (propname), (val), (nval))	\
 404	      : of_property_count_elems_of_size((node), (propname), sizeof(type))
 405
 406#define PSET_PROP_READ_ARRAY(node, propname, type, val, nval)				\
 407	(val) ? pset_prop_read_##type##_array((node), (propname), (val), (nval))	\
 408	      : pset_prop_count_elems_of_size((node), (propname), sizeof(type))
 409
 410#define FWNODE_PROP_READ(_fwnode_, _propname_, _type_, _proptype_, _val_, _nval_)	\
 411({											\
 412	int _ret_;									\
 413	if (is_of_node(_fwnode_))							\
 414		_ret_ = OF_DEV_PROP_READ_ARRAY(to_of_node(_fwnode_), _propname_,	\
 415					       _type_, _val_, _nval_);			\
 416	else if (is_acpi_node(_fwnode_))						\
 417		_ret_ = acpi_node_prop_read(_fwnode_, _propname_, _proptype_,		\
 418					    _val_, _nval_);				\
 419	else if (is_pset_node(_fwnode_)) 						\
 420		_ret_ = PSET_PROP_READ_ARRAY(to_pset_node(_fwnode_), _propname_,	\
 421					     _type_, _val_, _nval_);			\
 422	else										\
 423		_ret_ = -ENXIO;								\
 424	_ret_;										\
 425})
 426
 427#define FWNODE_PROP_READ_ARRAY(_fwnode_, _propname_, _type_, _proptype_, _val_, _nval_)	\
 428({											\
 429	int _ret_;									\
 430	_ret_ = FWNODE_PROP_READ(_fwnode_, _propname_, _type_, _proptype_,		\
 431				 _val_, _nval_);					\
 432	if (_ret_ == -EINVAL && !IS_ERR_OR_NULL(_fwnode_) &&				\
 433	    !IS_ERR_OR_NULL(_fwnode_->secondary))					\
 434		_ret_ = FWNODE_PROP_READ(_fwnode_->secondary, _propname_, _type_,	\
 435				_proptype_, _val_, _nval_);				\
 436	_ret_;										\
 437})
 438
 439/**
 440 * fwnode_property_read_u8_array - return a u8 array property of firmware node
 441 * @fwnode: Firmware node to get the property of
 442 * @propname: Name of the property
 443 * @val: The values are stored here or %NULL to return the number of values
 444 * @nval: Size of the @val array
 445 *
 446 * Read an array of u8 properties with @propname from @fwnode and stores them to
 447 * @val if found.
 448 *
 449 * Return: number of values if @val was %NULL,
 450 *         %0 if the property was found (success),
 451 *	   %-EINVAL if given arguments are not valid,
 452 *	   %-ENODATA if the property does not have a value,
 453 *	   %-EPROTO if the property is not an array of numbers,
 454 *	   %-EOVERFLOW if the size of the property is not as expected,
 455 *	   %-ENXIO if no suitable firmware interface is present.
 456 */
 457int fwnode_property_read_u8_array(struct fwnode_handle *fwnode,
 458				  const char *propname, u8 *val, size_t nval)
 459{
 460	return FWNODE_PROP_READ_ARRAY(fwnode, propname, u8, DEV_PROP_U8,
 461				      val, nval);
 462}
 463EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
 464
 465/**
 466 * fwnode_property_read_u16_array - return a u16 array property of firmware node
 467 * @fwnode: Firmware node to get the property of
 468 * @propname: Name of the property
 469 * @val: The values are stored here or %NULL to return the number of values
 470 * @nval: Size of the @val array
 471 *
 472 * Read an array of u16 properties with @propname from @fwnode and store them to
 473 * @val if found.
 474 *
 475 * Return: number of values if @val was %NULL,
 476 *         %0 if the property was found (success),
 477 *	   %-EINVAL if given arguments are not valid,
 478 *	   %-ENODATA if the property does not have a value,
 479 *	   %-EPROTO if the property is not an array of numbers,
 480 *	   %-EOVERFLOW if the size of the property is not as expected,
 481 *	   %-ENXIO if no suitable firmware interface is present.
 482 */
 483int fwnode_property_read_u16_array(struct fwnode_handle *fwnode,
 484				   const char *propname, u16 *val, size_t nval)
 485{
 486	return FWNODE_PROP_READ_ARRAY(fwnode, propname, u16, DEV_PROP_U16,
 487				      val, nval);
 488}
 489EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
 490
 491/**
 492 * fwnode_property_read_u32_array - return a u32 array property of firmware node
 493 * @fwnode: Firmware node to get the property of
 494 * @propname: Name of the property
 495 * @val: The values are stored here or %NULL to return the number of values
 496 * @nval: Size of the @val array
 497 *
 498 * Read an array of u32 properties with @propname from @fwnode store them to
 499 * @val if found.
 500 *
