Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * property.c - Unified device property interface.
4 *
5 * Copyright (C) 2014, Intel Corporation
6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 * Mika Westerberg <mika.westerberg@linux.intel.com>
8 */
9
10#include <linux/acpi.h>
11#include <linux/export.h>
12#include <linux/kernel.h>
13#include <linux/of.h>
14#include <linux/of_address.h>
15#include <linux/of_graph.h>
16#include <linux/of_irq.h>
17#include <linux/property.h>
18#include <linux/etherdevice.h>
19#include <linux/phy.h>
20
21struct property_set {
22 struct device *dev;
23 struct fwnode_handle fwnode;
24 const struct property_entry *properties;
25};
26
27static const struct fwnode_operations pset_fwnode_ops;
28
29static inline bool is_pset_node(const struct fwnode_handle *fwnode)
30{
31 return !IS_ERR_OR_NULL(fwnode) && fwnode->ops == &pset_fwnode_ops;
32}
33
34#define to_pset_node(__fwnode) \
35 ({ \
36 typeof(__fwnode) __to_pset_node_fwnode = __fwnode; \
37 \
38 is_pset_node(__to_pset_node_fwnode) ? \
39 container_of(__to_pset_node_fwnode, \
40 struct property_set, fwnode) : \
41 NULL; \
42 })
43
44static const struct property_entry *
45pset_prop_get(const struct property_set *pset, const char *name)
46{
47 const struct property_entry *prop;
48
49 if (!pset || !pset->properties)
50 return NULL;
51
52 for (prop = pset->properties; prop->name; prop++)
53 if (!strcmp(name, prop->name))
54 return prop;
55
56 return NULL;
57}
58
59static const void *pset_prop_find(const struct property_set *pset,
60 const char *propname, size_t length)
61{
62 const struct property_entry *prop;
63 const void *pointer;
64
65 prop = pset_prop_get(pset, propname);
66 if (!prop)
67 return ERR_PTR(-EINVAL);
68 if (prop->is_array)
69 pointer = prop->pointer.raw_data;
70 else
71 pointer = &prop->value.raw_data;
72 if (!pointer)
73 return ERR_PTR(-ENODATA);
74 if (length > prop->length)
75 return ERR_PTR(-EOVERFLOW);
76 return pointer;
77}
78
79static int pset_prop_read_u8_array(const struct property_set *pset,
80 const char *propname,
81 u8 *values, size_t nval)
82{
83 const void *pointer;
84 size_t length = nval * sizeof(*values);
85
86 pointer = pset_prop_find(pset, propname, length);
87 if (IS_ERR(pointer))
88 return PTR_ERR(pointer);
89
90 memcpy(values, pointer, length);
91 return 0;
92}
93
94static int pset_prop_read_u16_array(const struct property_set *pset,
95 const char *propname,
96 u16 *values, size_t nval)
97{
98 const void *pointer;
99 size_t length = nval * sizeof(*values);
100
101 pointer = pset_prop_find(pset, propname, length);
102 if (IS_ERR(pointer))
103 return PTR_ERR(pointer);
104
105 memcpy(values, pointer, length);
106 return 0;
107}
108
109static int pset_prop_read_u32_array(const struct property_set *pset,
110 const char *propname,
111 u32 *values, size_t nval)
112{
113 const void *pointer;
114 size_t length = nval * sizeof(*values);
115
116 pointer = pset_prop_find(pset, propname, length);
117 if (IS_ERR(pointer))
118 return PTR_ERR(pointer);
119
120 memcpy(values, pointer, length);
121 return 0;
122}
123
124static int pset_prop_read_u64_array(const struct property_set *pset,
125 const char *propname,
126 u64 *values, size_t nval)
127{
128 const void *pointer;
129 size_t length = nval * sizeof(*values);
130
131 pointer = pset_prop_find(pset, propname, length);
132 if (IS_ERR(pointer))
133 return PTR_ERR(pointer);
134
135 memcpy(values, pointer, length);
136 return 0;
137}
138
139static int pset_prop_count_elems_of_size(const struct property_set *pset,
140 const char *propname, size_t length)
141{
142 const struct property_entry *prop;
143
144 prop = pset_prop_get(pset, propname);
145 if (!prop)
146 return -EINVAL;
147
148 return prop->length / length;
149}
150
151static int pset_prop_read_string_array(const struct property_set *pset,
152 const char *propname,
153 const char **strings, size_t nval)
154{
155 const struct property_entry *prop;
156 const void *pointer;
157 size_t array_len, length;
158
159 /* Find out the array length. */
160 prop = pset_prop_get(pset, propname);
161 if (!prop)
162 return -EINVAL;
163
164 if (!prop->is_array)
165 /* The array length for a non-array string property is 1. */
166 array_len = 1;
167 else
168 /* Find the length of an array. */
169 array_len = pset_prop_count_elems_of_size(pset, propname,
170 sizeof(const char *));
171
172 /* Return how many there are if strings is NULL. */
173 if (!strings)
174 return array_len;
175
176 array_len = min(nval, array_len);
177 length = array_len * sizeof(*strings);
178
179 pointer = pset_prop_find(pset, propname, length);
180 if (IS_ERR(pointer))
181 return PTR_ERR(pointer);
182
183 memcpy(strings, pointer, length);
184
185 return array_len;
186}
187
188struct fwnode_handle *dev_fwnode(struct device *dev)
189{
190 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
191 &dev->of_node->fwnode : dev->fwnode;
192}
193EXPORT_SYMBOL_GPL(dev_fwnode);
194
195static bool pset_fwnode_property_present(const struct fwnode_handle *fwnode,
196 const char *propname)
197{
198 return !!pset_prop_get(to_pset_node(fwnode), propname);
199}
200
201static int pset_fwnode_read_int_array(const struct fwnode_handle *fwnode,
202 const char *propname,
203 unsigned int elem_size, void *val,
204 size_t nval)
205{
206 const struct property_set *node = to_pset_node(fwnode);
207
208 if (!val)
209 return pset_prop_count_elems_of_size(node, propname, elem_size);
210
211 switch (elem_size) {
212 case sizeof(u8):
213 return pset_prop_read_u8_array(node, propname, val, nval);
214 case sizeof(u16):
215 return pset_prop_read_u16_array(node, propname, val, nval);
216 case sizeof(u32):
217 return pset_prop_read_u32_array(node, propname, val, nval);
218 case sizeof(u64):
219 return pset_prop_read_u64_array(node, propname, val, nval);
220 }
221
222 return -ENXIO;
223}
224
225static int
226pset_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
227 const char *propname,
228 const char **val, size_t nval)
229{
230 return pset_prop_read_string_array(to_pset_node(fwnode), propname,
231 val, nval);
232}
233
234static const struct fwnode_operations pset_fwnode_ops = {
235 .property_present = pset_fwnode_property_present,
236 .property_read_int_array = pset_fwnode_read_int_array,
237 .property_read_string_array = pset_fwnode_property_read_string_array,
238};
239
240/**
241 * device_property_present - check if a property of a device is present
242 * @dev: Device whose property is being checked
243 * @propname: Name of the property
244 *
245 * Check if property @propname is present in the device firmware description.
246 */
247bool device_property_present(struct device *dev, const char *propname)
248{
249 return fwnode_property_present(dev_fwnode(dev), propname);
250}
251EXPORT_SYMBOL_GPL(device_property_present);
252
253/**
254 * fwnode_property_present - check if a property of a firmware node is present
255 * @fwnode: Firmware node whose property to check
256 * @propname: Name of the property
257 */
258bool fwnode_property_present(const struct fwnode_handle *fwnode,
259 const char *propname)
260{
261 bool ret;
262
263 ret = fwnode_call_bool_op(fwnode, property_present, propname);
264 if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
265 !IS_ERR_OR_NULL(fwnode->secondary))
266 ret = fwnode_call_bool_op(fwnode->secondary, property_present,
267 propname);
268 return ret;
269}
270EXPORT_SYMBOL_GPL(fwnode_property_present);
271
272/**
273 * device_property_read_u8_array - return a u8 array property of a device
274 * @dev: Device to get the property of
275 * @propname: Name of the property
276 * @val: The values are stored here or %NULL to return the number of values
277 * @nval: Size of the @val array
278 *
279 * Function reads an array of u8 properties with @propname from the device
280 * firmware description and stores them to @val if found.
281 *
282 * Return: number of values if @val was %NULL,
283 * %0 if the property was found (success),
284 * %-EINVAL if given arguments are not valid,
285 * %-ENODATA if the property does not have a value,
286 * %-EPROTO if the property is not an array of numbers,
287 * %-EOVERFLOW if the size of the property is not as expected.
288 * %-ENXIO if no suitable firmware interface is present.
289 */
290int device_property_read_u8_array(struct device *dev, const char *propname,
291 u8 *val, size_t nval)
292{
293 return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
294}
295EXPORT_SYMBOL_GPL(device_property_read_u8_array);
296
297/**
298 * device_property_read_u16_array - return a u16 array property of a device
299 * @dev: Device to get the property of
300 * @propname: Name of the property
301 * @val: The values are stored here or %NULL to return the number of values
302 * @nval: Size of the @val array
303 *
304 * Function reads an array of u16 properties with @propname from the device
305 * firmware description and stores them to @val if found.
306 *
307 * Return: number of values if @val was %NULL,
308 * %0 if the property was found (success),
309 * %-EINVAL if given arguments are not valid,
310 * %-ENODATA if the property does not have a value,
311 * %-EPROTO if the property is not an array of numbers,
312 * %-EOVERFLOW if the size of the property is not as expected.
313 * %-ENXIO if no suitable firmware interface is present.
314 */
315int device_property_read_u16_array(struct device *dev, const char *propname,
316 u16 *val, size_t nval)
317{
318 return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
319}
320EXPORT_SYMBOL_GPL(device_property_read_u16_array);
321
322/**
323 * device_property_read_u32_array - return a u32 array property of a device
324 * @dev: Device to get the property of
325 * @propname: Name of the property
326 * @val: The values are stored here or %NULL to return the number of values
327 * @nval: Size of the @val array
328 *
329 * Function reads an array of u32 properties with @propname from the device
330 * firmware description and stores them to @val if found.
