Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 *  linux/mm/page_alloc.c
   3 *
   4 *  Manages the free list, the system allocates free pages here.
   5 *  Note that kmalloc() lives in slab.c
   6 *
   7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   8 *  Swap reorganised 29.12.95, Stephen Tweedie
   9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15 */
  16
  17#include <linux/stddef.h>
  18#include <linux/mm.h>
 
  19#include <linux/swap.h>
  20#include <linux/interrupt.h>
  21#include <linux/pagemap.h>
  22#include <linux/jiffies.h>
  23#include <linux/bootmem.h>
  24#include <linux/memblock.h>
  25#include <linux/compiler.h>
  26#include <linux/kernel.h>
  27#include <linux/kasan.h>
  28#include <linux/module.h>
  29#include <linux/suspend.h>
  30#include <linux/pagevec.h>
  31#include <linux/blkdev.h>
  32#include <linux/slab.h>
  33#include <linux/ratelimit.h>
  34#include <linux/oom.h>
  35#include <linux/notifier.h>
  36#include <linux/topology.h>
  37#include <linux/sysctl.h>
  38#include <linux/cpu.h>
  39#include <linux/cpuset.h>
  40#include <linux/memory_hotplug.h>
  41#include <linux/nodemask.h>
  42#include <linux/vmalloc.h>
  43#include <linux/vmstat.h>
  44#include <linux/mempolicy.h>
  45#include <linux/memremap.h>
  46#include <linux/stop_machine.h>
 
  47#include <linux/sort.h>
  48#include <linux/pfn.h>
  49#include <linux/backing-dev.h>
  50#include <linux/fault-inject.h>
  51#include <linux/page-isolation.h>
  52#include <linux/page_ext.h>
  53#include <linux/debugobjects.h>
  54#include <linux/kmemleak.h>
  55#include <linux/compaction.h>
  56#include <trace/events/kmem.h>
  57#include <trace/events/oom.h>
  58#include <linux/prefetch.h>
  59#include <linux/mm_inline.h>
  60#include <linux/migrate.h>
  61#include <linux/hugetlb.h>
  62#include <linux/sched/rt.h>
  63#include <linux/sched/mm.h>
  64#include <linux/page_owner.h>
  65#include <linux/kthread.h>
  66#include <linux/memcontrol.h>
  67#include <linux/ftrace.h>
  68#include <linux/lockdep.h>
  69#include <linux/nmi.h>
 
 
 
  70
  71#include <asm/sections.h>
  72#include <asm/tlbflush.h>
  73#include <asm/div64.h>
  74#include "internal.h"
 
 
  75
  76/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  77static DEFINE_MUTEX(pcp_batch_high_lock);
  78#define MIN_PERCPU_PAGELIST_FRACTION	(8)
  79
  80#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  81DEFINE_PER_CPU(int, numa_node);
  82EXPORT_PER_CPU_SYMBOL(numa_node);
  83#endif
  84
  85DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
  86
  87#ifdef CONFIG_HAVE_MEMORYLESS_NODES
  88/*
  89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  92 * defined in <linux/topology.h>.
  93 */
  94DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
  95EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  96int _node_numa_mem_[MAX_NUMNODES];
  97#endif
  98
  99/* work_structs for global per-cpu drains */
 100DEFINE_MUTEX(pcpu_drain_mutex);
 101DEFINE_PER_CPU(struct work_struct, pcpu_drain);
 
 
 
 
 102
 103#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
 104volatile unsigned long latent_entropy __latent_entropy;
 105EXPORT_SYMBOL(latent_entropy);
 106#endif
 107
 108/*
 109 * Array of node states.
 110 */
 111nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
 112	[N_POSSIBLE] = NODE_MASK_ALL,
 113	[N_ONLINE] = { { [0] = 1UL } },
 114#ifndef CONFIG_NUMA
 115	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
 116#ifdef CONFIG_HIGHMEM
 117	[N_HIGH_MEMORY] = { { [0] = 1UL } },
 118#endif
 119	[N_MEMORY] = { { [0] = 1UL } },
 120	[N_CPU] = { { [0] = 1UL } },
 121#endif	/* NUMA */
 122};
 123EXPORT_SYMBOL(node_states);
 124
 125/* Protect totalram_pages and zone->managed_pages */
 126static DEFINE_SPINLOCK(managed_page_count_lock);
 127
 128unsigned long totalram_pages __read_mostly;
 129unsigned long totalreserve_pages __read_mostly;
 130unsigned long totalcma_pages __read_mostly;
 131
 132int percpu_pagelist_fraction;
 133gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 134
 135/*
 136 * A cached value of the page's pageblock's migratetype, used when the page is
 137 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 138 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 139 * Also the migratetype set in the page does not necessarily match the pcplist
 140 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 141 * other index - this ensures that it will be put on the correct CMA freelist.
 142 */
 143static inline int get_pcppage_migratetype(struct page *page)
 144{
 145	return page->index;
 146}
 147
 148static inline void set_pcppage_migratetype(struct page *page, int migratetype)
 149{
 150	page->index = migratetype;
 151}
 152
 153#ifdef CONFIG_PM_SLEEP
 154/*
 155 * The following functions are used by the suspend/hibernate code to temporarily
 156 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 157 * while devices are suspended.  To avoid races with the suspend/hibernate code,
 158 * they should always be called with pm_mutex held (gfp_allowed_mask also should
 159 * only be modified with pm_mutex held, unless the suspend/hibernate code is
 160 * guaranteed not to run in parallel with that modification).
 
 161 */
 162
 163static gfp_t saved_gfp_mask;
 164
 165void pm_restore_gfp_mask(void)
 166{
 167	WARN_ON(!mutex_is_locked(&pm_mutex));
 168	if (saved_gfp_mask) {
 169		gfp_allowed_mask = saved_gfp_mask;
 170		saved_gfp_mask = 0;
 171	}
 172}
 173
 174void pm_restrict_gfp_mask(void)
 175{
 176	WARN_ON(!mutex_is_locked(&pm_mutex));
 177	WARN_ON(saved_gfp_mask);
 178	saved_gfp_mask = gfp_allowed_mask;
 179	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
 180}
 181
 182bool pm_suspended_storage(void)
 183{
 184	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
 185		return false;
 186	return true;
 187}
 188#endif /* CONFIG_PM_SLEEP */
 189
 190#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
 191unsigned int pageblock_order __read_mostly;
 192#endif
 193
 194static void __free_pages_ok(struct page *page, unsigned int order);
 195
 196/*
 197 * results with 256, 32 in the lowmem_reserve sysctl:
 198 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 199 *	1G machine -> (16M dma, 784M normal, 224M high)
 200 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 201 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
 202 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
 203 *
 204 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 205 * don't need any ZONE_NORMAL reservation
 206 */
 207int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
 208#ifdef CONFIG_ZONE_DMA
 209	[ZONE_DMA] = 256,
 210#endif
 211#ifdef CONFIG_ZONE_DMA32
 212	[ZONE_DMA32] = 256,
 213#endif
 214	[ZONE_NORMAL] = 32,
 215#ifdef CONFIG_HIGHMEM
 216	[ZONE_HIGHMEM] = 0,
 217#endif
 218	[ZONE_MOVABLE] = 0,
 219};
 220
 221EXPORT_SYMBOL(totalram_pages);
 222
 223static char * const zone_names[MAX_NR_ZONES] = {
 224#ifdef CONFIG_ZONE_DMA
 225	 "DMA",
 226#endif
 227#ifdef CONFIG_ZONE_DMA32
 228	 "DMA32",
 229#endif
 230	 "Normal",
 231#ifdef CONFIG_HIGHMEM
 232	 "HighMem",
 233#endif
 234	 "Movable",
 235#ifdef CONFIG_ZONE_DEVICE
 236	 "Device",
 237#endif
 238};
 239
 240char * const migratetype_names[MIGRATE_TYPES] = {
 241	"Unmovable",
 242	"Movable",
 243	"Reclaimable",
 244	"HighAtomic",
 245#ifdef CONFIG_CMA
 246	"CMA",
 247#endif
 248#ifdef CONFIG_MEMORY_ISOLATION
 249	"Isolate",
 250#endif
 251};
 252
 253compound_page_dtor * const compound_page_dtors[] = {
 254	NULL,
 255	free_compound_page,
 256#ifdef CONFIG_HUGETLB_PAGE
 257	free_huge_page,
 258#endif
 259#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 260	free_transhuge_page,
 261#endif
 262};
 263
 264int min_free_kbytes = 1024;
 265int user_min_free_kbytes = -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 266int watermark_scale_factor = 10;
 267
 268static unsigned long nr_kernel_pages __meminitdata;
 269static unsigned long nr_all_pages __meminitdata;
 270static unsigned long dma_reserve __meminitdata;
 271
 272#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 273static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
 274static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
 275static unsigned long required_kernelcore __initdata;
 276static unsigned long required_kernelcore_percent __initdata;
 277static unsigned long required_movablecore __initdata;
 278static unsigned long required_movablecore_percent __initdata;
 279static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
 280static bool mirrored_kernelcore __meminitdata;
 281
 282/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
 283int movable_zone;
 284EXPORT_SYMBOL(movable_zone);
 285#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
 286
 287#if MAX_NUMNODES > 1
 288int nr_node_ids __read_mostly = MAX_NUMNODES;
 289int nr_online_nodes __read_mostly = 1;
 290EXPORT_SYMBOL(nr_node_ids);
 291EXPORT_SYMBOL(nr_online_nodes);
 292#endif
 293
 294int page_group_by_mobility_disabled __read_mostly;
 295
 296#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 297/* Returns true if the struct page for the pfn is uninitialised */
 298static inline bool __meminit early_page_uninitialised(unsigned long pfn)
 299{
 300	int nid = early_pfn_to_nid(pfn);
 301
 302	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
 303		return true;
 304
 305	return false;
 306}
 307
 308/*
 309 * Returns false when the remaining initialisation should be deferred until
 310 * later in the boot cycle when it can be parallelised.
 311 */
 312static inline bool update_defer_init(pg_data_t *pgdat,
 313				unsigned long pfn, unsigned long zone_end,
 314				unsigned long *nr_initialised)
 315{
 
 
 
 
 
 
 
 
 
 
 
 316	/* Always populate low zones for address-constrained allocations */
 317	if (zone_end < pgdat_end_pfn(pgdat))
 318		return true;
 319	(*nr_initialised)++;
 320	if ((*nr_initialised > pgdat->static_init_pgcnt) &&
 321	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
 322		pgdat->first_deferred_pfn = pfn;
 323		return false;
 324	}
 325
 326	return true;
 
 
 
 
 
 
 
 
 
 
 327}
 328#else
 
 
 329static inline bool early_page_uninitialised(unsigned long pfn)
 330{
 331	return false;
 332}
 333
 334static inline bool update_defer_init(pg_data_t *pgdat,
 335				unsigned long pfn, unsigned long zone_end,
 336				unsigned long *nr_initialised)
 337{
 338	return true;
 339}
 340#endif
 341
 342/* Return a pointer to the bitmap storing bits affecting a block of pages */
 343static inline unsigned long *get_pageblock_bitmap(struct page *page,
 344							unsigned long pfn)
 345{
 346#ifdef CONFIG_SPARSEMEM
 347	return __pfn_to_section(pfn)->pageblock_flags;
 348#else
 349	return page_zone(page)->pageblock_flags;
 350#endif /* CONFIG_SPARSEMEM */
 351}
 352
 353static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
 354{
 355#ifdef CONFIG_SPARSEMEM
 356	pfn &= (PAGES_PER_SECTION-1);
 357	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
 358#else
 359	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
 360	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
 361#endif /* CONFIG_SPARSEMEM */
 
 362}
 363
 364/**
 365 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 366 * @page: The page within the block of interest
 367 * @pfn: The target page frame number
 368 * @end_bitidx: The last bit of interest to retrieve
 369 * @mask: mask of bits that the caller is interested in
 370 *
 371 * Return: pageblock_bits flags
 372 */
 373static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
 
 374					unsigned long pfn,
 375					unsigned long end_bitidx,
 376					unsigned long mask)
 377{
 378	unsigned long *bitmap;
 379	unsigned long bitidx, word_bitidx;
 380	unsigned long word;
 381
 382	bitmap = get_pageblock_bitmap(page, pfn);
 383	bitidx = pfn_to_bitidx(page, pfn);
 384	word_bitidx = bitidx / BITS_PER_LONG;
 385	bitidx &= (BITS_PER_LONG-1);
 386
 387	word = bitmap[word_bitidx];
 388	bitidx += end_bitidx;
 389	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
 390}
 391
 392unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
 393					unsigned long end_bitidx,
 394					unsigned long mask)
 395{
 396	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
 397}
 398
 399static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
 400{
 401	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
 402}
 403
 404/**
 405 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 406 * @page: The page within the block of interest
 407 * @flags: The flags to set
 408 * @pfn: The target page frame number
 409 * @end_bitidx: The last bit of interest
 410 * @mask: mask of bits that the caller is interested in
 411 */
 412void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
 413					unsigned long pfn,
 414					unsigned long end_bitidx,
 415					unsigned long mask)
 416{
 417	unsigned long *bitmap;
 418	unsigned long bitidx, word_bitidx;
 419	unsigned long old_word, word;
 420
 421	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
 
 422
 423	bitmap = get_pageblock_bitmap(page, pfn);
 424	bitidx = pfn_to_bitidx(page, pfn);
 425	word_bitidx = bitidx / BITS_PER_LONG;
 426	bitidx &= (BITS_PER_LONG-1);
 427
 428	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
 429
 430	bitidx += end_bitidx;
 431	mask <<= (BITS_PER_LONG - bitidx - 1);
 432	flags <<= (BITS_PER_LONG - bitidx - 1);
 433
 434	word = READ_ONCE(bitmap[word_bitidx]);
 435	for (;;) {
 436		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
 437		if (word == old_word)
 438			break;
 439		word = old_word;
 440	}
 441}
 442
 443void set_pageblock_migratetype(struct page *page, int migratetype)
 444{
 445	if (unlikely(page_group_by_mobility_disabled &&
 446		     migratetype < MIGRATE_PCPTYPES))
 447		migratetype = MIGRATE_UNMOVABLE;
 448
 449	set_pageblock_flags_group(page, (unsigned long)migratetype,
 450					PB_migrate, PB_migrate_end);
 451}
 452
 453#ifdef CONFIG_DEBUG_VM
 454static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
 455{
 456	int ret = 0;
 457	unsigned seq;
 458	unsigned long pfn = page_to_pfn(page);
 459	unsigned long sp, start_pfn;
 460
 461	do {
 462		seq = zone_span_seqbegin(zone);
 463		start_pfn = zone->zone_start_pfn;
 464		sp = zone->spanned_pages;
 465		if (!zone_spans_pfn(zone, pfn))
 466			ret = 1;
 467	} while (zone_span_seqretry(zone, seq));
 468
 469	if (ret)
 470		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
 471			pfn, zone_to_nid(zone), zone->name,
 472			start_pfn, start_pfn + sp);
 473
 474	return ret;
 475}
 476
 477static int page_is_consistent(struct zone *zone, struct page *page)
 478{
 479	if (!pfn_valid_within(page_to_pfn(page)))
 480		return 0;
 481	if (zone != page_zone(page))
 482		return 0;
 483
 484	return 1;
 485}
 486/*
 487 * Temporary debugging check for pages not lying within a given zone.
 488 */
 489static int __maybe_unused bad_range(struct zone *zone, struct page *page)
 490{
 491	if (page_outside_zone_boundaries(zone, page))
 492		return 1;
 493	if (!page_is_consistent(zone, page))
 494		return 1;
 495
 496	return 0;
 497}
 498#else
 499static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
 500{
 501	return 0;
 502}
 503#endif
 504
 505static void bad_page(struct page *page, const char *reason,
 506		unsigned long bad_flags)
 507{
 508	static unsigned long resume;
 509	static unsigned long nr_shown;
 510	static unsigned long nr_unshown;
 511
 512	/*
 513	 * Allow a burst of 60 reports, then keep quiet for that minute;
 514	 * or allow a steady drip of one report per second.
 515	 */
 516	if (nr_shown == 60) {
 517		if (time_before(jiffies, resume)) {
 518			nr_unshown++;
 519			goto out;
 520		}
 521		if (nr_unshown) {
 522			pr_alert(
 523			      "BUG: Bad page state: %lu messages suppressed\n",
 524				nr_unshown);
 525			nr_unshown = 0;
 526		}
 527		nr_shown = 0;
 528	}
 529	if (nr_shown++ == 0)
 530		resume = jiffies + 60 * HZ;
 531
 532	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
 533		current->comm, page_to_pfn(page));
 534	__dump_page(page, reason);
 535	bad_flags &= page->flags;
 536	if (bad_flags)
 537		pr_alert("bad because of flags: %#lx(%pGp)\n",
 538						bad_flags, &bad_flags);
 539	dump_page_owner(page);
 540
 541	print_modules();
 542	dump_stack();
 543out:
 544	/* Leave bad fields for debug, except PageBuddy could make trouble */
 545	page_mapcount_reset(page); /* remove PageBuddy */
 546	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 547}
 548
 549/*
 550 * Higher-order pages are called "compound pages".  They are structured thusly:
 551 *
 552 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
 553 *
 554 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 555 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
 556 *
 557 * The first tail page's ->compound_dtor holds the offset in array of compound
 558 * page destructors. See compound_page_dtors.
 559 *
 560 * The first tail page's ->compound_order holds the order of allocation.
 561 * This usage means that zero-order pages may not be compound.
 562 */
 563
 564void free_compound_page(struct page *page)
 565{
 
 566	__free_pages_ok(page, compound_order(page));
 567}
 568
 569void prep_compound_page(struct page *page, unsigned int order)
 570{
 571	int i;
 572	int nr_pages = 1 << order;
 573
 574	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
 575	set_compound_order(page, order);
 576	__SetPageHead(page);
 577	for (i = 1; i < nr_pages; i++) {
 578		struct page *p = page + i;
 579		set_page_count(p, 0);
 580		p->mapping = TAIL_MAPPING;
 581		set_compound_head(p, page);
 582	}
 
 
 
 583	atomic_set(compound_mapcount_ptr(page), -1);
 
 
 584}
 585
 586#ifdef CONFIG_DEBUG_PAGEALLOC
 587unsigned int _debug_guardpage_minorder;
 588bool _debug_pagealloc_enabled __read_mostly
 
 589			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
 
 
 590EXPORT_SYMBOL(_debug_pagealloc_enabled);
 591bool _debug_guardpage_enabled __read_mostly;
 
 592
 593static int __init early_debug_pagealloc(char *buf)
 594{
 595	if (!buf)
 596		return -EINVAL;
 597	return kstrtobool(buf, &_debug_pagealloc_enabled);
 598}
 599early_param("debug_pagealloc", early_debug_pagealloc);
 600
 601static bool need_debug_guardpage(void)
 602{
 603	/* If we don't use debug_pagealloc, we don't need guard page */
 604	if (!debug_pagealloc_enabled())
 605		return false;
 606
 607	if (!debug_guardpage_minorder())
 608		return false;
 609
 610	return true;
 611}
 612
 613static void init_debug_guardpage(void)
 614{
 615	if (!debug_pagealloc_enabled())
 616		return;
 617
 
 
 618	if (!debug_guardpage_minorder())
 619		return;
 620
 621	_debug_guardpage_enabled = true;
 622}
 623
 624struct page_ext_operations debug_guardpage_ops = {
 625	.need = need_debug_guardpage,
 626	.init = init_debug_guardpage,
 627};
 628
 629static int __init debug_guardpage_minorder_setup(char *buf)
 630{
 631	unsigned long res;
 632
 633	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
 634		pr_err("Bad debug_guardpage_minorder value\n");
 635		return 0;
 636	}
 637	_debug_guardpage_minorder = res;
 638	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
 639	return 0;
 640}
 641early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
 642
 643static inline bool set_page_guard(struct zone *zone, struct page *page,
 644				unsigned int order, int migratetype)
 645{
 646	struct page_ext *page_ext;
 647
 648	if (!debug_guardpage_enabled())
 649		return false;
 650
 651	if (order >= debug_guardpage_minorder())
 652		return false;
 653
 654	page_ext = lookup_page_ext(page);
 655	if (unlikely(!page_ext))
 656		return false;
 657
 658	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
 659
 660	INIT_LIST_HEAD(&page->lru);
 661	set_page_private(page, order);
 662	/* Guard pages are not available for any usage */
 663	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
 664
 665	return true;
 666}
 667
 668static inline void clear_page_guard(struct zone *zone, struct page *page,
 669				unsigned int order, int migratetype)
 670{
 671	struct page_ext *page_ext;
 672
 673	if (!debug_guardpage_enabled())
 674		return;
 675
 676	page_ext = lookup_page_ext(page);
 677	if (unlikely(!page_ext))
 678		return;
 679
 680	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
 681
 682	set_page_private(page, 0);
 683	if (!is_migrate_isolate(migratetype))
 684		__mod_zone_freepage_state(zone, (1 << order), migratetype);
 685}
 686#else
 687struct page_ext_operations debug_guardpage_ops;
 688static inline bool set_page_guard(struct zone *zone, struct page *page,
 689			unsigned int order, int migratetype) { return false; }
 690static inline void clear_page_guard(struct zone *zone, struct page *page,
 691				unsigned int order, int migratetype) {}
 692#endif
 693
 694static inline void set_page_order(struct page *page, unsigned int order)
 695{
 696	set_page_private(page, order);
 697	__SetPageBuddy(page);
 698}
 699
 700static inline void rmv_page_order(struct page *page)
 701{
 702	__ClearPageBuddy(page);
 703	set_page_private(page, 0);
 704}
 705
 706/*
 707 * This function checks whether a page is free && is the buddy
 708 * we can do coalesce a page and its buddy if
 709 * (a) the buddy is not in a hole (check before calling!) &&
 710 * (b) the buddy is in the buddy system &&
 711 * (c) a page and its buddy have the same order &&
 712 * (d) a page and its buddy are in the same zone.
 713 *
 714 * For recording whether a page is in the buddy system, we set ->_mapcount
 715 * PAGE_BUDDY_MAPCOUNT_VALUE.
 716 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
 717 * serialized by zone->lock.
 718 *
 719 * For recording page's order, we use page_private(page).
 720 */
 721static inline int page_is_buddy(struct page *page, struct page *buddy,
 722							unsigned int order)
 723{
 724	if (page_is_guard(buddy) && page_order(buddy) == order) {
 725		if (page_zone_id(page) != page_zone_id(buddy))
 726			return 0;
 727
 728		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 
 729
 730		return 1;
 731	}
 
 
 
 
 732
 733	if (PageBuddy(buddy) && page_order(buddy) == order) {
 734		/*
 735		 * zone check is done late to avoid uselessly
 736		 * calculating zone/node ids for pages that could
 737		 * never merge.
 738		 */
 739		if (page_zone_id(page) != page_zone_id(buddy))
 740			return 0;
 741
 742		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 
 743
 744		return 1;
 745	}
 746	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 747}
 748
 749/*
 750 * Freeing function for a buddy system allocator.
 751 *
 752 * The concept of a buddy system is to maintain direct-mapped table
 753 * (containing bit values) for memory blocks of various "orders".
 754 * The bottom level table contains the map for the smallest allocatable
 755 * units of memory (here, pages), and each level above it describes
 756 * pairs of units from the levels below, hence, "buddies".
 757 * At a high level, all that happens here is marking the table entry
 758 * at the bottom level available, and propagating the changes upward
 759 * as necessary, plus some accounting needed to play nicely with other
 760 * parts of the VM system.
 761 * At each level, we keep a list of pages, which are heads of continuous
 762 * free pages of length of (1 << order) and marked with _mapcount
 763 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
 764 * field.
 765 * So when we are allocating or freeing one, we can derive the state of the
 766 * other.  That is, if we allocate a small block, and both were
 767 * free, the remainder of the region must be split into blocks.
 768 * If a block is freed, and its buddy is also free, then this
 769 * triggers coalescing into a block of larger size.
 770 *
 771 * -- nyc
 772 */
 773
 774static inline void __free_one_page(struct page *page,
 775		unsigned long pfn,
 776		struct zone *zone, unsigned int order,
 777		int migratetype)
 778{
 
 
 779	unsigned long combined_pfn;
 780	unsigned long uninitialized_var(buddy_pfn);
 781	struct page *buddy;
 782	unsigned int max_order;
 
 
 783
 784	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
 785
 786	VM_BUG_ON(!zone_is_initialized(zone));
 787	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
 788
 789	VM_BUG_ON(migratetype == -1);
 790	if (likely(!is_migrate_isolate(migratetype)))
 791		__mod_zone_freepage_state(zone, 1 << order, migratetype);
 792
 793	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
 794	VM_BUG_ON_PAGE(bad_range(zone, page), page);
 795
 796continue_merging:
 797	while (order < max_order - 1) {
 
 
 
 
 
 798		buddy_pfn = __find_buddy_pfn(pfn, order);
 799		buddy = page + (buddy_pfn - pfn);
 800
 801		if (!pfn_valid_within(buddy_pfn))
 802			goto done_merging;
 803		if (!page_is_buddy(page, buddy, order))
 804			goto done_merging;
 805		/*
 806		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
 807		 * merge with it and move up one order.
 808		 */
 809		if (page_is_guard(buddy)) {
 810			clear_page_guard(zone, buddy, order, migratetype);
 811		} else {
 812			list_del(&buddy->lru);
 813			zone->free_area[order].nr_free--;
 814			rmv_page_order(buddy);
 815		}
 816		combined_pfn = buddy_pfn & pfn;
 817		page = page + (combined_pfn - pfn);
 818		pfn = combined_pfn;
 819		order++;
 820	}
 821	if (max_order < MAX_ORDER) {
 822		/* If we are here, it means order is >= pageblock_order.
 823		 * We want to prevent merge between freepages on isolate
 824		 * pageblock and normal pageblock. Without this, pageblock
 825		 * isolation could cause incorrect freepage or CMA accounting.
 826		 *
 827		 * We don't want to hit this code for the more frequent
 828		 * low-order merging.
 829		 */
 830		if (unlikely(has_isolate_pageblock(zone))) {
 831			int buddy_mt;
 832
 833			buddy_pfn = __find_buddy_pfn(pfn, order);
 834			buddy = page + (buddy_pfn - pfn);
 835			buddy_mt = get_pageblock_migratetype(buddy);
 836
 837			if (migratetype != buddy_mt
 838					&& (is_migrate_isolate(migratetype) ||
 839						is_migrate_isolate(buddy_mt)))
 840				goto done_merging;
 841		}
 842		max_order++;
 843		goto continue_merging;
 844	}
 845
 846done_merging:
 847	set_page_order(page, order);
 848
 849	/*
 850	 * If this is not the largest possible page, check if the buddy
 851	 * of the next-highest order is free. If it is, it's possible
 852	 * that pages are being freed that will coalesce soon. In case,
 853	 * that is happening, add the free page to the tail of the list
 854	 * so it's less likely to be used soon and more likely to be merged
 855	 * as a higher order page
 856	 */
 857	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
 858		struct page *higher_page, *higher_buddy;
 859		combined_pfn = buddy_pfn & pfn;
 860		higher_page = page + (combined_pfn - pfn);
 861		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
 862		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
 863		if (pfn_valid_within(buddy_pfn) &&
 864		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
 865			list_add_tail(&page->lru,
 866				&zone->free_area[order].free_list[migratetype]);
 867			goto out;
 868		}
 869	}
 870
 871	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
 872out:
 873	zone->free_area[order].nr_free++;
 
 
 
 
 
 874}
 875
 876/*
 877 * A bad page could be due to a number of fields. Instead of multiple branches,
 878 * try and check multiple fields with one check. The caller must do a detailed
 879 * check if necessary.
 880 */
 881static inline bool page_expected_state(struct page *page,
 882					unsigned long check_flags)
 883{
 884	if (unlikely(atomic_read(&page->_mapcount) != -1))
 885		return false;
 886
 887	if (unlikely((unsigned long)page->mapping |
 888			page_ref_count(page) |
 889#ifdef CONFIG_MEMCG
 890			(unsigned long)page->mem_cgroup |
 891#endif
 892			(page->flags & check_flags)))
 893		return false;
 894
 895	return true;
 896}
 897
 898static void free_pages_check_bad(struct page *page)
 899{
 900	const char *bad_reason;
 901	unsigned long bad_flags;
 902
 903	bad_reason = NULL;
 904	bad_flags = 0;
 905
 906	if (unlikely(atomic_read(&page->_mapcount) != -1))
 907		bad_reason = "nonzero mapcount";
 908	if (unlikely(page->mapping != NULL))
 909		bad_reason = "non-NULL mapping";
 910	if (unlikely(page_ref_count(page) != 0))
 911		bad_reason = "nonzero _refcount";
 912	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
 913		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
 914		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
 
 
 915	}
 916#ifdef CONFIG_MEMCG
 917	if (unlikely(page->mem_cgroup))
 918		bad_reason = "page still charged to cgroup";
 919#endif
 920	bad_page(page, bad_reason, bad_flags);
 921}
 922
 923static inline int free_pages_check(struct page *page)
 
 
 
 
 
 
 924{
 925	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
 926		return 0;
 927
 928	/* Something has gone sideways, find it */
 929	free_pages_check_bad(page);
 930	return 1;
 931}
 932
 933static int free_tail_pages_check(struct page *head_page, struct page *page)
 934{
 935	int ret = 1;
 936
 937	/*
 938	 * We rely page->lru.next never has bit 0 set, unless the page
 939	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
 940	 */
 941	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
 942
 943	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
 944		ret = 0;
 945		goto out;
 946	}
 947	switch (page - head_page) {
 948	case 1:
 949		/* the first tail page: ->mapping is compound_mapcount() */
 950		if (unlikely(compound_mapcount(page))) {
 951			bad_page(page, "nonzero compound_mapcount", 0);
 952			goto out;
 953		}
 954		break;
 955	case 2:
 956		/*
 957		 * the second tail page: ->mapping is
 958		 * page_deferred_list().next -- ignore value.
 959		 */
 960		break;
 961	default:
 962		if (page->mapping != TAIL_MAPPING) {
 963			bad_page(page, "corrupted mapping in tail page", 0);
 964			goto out;
 965		}
 966		break;
 967	}
 968	if (unlikely(!PageTail(page))) {
 969		bad_page(page, "PageTail not set", 0);
 970		goto out;
 971	}
 972	if (unlikely(compound_head(page) != head_page)) {
 973		bad_page(page, "compound_head not consistent", 0);
 974		goto out;
 975	}
 976	ret = 0;
 977out:
 978	page->mapping = NULL;
 979	clear_compound_head(page);
 980	return ret;
 981}
 982
 
 
 
 
 
 
 
 
 
 
 