 501 * Return: number of values if @val was %NULL,
 502 *         %0 if the property was found (success),
 503 *	   %-EINVAL if given arguments are not valid,
 504 *	   %-ENODATA if the property does not have a value,
 505 *	   %-EPROTO if the property is not an array of numbers,
 506 *	   %-EOVERFLOW if the size of the property is not as expected,
 507 *	   %-ENXIO if no suitable firmware interface is present.
 508 */
 509int fwnode_property_read_u32_array(struct fwnode_handle *fwnode,
 510				   const char *propname, u32 *val, size_t nval)
 511{
 512	return FWNODE_PROP_READ_ARRAY(fwnode, propname, u32, DEV_PROP_U32,
 513				      val, nval);
 514}
 515EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
 516
 517/**
 518 * fwnode_property_read_u64_array - return a u64 array property firmware node
 519 * @fwnode: Firmware node to get the property of
 520 * @propname: Name of the property
 521 * @val: The values are stored here or %NULL to return the number of values
 522 * @nval: Size of the @val array
 523 *
 524 * Read an array of u64 properties with @propname from @fwnode and store them to
 525 * @val if found.
 526 *
 527 * Return: number of values if @val was %NULL,
 528 *         %0 if the property was found (success),
 529 *	   %-EINVAL if given arguments are not valid,
 530 *	   %-ENODATA if the property does not have a value,
 531 *	   %-EPROTO if the property is not an array of numbers,
 532 *	   %-EOVERFLOW if the size of the property is not as expected,
 533 *	   %-ENXIO if no suitable firmware interface is present.
 534 */
 535int fwnode_property_read_u64_array(struct fwnode_handle *fwnode,
 536				   const char *propname, u64 *val, size_t nval)
 537{
 538	return FWNODE_PROP_READ_ARRAY(fwnode, propname, u64, DEV_PROP_U64,
 539				      val, nval);
 540}
 541EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
 542
 543static int __fwnode_property_read_string_array(struct fwnode_handle *fwnode,
 544					       const char *propname,
 545					       const char **val, size_t nval)
 546{
 547	if (is_of_node(fwnode))
 548		return val ?
 549			of_property_read_string_array(to_of_node(fwnode),
 550						      propname, val, nval) :
 551			of_property_count_strings(to_of_node(fwnode), propname);
 552	else if (is_acpi_node(fwnode))
 553		return acpi_node_prop_read(fwnode, propname, DEV_PROP_STRING,
 554					   val, nval);
 555	else if (is_pset_node(fwnode))
 556		return val ?
 557			pset_prop_read_string_array(to_pset_node(fwnode),
 558						    propname, val, nval) :
 559			pset_prop_count_elems_of_size(to_pset_node(fwnode),
 560						      propname,
 561						      sizeof(const char *));
 562	return -ENXIO;
 563}
 564
 565static int __fwnode_property_read_string(struct fwnode_handle *fwnode,
 566					 const char *propname, const char **val)
 567{
 568	if (is_of_node(fwnode))
 569		return of_property_read_string(to_of_node(fwnode), propname, val);
 570	else if (is_acpi_node(fwnode))
 571		return acpi_node_prop_read(fwnode, propname, DEV_PROP_STRING,
 572					   val, 1);
 573	else if (is_pset_node(fwnode))
 574		return pset_prop_read_string(to_pset_node(fwnode), propname, val);
 575	return -ENXIO;
 576}
 577
 578/**
 579 * fwnode_property_read_string_array - return string array property of a node
 580 * @fwnode: Firmware node to get the property of
 581 * @propname: Name of the property
 582 * @val: The values are stored here or %NULL to return the number of values
 583 * @nval: Size of the @val array
 584 *
 585 * Read an string list property @propname from the given firmware node and store
 586 * them to @val if found.
 587 *
 588 * Return: number of values if @val was %NULL,
 589 *         %0 if the property was found (success),
 590 *	   %-EINVAL if given arguments are not valid,
 591 *	   %-ENODATA if the property does not have a value,
 592 *	   %-EPROTO if the property is not an array of strings,
 593 *	   %-EOVERFLOW if the size of the property is not as expected,
 594 *	   %-ENXIO if no suitable firmware interface is present.
 595 */
 596int fwnode_property_read_string_array(struct fwnode_handle *fwnode,
 597				      const char *propname, const char **val,
 598				      size_t nval)
 599{
 600	int ret;
 601
 602	ret = __fwnode_property_read_string_array(fwnode, propname, val, nval);
 