331 *
332 * Return: number of values if @val was %NULL,
333 * %0 if the property was found (success),
334 * %-EINVAL if given arguments are not valid,
335 * %-ENODATA if the property does not have a value,
336 * %-EPROTO if the property is not an array of numbers,
337 * %-EOVERFLOW if the size of the property is not as expected.
338 * %-ENXIO if no suitable firmware interface is present.
339 */
340int device_property_read_u32_array(struct device *dev, const char *propname,
341 u32 *val, size_t nval)
342{
343 return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
344}
345EXPORT_SYMBOL_GPL(device_property_read_u32_array);
346
347/**
348 * device_property_read_u64_array - return a u64 array property of a device
349 * @dev: Device to get the property of
350 * @propname: Name of the property
351 * @val: The values are stored here or %NULL to return the number of values
352 * @nval: Size of the @val array
353 *
354 * Function reads an array of u64 properties with @propname from the device
355 * firmware description and stores them to @val if found.
356 *
357 * Return: number of values if @val was %NULL,
358 * %0 if the property was found (success),
359 * %-EINVAL if given arguments are not valid,
360 * %-ENODATA if the property does not have a value,
361 * %-EPROTO if the property is not an array of numbers,
362 * %-EOVERFLOW if the size of the property is not as expected.
363 * %-ENXIO if no suitable firmware interface is present.
364 */
365int device_property_read_u64_array(struct device *dev, const char *propname,
366 u64 *val, size_t nval)
367{
368 return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
369}
370EXPORT_SYMBOL_GPL(device_property_read_u64_array);
371
372/**
373 * device_property_read_string_array - return a string array property of device
374 * @dev: Device to get the property of
375 * @propname: Name of the property
376 * @val: The values are stored here or %NULL to return the number of values
377 * @nval: Size of the @val array
378 *
379 * Function reads an array of string properties with @propname from the device
380 * firmware description and stores them to @val if found.
381 *
382 * Return: number of values read on success if @val is non-NULL,
383 * number of values available on success if @val is NULL,
384 * %-EINVAL if given arguments are not valid,
385 * %-ENODATA if the property does not have a value,
386 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
387 * %-EOVERFLOW if the size of the property is not as expected.
388 * %-ENXIO if no suitable firmware interface is present.
389 */
390int device_property_read_string_array(struct device *dev, const char *propname,
391 const char **val, size_t nval)
392{
393 return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
394}
395EXPORT_SYMBOL_GPL(device_property_read_string_array);
396
397/**
398 * device_property_read_string - return a string property of a device
399 * @dev: Device to get the property of
400 * @propname: Name of the property
401 * @val: The value is stored here
402 *
403 * Function reads property @propname from the device firmware description and
404 * stores the value into @val if found. The value is checked to be a string.
405 *
406 * Return: %0 if the property was found (success),
407 * %-EINVAL if given arguments are not valid,
408 * %-ENODATA if the property does not have a value,
409 * %-EPROTO or %-EILSEQ if the property type is not a string.
410 * %-ENXIO if no suitable firmware interface is present.
411 */
412int device_property_read_string(struct device *dev, const char *propname,
413 const char **val)
414{
415 return fwnode_property_read_string(dev_fwnode(dev), propname, val);
416}
417EXPORT_SYMBOL_GPL(device_property_read_string);
418
419/**
420 * device_property_match_string - find a string in an array and return index
421 * @dev: Device to get the property of
422 * @propname: Name of the property holding the array
423 * @string: String to look for
424 *
425 * Find a given string in a string array and if it is found return the
426 * index back.
427 *
428 * Return: %0 if the property was found (success),
429 * %-EINVAL if given arguments are not valid,
430 * %-ENODATA if the property does not have a value,
431 * %-EPROTO if the property is not an array of strings,
432 * %-ENXIO if no suitable firmware interface is present.
433 */
434int device_property_match_string(struct device *dev, const char *propname,
435 const char *string)
436{
437 return fwnode_property_match_string(dev_fwnode(dev), propname, string);
438}
439EXPORT_SYMBOL_GPL(device_property_match_string);
440
441static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
442 const char *propname,
443 unsigned int elem_size, void *val,
444 size_t nval)
445{
446 int ret;
447
448 ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
449 elem_size, val, nval);
450 if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
451 !IS_ERR_OR_NULL(fwnode->secondary))
452 ret = fwnode_call_int_op(
453 fwnode->secondary, property_read_int_array, propname,
454 elem_size, val, nval);
455
456 return ret;
457}
458
459/**
460 * fwnode_property_read_u8_array - return a u8 array property of firmware node
461 * @fwnode: Firmware node to get the property of
462 * @propname: Name of the property
463 * @val: The values are stored here or %NULL to return the number of values
464 * @nval: Size of the @val array
465 *
466 * Read an array of u8 properties with @propname from @fwnode and stores them to
467 * @val if found.
468 *
469 * Return: number of values if @val was %NULL,
470 * %0 if the property was found (success),
471 * %-EINVAL if given arguments are not valid,
472 * %-ENODATA if the property does not have a value,
473 * %-EPROTO if the property is not an array of numbers,
474 * %-EOVERFLOW if the size of the property is not as expected,
475 * %-ENXIO if no suitable firmware interface is present.
476 */
477int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
478 const char *propname, u8 *val, size_t nval)
479{
480 return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
481 val, nval);
482}
483EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
484
485/**
486 * fwnode_property_read_u16_array - return a u16 array property of firmware node
487 * @fwnode: Firmware node to get the property of
488 * @propname: Name of the property
489 * @val: The values are stored here or %NULL to return the number of values
490 * @nval: Size of the @val array
491 *
492 * Read an array of u16 properties with @propname from @fwnode and store them to
493 * @val if found.
494 *
495 * Return: number of values if @val was %NULL,
496 * %0 if the property was found (success),
497 * %-EINVAL if given arguments are not valid,
498 * %-ENODATA if the property does not have a value,
499 * %-EPROTO if the property is not an array of numbers,
500 * %-EOVERFLOW if the size of the property is not as expected,
501 * %-ENXIO if no suitable firmware interface is present.
502 */
503int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
504 const char *propname, u16 *val, size_t nval)
505{
506 return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
507 val, nval);
508}
509EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
510
511/**
512 * fwnode_property_read_u32_array - return a u32 array property of firmware node
513 * @fwnode: Firmware node to get the property of
514 * @propname: Name of the property
515 * @val: The values are stored here or %NULL to return the number of values
516 * @nval: Size of the @val array
517 *
518 * Read an array of u32 properties with @propname from @fwnode store them to
519 * @val if found.
520 *
521 * Return: number of values if @val was %NULL,
522 * %0 if the property was found (success),
523 * %-EINVAL if given arguments are not valid,
524 * %-ENODATA if the property does not have a value,
525 * %-EPROTO if the property is not an array of numbers,
526 * %-EOVERFLOW if the size of the property is not as expected,
527 * %-ENXIO if no suitable firmware interface is present.
528 */
529int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
530 const char *propname, u32 *val, size_t nval)
531{
532 return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
533 val, nval);
534}
535EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
536
537/**
538 * fwnode_property_read_u64_array - return a u64 array property firmware node
539 * @fwnode: Firmware node to get the property of
540 * @propname: Name of the property
541 * @val: The values are stored here or %NULL to return the number of values
542 * @nval: Size of the @val array
543 *
544 * Read an array of u64 properties with @propname from @fwnode and store them to
545 * @val if found.
546 *
547 * Return: number of values if @val was %NULL,
548 * %0 if the property was found (success),
549 * %-EINVAL if given arguments are not valid,
550 * %-ENODATA if the property does not have a value,
551 * %-EPROTO if the property is not an array of numbers,
552 * %-EOVERFLOW if the size of the property is not as expected,
553 * %-ENXIO if no suitable firmware interface is present.
554 */
555int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
556 const char *propname, u64 *val, size_t nval)
557{
558 return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
559 val, nval);
560}
561EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
562
563/**
564 * fwnode_property_read_string_array - return string array property of a node
565 * @fwnode: Firmware node to get the property of
566 * @propname: Name of the property
567 * @val: The values are stored here or %NULL to return the number of values
568 * @nval: Size of the @val array
569 *
570 * Read an string list property @propname from the given firmware node and store
571 * them to @val if found.
572 *
573 * Return: number of values read on success if @val is non-NULL,
574 * number of values available on success if @val is NULL,
575 * %-EINVAL if given arguments are not valid,
576 * %-ENODATA if the property does not have a value,
577 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
578 * %-EOVERFLOW if the size of the property is not as expected,
579 * %-ENXIO if no suitable firmware interface is present.
580 */
581int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
582 const char *propname, const char **val,
583 size_t nval)
584{
585 int ret;
586
587 ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
588 val, nval);
589 if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
590 !IS_ERR_OR_NULL(fwnode->secondary))
591 ret = fwnode_call_int_op(fwnode->secondary,
592 property_read_string_array, propname,
593 val, nval);
594 return ret;
595}
596EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
597
598/**
599 * fwnode_property_read_string - return a string property of a firmware node
600 * @fwnode: Firmware node to get the property of
601 * @propname: Name of the property
602 * @val: The value is stored here
603 *
604 * Read property @propname from the given firmware node and store the value into
605 * @val if found. The value is checked to be a string.
606 *
607 * Return: %0 if the property was found (success),
608 * %-EINVAL if given arguments are not valid,
609 * %-ENODATA if the property does not have a value,
610 * %-EPROTO or %-EILSEQ if the property is not a string,
611 * %-ENXIO if no suitable firmware interface is present.
612 */
613int fwnode_property_read_string(const struct fwnode_handle *fwnode,
614 const char *propname, const char **val)
615{
616 int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
617
618 return ret < 0 ? ret : 0;
619}
620EXPORT_SYMBOL_GPL(fwnode_property_read_string);
621
622/**
623 * fwnode_property_match_string - find a string in an array and return index
624 * @fwnode: Firmware node to get the property of
625 * @propname: Name of the property holding the array
626 * @string: String to look for
627 *
628 * Find a given string in a string array and if it is found return the
629 * index back.