 983static __always_inline bool free_pages_prepare(struct page *page,
 984					unsigned int order, bool check_free)
 985{
 986	int bad = 0;
 987
 988	VM_BUG_ON_PAGE(PageTail(page), page);
 989
 990	trace_mm_page_free(page, order);
 991
 992	/*
 993	 * Check tail pages before head page information is cleared to
 994	 * avoid checking PageCompound for order-0 pages.
 995	 */
 996	if (unlikely(order)) {
 997		bool compound = PageCompound(page);
 998		int i;
 999
1000		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1001
1002		if (compound)
1003			ClearPageDoubleMap(page);
1004		for (i = 1; i < (1 << order); i++) {
1005			if (compound)
1006				bad += free_tail_pages_check(page, page + i);
1007			if (unlikely(free_pages_check(page + i))) {
1008				bad++;
1009				continue;
1010			}
1011			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1012		}
1013	}
1014	if (PageMappingFlags(page))
1015		page->mapping = NULL;
1016	if (memcg_kmem_enabled() && PageKmemcg(page))
1017		memcg_kmem_uncharge(page, order);
1018	if (check_free)
1019		bad += free_pages_check(page);
1020	if (bad)
1021		return false;
1022
1023	page_cpupid_reset_last(page);
1024	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1025	reset_page_owner(page, order);
1026
1027	if (!PageHighMem(page)) {
1028		debug_check_no_locks_freed(page_address(page),
1029					   PAGE_SIZE << order);
1030		debug_check_no_obj_freed(page_address(page),
1031					   PAGE_SIZE << order);
1032	}
1033	arch_free_page(page, order);
 
 
1034	kernel_poison_pages(page, 1 << order, 0);
1035	kernel_map_pages(page, 1 << order, 0);
1036	kasan_free_pages(page, order);
 
 
 
 
 
 
 
 
 
1037
1038	return true;
1039}
1040
1041#ifdef CONFIG_DEBUG_VM
1042static inline bool free_pcp_prepare(struct page *page)
 
 
 
 
 
1043{
1044	return free_pages_prepare(page, 0, true);
1045}
1046
1047static inline bool bulkfree_pcp_prepare(struct page *page)
1048{
1049	return false;
 
 
 
1050}
1051#else
 
 
 
 
 
 
1052static bool free_pcp_prepare(struct page *page)
1053{
1054	return free_pages_prepare(page, 0, false);
 
 
 
1055}
1056
1057static bool bulkfree_pcp_prepare(struct page *page)
1058{
1059	return free_pages_check(page);
1060}
1061#endif /* CONFIG_DEBUG_VM */
1062
1063static inline void prefetch_buddy(struct page *page)
1064{
1065	unsigned long pfn = page_to_pfn(page);
1066	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1067	struct page *buddy = page + (buddy_pfn - pfn);
1068
1069	prefetch(buddy);
1070}
1071
1072/*
1073 * Frees a number of pages from the PCP lists
1074 * Assumes all pages on list are in same zone, and of same order.
1075 * count is the number of pages to free.
1076 *
1077 * If the zone was previously in an "all pages pinned" state then look to
1078 * see if this freeing clears that state.
1079 *
1080 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1081 * pinned" detection logic.
1082 */
1083static void free_pcppages_bulk(struct zone *zone, int count,
1084					struct per_cpu_pages *pcp)
1085{
1086	int migratetype = 0;
1087	int batch_free = 0;
1088	int prefetch_nr = 0;
1089	bool isolated_pageblocks;
1090	struct page *page, *tmp;
1091	LIST_HEAD(head);
1092
 
 
 
 
 
1093	while (count) {
1094		struct list_head *list;
1095
1096		/*
1097		 * Remove pages from lists in a round-robin fashion. A
1098		 * batch_free count is maintained that is incremented when an
1099		 * empty list is encountered.  This is so more pages are freed
1100		 * off fuller lists instead of spinning excessively around empty
1101		 * lists
1102		 */
1103		do {
1104			batch_free++;
1105			if (++migratetype == MIGRATE_PCPTYPES)
1106				migratetype = 0;
1107			list = &pcp->lists[migratetype];
1108		} while (list_empty(list));
1109
1110		/* This is the only non-empty list. Free them all. */
1111		if (batch_free == MIGRATE_PCPTYPES)
1112			batch_free = count;
1113
1114		do {
1115			page = list_last_entry(list, struct page, lru);
1116			/* must delete to avoid corrupting pcp list */
1117			list_del(&page->lru);
1118			pcp->count--;
1119
1120			if (bulkfree_pcp_prepare(page))
1121				continue;
1122
1123			list_add_tail(&page->lru, &head);
1124
1125			/*
1126			 * We are going to put the page back to the global
1127			 * pool, prefetch its buddy to speed up later access
1128			 * under zone->lock. It is believed the overhead of
1129			 * an additional test and calculating buddy_pfn here
1130			 * can be offset by reduced memory latency later. To
1131			 * avoid excessive prefetching due to large count, only
1132			 * prefetch buddy for the first pcp->batch nr of pages.
1133			 */
1134			if (prefetch_nr++ < pcp->batch)
1135				prefetch_buddy(page);
1136		} while (--count && --batch_free && !list_empty(list));
1137	}
1138
1139	spin_lock(&zone->lock);
1140	isolated_pageblocks = has_isolate_pageblock(zone);
1141
1142	/*
1143	 * Use safe version since after __free_one_page(),
1144	 * page->lru.next will not point to original list.
1145	 */
1146	list_for_each_entry_safe(page, tmp, &head, lru) {
1147		int mt = get_pcppage_migratetype(page);
1148		/* MIGRATE_ISOLATE page should not go to pcplists */
1149		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1150		/* Pageblock could have been isolated meanwhile */
1151		if (unlikely(isolated_pageblocks))
1152			mt = get_pageblock_migratetype(page);
1153
1154		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1155		trace_mm_page_pcpu_drain(page, 0, mt);
1156	}
1157	spin_unlock(&zone->lock);
1158}
1159
1160static void free_one_page(struct zone *zone,
1161				struct page *page, unsigned long pfn,
1162				unsigned int order,
1163				int migratetype)
1164{
1165	spin_lock(&zone->lock);
1166	if (unlikely(has_isolate_pageblock(zone) ||
1167		is_migrate_isolate(migratetype))) {
1168		migratetype = get_pfnblock_migratetype(page, pfn);
1169	}
1170	__free_one_page(page, pfn, zone, order, migratetype);
1171	spin_unlock(&zone->lock);
1172}
1173
1174static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1175				unsigned long zone, int nid)
1176{
1177	mm_zero_struct_page(page);
1178	set_page_links(page, zone, nid, pfn);
1179	init_page_count(page);
1180	page_mapcount_reset(page);
1181	page_cpupid_reset_last(page);
 
1182
1183	INIT_LIST_HEAD(&page->lru);
1184#ifdef WANT_PAGE_VIRTUAL
1185	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1186	if (!is_highmem_idx(zone))
1187		set_page_address(page, __va(pfn << PAGE_SHIFT));
1188#endif
1189}
1190
1191#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1192static void __meminit init_reserved_page(unsigned long pfn)
1193{
1194	pg_data_t *pgdat;
1195	int nid, zid;
1196
1197	if (!early_page_uninitialised(pfn))
1198		return;
1199
1200	nid = early_pfn_to_nid(pfn);
1201	pgdat = NODE_DATA(nid);
1202
1203	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1204		struct zone *zone = &pgdat->node_zones[zid];
1205
1206		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1207			break;
1208	}
1209	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1210}
1211#else
1212static inline void init_reserved_page(unsigned long pfn)
1213{
1214}
1215#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1216
1217/*
1218 * Initialised pages do not have PageReserved set. This function is
1219 * called for each range allocated by the bootmem allocator and
1220 * marks the pages PageReserved. The remaining valid pages are later
1221 * sent to the buddy page allocator.
1222 */
1223void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1224{
1225	unsigned long start_pfn = PFN_DOWN(start);
1226	unsigned long end_pfn = PFN_UP(end);
1227
1228	for (; start_pfn < end_pfn; start_pfn++) {
1229		if (pfn_valid(start_pfn)) {
1230			struct page *page = pfn_to_page(start_pfn);
1231
1232			init_reserved_page(start_pfn);
1233
1234			/* Avoid false-positive PageTail() */
1235			INIT_LIST_HEAD(&page->lru);
1236
1237			SetPageReserved(page);
 
 
 
 
 
1238		}
1239	}
1240}
1241
1242static void __free_pages_ok(struct page *page, unsigned int order)
1243{
1244	unsigned long flags;
1245	int migratetype;
1246	unsigned long pfn = page_to_pfn(page);
1247
1248	if (!free_pages_prepare(page, order, true))
1249		return;
1250
1251	migratetype = get_pfnblock_migratetype(page, pfn);
1252	local_irq_save(flags);
1253	__count_vm_events(PGFREE, 1 << order);
1254	free_one_page(page_zone(page), page, pfn, order, migratetype);
1255	local_irq_restore(flags);
1256}
1257
1258static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1259{
1260	unsigned int nr_pages = 1 << order;
1261	struct page *p = page;
1262	unsigned int loop;
1263
1264	prefetchw(p);
1265	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1266		prefetchw(p + 1);
1267		__ClearPageReserved(p);
1268		set_page_count(p, 0);
1269	}
1270	__ClearPageReserved(p);
1271	set_page_count(p, 0);
1272
1273	page_zone(page)->managed_pages += nr_pages;
1274	set_page_refcounted(page);
1275	__free_pages(page, order);
1276}
1277
1278#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1279	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1280
1281static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1282
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1283int __meminit early_pfn_to_nid(unsigned long pfn)
1284{
1285	static DEFINE_SPINLOCK(early_pfn_lock);
1286	int nid;
1287
1288	spin_lock(&early_pfn_lock);
1289	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1290	if (nid < 0)
1291		nid = first_online_node;
1292	spin_unlock(&early_pfn_lock);
1293
1294	return nid;
1295}
1296#endif
1297
1298#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1299static inline bool __meminit __maybe_unused
1300meminit_pfn_in_nid(unsigned long pfn, int node,
1301		   struct mminit_pfnnid_cache *state)
1302{
1303	int nid;
1304
1305	nid = __early_pfn_to_nid(pfn, state);
1306	if (nid >= 0 && nid != node)
1307		return false;
1308	return true;
1309}
1310
1311/* Only safe to use early in boot when initialisation is single-threaded */
1312static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1313{
1314	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1315}
1316
1317#else
1318
1319static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1320{
1321	return true;
1322}
1323static inline bool __meminit  __maybe_unused
1324meminit_pfn_in_nid(unsigned long pfn, int node,
1325		   struct mminit_pfnnid_cache *state)
1326{
1327	return true;
1328}
1329#endif
1330
1331
1332void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1333							unsigned int order)
1334{
1335	if (early_page_uninitialised(pfn))
1336		return;
1337	return __free_pages_boot_core(page, order);
1338}
1339
1340/*
1341 * Check that the whole (or subset of) a pageblock given by the interval of
1342 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1343 * with the migration of free compaction scanner. The scanners then need to
1344 * use only pfn_valid_within() check for arches that allow holes within
1345 * pageblocks.
1346 *
1347 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1348 *
1349 * It's possible on some configurations to have a setup like node0 node1 node0
1350 * i.e. it's possible that all pages within a zones range of pages do not
1351 * belong to a single zone. We assume that a border between node0 and node1
1352 * can occur within a single pageblock, but not a node0 node1 node0
1353 * interleaving within a single pageblock. It is therefore sufficient to check
1354 * the first and last page of a pageblock and avoid checking each individual
1355 * page in a pageblock.
1356 */
1357struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1358				     unsigned long end_pfn, struct zone *zone)
1359{
1360	struct page *start_page;
1361	struct page *end_page;
1362
1363	/* end_pfn is one past the range we are checking */
1364	end_pfn--;
1365
1366	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1367		return NULL;
1368
1369	start_page = pfn_to_online_page(start_pfn);
1370	if (!start_page)
1371		return NULL;
1372
1373	if (page_zone(start_page) != zone)
1374		return NULL;
1375
1376	end_page = pfn_to_page(end_pfn);
1377
1378	/* This gives a shorter code than deriving page_zone(end_page) */
1379	if (page_zone_id(start_page) != page_zone_id(end_page))
1380		return NULL;
1381
1382	return start_page;
1383}
1384
1385void set_zone_contiguous(struct zone *zone)
1386{
1387	unsigned long block_start_pfn = zone->zone_start_pfn;
1388	unsigned long block_end_pfn;
1389
1390	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1391	for (; block_start_pfn < zone_end_pfn(zone);
1392			block_start_pfn = block_end_pfn,
1393			 block_end_pfn += pageblock_nr_pages) {
1394
1395		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1396
1397		if (!__pageblock_pfn_to_page(block_start_pfn,
1398					     block_end_pfn, zone))
1399			return;
 
1400	}
1401
1402	/* We confirm that there is no hole */
1403	zone->contiguous = true;
1404}
1405
1406void clear_zone_contiguous(struct zone *zone)
1407{
1408	zone->contiguous = false;
1409}
1410
1411#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1412static void __init deferred_free_range(unsigned long pfn,
1413				       unsigned long nr_pages)
1414{
1415	struct page *page;
1416	unsigned long i;
1417
1418	if (!nr_pages)
1419		return;
1420
1421	page = pfn_to_page(pfn);
1422
1423	/* Free a large naturally-aligned chunk if possible */
1424	if (nr_pages == pageblock_nr_pages &&
1425	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1426		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1427		__free_pages_boot_core(page, pageblock_order);
1428		return;
1429	}
1430
1431	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1432		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1433			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1434		__free_pages_boot_core(page, 0);
1435	}
1436}
1437
1438/* Completion tracking for deferred_init_memmap() threads */
1439static atomic_t pgdat_init_n_undone __initdata;
1440static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1441
1442static inline void __init pgdat_init_report_one_done(void)
1443{
1444	if (atomic_dec_and_test(&pgdat_init_n_undone))
1445		complete(&pgdat_init_all_done_comp);
1446}
1447
1448/*
1449 * Returns true if page needs to be initialized or freed to buddy allocator.
1450 *
1451 * First we check if pfn is valid on architectures where it is possible to have
1452 * holes within pageblock_nr_pages. On systems where it is not possible, this
1453 * function is optimized out.
1454 *
1455 * Then, we check if a current large page is valid by only checking the validity
1456 * of the head pfn.
1457 *
1458 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1459 * within a node: a pfn is between start and end of a node, but does not belong
1460 * to this memory node.
1461 */
1462static inline bool __init
1463deferred_pfn_valid(int nid, unsigned long pfn,
1464		   struct mminit_pfnnid_cache *nid_init_state)
1465{
1466	if (!pfn_valid_within(pfn))
1467		return false;
1468	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1469		return false;
1470	if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1471		return false;
1472	return true;
1473}
1474
1475/*
1476 * Free pages to buddy allocator. Try to free aligned pages in
1477 * pageblock_nr_pages sizes.
1478 */
1479static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1480				       unsigned long end_pfn)
1481{
1482	struct mminit_pfnnid_cache nid_init_state = { };
1483	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1484	unsigned long nr_free = 0;
1485
1486	for (; pfn < end_pfn; pfn++) {
1487		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1488			deferred_free_range(pfn - nr_free, nr_free);
1489			nr_free = 0;
1490		} else if (!(pfn & nr_pgmask)) {
1491			deferred_free_range(pfn - nr_free, nr_free);
1492			nr_free = 1;
1493			touch_nmi_watchdog();
1494		} else {
1495			nr_free++;
1496		}
1497	}
1498	/* Free the last block of pages to allocator */
1499	deferred_free_range(pfn - nr_free, nr_free);
1500}
1501
1502/*
1503 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1504 * by performing it only once every pageblock_nr_pages.
1505 * Return number of pages initialized.
1506 */
1507static unsigned long  __init deferred_init_pages(int nid, int zid,
1508						 unsigned long pfn,
1509						 unsigned long end_pfn)
1510{
1511	struct mminit_pfnnid_cache nid_init_state = { };
1512	unsigned long nr_pgmask = pageblock_nr_pages - 1;
 
1513	unsigned long nr_pages = 0;
 
1514	struct page *page = NULL;
1515
1516	for (; pfn < end_pfn; pfn++) {
1517		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1518			page = NULL;
1519			continue;
1520		} else if (!page || !(pfn & nr_pgmask)) {
1521			page = pfn_to_page(pfn);
1522			touch_nmi_watchdog();
1523		} else {
1524			page++;
1525		}
1526		__init_single_page(page, pfn, zid, nid);
1527		nr_pages++;
1528	}
1529	return (nr_pages);
1530}
1531
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1532/* Initialise remaining memory on a node */
1533static int __init deferred_init_memmap(void *data)
1534{
1535	pg_data_t *pgdat = data;
1536	int nid = pgdat->node_id;
 
 
1537	unsigned long start = jiffies;
1538	unsigned long nr_pages = 0;
1539	unsigned long spfn, epfn, first_init_pfn, flags;
1540	phys_addr_t spa, epa;
1541	int zid;
1542	struct zone *zone;
1543	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1544	u64 i;
1545
1546	/* Bind memory initialisation thread to a local node if possible */
1547	if (!cpumask_empty(cpumask))
1548		set_cpus_allowed_ptr(current, cpumask);
1549
1550	pgdat_resize_lock(pgdat, &flags);
1551	first_init_pfn = pgdat->first_deferred_pfn;
1552	if (first_init_pfn == ULONG_MAX) {
1553		pgdat_resize_unlock(pgdat, &flags);
1554		pgdat_init_report_one_done();
1555		return 0;
1556	}
1557
1558	/* Sanity check boundaries */
1559	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1560	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1561	pgdat->first_deferred_pfn = ULONG_MAX;
1562
 
 
 
 
 
 
 
1563	/* Only the highest zone is deferred so find it */
1564	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1565		zone = pgdat->node_zones + zid;
1566		if (first_init_pfn < zone_end_pfn(zone))
1567			break;
1568	}
1569	first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1570
1571	/*
1572	 * Initialize and free pages. We do it in two loops: first we initialize
1573	 * struct page, than free to buddy allocator, because while we are
1574	 * freeing pages we can access pages that are ahead (computing buddy
1575	 * page in __free_one_page()).
1576	 */
1577	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1578		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1579		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1580		nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1581	}
1582	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1583		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1584		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1585		deferred_free_pages(nid, zid, spfn, epfn);
 
 
 
 
 
 
 
1586	}
1587	pgdat_resize_unlock(pgdat, &flags);
1588
1589	/* Sanity check that the next zone really is unpopulated */
1590	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1591
1592	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1593					jiffies_to_msecs(jiffies - start));
1594
1595	pgdat_init_report_one_done();
1596	return 0;
1597}
1598
1599/*
1600 * During boot we initialize deferred pages on-demand, as needed, but once
1601 * page_alloc_init_late() has finished, the deferred pages are all initialized,
1602 * and we can permanently disable that path.
1603 */
1604static DEFINE_STATIC_KEY_TRUE(deferred_pages);
1605
1606/*
1607 * If this zone has deferred pages, try to grow it by initializing enough
1608 * deferred pages to satisfy the allocation specified by order, rounded up to
1609 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
1610 * of SECTION_SIZE bytes by initializing struct pages in increments of
1611 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1612 *
1613 * Return true when zone was grown, otherwise return false. We return true even
1614 * when we grow less than requested, to let the caller decide if there are
1615 * enough pages to satisfy the allocation.
1616 *
1617 * Note: We use noinline because this function is needed only during boot, and
1618 * it is called from a __ref function _deferred_grow_zone. This way we are
1619 * making sure that it is not inlined into permanent text section.
1620 */
1621static noinline bool __init
1622deferred_grow_zone(struct zone *zone, unsigned int order)
1623{
1624	int zid = zone_idx(zone);
1625	int nid = zone_to_nid(zone);
1626	pg_data_t *pgdat = NODE_DATA(nid);
1627	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1628	unsigned long nr_pages = 0;
1629	unsigned long first_init_pfn, spfn, epfn, t, flags;
1630	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1631	phys_addr_t spa, epa;
 
1632	u64 i;
1633
1634	/* Only the last zone may have deferred pages */
1635	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1636		return false;
1637
1638	pgdat_resize_lock(pgdat, &flags);
1639
1640	/*
1641	 * If deferred pages have been initialized while we were waiting for
1642	 * the lock, return true, as the zone was grown.  The caller will retry
1643	 * this zone.  We won't return to this function since the caller also
1644	 * has this static branch.
1645	 */
1646	if (!static_branch_unlikely(&deferred_pages)) {
1647		pgdat_resize_unlock(pgdat, &flags);
1648		return true;
1649	}
1650
1651	/*
1652	 * If someone grew this zone while we were waiting for spinlock, return
1653	 * true, as there might be enough pages already.
1654	 */
1655	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1656		pgdat_resize_unlock(pgdat, &flags);
1657		return true;
1658	}
1659
1660	first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
1661
1662	if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
 
1663		pgdat_resize_unlock(pgdat, &flags);
1664		return false;
 
1665	}
1666
1667	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1668		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1669		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1670
1671		while (spfn < epfn && nr_pages < nr_pages_needed) {
1672			t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
1673			first_deferred_pfn = min(t, epfn);
1674			nr_pages += deferred_init_pages(nid, zid, spfn,
1675							first_deferred_pfn);
1676			spfn = first_deferred_pfn;
1677		}
1678
1679		if (nr_pages >= nr_pages_needed)
1680			break;
1681	}
1682
1683	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1684		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1685		epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
1686		deferred_free_pages(nid, zid, spfn, epfn);
1687
1688		if (first_deferred_pfn == epfn)
 
1689			break;
1690	}
1691	pgdat->first_deferred_pfn = first_deferred_pfn;
 
1692	pgdat_resize_unlock(pgdat, &flags);
1693
1694	return nr_pages > 0;
1695}
1696
1697/*
1698 * deferred_grow_zone() is __init, but it is called from
1699 * get_page_from_freelist() during early boot until deferred_pages permanently
1700 * disables this call. This is why we have refdata wrapper to avoid warning,
1701 * and to ensure that the function body gets unloaded.
1702 */
1703static bool __ref
1704_deferred_grow_zone(struct zone *zone, unsigned int order)
1705{
1706	return deferred_grow_zone(zone, order);
1707}
1708
1709#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1710
1711void __init page_alloc_init_late(void)
1712{
1713	struct zone *zone;
 
1714
1715#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1716	int nid;
1717
1718	/* There will be num_node_state(N_MEMORY) threads */
1719	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1720	for_each_node_state(nid, N_MEMORY) {
1721		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1722	}
1723
1724	/* Block until all are initialised */
1725	wait_for_completion(&pgdat_init_all_done_comp);
1726
1727	/*
 
 
 
 
 
 
 
 
1728	 * We initialized the rest of the deferred pages.  Permanently disable
1729	 * on-demand struct page initialization.
1730	 */
1731	static_branch_disable(&deferred_pages);
1732
1733	/* Reinit limits that are based on free pages after the kernel is up */
1734	files_maxfiles_init();
1735#endif
1736#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1737	/* Discard memblock private memory */
1738	memblock_discard();
1739#endif
 
 
1740
1741	for_each_populated_zone(zone)
1742		set_zone_contiguous(zone);
1743}
1744
1745#ifdef CONFIG_CMA
1746/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1747void __init init_cma_reserved_pageblock(struct page *page)
1748{
1749	unsigned i = pageblock_nr_pages;
1750	struct page *p = page;
1751
1752	do {
1753		__ClearPageReserved(p);
1754		set_page_count(p, 0);
1755	} while (++p, --i);
1756
1757	set_pageblock_migratetype(page, MIGRATE_CMA);
1758
1759	if (pageblock_order >= MAX_ORDER) {
1760		i = pageblock_nr_pages;
1761		p = page;
1762		do {
1763			set_page_refcounted(p);
1764			__free_pages(p, MAX_ORDER - 1);
1765			p += MAX_ORDER_NR_PAGES;
1766		} while (i -= MAX_ORDER_NR_PAGES);
1767	} else {
1768		set_page_refcounted(page);
1769		__free_pages(page, pageblock_order);
1770	}
1771
1772	adjust_managed_page_count(page, pageblock_nr_pages);
1773}
1774#endif
1775
1776/*
1777 * The order of subdivision here is critical for the IO subsystem.
1778 * Please do not alter this order without good reasons and regression
1779 * testing. Specifically, as large blocks of memory are subdivided,
1780 * the order in which smaller blocks are delivered depends on the order
1781 * they're subdivided in this function. This is the primary factor
1782 * influencing the order in which pages are delivered to the IO
1783 * subsystem according to empirical testing, and this is also justified
1784 * by considering the behavior of a buddy system containing a single
1785 * large block of memory acted on by a series of small allocations.
1786 * This behavior is a critical factor in sglist merging's success.
1787 *
1788 * -- nyc
1789 */
1790static inline void expand(struct zone *zone, struct page *page,
1791	int low, int high, struct free_area *area,
1792	int migratetype)
1793{
1794	unsigned long size = 1 << high;
1795
1796	while (high > low) {
1797		area--;
1798		high--;
1799		size >>= 1;
1800		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1801
1802		/*
1803		 * Mark as guard pages (or page), that will allow to
1804		 * merge back to allocator when buddy will be freed.
1805		 * Corresponding page table entries will not be touched,
1806		 * pages will stay not present in virtual address space
1807		 */
1808		if (set_page_guard(zone, &page[size], high, migratetype))
1809			continue;
1810
1811		list_add(&page[size].lru, &area->free_list[migratetype]);
1812		area->nr_free++;
1813		set_page_order(&page[size], high);
1814	}
1815}
1816
1817static void check_new_page_bad(struct page *page)
1818{
1819	const char *bad_reason = NULL;
1820	unsigned long bad_flags = 0;
1821
1822	if (unlikely(atomic_read(&page->_mapcount) != -1))
1823		bad_reason = "nonzero mapcount";
1824	if (unlikely(page->mapping != NULL))
1825		bad_reason = "non-NULL mapping";
1826	if (unlikely(page_ref_count(page) != 0))
1827		bad_reason = "nonzero _count";
1828	if (unlikely(page->flags & __PG_HWPOISON)) {
1829		bad_reason = "HWPoisoned (hardware-corrupted)";
1830		bad_flags = __PG_HWPOISON;
1831		/* Don't complain about hwpoisoned pages */
1832		page_mapcount_reset(page); /* remove PageBuddy */
1833		return;
1834	}
1835	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1836		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1837		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1838	}
1839#ifdef CONFIG_MEMCG
1840	if (unlikely(page->mem_cgroup))
1841		bad_reason = "page still charged to cgroup";
1842#endif
1843	bad_page(page, bad_reason, bad_flags);
1844}
1845
1846/*
1847 * This page is about to be returned from the page allocator
1848 */
1849static inline int check_new_page(struct page *page)
1850{
1851	if (likely(page_expected_state(page,
1852				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1853		return 0;
1854
1855	check_new_page_bad(page);
1856	return 1;
1857}
1858
1859static inline bool free_pages_prezeroed(void)
1860{
1861	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1862		page_poisoning_enabled();
1863}
1864
1865#ifdef CONFIG_DEBUG_VM
1866static bool check_pcp_refill(struct page *page)
 
 
 
 
 
1867{
1868	return false;
 
 
 
1869}
1870
1871static bool check_new_pcp(struct page *page)
1872{
1873	return check_new_page(page);
1874}
1875#else
1876static bool check_pcp_refill(struct page *page)
 
 
 
 
 
1877{
1878	return check_new_page(page);
1879}
1880static bool check_new_pcp(struct page *page)
1881{
1882	return false;
 
 
 
1883}
1884#endif /* CONFIG_DEBUG_VM */
1885
1886static bool check_new_pages(struct page *page, unsigned int order)
1887{
1888	int i;
1889	for (i = 0; i < (1 << order); i++) {
1890		struct page *p = page + i;
1891
1892		if (unlikely(check_new_page(p)))
1893			return true;
1894	}
1895
1896	return false;
1897}
1898
1899inline void post_alloc_hook(struct page *page, unsigned int order,
1900				gfp_t gfp_flags)
1901{
1902	set_page_private(page, 0);
1903	set_page_refcounted(page);
1904
1905	arch_alloc_page(page, order);
1906	kernel_map_pages(page, 1 << order, 1);
1907	kernel_poison_pages(page, 1 << order, 1);
1908	kasan_alloc_pages(page, order);
 
1909	set_page_owner(page, order, gfp_flags);
1910}
1911
1912static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1913							unsigned int alloc_flags)
1914{
1915	int i;
1916
1917	post_alloc_hook(page, order, gfp_flags);
1918
1919	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1920		for (i = 0; i < (1 << order); i++)
1921			clear_highpage(page + i);
1922
1923	if (order && (gfp_flags & __GFP_COMP))
1924		prep_compound_page(page, order);
1925
1926	/*
1927	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1928	 * allocate the page. The expectation is that the caller is taking
1929	 * steps that will free more memory. The caller should avoid the page
1930	 * being used for !PFMEMALLOC purposes.
1931	 */
1932	if (alloc_flags & ALLOC_NO_WATERMARKS)
1933		set_page_pfmemalloc(page);
1934	else
1935		clear_page_pfmemalloc(page);
1936}
1937
1938/*
1939 * Go through the free lists for the given migratetype and remove
1940 * the smallest available page from the freelists
1941 */
1942static __always_inline
1943struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1944						int migratetype)
1945{
1946	unsigned int current_order;
1947	struct free_area *area;
1948	struct page *page;
1949
1950	/* Find a page of the appropriate size in the preferred list */
1951	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1952		area = &(zone->free_area[current_order]);
1953		page = list_first_entry_or_null(&area->free_list[migratetype],
1954							struct page, lru);
1955		if (!page)
1956			continue;
1957		list_del(&page->lru);
1958		rmv_page_order(page);
1959		area->nr_free--;
1960		expand(zone, page, order, current_order, area, migratetype);
1961		set_pcppage_migratetype(page, migratetype);
1962		return page;
1963	}
1964
1965	return NULL;
1966}
1967
1968
1969/*
1970 * This array describes the order lists are fallen back to when
1971 * the free lists for the desirable migrate type are depleted
1972 */
1973static int fallbacks[MIGRATE_TYPES][4] = {
1974	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1975	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1976	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
 