 603	if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
 604	    !IS_ERR_OR_NULL(fwnode->secondary))
 605		ret = __fwnode_property_read_string_array(fwnode->secondary,
 606							  propname, val, nval);
 
 607	return ret;
 608}
 609EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
 610
 611/**
 612 * fwnode_property_read_string - return a string property of a firmware node
 613 * @fwnode: Firmware node to get the property of
 614 * @propname: Name of the property
 615 * @val: The value is stored here
 616 *
 617 * Read property @propname from the given firmware node and store the value into
 618 * @val if found.  The value is checked to be a string.
 619 *
 620 * Return: %0 if the property was found (success),
 621 *	   %-EINVAL if given arguments are not valid,
 622 *	   %-ENODATA if the property does not have a value,
 623 *	   %-EPROTO or %-EILSEQ if the property is not a string,
 624 *	   %-ENXIO if no suitable firmware interface is present.
 625 */
 626int fwnode_property_read_string(struct fwnode_handle *fwnode,
 627				const char *propname, const char **val)
 628{
 629	int ret;
 630
 631	ret = __fwnode_property_read_string(fwnode, propname, val);
 632	if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
 633	    !IS_ERR_OR_NULL(fwnode->secondary))
 634		ret = __fwnode_property_read_string(fwnode->secondary,
 635						    propname, val);
 636	return ret;
 637}
 638EXPORT_SYMBOL_GPL(fwnode_property_read_string);
 639
 640/**
 641 * fwnode_property_match_string - find a string in an array and return index
 642 * @fwnode: Firmware node to get the property of
 643 * @propname: Name of the property holding the array
 644 * @string: String to look for
 645 *
 646 * Find a given string in a string array and if it is found return the
 647 * index back.
 648 *
 649 * Return: %0 if the property was found (success),
 650 *	   %-EINVAL if given arguments are not valid,
 651 *	   %-ENODATA if the property does not have a value,
 652 *	   %-EPROTO if the property is not an array of strings,
 653 *	   %-ENXIO if no suitable firmware interface is present.
 654 */
 655int fwnode_property_match_string(struct fwnode_handle *fwnode,
 656	const char *propname, const char *string)
 657{
 658	const char **values;
 659	int nval, ret;
 660
 661	nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
 662	if (nval < 0)
 663		return nval;
 664
 665	if (nval == 0)
 666		return -ENODATA;
 667
 668	values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
 669	if (!values)
 670		return -ENOMEM;
 671
 672	ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
 673	if (ret < 0)
 674		goto out;
 675
 676	ret = match_string(values, nval, string);
 677	if (ret < 0)
 678		ret = -ENODATA;
 679out:
 680	kfree(values);
 681	return ret;
 682}
 683EXPORT_SYMBOL_GPL(fwnode_property_match_string);
 684
 685/**
 686 * pset_free_set - releases memory allocated for copied property set
 687 * @pset: Property set to release
 688 *
 689 * Function takes previously copied property set and releases all the
 690 * memory allocated to it.
 691 */
 692static void pset_free_set(struct property_set *pset)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 693{
 694	const struct property_entry *prop;
 695	size_t i, nval;
 696
 697	if (!pset)
 698		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 699
 700	for (prop = pset->properties; prop->name; prop++) {
 701		if (prop->is_array) {
 702			if (prop->is_string && prop->pointer.str) {
 703				nval = prop->length / sizeof(const char *);
 704				for (i = 0; i < nval; i++)
 705					kfree(prop->pointer.str[i]);
 706			}
 707			kfree(prop->pointer.raw_data);
 708		} else if (prop->is_string) {
 709			kfree(prop->value.str);
 710		}
 711		kfree(prop->name);
 712	}
 713
 714	kfree(pset->properties);
 715	kfree(pset);
 716}
 717
 718static int pset_copy_entry(struct property_entry *dst,
 719			   const struct property_entry *src)
 720{
 721	const char **d, **s;
 722	size_t i, nval;
 723
 724	dst->name = kstrdup(src->name, GFP_KERNEL);
 725	if (!dst->name)
 726		return -ENOMEM;
 727
 728	if (src->is_array) {
 729		if (!src->length)
 730			return -ENODATA;
 731
 732		if (src->is_string) {
 733			nval = src->length / sizeof(const char *);
 734			dst->pointer.str = kcalloc(nval, sizeof(const char *),
 735						   GFP_KERNEL);
 736			if (!dst->pointer.str)
 737				return -ENOMEM;
 738
 739			d = dst->pointer.str;
 740			s = src->pointer.str;
 741			for (i = 0; i < nval; i++) {
 742				d[i] = kstrdup(s[i], GFP_KERNEL);
 743				if (!d[i] && s[i])
 744					return -ENOMEM;
 745			}
 746		} else {
 747			dst->pointer.raw_data = kmemdup(src->pointer.raw_data,
 748							src->length, GFP_KERNEL);
 749			if (!dst->pointer.raw_data)
 750				return -ENOMEM;
 751		}
 752	} else if (src->is_string) {
 753		dst->value.str = kstrdup(src->value.str, GFP_KERNEL);
 754		if (!dst->value.str && src->value.str)
 755			return -ENOMEM;
 756	} else {
 757		dst->value.raw_data = src->value.raw_data;
 758	}
 759
 760	dst->length = src->length;
 761	dst->is_array = src->is_array;
 762	dst->is_string = src->is_string;
 763
 