630 *
631 * Return: %0 if the property was found (success),
632 * %-EINVAL if given arguments are not valid,
633 * %-ENODATA if the property does not have a value,
634 * %-EPROTO if the property is not an array of strings,
635 * %-ENXIO if no suitable firmware interface is present.
636 */
637int fwnode_property_match_string(const struct fwnode_handle *fwnode,
638 const char *propname, const char *string)
639{
640 const char **values;
641 int nval, ret;
642
643 nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
644 if (nval < 0)
645 return nval;
646
647 if (nval == 0)
648 return -ENODATA;
649
650 values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
651 if (!values)
652 return -ENOMEM;
653
654 ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
655 if (ret < 0)
656 goto out;
657
658 ret = match_string(values, nval, string);
659 if (ret < 0)
660 ret = -ENODATA;
661out:
662 kfree(values);
663 return ret;
664}
665EXPORT_SYMBOL_GPL(fwnode_property_match_string);
666
667/**
668 * fwnode_property_get_reference_args() - Find a reference with arguments
669 * @fwnode: Firmware node where to look for the reference
670 * @prop: The name of the property
671 * @nargs_prop: The name of the property telling the number of
672 * arguments in the referred node. NULL if @nargs is known,
673 * otherwise @nargs is ignored. Only relevant on OF.
674 * @nargs: Number of arguments. Ignored if @nargs_prop is non-NULL.
675 * @index: Index of the reference, from zero onwards.
676 * @args: Result structure with reference and integer arguments.
677 *
678 * Obtain a reference based on a named property in an fwnode, with
679 * integer arguments.
680 *
681 * Caller is responsible to call fwnode_handle_put() on the returned
682 * args->fwnode pointer.
683 *
684 * Returns: %0 on success
685 * %-ENOENT when the index is out of bounds, the index has an empty
686 * reference or the property was not found
687 * %-EINVAL on parse error
688 */
689int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
690 const char *prop, const char *nargs_prop,
691 unsigned int nargs, unsigned int index,
692 struct fwnode_reference_args *args)
693{
694 return fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
695 nargs, index, args);
696}
697EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
698
699static void property_entry_free_data(const struct property_entry *p)
700{
701 size_t i, nval;
702
703 if (p->is_array) {
704 if (p->is_string && p->pointer.str) {
705 nval = p->length / sizeof(const char *);
706 for (i = 0; i < nval; i++)
707 kfree(p->pointer.str[i]);
708 }
709 kfree(p->pointer.raw_data);
710 } else if (p->is_string) {
711 kfree(p->value.str);
712 }
713 kfree(p->name);
714}
715
716static int property_copy_string_array(struct property_entry *dst,
717 const struct property_entry *src)
718{
719 char **d;
720 size_t nval = src->length / sizeof(*d);
721 int i;
722
723 d = kcalloc(nval, sizeof(*d), GFP_KERNEL);
724 if (!d)
725 return -ENOMEM;
726
727 for (i = 0; i < nval; i++) {
728 d[i] = kstrdup(src->pointer.str[i], GFP_KERNEL);
729 if (!d[i] && src->pointer.str[i]) {
730 while (--i >= 0)
731 kfree(d[i]);
732 kfree(d);
733 return -ENOMEM;
734 }
735 }
736
737 dst->pointer.raw_data = d;
738 return 0;
739}
740
741static int property_entry_copy_data(struct property_entry *dst,
742 const struct property_entry *src)
743{
744 int error;
745
746 if (src->is_array) {
747 if (!src->length)
748 return -ENODATA;
749
750 if (src->is_string) {
751 error = property_copy_string_array(dst, src);
752 if (error)
753 return error;
754 } else {
755 dst->pointer.raw_data = kmemdup(src->pointer.raw_data,
756 src->length, GFP_KERNEL);
757 if (!dst->pointer.raw_data)
758 return -ENOMEM;
759 }
760 } else if (src->is_string) {
761 dst->value.str = kstrdup(src->value.str, GFP_KERNEL);
762 if (!dst->value.str && src->value.str)
763 return -ENOMEM;
764 } else {
765 dst->value.raw_data = src->value.raw_data;
766 }
767
768 dst->length = src->length;
769 dst->is_array = src->is_array;
770 dst->is_string = src->is_string;
771
772 dst->name = kstrdup(src->name, GFP_KERNEL);
773 if (!dst->name)
774 goto out_free_data;
775
776 return 0;
777
778out_free_data:
779 property_entry_free_data(dst);
780 return -ENOMEM;
781}
782
783/**
784 * property_entries_dup - duplicate array of properties
785 * @properties: array of properties to copy
786 *
787 * This function creates a deep copy of the given NULL-terminated array
788 * of property entries.
789 */
790struct property_entry *
791property_entries_dup(const struct property_entry *properties)
792{
793 struct property_entry *p;
794 int i, n = 0;
795
796 while (properties[n].name)
797 n++;
798
799 p = kcalloc(n + 1, sizeof(*p), GFP_KERNEL);
800 if (!p)
801 return ERR_PTR(-ENOMEM);
802
803 for (i = 0; i < n; i++) {
804 int ret = property_entry_copy_data(&p[i], &properties[i]);
805 if (ret) {
806 while (--i >= 0)
807 property_entry_free_data(&p[i]);
808 kfree(p);
809 return ERR_PTR(ret);
810 }
811 }
812
813 return p;
814}
815EXPORT_SYMBOL_GPL(property_entries_dup);
816
817/**
818 * property_entries_free - free previously allocated array of properties
819 * @properties: array of properties to destroy
820 *
821 * This function frees given NULL-terminated array of property entries,
822 * along with their data.
823 */
824void property_entries_free(const struct property_entry *properties)
825{
826 const struct property_entry *p;
827
828 for (p = properties; p->name; p++)
829 property_entry_free_data(p);
830
831 kfree(properties);
832}
833EXPORT_SYMBOL_GPL(property_entries_free);
834
835/**
836 * pset_free_set - releases memory allocated for copied property set
837 * @pset: Property set to release
838 *
839 * Function takes previously copied property set and releases all the
840 * memory allocated to it.
841 */
842static void pset_free_set(struct property_set *pset)
843{
844 if (!pset)
845 return;
846
847 property_entries_free(pset->properties);
848 kfree(pset);
849}
850
851/**
852 * pset_copy_set - copies property set
853 * @pset: Property set to copy
854 *
855 * This function takes a deep copy of the given property set and returns
856 * pointer to the copy. Call device_free_property_set() to free resources
857 * allocated in this function.
858 *
859 * Return: Pointer to the new property set or error pointer.
860 */
861static struct property_set *pset_copy_set(const struct property_set *pset)
862{
863 struct property_entry *properties;
864 struct property_set *p;
865
866 p = kzalloc(sizeof(*p), GFP_KERNEL);
867 if (!p)
868 return ERR_PTR(-ENOMEM);
869
870 properties = property_entries_dup(pset->properties);
871 if (IS_ERR(properties)) {
872 kfree(p);
873 return ERR_CAST(properties);
874 }
875
876 p->properties = properties;
877 return p;
878}
879
880/**
881 * device_remove_properties - Remove properties from a device object.
882 * @dev: Device whose properties to remove.
883 *
884 * The function removes properties previously associated to the device
885 * secondary firmware node with device_add_properties(). Memory allocated
886 * to the properties will also be released.
887 */
888void device_remove_properties(struct device *dev)
889{
890 struct fwnode_handle *fwnode;
891 struct property_set *pset;
892
893 fwnode = dev_fwnode(dev);
894 if (!fwnode)
895 return;
896 /*
897 * Pick either primary or secondary node depending which one holds
898 * the pset. If there is no real firmware node (ACPI/DT) primary
899 * will hold the pset.
900 */
901 pset = to_pset_node(fwnode);
902 if (pset) {
903 set_primary_fwnode(dev, NULL);
904 } else {
905 pset = to_pset_node(fwnode->secondary);
906 if (pset && dev == pset->dev)
907 set_secondary_fwnode(dev, NULL);
908 }
909 if (pset && dev == pset->dev)
910 pset_free_set(pset);
911}
912EXPORT_SYMBOL_GPL(device_remove_properties);
913
914/**
915 * device_add_properties - Add a collection of properties to a device object.
916 * @dev: Device to add properties to.
917 * @properties: Collection of properties to add.
918 *
919 * Associate a collection of device properties represented by @properties with
920 * @dev as its secondary firmware node. The function takes a copy of
921 * @properties.
922 */
923int device_add_properties(struct device *dev,
924 const struct property_entry *properties)
925{
926 struct property_set *p, pset;
927
928 if (!properties)
929 return -EINVAL;
930
931 pset.properties = properties;
932
933 p = pset_copy_set(&pset);
934 if (IS_ERR(p))
935 return PTR_ERR(p);
936
937 p->fwnode.ops = &pset_fwnode_ops;
938 set_secondary_fwnode(dev, &p->fwnode);
939 p->dev = dev;
940 return 0;
941}
942EXPORT_SYMBOL_GPL(device_add_properties);
943
944/**
945 * fwnode_get_next_parent - Iterate to the node's parent
946 * @fwnode: Firmware whose parent is retrieved
947 *
948 * This is like fwnode_get_parent() except that it drops the refcount
949 * on the passed node, making it suitable for iterating through a
950 * node's parents.
951 *
952 * Returns a node pointer with refcount incremented, use
953 * fwnode_handle_node() on it when done.
954 */
955struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
956{
957 struct fwnode_handle *parent = fwnode_get_parent(fwnode);
958
959 fwnode_handle_put(fwnode);
960
961 return parent;
962}
963EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
964
965/**
966 * fwnode_get_parent - Return parent firwmare node
967 * @fwnode: Firmware whose parent is retrieved
968 *
969 * Return parent firmware node of the given node if possible or %NULL if no
970 * parent was available.