1977#ifdef CONFIG_CMA
1978	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1979#endif
1980#ifdef CONFIG_MEMORY_ISOLATION
1981	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1982#endif
1983};
1984
1985#ifdef CONFIG_CMA
1986static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1987					unsigned int order)
1988{
1989	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1990}
1991#else
1992static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1993					unsigned int order) { return NULL; }
1994#endif
1995
1996/*
1997 * Move the free pages in a range to the free lists of the requested type.
1998 * Note that start_page and end_pages are not aligned on a pageblock
1999 * boundary. If alignment is required, use move_freepages_block()
2000 */
2001static int move_freepages(struct zone *zone,
2002			  struct page *start_page, struct page *end_page,
2003			  int migratetype, int *num_movable)
2004{
2005	struct page *page;
2006	unsigned int order;
2007	int pages_moved = 0;
2008
2009#ifndef CONFIG_HOLES_IN_ZONE
2010	/*
2011	 * page_zone is not safe to call in this context when
2012	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2013	 * anyway as we check zone boundaries in move_freepages_block().
2014	 * Remove at a later date when no bug reports exist related to
2015	 * grouping pages by mobility
2016	 */
2017	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2018	          pfn_valid(page_to_pfn(end_page)) &&
2019	          page_zone(start_page) != page_zone(end_page));
2020#endif
2021
2022	if (num_movable)
2023		*num_movable = 0;
2024
2025	for (page = start_page; page <= end_page;) {
2026		if (!pfn_valid_within(page_to_pfn(page))) {
2027			page++;
2028			continue;
2029		}
2030
2031		/* Make sure we are not inadvertently changing nodes */
2032		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2033
2034		if (!PageBuddy(page)) {
2035			/*
2036			 * We assume that pages that could be isolated for
2037			 * migration are movable. But we don't actually try
2038			 * isolating, as that would be expensive.
2039			 */
2040			if (num_movable &&
2041					(PageLRU(page) || __PageMovable(page)))
2042				(*num_movable)++;
2043
2044			page++;
2045			continue;
2046		}
2047
 
 
 
 
2048		order = page_order(page);
2049		list_move(&page->lru,
2050			  &zone->free_area[order].free_list[migratetype]);
2051		page += 1 << order;
2052		pages_moved += 1 << order;
2053	}
2054
2055	return pages_moved;
2056}
2057
2058int move_freepages_block(struct zone *zone, struct page *page,
2059				int migratetype, int *num_movable)
2060{
2061	unsigned long start_pfn, end_pfn;
2062	struct page *start_page, *end_page;
2063
 
 
 
2064	start_pfn = page_to_pfn(page);
2065	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2066	start_page = pfn_to_page(start_pfn);
2067	end_page = start_page + pageblock_nr_pages - 1;
2068	end_pfn = start_pfn + pageblock_nr_pages - 1;
2069
2070	/* Do not cross zone boundaries */
2071	if (!zone_spans_pfn(zone, start_pfn))
2072		start_page = page;
2073	if (!zone_spans_pfn(zone, end_pfn))
2074		return 0;
2075
2076	return move_freepages(zone, start_page, end_page, migratetype,
2077								num_movable);
2078}
2079
2080static void change_pageblock_range(struct page *pageblock_page,
2081					int start_order, int migratetype)
2082{
2083	int nr_pageblocks = 1 << (start_order - pageblock_order);
2084
2085	while (nr_pageblocks--) {
2086		set_pageblock_migratetype(pageblock_page, migratetype);
2087		pageblock_page += pageblock_nr_pages;
2088	}
2089}
2090
2091/*
2092 * When we are falling back to another migratetype during allocation, try to
2093 * steal extra free pages from the same pageblocks to satisfy further
2094 * allocations, instead of polluting multiple pageblocks.
2095 *
2096 * If we are stealing a relatively large buddy page, it is likely there will
2097 * be more free pages in the pageblock, so try to steal them all. For
2098 * reclaimable and unmovable allocations, we steal regardless of page size,
2099 * as fragmentation caused by those allocations polluting movable pageblocks
2100 * is worse than movable allocations stealing from unmovable and reclaimable
2101 * pageblocks.
2102 */
2103static bool can_steal_fallback(unsigned int order, int start_mt)
2104{
2105	/*
2106	 * Leaving this order check is intended, although there is
2107	 * relaxed order check in next check. The reason is that
2108	 * we can actually steal whole pageblock if this condition met,
2109	 * but, below check doesn't guarantee it and that is just heuristic
2110	 * so could be changed anytime.
2111	 */
2112	if (order >= pageblock_order)
2113		return true;
2114
2115	if (order >= pageblock_order / 2 ||
2116		start_mt == MIGRATE_RECLAIMABLE ||
2117		start_mt == MIGRATE_UNMOVABLE ||
2118		page_group_by_mobility_disabled)
2119		return true;
2120
2121	return false;
2122}
2123
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2124/*
2125 * This function implements actual steal behaviour. If order is large enough,
2126 * we can steal whole pageblock. If not, we first move freepages in this
2127 * pageblock to our migratetype and determine how many already-allocated pages
2128 * are there in the pageblock with a compatible migratetype. If at least half
2129 * of pages are free or compatible, we can change migratetype of the pageblock
2130 * itself, so pages freed in the future will be put on the correct free list.
2131 */
2132static void steal_suitable_fallback(struct zone *zone, struct page *page,
2133					int start_type, bool whole_block)
2134{
2135	unsigned int current_order = page_order(page);
2136	struct free_area *area;
2137	int free_pages, movable_pages, alike_pages;
2138	int old_block_type;
2139
2140	old_block_type = get_pageblock_migratetype(page);
2141
2142	/*
2143	 * This can happen due to races and we want to prevent broken
2144	 * highatomic accounting.
2145	 */
2146	if (is_migrate_highatomic(old_block_type))
2147		goto single_page;
2148
2149	/* Take ownership for orders >= pageblock_order */
2150	if (current_order >= pageblock_order) {
2151		change_pageblock_range(page, current_order, start_type);
2152		goto single_page;
2153	}
2154
 
 
 
 
 
 
 
 
 
2155	/* We are not allowed to try stealing from the whole block */
2156	if (!whole_block)
2157		goto single_page;
2158
2159	free_pages = move_freepages_block(zone, page, start_type,
2160						&movable_pages);
2161	/*
2162	 * Determine how many pages are compatible with our allocation.
2163	 * For movable allocation, it's the number of movable pages which
2164	 * we just obtained. For other types it's a bit more tricky.
2165	 */
2166	if (start_type == MIGRATE_MOVABLE) {
2167		alike_pages = movable_pages;
2168	} else {
2169		/*
2170		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2171		 * to MOVABLE pageblock, consider all non-movable pages as
2172		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2173		 * vice versa, be conservative since we can't distinguish the
2174		 * exact migratetype of non-movable pages.
2175		 */
2176		if (old_block_type == MIGRATE_MOVABLE)
2177			alike_pages = pageblock_nr_pages
2178						- (free_pages + movable_pages);
2179		else
2180			alike_pages = 0;
2181	}
2182
2183	/* moving whole block can fail due to zone boundary conditions */
2184	if (!free_pages)
2185		goto single_page;
2186
2187	/*
2188	 * If a sufficient number of pages in the block are either free or of
2189	 * comparable migratability as our allocation, claim the whole block.
2190	 */
2191	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2192			page_group_by_mobility_disabled)
2193		set_pageblock_migratetype(page, start_type);
2194
2195	return;
2196
2197single_page:
2198	area = &zone->free_area[current_order];
2199	list_move(&page->lru, &area->free_list[start_type]);
2200}
2201
2202/*
2203 * Check whether there is a suitable fallback freepage with requested order.
2204 * If only_stealable is true, this function returns fallback_mt only if
2205 * we can steal other freepages all together. This would help to reduce
2206 * fragmentation due to mixed migratetype pages in one pageblock.
2207 */
2208int find_suitable_fallback(struct free_area *area, unsigned int order,
2209			int migratetype, bool only_stealable, bool *can_steal)
2210{
2211	int i;
2212	int fallback_mt;
2213
2214	if (area->nr_free == 0)
2215		return -1;
2216
2217	*can_steal = false;
2218	for (i = 0;; i++) {
2219		fallback_mt = fallbacks[migratetype][i];
2220		if (fallback_mt == MIGRATE_TYPES)
2221			break;
2222
2223		if (list_empty(&area->free_list[fallback_mt]))
2224			continue;
2225
2226		if (can_steal_fallback(order, migratetype))
2227			*can_steal = true;
2228
2229		if (!only_stealable)
2230			return fallback_mt;
2231
2232		if (*can_steal)
2233			return fallback_mt;
2234	}
2235
2236	return -1;
2237}
2238
2239/*
2240 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2241 * there are no empty page blocks that contain a page with a suitable order
2242 */
2243static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2244				unsigned int alloc_order)
2245{
2246	int mt;
2247	unsigned long max_managed, flags;
2248
2249	/*
2250	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2251	 * Check is race-prone but harmless.
2252	 */
2253	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2254	if (zone->nr_reserved_highatomic >= max_managed)
2255		return;
2256
2257	spin_lock_irqsave(&zone->lock, flags);
2258
2259	/* Recheck the nr_reserved_highatomic limit under the lock */
2260	if (zone->nr_reserved_highatomic >= max_managed)
2261		goto out_unlock;
2262
2263	/* Yoink! */
2264	mt = get_pageblock_migratetype(page);
2265	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2266	    && !is_migrate_cma(mt)) {
2267		zone->nr_reserved_highatomic += pageblock_nr_pages;
2268		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2269		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2270	}
2271
2272out_unlock:
2273	spin_unlock_irqrestore(&zone->lock, flags);
2274}
2275
2276/*
2277 * Used when an allocation is about to fail under memory pressure. This
2278 * potentially hurts the reliability of high-order allocations when under
2279 * intense memory pressure but failed atomic allocations should be easier
2280 * to recover from than an OOM.
2281 *
2282 * If @force is true, try to unreserve a pageblock even though highatomic
2283 * pageblock is exhausted.
2284 */
2285static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2286						bool force)
2287{
2288	struct zonelist *zonelist = ac->zonelist;
2289	unsigned long flags;
2290	struct zoneref *z;
2291	struct zone *zone;
2292	struct page *page;
2293	int order;
2294	bool ret;
2295
2296	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2297								ac->nodemask) {
2298		/*
2299		 * Preserve at least one pageblock unless memory pressure
2300		 * is really high.
2301		 */
2302		if (!force && zone->nr_reserved_highatomic <=
2303					pageblock_nr_pages)
2304			continue;
2305
2306		spin_lock_irqsave(&zone->lock, flags);
2307		for (order = 0; order < MAX_ORDER; order++) {
2308			struct free_area *area = &(zone->free_area[order]);
2309
2310			page = list_first_entry_or_null(
2311					&area->free_list[MIGRATE_HIGHATOMIC],
2312					struct page, lru);
2313			if (!page)
2314				continue;
2315
2316			/*
2317			 * In page freeing path, migratetype change is racy so
2318			 * we can counter several free pages in a pageblock
2319			 * in this loop althoug we changed the pageblock type
2320			 * from highatomic to ac->migratetype. So we should
2321			 * adjust the count once.
2322			 */
2323			if (is_migrate_highatomic_page(page)) {
2324				/*
2325				 * It should never happen but changes to
2326				 * locking could inadvertently allow a per-cpu
2327				 * drain to add pages to MIGRATE_HIGHATOMIC
2328				 * while unreserving so be safe and watch for
2329				 * underflows.
2330				 */
2331				zone->nr_reserved_highatomic -= min(
2332						pageblock_nr_pages,
2333						zone->nr_reserved_highatomic);
2334			}
2335
2336			/*
2337			 * Convert to ac->migratetype and avoid the normal
2338			 * pageblock stealing heuristics. Minimally, the caller
2339			 * is doing the work and needs the pages. More
2340			 * importantly, if the block was always converted to
2341			 * MIGRATE_UNMOVABLE or another type then the number
2342			 * of pageblocks that cannot be completely freed
2343			 * may increase.
2344			 */
2345			set_pageblock_migratetype(page, ac->migratetype);
2346			ret = move_freepages_block(zone, page, ac->migratetype,
2347									NULL);
2348			if (ret) {
2349				spin_unlock_irqrestore(&zone->lock, flags);
2350				return ret;
2351			}
2352		}
2353		spin_unlock_irqrestore(&zone->lock, flags);
2354	}
2355
2356	return false;
2357}
2358
2359/*
2360 * Try finding a free buddy page on the fallback list and put it on the free
2361 * list of requested migratetype, possibly along with other pages from the same
2362 * block, depending on fragmentation avoidance heuristics. Returns true if
2363 * fallback was found so that __rmqueue_smallest() can grab it.
2364 *
2365 * The use of signed ints for order and current_order is a deliberate
2366 * deviation from the rest of this file, to make the for loop
2367 * condition simpler.
2368 */
2369static __always_inline bool
2370__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
 
2371{
2372	struct free_area *area;
2373	int current_order;
 
2374	struct page *page;
2375	int fallback_mt;
2376	bool can_steal;
2377
2378	/*
 
 
 
 
 
 
 
 
2379	 * Find the largest available free page in the other list. This roughly
2380	 * approximates finding the pageblock with the most free pages, which
2381	 * would be too costly to do exactly.
2382	 */
2383	for (current_order = MAX_ORDER - 1; current_order >= order;
2384				--current_order) {
2385		area = &(zone->free_area[current_order]);
2386		fallback_mt = find_suitable_fallback(area, current_order,
2387				start_migratetype, false, &can_steal);
2388		if (fallback_mt == -1)
2389			continue;
2390
2391		/*
2392		 * We cannot steal all free pages from the pageblock and the
2393		 * requested migratetype is movable. In that case it's better to
2394		 * steal and split the smallest available page instead of the
2395		 * largest available page, because even if the next movable
2396		 * allocation falls back into a different pageblock than this
2397		 * one, it won't cause permanent fragmentation.
2398		 */
2399		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2400					&& current_order > order)
2401			goto find_smallest;
2402
2403		goto do_steal;
2404	}
2405
2406	return false;
2407
2408find_smallest:
2409	for (current_order = order; current_order < MAX_ORDER;
2410							current_order++) {
2411		area = &(zone->free_area[current_order]);
2412		fallback_mt = find_suitable_fallback(area, current_order,
2413				start_migratetype, false, &can_steal);
2414		if (fallback_mt != -1)
2415			break;
2416	}
2417
2418	/*
2419	 * This should not happen - we already found a suitable fallback
2420	 * when looking for the largest page.
2421	 */
2422	VM_BUG_ON(current_order == MAX_ORDER);
2423
2424do_steal:
2425	page = list_first_entry(&area->free_list[fallback_mt],
2426							struct page, lru);
2427
2428	steal_suitable_fallback(zone, page, start_migratetype, can_steal);
 
2429
2430	trace_mm_page_alloc_extfrag(page, order, current_order,
2431		start_migratetype, fallback_mt);
2432
2433	return true;
2434
2435}
2436
2437/*
2438 * Do the hard work of removing an element from the buddy allocator.
2439 * Call me with the zone->lock already held.
2440 */
2441static __always_inline struct page *
2442__rmqueue(struct zone *zone, unsigned int order, int migratetype)
 
2443{
2444	struct page *page;
2445
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2446retry:
2447	page = __rmqueue_smallest(zone, order, migratetype);
2448	if (unlikely(!page)) {
2449		if (migratetype == MIGRATE_MOVABLE)
2450			page = __rmqueue_cma_fallback(zone, order);
2451
2452		if (!page && __rmqueue_fallback(zone, order, migratetype))
 
2453			goto retry;
2454	}
2455
2456	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2457	return page;
2458}
2459
2460/*
2461 * Obtain a specified number of elements from the buddy allocator, all under
2462 * a single hold of the lock, for efficiency.  Add them to the supplied list.
2463 * Returns the number of new pages which were placed at *list.
2464 */
2465static int rmqueue_bulk(struct zone *zone, unsigned int order,
2466			unsigned long count, struct list_head *list,
2467			int migratetype)
2468{
2469	int i, alloced = 0;
2470
2471	spin_lock(&zone->lock);
2472	for (i = 0; i < count; ++i) {
2473		struct page *page = __rmqueue(zone, order, migratetype);
 
2474		if (unlikely(page == NULL))
2475			break;
2476
2477		if (unlikely(check_pcp_refill(page)))
2478			continue;
2479
2480		/*
2481		 * Split buddy pages returned by expand() are received here in
2482		 * physical page order. The page is added to the tail of
2483		 * caller's list. From the callers perspective, the linked list
2484		 * is ordered by page number under some conditions. This is
2485		 * useful for IO devices that can forward direction from the
2486		 * head, thus also in the physical page order. This is useful
2487		 * for IO devices that can merge IO requests if the physical
2488		 * pages are ordered properly.
2489		 */
2490		list_add_tail(&page->lru, list);
2491		alloced++;
2492		if (is_migrate_cma(get_pcppage_migratetype(page)))
2493			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2494					      -(1 << order));
2495	}
2496
2497	/*
2498	 * i pages were removed from the buddy list even if some leak due
2499	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2500	 * on i. Do not confuse with 'alloced' which is the number of
2501	 * pages added to the pcp list.
2502	 */
2503	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2504	spin_unlock(&zone->lock);
2505	return alloced;
2506}
2507
2508#ifdef CONFIG_NUMA
2509/*
2510 * Called from the vmstat counter updater to drain pagesets of this
2511 * currently executing processor on remote nodes after they have
2512 * expired.
2513 *
2514 * Note that this function must be called with the thread pinned to
2515 * a single processor.
2516 */
2517void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2518{
2519	unsigned long flags;
2520	int to_drain, batch;
2521
2522	local_irq_save(flags);
2523	batch = READ_ONCE(pcp->batch);
2524	to_drain = min(pcp->count, batch);
2525	if (to_drain > 0)
2526		free_pcppages_bulk(zone, to_drain, pcp);
2527	local_irq_restore(flags);
2528}
2529#endif
2530
2531/*
2532 * Drain pcplists of the indicated processor and zone.
2533 *
2534 * The processor must either be the current processor and the
2535 * thread pinned to the current processor or a processor that
2536 * is not online.
2537 */
2538static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2539{
2540	unsigned long flags;
2541	struct per_cpu_pageset *pset;
2542	struct per_cpu_pages *pcp;
2543
2544	local_irq_save(flags);
2545	pset = per_cpu_ptr(zone->pageset, cpu);
2546
2547	pcp = &pset->pcp;
2548	if (pcp->count)
2549		free_pcppages_bulk(zone, pcp->count, pcp);
2550	local_irq_restore(flags);
2551}
2552
2553/*
2554 * Drain pcplists of all zones on the indicated processor.
2555 *
2556 * The processor must either be the current processor and the
2557 * thread pinned to the current processor or a processor that
2558 * is not online.
2559 */
2560static void drain_pages(unsigned int cpu)
2561{
2562	struct zone *zone;
2563
2564	for_each_populated_zone(zone) {
2565		drain_pages_zone(cpu, zone);
2566	}
2567}
2568
2569/*
2570 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2571 *
2572 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2573 * the single zone's pages.
2574 */
2575void drain_local_pages(struct zone *zone)
2576{
2577	int cpu = smp_processor_id();
2578
2579	if (zone)
2580		drain_pages_zone(cpu, zone);
2581	else
2582		drain_pages(cpu);
2583}
2584
2585static void drain_local_pages_wq(struct work_struct *work)
2586{
 
 
 
 
2587	/*
2588	 * drain_all_pages doesn't use proper cpu hotplug protection so
2589	 * we can race with cpu offline when the WQ can move this from
2590	 * a cpu pinned worker to an unbound one. We can operate on a different
2591	 * cpu which is allright but we also have to make sure to not move to
2592	 * a different one.
2593	 */
2594	preempt_disable();
2595	drain_local_pages(NULL);
2596	preempt_enable();
2597}
2598
2599/*
2600 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2601 *
2602 * When zone parameter is non-NULL, spill just the single zone's pages.
2603 *
2604 * Note that this can be extremely slow as the draining happens in a workqueue.
2605 */
2606void drain_all_pages(struct zone *zone)
2607{
2608	int cpu;
2609
2610	/*
2611	 * Allocate in the BSS so we wont require allocation in
2612	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2613	 */
2614	static cpumask_t cpus_with_pcps;
2615
2616	/*
2617	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2618	 * initialized.
2619	 */
2620	if (WARN_ON_ONCE(!mm_percpu_wq))
2621		return;
2622
2623	/*
2624	 * Do not drain if one is already in progress unless it's specific to
2625	 * a zone. Such callers are primarily CMA and memory hotplug and need
2626	 * the drain to be complete when the call returns.
2627	 */
2628	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2629		if (!zone)
2630			return;
2631		mutex_lock(&pcpu_drain_mutex);
2632	}
2633
2634	/*
2635	 * We don't care about racing with CPU hotplug event
2636	 * as offline notification will cause the notified
2637	 * cpu to drain that CPU pcps and on_each_cpu_mask
2638	 * disables preemption as part of its processing
2639	 */
2640	for_each_online_cpu(cpu) {
2641		struct per_cpu_pageset *pcp;
2642		struct zone *z;
2643		bool has_pcps = false;
2644
2645		if (zone) {
2646			pcp = per_cpu_ptr(zone->pageset, cpu);
2647			if (pcp->pcp.count)
2648				has_pcps = true;
2649		} else {
2650			for_each_populated_zone(z) {
2651				pcp = per_cpu_ptr(z->pageset, cpu);
2652				if (pcp->pcp.count) {
2653					has_pcps = true;
2654					break;
2655				}
2656			}
2657		}
2658
2659		if (has_pcps)
2660			cpumask_set_cpu(cpu, &cpus_with_pcps);
2661		else
2662			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2663	}
2664
2665	for_each_cpu(cpu, &cpus_with_pcps) {
2666		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2667		INIT_WORK(work, drain_local_pages_wq);
2668		queue_work_on(cpu, mm_percpu_wq, work);
 
 
2669	}
2670	for_each_cpu(cpu, &cpus_with_pcps)
2671		flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2672
2673	mutex_unlock(&pcpu_drain_mutex);
2674}
2675
2676#ifdef CONFIG_HIBERNATION
2677
2678/*
2679 * Touch the watchdog for every WD_PAGE_COUNT pages.
2680 */
2681#define WD_PAGE_COUNT	(128*1024)
2682
2683void mark_free_pages(struct zone *zone)
2684{
2685	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2686	unsigned long flags;
2687	unsigned int order, t;
2688	struct page *page;
2689
2690	if (zone_is_empty(zone))
2691		return;
2692
2693	spin_lock_irqsave(&zone->lock, flags);
2694
2695	max_zone_pfn = zone_end_pfn(zone);
2696	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2697		if (pfn_valid(pfn)) {
2698			page = pfn_to_page(pfn);
2699
2700			if (!--page_count) {
2701				touch_nmi_watchdog();
2702				page_count = WD_PAGE_COUNT;
2703			}
2704
2705			if (page_zone(page) != zone)
2706				continue;
2707
2708			if (!swsusp_page_is_forbidden(page))
2709				swsusp_unset_page_free(page);
2710		}
2711
2712	for_each_migratetype_order(order, t) {
2713		list_for_each_entry(page,
2714				&zone->free_area[order].free_list[t], lru) {
2715			unsigned long i;
2716
2717			pfn = page_to_pfn(page);
2718			for (i = 0; i < (1UL << order); i++) {
2719				if (!--page_count) {
2720					touch_nmi_watchdog();
2721					page_count = WD_PAGE_COUNT;
2722				}
2723				swsusp_set_page_free(pfn_to_page(pfn + i));
2724			}
2725		}
2726	}
2727	spin_unlock_irqrestore(&zone->lock, flags);
2728}
2729#endif /* CONFIG_PM */
2730
2731static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2732{
2733	int migratetype;
2734
2735	if (!free_pcp_prepare(page))
2736		return false;
2737
2738	migratetype = get_pfnblock_migratetype(page, pfn);
2739	set_pcppage_migratetype(page, migratetype);
2740	return true;
2741}
2742
2743static void free_unref_page_commit(struct page *page, unsigned long pfn)
2744{
2745	struct zone *zone = page_zone(page);
2746	struct per_cpu_pages *pcp;
2747	int migratetype;
2748
2749	migratetype = get_pcppage_migratetype(page);
2750	__count_vm_event(PGFREE);
2751
2752	/*
2753	 * We only track unmovable, reclaimable and movable on pcp lists.
2754	 * Free ISOLATE pages back to the allocator because they are being
2755	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2756	 * areas back if necessary. Otherwise, we may have to free
2757	 * excessively into the page allocator
2758	 */
2759	if (migratetype >= MIGRATE_PCPTYPES) {
2760		if (unlikely(is_migrate_isolate(migratetype))) {
2761			free_one_page(zone, page, pfn, 0, migratetype);
2762			return;
2763		}
2764		migratetype = MIGRATE_MOVABLE;
2765	}
2766
2767	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2768	list_add(&page->lru, &pcp->lists[migratetype]);
2769	pcp->count++;
2770	if (pcp->count >= pcp->high) {
2771		unsigned long batch = READ_ONCE(pcp->batch);
2772		free_pcppages_bulk(zone, batch, pcp);
2773	}
2774}
2775
2776/*
2777 * Free a 0-order page
2778 */
2779void free_unref_page(struct page *page)
2780{
2781	unsigned long flags;
2782	unsigned long pfn = page_to_pfn(page);
2783
2784	if (!free_unref_page_prepare(page, pfn))
2785		return;
2786
2787	local_irq_save(flags);
2788	free_unref_page_commit(page, pfn);
2789	local_irq_restore(flags);
2790}
2791
2792/*
2793 * Free a list of 0-order pages
2794 */
2795void free_unref_page_list(struct list_head *list)
2796{
2797	struct page *page, *next;
2798	unsigned long flags, pfn;
2799	int batch_count = 0;
2800
2801	/* Prepare pages for freeing */
2802	list_for_each_entry_safe(page, next, list, lru) {
2803		pfn = page_to_pfn(page);
2804		if (!free_unref_page_prepare(page, pfn))
2805			list_del(&page->lru);
2806		set_page_private(page, pfn);
2807	}
2808
2809	local_irq_save(flags);
2810	list_for_each_entry_safe(page, next, list, lru) {
2811		unsigned long pfn = page_private(page);
2812
2813		set_page_private(page, 0);
2814		trace_mm_page_free_batched(page);
2815		free_unref_page_commit(page, pfn);
2816
2817		/*
2818		 * Guard against excessive IRQ disabled times when we get
2819		 * a large list of pages to free.
2820		 */
2821		if (++batch_count == SWAP_CLUSTER_MAX) {
2822			local_irq_restore(flags);
2823			batch_count = 0;
2824			local_irq_save(flags);
2825		}
2826	}
2827	local_irq_restore(flags);
2828}
2829
2830/*
2831 * split_page takes a non-compound higher-order page, and splits it into
2832 * n (1<<order) sub-pages: page[0..n]
2833 * Each sub-page must be freed individually.
2834 *
2835 * Note: this is probably too low level an operation for use in drivers.
2836 * Please consult with lkml before using this in your driver.
2837 */
2838void split_page(struct page *page, unsigned int order)
2839{
2840	int i;
2841
2842	VM_BUG_ON_PAGE(PageCompound(page), page);
2843	VM_BUG_ON_PAGE(!page_count(page), page);
2844
2845	for (i = 1; i < (1 << order); i++)
2846		set_page_refcounted(page + i);
2847	split_page_owner(page, order);
2848}
2849EXPORT_SYMBOL_GPL(split_page);
2850
2851int __isolate_free_page(struct page *page, unsigned int order)
2852{
2853	unsigned long watermark;
2854	struct zone *zone;
2855	int mt;
2856
2857	BUG_ON(!PageBuddy(page));
2858
2859	zone = page_zone(page);
2860	mt = get_pageblock_migratetype(page);
2861
2862	if (!is_migrate_isolate(mt)) {
2863		/*
2864		 * Obey watermarks as if the page was being allocated. We can
2865		 * emulate a high-order watermark check with a raised order-0
2866		 * watermark, because we already know our high-order page
2867		 * exists.
2868		 */
2869		watermark = min_wmark_pages(zone) + (1UL << order);
2870		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2871			return 0;
2872
2873		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2874	}
2875
2876	/* Remove page from free list */
2877	list_del(&page->lru);
2878	zone->free_area[order].nr_free--;
2879	rmv_page_order(page);
2880
2881	/*
2882	 * Set the pageblock if the isolated page is at least half of a
2883	 * pageblock
2884	 */
2885	if (order >= pageblock_order - 1) {
2886		struct page *endpage = page + (1 << order) - 1;
2887		for (; page < endpage; page += pageblock_nr_pages) {
2888			int mt = get_pageblock_migratetype(page);
2889			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2890			    && !is_migrate_highatomic(mt))
2891				set_pageblock_migratetype(page,
2892							  MIGRATE_MOVABLE);
2893		}
2894	}
2895
2896
2897	return 1UL << order;
2898}
2899
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2900/*
2901 * Update NUMA hit/miss statistics
2902 *
2903 * Must be called with interrupts disabled.
2904 */
2905static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2906{
2907#ifdef CONFIG_NUMA
2908	enum numa_stat_item local_stat = NUMA_LOCAL;
2909
2910	/* skip numa counters update if numa stats is disabled */
2911	if (!static_branch_likely(&vm_numa_stat_key))
2912		return;
2913
2914	if (z->node != numa_node_id())
2915		local_stat = NUMA_OTHER;
2916
2917	if (z->node == preferred_zone->node)
2918		__inc_numa_state(z, NUMA_HIT);
2919	else {
2920		__inc_numa_state(z, NUMA_MISS);
2921		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
2922	}
2923	__inc_numa_state(z, local_stat);
2924#endif
2925}
2926
2927/* Remove page from the per-cpu list, caller must protect the list */
2928static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
 
2929			struct per_cpu_pages *pcp,
2930			struct list_head *list)
2931{
2932	struct page *page;
2933
2934	do {
2935		if (list_empty(list)) {
2936			pcp->count += rmqueue_bulk(zone, 0,
2937					pcp->batch, list,
2938					migratetype);
2939			if (unlikely(list_empty(list)))
2940				return NULL;
2941		}
2942
2943		page = list_first_entry(list, struct page, lru);
2944		list_del(&page->lru);
2945		pcp->count--;
2946	} while (check_new_pcp(page));
2947
2948	return page;
2949}
2950
2951/* Lock and remove page from the per-cpu list */
2952static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2953			struct zone *zone, unsigned int order,
2954			gfp_t gfp_flags, int migratetype)
2955{
2956	struct per_cpu_pages *pcp;
2957	struct list_head *list;
2958	struct page *page;
2959	unsigned long flags;
2960
2961	local_irq_save(flags);
2962	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2963	list = &pcp->lists[migratetype];
2964	page = __rmqueue_pcplist(zone,  migratetype, pcp, list);
2965	if (page) {
2966		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2967		zone_statistics(preferred_zone, zone);
2968	}
2969	local_irq_restore(flags);
2970	return page;
2971}
2972
2973/*
2974 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2975 */
2976static inline
2977struct page *rmqueue(struct zone *preferred_zone,
2978			struct zone *zone, unsigned int order,
2979			gfp_t gfp_flags, unsigned int alloc_flags,
2980			int migratetype)
2981{
2982	unsigned long flags;
2983	struct page *page;
2984
2985	if (likely(order == 0)) {
2986		page = rmqueue_pcplist(preferred_zone, zone, order,
2987				gfp_flags, migratetype);
2988		goto out;
 
 
 
 
 
 
 
2989	}
2990
2991	/*
2992	 * We most definitely don't want callers attempting to
2993	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2994	 */
2995	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2996	spin_lock_irqsave(&zone->lock, flags);
2997
2998	do {
2999		page = NULL;
3000		if (alloc_flags & ALLOC_HARDER) {
 
 
 
 
 