 
 
 
 764	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 765}
 766
 767/**
 768 * pset_copy_set - copies property set
 769 * @pset: Property set to copy
 770 *
 771 * This function takes a deep copy of the given property set and returns
 772 * pointer to the copy. Call device_free_property_set() to free resources
 773 * allocated in this function.
 774 *
 775 * Return: Pointer to the new property set or error pointer.
 776 */
 777static struct property_set *pset_copy_set(const struct property_set *pset)
 778{
 779	const struct property_entry *entry;
 780	struct property_set *p;
 781	size_t i, n = 0;
 782
 783	p = kzalloc(sizeof(*p), GFP_KERNEL);
 784	if (!p)
 785		return ERR_PTR(-ENOMEM);
 786
 787	while (pset->properties[n].name)
 788		n++;
 789
 790	p->properties = kcalloc(n + 1, sizeof(*entry), GFP_KERNEL);
 791	if (!p->properties) {
 792		kfree(p);
 793		return ERR_PTR(-ENOMEM);
 794	}
 795
 796	for (i = 0; i < n; i++) {
 797		int ret = pset_copy_entry(&p->properties[i],
 798					  &pset->properties[i]);
 799		if (ret) {
 800			pset_free_set(p);
 801			return ERR_PTR(ret);
 802		}
 803	}
 804
 
 805	return p;
 806}
 807
 808/**
 809 * device_remove_properties - Remove properties from a device object.
 810 * @dev: Device whose properties to remove.
 811 *
 812 * The function removes properties previously associated to the device
 813 * secondary firmware node with device_add_properties(). Memory allocated
 814 * to the properties will also be released.
 815 */
 816void device_remove_properties(struct device *dev)
 817{
 818	struct fwnode_handle *fwnode;
 
 819
 820	fwnode = dev_fwnode(dev);
 821	if (!fwnode)
 822		return;
 823	/*
 824	 * Pick either primary or secondary node depending which one holds
 825	 * the pset. If there is no real firmware node (ACPI/DT) primary
 826	 * will hold the pset.
 827	 */
 828	if (is_pset_node(fwnode)) {
 