971 */
972struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
973{
974 return fwnode_call_ptr_op(fwnode, get_parent);
975}
976EXPORT_SYMBOL_GPL(fwnode_get_parent);
977
978/**
979 * fwnode_get_next_child_node - Return the next child node handle for a node
980 * @fwnode: Firmware node to find the next child node for.
981 * @child: Handle to one of the node's child nodes or a %NULL handle.
982 */
983struct fwnode_handle *
984fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
985 struct fwnode_handle *child)
986{
987 return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
988}
989EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
990
991/**
992 * fwnode_get_next_available_child_node - Return the next
993 * available child node handle for a node
994 * @fwnode: Firmware node to find the next child node for.
995 * @child: Handle to one of the node's child nodes or a %NULL handle.
996 */
997struct fwnode_handle *
998fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
999 struct fwnode_handle *child)
1000{
1001 struct fwnode_handle *next_child = child;
1002
1003 if (!fwnode)
1004 return NULL;
1005
1006 do {
1007 next_child = fwnode_get_next_child_node(fwnode, next_child);
1008
1009 if (!next_child || fwnode_device_is_available(next_child))
1010 break;
1011 } while (next_child);
1012
1013 return next_child;
1014}
1015EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
1016
1017/**
1018 * device_get_next_child_node - Return the next child node handle for a device
1019 * @dev: Device to find the next child node for.
1020 * @child: Handle to one of the device's child nodes or a null handle.
1021 */
1022struct fwnode_handle *device_get_next_child_node(struct device *dev,
1023 struct fwnode_handle *child)
1024{
1025 struct acpi_device *adev = ACPI_COMPANION(dev);
1026 struct fwnode_handle *fwnode = NULL;
1027
1028 if (dev->of_node)
1029 fwnode = &dev->of_node->fwnode;
1030 else if (adev)
1031 fwnode = acpi_fwnode_handle(adev);
1032
1033 return fwnode_get_next_child_node(fwnode, child);
1034}
1035EXPORT_SYMBOL_GPL(device_get_next_child_node);
1036
1037/**
1038 * fwnode_get_named_child_node - Return first matching named child node handle
1039 * @fwnode: Firmware node to find the named child node for.
1040 * @childname: String to match child node name against.
1041 */
1042struct fwnode_handle *
1043fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
1044 const char *childname)
1045{
1046 return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
1047}
1048EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
1049
1050/**
1051 * device_get_named_child_node - Return first matching named child node handle
1052 * @dev: Device to find the named child node for.
1053 * @childname: String to match child node name against.
1054 */
1055struct fwnode_handle *device_get_named_child_node(struct device *dev,
1056 const char *childname)
1057{
1058 return fwnode_get_named_child_node(dev_fwnode(dev), childname);
1059}
1060EXPORT_SYMBOL_GPL(device_get_named_child_node);
1061
1062/**
1063 * fwnode_handle_get - Obtain a reference to a device node
1064 * @fwnode: Pointer to the device node to obtain the reference to.
1065 *
1066 * Returns the fwnode handle.
1067 */
1068struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
1069{
1070 if (!fwnode_has_op(fwnode, get))
1071 return fwnode;
1072
1073 return fwnode_call_ptr_op(fwnode, get);
1074}
1075EXPORT_SYMBOL_GPL(fwnode_handle_get);
1076
1077/**
1078 * fwnode_handle_put - Drop reference to a device node
1079 * @fwnode: Pointer to the device node to drop the reference to.
1080 *
1081 * This has to be used when terminating device_for_each_child_node() iteration
1082 * with break or return to prevent stale device node references from being left
1083 * behind.
1084 */
1085void fwnode_handle_put(struct fwnode_handle *fwnode)
1086{
1087 fwnode_call_void_op(fwnode, put);
1088}
1089EXPORT_SYMBOL_GPL(fwnode_handle_put);
1090
1091/**
1092 * fwnode_device_is_available - check if a device is available for use
1093 * @fwnode: Pointer to the fwnode of the device.
1094 */
1095bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
1096{
1097 return fwnode_call_bool_op(fwnode, device_is_available);
1098}
1099EXPORT_SYMBOL_GPL(fwnode_device_is_available);
1100
1101/**
1102 * device_get_child_node_count - return the number of child nodes for device
1103 * @dev: Device to cound the child nodes for
1104 */
1105unsigned int device_get_child_node_count(struct device *dev)
1106{
1107 struct fwnode_handle *child;
1108 unsigned int count = 0;
1109
1110 device_for_each_child_node(dev, child)
1111 count++;
1112
1113 return count;
1114}
1115EXPORT_SYMBOL_GPL(device_get_child_node_count);
1116
1117bool device_dma_supported(struct device *dev)
1118{
1119 /* For DT, this is always supported.
1120 * For ACPI, this depends on CCA, which
1121 * is determined by the acpi_dma_supported().
1122 */
1123 if (IS_ENABLED(CONFIG_OF) && dev->of_node)
1124 return true;
1125
1126 return acpi_dma_supported(ACPI_COMPANION(dev));
1127}
1128EXPORT_SYMBOL_GPL(device_dma_supported);
1129
1130enum dev_dma_attr device_get_dma_attr(struct device *dev)
1131{
1132 enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;
1133
1134 if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
1135 if (of_dma_is_coherent(dev->of_node))
1136 attr = DEV_DMA_COHERENT;
1137 else
1138 attr = DEV_DMA_NON_COHERENT;
1139 } else
1140 attr = acpi_get_dma_attr(ACPI_COMPANION(dev));
1141
1142 return attr;
1143}
1144EXPORT_SYMBOL_GPL(device_get_dma_attr);
1145
1146/**
1147 * fwnode_get_phy_mode - Get phy mode for given firmware node
1148 * @fwnode: Pointer to the given node
1149 *
1150 * The function gets phy interface string from property 'phy-mode' or
1151 * 'phy-connection-type', and return its index in phy_modes table, or errno in
1152 * error case.
1153 */
1154int fwnode_get_phy_mode(struct fwnode_handle *fwnode)
1155{
1156 const char *pm;
1157 int err, i;
1158
1159 err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
1160 if (err < 0)
1161 err = fwnode_property_read_string(fwnode,
1162 "phy-connection-type", &pm);
1163 if (err < 0)
1164 return err;
1165
1166 for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
1167 if (!strcasecmp(pm, phy_modes(i)))
1168 return i;
1169
1170 return -ENODEV;
1171}
1172EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
1173
1174/**
1175 * device_get_phy_mode - Get phy mode for given device
1176 * @dev: Pointer to the given device
1177 *
1178 * The function gets phy interface string from property 'phy-mode' or
1179 * 'phy-connection-type', and return its index in phy_modes table, or errno in
1180 * error case.
1181 */
1182int device_get_phy_mode(struct device *dev)
1183{
1184 return fwnode_get_phy_mode(dev_fwnode(dev));
1185}
1186EXPORT_SYMBOL_GPL(device_get_phy_mode);
1187
1188static void *fwnode_get_mac_addr(struct fwnode_handle *fwnode,
1189 const char *name, char *addr,
1190 int alen)
1191{
1192 int ret = fwnode_property_read_u8_array(fwnode, name, addr, alen);
1193
1194 if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
1195 return addr;
1196 return NULL;
1197}
1198
1199/**
1200 * fwnode_get_mac_address - Get the MAC from the firmware node
1201 * @fwnode: Pointer to the firmware node
1202 * @addr: Address of buffer to store the MAC in
1203 * @alen: Length of the buffer pointed to by addr, should be ETH_ALEN
1204 *
1205 * Search the firmware node for the best MAC address to use. 'mac-address' is
1206 * checked first, because that is supposed to contain to "most recent" MAC
1207 * address. If that isn't set, then 'local-mac-address' is checked next,
1208 * because that is the default address. If that isn't set, then the obsolete
1209 * 'address' is checked, just in case we're using an old device tree.
1210 *
1211 * Note that the 'address' property is supposed to contain a virtual address of
1212 * the register set, but some DTS files have redefined that property to be the
1213 * MAC address.
1214 *
1215 * All-zero MAC addresses are rejected, because those could be properties that
1216 * exist in the firmware tables, but were not updated by the firmware. For
1217 * example, the DTS could define 'mac-address' and 'local-mac-address', with
1218 * zero MAC addresses. Some older U-Boots only initialized 'local-mac-address'.
1219 * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
1220 * exists but is all zeros.
1221*/
1222void *fwnode_get_mac_address(struct fwnode_handle *fwnode, char *addr, int alen)
1223{
1224 char *res;
1225
1226 res = fwnode_get_mac_addr(fwnode, "mac-address", addr, alen);
1227 if (res)
1228 return res;
1229
1230 res = fwnode_get_mac_addr(fwnode, "local-mac-address", addr, alen);
1231 if (res)
1232 return res;
1233
1234 return fwnode_get_mac_addr(fwnode, "address", addr, alen);
1235}
1236EXPORT_SYMBOL(fwnode_get_mac_address);
1237
1238/**
1239 * device_get_mac_address - Get the MAC for a given device
1240 * @dev: Pointer to the device
1241 * @addr: Address of buffer to store the MAC in
1242 * @alen: Length of the buffer pointed to by addr, should be ETH_ALEN
1243 */
1244void *device_get_mac_address(struct device *dev, char *addr, int alen)
1245{
1246 return fwnode_get_mac_address(dev_fwnode(dev), addr, alen);
1247}
1248EXPORT_SYMBOL(device_get_mac_address);
1249
1250/**
1251 * fwnode_irq_get - Get IRQ directly from a fwnode
1252 * @fwnode: Pointer to the firmware node
1253 * @index: Zero-based index of the IRQ
1254 *
1255 * Returns Linux IRQ number on success. Other values are determined
1256 * accordingly to acpi_/of_ irq_get() operation.