 
3001			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3002			if (page)
3003				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3004		}
3005		if (!page)
3006			page = __rmqueue(zone, order, migratetype);
3007	} while (page && check_new_pages(page, order));
3008	spin_unlock(&zone->lock);
3009	if (!page)
3010		goto failed;
3011	__mod_zone_freepage_state(zone, -(1 << order),
3012				  get_pcppage_migratetype(page));
3013
3014	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3015	zone_statistics(preferred_zone, zone);
3016	local_irq_restore(flags);
3017
3018out:
 
 
 
 
 
 
3019	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3020	return page;
3021
3022failed:
3023	local_irq_restore(flags);
3024	return NULL;
3025}
3026
3027#ifdef CONFIG_FAIL_PAGE_ALLOC
3028
3029static struct {
3030	struct fault_attr attr;
3031
3032	bool ignore_gfp_highmem;
3033	bool ignore_gfp_reclaim;
3034	u32 min_order;
3035} fail_page_alloc = {
3036	.attr = FAULT_ATTR_INITIALIZER,
3037	.ignore_gfp_reclaim = true,
3038	.ignore_gfp_highmem = true,
3039	.min_order = 1,
3040};
3041
3042static int __init setup_fail_page_alloc(char *str)
3043{
3044	return setup_fault_attr(&fail_page_alloc.attr, str);
3045}
3046__setup("fail_page_alloc=", setup_fail_page_alloc);
3047
3048static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3049{
3050	if (order < fail_page_alloc.min_order)
3051		return false;
3052	if (gfp_mask & __GFP_NOFAIL)
3053		return false;
3054	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3055		return false;
3056	if (fail_page_alloc.ignore_gfp_reclaim &&
3057			(gfp_mask & __GFP_DIRECT_RECLAIM))
3058		return false;
3059
3060	return should_fail(&fail_page_alloc.attr, 1 << order);
3061}
3062
3063#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3064
3065static int __init fail_page_alloc_debugfs(void)
3066{
3067	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3068	struct dentry *dir;
3069
3070	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3071					&fail_page_alloc.attr);
3072	if (IS_ERR(dir))
3073		return PTR_ERR(dir);
3074
3075	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3076				&fail_page_alloc.ignore_gfp_reclaim))
3077		goto fail;
3078	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3079				&fail_page_alloc.ignore_gfp_highmem))
3080		goto fail;
3081	if (!debugfs_create_u32("min-order", mode, dir,
3082				&fail_page_alloc.min_order))
3083		goto fail;
3084
3085	return 0;
3086fail:
3087	debugfs_remove_recursive(dir);
3088
3089	return -ENOMEM;
3090}
3091
3092late_initcall(fail_page_alloc_debugfs);
3093
3094#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3095
3096#else /* CONFIG_FAIL_PAGE_ALLOC */
3097
3098static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3099{
3100	return false;
3101}
3102
3103#endif /* CONFIG_FAIL_PAGE_ALLOC */
3104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3105/*
3106 * Return true if free base pages are above 'mark'. For high-order checks it
3107 * will return true of the order-0 watermark is reached and there is at least
3108 * one free page of a suitable size. Checking now avoids taking the zone lock
3109 * to check in the allocation paths if no pages are free.
3110 */
3111bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3112			 int classzone_idx, unsigned int alloc_flags,
3113			 long free_pages)
3114{
3115	long min = mark;
3116	int o;
3117	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3118
3119	/* free_pages may go negative - that's OK */
3120	free_pages -= (1 << order) - 1;
3121
3122	if (alloc_flags & ALLOC_HIGH)
3123		min -= min / 2;
3124
3125	/*
3126	 * If the caller does not have rights to ALLOC_HARDER then subtract
3127	 * the high-atomic reserves. This will over-estimate the size of the
3128	 * atomic reserve but it avoids a search.
3129	 */
3130	if (likely(!alloc_harder)) {
3131		free_pages -= z->nr_reserved_highatomic;
3132	} else {
3133		/*
3134		 * OOM victims can try even harder than normal ALLOC_HARDER
3135		 * users on the grounds that it's definitely going to be in
3136		 * the exit path shortly and free memory. Any allocation it
3137		 * makes during the free path will be small and short-lived.
3138		 */
3139		if (alloc_flags & ALLOC_OOM)
3140			min -= min / 2;
3141		else
3142			min -= min / 4;
3143	}
3144
3145
3146#ifdef CONFIG_CMA
3147	/* If allocation can't use CMA areas don't use free CMA pages */
3148	if (!(alloc_flags & ALLOC_CMA))
3149		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3150#endif
3151
3152	/*
3153	 * Check watermarks for an order-0 allocation request. If these
3154	 * are not met, then a high-order request also cannot go ahead
3155	 * even if a suitable page happened to be free.
3156	 */
3157	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3158		return false;
3159
3160	/* If this is an order-0 request then the watermark is fine */
3161	if (!order)
3162		return true;
3163
3164	/* For a high-order request, check at least one suitable page is free */
3165	for (o = order; o < MAX_ORDER; o++) {
3166		struct free_area *area = &z->free_area[o];
3167		int mt;
3168
3169		if (!area->nr_free)
3170			continue;
3171
3172		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3173			if (!list_empty(&area->free_list[mt]))
3174				return true;
3175		}
3176
3177#ifdef CONFIG_CMA
3178		if ((alloc_flags & ALLOC_CMA) &&
3179		    !list_empty(&area->free_list[MIGRATE_CMA])) {
3180			return true;
3181		}
3182#endif
3183		if (alloc_harder &&
3184			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3185			return true;
3186	}
3187	return false;
3188}
3189
3190bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3191		      int classzone_idx, unsigned int alloc_flags)
3192{
3193	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3194					zone_page_state(z, NR_FREE_PAGES));
3195}
3196
3197static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3198		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
 
3199{
3200	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3201	long cma_pages = 0;
3202
3203#ifdef CONFIG_CMA
3204	/* If allocation can't use CMA areas don't use free CMA pages */
3205	if (!(alloc_flags & ALLOC_CMA))
3206		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3207#endif
3208
3209	/*
3210	 * Fast check for order-0 only. If this fails then the reserves
3211	 * need to be calculated. There is a corner case where the check
3212	 * passes but only the high-order atomic reserve are free. If
3213	 * the caller is !atomic then it'll uselessly search the free
3214	 * list. That corner case is then slower but it is harmless.
3215	 */
3216	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
 
 
 
 
 
 
 
 
 
 
3217		return true;
 
 
 
 
 
 
 
 
 
 
 
 
3218
3219	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3220					free_pages);
3221}
3222
3223bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3224			unsigned long mark, int classzone_idx)
3225{
3226	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3227
3228	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3229		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3230
3231	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3232								free_pages);
3233}
3234
3235#ifdef CONFIG_NUMA
3236static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3237{
3238	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3239				RECLAIM_DISTANCE;
3240}
3241#else	/* CONFIG_NUMA */
3242static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3243{
3244	return true;
3245}
3246#endif	/* CONFIG_NUMA */
3247
3248/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3249 * get_page_from_freelist goes through the zonelist trying to allocate
3250 * a page.
3251 */
3252static struct page *
3253get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3254						const struct alloc_context *ac)
3255{
3256	struct zoneref *z = ac->preferred_zoneref;
3257	struct zone *zone;
3258	struct pglist_data *last_pgdat_dirty_limit = NULL;
 
3259
 
3260	/*
3261	 * Scan zonelist, looking for a zone with enough free.
3262	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3263	 */
3264	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3265								ac->nodemask) {
 
 
3266		struct page *page;
3267		unsigned long mark;
3268
3269		if (cpusets_enabled() &&
3270			(alloc_flags & ALLOC_CPUSET) &&
3271			!__cpuset_zone_allowed(zone, gfp_mask))
3272				continue;
3273		/*
3274		 * When allocating a page cache page for writing, we
3275		 * want to get it from a node that is within its dirty
3276		 * limit, such that no single node holds more than its
3277		 * proportional share of globally allowed dirty pages.
3278		 * The dirty limits take into account the node's
3279		 * lowmem reserves and high watermark so that kswapd
3280		 * should be able to balance it without having to
3281		 * write pages from its LRU list.
3282		 *
3283		 * XXX: For now, allow allocations to potentially
3284		 * exceed the per-node dirty limit in the slowpath
3285		 * (spread_dirty_pages unset) before going into reclaim,
3286		 * which is important when on a NUMA setup the allowed
3287		 * nodes are together not big enough to reach the
3288		 * global limit.  The proper fix for these situations
3289		 * will require awareness of nodes in the
3290		 * dirty-throttling and the flusher threads.
3291		 */
3292		if (ac->spread_dirty_pages) {
3293			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3294				continue;
3295
3296			if (!node_dirty_ok(zone->zone_pgdat)) {
3297				last_pgdat_dirty_limit = zone->zone_pgdat;
3298				continue;
3299			}
3300		}
3301
3302		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3303		if (!zone_watermark_fast(zone, order, mark,
3304				       ac_classzone_idx(ac), alloc_flags)) {
 
3305			int ret;
3306
3307#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3308			/*
3309			 * Watermark failed for this zone, but see if we can
3310			 * grow this zone if it contains deferred pages.
3311			 */
3312			if (static_branch_unlikely(&deferred_pages)) {
3313				if (_deferred_grow_zone(zone, order))
3314					goto try_this_zone;
3315			}
3316#endif
3317			/* Checked here to keep the fast path fast */
3318			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3319			if (alloc_flags & ALLOC_NO_WATERMARKS)
3320				goto try_this_zone;
3321
3322			if (node_reclaim_mode == 0 ||
3323			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3324				continue;
3325
3326			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3327			switch (ret) {
3328			case NODE_RECLAIM_NOSCAN:
3329				/* did not scan */
3330				continue;
3331			case NODE_RECLAIM_FULL:
3332				/* scanned but unreclaimable */
3333				continue;
3334			default:
3335				/* did we reclaim enough */
3336				if (zone_watermark_ok(zone, order, mark,
3337						ac_classzone_idx(ac), alloc_flags))
3338					goto try_this_zone;
3339
3340				continue;
3341			}
3342		}
3343
3344try_this_zone:
3345		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3346				gfp_mask, alloc_flags, ac->migratetype);
3347		if (page) {
3348			prep_new_page(page, order, gfp_mask, alloc_flags);
3349
3350			/*
3351			 * If this is a high-order atomic allocation then check
3352			 * if the pageblock should be reserved for the future
3353			 */
3354			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3355				reserve_highatomic_pageblock(page, zone, order);
3356
3357			return page;
3358		} else {
3359#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3360			/* Try again if zone has deferred pages */
3361			if (static_branch_unlikely(&deferred_pages)) {
3362				if (_deferred_grow_zone(zone, order))
3363					goto try_this_zone;
3364			}
3365#endif
3366		}
3367	}
3368
3369	return NULL;
3370}
3371
3372/*
3373 * Large machines with many possible nodes should not always dump per-node
3374 * meminfo in irq context.
3375 */
3376static inline bool should_suppress_show_mem(void)
3377{
3378	bool ret = false;
3379
3380#if NODES_SHIFT > 8
3381	ret = in_interrupt();
3382#endif
3383	return ret;
3384}
3385
3386static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3387{
3388	unsigned int filter = SHOW_MEM_FILTER_NODES;
3389	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3390
3391	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3392		return;
3393
3394	/*
3395	 * This documents exceptions given to allocations in certain
3396	 * contexts that are allowed to allocate outside current's set
3397	 * of allowed nodes.
3398	 */
3399	if (!(gfp_mask & __GFP_NOMEMALLOC))
3400		if (tsk_is_oom_victim(current) ||
3401		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3402			filter &= ~SHOW_MEM_FILTER_NODES;
3403	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3404		filter &= ~SHOW_MEM_FILTER_NODES;
3405
3406	show_mem(filter, nodemask);
3407}
3408
3409void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3410{
3411	struct va_format vaf;
3412	va_list args;
3413	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3414				      DEFAULT_RATELIMIT_BURST);
3415
3416	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3417		return;
3418
3419	va_start(args, fmt);
3420	vaf.fmt = fmt;
3421	vaf.va = &args;
3422	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3423			current->comm, &vaf, gfp_mask, &gfp_mask,
3424			nodemask_pr_args(nodemask));
3425	va_end(args);
3426
3427	cpuset_print_current_mems_allowed();
3428
3429	dump_stack();
3430	warn_alloc_show_mem(gfp_mask, nodemask);
3431}
3432
3433static inline struct page *
3434__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3435			      unsigned int alloc_flags,
3436			      const struct alloc_context *ac)
3437{
3438	struct page *page;
3439
3440	page = get_page_from_freelist(gfp_mask, order,
3441			alloc_flags|ALLOC_CPUSET, ac);
3442	/*
3443	 * fallback to ignore cpuset restriction if our nodes
3444	 * are depleted
3445	 */
3446	if (!page)
3447		page = get_page_from_freelist(gfp_mask, order,
3448				alloc_flags, ac);
3449
3450	return page;
3451}
3452
3453static inline struct page *
3454__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3455	const struct alloc_context *ac, unsigned long *did_some_progress)
3456{
3457	struct oom_control oc = {
3458		.zonelist = ac->zonelist,
3459		.nodemask = ac->nodemask,
3460		.memcg = NULL,
3461		.gfp_mask = gfp_mask,
3462		.order = order,
3463	};
3464	struct page *page;
3465
3466	*did_some_progress = 0;
3467
3468	/*
3469	 * Acquire the oom lock.  If that fails, somebody else is
3470	 * making progress for us.
3471	 */
3472	if (!mutex_trylock(&oom_lock)) {
3473		*did_some_progress = 1;
3474		schedule_timeout_uninterruptible(1);
3475		return NULL;
3476	}
3477
3478	/*
3479	 * Go through the zonelist yet one more time, keep very high watermark
3480	 * here, this is only to catch a parallel oom killing, we must fail if
3481	 * we're still under heavy pressure. But make sure that this reclaim
3482	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3483	 * allocation which will never fail due to oom_lock already held.
3484	 */
3485	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3486				      ~__GFP_DIRECT_RECLAIM, order,
3487				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3488	if (page)
3489		goto out;
3490
3491	/* Coredumps can quickly deplete all memory reserves */
3492	if (current->flags & PF_DUMPCORE)
3493		goto out;
3494	/* The OOM killer will not help higher order allocs */
3495	if (order > PAGE_ALLOC_COSTLY_ORDER)
3496		goto out;
3497	/*
3498	 * We have already exhausted all our reclaim opportunities without any
3499	 * success so it is time to admit defeat. We will skip the OOM killer
3500	 * because it is very likely that the caller has a more reasonable
3501	 * fallback than shooting a random task.
3502	 */
3503	if (gfp_mask & __GFP_RETRY_MAYFAIL)
3504		goto out;
3505	/* The OOM killer does not needlessly kill tasks for lowmem */
3506	if (ac->high_zoneidx < ZONE_NORMAL)
3507		goto out;
3508	if (pm_suspended_storage())
3509		goto out;
3510	/*
3511	 * XXX: GFP_NOFS allocations should rather fail than rely on
3512	 * other request to make a forward progress.
3513	 * We are in an unfortunate situation where out_of_memory cannot
3514	 * do much for this context but let's try it to at least get
3515	 * access to memory reserved if the current task is killed (see
3516	 * out_of_memory). Once filesystems are ready to handle allocation
3517	 * failures more gracefully we should just bail out here.
3518	 */
3519
3520	/* The OOM killer may not free memory on a specific node */
3521	if (gfp_mask & __GFP_THISNODE)
3522		goto out;
3523
3524	/* Exhausted what can be done so it's blame time */
3525	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3526		*did_some_progress = 1;
3527
3528		/*
3529		 * Help non-failing allocations by giving them access to memory
3530		 * reserves
3531		 */
3532		if (gfp_mask & __GFP_NOFAIL)
3533			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3534					ALLOC_NO_WATERMARKS, ac);
3535	}
3536out:
3537	mutex_unlock(&oom_lock);
3538	return page;
3539}
3540
3541/*
3542 * Maximum number of compaction retries wit a progress before OOM
3543 * killer is consider as the only way to move forward.
3544 */
3545#define MAX_COMPACT_RETRIES 16
3546
3547#ifdef CONFIG_COMPACTION
3548/* Try memory compaction for high-order allocations before reclaim */
3549static struct page *
3550__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3551		unsigned int alloc_flags, const struct alloc_context *ac,
3552		enum compact_priority prio, enum compact_result *compact_result)
3553{
3554	struct page *page;
 
3555	unsigned int noreclaim_flag;
3556
3557	if (!order)
3558		return NULL;
3559
 
3560	noreclaim_flag = memalloc_noreclaim_save();
 
3561	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3562									prio);
3563	memalloc_noreclaim_restore(noreclaim_flag);
3564
3565	if (*compact_result <= COMPACT_INACTIVE)
3566		return NULL;
3567
3568	/*
3569	 * At least in one zone compaction wasn't deferred or skipped, so let's
3570	 * count a compaction stall
3571	 */
3572	count_vm_event(COMPACTSTALL);
3573
3574	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
 
 
 
 
 
 
3575
3576	if (page) {
3577		struct zone *zone = page_zone(page);
3578
3579		zone->compact_blockskip_flush = false;
3580		compaction_defer_reset(zone, order, true);
3581		count_vm_event(COMPACTSUCCESS);
3582		return page;
3583	}
3584
3585	/*
3586	 * It's bad if compaction run occurs and fails. The most likely reason
3587	 * is that pages exist, but not enough to satisfy watermarks.
3588	 */
3589	count_vm_event(COMPACTFAIL);
3590
3591	cond_resched();
3592
3593	return NULL;
3594}
3595
3596static inline bool
3597should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3598		     enum compact_result compact_result,
3599		     enum compact_priority *compact_priority,
3600		     int *compaction_retries)
3601{
3602	int max_retries = MAX_COMPACT_RETRIES;
3603	int min_priority;
3604	bool ret = false;
3605	int retries = *compaction_retries;
3606	enum compact_priority priority = *compact_priority;
3607
3608	if (!order)
3609		return false;
3610
3611	if (compaction_made_progress(compact_result))
3612		(*compaction_retries)++;
3613
3614	/*
3615	 * compaction considers all the zone as desperately out of memory
3616	 * so it doesn't really make much sense to retry except when the
3617	 * failure could be caused by insufficient priority
3618	 */
3619	if (compaction_failed(compact_result))
3620		goto check_priority;
3621
3622	/*
 
 
 
 
 
 
 
 
 
3623	 * make sure the compaction wasn't deferred or didn't bail out early
3624	 * due to locks contention before we declare that we should give up.
3625	 * But do not retry if the given zonelist is not suitable for
3626	 * compaction.
3627	 */
3628	if (compaction_withdrawn(compact_result)) {
3629		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3630		goto out;
3631	}
3632
3633	/*
3634	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3635	 * costly ones because they are de facto nofail and invoke OOM
3636	 * killer to move on while costly can fail and users are ready
3637	 * to cope with that. 1/4 retries is rather arbitrary but we
3638	 * would need much more detailed feedback from compaction to
3639	 * make a better decision.
3640	 */
3641	if (order > PAGE_ALLOC_COSTLY_ORDER)
3642		max_retries /= 4;
3643	if (*compaction_retries <= max_retries) {
3644		ret = true;
3645		goto out;
3646	}
3647
3648	/*
3649	 * Make sure there are attempts at the highest priority if we exhausted
3650	 * all retries or failed at the lower priorities.
3651	 */
3652check_priority:
3653	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3654			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3655
3656	if (*compact_priority > min_priority) {
3657		(*compact_priority)--;
3658		*compaction_retries = 0;
3659		ret = true;
3660	}
3661out:
3662	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3663	return ret;
3664}
3665#else
3666static inline struct page *
3667__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3668		unsigned int alloc_flags, const struct alloc_context *ac,
3669		enum compact_priority prio, enum compact_result *compact_result)
3670{
3671	*compact_result = COMPACT_SKIPPED;
3672	return NULL;
3673}
3674
3675static inline bool
3676should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3677		     enum compact_result compact_result,
3678		     enum compact_priority *compact_priority,
3679		     int *compaction_retries)
3680{
3681	struct zone *zone;
3682	struct zoneref *z;
3683
3684	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3685		return false;
3686
3687	/*
3688	 * There are setups with compaction disabled which would prefer to loop
3689	 * inside the allocator rather than hit the oom killer prematurely.
3690	 * Let's give them a good hope and keep retrying while the order-0
3691	 * watermarks are OK.
3692	 */
3693	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3694					ac->nodemask) {
3695		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3696					ac_classzone_idx(ac), alloc_flags))
3697			return true;
3698	}
3699	return false;
3700}
3701#endif /* CONFIG_COMPACTION */
3702
3703#ifdef CONFIG_LOCKDEP
3704struct lockdep_map __fs_reclaim_map =
3705	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3706
3707static bool __need_fs_reclaim(gfp_t gfp_mask)
3708{
3709	gfp_mask = current_gfp_context(gfp_mask);
3710
3711	/* no reclaim without waiting on it */
3712	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3713		return false;
3714
3715	/* this guy won't enter reclaim */
3716	if (current->flags & PF_MEMALLOC)
3717		return false;
3718
3719	/* We're only interested __GFP_FS allocations for now */
3720	if (!(gfp_mask & __GFP_FS))
3721		return false;
3722
3723	if (gfp_mask & __GFP_NOLOCKDEP)
3724		return false;
3725
3726	return true;
3727}
3728
 
 
 
 
 
 
 
 
 
 
3729void fs_reclaim_acquire(gfp_t gfp_mask)
3730{
3731	if (__need_fs_reclaim(gfp_mask))
3732		lock_map_acquire(&__fs_reclaim_map);
3733}
3734EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3735
3736void fs_reclaim_release(gfp_t gfp_mask)
3737{
3738	if (__need_fs_reclaim(gfp_mask))
3739		lock_map_release(&__fs_reclaim_map);
3740}
3741EXPORT_SYMBOL_GPL(fs_reclaim_release);
3742#endif
3743
3744/* Perform direct synchronous page reclaim */
3745static int
3746__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3747					const struct alloc_context *ac)
3748{
3749	struct reclaim_state reclaim_state;
3750	int progress;
3751	unsigned int noreclaim_flag;
 
3752
3753	cond_resched();
3754
3755	/* We now go into synchronous reclaim */
3756	cpuset_memory_pressure_bump();
3757	noreclaim_flag = memalloc_noreclaim_save();
3758	fs_reclaim_acquire(gfp_mask);
3759	reclaim_state.reclaimed_slab = 0;
3760	current->reclaim_state = &reclaim_state;
3761
3762	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3763								ac->nodemask);
3764
3765	current->reclaim_state = NULL;
3766	fs_reclaim_release(gfp_mask);
3767	memalloc_noreclaim_restore(noreclaim_flag);
 
 
3768
3769	cond_resched();
3770
3771	return progress;
3772}
3773
3774/* The really slow allocator path where we enter direct reclaim */
3775static inline struct page *
3776__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3777		unsigned int alloc_flags, const struct alloc_context *ac,
3778		unsigned long *did_some_progress)
3779{
3780	struct page *page = NULL;
3781	bool drained = false;
3782
3783	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3784	if (unlikely(!(*did_some_progress)))
3785		return NULL;
3786
3787retry:
3788	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3789
3790	/*
3791	 * If an allocation failed after direct reclaim, it could be because
3792	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3793	 * Shrink them them and try again
3794	 */
3795	if (!page && !drained) {
3796		unreserve_highatomic_pageblock(ac, false);
3797		drain_all_pages(NULL);
3798		drained = true;
3799		goto retry;
3800	}
3801
3802	return page;
3803}
3804
3805static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3806			     const struct alloc_context *ac)
3807{
3808	struct zoneref *z;
3809	struct zone *zone;
3810	pg_data_t *last_pgdat = NULL;
3811	enum zone_type high_zoneidx = ac->high_zoneidx;
3812
3813	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
3814					ac->nodemask) {
3815		if (last_pgdat != zone->zone_pgdat)
3816			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
3817		last_pgdat = zone->zone_pgdat;
3818	}
3819}
3820
3821static inline unsigned int
3822gfp_to_alloc_flags(gfp_t gfp_mask)
3823{
3824	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3825
3826	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
 
 
 
 
3827	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
 
3828
3829	/*
3830	 * The caller may dip into page reserves a bit more if the caller
3831	 * cannot run direct reclaim, or if the caller has realtime scheduling
3832	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3833	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3834	 */
3835	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
 
3836
3837	if (gfp_mask & __GFP_ATOMIC) {
3838		/*
3839		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3840		 * if it can't schedule.
3841		 */
3842		if (!(gfp_mask & __GFP_NOMEMALLOC))
3843			alloc_flags |= ALLOC_HARDER;
3844		/*
3845		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3846		 * comment for __cpuset_node_allowed().
3847		 */
3848		alloc_flags &= ~ALLOC_CPUSET;
3849	} else if (unlikely(rt_task(current)) && !in_interrupt())
3850		alloc_flags |= ALLOC_HARDER;
3851
3852#ifdef CONFIG_CMA
3853	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3854		alloc_flags |= ALLOC_CMA;
3855#endif
3856	return alloc_flags;
3857}
3858
3859static bool oom_reserves_allowed(struct task_struct *tsk)
3860{
3861	if (!tsk_is_oom_victim(tsk))
3862		return false;
3863
3864	/*
3865	 * !MMU doesn't have oom reaper so give access to memory reserves
3866	 * only to the thread with TIF_MEMDIE set
3867	 */
3868	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3869		return false;
3870
3871	return true;
3872}
3873
3874/*
3875 * Distinguish requests which really need access to full memory
3876 * reserves from oom victims which can live with a portion of it
3877 */
3878static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3879{
3880	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3881		return 0;
3882	if (gfp_mask & __GFP_MEMALLOC)
3883		return ALLOC_NO_WATERMARKS;
3884	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3885		return ALLOC_NO_WATERMARKS;
3886	if (!in_interrupt()) {
3887		if (current->flags & PF_MEMALLOC)
3888			return ALLOC_NO_WATERMARKS;
3889		else if (oom_reserves_allowed(current))
3890			return ALLOC_OOM;
3891	}
3892
3893	return 0;
3894}
3895
3896bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3897{
3898	return !!__gfp_pfmemalloc_flags(gfp_mask);
3899}
3900
3901/*
3902 * Checks whether it makes sense to retry the reclaim to make a forward progress
3903 * for the given allocation request.
3904 *
3905 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3906 * without success, or when we couldn't even meet the watermark if we
3907 * reclaimed all remaining pages on the LRU lists.
3908 *
3909 * Returns true if a retry is viable or false to enter the oom path.
3910 */
3911static inline bool
3912should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3913		     struct alloc_context *ac, int alloc_flags,
3914		     bool did_some_progress, int *no_progress_loops)
3915{
3916	struct zone *zone;
3917	struct zoneref *z;
 
3918
3919	/*
3920	 * Costly allocations might have made a progress but this doesn't mean
3921	 * their order will become available due to high fragmentation so
3922	 * always increment the no progress counter for them
3923	 */
3924	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3925		*no_progress_loops = 0;
3926	else
3927		(*no_progress_loops)++;
3928
3929	/*
3930	 * Make sure we converge to OOM if we cannot make any progress
3931	 * several times in the row.
3932	 */
3933	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3934		/* Before OOM, exhaust highatomic_reserve */
3935		return unreserve_highatomic_pageblock(ac, true);
3936	}
3937
3938	/*
3939	 * Keep reclaiming pages while there is a chance this will lead
3940	 * somewhere.  If none of the target zones can satisfy our allocation
3941	 * request even if all reclaimable pages are considered then we are
3942	 * screwed and have to go OOM.
3943	 */
3944	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3945					ac->nodemask) {
3946		unsigned long available;
3947		unsigned long reclaimable;
3948		unsigned long min_wmark = min_wmark_pages(zone);
3949		bool wmark;
3950
3951		available = reclaimable = zone_reclaimable_pages(zone);
3952		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3953
3954		/*
3955		 * Would the allocation succeed if we reclaimed all
3956		 * reclaimable pages?
3957		 */
3958		wmark = __zone_watermark_ok(zone, order, min_wmark,
3959				ac_classzone_idx(ac), alloc_flags, available);
3960		trace_reclaim_retry_zone(z, order, reclaimable,
3961				available, min_wmark, *no_progress_loops, wmark);
3962		if (wmark) {
3963			/*
3964			 * If we didn't make any progress and have a lot of
3965			 * dirty + writeback pages then we should wait for
3966			 * an IO to complete to slow down the reclaim and
3967			 * prevent from pre mature OOM
3968			 */
3969			if (!did_some_progress) {
3970				unsigned long write_pending;
3971
3972				write_pending = zone_page_state_snapshot(zone,
3973							NR_ZONE_WRITE_PENDING);
3974
3975				if (2 * write_pending > reclaimable) {
3976					congestion_wait(BLK_RW_ASYNC, HZ/10);
3977					return true;
3978				}
3979			}
3980
3981			/*
3982			 * Memory allocation/reclaim might be called from a WQ
3983			 * context and the current implementation of the WQ
3984			 * concurrency control doesn't recognize that
3985			 * a particular WQ is congested if the worker thread is
3986			 * looping without ever sleeping. Therefore we have to
3987			 * do a short sleep here rather than calling
3988			 * cond_resched().
3989			 */
3990			if (current->flags & PF_WQ_WORKER)
3991				schedule_timeout_uninterruptible(1);
3992			else
3993				cond_resched();
3994
3995			return true;
3996		}
3997	}
3998
3999	return false;
 
 
 
 
 
 
 
 
 
 
 
 
4000}
4001
4002static inline bool
4003check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4004{
4005	/*
4006	 * It's possible that cpuset's mems_allowed and the nodemask from
4007	 * mempolicy don't intersect. This should be normally dealt with by
4008	 * policy_nodemask(), but it's possible to race with cpuset update in
4009	 * such a way the check therein was true, and then it became false
4010	 * before we got our cpuset_mems_cookie here.
4011	 * This assumes that for all allocations, ac->nodemask can come only
4012	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4013	 * when it does not intersect with the cpuset restrictions) or the
4014	 * caller can deal with a violated nodemask.
4015	 */
4016	if (cpusets_enabled() && ac->nodemask &&
4017			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4018		ac->nodemask = NULL;
4019		return true;
4020	}
4021
4022	/*
4023	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4024	 * possible to race with parallel threads in such a way that our
4025	 * allocation can fail while the mask is being updated. If we are about
4026	 * to fail, check if the cpuset changed during allocation and if so,
4027	 * retry.
4028	 */
4029	if (read_mems_allowed_retry(cpuset_mems_cookie))
4030		return true;
4031
4032	return false;
4033}
4034
4035static inline struct page *
4036__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4037						struct alloc_context *ac)
4038{
4039	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4040	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4041	struct page *page = NULL;
4042	unsigned int alloc_flags;
4043	unsigned long did_some_progress;
4044	enum compact_priority compact_priority;
4045	enum compact_result compact_result;
4046	int compaction_retries;
4047	int no_progress_loops;
4048	unsigned int cpuset_mems_cookie;
4049	int reserve_flags;
4050
4051	/*
4052	 * In the slowpath, we sanity check order to avoid ever trying to
4053	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
4054	 * be using allocators in order of preference for an area that is
4055	 * too large.
4056	 */
4057	if (order >= MAX_ORDER) {
4058		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4059		return NULL;
4060	}
4061
4062	/*
4063	 * We also sanity check to catch abuse of atomic reserves being used by
4064	 * callers that are not in atomic context.
4065	 */
4066	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4067				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4068		gfp_mask &= ~__GFP_ATOMIC;
4069
4070retry_cpuset:
4071	compaction_retries = 0;
4072	no_progress_loops = 0;
4073	compact_priority = DEF_COMPACT_PRIORITY;
4074	cpuset_mems_cookie = read_mems_allowed_begin();
4075
4076	/*
4077	 * The fast path uses conservative alloc_flags to succeed only until
4078	 * kswapd needs to be woken up, and to avoid the cost of setting up
4079	 * alloc_flags precisely. So we do that now.
4080	 */
4081	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4082
4083	/*
4084	 * We need to recalculate the starting point for the zonelist iterator
4085	 * because we might have used different nodemask in the fast path, or
4086	 * there was a cpuset modification and we are retrying - otherwise we
4087	 * could end up iterating over non-eligible zones endlessly.
4088	 */
4089	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4090					ac->high_zoneidx, ac->nodemask);
4091	if (!ac->preferred_zoneref->zone)
4092		goto nopage;
4093
4094	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4095		wake_all_kswapds(order, gfp_mask, ac);
4096
4097	/*
4098	 * The adjusted alloc_flags might result in immediate success, so try
4099	 * that first
4100	 */
4101	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4102	if (page)
4103		goto got_pg;
4104
4105	/*
4106	 * For costly allocations, try direct compaction first, as it's likely
4107	 * that we have enough base pages and don't need to reclaim. For non-
4108	 * movable high-order allocations, do that as well, as compaction will
4109	 * try prevent permanent fragmentation by migrating from blocks of the
4110	 * same migratetype.
4111	 * Don't try this for allocations that are allowed to ignore
4112	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4113	 */
4114	if (can_direct_reclaim &&
4115			(costly_order ||
4116			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4117			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4118		page = __alloc_pages_direct_compact(gfp_mask, order,
4119						alloc_flags, ac,
4120						INIT_COMPACT_PRIORITY,
4121						&compact_result);
4122		if (page)
4123			goto got_pg;
4124
4125		/*
4126		 * Checks for costly allocations with __GFP_NORETRY, which
4127		 * includes THP page fault allocations
4128		 */
4129		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4130			/*
4131			 * If compaction is deferred for high-order allocations,
4132			 * it is because sync compaction recently failed. If
4133			 * this is the case and the caller requested a THP
4134			 * allocation, we do not want to heavily disrupt the
4135			 * system, so we fail the allocation instead of entering
4136			 * direct reclaim.
 