 829		set_primary_fwnode(dev, NULL);
 830		pset_free_set(to_pset_node(fwnode));
 831	} else {
 832		fwnode = fwnode->secondary;
 833		if (!IS_ERR(fwnode) && is_pset_node(fwnode)) {
 834			set_secondary_fwnode(dev, NULL);
 835			pset_free_set(to_pset_node(fwnode));
 836		}
 837	}
 
 
 838}
 839EXPORT_SYMBOL_GPL(device_remove_properties);
 840
 841/**
 842 * device_add_properties - Add a collection of properties to a device object.
 843 * @dev: Device to add properties to.
 844 * @properties: Collection of properties to add.
 845 *
 846 * Associate a collection of device properties represented by @properties with
 847 * @dev as its secondary firmware node. The function takes a copy of
 848 * @properties.
 849 */
 850int device_add_properties(struct device *dev, struct property_entry *properties)
 
 851{
 852	struct property_set *p, pset;
 853
 854	if (!properties)
 855		return -EINVAL;
 856
 857	pset.properties = properties;
 858
 859	p = pset_copy_set(&pset);
 860	if (IS_ERR(p))
 861		return PTR_ERR(p);
 862
 863	p->fwnode.type = FWNODE_PDATA;
 864	set_secondary_fwnode(dev, &p->fwnode);
 
 865	return 0;
 866}
 867EXPORT_SYMBOL_GPL(device_add_properties);
 868
 869/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 870 * device_get_next_child_node - Return the next child node handle for a device
 871 * @dev: Device to find the next child node for.
 872 * @child: Handle to one of the device's child nodes or a null handle.
 873 */
 874struct fwnode_handle *device_get_next_child_node(struct device *dev,
 875						 struct fwnode_handle *child)
 876{
 877	if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
 878		struct device_node *node;
 
 
 
 
 
 879
 880		node = of_get_next_available_child(dev->of_node, to_of_node(child));
 881		if (node)
 882			return &node->fwnode;
 883	} else if (IS_ENABLED(CONFIG_ACPI)) {
 884		return acpi_get_next_subnode(dev, child);
 885	}
 886	return NULL;
 887}
 888EXPORT_SYMBOL_GPL(device_get_next_child_node);
 889
 890/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 891 * device_get_named_child_node - Return first matching named child node handle
 892 * @dev: Device to find the named child node for.
 893 * @childname: String to match child node name against.
 894 */
 895struct fwnode_handle *device_get_named_child_node(struct device *dev,
 896						  const char *childname)
 897{
 898	struct fwnode_handle *child;
 
 
 899
 900	/*
 901	 * Find first matching named child node of this device.
 902	 * For ACPI this will be a data only sub-node.
 903	 */
 904	device_for_each_child_node(dev, child) {
 905		if (is_of_node(child)) {
 906			if (!of_node_cmp(to_of_node(child)->name, childname))
 907				return child;
 908		} else if (is_acpi_data_node(child)) {
 909			if (acpi_data_node_match(child, childname))
 910				return child;
 911		}
 912	}
 913
 914	return NULL;
 915}
 916EXPORT_SYMBOL_GPL(device_get_named_child_node);
 917
 918/**
 919 * fwnode_handle_put - Drop reference to a device node
 920 * @fwnode: Pointer to the device node to drop the reference to.
 921 *
 922 * This has to be used when terminating device_for_each_child_node() iteration
 923 * with break or return to prevent stale device node references from being left
 924 * behind.
 925 */
 926void fwnode_handle_put(struct fwnode_handle *fwnode)
 927{
 928	if (is_of_node(fwnode))
 929		of_node_put(to_of_node(fwnode));
 930}
 931EXPORT_SYMBOL_GPL(fwnode_handle_put);
 932
 933/**
 
 
 
 
 
 
 
 
 