1257 */
1258int fwnode_irq_get(struct fwnode_handle *fwnode, unsigned int index)
1259{
1260 struct device_node *of_node = to_of_node(fwnode);
1261 struct resource res;
1262 int ret;
1263
1264 if (IS_ENABLED(CONFIG_OF) && of_node)
1265 return of_irq_get(of_node, index);
1266
1267 ret = acpi_irq_get(ACPI_HANDLE_FWNODE(fwnode), index, &res);
1268 if (ret)
1269 return ret;
1270
1271 return res.start;
1272}
1273EXPORT_SYMBOL(fwnode_irq_get);
1274
1275/**
1276 * device_graph_get_next_endpoint - Get next endpoint firmware node
1277 * @fwnode: Pointer to the parent firmware node
1278 * @prev: Previous endpoint node or %NULL to get the first
1279 *
1280 * Returns an endpoint firmware node pointer or %NULL if no more endpoints
1281 * are available.
1282 */
1283struct fwnode_handle *
1284fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1285 struct fwnode_handle *prev)
1286{
1287 return fwnode_call_ptr_op(fwnode, graph_get_next_endpoint, prev);
1288}
1289EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
1290
1291/**
1292 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
1293 * @endpoint: Endpoint firmware node of the port
1294 *
1295 * Return: the firmware node of the device the @endpoint belongs to.
1296 */
1297struct fwnode_handle *
1298fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
1299{
1300 struct fwnode_handle *port, *parent;
1301
1302 port = fwnode_get_parent(endpoint);
1303 parent = fwnode_call_ptr_op(port, graph_get_port_parent);
1304
1305 fwnode_handle_put(port);
1306
1307 return parent;
1308}
1309EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1310
1311/**
1312 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1313 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1314 *
1315 * Extracts firmware node of a remote device the @fwnode points to.
1316 */
1317struct fwnode_handle *
1318fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1319{
1320 struct fwnode_handle *endpoint, *parent;
1321
1322 endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1323 parent = fwnode_graph_get_port_parent(endpoint);
1324
1325 fwnode_handle_put(endpoint);
1326
1327 return parent;
1328}
1329EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1330
1331/**
1332 * fwnode_graph_get_remote_port - Return fwnode of a remote port
1333 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1334 *
1335 * Extracts firmware node of a remote port the @fwnode points to.
1336 */
1337struct fwnode_handle *
1338fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1339{
1340 return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1341}
1342EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1343
1344/**
1345 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1346 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1347 *
1348 * Extracts firmware node of a remote endpoint the @fwnode points to.
1349 */
1350struct fwnode_handle *
1351fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1352{
1353 return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1354}
1355EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1356
1357/**
1358 * fwnode_graph_get_remote_node - get remote parent node for given port/endpoint
1359 * @fwnode: pointer to parent fwnode_handle containing graph port/endpoint
1360 * @port_id: identifier of the parent port node
1361 * @endpoint_id: identifier of the endpoint node
1362 *
1363 * Return: Remote fwnode handle associated with remote endpoint node linked
1364 * to @node. Use fwnode_node_put() on it when done.
1365 */
1366struct fwnode_handle *
1367fwnode_graph_get_remote_node(const struct fwnode_handle *fwnode, u32 port_id,
1368 u32 endpoint_id)
1369{
1370 struct fwnode_handle *endpoint = NULL;
1371
1372 while ((endpoint = fwnode_graph_get_next_endpoint(fwnode, endpoint))) {
1373 struct fwnode_endpoint fwnode_ep;
1374 struct fwnode_handle *remote;
1375 int ret;
1376
1377 ret = fwnode_graph_parse_endpoint(endpoint, &fwnode_ep);
1378 if (ret < 0)
1379 continue;
1380
1381 if (fwnode_ep.port != port_id || fwnode_ep.id != endpoint_id)
1382 continue;
1383
1384 remote = fwnode_graph_get_remote_port_parent(endpoint);
1385 if (!remote)
1386 return NULL;
1387
1388 return fwnode_device_is_available(remote) ? remote : NULL;
1389 }
1390
1391 return NULL;
1392}
1393EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_node);
1394
1395/**
1396 * fwnode_graph_parse_endpoint - parse common endpoint node properties
1397 * @fwnode: pointer to endpoint fwnode_handle
1398 * @endpoint: pointer to the fwnode endpoint data structure
1399 *
1400 * Parse @fwnode representing a graph endpoint node and store the
1401 * information in @endpoint. The caller must hold a reference to
1402 * @fwnode.
1403 */
1404int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1405 struct fwnode_endpoint *endpoint)
1406{
1407 memset(endpoint, 0, sizeof(*endpoint));
1408
1409 return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1410}
1411EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1412
1413const void *device_get_match_data(struct device *dev)
1414{
1415 return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1416}
1417EXPORT_SYMBOL_GPL(device_get_match_data);
1/*
2 * property.c - Unified device property interface.
3 *
4 * Copyright (C) 2014, Intel Corporation
5 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
6 * Mika Westerberg <mika.westerberg@linux.intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/acpi.h>
14#include <linux/export.h>
15#include <linux/kernel.h>
16#include <linux/of.h>
17#include <linux/of_address.h>
18#include <linux/property.h>
19#include <linux/etherdevice.h>
20#include <linux/phy.h>
21
22struct property_set {
23 struct fwnode_handle fwnode;
24 struct property_entry *properties;
25};
26
27static inline bool is_pset_node(struct fwnode_handle *fwnode)
28{
29 return !IS_ERR_OR_NULL(fwnode) && fwnode->type == FWNODE_PDATA;
30}
31
32static inline struct property_set *to_pset_node(struct fwnode_handle *fwnode)
33{
34 return is_pset_node(fwnode) ?
35 container_of(fwnode, struct property_set, fwnode) : NULL;
36}
37
38static struct property_entry *pset_prop_get(struct property_set *pset,
39 const char *name)
40{
41 struct property_entry *prop;
42
43 if (!pset || !pset->properties)
44 return NULL;
45
46 for (prop = pset->properties; prop->name; prop++)
47 if (!strcmp(name, prop->name))
48 return prop;
49
50 return NULL;
51}
52
53static void *pset_prop_find(struct property_set *pset, const char *propname,
54 size_t length)
55{
56 struct property_entry *prop;
57 void *pointer;
58
59 prop = pset_prop_get(pset, propname);
60 if (!prop)
61 return ERR_PTR(-EINVAL);
62 if (prop->is_array)
63 pointer = prop->pointer.raw_data;
64 else
65 pointer = &prop->value.raw_data;
66 if (!pointer)
67 return ERR_PTR(-ENODATA);
68 if (length > prop->length)
69 return ERR_PTR(-EOVERFLOW);
70 return pointer;
71}
72
73static int pset_prop_read_u8_array(struct property_set *pset,
74 const char *propname,
75 u8 *values, size_t nval)
76{
77 void *pointer;
78 size_t length = nval * sizeof(*values);
79
80 pointer = pset_prop_find(pset, propname, length);
81 if (IS_ERR(pointer))
82 return PTR_ERR(pointer);
83
84 memcpy(values, pointer, length);
85 return 0;
86}
87
88static int pset_prop_read_u16_array(struct property_set *pset,
89 const char *propname,
90 u16 *values, size_t nval)
91{
92 void *pointer;
93 size_t length = nval * sizeof(*values);
94
95 pointer = pset_prop_find(pset, propname, length);
96 if (IS_ERR(pointer))
97 return PTR_ERR(pointer);
98
99 memcpy(values, pointer, length);
100 return 0;
101}
102
103static int pset_prop_read_u32_array(struct property_set *pset,
104 const char *propname,
105 u32 *values, size_t nval)
106{
107 void *pointer;
108 size_t length = nval * sizeof(*values);
109
110 pointer = pset_prop_find(pset, propname, length);
111 if (IS_ERR(pointer))
112 return PTR_ERR(pointer);
113
114 memcpy(values, pointer, length);
115 return 0;
116}
117
118static int pset_prop_read_u64_array(struct property_set *pset,
119 const char *propname,
120 u64 *values, size_t nval)
121{
122 void *pointer;
123 size_t length = nval * sizeof(*values);
124
125 pointer = pset_prop_find(pset, propname, length);
126 if (IS_ERR(pointer))
127 return PTR_ERR(pointer);
128
129 memcpy(values, pointer, length);
130 return 0;
131}
132
133static int pset_prop_count_elems_of_size(struct property_set *pset,
134 const char *propname, size_t length)
135{
136 struct property_entry *prop;
137
138 prop = pset_prop_get(pset, propname);
139 if (!prop)
140 return -EINVAL;
141
142 return prop->length / length;
143}
144
145static int pset_prop_read_string_array(struct property_set *pset,
146 const char *propname,
147 const char **strings, size_t nval)
148{
149 void *pointer;
150 size_t length = nval * sizeof(*strings);
151
152 pointer = pset_prop_find(pset, propname, length);
153 if (IS_ERR(pointer))
154 return PTR_ERR(pointer);
155
156 memcpy(strings, pointer, length);
157 return 0;
158}
159
160static int pset_prop_read_string(struct property_set *pset,
161 const char *propname, const char **strings)
162{
163 struct property_entry *prop;
164 const char **pointer;
165
166 prop = pset_prop_get(pset, propname);
167 if (!prop)
168 return -EINVAL;
169 if (!prop->is_string)
170 return -EILSEQ;
171 if (prop->is_array) {
172 pointer = prop->pointer.str;
173 if (!pointer)
174 return -ENODATA;
175 } else {
176 pointer = &prop->value.str;
177 if (*pointer && strnlen(*pointer, prop->length) >= prop->length)
178 return -EILSEQ;
179 }
180
181 *strings = *pointer;
182 return 0;
183}
184
185static inline struct fwnode_handle *dev_fwnode(struct device *dev)
186{
187 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
188 &dev->of_node->fwnode : dev->fwnode;
189}
190
191/**
192 * device_property_present - check if a property of a device is present
193 * @dev: Device whose property is being checked
194 * @propname: Name of the property
195 *
196 * Check if property @propname is present in the device firmware description.