 
 
 
 
 
 
 
 
4137			 */
4138			if (compact_result == COMPACT_DEFERRED)
 
4139				goto nopage;
4140
4141			/*
4142			 * Looks like reclaim/compaction is worth trying, but
4143			 * sync compaction could be very expensive, so keep
4144			 * using async compaction.
4145			 */
4146			compact_priority = INIT_COMPACT_PRIORITY;
4147		}
4148	}
4149
4150retry:
4151	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4152	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4153		wake_all_kswapds(order, gfp_mask, ac);
4154
4155	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4156	if (reserve_flags)
4157		alloc_flags = reserve_flags;
4158
4159	/*
4160	 * Reset the zonelist iterators if memory policies can be ignored.
4161	 * These allocations are high priority and system rather than user
4162	 * orientated.
4163	 */
4164	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4165		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
4166		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4167					ac->high_zoneidx, ac->nodemask);
4168	}
4169
4170	/* Attempt with potentially adjusted zonelist and alloc_flags */
4171	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4172	if (page)
4173		goto got_pg;
4174
4175	/* Caller is not willing to reclaim, we can't balance anything */
4176	if (!can_direct_reclaim)
4177		goto nopage;
4178
4179	/* Avoid recursion of direct reclaim */
4180	if (current->flags & PF_MEMALLOC)
4181		goto nopage;
4182
4183	/* Try direct reclaim and then allocating */
4184	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4185							&did_some_progress);
4186	if (page)
4187		goto got_pg;
4188
4189	/* Try direct compaction and then allocating */
4190	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4191					compact_priority, &compact_result);
4192	if (page)
4193		goto got_pg;
4194
4195	/* Do not loop if specifically requested */
4196	if (gfp_mask & __GFP_NORETRY)
4197		goto nopage;
4198
4199	/*
4200	 * Do not retry costly high order allocations unless they are
4201	 * __GFP_RETRY_MAYFAIL
4202	 */
4203	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4204		goto nopage;
4205
4206	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4207				 did_some_progress > 0, &no_progress_loops))
4208		goto retry;
4209
4210	/*
4211	 * It doesn't make any sense to retry for the compaction if the order-0
4212	 * reclaim is not able to make any progress because the current
4213	 * implementation of the compaction depends on the sufficient amount
4214	 * of free memory (see __compaction_suitable)
4215	 */
4216	if (did_some_progress > 0 &&
4217			should_compact_retry(ac, order, alloc_flags,
4218				compact_result, &compact_priority,
4219				&compaction_retries))
4220		goto retry;
4221
4222
4223	/* Deal with possible cpuset update races before we start OOM killing */
4224	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4225		goto retry_cpuset;
4226
4227	/* Reclaim has failed us, start killing things */
4228	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4229	if (page)
4230		goto got_pg;
4231
4232	/* Avoid allocations with no watermarks from looping endlessly */
4233	if (tsk_is_oom_victim(current) &&
4234	    (alloc_flags == ALLOC_OOM ||
4235	     (gfp_mask & __GFP_NOMEMALLOC)))
4236		goto nopage;
4237
4238	/* Retry as long as the OOM killer is making progress */
4239	if (did_some_progress) {
4240		no_progress_loops = 0;
4241		goto retry;
4242	}
4243
4244nopage:
4245	/* Deal with possible cpuset update races before we fail */
4246	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4247		goto retry_cpuset;
4248
4249	/*
4250	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4251	 * we always retry
4252	 */
4253	if (gfp_mask & __GFP_NOFAIL) {
4254		/*
4255		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4256		 * of any new users that actually require GFP_NOWAIT
4257		 */
4258		if (WARN_ON_ONCE(!can_direct_reclaim))
4259			goto fail;
4260
4261		/*
4262		 * PF_MEMALLOC request from this context is rather bizarre
4263		 * because we cannot reclaim anything and only can loop waiting
4264		 * for somebody to do a work for us
4265		 */
4266		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4267
4268		/*
4269		 * non failing costly orders are a hard requirement which we
4270		 * are not prepared for much so let's warn about these users
4271		 * so that we can identify them and convert them to something
4272		 * else.
4273		 */
4274		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4275
4276		/*
4277		 * Help non-failing allocations by giving them access to memory
4278		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4279		 * could deplete whole memory reserves which would just make
4280		 * the situation worse
4281		 */
4282		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4283		if (page)
4284			goto got_pg;
4285
4286		cond_resched();
4287		goto retry;
4288	}
4289fail:
4290	warn_alloc(gfp_mask, ac->nodemask,
4291			"page allocation failure: order:%u", order);
4292got_pg:
4293	return page;
4294}
4295
4296static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4297		int preferred_nid, nodemask_t *nodemask,
4298		struct alloc_context *ac, gfp_t *alloc_mask,
4299		unsigned int *alloc_flags)
4300{
4301	ac->high_zoneidx = gfp_zone(gfp_mask);
4302	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4303	ac->nodemask = nodemask;
4304	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4305
4306	if (cpusets_enabled()) {
4307		*alloc_mask |= __GFP_HARDWALL;
4308		if (!ac->nodemask)
 
 
 
 
4309			ac->nodemask = &cpuset_current_mems_allowed;
4310		else
4311			*alloc_flags |= ALLOC_CPUSET;
4312	}
4313
4314	fs_reclaim_acquire(gfp_mask);
4315	fs_reclaim_release(gfp_mask);
4316
4317	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4318
4319	if (should_fail_alloc_page(gfp_mask, order))
4320		return false;
4321
4322	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4323		*alloc_flags |= ALLOC_CMA;
4324
4325	return true;
4326}
4327
4328/* Determine whether to spread dirty pages and what the first usable zone */
4329static inline void finalise_ac(gfp_t gfp_mask,
4330		unsigned int order, struct alloc_context *ac)
4331{
4332	/* Dirty zone balancing only done in the fast path */
4333	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4334
4335	/*
4336	 * The preferred zone is used for statistics but crucially it is
4337	 * also used as the starting point for the zonelist iterator. It
4338	 * may get reset for allocations that ignore memory policies.
4339	 */
4340	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4341					ac->high_zoneidx, ac->nodemask);
4342}
4343
4344/*
4345 * This is the 'heart' of the zoned buddy allocator.
4346 */
4347struct page *
4348__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4349							nodemask_t *nodemask)
4350{
4351	struct page *page;
4352	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4353	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4354	struct alloc_context ac = { };
4355
 
 
 
 
 
 
 
 
 
4356	gfp_mask &= gfp_allowed_mask;
4357	alloc_mask = gfp_mask;
4358	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4359		return NULL;
4360
4361	finalise_ac(gfp_mask, order, &ac);
 
 
 
 
 
 
4362
4363	/* First allocation attempt */
4364	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4365	if (likely(page))
4366		goto out;
4367
4368	/*
4369	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4370	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4371	 * from a particular context which has been marked by
4372	 * memalloc_no{fs,io}_{save,restore}.
4373	 */
4374	alloc_mask = current_gfp_context(gfp_mask);
4375	ac.spread_dirty_pages = false;
4376
4377	/*
4378	 * Restore the original nodemask if it was potentially replaced with
4379	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4380	 */
4381	if (unlikely(ac.nodemask != nodemask))
4382		ac.nodemask = nodemask;
4383
4384	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4385
4386out:
4387	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4388	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4389		__free_pages(page, order);
4390		page = NULL;
4391	}
4392
4393	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4394
4395	return page;
4396}
4397EXPORT_SYMBOL(__alloc_pages_nodemask);
4398
4399/*
4400 * Common helper functions.
 
 
4401 */
4402unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4403{
4404	struct page *page;
4405
4406	/*
4407	 * __get_free_pages() returns a virtual address, which cannot represent
4408	 * a highmem page
4409	 */
4410	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4411
4412	page = alloc_pages(gfp_mask, order);
4413	if (!page)
4414		return 0;
4415	return (unsigned long) page_address(page);
4416}
4417EXPORT_SYMBOL(__get_free_pages);
4418
4419unsigned long get_zeroed_page(gfp_t gfp_mask)
4420{
4421	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4422}
4423EXPORT_SYMBOL(get_zeroed_page);
4424
4425void __free_pages(struct page *page, unsigned int order)
4426{
4427	if (put_page_testzero(page)) {
4428		if (order == 0)
4429			free_unref_page(page);
4430		else
4431			__free_pages_ok(page, order);
4432	}
4433}
4434
 
 
 
 
 
4435EXPORT_SYMBOL(__free_pages);
4436
4437void free_pages(unsigned long addr, unsigned int order)
4438{
4439	if (addr != 0) {
4440		VM_BUG_ON(!virt_addr_valid((void *)addr));
4441		__free_pages(virt_to_page((void *)addr), order);
4442	}
4443}
4444
4445EXPORT_SYMBOL(free_pages);
4446
4447/*
4448 * Page Fragment:
4449 *  An arbitrary-length arbitrary-offset area of memory which resides
4450 *  within a 0 or higher order page.  Multiple fragments within that page
4451 *  are individually refcounted, in the page's reference counter.
4452 *
4453 * The page_frag functions below provide a simple allocation framework for
4454 * page fragments.  This is used by the network stack and network device
4455 * drivers to provide a backing region of memory for use as either an
4456 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4457 */
4458static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4459					     gfp_t gfp_mask)
4460{
4461	struct page *page = NULL;
4462	gfp_t gfp = gfp_mask;
4463
4464#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4465	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4466		    __GFP_NOMEMALLOC;
4467	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4468				PAGE_FRAG_CACHE_MAX_ORDER);
4469	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4470#endif
4471	if (unlikely(!page))
4472		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4473
4474	nc->va = page ? page_address(page) : NULL;
4475
4476	return page;
4477}
4478
4479void __page_frag_cache_drain(struct page *page, unsigned int count)
4480{
4481	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4482
4483	if (page_ref_sub_and_test(page, count)) {
4484		unsigned int order = compound_order(page);
4485
4486		if (order == 0)
4487			free_unref_page(page);
4488		else
4489			__free_pages_ok(page, order);
4490	}
4491}
4492EXPORT_SYMBOL(__page_frag_cache_drain);
4493
4494void *page_frag_alloc(struct page_frag_cache *nc,
4495		      unsigned int fragsz, gfp_t gfp_mask)
4496{
4497	unsigned int size = PAGE_SIZE;
4498	struct page *page;
4499	int offset;
4500
4501	if (unlikely(!nc->va)) {
4502refill:
4503		page = __page_frag_cache_refill(nc, gfp_mask);
4504		if (!page)
4505			return NULL;
4506
4507#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4508		/* if size can vary use size else just use PAGE_SIZE */
4509		size = nc->size;
4510#endif
4511		/* Even if we own the page, we do not use atomic_set().
4512		 * This would break get_page_unless_zero() users.
4513		 */
4514		page_ref_add(page, size - 1);
4515
4516		/* reset page count bias and offset to start of new frag */
4517		nc->pfmemalloc = page_is_pfmemalloc(page);
4518		nc->pagecnt_bias = size;
4519		nc->offset = size;
4520	}
4521
4522	offset = nc->offset - fragsz;
4523	if (unlikely(offset < 0)) {
4524		page = virt_to_page(nc->va);
4525
4526		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4527			goto refill;
4528
4529#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4530		/* if size can vary use size else just use PAGE_SIZE */
4531		size = nc->size;
4532#endif
4533		/* OK, page count is 0, we can safely set it */
4534		set_page_count(page, size);
4535
4536		/* reset page count bias and offset to start of new frag */
4537		nc->pagecnt_bias = size;
4538		offset = size - fragsz;
4539	}
4540
4541	nc->pagecnt_bias--;
4542	nc->offset = offset;
4543
4544	return nc->va + offset;
4545}
4546EXPORT_SYMBOL(page_frag_alloc);
4547
4548/*
4549 * Frees a page fragment allocated out of either a compound or order 0 page.
4550 */
4551void page_frag_free(void *addr)
4552{
4553	struct page *page = virt_to_head_page(addr);
4554
4555	if (unlikely(put_page_testzero(page)))
4556		__free_pages_ok(page, compound_order(page));
4557}
4558EXPORT_SYMBOL(page_frag_free);
4559
4560static void *make_alloc_exact(unsigned long addr, unsigned int order,
4561		size_t size)
4562{
4563	if (addr) {
4564		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4565		unsigned long used = addr + PAGE_ALIGN(size);
4566
4567		split_page(virt_to_page((void *)addr), order);
4568		while (used < alloc_end) {
4569			free_page(used);
4570			used += PAGE_SIZE;
4571		}
4572	}
4573	return (void *)addr;
4574}
4575
4576/**
4577 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4578 * @size: the number of bytes to allocate
4579 * @gfp_mask: GFP flags for the allocation
4580 *
4581 * This function is similar to alloc_pages(), except that it allocates the
4582 * minimum number of pages to satisfy the request.  alloc_pages() can only
4583 * allocate memory in power-of-two pages.
4584 *
4585 * This function is also limited by MAX_ORDER.
4586 *
4587 * Memory allocated by this function must be released by free_pages_exact().
 
 
4588 */
4589void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4590{
4591	unsigned int order = get_order(size);
4592	unsigned long addr;
4593
 
 
 
4594	addr = __get_free_pages(gfp_mask, order);
4595	return make_alloc_exact(addr, order, size);
4596}
4597EXPORT_SYMBOL(alloc_pages_exact);
4598
4599/**
4600 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4601 *			   pages on a node.
4602 * @nid: the preferred node ID where memory should be allocated
4603 * @size: the number of bytes to allocate
4604 * @gfp_mask: GFP flags for the allocation
4605 *
4606 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4607 * back.
 
 
4608 */
4609void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4610{
4611	unsigned int order = get_order(size);
4612	struct page *p = alloc_pages_node(nid, gfp_mask, order);
 
 
 
 
 
4613	if (!p)
4614		return NULL;
4615	return make_alloc_exact((unsigned long)page_address(p), order, size);
4616}
4617
4618/**
4619 * free_pages_exact - release memory allocated via alloc_pages_exact()
4620 * @virt: the value returned by alloc_pages_exact.
4621 * @size: size of allocation, same value as passed to alloc_pages_exact().
4622 *
4623 * Release the memory allocated by a previous call to alloc_pages_exact.
4624 */
4625void free_pages_exact(void *virt, size_t size)
4626{
4627	unsigned long addr = (unsigned long)virt;
4628	unsigned long end = addr + PAGE_ALIGN(size);
4629
4630	while (addr < end) {
4631		free_page(addr);
4632		addr += PAGE_SIZE;
4633	}
4634}
4635EXPORT_SYMBOL(free_pages_exact);
4636
4637/**
4638 * nr_free_zone_pages - count number of pages beyond high watermark
4639 * @offset: The zone index of the highest zone
4640 *
4641 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4642 * high watermark within all zones at or below a given zone index.  For each
4643 * zone, the number of pages is calculated as:
4644 *
4645 *     nr_free_zone_pages = managed_pages - high_pages
 
 
4646 */
4647static unsigned long nr_free_zone_pages(int offset)
4648{
4649	struct zoneref *z;
4650	struct zone *zone;
4651
4652	/* Just pick one node, since fallback list is circular */
4653	unsigned long sum = 0;
4654
4655	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4656
4657	for_each_zone_zonelist(zone, z, zonelist, offset) {
4658		unsigned long size = zone->managed_pages;
4659		unsigned long high = high_wmark_pages(zone);
4660		if (size > high)
4661			sum += size - high;
4662	}
4663
4664	return sum;
4665}
4666
4667/**
4668 * nr_free_buffer_pages - count number of pages beyond high watermark
4669 *
4670 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4671 * watermark within ZONE_DMA and ZONE_NORMAL.
 
 
 
4672 */
4673unsigned long nr_free_buffer_pages(void)
4674{
4675	return nr_free_zone_pages(gfp_zone(GFP_USER));
4676}
4677EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4678
4679/**
4680 * nr_free_pagecache_pages - count number of pages beyond high watermark
4681 *
4682 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4683 * high watermark within all zones.
4684 */
4685unsigned long nr_free_pagecache_pages(void)
4686{
4687	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4688}
4689
4690static inline void show_node(struct zone *zone)
4691{
4692	if (IS_ENABLED(CONFIG_NUMA))
4693		printk("Node %d ", zone_to_nid(zone));
4694}
4695
4696long si_mem_available(void)
4697{
4698	long available;
4699	unsigned long pagecache;
4700	unsigned long wmark_low = 0;
4701	unsigned long pages[NR_LRU_LISTS];
 
4702	struct zone *zone;
4703	int lru;
4704
4705	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4706		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4707
4708	for_each_zone(zone)
4709		wmark_low += zone->watermark[WMARK_LOW];
4710
4711	/*
4712	 * Estimate the amount of memory available for userspace allocations,
4713	 * without causing swapping.
4714	 */
4715	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4716
4717	/*
4718	 * Not all the page cache can be freed, otherwise the system will
4719	 * start swapping. Assume at least half of the page cache, or the
4720	 * low watermark worth of cache, needs to stay.
4721	 */
4722	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4723	pagecache -= min(pagecache / 2, wmark_low);
4724	available += pagecache;
4725
4726	/*
4727	 * Part of the reclaimable slab consists of items that are in use,
4728	 * and cannot be freed. Cap this estimate at the low watermark.
4729	 */
4730	available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4731		     min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4732			 wmark_low);
4733
4734	/*
4735	 * Part of the kernel memory, which can be released under memory
4736	 * pressure.
4737	 */
4738	available += global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES) >>
4739		PAGE_SHIFT;
4740
4741	if (available < 0)
4742		available = 0;
4743	return available;
4744}
4745EXPORT_SYMBOL_GPL(si_mem_available);
4746
4747void si_meminfo(struct sysinfo *val)
4748{
4749	val->totalram = totalram_pages;
4750	val->sharedram = global_node_page_state(NR_SHMEM);
4751	val->freeram = global_zone_page_state(NR_FREE_PAGES);
4752	val->bufferram = nr_blockdev_pages();
4753	val->totalhigh = totalhigh_pages;
4754	val->freehigh = nr_free_highpages();
4755	val->mem_unit = PAGE_SIZE;
4756}
4757
4758EXPORT_SYMBOL(si_meminfo);
4759
4760#ifdef CONFIG_NUMA
4761void si_meminfo_node(struct sysinfo *val, int nid)
4762{
4763	int zone_type;		/* needs to be signed */
4764	unsigned long managed_pages = 0;
4765	unsigned long managed_highpages = 0;
4766	unsigned long free_highpages = 0;
4767	pg_data_t *pgdat = NODE_DATA(nid);
4768
4769	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4770		managed_pages += pgdat->node_zones[zone_type].managed_pages;
4771	val->totalram = managed_pages;
4772	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4773	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4774#ifdef CONFIG_HIGHMEM
4775	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4776		struct zone *zone = &pgdat->node_zones[zone_type];
4777
4778		if (is_highmem(zone)) {
4779			managed_highpages += zone->managed_pages;
4780			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4781		}
4782	}
4783	val->totalhigh = managed_highpages;
4784	val->freehigh = free_highpages;
4785#else
4786	val->totalhigh = managed_highpages;
4787	val->freehigh = free_highpages;
4788#endif
4789	val->mem_unit = PAGE_SIZE;
4790}
4791#endif
4792
4793/*
4794 * Determine whether the node should be displayed or not, depending on whether
4795 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4796 */
4797static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4798{
4799	if (!(flags & SHOW_MEM_FILTER_NODES))
4800		return false;
4801
4802	/*
4803	 * no node mask - aka implicit memory numa policy. Do not bother with
4804	 * the synchronization - read_mems_allowed_begin - because we do not
4805	 * have to be precise here.
4806	 */
4807	if (!nodemask)
4808		nodemask = &cpuset_current_mems_allowed;
4809
4810	return !node_isset(nid, *nodemask);
4811}
4812
4813#define K(x) ((x) << (PAGE_SHIFT-10))
4814
4815static void show_migration_types(unsigned char type)
4816{
4817	static const char types[MIGRATE_TYPES] = {
4818		[MIGRATE_UNMOVABLE]	= 'U',
4819		[MIGRATE_MOVABLE]	= 'M',
4820		[MIGRATE_RECLAIMABLE]	= 'E',
4821		[MIGRATE_HIGHATOMIC]	= 'H',
4822#ifdef CONFIG_CMA
4823		[MIGRATE_CMA]		= 'C',
4824#endif
4825#ifdef CONFIG_MEMORY_ISOLATION
4826		[MIGRATE_ISOLATE]	= 'I',
4827#endif
4828	};
4829	char tmp[MIGRATE_TYPES + 1];
4830	char *p = tmp;
4831	int i;
4832
4833	for (i = 0; i < MIGRATE_TYPES; i++) {
4834		if (type & (1 << i))
4835			*p++ = types[i];
4836	}
4837
4838	*p = '\0';
4839	printk(KERN_CONT "(%s) ", tmp);
4840}
4841
4842/*
4843 * Show free area list (used inside shift_scroll-lock stuff)
4844 * We also calculate the percentage fragmentation. We do this by counting the
4845 * memory on each free list with the exception of the first item on the list.
4846 *
4847 * Bits in @filter:
4848 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4849 *   cpuset.
4850 */
4851void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4852{
4853	unsigned long free_pcp = 0;
4854	int cpu;
4855	struct zone *zone;
4856	pg_data_t *pgdat;
4857
4858	for_each_populated_zone(zone) {
4859		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4860			continue;
4861
4862		for_each_online_cpu(cpu)
4863			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4864	}
4865
4866	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4867		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4868		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4869		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4870		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4871		" free:%lu free_pcp:%lu free_cma:%lu\n",
4872		global_node_page_state(NR_ACTIVE_ANON),
4873		global_node_page_state(NR_INACTIVE_ANON),
4874		global_node_page_state(NR_ISOLATED_ANON),
4875		global_node_page_state(NR_ACTIVE_FILE),
4876		global_node_page_state(NR_INACTIVE_FILE),
4877		global_node_page_state(NR_ISOLATED_FILE),
4878		global_node_page_state(NR_UNEVICTABLE),
4879		global_node_page_state(NR_FILE_DIRTY),
4880		global_node_page_state(NR_WRITEBACK),
4881		global_node_page_state(NR_UNSTABLE_NFS),
4882		global_node_page_state(NR_SLAB_RECLAIMABLE),
4883		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4884		global_node_page_state(NR_FILE_MAPPED),
4885		global_node_page_state(NR_SHMEM),
4886		global_zone_page_state(NR_PAGETABLE),
4887		global_zone_page_state(NR_BOUNCE),
4888		global_zone_page_state(NR_FREE_PAGES),
4889		free_pcp,
4890		global_zone_page_state(NR_FREE_CMA_PAGES));
4891
4892	for_each_online_pgdat(pgdat) {
4893		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4894			continue;
4895
4896		printk("Node %d"
4897			" active_anon:%lukB"
4898			" inactive_anon:%lukB"
4899			" active_file:%lukB"
4900			" inactive_file:%lukB"
4901			" unevictable:%lukB"
4902			" isolated(anon):%lukB"
4903			" isolated(file):%lukB"
4904			" mapped:%lukB"
4905			" dirty:%lukB"
4906			" writeback:%lukB"
4907			" shmem:%lukB"
4908#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4909			" shmem_thp: %lukB"
4910			" shmem_pmdmapped: %lukB"
4911			" anon_thp: %lukB"
4912#endif
4913			" writeback_tmp:%lukB"
4914			" unstable:%lukB"
 
 
 
4915			" all_unreclaimable? %s"
4916			"\n",
4917			pgdat->node_id,
4918			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4919			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4920			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4921			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4922			K(node_page_state(pgdat, NR_UNEVICTABLE)),
4923			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4924			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4925			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4926			K(node_page_state(pgdat, NR_FILE_DIRTY)),
4927			K(node_page_state(pgdat, NR_WRITEBACK)),
4928			K(node_page_state(pgdat, NR_SHMEM)),
4929#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4930			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4931			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4932					* HPAGE_PMD_NR),
4933			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4934#endif
4935			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4936			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
 
 
 
4937			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4938				"yes" : "no");
4939	}
4940
4941	for_each_populated_zone(zone) {
4942		int i;
4943
4944		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4945			continue;
4946
4947		free_pcp = 0;
4948		for_each_online_cpu(cpu)
4949			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4950
4951		show_node(zone);
4952		printk(KERN_CONT
4953			"%s"
4954			" free:%lukB"
4955			" min:%lukB"
4956			" low:%lukB"
4957			" high:%lukB"
 
4958			" active_anon:%lukB"
4959			" inactive_anon:%lukB"
4960			" active_file:%lukB"
4961			" inactive_file:%lukB"
4962			" unevictable:%lukB"
4963			" writepending:%lukB"
4964			" present:%lukB"
4965			" managed:%lukB"
4966			" mlocked:%lukB"
4967			" kernel_stack:%lukB"
4968			" pagetables:%lukB"
4969			" bounce:%lukB"
4970			" free_pcp:%lukB"
4971			" local_pcp:%ukB"
4972			" free_cma:%lukB"
4973			"\n",
4974			zone->name,
4975			K(zone_page_state(zone, NR_FREE_PAGES)),
4976			K(min_wmark_pages(zone)),
4977			K(low_wmark_pages(zone)),
4978			K(high_wmark_pages(zone)),
 
4979			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4980			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4981			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4982			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4983			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4984			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4985			K(zone->present_pages),
4986			K(zone->managed_pages),
4987			K(zone_page_state(zone, NR_MLOCK)),
4988			zone_page_state(zone, NR_KERNEL_STACK_KB),
4989			K(zone_page_state(zone, NR_PAGETABLE)),
4990			K(zone_page_state(zone, NR_BOUNCE)),
4991			K(free_pcp),
4992			K(this_cpu_read(zone->pageset->pcp.count)),
4993			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4994		printk("lowmem_reserve[]:");
4995		for (i = 0; i < MAX_NR_ZONES; i++)
4996			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4997		printk(KERN_CONT "\n");
4998	}
4999
5000	for_each_populated_zone(zone) {
5001		unsigned int order;
5002		unsigned long nr[MAX_ORDER], flags, total = 0;
5003		unsigned char types[MAX_ORDER];
5004
5005		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5006			continue;
5007		show_node(zone);
5008		printk(KERN_CONT "%s: ", zone->name);
5009
5010		spin_lock_irqsave(&zone->lock, flags);
5011		for (order = 0; order < MAX_ORDER; order++) {
5012			struct free_area *area = &zone->free_area[order];
5013			int type;
5014
5015			nr[order] = area->nr_free;
5016			total += nr[order] << order;
5017
5018			types[order] = 0;
5019			for (type = 0; type < MIGRATE_TYPES; type++) {
5020				if (!list_empty(&area->free_list[type]))
5021					types[order] |= 1 << type;
5022			}
5023		}
5024		spin_unlock_irqrestore(&zone->lock, flags);
5025		for (order = 0; order < MAX_ORDER; order++) {
5026			printk(KERN_CONT "%lu*%lukB ",
5027			       nr[order], K(1UL) << order);
5028			if (nr[order])
5029				show_migration_types(types[order]);
5030		}
5031		printk(KERN_CONT "= %lukB\n", K(total));
5032	}
5033
5034	hugetlb_show_meminfo();
5035
5036	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5037
5038	show_swap_cache_info();
5039}
5040
5041static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5042{
5043	zoneref->zone = zone;
5044	zoneref->zone_idx = zone_idx(zone);
5045}
5046
5047/*
5048 * Builds allocation fallback zone lists.
5049 *
5050 * Add all populated zones of a node to the zonelist.
5051 */
5052static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5053{
5054	struct zone *zone;
5055	enum zone_type zone_type = MAX_NR_ZONES;
5056	int nr_zones = 0;
5057
5058	do {
5059		zone_type--;
5060		zone = pgdat->node_zones + zone_type;
5061		if (managed_zone(zone)) {
5062			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5063			check_highest_zone(zone_type);
5064		}
5065	} while (zone_type);
5066
5067	return nr_zones;
5068}
5069
5070#ifdef CONFIG_NUMA
5071
5072static int __parse_numa_zonelist_order(char *s)
5073{
5074	/*
5075	 * We used to support different zonlists modes but they turned
5076	 * out to be just not useful. Let's keep the warning in place
5077	 * if somebody still use the cmd line parameter so that we do
5078	 * not fail it silently
5079	 */
5080	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5081		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5082		return -EINVAL;
5083	}
5084	return 0;
5085}
5086
5087static __init int setup_numa_zonelist_order(char *s)
5088{
5089	if (!s)
5090		return 0;
5091
5092	return __parse_numa_zonelist_order(s);
5093}
5094early_param("numa_zonelist_order", setup_numa_zonelist_order);
5095
5096char numa_zonelist_order[] = "Node";
5097
5098/*
5099 * sysctl handler for numa_zonelist_order
5100 */
5101int numa_zonelist_order_handler(struct ctl_table *table, int write,
5102		void __user *buffer, size_t *length,
5103		loff_t *ppos)
5104{
5105	char *str;
5106	int ret;
5107
5108	if (!write)
5109		return proc_dostring(table, write, buffer, length, ppos);
5110	str = memdup_user_nul(buffer, 16);
5111	if (IS_ERR(str))
5112		return PTR_ERR(str);
5113
5114	ret = __parse_numa_zonelist_order(str);
5115	kfree(str);
5116	return ret;
5117}
5118
5119
5120#define MAX_NODE_LOAD (nr_online_nodes)
5121static int node_load[MAX_NUMNODES];
5122
5123/**
5124 * find_next_best_node - find the next node that should appear in a given node's fallback list
5125 * @node: node whose fallback list we're appending
5126 * @used_node_mask: nodemask_t of already used nodes
5127 *
5128 * We use a number of factors to determine which is the next node that should
5129 * appear on a given node's fallback list.  The node should not have appeared
5130 * already in @node's fallback list, and it should be the next closest node
5131 * according to the distance array (which contains arbitrary distance values
5132 * from each node to each node in the system), and should also prefer nodes
5133 * with no CPUs, since presumably they'll have very little allocation pressure
5134 * on them otherwise.
5135 * It returns -1 if no node is found.
 