 
 934 * device_get_child_node_count - return the number of child nodes for device
 935 * @dev: Device to cound the child nodes for
 936 */
 937unsigned int device_get_child_node_count(struct device *dev)
 938{
 939	struct fwnode_handle *child;
 940	unsigned int count = 0;
 941
 942	device_for_each_child_node(dev, child)
 943		count++;
 944
 945	return count;
 946}
 947EXPORT_SYMBOL_GPL(device_get_child_node_count);
 948
 949bool device_dma_supported(struct device *dev)
 950{
 951	/* For DT, this is always supported.
 952	 * For ACPI, this depends on CCA, which
 953	 * is determined by the acpi_dma_supported().
 954	 */
 955	if (IS_ENABLED(CONFIG_OF) && dev->of_node)
 956		return true;
 957
 958	return acpi_dma_supported(ACPI_COMPANION(dev));
 959}
 960EXPORT_SYMBOL_GPL(device_dma_supported);
 961
 962enum dev_dma_attr device_get_dma_attr(struct device *dev)
 963{
 964	enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;
 965
 966	if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
 967		if (of_dma_is_coherent(dev->of_node))
 968			attr = DEV_DMA_COHERENT;
 969		else
 970			attr = DEV_DMA_NON_COHERENT;
 971	} else
 972		attr = acpi_get_dma_attr(ACPI_COMPANION(dev));
 973
 974	return attr;
 975}
 976EXPORT_SYMBOL_GPL(device_get_dma_attr);
 977
 978/**
 979 * device_get_phy_mode - Get phy mode for given device
 980 * @dev:	Pointer to the given device
 981 *
 982 * The function gets phy interface string from property 'phy-mode' or
 983 * 'phy-connection-type', and return its index in phy_modes table, or errno in
 984 * error case.
 985 */
 986int device_get_phy_mode(struct device *dev)
 987{
 988	const char *pm;
 989	int err, i;
 990
 991	err = device_property_read_string(dev, "phy-mode", &pm);
 992	if (err < 0)
 993		err = device_property_read_string(dev,
 994						  "phy-connection-type", &pm);
 995	if (err < 0)
 996		return err;
 997
 998	for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
 999		if (!strcasecmp(pm, phy_modes(i)))
1000			return i;
1001
1002	return -ENODEV;
1003}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1004EXPORT_SYMBOL_GPL(device_get_phy_mode);
1005
1006static void *device_get_mac_addr(struct device *dev,
1007				 const char *name, char *addr,
1008				 int alen)
1009{
1010	int ret = device_property_read_u8_array(dev, name, addr, alen);
1011
1012	if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
1013		return addr;
1014	return NULL;
1015}
1016
1017/**
1018 * device_get_mac_address - Get the MAC for a given device
1019 * @dev:	Pointer to the device
1020 * @addr:	Address of buffer to store the MAC in
1021 * @alen:	Length of the buffer pointed to by addr, should be ETH_ALEN
1022 *
1023 * Search the firmware node for the best MAC address to use.  'mac-address' is
1024 * checked first, because that is supposed to contain to "most recent" MAC
1025 * address. If that isn't set, then 'local-mac-address' is checked next,
1026 * because that is the default address.  If that isn't set, then the obsolete
1027 * 'address' is checked, just in case we're using an old device tree.
1028 *
1029 * Note that the 'address' property is supposed to contain a virtual address of
1030 * the register set, but some DTS files have redefined that property to be the
1031 * MAC address.
1032 *
1033 * All-zero MAC addresses are rejected, because those could be properties that
1034 * exist in the firmware tables, but were not updated by the firmware.  For
1035 * example, the DTS could define 'mac-address' and 'local-mac-address', with
1036 * zero MAC addresses.  Some older U-Boots only initialized 'local-mac-address'.
1037 * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
1038 * exists but is all zeros.
1039*/
1040void *device_get_mac_address(struct device *dev, char *addr, int alen)
1041{
1042	char *res;
1043
1044	res = device_get_mac_addr(dev, "mac-address", addr, alen);
1045	if (res)
1046		return res;
1047
1048	res = device_get_mac_addr(dev, "local-mac-address", addr, alen);
1049	if (res)
1050		return res;
1051
1052	return device_get_mac_addr(dev, "address", addr, alen);
 
 
 
 
 
 
 
 
 
 
 
 
1053}
1054EXPORT_SYMBOL(device_get_mac_address);