197 */
198bool device_property_present(struct device *dev, const char *propname)
199{
200 return fwnode_property_present(dev_fwnode(dev), propname);
201}
202EXPORT_SYMBOL_GPL(device_property_present);
203
204static bool __fwnode_property_present(struct fwnode_handle *fwnode,
205 const char *propname)
206{
207 if (is_of_node(fwnode))
208 return of_property_read_bool(to_of_node(fwnode), propname);
209 else if (is_acpi_node(fwnode))
210 return !acpi_node_prop_get(fwnode, propname, NULL);
211 else if (is_pset_node(fwnode))
212 return !!pset_prop_get(to_pset_node(fwnode), propname);
213 return false;
214}
215
216/**
217 * fwnode_property_present - check if a property of a firmware node is present
218 * @fwnode: Firmware node whose property to check
219 * @propname: Name of the property
220 */
221bool fwnode_property_present(struct fwnode_handle *fwnode, const char *propname)
222{
223 bool ret;
224
225 ret = __fwnode_property_present(fwnode, propname);
226 if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
227 !IS_ERR_OR_NULL(fwnode->secondary))
228 ret = __fwnode_property_present(fwnode->secondary, propname);
229 return ret;
230}
231EXPORT_SYMBOL_GPL(fwnode_property_present);
232
233/**
234 * device_property_read_u8_array - return a u8 array property of a device
235 * @dev: Device to get the property of
236 * @propname: Name of the property
237 * @val: The values are stored here or %NULL to return the number of values
238 * @nval: Size of the @val array
239 *
240 * Function reads an array of u8 properties with @propname from the device
241 * firmware description and stores them to @val if found.
242 *
243 * Return: number of values if @val was %NULL,
244 * %0 if the property was found (success),
245 * %-EINVAL if given arguments are not valid,
246 * %-ENODATA if the property does not have a value,
247 * %-EPROTO if the property is not an array of numbers,
248 * %-EOVERFLOW if the size of the property is not as expected.
249 * %-ENXIO if no suitable firmware interface is present.
250 */
251int device_property_read_u8_array(struct device *dev, const char *propname,
252 u8 *val, size_t nval)
253{
254 return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
255}
256EXPORT_SYMBOL_GPL(device_property_read_u8_array);
257
258/**
259 * device_property_read_u16_array - return a u16 array property of a device
260 * @dev: Device to get the property of
261 * @propname: Name of the property
262 * @val: The values are stored here or %NULL to return the number of values
263 * @nval: Size of the @val array
264 *
265 * Function reads an array of u16 properties with @propname from the device
266 * firmware description and stores them to @val if found.
267 *
268 * Return: number of values if @val was %NULL,
269 * %0 if the property was found (success),
270 * %-EINVAL if given arguments are not valid,
271 * %-ENODATA if the property does not have a value,
272 * %-EPROTO if the property is not an array of numbers,
273 * %-EOVERFLOW if the size of the property is not as expected.
274 * %-ENXIO if no suitable firmware interface is present.
275 */
276int device_property_read_u16_array(struct device *dev, const char *propname,
277 u16 *val, size_t nval)
278{
279 return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
280}
281EXPORT_SYMBOL_GPL(device_property_read_u16_array);
282
283/**
284 * device_property_read_u32_array - return a u32 array property of a device
285 * @dev: Device to get the property of
286 * @propname: Name of the property
287 * @val: The values are stored here or %NULL to return the number of values
288 * @nval: Size of the @val array
289 *
290 * Function reads an array of u32 properties with @propname from the device
291 * firmware description and stores them to @val if found.
292 *
293 * Return: number of values if @val was %NULL,
294 * %0 if the property was found (success),
295 * %-EINVAL if given arguments are not valid,
296 * %-ENODATA if the property does not have a value,
297 * %-EPROTO if the property is not an array of numbers,
298 * %-EOVERFLOW if the size of the property is not as expected.
299 * %-ENXIO if no suitable firmware interface is present.
300 */
301int device_property_read_u32_array(struct device *dev, const char *propname,
302 u32 *val, size_t nval)
303{
304 return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
305}
306EXPORT_SYMBOL_GPL(device_property_read_u32_array);
307
308/**
309 * device_property_read_u64_array - return a u64 array property of a device
310 * @dev: Device to get the property of
311 * @propname: Name of the property
312 * @val: The values are stored here or %NULL to return the number of values
313 * @nval: Size of the @val array
314 *
315 * Function reads an array of u64 properties with @propname from the device
316 * firmware description and stores them to @val if found.
317 *
318 * Return: number of values if @val was %NULL,
319 * %0 if the property was found (success),
320 * %-EINVAL if given arguments are not valid,
321 * %-ENODATA if the property does not have a value,
322 * %-EPROTO if the property is not an array of numbers,
323 * %-EOVERFLOW if the size of the property is not as expected.
324 * %-ENXIO if no suitable firmware interface is present.
325 */
326int device_property_read_u64_array(struct device *dev, const char *propname,
327 u64 *val, size_t nval)
328{
329 return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
330}
331EXPORT_SYMBOL_GPL(device_property_read_u64_array);
332
333/**
334 * device_property_read_string_array - return a string array property of device
335 * @dev: Device to get the property of
336 * @propname: Name of the property
337 * @val: The values are stored here or %NULL to return the number of values
338 * @nval: Size of the @val array
339 *
340 * Function reads an array of string properties with @propname from the device
341 * firmware description and stores them to @val if found.
342 *
343 * Return: number of values if @val was %NULL,
344 * %0 if the property was found (success),
345 * %-EINVAL if given arguments are not valid,
346 * %-ENODATA if the property does not have a value,
347 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
348 * %-EOVERFLOW if the size of the property is not as expected.
349 * %-ENXIO if no suitable firmware interface is present.
350 */
351int device_property_read_string_array(struct device *dev, const char *propname,
352 const char **val, size_t nval)
353{
354 return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
355}
356EXPORT_SYMBOL_GPL(device_property_read_string_array);
357
358/**
359 * device_property_read_string - return a string property of a device
360 * @dev: Device to get the property of
361 * @propname: Name of the property
362 * @val: The value is stored here
363 *
364 * Function reads property @propname from the device firmware description and
365 * stores the value into @val if found. The value is checked to be a string.
366 *
367 * Return: %0 if the property was found (success),
368 * %-EINVAL if given arguments are not valid,
369 * %-ENODATA if the property does not have a value,
370 * %-EPROTO or %-EILSEQ if the property type is not a string.
371 * %-ENXIO if no suitable firmware interface is present.
372 */
373int device_property_read_string(struct device *dev, const char *propname,
374 const char **val)
375{
376 return fwnode_property_read_string(dev_fwnode(dev), propname, val);
377}
378EXPORT_SYMBOL_GPL(device_property_read_string);
379
380/**
381 * device_property_match_string - find a string in an array and return index
382 * @dev: Device to get the property of
383 * @propname: Name of the property holding the array
384 * @string: String to look for
385 *
386 * Find a given string in a string array and if it is found return the
387 * index back.
388 *
389 * Return: %0 if the property was found (success),
390 * %-EINVAL if given arguments are not valid,
391 * %-ENODATA if the property does not have a value,
392 * %-EPROTO if the property is not an array of strings,
393 * %-ENXIO if no suitable firmware interface is present.
394 */
395int device_property_match_string(struct device *dev, const char *propname,
396 const char *string)
397{
398 return fwnode_property_match_string(dev_fwnode(dev), propname, string);
399}
400EXPORT_SYMBOL_GPL(device_property_match_string);
401
402#define OF_DEV_PROP_READ_ARRAY(node, propname, type, val, nval) \
403 (val) ? of_property_read_##type##_array((node), (propname), (val), (nval)) \
404 : of_property_count_elems_of_size((node), (propname), sizeof(type))
405
406#define PSET_PROP_READ_ARRAY(node, propname, type, val, nval) \
407 (val) ? pset_prop_read_##type##_array((node), (propname), (val), (nval)) \
408 : pset_prop_count_elems_of_size((node), (propname), sizeof(type))
409
410#define FWNODE_PROP_READ(_fwnode_, _propname_, _type_, _proptype_, _val_, _nval_) \
411({ \
412 int _ret_; \
413 if (is_of_node(_fwnode_)) \
414 _ret_ = OF_DEV_PROP_READ_ARRAY(to_of_node(_fwnode_), _propname_, \
415 _type_, _val_, _nval_); \
416 else if (is_acpi_node(_fwnode_)) \
417 _ret_ = acpi_node_prop_read(_fwnode_, _propname_, _proptype_, \
418 _val_, _nval_); \
419 else if (is_pset_node(_fwnode_)) \
420 _ret_ = PSET_PROP_READ_ARRAY(to_pset_node(_fwnode_), _propname_, \
421 _type_, _val_, _nval_); \
422 else \
423 _ret_ = -ENXIO; \
424 _ret_; \
425})
426
427#define FWNODE_PROP_READ_ARRAY(_fwnode_, _propname_, _type_, _proptype_, _val_, _nval_) \
428({ \
429 int _ret_; \
430 _ret_ = FWNODE_PROP_READ(_fwnode_, _propname_, _type_, _proptype_, \
431 _val_, _nval_); \
432 if (_ret_ == -EINVAL && !IS_ERR_OR_NULL(_fwnode_) && \
433 !IS_ERR_OR_NULL(_fwnode_->secondary)) \
434 _ret_ = FWNODE_PROP_READ(_fwnode_->secondary, _propname_, _type_, \
435 _proptype_, _val_, _nval_); \
436 _ret_; \
437})
438
439/**
440 * fwnode_property_read_u8_array - return a u8 array property of firmware node
441 * @fwnode: Firmware node to get the property of
442 * @propname: Name of the property
443 * @val: The values are stored here or %NULL to return the number of values
444 * @nval: Size of the @val array
445 *
446 * Read an array of u8 properties with @propname from @fwnode and stores them to
447 * @val if found.
448 *
449 * Return: number of values if @val was %NULL,
450 * %0 if the property was found (success),
451 * %-EINVAL if given arguments are not valid,
452 * %-ENODATA if the property does not have a value,
453 * %-EPROTO if the property is not an array of numbers,
454 * %-EOVERFLOW if the size of the property is not as expected,
455 * %-ENXIO if no suitable firmware interface is present.