5136 */
5137static int find_next_best_node(int node, nodemask_t *used_node_mask)
5138{
5139	int n, val;
5140	int min_val = INT_MAX;
5141	int best_node = NUMA_NO_NODE;
5142	const struct cpumask *tmp = cpumask_of_node(0);
5143
5144	/* Use the local node if we haven't already */
5145	if (!node_isset(node, *used_node_mask)) {
5146		node_set(node, *used_node_mask);
5147		return node;
5148	}
5149
5150	for_each_node_state(n, N_MEMORY) {
5151
5152		/* Don't want a node to appear more than once */
5153		if (node_isset(n, *used_node_mask))
5154			continue;
5155
5156		/* Use the distance array to find the distance */
5157		val = node_distance(node, n);
5158
5159		/* Penalize nodes under us ("prefer the next node") */
5160		val += (n < node);
5161
5162		/* Give preference to headless and unused nodes */
5163		tmp = cpumask_of_node(n);
5164		if (!cpumask_empty(tmp))
5165			val += PENALTY_FOR_NODE_WITH_CPUS;
5166
5167		/* Slight preference for less loaded node */
5168		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5169		val += node_load[n];
5170
5171		if (val < min_val) {
5172			min_val = val;
5173			best_node = n;
5174		}
5175	}
5176
5177	if (best_node >= 0)
5178		node_set(best_node, *used_node_mask);
5179
5180	return best_node;
5181}
5182
5183
5184/*
5185 * Build zonelists ordered by node and zones within node.
5186 * This results in maximum locality--normal zone overflows into local
5187 * DMA zone, if any--but risks exhausting DMA zone.
5188 */
5189static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5190		unsigned nr_nodes)
5191{
5192	struct zoneref *zonerefs;
5193	int i;
5194
5195	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5196
5197	for (i = 0; i < nr_nodes; i++) {
5198		int nr_zones;
5199
5200		pg_data_t *node = NODE_DATA(node_order[i]);
5201
5202		nr_zones = build_zonerefs_node(node, zonerefs);
5203		zonerefs += nr_zones;
5204	}
5205	zonerefs->zone = NULL;
5206	zonerefs->zone_idx = 0;
5207}
5208
5209/*
5210 * Build gfp_thisnode zonelists
5211 */
5212static void build_thisnode_zonelists(pg_data_t *pgdat)
5213{
5214	struct zoneref *zonerefs;
5215	int nr_zones;
5216
5217	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5218	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5219	zonerefs += nr_zones;
5220	zonerefs->zone = NULL;
5221	zonerefs->zone_idx = 0;
5222}
5223
5224/*
5225 * Build zonelists ordered by zone and nodes within zones.
5226 * This results in conserving DMA zone[s] until all Normal memory is
5227 * exhausted, but results in overflowing to remote node while memory
5228 * may still exist in local DMA zone.
5229 */
5230
5231static void build_zonelists(pg_data_t *pgdat)
5232{
5233	static int node_order[MAX_NUMNODES];
5234	int node, load, nr_nodes = 0;
5235	nodemask_t used_mask;
5236	int local_node, prev_node;
5237
5238	/* NUMA-aware ordering of nodes */
5239	local_node = pgdat->node_id;
5240	load = nr_online_nodes;
5241	prev_node = local_node;
5242	nodes_clear(used_mask);
5243
5244	memset(node_order, 0, sizeof(node_order));
5245	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5246		/*
5247		 * We don't want to pressure a particular node.
5248		 * So adding penalty to the first node in same
5249		 * distance group to make it round-robin.
5250		 */
5251		if (node_distance(local_node, node) !=
5252		    node_distance(local_node, prev_node))
5253			node_load[node] = load;
5254
5255		node_order[nr_nodes++] = node;
5256		prev_node = node;
5257		load--;
5258	}
5259
5260	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5261	build_thisnode_zonelists(pgdat);
5262}
5263
5264#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5265/*
5266 * Return node id of node used for "local" allocations.
5267 * I.e., first node id of first zone in arg node's generic zonelist.
5268 * Used for initializing percpu 'numa_mem', which is used primarily
5269 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5270 */
5271int local_memory_node(int node)
5272{
5273	struct zoneref *z;
5274
5275	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5276				   gfp_zone(GFP_KERNEL),
5277				   NULL);
5278	return z->zone->node;
5279}
5280#endif
5281
5282static void setup_min_unmapped_ratio(void);
5283static void setup_min_slab_ratio(void);
5284#else	/* CONFIG_NUMA */
5285
5286static void build_zonelists(pg_data_t *pgdat)
5287{
5288	int node, local_node;
5289	struct zoneref *zonerefs;
5290	int nr_zones;
5291
5292	local_node = pgdat->node_id;
5293
5294	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5295	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5296	zonerefs += nr_zones;
5297
5298	/*
5299	 * Now we build the zonelist so that it contains the zones
5300	 * of all the other nodes.
5301	 * We don't want to pressure a particular node, so when
5302	 * building the zones for node N, we make sure that the
5303	 * zones coming right after the local ones are those from
5304	 * node N+1 (modulo N)
5305	 */
5306	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5307		if (!node_online(node))
5308			continue;
5309		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5310		zonerefs += nr_zones;
5311	}
5312	for (node = 0; node < local_node; node++) {
5313		if (!node_online(node))
5314			continue;
5315		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5316		zonerefs += nr_zones;
5317	}
5318
5319	zonerefs->zone = NULL;
5320	zonerefs->zone_idx = 0;
5321}
5322
5323#endif	/* CONFIG_NUMA */
5324
5325/*
5326 * Boot pageset table. One per cpu which is going to be used for all
5327 * zones and all nodes. The parameters will be set in such a way
5328 * that an item put on a list will immediately be handed over to
5329 * the buddy list. This is safe since pageset manipulation is done
5330 * with interrupts disabled.
5331 *
5332 * The boot_pagesets must be kept even after bootup is complete for
5333 * unused processors and/or zones. They do play a role for bootstrapping
5334 * hotplugged processors.
5335 *
5336 * zoneinfo_show() and maybe other functions do
5337 * not check if the processor is online before following the pageset pointer.
5338 * Other parts of the kernel may not check if the zone is available.
5339 */
5340static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5341static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5342static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5343
5344static void __build_all_zonelists(void *data)
5345{
5346	int nid;
5347	int __maybe_unused cpu;
5348	pg_data_t *self = data;
5349	static DEFINE_SPINLOCK(lock);
5350
5351	spin_lock(&lock);
5352
5353#ifdef CONFIG_NUMA
5354	memset(node_load, 0, sizeof(node_load));
5355#endif
5356
5357	/*
5358	 * This node is hotadded and no memory is yet present.   So just
5359	 * building zonelists is fine - no need to touch other nodes.
5360	 */
5361	if (self && !node_online(self->node_id)) {
5362		build_zonelists(self);
5363	} else {
5364		for_each_online_node(nid) {
5365			pg_data_t *pgdat = NODE_DATA(nid);
5366
5367			build_zonelists(pgdat);
5368		}
5369
5370#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5371		/*
5372		 * We now know the "local memory node" for each node--
5373		 * i.e., the node of the first zone in the generic zonelist.
5374		 * Set up numa_mem percpu variable for on-line cpus.  During
5375		 * boot, only the boot cpu should be on-line;  we'll init the
5376		 * secondary cpus' numa_mem as they come on-line.  During
5377		 * node/memory hotplug, we'll fixup all on-line cpus.
5378		 */
5379		for_each_online_cpu(cpu)
5380			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5381#endif
5382	}
5383
5384	spin_unlock(&lock);
5385}
5386
5387static noinline void __init
5388build_all_zonelists_init(void)
5389{
5390	int cpu;
5391
5392	__build_all_zonelists(NULL);
5393
5394	/*
5395	 * Initialize the boot_pagesets that are going to be used
5396	 * for bootstrapping processors. The real pagesets for
5397	 * each zone will be allocated later when the per cpu
5398	 * allocator is available.
5399	 *
5400	 * boot_pagesets are used also for bootstrapping offline
5401	 * cpus if the system is already booted because the pagesets
5402	 * are needed to initialize allocators on a specific cpu too.
5403	 * F.e. the percpu allocator needs the page allocator which
5404	 * needs the percpu allocator in order to allocate its pagesets
5405	 * (a chicken-egg dilemma).
5406	 */
5407	for_each_possible_cpu(cpu)
5408		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5409
5410	mminit_verify_zonelist();
5411	cpuset_init_current_mems_allowed();
5412}
5413
5414/*
5415 * unless system_state == SYSTEM_BOOTING.
5416 *
5417 * __ref due to call of __init annotated helper build_all_zonelists_init
5418 * [protected by SYSTEM_BOOTING].
5419 */
5420void __ref build_all_zonelists(pg_data_t *pgdat)
5421{
 
 
5422	if (system_state == SYSTEM_BOOTING) {
5423		build_all_zonelists_init();
5424	} else {
5425		__build_all_zonelists(pgdat);
5426		/* cpuset refresh routine should be here */
5427	}
5428	vm_total_pages = nr_free_pagecache_pages();
 
5429	/*
5430	 * Disable grouping by mobility if the number of pages in the
5431	 * system is too low to allow the mechanism to work. It would be
5432	 * more accurate, but expensive to check per-zone. This check is
5433	 * made on memory-hotadd so a system can start with mobility
5434	 * disabled and enable it later
5435	 */
5436	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5437		page_group_by_mobility_disabled = 1;
5438	else
5439		page_group_by_mobility_disabled = 0;
5440
5441	pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
5442		nr_online_nodes,
5443		page_group_by_mobility_disabled ? "off" : "on",
5444		vm_total_pages);
5445#ifdef CONFIG_NUMA
5446	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5447#endif
5448}
5449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5450/*
5451 * Initially all pages are reserved - free ones are freed
5452 * up by free_all_bootmem() once the early boot process is
5453 * done. Non-atomic initialization, single-pass.
5454 */
5455void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5456		unsigned long start_pfn, enum memmap_context context,
5457		struct vmem_altmap *altmap)
5458{
5459	unsigned long end_pfn = start_pfn + size;
5460	pg_data_t *pgdat = NODE_DATA(nid);
5461	unsigned long pfn;
5462	unsigned long nr_initialised = 0;
5463	struct page *page;
5464#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5465	struct memblock_region *r = NULL, *tmp;
5466#endif
5467
5468	if (highest_memmap_pfn < end_pfn - 1)
5469		highest_memmap_pfn = end_pfn - 1;
5470
 
5471	/*
5472	 * Honor reservation requested by the driver for this ZONE_DEVICE
5473	 * memory
 
 
 
5474	 */
5475	if (altmap && start_pfn == altmap->base_pfn)
5476		start_pfn += altmap->reserve;
 
5477
5478	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
 
 
 
 
 
 
5479		/*
5480		 * There can be holes in boot-time mem_map[]s handed to this
5481		 * function.  They do not exist on hotplugged memory.
5482		 */
5483		if (context != MEMMAP_EARLY)
5484			goto not_early;
5485
5486		if (!early_pfn_valid(pfn))
5487			continue;
5488		if (!early_pfn_in_nid(pfn, nid))
5489			continue;
5490		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5491			break;
5492
5493#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5494		/*
5495		 * Check given memblock attribute by firmware which can affect
5496		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
5497		 * mirrored, it's an overlapped memmap init. skip it.
5498		 */
5499		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5500			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5501				for_each_memblock(memory, tmp)
5502					if (pfn < memblock_region_memory_end_pfn(tmp))
5503						break;
5504				r = tmp;
5505			}
5506			if (pfn >= memblock_region_memory_base_pfn(r) &&
5507			    memblock_is_mirror(r)) {
5508				/* already initialized as NORMAL */
5509				pfn = memblock_region_memory_end_pfn(r);
5510				continue;
5511			}
 
5512		}
5513#endif
5514
5515not_early:
5516		page = pfn_to_page(pfn);
5517		__init_single_page(page, pfn, zone, nid);
5518		if (context == MEMMAP_HOTPLUG)
5519			SetPageReserved(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5520
5521		/*
5522		 * Mark the block movable so that blocks are reserved for
5523		 * movable at startup. This will force kernel allocations
5524		 * to reserve their blocks rather than leaking throughout
5525		 * the address space during boot when many long-lived
5526		 * kernel allocations are made.
5527		 *
5528		 * bitmap is created for zone's valid pfn range. but memmap
5529		 * can be created for invalid pages (for alignment)
5530		 * check here not to call set_pageblock_migratetype() against
5531		 * pfn out of zone.
5532		 *
5533		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5534		 * because this is done early in sparse_add_one_section
5535		 */
5536		if (!(pfn & (pageblock_nr_pages - 1))) {
5537			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5538			cond_resched();
5539		}
5540	}
 
 
 
5541}
5542
 
5543static void __meminit zone_init_free_lists(struct zone *zone)
5544{
5545	unsigned int order, t;
5546	for_each_migratetype_order(order, t) {
5547		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5548		zone->free_area[order].nr_free = 0;
5549	}
5550}
5551
5552#ifndef __HAVE_ARCH_MEMMAP_INIT
5553#define memmap_init(size, nid, zone, start_pfn) \
5554	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL)
5555#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5556
5557static int zone_batchsize(struct zone *zone)
5558{
5559#ifdef CONFIG_MMU
5560	int batch;
5561
5562	/*
5563	 * The per-cpu-pages pools are set to around 1000th of the
5564	 * size of the zone.  But no more than 1/2 of a meg.
5565	 *
5566	 * OK, so we don't know how big the cache is.  So guess.
5567	 */
5568	batch = zone->managed_pages / 1024;
5569	if (batch * PAGE_SIZE > 512 * 1024)
5570		batch = (512 * 1024) / PAGE_SIZE;
 
5571	batch /= 4;		/* We effectively *= 4 below */
5572	if (batch < 1)
5573		batch = 1;
5574
5575	/*
5576	 * Clamp the batch to a 2^n - 1 value. Having a power
5577	 * of 2 value was found to be more likely to have
5578	 * suboptimal cache aliasing properties in some cases.
5579	 *
5580	 * For example if 2 tasks are alternately allocating
5581	 * batches of pages, one task can end up with a lot
5582	 * of pages of one half of the possible page colors
5583	 * and the other with pages of the other colors.
5584	 */
5585	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5586
5587	return batch;
5588
5589#else
5590	/* The deferral and batching of frees should be suppressed under NOMMU
5591	 * conditions.
5592	 *
5593	 * The problem is that NOMMU needs to be able to allocate large chunks
5594	 * of contiguous memory as there's no hardware page translation to
5595	 * assemble apparent contiguous memory from discontiguous pages.
5596	 *
5597	 * Queueing large contiguous runs of pages for batching, however,
5598	 * causes the pages to actually be freed in smaller chunks.  As there
5599	 * can be a significant delay between the individual batches being
5600	 * recycled, this leads to the once large chunks of space being
5601	 * fragmented and becoming unavailable for high-order allocations.
5602	 */
5603	return 0;
5604#endif
5605}
5606
5607/*
5608 * pcp->high and pcp->batch values are related and dependent on one another:
5609 * ->batch must never be higher then ->high.
5610 * The following function updates them in a safe manner without read side
5611 * locking.
5612 *
5613 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5614 * those fields changing asynchronously (acording the the above rule).
5615 *
5616 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5617 * outside of boot time (or some other assurance that no concurrent updaters
5618 * exist).
5619 */
5620static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5621		unsigned long batch)
5622{
5623       /* start with a fail safe value for batch */
5624	pcp->batch = 1;
5625	smp_wmb();
5626
5627       /* Update high, then batch, in order */
5628	pcp->high = high;
5629	smp_wmb();
5630
5631	pcp->batch = batch;
5632}
5633
5634/* a companion to pageset_set_high() */
5635static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5636{
5637	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5638}
5639
5640static void pageset_init(struct per_cpu_pageset *p)
5641{
5642	struct per_cpu_pages *pcp;
5643	int migratetype;
5644
5645	memset(p, 0, sizeof(*p));
5646
5647	pcp = &p->pcp;
5648	pcp->count = 0;
5649	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5650		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5651}
5652
5653static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5654{
5655	pageset_init(p);
5656	pageset_set_batch(p, batch);
5657}
5658
5659/*
5660 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5661 * to the value high for the pageset p.
5662 */
5663static void pageset_set_high(struct per_cpu_pageset *p,
5664				unsigned long high)
5665{
5666	unsigned long batch = max(1UL, high / 4);
5667	if ((high / 4) > (PAGE_SHIFT * 8))
5668		batch = PAGE_SHIFT * 8;
5669
5670	pageset_update(&p->pcp, high, batch);
5671}
5672
5673static void pageset_set_high_and_batch(struct zone *zone,
5674				       struct per_cpu_pageset *pcp)
5675{
5676	if (percpu_pagelist_fraction)
5677		pageset_set_high(pcp,
5678			(zone->managed_pages /
5679				percpu_pagelist_fraction));
5680	else
5681		pageset_set_batch(pcp, zone_batchsize(zone));
5682}
5683
5684static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5685{
5686	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5687
5688	pageset_init(pcp);
5689	pageset_set_high_and_batch(zone, pcp);
5690}
5691
5692void __meminit setup_zone_pageset(struct zone *zone)
5693{
5694	int cpu;
5695	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5696	for_each_possible_cpu(cpu)
5697		zone_pageset_init(zone, cpu);
5698}
5699
5700/*
5701 * Allocate per cpu pagesets and initialize them.
5702 * Before this call only boot pagesets were available.
5703 */
5704void __init setup_per_cpu_pageset(void)
5705{
5706	struct pglist_data *pgdat;
5707	struct zone *zone;
 
5708
5709	for_each_populated_zone(zone)
5710		setup_zone_pageset(zone);
5711
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5712	for_each_online_pgdat(pgdat)
5713		pgdat->per_cpu_nodestats =
5714			alloc_percpu(struct per_cpu_nodestat);
5715}
5716
5717static __meminit void zone_pcp_init(struct zone *zone)
5718{
5719	/*
5720	 * per cpu subsystem is not up at this point. The following code
5721	 * relies on the ability of the linker to provide the
5722	 * offset of a (static) per cpu variable into the per cpu area.
5723	 */
5724	zone->pageset = &boot_pageset;
5725
5726	if (populated_zone(zone))
5727		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
5728			zone->name, zone->present_pages,
5729					 zone_batchsize(zone));
5730}
5731
5732void __meminit init_currently_empty_zone(struct zone *zone,
5733					unsigned long zone_start_pfn,
5734					unsigned long size)
5735{
5736	struct pglist_data *pgdat = zone->zone_pgdat;
 
5737
5738	pgdat->nr_zones = zone_idx(zone) + 1;
 
5739
5740	zone->zone_start_pfn = zone_start_pfn;
5741
5742	mminit_dprintk(MMINIT_TRACE, "memmap_init",
5743			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
5744			pgdat->node_id,
5745			(unsigned long)zone_idx(zone),
5746			zone_start_pfn, (zone_start_pfn + size));
5747
5748	zone_init_free_lists(zone);
5749	zone->initialized = 1;
5750}
5751
5752#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5753#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5754
5755/*
5756 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5757 */
5758int __meminit __early_pfn_to_nid(unsigned long pfn,
5759					struct mminit_pfnnid_cache *state)
5760{
5761	unsigned long start_pfn, end_pfn;
5762	int nid;
5763
5764	if (state->last_start <= pfn && pfn < state->last_end)
5765		return state->last_nid;
5766
5767	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5768	if (nid != -1) {
5769		state->last_start = start_pfn;
5770		state->last_end = end_pfn;
5771		state->last_nid = nid;
5772	}
5773
5774	return nid;
5775}
5776#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5777
5778/**
5779 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5780 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5781 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5782 *
5783 * If an architecture guarantees that all ranges registered contain no holes
5784 * and may be freed, this this function may be used instead of calling
5785 * memblock_free_early_nid() manually.
5786 */
5787void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5788{
5789	unsigned long start_pfn, end_pfn;
5790	int i, this_nid;
5791
5792	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5793		start_pfn = min(start_pfn, max_low_pfn);
5794		end_pfn = min(end_pfn, max_low_pfn);
5795
5796		if (start_pfn < end_pfn)
5797			memblock_free_early_nid(PFN_PHYS(start_pfn),
5798					(end_pfn - start_pfn) << PAGE_SHIFT,
5799					this_nid);
5800	}
5801}
5802
5803/**
5804 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5805 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5806 *
5807 * If an architecture guarantees that all ranges registered contain no holes and may
5808 * be freed, this function may be used instead of calling memory_present() manually.
5809 */
5810void __init sparse_memory_present_with_active_regions(int nid)
5811{
5812	unsigned long start_pfn, end_pfn;
5813	int i, this_nid;
5814
5815	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5816		memory_present(this_nid, start_pfn, end_pfn);
5817}
5818
5819/**
5820 * get_pfn_range_for_nid - Return the start and end page frames for a node
5821 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5822 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5823 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5824 *
5825 * It returns the start and end page frame of a node based on information
5826 * provided by memblock_set_node(). If called for a node
5827 * with no available memory, a warning is printed and the start and end
5828 * PFNs will be 0.
5829 */
5830void __meminit get_pfn_range_for_nid(unsigned int nid,
5831			unsigned long *start_pfn, unsigned long *end_pfn)
5832{
5833	unsigned long this_start_pfn, this_end_pfn;
5834	int i;
5835
5836	*start_pfn = -1UL;
5837	*end_pfn = 0;
5838
5839	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5840		*start_pfn = min(*start_pfn, this_start_pfn);
5841		*end_pfn = max(*end_pfn, this_end_pfn);
5842	}
5843
5844	if (*start_pfn == -1UL)
5845		*start_pfn = 0;
5846}
5847
5848/*
5849 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5850 * assumption is made that zones within a node are ordered in monotonic
5851 * increasing memory addresses so that the "highest" populated zone is used
5852 */
5853static void __init find_usable_zone_for_movable(void)
5854{
5855	int zone_index;
5856	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5857		if (zone_index == ZONE_MOVABLE)
5858			continue;
5859
5860		if (arch_zone_highest_possible_pfn[zone_index] >
5861				arch_zone_lowest_possible_pfn[zone_index])
5862			break;
5863	}
5864
5865	VM_BUG_ON(zone_index == -1);
5866	movable_zone = zone_index;
5867}
5868
5869/*
5870 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5871 * because it is sized independent of architecture. Unlike the other zones,
5872 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5873 * in each node depending on the size of each node and how evenly kernelcore
5874 * is distributed. This helper function adjusts the zone ranges
5875 * provided by the architecture for a given node by using the end of the
5876 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5877 * zones within a node are in order of monotonic increases memory addresses
5878 */
5879static void __meminit adjust_zone_range_for_zone_movable(int nid,
5880					unsigned long zone_type,
5881					unsigned long node_start_pfn,
5882					unsigned long node_end_pfn,
5883					unsigned long *zone_start_pfn,
5884					unsigned long *zone_end_pfn)
5885{
5886	/* Only adjust if ZONE_MOVABLE is on this node */
5887	if (zone_movable_pfn[nid]) {
5888		/* Size ZONE_MOVABLE */
5889		if (zone_type == ZONE_MOVABLE) {
5890			*zone_start_pfn = zone_movable_pfn[nid];
5891			*zone_end_pfn = min(node_end_pfn,
5892				arch_zone_highest_possible_pfn[movable_zone]);
5893
5894		/* Adjust for ZONE_MOVABLE starting within this range */
5895		} else if (!mirrored_kernelcore &&
5896			*zone_start_pfn < zone_movable_pfn[nid] &&
5897			*zone_end_pfn > zone_movable_pfn[nid]) {
5898			*zone_end_pfn = zone_movable_pfn[nid];
5899
5900		/* Check if this whole range is within ZONE_MOVABLE */
5901		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5902			*zone_start_pfn = *zone_end_pfn;
5903	}
5904}
5905
5906/*
5907 * Return the number of pages a zone spans in a node, including holes
5908 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5909 */
5910static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5911					unsigned long zone_type,
5912					unsigned long node_start_pfn,
5913					unsigned long node_end_pfn,
5914					unsigned long *zone_start_pfn,
5915					unsigned long *zone_end_pfn,
5916					unsigned long *ignored)
5917{
 
 
5918	/* When hotadd a new node from cpu_up(), the node should be empty */
5919	if (!node_start_pfn && !node_end_pfn)
5920		return 0;
5921
5922	/* Get the start and end of the zone */
5923	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5924	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5925	adjust_zone_range_for_zone_movable(nid, zone_type,
5926				node_start_pfn, node_end_pfn,
5927				zone_start_pfn, zone_end_pfn);
5928
5929	/* Check that this node has pages within the zone's required range */
5930	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5931		return 0;
5932
5933	/* Move the zone boundaries inside the node if necessary */
5934	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5935	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5936
5937	/* Return the spanned pages */
5938	return *zone_end_pfn - *zone_start_pfn;
5939}
5940
5941/*
5942 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5943 * then all holes in the requested range will be accounted for.
5944 */
5945unsigned long __meminit __absent_pages_in_range(int nid,
5946				unsigned long range_start_pfn,
5947				unsigned long range_end_pfn)
5948{
5949	unsigned long nr_absent = range_end_pfn - range_start_pfn;
5950	unsigned long start_pfn, end_pfn;
5951	int i;
5952
5953	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5954		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5955		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5956		nr_absent -= end_pfn - start_pfn;
5957	}
5958	return nr_absent;
5959}
5960
5961/**
5962 * absent_pages_in_range - Return number of page frames in holes within a range
5963 * @start_pfn: The start PFN to start searching for holes
5964 * @end_pfn: The end PFN to stop searching for holes
5965 *
5966 * It returns the number of pages frames in memory holes within a range.
5967 */
5968unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5969							unsigned long end_pfn)
5970{
5971	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5972}
5973
5974/* Return the number of page frames in holes in a zone on a node */
5975static unsigned long __meminit zone_absent_pages_in_node(int nid,
5976					unsigned long zone_type,
5977					unsigned long node_start_pfn,
5978					unsigned long node_end_pfn,
5979					unsigned long *ignored)
5980{
5981	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5982	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5983	unsigned long zone_start_pfn, zone_end_pfn;
5984	unsigned long nr_absent;
5985
5986	/* When hotadd a new node from cpu_up(), the node should be empty */
5987	if (!node_start_pfn && !node_end_pfn)
5988		return 0;
5989
5990	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5991	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5992
5993	adjust_zone_range_for_zone_movable(nid, zone_type,
5994			node_start_pfn, node_end_pfn,
5995			&zone_start_pfn, &zone_end_pfn);
5996	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5997
5998	/*
5999	 * ZONE_MOVABLE handling.
6000	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6001	 * and vice versa.
6002	 */
6003	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6004		unsigned long start_pfn, end_pfn;
6005		struct memblock_region *r;
6006
6007		for_each_memblock(memory, r) {
6008			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6009					  zone_start_pfn, zone_end_pfn);
6010			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6011					zone_start_pfn, zone_end_pfn);
6012
6013			if (zone_type == ZONE_MOVABLE &&
6014			    memblock_is_mirror(r))
6015				nr_absent += end_pfn - start_pfn;
6016
6017			if (zone_type == ZONE_NORMAL &&
6018			    !memblock_is_mirror(r))
6019				nr_absent += end_pfn - start_pfn;
6020		}
6021	}
6022
6023	return nr_absent;
6024}
6025
6026#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6027static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
6028					unsigned long zone_type,
6029					unsigned long node_start_pfn,
6030					unsigned long node_end_pfn,
6031					unsigned long *zone_start_pfn,
6032					unsigned long *zone_end_pfn,
6033					unsigned long *zones_size)
6034{
6035	unsigned int zone;
6036
6037	*zone_start_pfn = node_start_pfn;
6038	for (zone = 0; zone < zone_type; zone++)
6039		*zone_start_pfn += zones_size[zone];
6040
6041	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6042
6043	return zones_size[zone_type];
6044}
6045
6046static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
6047						unsigned long zone_type,
6048						unsigned long node_start_pfn,
6049						unsigned long node_end_pfn,
6050						unsigned long *zholes_size)
6051{
6052	if (!zholes_size)
6053		return 0;
6054
6055	return zholes_size[zone_type];
6056}
6057
6058#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6059
6060static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
6061						unsigned long node_start_pfn,
6062						unsigned long node_end_pfn,
6063						unsigned long *zones_size,
6064						unsigned long *zholes_size)
6065{
6066	unsigned long realtotalpages = 0, totalpages = 0;
6067	enum zone_type i;
6068
6069	for (i = 0; i < MAX_NR_ZONES; i++) {
6070		struct zone *zone = pgdat->node_zones + i;
6071		unsigned long zone_start_pfn, zone_end_pfn;
 
6072		unsigned long size, real_size;
6073
6074		size = zone_spanned_pages_in_node(pgdat->node_id, i,
6075						  node_start_pfn,
6076						  node_end_pfn,
6077						  &zone_start_pfn,
6078						  &zone_end_pfn,
6079						  zones_size);
6080		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6081						  node_start_pfn, node_end_pfn,
6082						  zholes_size);
 
 
 
6083		if (size)
6084			zone->zone_start_pfn = zone_start_pfn;
6085		else
6086			zone->zone_start_pfn = 0;
6087		zone->spanned_pages = size;
6088		zone->present_pages = real_size;
6089
6090		totalpages += size;
6091		realtotalpages += real_size;
6092	}
6093
6094	pgdat->node_spanned_pages = totalpages;
6095	pgdat->node_present_pages = realtotalpages;
6096	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6097							realtotalpages);
6098}
6099
6100#ifndef CONFIG_SPARSEMEM
6101/*
6102 * Calculate the size of the zone->blockflags rounded to an unsigned long
6103 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6104 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6105 * round what is now in bits to nearest long in bits, then return it in
6106 * bytes.
6107 */
6108static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6109{
6110	unsigned long usemapsize;
6111
6112	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6113	usemapsize = roundup(zonesize, pageblock_nr_pages);
6114	usemapsize = usemapsize >> pageblock_order;
6115	usemapsize *= NR_PAGEBLOCK_BITS;
6116	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6117
6118	return usemapsize / 8;
6119}
6120
6121static void __init setup_usemap(struct pglist_data *pgdat,
6122				struct zone *zone,
6123				unsigned long zone_start_pfn,
6124				unsigned long zonesize)
6125{
6126	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6127	zone->pageblock_flags = NULL;
6128	if (usemapsize)
6129		zone->pageblock_flags =
6130			memblock_virt_alloc_node_nopanic(usemapsize,
6131							 pgdat->node_id);
 
 
 
 
6132}
6133#else
6134static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6135				unsigned long zone_start_pfn, unsigned long zonesize) {}
6136#endif /* CONFIG_SPARSEMEM */
6137
6138#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6139
6140/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6141void __paginginit set_pageblock_order(void)
6142{
6143	unsigned int order;
6144
6145	/* Check that pageblock_nr_pages has not already been setup */
6146	if (pageblock_order)
6147		return;
6148
6149	if (HPAGE_SHIFT > PAGE_SHIFT)
6150		order = HUGETLB_PAGE_ORDER;
6151	else
6152		order = MAX_ORDER - 1;
6153
6154	/*
6155	 * Assume the largest contiguous order of interest is a huge page.
6156	 * This value may be variable depending on boot parameters on IA64 and
6157	 * powerpc.
6158	 */
6159	pageblock_order = order;
6160}
6161#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6162
6163/*
6164 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6165 * is unused as pageblock_order is set at compile-time. See
6166 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6167 * the kernel config
6168 */
6169void __paginginit set_pageblock_order(void)
6170{
6171}
6172
6173#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6174
6175static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6176						   unsigned long present_pages)
6177{
6178	unsigned long pages = spanned_pages;
6179
6180	/*
6181	 * Provide a more accurate estimation if there are holes within
6182	 * the zone and SPARSEMEM is in use. If there are holes within the
6183	 * zone, each populated memory region may cost us one or two extra
6184	 * memmap pages due to alignment because memmap pages for each
6185	 * populated regions may not be naturally aligned on page boundary.
6186	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6187	 */
6188	if (spanned_pages > present_pages + (present_pages >> 4) &&
6189	    IS_ENABLED(CONFIG_SPARSEMEM))
6190		pages = present_pages;
6191
6192	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6193}
6194
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6195/*
6196 * Set up the zone data structures:
6197 *   - mark all pages reserved
6198 *   - mark all memory queues empty
6199 *   - clear the memory bitmaps
6200 *
6201 * NOTE: pgdat should get zeroed by caller.
 
6202 */
6203static void __paginginit free_area_init_core(struct pglist_data *pgdat)
6204{
6205	enum zone_type j;
6206	int nid = pgdat->node_id;
6207
6208	pgdat_resize_init(pgdat);
6209#ifdef CONFIG_NUMA_BALANCING
6210	spin_lock_init(&pgdat->numabalancing_migrate_lock);
6211	pgdat->numabalancing_migrate_nr_pages = 0;
6212	pgdat->numabalancing_migrate_next_window = jiffies;
6213#endif
6214#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6215	spin_lock_init(&pgdat->split_queue_lock);
6216	INIT_LIST_HEAD(&pgdat->split_queue);
6217	pgdat->split_queue_len = 0;
6218#endif
6219	init_waitqueue_head(&pgdat->kswapd_wait);
6220	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6221#ifdef CONFIG_COMPACTION
6222	init_waitqueue_head(&pgdat->kcompactd_wait);
6223#endif
6224	pgdat_page_ext_init(pgdat);
6225	spin_lock_init(&pgdat->lru_lock);
6226	lruvec_init(node_lruvec(pgdat));
6227
6228	pgdat->per_cpu_nodestats = &boot_nodestats;
6229
6230	for (j = 0; j < MAX_NR_ZONES; j++) {
6231		struct zone *zone = pgdat->node_zones + j;
6232		unsigned long size, realsize, freesize, memmap_pages;
6233		unsigned long zone_start_pfn = zone->zone_start_pfn;
6234
6235		size = zone->spanned_pages;
6236		realsize = freesize = zone->present_pages;
6237
6238		/*
6239		 * Adjust freesize so that it accounts for how much memory
6240		 * is used by this zone for memmap. This affects the watermark
6241		 * and per-cpu initialisations
6242		 */
6243		memmap_pages = calc_memmap_size(size, realsize);
6244		if (!is_highmem_idx(j)) {
6245			if (freesize >= memmap_pages) {
6246				freesize -= memmap_pages;
6247				if (memmap_pages)
6248					printk(KERN_DEBUG
6249					       "  %s zone: %lu pages used for memmap\n",
6250					       zone_names[j], memmap_pages);
6251			} else
6252				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6253					zone_names[j], memmap_pages, freesize);
6254		}
6255
6256		/* Account for reserved pages */
6257		if (j == 0 && freesize > dma_reserve) {
6258			freesize -= dma_reserve;
6259			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6260					zone_names[0], dma_reserve);
6261		}
6262
6263		if (!is_highmem_idx(j))
6264			nr_kernel_pages += freesize;
6265		/* Charge for highmem memmap if there are enough kernel pages */
6266		else if (nr_kernel_pages > memmap_pages * 2)
6267			nr_kernel_pages -= memmap_pages;
6268		nr_all_pages += freesize;
6269
6270		/*
6271		 * Set an approximate value for lowmem here, it will be adjusted
6272		 * when the bootmem allocator frees pages into the buddy system.
6273		 * And all highmem pages will be managed by the buddy system.
6274		 */
6275		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6276#ifdef CONFIG_NUMA
6277		zone->node = nid;
6278#endif
6279		zone->name = zone_names[j];
6280		zone->zone_pgdat = pgdat;
6281		spin_lock_init(&zone->lock);
6282		zone_seqlock_init(zone);
6283		zone_pcp_init(zone);
6284
6285		if (!size)
6286			continue;
6287
6288		set_pageblock_order();
6289		setup_usemap(pgdat, zone, zone_start_pfn, size);
6290		init_currently_empty_zone(zone, zone_start_pfn, size);
6291		memmap_init(size, nid, j, zone_start_pfn);
6292	}
6293}
6294
6295#ifdef CONFIG_FLAT_NODE_MEM_MAP
6296static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6297{
6298	unsigned long __maybe_unused start = 0;
6299	unsigned long __maybe_unused offset = 0;
6300
6301	/* Skip empty nodes */
6302	if (!pgdat->node_spanned_pages)
6303		return;
6304
6305	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6306	offset = pgdat->node_start_pfn - start;
6307	/* ia64 gets its own node_mem_map, before this, without bootmem */
6308	if (!pgdat->node_mem_map) {
6309		unsigned long size, end;
6310		struct page *map;
6311
6312		/*
6313		 * The zone's endpoints aren't required to be MAX_ORDER
6314		 * aligned but the node_mem_map endpoints must be in order
6315		 * for the buddy allocator to function correctly.
6316		 */
6317		end = pgdat_end_pfn(pgdat);
6318		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6319		size =  (end - start) * sizeof(struct page);
6320		map = memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
 
 
 
 
6321		pgdat->node_mem_map = map + offset;
6322	}
6323	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6324				__func__, pgdat->node_id, (unsigned long)pgdat,
6325				(unsigned long)pgdat->node_mem_map);
6326#ifndef CONFIG_NEED_MULTIPLE_NODES
6327	/*
6328	 * With no DISCONTIG, the global mem_map is just set as node 0's
6329	 */
6330	if (pgdat == NODE_DATA(0)) {
6331		mem_map = NODE_DATA(0)->node_mem_map;
6332#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6333		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6334			mem_map -= offset;
6335#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6336	}
6337#endif
6338}
6339#else
6340static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6341#endif /* CONFIG_FLAT_NODE_MEM_MAP */
6342
6343void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6344		unsigned long node_start_pfn, unsigned long *zholes_size)
 
 
 
 
 
 
 
 
6345{
6346	pg_data_t *pgdat = NODE_DATA(nid);
6347	unsigned long start_pfn = 0;
6348	unsigned long end_pfn = 0;
6349
6350	/* pg_data_t should be reset to zero when it's allocated */
6351	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
 
 
6352
6353	pgdat->node_id = nid;
6354	pgdat->node_start_pfn = node_start_pfn;
6355	pgdat->per_cpu_nodestats = NULL;
6356#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6357	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6358	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6359		(u64)start_pfn << PAGE_SHIFT,
6360		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6361#else
6362	start_pfn = node_start_pfn;
6363#endif
6364	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6365				  zones_size, zholes_size);
6366
6367	alloc_node_mem_map(pgdat);
 
6368
6369#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6370	/*
6371	 * We start only with one section of pages, more pages are added as
6372	 * needed until the rest of deferred pages are initialized.
6373	 */
6374	pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
6375					 pgdat->node_spanned_pages);
6376	pgdat->first_deferred_pfn = ULONG_MAX;
6377#endif
6378	free_area_init_core(pgdat);
6379}
6380
6381#ifdef CONFIG_HAVE_MEMBLOCK
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6382/*
6383 * Only struct pages that are backed by physical memory are zeroed and
6384 * initialized by going through __init_single_page(). But, there are some
6385 * struct pages which are reserved in memblock allocator and their fields
6386 * may be accessed (for example page_to_pfn() on some configuration accesses
6387 * flags). We must explicitly zero those struct pages.
 
 
 
 
 
 
6388 */
6389void __paginginit zero_resv_unavail(void)
6390{
6391	phys_addr_t start, end;
6392	unsigned long pfn;
6393	u64 i, pgcnt;
 
6394
6395	/*
6396	 * Loop through ranges that are reserved, but do not have reported
6397	 * physical memory backing.
6398	 */
6399	pgcnt = 0;
6400	for_each_resv_unavail_range(i, &start, &end) {
6401		for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
6402			if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages)))
6403				continue;
6404			mm_zero_struct_page(pfn_to_page(pfn));
6405			pgcnt++;
6406		}
6407	}
6408
6409	/*
 
 
 
 
 
 
 
 
 
 
6410	 * Struct pages that do not have backing memory. This could be because
6411	 * firmware is using some of this memory, or for some other reasons.
6412	 * Once memblock is changed so such behaviour is not allowed: i.e.
6413	 * list of "reserved" memory must be a subset of list of "memory", then
6414	 * this code can be removed.
6415	 */
6416	if (pgcnt)
6417		pr_info("Reserved but unavailable: %lld pages", pgcnt);
6418}
6419#endif /* CONFIG_HAVE_MEMBLOCK */
6420
6421#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 
 
6422
6423#if MAX_NUMNODES > 1
6424/*
6425 * Figure out the number of possible node ids.
6426 */
6427void __init setup_nr_node_ids(void)
6428{
6429	unsigned int highest;
6430
6431	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6432	nr_node_ids = highest + 1;
6433}
6434#endif
6435
6436/**
6437 * node_map_pfn_alignment - determine the maximum internode alignment
6438 *
6439 * This function should be called after node map is populated and sorted.
6440 * It calculates the maximum power of two alignment which can distinguish
6441 * all the nodes.
6442 *
6443 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6444 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6445 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6446 * shifted, 1GiB is enough and this function will indicate so.
6447 *
6448 * This is used to test whether pfn -> nid mapping of the chosen memory
6449 * model has fine enough granularity to avoid incorrect mapping for the
6450 * populated node map.
6451 *
6452 * Returns the determined alignment in pfn's.  0 if there is no alignment
6453 * requirement (single node).
6454 */
6455unsigned long __init node_map_pfn_alignment(void)
6456{
6457	unsigned long accl_mask = 0, last_end = 0;
6458	unsigned long start, end, mask;
6459	int last_nid = -1;
6460	int i, nid;
6461
6462	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6463		if (!start || last_nid < 0 || last_nid == nid) {
6464			last_nid = nid;
6465			last_end = end;
6466			continue;
6467		}
6468
6469		/*
6470		 * Start with a mask granular enough to pin-point to the
6471		 * start pfn and tick off bits one-by-one until it becomes
6472		 * too coarse to separate the current node from the last.
6473		 */
6474		mask = ~((1 << __ffs(start)) - 1);
6475		while (mask && last_end <= (start & (mask << 1)))
6476			mask <<= 1;
6477
6478		/* accumulate all internode masks */
6479		accl_mask |= mask;
6480	}
6481
6482	/* convert mask to number of pages */
6483	return ~accl_mask + 1;
6484}
6485
6486/* Find the lowest pfn for a node */
6487static unsigned long __init find_min_pfn_for_node(int nid)
6488{
6489	unsigned long min_pfn = ULONG_MAX;
6490	unsigned long start_pfn;
6491	int i;
6492
6493	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6494		min_pfn = min(min_pfn, start_pfn);
6495
6496	if (min_pfn == ULONG_MAX) {
6497		pr_warn("Could not find start_pfn for node %d\n", nid);
6498		return 0;
6499	}
6500
6501	return min_pfn;
6502}
6503
6504/**
6505 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6506 *
6507 * It returns the minimum PFN based on information provided via
6508 * memblock_set_node().
6509 */
6510unsigned long __init find_min_pfn_with_active_regions(void)
6511{
6512	return find_min_pfn_for_node(MAX_NUMNODES);
6513}
6514
6515/*
6516 * early_calculate_totalpages()
6517 * Sum pages in active regions for movable zone.
6518 * Populate N_MEMORY for calculating usable_nodes.
6519 */
6520static unsigned long __init early_calculate_totalpages(void)
6521{
6522	unsigned long totalpages = 0;
6523	unsigned long start_pfn, end_pfn;
6524	int i, nid;
6525
6526	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6527		unsigned long pages = end_pfn - start_pfn;
6528
6529		totalpages += pages;
6530		if (pages)
6531			node_set_state(nid, N_MEMORY);
6532	}
6533	return totalpages;
6534}
6535
6536/*
6537 * Find the PFN the Movable zone begins in each node. Kernel memory
6538 * is spread evenly between nodes as long as the nodes have enough
6539 * memory. When they don't, some nodes will have more kernelcore than
6540 * others
6541 */
6542static void __init find_zone_movable_pfns_for_nodes(void)
6543{
6544	int i, nid;
6545	unsigned long usable_startpfn;
6546	unsigned long kernelcore_node, kernelcore_remaining;
6547	/* save the state before borrow the nodemask */
6548	nodemask_t saved_node_state = node_states[N_MEMORY];
6549	unsigned long totalpages = early_calculate_totalpages();
6550	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6551	struct memblock_region *r;
6552
6553	/* Need to find movable_zone earlier when movable_node is specified. */
6554	find_usable_zone_for_movable();
6555
6556	/*
6557	 * If movable_node is specified, ignore kernelcore and movablecore
6558	 * options.
6559	 */
6560	if (movable_node_is_enabled()) {
6561		for_each_memblock(memory, r) {
6562			if (!memblock_is_hotpluggable(r))
6563				continue;
6564
6565			nid = r->nid;
6566
6567			usable_startpfn = PFN_DOWN(r->base);
6568			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6569				min(usable_startpfn, zone_movable_pfn[nid]) :
6570				usable_startpfn;
6571		}
6572
6573		goto out2;
6574	}
6575
6576	/*
6577	 * If kernelcore=mirror is specified, ignore movablecore option
6578	 */
6579	if (mirrored_kernelcore) {
6580		bool mem_below_4gb_not_mirrored = false;
6581
6582		for_each_memblock(memory, r) {
6583			if (memblock_is_mirror(r))
6584				continue;
6585
6586			nid = r->nid;
6587
6588			usable_startpfn = memblock_region_memory_base_pfn(r);
6589
6590			if (usable_startpfn < 0x100000) {
6591				mem_below_4gb_not_mirrored = true;
6592				continue;
6593			}
6594
6595			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6596				min(usable_startpfn, zone_movable_pfn[nid]) :
6597				usable_startpfn;
6598		}
6599
6600		if (mem_below_4gb_not_mirrored)
6601			pr_warn("This configuration results in unmirrored kernel memory.");
6602
6603		goto out2;
6604	}
6605
6606	/*
6607	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6608	 * amount of necessary memory.
6609	 */
6610	if (required_kernelcore_percent)
6611		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
6612				       10000UL;
6613	if (required_movablecore_percent)
6614		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
6615					10000UL;
6616
6617	/*
6618	 * If movablecore= was specified, calculate what size of
6619	 * kernelcore that corresponds so that memory usable for
6620	 * any allocation type is evenly spread. If both kernelcore
6621	 * and movablecore are specified, then the value of kernelcore
6622	 * will be used for required_kernelcore if it's greater than
6623	 * what movablecore would have allowed.
6624	 */
6625	if (required_movablecore) {
6626		unsigned long corepages;
6627
6628		/*
6629		 * Round-up so that ZONE_MOVABLE is at least as large as what
6630		 * was requested by the user
6631		 */
6632		required_movablecore =
6633			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6634		required_movablecore = min(totalpages, required_movablecore);
6635		corepages = totalpages - required_movablecore;
6636
6637		required_kernelcore = max(required_kernelcore, corepages);
6638	}
6639
6640	/*
6641	 * If kernelcore was not specified or kernelcore size is larger
6642	 * than totalpages, there is no ZONE_MOVABLE.
6643	 */
6644	if (!required_kernelcore || required_kernelcore >= totalpages)
6645		goto out;
6646
6647	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6648	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6649
6650restart:
6651	/* Spread kernelcore memory as evenly as possible throughout nodes */
6652	kernelcore_node = required_kernelcore / usable_nodes;
6653	for_each_node_state(nid, N_MEMORY) {
6654		unsigned long start_pfn, end_pfn;
6655
6656		/*
6657		 * Recalculate kernelcore_node if the division per node
6658		 * now exceeds what is necessary to satisfy the requested
6659		 * amount of memory for the kernel
6660		 */
6661		if (required_kernelcore < kernelcore_node)
6662			kernelcore_node = required_kernelcore / usable_nodes;
6663
6664		/*
6665		 * As the map is walked, we track how much memory is usable
6666		 * by the kernel using kernelcore_remaining. When it is
6667		 * 0, the rest of the node is usable by ZONE_MOVABLE
6668		 */
6669		kernelcore_remaining = kernelcore_node;
6670
6671		/* Go through each range of PFNs within this node */
6672		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6673			unsigned long size_pages;
6674
6675			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6676			if (start_pfn >= end_pfn)
6677				continue;
6678
6679			/* Account for what is only usable for kernelcore */
6680			if (start_pfn < usable_startpfn) {
6681				unsigned long kernel_pages;
6682				kernel_pages = min(end_pfn, usable_startpfn)
6683								- start_pfn;
6684
6685				kernelcore_remaining -= min(kernel_pages,
6686							kernelcore_remaining);
6687				required_kernelcore -= min(kernel_pages,
6688							required_kernelcore);
6689
6690				/* Continue if range is now fully accounted */
6691				if (end_pfn <= usable_startpfn) {
6692
6693					/*
6694					 * Push zone_movable_pfn to the end so
6695					 * that if we have to rebalance
6696					 * kernelcore across nodes, we will
6697					 * not double account here
6698					 */
6699					zone_movable_pfn[nid] = end_pfn;
6700					continue;
6701				}
6702				start_pfn = usable_startpfn;
6703			}
6704
6705			/*
6706			 * The usable PFN range for ZONE_MOVABLE is from
6707			 * start_pfn->end_pfn. Calculate size_pages as the
6708			 * number of pages used as kernelcore
6709			 */
6710			size_pages = end_pfn - start_pfn;
6711			if (size_pages > kernelcore_remaining)
6712				size_pages = kernelcore_remaining;
6713			zone_movable_pfn[nid] = start_pfn + size_pages;
6714
6715			/*
6716			 * Some kernelcore has been met, update counts and
6717			 * break if the kernelcore for this node has been
6718			 * satisfied
6719			 */
6720			required_kernelcore -= min(required_kernelcore,
6721								size_pages);
6722			kernelcore_remaining -= size_pages;
6723			if (!kernelcore_remaining)
6724				break;
6725		}
6726	}
6727
6728	/*
6729	 * If there is still required_kernelcore, we do another pass with one
6730	 * less node in the count. This will push zone_movable_pfn[nid] further
6731	 * along on the nodes that still have memory until kernelcore is
6732	 * satisfied
6733	 */
6734	usable_nodes--;
6735	if (usable_nodes && required_kernelcore > usable_nodes)
6736		goto restart;
6737
6738out2:
6739	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6740	for (nid = 0; nid < MAX_NUMNODES; nid++)
6741		zone_movable_pfn[nid] =
6742			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6743
6744out:
6745	/* restore the node_state */
6746	node_states[N_MEMORY] = saved_node_state;
6747}
6748
6749/* Any regular or high memory on that node ? */
6750static void check_for_memory(pg_data_t *pgdat, int nid)
6751{
6752	enum zone_type zone_type;
6753
6754	if (N_MEMORY == N_NORMAL_MEMORY)
6755		return;
6756
6757	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6758		struct zone *zone = &pgdat->node_zones[zone_type];
6759		if (populated_zone(zone)) {
6760			node_set_state(nid, N_HIGH_MEMORY);
6761			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6762			    zone_type <= ZONE_NORMAL)
6763				node_set_state(nid, N_NORMAL_MEMORY);
6764			break;
6765		}
6766	}
6767}
6768
 
 
 
 
 
 
 
 
 
6769/**
6770 * free_area_init_nodes - Initialise all pg_data_t and zone data
6771 * @max_zone_pfn: an array of max PFNs for each zone
6772 *
6773 * This will call free_area_init_node() for each active node in the system.
6774 * Using the page ranges provided by memblock_set_node(), the size of each
6775 * zone in each node and their holes is calculated. If the maximum PFN
6776 * between two adjacent zones match, it is assumed that the zone is empty.
6777 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6778 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6779 * starts where the previous one ended. For example, ZONE_DMA32 starts
6780 * at arch_max_dma_pfn.
6781 */
6782void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6783{
6784	unsigned long start_pfn, end_pfn;
6785	int i, nid;
 
6786
6787	/* Record where the zone boundaries are */
6788	memset(arch_zone_lowest_possible_pfn, 0,
6789				sizeof(arch_zone_lowest_possible_pfn));
6790	memset(arch_zone_highest_possible_pfn, 0,
6791				sizeof(arch_zone_highest_possible_pfn));
6792
6793	start_pfn = find_min_pfn_with_active_regions();
 
6794
6795	for (i = 0; i < MAX_NR_ZONES; i++) {
6796		if (i == ZONE_MOVABLE)
 
 
 
 
 
6797			continue;
6798
6799		end_pfn = max(max_zone_pfn[i], start_pfn);
6800		arch_zone_lowest_possible_pfn[i] = start_pfn;
6801		arch_zone_highest_possible_pfn[i] = end_pfn;
6802
6803		start_pfn = end_pfn;
6804	}
6805
6806	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
6807	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6808	find_zone_movable_pfns_for_nodes();
6809
6810	/* Print out the zone ranges */
6811	pr_info("Zone ranges:\n");
6812	for (i = 0; i < MAX_NR_ZONES; i++) {
6813		if (i == ZONE_MOVABLE)
6814			continue;
6815		pr_info("  %-8s ", zone_names[i]);
6816		if (arch_zone_lowest_possible_pfn[i] ==
6817				arch_zone_highest_possible_pfn[i])
6818			pr_cont("empty\n");
6819		else
6820			pr_cont("[mem %#018Lx-%#018Lx]\n",
6821				(u64)arch_zone_lowest_possible_pfn[i]
6822					<< PAGE_SHIFT,
6823				((u64)arch_zone_highest_possible_pfn[i]
6824					<< PAGE_SHIFT) - 1);
6825	}
6826
6827	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6828	pr_info("Movable zone start for each node\n");
6829	for (i = 0; i < MAX_NUMNODES; i++) {
6830		if (zone_movable_pfn[i])
6831			pr_info("  Node %d: %#018Lx\n", i,
6832			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6833	}
6834
6835	/* Print out the early node map */
 
 
 
 
6836	pr_info("Early memory node ranges\n");
6837	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6838		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6839			(u64)start_pfn << PAGE_SHIFT,
6840			((u64)end_pfn << PAGE_SHIFT) - 1);
 
 
6841
6842	/* Initialise every node */
6843	mminit_verify_pageflags_layout();
6844	setup_nr_node_ids();
 
6845	for_each_online_node(nid) {
6846		pg_data_t *pgdat = NODE_DATA(nid);
6847		free_area_init_node(nid, NULL,
6848				find_min_pfn_for_node(nid), NULL);
6849
6850		/* Any memory on that node */
6851		if (pgdat->node_present_pages)
6852			node_set_state(nid, N_MEMORY);
6853		check_for_memory(pgdat, nid);
6854	}
6855	zero_resv_unavail();
6856}
6857
6858static int __init cmdline_parse_core(char *p, unsigned long *core,
6859				     unsigned long *percent)
6860{
6861	unsigned long long coremem;
6862	char *endptr;
6863
6864	if (!p)
6865		return -EINVAL;
6866
6867	/* Value may be a percentage of total memory, otherwise bytes */
6868	coremem = simple_strtoull(p, &endptr, 0);
6869	if (*endptr == '%') {
6870		/* Paranoid check for percent values greater than 100 */
6871		WARN_ON(coremem > 100);
6872
6873		*percent = coremem;
6874	} else {
6875		coremem = memparse(p, &p);
6876		/* Paranoid check that UL is enough for the coremem value */
6877		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6878
6879		*core = coremem >> PAGE_SHIFT;
6880		*percent = 0UL;
6881	}
6882	return 0;
6883}
6884
6885/*
6886 * kernelcore=size sets the amount of memory for use for allocations that
6887 * cannot be reclaimed or migrated.
6888 */
6889static int __init cmdline_parse_kernelcore(char *p)
6890{
6891	/* parse kernelcore=mirror */
6892	if (parse_option_str(p, "mirror")) {
6893		mirrored_kernelcore = true;
6894		return 0;
6895	}
6896
6897	return cmdline_parse_core(p, &required_kernelcore,
6898				  &required_kernelcore_percent);
6899}
6900
6901/*
6902 * movablecore=size sets the amount of memory for use for allocations that
6903 * can be reclaimed or migrated.
6904 */
6905static int __init cmdline_parse_movablecore(char *p)
6906{
6907	return cmdline_parse_core(p, &required_movablecore,
6908				  &required_movablecore_percent);
6909}
6910
6911early_param("kernelcore", cmdline_parse_kernelcore);
6912early_param("movablecore", cmdline_parse_movablecore);
6913
6914#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6915
6916void adjust_managed_page_count(struct page *page, long count)
6917{
6918	spin_lock(&managed_page_count_lock);
6919	page_zone(page)->managed_pages += count;
6920	totalram_pages += count;
6921#ifdef CONFIG_HIGHMEM
6922	if (PageHighMem(page))
6923		totalhigh_pages += count;
6924#endif
6925	spin_unlock(&managed_page_count_lock);
6926}
6927EXPORT_SYMBOL(adjust_managed_page_count);
6928
6929unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6930{
6931	void *pos;
6932	unsigned long pages = 0;
6933
6934	start = (void *)PAGE_ALIGN((unsigned long)start);
6935	end = (void *)((unsigned long)end & PAGE_MASK);
6936	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
 
 
 
 
 
 
 
 
 
 
 
6937		if ((unsigned int)poison <= 0xFF)
6938			memset(pos, poison, PAGE_SIZE);
6939		free_reserved_page(virt_to_page(pos));
 
6940	}
6941
6942	if (pages && s)
6943		pr_info("Freeing %s memory: %ldK\n",
6944			s, pages << (PAGE_SHIFT - 10));
6945
6946	return pages;
6947}
6948EXPORT_SYMBOL(free_reserved_area);
6949
6950#ifdef	CONFIG_HIGHMEM
6951void free_highmem_page(struct page *page)
6952{
6953	__free_reserved_page(page);
6954	totalram_pages++;
6955	page_zone(page)->managed_pages++;
6956	totalhigh_pages++;
6957}
6958#endif
6959
6960
6961void __init mem_init_print_info(const char *str)
6962{
6963	unsigned long physpages, codesize, datasize, rosize, bss_size;
6964	unsigned long init_code_size, init_data_size;
6965
6966	physpages = get_num_physpages();
6967	codesize = _etext - _stext;
6968	datasize = _edata - _sdata;
6969	rosize = __end_rodata - __start_rodata;
6970	bss_size = __bss_stop - __bss_start;
6971	init_data_size = __init_end - __init_begin;
6972	init_code_size = _einittext - _sinittext;
6973
6974	/*
6975	 * Detect special cases and adjust section sizes accordingly:
6976	 * 1) .init.* may be embedded into .data sections
6977	 * 2) .init.text.* may be out of [__init_begin, __init_end],
6978	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
6979	 * 3) .rodata.* may be embedded into .text or .data sections.
6980	 */
6981#define adj_init_size(start, end, size, pos, adj) \
6982	do { \
6983		if (start <= pos && pos < end && size > adj) \
6984			size -= adj; \
6985	} while (0)
6986
6987	adj_init_size(__init_begin, __init_end, init_data_size,
6988		     _sinittext, init_code_size);
6989	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6990	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6991	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6992	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6993
6994#undef	adj_init_size
6995
6996	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6997#ifdef	CONFIG_HIGHMEM
6998		", %luK highmem"
6999#endif
7000		"%s%s)\n",
7001		nr_free_pages() << (PAGE_SHIFT - 10),
7002		physpages << (PAGE_SHIFT - 10),
7003		codesize >> 10, datasize >> 10, rosize >> 10,
7004		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7005		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
7006		totalcma_pages << (PAGE_SHIFT - 10),
7007#ifdef	CONFIG_HIGHMEM
7008		totalhigh_pages << (PAGE_SHIFT - 10),
7009#endif
7010		str ? ", " : "", str ? str : "");
7011}
7012
7013/**
7014 * set_dma_reserve - set the specified number of pages reserved in the first zone
7015 * @new_dma_reserve: The number of pages to mark reserved
7016 *
7017 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7018 * In the DMA zone, a significant percentage may be consumed by kernel image
7019 * and other unfreeable allocations which can skew the watermarks badly. This
7020 * function may optionally be used to account for unfreeable pages in the
7021 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7022 * smaller per-cpu batchsize.
7023 */
7024void __init set_dma_reserve(unsigned long new_dma_reserve)
7025{
7026	dma_reserve = new_dma_reserve;
7027}
7028
7029void __init free_area_init(unsigned long *zones_size)
7030{
7031	free_area_init_node(0, zones_size,
7032			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7033	zero_resv_unavail();
7034}
7035
7036static int page_alloc_cpu_dead(unsigned int cpu)
7037{
7038
7039	lru_add_drain_cpu(cpu);
7040	drain_pages(cpu);
7041
7042	/*
7043	 * Spill the event counters of the dead processor
7044	 * into the current processors event counters.
7045	 * This artificially elevates the count of the current
7046	 * processor.
7047	 */
7048	vm_events_fold_cpu(cpu);
7049
7050	/*
7051	 * Zero the differential counters of the dead processor
7052	 * so that the vm statistics are consistent.
7053	 *
7054	 * This is only okay since the processor is dead and cannot
7055	 * race with what we are doing.
7056	 */
7057	cpu_vm_stats_fold(cpu);
7058	return 0;
7059}
7060
 