456 */
457int fwnode_property_read_u8_array(struct fwnode_handle *fwnode,
458 const char *propname, u8 *val, size_t nval)
459{
460 return FWNODE_PROP_READ_ARRAY(fwnode, propname, u8, DEV_PROP_U8,
461 val, nval);
462}
463EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
464
465/**
466 * fwnode_property_read_u16_array - return a u16 array property of firmware node
467 * @fwnode: Firmware node to get the property of
468 * @propname: Name of the property
469 * @val: The values are stored here or %NULL to return the number of values
470 * @nval: Size of the @val array
471 *
472 * Read an array of u16 properties with @propname from @fwnode and store them to
473 * @val if found.
474 *
475 * Return: number of values if @val was %NULL,
476 * %0 if the property was found (success),
477 * %-EINVAL if given arguments are not valid,
478 * %-ENODATA if the property does not have a value,
479 * %-EPROTO if the property is not an array of numbers,
480 * %-EOVERFLOW if the size of the property is not as expected,
481 * %-ENXIO if no suitable firmware interface is present.
482 */
483int fwnode_property_read_u16_array(struct fwnode_handle *fwnode,
484 const char *propname, u16 *val, size_t nval)
485{
486 return FWNODE_PROP_READ_ARRAY(fwnode, propname, u16, DEV_PROP_U16,
487 val, nval);
488}
489EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
490
491/**
492 * fwnode_property_read_u32_array - return a u32 array property of firmware node
493 * @fwnode: Firmware node to get the property of
494 * @propname: Name of the property
495 * @val: The values are stored here or %NULL to return the number of values
496 * @nval: Size of the @val array
497 *
498 * Read an array of u32 properties with @propname from @fwnode store them to
499 * @val if found.
500 *
501 * Return: number of values if @val was %NULL,
502 * %0 if the property was found (success),
503 * %-EINVAL if given arguments are not valid,
504 * %-ENODATA if the property does not have a value,
505 * %-EPROTO if the property is not an array of numbers,
506 * %-EOVERFLOW if the size of the property is not as expected,
507 * %-ENXIO if no suitable firmware interface is present.
508 */
509int fwnode_property_read_u32_array(struct fwnode_handle *fwnode,
510 const char *propname, u32 *val, size_t nval)
511{
512 return FWNODE_PROP_READ_ARRAY(fwnode, propname, u32, DEV_PROP_U32,
513 val, nval);
514}
515EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
516
517/**
518 * fwnode_property_read_u64_array - return a u64 array property firmware node
519 * @fwnode: Firmware node to get the property of
520 * @propname: Name of the property
521 * @val: The values are stored here or %NULL to return the number of values
522 * @nval: Size of the @val array
523 *
524 * Read an array of u64 properties with @propname from @fwnode and store them to
525 * @val if found.
526 *
527 * Return: number of values if @val was %NULL,
528 * %0 if the property was found (success),
529 * %-EINVAL if given arguments are not valid,
530 * %-ENODATA if the property does not have a value,
531 * %-EPROTO if the property is not an array of numbers,
532 * %-EOVERFLOW if the size of the property is not as expected,
533 * %-ENXIO if no suitable firmware interface is present.
534 */
535int fwnode_property_read_u64_array(struct fwnode_handle *fwnode,
536 const char *propname, u64 *val, size_t nval)
537{
538 return FWNODE_PROP_READ_ARRAY(fwnode, propname, u64, DEV_PROP_U64,
539 val, nval);
540}
541EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
542
543static int __fwnode_property_read_string_array(struct fwnode_handle *fwnode,
544 const char *propname,
545 const char **val, size_t nval)
546{
547 if (is_of_node(fwnode))
548 return val ?
549 of_property_read_string_array(to_of_node(fwnode),
550 propname, val, nval) :
551 of_property_count_strings(to_of_node(fwnode), propname);
552 else if (is_acpi_node(fwnode))
553 return acpi_node_prop_read(fwnode, propname, DEV_PROP_STRING,
554 val, nval);
555 else if (is_pset_node(fwnode))
556 return val ?
557 pset_prop_read_string_array(to_pset_node(fwnode),
558 propname, val, nval) :
559 pset_prop_count_elems_of_size(to_pset_node(fwnode),
560 propname,
561 sizeof(const char *));
562 return -ENXIO;
563}
564
565static int __fwnode_property_read_string(struct fwnode_handle *fwnode,
566 const char *propname, const char **val)
567{
568 if (is_of_node(fwnode))
569 return of_property_read_string(to_of_node(fwnode), propname, val);
570 else if (is_acpi_node(fwnode))
571 return acpi_node_prop_read(fwnode, propname, DEV_PROP_STRING,
572 val, 1);
573 else if (is_pset_node(fwnode))
574 return pset_prop_read_string(to_pset_node(fwnode), propname, val);
575 return -ENXIO;
576}
577
578/**
579 * fwnode_property_read_string_array - return string array property of a node
580 * @fwnode: Firmware node to get the property of
581 * @propname: Name of the property
582 * @val: The values are stored here or %NULL to return the number of values
583 * @nval: Size of the @val array
584 *
585 * Read an string list property @propname from the given firmware node and store
586 * them to @val if found.
587 *
588 * Return: number of values if @val was %NULL,
589 * %0 if the property was found (success),
590 * %-EINVAL if given arguments are not valid,
591 * %-ENODATA if the property does not have a value,
592 * %-EPROTO if the property is not an array of strings,
593 * %-EOVERFLOW if the size of the property is not as expected,
594 * %-ENXIO if no suitable firmware interface is present.
595 */
596int fwnode_property_read_string_array(struct fwnode_handle *fwnode,
597 const char *propname, const char **val,
598 size_t nval)
599{
600 int ret;
601
602 ret = __fwnode_property_read_string_array(fwnode, propname, val, nval);
603 if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
604 !IS_ERR_OR_NULL(fwnode->secondary))
605 ret = __fwnode_property_read_string_array(fwnode->secondary,
606 propname, val, nval);
607 return ret;
608}
609EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
610
611/**
612 * fwnode_property_read_string - return a string property of a firmware node
613 * @fwnode: Firmware node to get the property of
614 * @propname: Name of the property
615 * @val: The value is stored here
616 *
617 * Read property @propname from the given firmware node and store the value into
618 * @val if found. The value is checked to be a string.
619 *
620 * Return: %0 if the property was found (success),
621 * %-EINVAL if given arguments are not valid,
622 * %-ENODATA if the property does not have a value,
623 * %-EPROTO or %-EILSEQ if the property is not a string,
624 * %-ENXIO if no suitable firmware interface is present.
625 */
626int fwnode_property_read_string(struct fwnode_handle *fwnode,
627 const char *propname, const char **val)
628{
629 int ret;
630
631 ret = __fwnode_property_read_string(fwnode, propname, val);
632 if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
633 !IS_ERR_OR_NULL(fwnode->secondary))
634 ret = __fwnode_property_read_string(fwnode->secondary,
635 propname, val);
636 return ret;
637}
638EXPORT_SYMBOL_GPL(fwnode_property_read_string);
639
640/**
641 * fwnode_property_match_string - find a string in an array and return index
642 * @fwnode: Firmware node to get the property of
643 * @propname: Name of the property holding the array
644 * @string: String to look for
645 *
646 * Find a given string in a string array and if it is found return the
647 * index back.
648 *
649 * Return: %0 if the property was found (success),
650 * %-EINVAL if given arguments are not valid,
651 * %-ENODATA if the property does not have a value,
652 * %-EPROTO if the property is not an array of strings,
653 * %-ENXIO if no suitable firmware interface is present.
654 */
655int fwnode_property_match_string(struct fwnode_handle *fwnode,
656 const char *propname, const char *string)
657{
658 const char **values;
659 int nval, ret;
660
661 nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
662 if (nval < 0)
663 return nval;
664
665 if (nval == 0)
666 return -ENODATA;
667
668 values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
669 if (!values)
670 return -ENOMEM;
671
672 ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
673 if (ret < 0)
674 goto out;
675
676 ret = match_string(values, nval, string);
677 if (ret < 0)
678 ret = -ENODATA;
679out:
680 kfree(values);
681 return ret;
682}
683EXPORT_SYMBOL_GPL(fwnode_property_match_string);
684
685/**
686 * pset_free_set - releases memory allocated for copied property set
687 * @pset: Property set to release
688 *
689 * Function takes previously copied property set and releases all the
690 * memory allocated to it.
691 */
692static void pset_free_set(struct property_set *pset)
693{
694 const struct property_entry *prop;
695 size_t i, nval;
696
697 if (!pset)
698 return;
699
700 for (prop = pset->properties; prop->name; prop++) {
701 if (prop->is_array) {
702 if (prop->is_string && prop->pointer.str) {
703 nval = prop->length / sizeof(const char *);
704 for (i = 0; i < nval; i++)
705 kfree(prop->pointer.str[i]);
706 }
707 kfree(prop->pointer.raw_data);
708 } else if (prop->is_string) {
709 kfree(prop->value.str);
710 }
711 kfree(prop->name);
712 }
713
714 kfree(pset->properties);
715 kfree(pset);
716}
717
718static int pset_copy_entry(struct property_entry *dst,
719 const struct property_entry *src)
720{
721 const char **d, **s;
722 size_t i, nval;
723
724 dst->name = kstrdup(src->name, GFP_KERNEL);
725 if (!dst->name)
726 return -ENOMEM;
727
728 if (src->is_array) {
729 if (!src->length)
730 return -ENODATA;
731
732 if (src->is_string) {
733 nval = src->length / sizeof(const char *);
734 dst->pointer.str = kcalloc(nval, sizeof(const char *),
735 GFP_KERNEL);
736 if (!dst->pointer.str)
737 return -ENOMEM;
738
739 d = dst->pointer.str;
740 s = src->pointer.str;
741 for (i = 0; i < nval; i++) {
742 d[i] = kstrdup(s[i], GFP_KERNEL);
743 if (!d[i] && s[i])
744 return -ENOMEM;
745 }
746 } else {
747 dst->pointer.raw_data = kmemdup(src->pointer.raw_data,
748 src->length, GFP_KERNEL);
749 if (!dst->pointer.raw_data)
750 return -ENOMEM;
751 }
752 } else if (src->is_string) {
753 dst->value.str = kstrdup(src->value.str, GFP_KERNEL);
754 if (!dst->value.str && src->value.str)
755 return -ENOMEM;
756 } else {
757 dst->value.raw_data = src->value.raw_data;
758 }
759
760 dst->length = src->length;
761 dst->is_array = src->is_array;
762 dst->is_string = src->is_string;
763
764 return 0;
765}
766
767/**
768 * pset_copy_set - copies property set
769 * @pset: Property set to copy
770 *
771 * This function takes a deep copy of the given property set and returns
772 * pointer to the copy. Call device_free_property_set() to free resources
773 * allocated in this function.
774 *
775 * Return: Pointer to the new property set or error pointer.
776 */
777static struct property_set *pset_copy_set(const struct property_set *pset)
778{
779 const struct property_entry *entry;
780 struct property_set *p;
781 size_t i, n = 0;
782
783 p = kzalloc(sizeof(*p), GFP_KERNEL);
784 if (!p)
785 return ERR_PTR(-ENOMEM);
786
787 while (pset->properties[n].name)
788 n++;
789
790 p->properties = kcalloc(n + 1, sizeof(*entry), GFP_KERNEL);
791 if (!p->properties) {
792 kfree(p);
793 return ERR_PTR(-ENOMEM);
794 }
795
796 for (i = 0; i < n; i++) {
797 int ret = pset_copy_entry(&p->properties[i],
798 &pset->properties[i]);
799 if (ret) {
800 pset_free_set(p);
801 return ERR_PTR(ret);
802 }
803 }
804
805 return p;
806}
807
808/**
809 * device_remove_properties - Remove properties from a device object.
810 * @dev: Device whose properties to remove.
811 *
812 * The function removes properties previously associated to the device
813 * secondary firmware node with device_add_properties(). Memory allocated
814 * to the properties will also be released.
815 */
816void device_remove_properties(struct device *dev)
817{
818 struct fwnode_handle *fwnode;
819
820 fwnode = dev_fwnode(dev);
821 if (!fwnode)
822 return;
823 /*
824 * Pick either primary or secondary node depending which one holds
825 * the pset. If there is no real firmware node (ACPI/DT) primary
826 * will hold the pset.
827 */
828 if (is_pset_node(fwnode)) {
829 set_primary_fwnode(dev, NULL);
830 pset_free_set(to_pset_node(fwnode));
831 } else {
832 fwnode = fwnode->secondary;
833 if (!IS_ERR(fwnode) && is_pset_node(fwnode)) {
834 set_secondary_fwnode(dev, NULL);
835 pset_free_set(to_pset_node(fwnode));
836 }
837 }
838}
839EXPORT_SYMBOL_GPL(device_remove_properties);
840
841/**
842 * device_add_properties - Add a collection of properties to a device object.
843 * @dev: Device to add properties to.
844 * @properties: Collection of properties to add.
845 *
846 * Associate a collection of device properties represented by @properties with
847 * @dev as its secondary firmware node. The function takes a copy of
848 * @properties.
849 */
850int device_add_properties(struct device *dev, struct property_entry *properties)
851{
852 struct property_set *p, pset;
853
854 if (!properties)
855 return -EINVAL;
856
857 pset.properties = properties;
858
859 p = pset_copy_set(&pset);
860 if (IS_ERR(p))
861 return PTR_ERR(p);
862
863 p->fwnode.type = FWNODE_PDATA;
864 set_secondary_fwnode(dev, &p->fwnode);
865 return 0;
866}
867EXPORT_SYMBOL_GPL(device_add_properties);
868
869/**
870 * device_get_next_child_node - Return the next child node handle for a device
871 * @dev: Device to find the next child node for.
872 * @child: Handle to one of the device's child nodes or a null handle.
873 */
874struct fwnode_handle *device_get_next_child_node(struct device *dev,
875 struct fwnode_handle *child)
876{
877 if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
878 struct device_node *node;
879
880 node = of_get_next_available_child(dev->of_node, to_of_node(child));
881 if (node)
882 return &node->fwnode;
883 } else if (IS_ENABLED(CONFIG_ACPI)) {
884 return acpi_get_next_subnode(dev, child);
885 }
886 return NULL;
887}
888EXPORT_SYMBOL_GPL(device_get_next_child_node);
889
890/**
891 * device_get_named_child_node - Return first matching named child node handle
892 * @dev: Device to find the named child node for.
893 * @childname: String to match child node name against.
894 */
895struct fwnode_handle *device_get_named_child_node(struct device *dev,
896 const char *childname)
897{
898 struct fwnode_handle *child;
899
900 /*
901 * Find first matching named child node of this device.
902 * For ACPI this will be a data only sub-node.
903 */
904 device_for_each_child_node(dev, child) {
905 if (is_of_node(child)) {
906 if (!of_node_cmp(to_of_node(child)->name, childname))
907 return child;
908 } else if (is_acpi_data_node(child)) {
909 if (acpi_data_node_match(child, childname))
910 return child;
911 }
912 }
913
914 return NULL;
915}
916EXPORT_SYMBOL_GPL(device_get_named_child_node);
917
918/**
919 * fwnode_handle_put - Drop reference to a device node
920 * @fwnode: Pointer to the device node to drop the reference to.
921 *
922 * This has to be used when terminating device_for_each_child_node() iteration
923 * with break or return to prevent stale device node references from being left
924 * behind.
925 */
926void fwnode_handle_put(struct fwnode_handle *fwnode)
927{
928 if (is_of_node(fwnode))
929 of_node_put(to_of_node(fwnode));
930}
931EXPORT_SYMBOL_GPL(fwnode_handle_put);
932
933/**
934 * device_get_child_node_count - return the number of child nodes for device
935 * @dev: Device to cound the child nodes for
936 */
937unsigned int device_get_child_node_count(struct device *dev)
938{
939 struct fwnode_handle *child;
940 unsigned int count = 0;
941
942 device_for_each_child_node(dev, child)
943 count++;
944
945 return count;
946}
947EXPORT_SYMBOL_GPL(device_get_child_node_count);
948
949bool device_dma_supported(struct device *dev)
950{
951 /* For DT, this is always supported.
952 * For ACPI, this depends on CCA, which
953 * is determined by the acpi_dma_supported().
954 */
955 if (IS_ENABLED(CONFIG_OF) && dev->of_node)
956 return true;
957
958 return acpi_dma_supported(ACPI_COMPANION(dev));
959}
960EXPORT_SYMBOL_GPL(device_dma_supported);
961
962enum dev_dma_attr device_get_dma_attr(struct device *dev)
963{
964 enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;
965
966 if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
967 if (of_dma_is_coherent(dev->of_node))
968 attr = DEV_DMA_COHERENT;
969 else
970 attr = DEV_DMA_NON_COHERENT;
971 } else
972 attr = acpi_get_dma_attr(ACPI_COMPANION(dev));
973
974 return attr;
975}
976EXPORT_SYMBOL_GPL(device_get_dma_attr);
977
978/**
979 * device_get_phy_mode - Get phy mode for given device
980 * @dev: Pointer to the given device
981 *
982 * The function gets phy interface string from property 'phy-mode' or
983 * 'phy-connection-type', and return its index in phy_modes table, or errno in
984 * error case.
985 */
986int device_get_phy_mode(struct device *dev)
987{
988 const char *pm;
989 int err, i;
990
991 err = device_property_read_string(dev, "phy-mode", &pm);
992 if (err < 0)
993 err = device_property_read_string(dev,
994 "phy-connection-type", &pm);
995 if (err < 0)
996 return err;
997
998 for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
999 if (!strcasecmp(pm, phy_modes(i)))
1000 return i;
1001
1002 return -ENODEV;
1003}
1004EXPORT_SYMBOL_GPL(device_get_phy_mode);
1005
1006static void *device_get_mac_addr(struct device *dev,
1007 const char *name, char *addr,
1008 int alen)
1009{
1010 int ret = device_property_read_u8_array(dev, name, addr, alen);
1011
1012 if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
1013 return addr;
1014 return NULL;
1015}
1016
1017/**
1018 * device_get_mac_address - Get the MAC for a given device
1019 * @dev: Pointer to the device
1020 * @addr: Address of buffer to store the MAC in
1021 * @alen: Length of the buffer pointed to by addr, should be ETH_ALEN
1022 *
1023 * Search the firmware node for the best MAC address to use. 'mac-address' is
1024 * checked first, because that is supposed to contain to "most recent" MAC
1025 * address. If that isn't set, then 'local-mac-address' is checked next,
1026 * because that is the default address. If that isn't set, then the obsolete
1027 * 'address' is checked, just in case we're using an old device tree.
1028 *
1029 * Note that the 'address' property is supposed to contain a virtual address of
1030 * the register set, but some DTS files have redefined that property to be the
1031 * MAC address.
1032 *
1033 * All-zero MAC addresses are rejected, because those could be properties that
1034 * exist in the firmware tables, but were not updated by the firmware. For
1035 * example, the DTS could define 'mac-address' and 'local-mac-address', with
1036 * zero MAC addresses. Some older U-Boots only initialized 'local-mac-address'.
1037 * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
1038 * exists but is all zeros.
1039*/
1040void *device_get_mac_address(struct device *dev, char *addr, int alen)
1041{
1042 char *res;
1043
1044 res = device_get_mac_addr(dev, "mac-address", addr, alen);
1045 if (res)
1046 return res;
1047
1048 res = device_get_mac_addr(dev, "local-mac-address", addr, alen);
1049 if (res)
1050 return res;
1051
1052 return device_get_mac_addr(dev, "address", addr, alen);
1053}
1054EXPORT_SYMBOL(device_get_mac_address);