 
 
 
 
 
 
 
 
 
 
 
 
7061void __init page_alloc_init(void)
7062{
7063	int ret;
7064
 
 
 
 
 
7065	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7066					"mm/page_alloc:dead", NULL,
7067					page_alloc_cpu_dead);
7068	WARN_ON(ret < 0);
7069}
7070
7071/*
7072 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7073 *	or min_free_kbytes changes.
7074 */
7075static void calculate_totalreserve_pages(void)
7076{
7077	struct pglist_data *pgdat;
7078	unsigned long reserve_pages = 0;
7079	enum zone_type i, j;
7080
7081	for_each_online_pgdat(pgdat) {
7082
7083		pgdat->totalreserve_pages = 0;
7084
7085		for (i = 0; i < MAX_NR_ZONES; i++) {
7086			struct zone *zone = pgdat->node_zones + i;
7087			long max = 0;
 
7088
7089			/* Find valid and maximum lowmem_reserve in the zone */
7090			for (j = i; j < MAX_NR_ZONES; j++) {
7091				if (zone->lowmem_reserve[j] > max)
7092					max = zone->lowmem_reserve[j];
7093			}
7094
7095			/* we treat the high watermark as reserved pages. */
7096			max += high_wmark_pages(zone);
7097
7098			if (max > zone->managed_pages)
7099				max = zone->managed_pages;
7100
7101			pgdat->totalreserve_pages += max;
7102
7103			reserve_pages += max;
7104		}
7105	}
7106	totalreserve_pages = reserve_pages;
7107}
7108
7109/*
7110 * setup_per_zone_lowmem_reserve - called whenever
7111 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7112 *	has a correct pages reserved value, so an adequate number of
7113 *	pages are left in the zone after a successful __alloc_pages().
7114 */
7115static void setup_per_zone_lowmem_reserve(void)
7116{
7117	struct pglist_data *pgdat;
7118	enum zone_type j, idx;
7119
7120	for_each_online_pgdat(pgdat) {
7121		for (j = 0; j < MAX_NR_ZONES; j++) {
7122			struct zone *zone = pgdat->node_zones + j;
7123			unsigned long managed_pages = zone->managed_pages;
7124
7125			zone->lowmem_reserve[j] = 0;
7126
7127			idx = j;
7128			while (idx) {
7129				struct zone *lower_zone;
7130
7131				idx--;
7132				lower_zone = pgdat->node_zones + idx;
7133
7134				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7135					sysctl_lowmem_reserve_ratio[idx] = 0;
7136					lower_zone->lowmem_reserve[j] = 0;
 
7137				} else {
7138					lower_zone->lowmem_reserve[j] =
7139						managed_pages / sysctl_lowmem_reserve_ratio[idx];
7140				}
7141				managed_pages += lower_zone->managed_pages;
7142			}
7143		}
7144	}
7145
7146	/* update totalreserve_pages */
7147	calculate_totalreserve_pages();
7148}
7149
7150static void __setup_per_zone_wmarks(void)
7151{
7152	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7153	unsigned long lowmem_pages = 0;
7154	struct zone *zone;
7155	unsigned long flags;
7156
7157	/* Calculate total number of !ZONE_HIGHMEM pages */
7158	for_each_zone(zone) {
7159		if (!is_highmem(zone))
7160			lowmem_pages += zone->managed_pages;
7161	}
7162
7163	for_each_zone(zone) {
7164		u64 tmp;
7165
7166		spin_lock_irqsave(&zone->lock, flags);
7167		tmp = (u64)pages_min * zone->managed_pages;
7168		do_div(tmp, lowmem_pages);
7169		if (is_highmem(zone)) {
7170			/*
7171			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7172			 * need highmem pages, so cap pages_min to a small
7173			 * value here.
7174			 *
7175			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7176			 * deltas control asynch page reclaim, and so should
7177			 * not be capped for highmem.
7178			 */
7179			unsigned long min_pages;
7180
7181			min_pages = zone->managed_pages / 1024;
7182			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7183			zone->watermark[WMARK_MIN] = min_pages;
7184		} else {
7185			/*
7186			 * If it's a lowmem zone, reserve a number of pages
7187			 * proportionate to the zone's size.
7188			 */
7189			zone->watermark[WMARK_MIN] = tmp;
7190		}
7191
7192		/*
7193		 * Set the kswapd watermarks distance according to the
7194		 * scale factor in proportion to available memory, but
7195		 * ensure a minimum size on small systems.
7196		 */
7197		tmp = max_t(u64, tmp >> 2,
7198			    mult_frac(zone->managed_pages,
7199				      watermark_scale_factor, 10000));
7200
7201		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7202		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
 
7203
7204		spin_unlock_irqrestore(&zone->lock, flags);
7205	}
7206
7207	/* update totalreserve_pages */
7208	calculate_totalreserve_pages();
7209}
7210
7211/**
7212 * setup_per_zone_wmarks - called when min_free_kbytes changes
7213 * or when memory is hot-{added|removed}
7214 *
7215 * Ensures that the watermark[min,low,high] values for each zone are set
7216 * correctly with respect to min_free_kbytes.
7217 */
7218void setup_per_zone_wmarks(void)
7219{
7220	static DEFINE_SPINLOCK(lock);
7221
7222	spin_lock(&lock);
7223	__setup_per_zone_wmarks();
7224	spin_unlock(&lock);
7225}
7226
7227/*
7228 * Initialise min_free_kbytes.
7229 *
7230 * For small machines we want it small (128k min).  For large machines
7231 * we want it large (64MB max).  But it is not linear, because network
7232 * bandwidth does not increase linearly with machine size.  We use
7233 *
7234 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7235 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7236 *
7237 * which yields
7238 *
7239 * 16MB:	512k
7240 * 32MB:	724k
7241 * 64MB:	1024k
7242 * 128MB:	1448k
7243 * 256MB:	2048k
7244 * 512MB:	2896k
7245 * 1024MB:	4096k
7246 * 2048MB:	5792k
7247 * 4096MB:	8192k
7248 * 8192MB:	11584k
7249 * 16384MB:	16384k
7250 */
7251int __meminit init_per_zone_wmark_min(void)
7252{
7253	unsigned long lowmem_kbytes;
7254	int new_min_free_kbytes;
7255
7256	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7257	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7258
7259	if (new_min_free_kbytes > user_min_free_kbytes) {
7260		min_free_kbytes = new_min_free_kbytes;
7261		if (min_free_kbytes < 128)
7262			min_free_kbytes = 128;
7263		if (min_free_kbytes > 65536)
7264			min_free_kbytes = 65536;
7265	} else {
7266		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7267				new_min_free_kbytes, user_min_free_kbytes);
7268	}
7269	setup_per_zone_wmarks();
7270	refresh_zone_stat_thresholds();
7271	setup_per_zone_lowmem_reserve();
7272
7273#ifdef CONFIG_NUMA
7274	setup_min_unmapped_ratio();
7275	setup_min_slab_ratio();
7276#endif
7277
 
 
7278	return 0;
7279}
7280core_initcall(init_per_zone_wmark_min)
7281
7282/*
7283 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7284 *	that we can call two helper functions whenever min_free_kbytes
7285 *	changes.
7286 */
7287int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7288	void __user *buffer, size_t *length, loff_t *ppos)
7289{
7290	int rc;
7291
7292	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7293	if (rc)
7294		return rc;
7295
7296	if (write) {
7297		user_min_free_kbytes = min_free_kbytes;
7298		setup_per_zone_wmarks();
7299	}
7300	return 0;
7301}
7302
7303int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7304	void __user *buffer, size_t *length, loff_t *ppos)
7305{
7306	int rc;
7307
7308	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7309	if (rc)
7310		return rc;
7311
7312	if (write)
7313		setup_per_zone_wmarks();
7314
7315	return 0;
7316}
7317
7318#ifdef CONFIG_NUMA
7319static void setup_min_unmapped_ratio(void)
7320{
7321	pg_data_t *pgdat;
7322	struct zone *zone;
7323
7324	for_each_online_pgdat(pgdat)
7325		pgdat->min_unmapped_pages = 0;
7326
7327	for_each_zone(zone)
7328		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7329				sysctl_min_unmapped_ratio) / 100;
7330}
7331
7332
7333int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7334	void __user *buffer, size_t *length, loff_t *ppos)
7335{
7336	int rc;
7337
7338	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7339	if (rc)
7340		return rc;
7341
7342	setup_min_unmapped_ratio();
7343
7344	return 0;
7345}
7346
7347static void setup_min_slab_ratio(void)
7348{
7349	pg_data_t *pgdat;
7350	struct zone *zone;
7351
7352	for_each_online_pgdat(pgdat)
7353		pgdat->min_slab_pages = 0;
7354
7355	for_each_zone(zone)
7356		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7357				sysctl_min_slab_ratio) / 100;
7358}
7359
7360int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7361	void __user *buffer, size_t *length, loff_t *ppos)
7362{
7363	int rc;
7364
7365	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7366	if (rc)
7367		return rc;
7368
7369	setup_min_slab_ratio();
7370
7371	return 0;
7372}
7373#endif
7374
7375/*
7376 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7377 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7378 *	whenever sysctl_lowmem_reserve_ratio changes.
7379 *
7380 * The reserve ratio obviously has absolutely no relation with the
7381 * minimum watermarks. The lowmem reserve ratio can only make sense
7382 * if in function of the boot time zone sizes.
7383 */
7384int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7385	void __user *buffer, size_t *length, loff_t *ppos)
7386{
 
 
7387	proc_dointvec_minmax(table, write, buffer, length, ppos);
 
 
 
 
 
 
7388	setup_per_zone_lowmem_reserve();
7389	return 0;
7390}
7391
 
 
 
 
 
 
 
 
 
7392/*
7393 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7394 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
7395 * pagelist can have before it gets flushed back to buddy allocator.
7396 */
7397int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7398	void __user *buffer, size_t *length, loff_t *ppos)
7399{
7400	struct zone *zone;
7401	int old_percpu_pagelist_fraction;
7402	int ret;
7403
7404	mutex_lock(&pcp_batch_high_lock);
7405	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7406
7407	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7408	if (!write || ret < 0)
7409		goto out;
7410
7411	/* Sanity checking to avoid pcp imbalance */
7412	if (percpu_pagelist_fraction &&
7413	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7414		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7415		ret = -EINVAL;
7416		goto out;
7417	}
7418
7419	/* No change? */
7420	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7421		goto out;
7422
7423	for_each_populated_zone(zone) {
7424		unsigned int cpu;
7425
7426		for_each_possible_cpu(cpu)
7427			pageset_set_high_and_batch(zone,
7428					per_cpu_ptr(zone->pageset, cpu));
7429	}
7430out:
7431	mutex_unlock(&pcp_batch_high_lock);
7432	return ret;
7433}
7434
7435#ifdef CONFIG_NUMA
7436int hashdist = HASHDIST_DEFAULT;
7437
7438static int __init set_hashdist(char *str)
7439{
7440	if (!str)
7441		return 0;
7442	hashdist = simple_strtoul(str, &str, 0);
7443	return 1;
7444}
7445__setup("hashdist=", set_hashdist);
7446#endif
7447
7448#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7449/*
7450 * Returns the number of pages that arch has reserved but
7451 * is not known to alloc_large_system_hash().
7452 */
7453static unsigned long __init arch_reserved_kernel_pages(void)
7454{
7455	return 0;
7456}
7457#endif
7458
7459/*
7460 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7461 * machines. As memory size is increased the scale is also increased but at
7462 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
7463 * quadruples the scale is increased by one, which means the size of hash table
7464 * only doubles, instead of quadrupling as well.
7465 * Because 32-bit systems cannot have large physical memory, where this scaling
7466 * makes sense, it is disabled on such platforms.
7467 */
7468#if __BITS_PER_LONG > 32
7469#define ADAPT_SCALE_BASE	(64ul << 30)
7470#define ADAPT_SCALE_SHIFT	2
7471#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
7472#endif
7473
7474/*
7475 * allocate a large system hash table from bootmem
7476 * - it is assumed that the hash table must contain an exact power-of-2
7477 *   quantity of entries
7478 * - limit is the number of hash buckets, not the total allocation size
7479 */
7480void *__init alloc_large_system_hash(const char *tablename,
7481				     unsigned long bucketsize,
7482				     unsigned long numentries,
7483				     int scale,
7484				     int flags,
7485				     unsigned int *_hash_shift,
7486				     unsigned int *_hash_mask,
7487				     unsigned long low_limit,
7488				     unsigned long high_limit)
7489{
7490	unsigned long long max = high_limit;
7491	unsigned long log2qty, size;
7492	void *table = NULL;
7493	gfp_t gfp_flags;
 
7494
7495	/* allow the kernel cmdline to have a say */
7496	if (!numentries) {
7497		/* round applicable memory size up to nearest megabyte */
7498		numentries = nr_kernel_pages;
7499		numentries -= arch_reserved_kernel_pages();
7500
7501		/* It isn't necessary when PAGE_SIZE >= 1MB */
7502		if (PAGE_SHIFT < 20)
7503			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7504
7505#if __BITS_PER_LONG > 32
7506		if (!high_limit) {
7507			unsigned long adapt;
7508
7509			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7510			     adapt <<= ADAPT_SCALE_SHIFT)
7511				scale++;
7512		}
7513#endif
7514
7515		/* limit to 1 bucket per 2^scale bytes of low memory */
7516		if (scale > PAGE_SHIFT)
7517			numentries >>= (scale - PAGE_SHIFT);
7518		else
7519			numentries <<= (PAGE_SHIFT - scale);
7520
7521		/* Make sure we've got at least a 0-order allocation.. */
7522		if (unlikely(flags & HASH_SMALL)) {
7523			/* Makes no sense without HASH_EARLY */
7524			WARN_ON(!(flags & HASH_EARLY));
7525			if (!(numentries >> *_hash_shift)) {
7526				numentries = 1UL << *_hash_shift;
7527				BUG_ON(!numentries);
7528			}
7529		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7530			numentries = PAGE_SIZE / bucketsize;
7531	}
7532	numentries = roundup_pow_of_two(numentries);
7533
7534	/* limit allocation size to 1/16 total memory by default */
7535	if (max == 0) {
7536		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7537		do_div(max, bucketsize);
7538	}
7539	max = min(max, 0x80000000ULL);
7540
7541	if (numentries < low_limit)
7542		numentries = low_limit;
7543	if (numentries > max)
7544		numentries = max;
7545
7546	log2qty = ilog2(numentries);
7547
7548	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7549	do {
 
7550		size = bucketsize << log2qty;
7551		if (flags & HASH_EARLY) {
7552			if (flags & HASH_ZERO)
7553				table = memblock_virt_alloc_nopanic(size, 0);
7554			else
7555				table = memblock_virt_alloc_raw(size, 0);
7556		} else if (hashdist) {
7557			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
 
 
7558		} else {
7559			/*
7560			 * If bucketsize is not a power-of-two, we may free
7561			 * some pages at the end of hash table which
7562			 * alloc_pages_exact() automatically does
7563			 */
7564			if (get_order(size) < MAX_ORDER) {
7565				table = alloc_pages_exact(size, gfp_flags);
7566				kmemleak_alloc(table, size, 1, gfp_flags);
7567			}
7568		}
7569	} while (!table && size > PAGE_SIZE && --log2qty);
7570
7571	if (!table)
7572		panic("Failed to allocate %s hash table\n", tablename);
7573
7574	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7575		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
 
7576
7577	if (_hash_shift)
7578		*_hash_shift = log2qty;
7579	if (_hash_mask)
7580		*_hash_mask = (1 << log2qty) - 1;
7581
7582	return table;
7583}
7584
7585/*
7586 * This function checks whether pageblock includes unmovable pages or not.
7587 * If @count is not zero, it is okay to include less @count unmovable pages
7588 *
7589 * PageLRU check without isolation or lru_lock could race so that
7590 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7591 * check without lock_page also may miss some movable non-lru pages at
7592 * race condition. So you can't expect this function should be exact.
 
 
 
 
 
7593 */
7594bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7595			 int migratetype,
7596			 bool skip_hwpoisoned_pages)
7597{
7598	unsigned long pfn, iter, found;
 
7599
7600	/*
7601	 * TODO we could make this much more efficient by not checking every
7602	 * page in the range if we know all of them are in MOVABLE_ZONE and
7603	 * that the movable zone guarantees that pages are migratable but
7604	 * the later is not the case right now unfortunatelly. E.g. movablecore
7605	 * can still lead to having bootmem allocations in zone_movable.
7606	 */
7607
7608	/*
7609	 * CMA allocations (alloc_contig_range) really need to mark isolate
7610	 * CMA pageblocks even when they are not movable in fact so consider
7611	 * them movable here.
7612	 */
7613	if (is_migrate_cma(migratetype) &&
7614			is_migrate_cma(get_pageblock_migratetype(page)))
7615		return false;
7616
7617	pfn = page_to_pfn(page);
7618	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7619		unsigned long check = pfn + iter;
7620
7621		if (!pfn_valid_within(check))
 
7622			continue;
7623
7624		page = pfn_to_page(check);
7625
7626		if (PageReserved(page))
7627			goto unmovable;
 
 
 
 
 
 
 
 
7628
7629		/*
7630		 * Hugepages are not in LRU lists, but they're movable.
7631		 * We need not scan over tail pages bacause we don't
 
7632		 * handle each tail page individually in migration.
7633		 */
7634		if (PageHuge(page)) {
7635			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
 
 
 
 
 
 
 
 
 
 
 
7636			continue;
7637		}
7638
7639		/*
7640		 * We can't use page_count without pin a page
7641		 * because another CPU can free compound page.
7642		 * This check already skips compound tails of THP
7643		 * because their page->_refcount is zero at all time.
7644		 */
7645		if (!page_ref_count(page)) {
7646			if (PageBuddy(page))
7647				iter += (1 << page_order(page)) - 1;
7648			continue;
7649		}
7650
7651		/*
7652		 * The HWPoisoned page may be not in buddy system, and
7653		 * page_count() is not 0.
7654		 */
7655		if (skip_hwpoisoned_pages && PageHWPoison(page))
7656			continue;
7657
7658		if (__PageMovable(page))
 
 
 
 
 
 
 
 
 
 
 
 
 
7659			continue;
7660
7661		if (!PageLRU(page))
7662			found++;
7663		/*
7664		 * If there are RECLAIMABLE pages, we need to check
7665		 * it.  But now, memory offline itself doesn't call
7666		 * shrink_node_slabs() and it still to be fixed.
7667		 */
7668		/*
7669		 * If the page is not RAM, page_count()should be 0.
7670		 * we don't need more check. This is an _used_ not-movable page.
7671		 *
7672		 * The problematic thing here is PG_reserved pages. PG_reserved
7673		 * is set to both of a memory hole page and a _used_ kernel
7674		 * page at boot.
7675		 */
7676		if (found > count)
7677			goto unmovable;
7678	}
7679	return false;
7680unmovable:
7681	WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
7682	return true;
7683}
7684
7685bool is_pageblock_removable_nolock(struct page *page)
7686{
7687	struct zone *zone;
7688	unsigned long pfn;
7689
7690	/*
7691	 * We have to be careful here because we are iterating over memory
7692	 * sections which are not zone aware so we might end up outside of
7693	 * the zone but still within the section.
7694	 * We have to take care about the node as well. If the node is offline
7695	 * its NODE_DATA will be NULL - see page_zone.
7696	 */
7697	if (!node_online(page_to_nid(page)))
7698		return false;
7699
7700	zone = page_zone(page);
7701	pfn = page_to_pfn(page);
7702	if (!zone_spans_pfn(zone, pfn))
7703		return false;
7704
7705	return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
7706}
7707
7708#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7709
7710static unsigned long pfn_max_align_down(unsigned long pfn)
7711{
7712	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7713			     pageblock_nr_pages) - 1);
7714}
7715
7716static unsigned long pfn_max_align_up(unsigned long pfn)
7717{
7718	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7719				pageblock_nr_pages));
7720}
7721
7722/* [start, end) must belong to a single zone. */
7723static int __alloc_contig_migrate_range(struct compact_control *cc,
7724					unsigned long start, unsigned long end)
7725{
7726	/* This function is based on compact_zone() from compaction.c. */
7727	unsigned long nr_reclaimed;
7728	unsigned long pfn = start;
7729	unsigned int tries = 0;
7730	int ret = 0;
 
 
 
 
7731
7732	migrate_prep();
7733
7734	while (pfn < end || !list_empty(&cc->migratepages)) {
7735		if (fatal_signal_pending(current)) {
7736			ret = -EINTR;
7737			break;
7738		}
7739
7740		if (list_empty(&cc->migratepages)) {
7741			cc->nr_migratepages = 0;
7742			pfn = isolate_migratepages_range(cc, pfn, end);
7743			if (!pfn) {
7744				ret = -EINTR;
7745				break;
7746			}
7747			tries = 0;
7748		} else if (++tries == 5) {
7749			ret = ret < 0 ? ret : -EBUSY;
7750			break;
7751		}
7752
7753		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7754							&cc->migratepages);
7755		cc->nr_migratepages -= nr_reclaimed;
7756
7757		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7758				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
7759	}
7760	if (ret < 0) {
7761		putback_movable_pages(&cc->migratepages);
7762		return ret;
7763	}
7764	return 0;
7765}
7766
7767/**
7768 * alloc_contig_range() -- tries to allocate given range of pages
7769 * @start:	start PFN to allocate
7770 * @end:	one-past-the-last PFN to allocate
7771 * @migratetype:	migratetype of the underlaying pageblocks (either
7772 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
7773 *			in range must have the same migratetype and it must
7774 *			be either of the two.
7775 * @gfp_mask:	GFP mask to use during compaction
7776 *
7777 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7778 * aligned.  The PFN range must belong to a single zone.
7779 *
7780 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
7781 * pageblocks in the range.  Once isolated, the pageblocks should not
7782 * be modified by others.
7783 *
7784 * Returns zero on success or negative error code.  On success all
7785 * pages which PFN is in [start, end) are allocated for the caller and
7786 * need to be freed with free_contig_range().
7787 */
7788int alloc_contig_range(unsigned long start, unsigned long end,
7789		       unsigned migratetype, gfp_t gfp_mask)
7790{
7791	unsigned long outer_start, outer_end;
7792	unsigned int order;
7793	int ret = 0;
7794
7795	struct compact_control cc = {
7796		.nr_migratepages = 0,
7797		.order = -1,
7798		.zone = page_zone(pfn_to_page(start)),
7799		.mode = MIGRATE_SYNC,
7800		.ignore_skip_hint = true,
7801		.no_set_skip_hint = true,
7802		.gfp_mask = current_gfp_context(gfp_mask),
 
7803	};
7804	INIT_LIST_HEAD(&cc.migratepages);
7805
7806	/*
7807	 * What we do here is we mark all pageblocks in range as
7808	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7809	 * have different sizes, and due to the way page allocator
7810	 * work, we align the range to biggest of the two pages so
7811	 * that page allocator won't try to merge buddies from
7812	 * different pageblocks and change MIGRATE_ISOLATE to some
7813	 * other migration type.
7814	 *
7815	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7816	 * migrate the pages from an unaligned range (ie. pages that
7817	 * we are interested in).  This will put all the pages in
7818	 * range back to page allocator as MIGRATE_ISOLATE.
7819	 *
7820	 * When this is done, we take the pages in range from page
7821	 * allocator removing them from the buddy system.  This way
7822	 * page allocator will never consider using them.
7823	 *
7824	 * This lets us mark the pageblocks back as
7825	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7826	 * aligned range but not in the unaligned, original range are
7827	 * put back to page allocator so that buddy can use them.
7828	 */
7829
7830	ret = start_isolate_page_range(pfn_max_align_down(start),
7831				       pfn_max_align_up(end), migratetype,
7832				       false);
7833	if (ret)
7834		return ret;
7835
7836	/*
7837	 * In case of -EBUSY, we'd like to know which page causes problem.
7838	 * So, just fall through. test_pages_isolated() has a tracepoint
7839	 * which will report the busy page.
7840	 *
7841	 * It is possible that busy pages could become available before
7842	 * the call to test_pages_isolated, and the range will actually be
7843	 * allocated.  So, if we fall through be sure to clear ret so that
7844	 * -EBUSY is not accidentally used or returned to caller.
7845	 */
7846	ret = __alloc_contig_migrate_range(&cc, start, end);
7847	if (ret && ret != -EBUSY)
7848		goto done;
7849	ret =0;
7850
7851	/*
7852	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7853	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7854	 * more, all pages in [start, end) are free in page allocator.
7855	 * What we are going to do is to allocate all pages from
7856	 * [start, end) (that is remove them from page allocator).
7857	 *
7858	 * The only problem is that pages at the beginning and at the
7859	 * end of interesting range may be not aligned with pages that
7860	 * page allocator holds, ie. they can be part of higher order
7861	 * pages.  Because of this, we reserve the bigger range and
7862	 * once this is done free the pages we are not interested in.
7863	 *
7864	 * We don't have to hold zone->lock here because the pages are
7865	 * isolated thus they won't get removed from buddy.
7866	 */
7867
7868	lru_add_drain_all();
7869	drain_all_pages(cc.zone);
7870
7871	order = 0;
7872	outer_start = start;
7873	while (!PageBuddy(pfn_to_page(outer_start))) {
7874		if (++order >= MAX_ORDER) {
7875			outer_start = start;
7876			break;
7877		}
7878		outer_start &= ~0UL << order;
7879	}
7880
7881	if (outer_start != start) {
7882		order = page_order(pfn_to_page(outer_start));
7883
7884		/*
7885		 * outer_start page could be small order buddy page and
7886		 * it doesn't include start page. Adjust outer_start
7887		 * in this case to report failed page properly
7888		 * on tracepoint in test_pages_isolated()
7889		 */
7890		if (outer_start + (1UL << order) <= start)
7891			outer_start = start;
7892	}
7893
7894	/* Make sure the range is really isolated. */
7895	if (test_pages_isolated(outer_start, end, false)) {
7896		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7897			__func__, outer_start, end);
7898		ret = -EBUSY;
7899		goto done;
7900	}
7901
7902	/* Grab isolated pages from freelists. */
7903	outer_end = isolate_freepages_range(&cc, outer_start, end);
7904	if (!outer_end) {
7905		ret = -EBUSY;
7906		goto done;
7907	}
7908
7909	/* Free head and tail (if any) */
7910	if (start != outer_start)
7911		free_contig_range(outer_start, start - outer_start);
7912	if (end != outer_end)
7913		free_contig_range(end, outer_end - end);
7914
7915done:
7916	undo_isolate_page_range(pfn_max_align_down(start),
7917				pfn_max_align_up(end), migratetype);
7918	return ret;
7919}
 
 
 
 
 
 
 
 
 
 
7920
7921void free_contig_range(unsigned long pfn, unsigned nr_pages)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7922{
7923	unsigned int count = 0;
7924
7925	for (; nr_pages--; pfn++) {
7926		struct page *page = pfn_to_page(pfn);
7927
7928		count += page_count(page) != 1;
7929		__free_page(page);
7930	}
7931	WARN(count != 0, "%d pages are still in use!\n", count);
7932}
7933#endif
7934
7935#ifdef CONFIG_MEMORY_HOTPLUG
7936/*
7937 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7938 * page high values need to be recalulated.
7939 */
7940void __meminit zone_pcp_update(struct zone *zone)
7941{
7942	unsigned cpu;
7943	mutex_lock(&pcp_batch_high_lock);
7944	for_each_possible_cpu(cpu)
7945		pageset_set_high_and_batch(zone,
7946				per_cpu_ptr(zone->pageset, cpu));
7947	mutex_unlock(&pcp_batch_high_lock);
7948}
7949#endif
7950
7951void zone_pcp_reset(struct zone *zone)
7952{
7953	unsigned long flags;
7954	int cpu;
7955	struct per_cpu_pageset *pset;
7956
7957	/* avoid races with drain_pages()  */
7958	local_irq_save(flags);
7959	if (zone->pageset != &boot_pageset) {
7960		for_each_online_cpu(cpu) {
7961			pset = per_cpu_ptr(zone->pageset, cpu);
7962			drain_zonestat(zone, pset);
7963		}
7964		free_percpu(zone->pageset);
7965		zone->pageset = &boot_pageset;
7966	}
7967	local_irq_restore(flags);
7968}
7969
7970#ifdef CONFIG_MEMORY_HOTREMOVE
7971/*
7972 * All pages in the range must be in a single zone and isolated
7973 * before calling this.
7974 */
7975void
7976__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7977{
7978	struct page *page;
7979	struct zone *zone;
7980	unsigned int order, i;
7981	unsigned long pfn;
7982	unsigned long flags;
 
 
7983	/* find the first valid pfn */
7984	for (pfn = start_pfn; pfn < end_pfn; pfn++)
7985		if (pfn_valid(pfn))
7986			break;
7987	if (pfn == end_pfn)
7988		return;
 
7989	offline_mem_sections(pfn, end_pfn);
7990	zone = page_zone(pfn_to_page(pfn));
7991	spin_lock_irqsave(&zone->lock, flags);
7992	pfn = start_pfn;
7993	while (pfn < end_pfn) {
7994		if (!pfn_valid(pfn)) {
7995			pfn++;
7996			continue;
7997		}
7998		page = pfn_to_page(pfn);
7999		/*
8000		 * The HWPoisoned page may be not in buddy system, and
8001		 * page_count() is not 0.
8002		 */
8003		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8004			pfn++;
8005			SetPageReserved(page);
 
 
 
 
 
 
 
 
 
 
 
8006			continue;
8007		}
8008
8009		BUG_ON(page_count(page));
8010		BUG_ON(!PageBuddy(page));
8011		order = page_order(page);
8012#ifdef CONFIG_DEBUG_VM
8013		pr_info("remove from free list %lx %d %lx\n",
8014			pfn, 1 << order, end_pfn);
8015#endif
8016		list_del(&page->lru);
8017		rmv_page_order(page);
8018		zone->free_area[order].nr_free--;
8019		for (i = 0; i < (1 << order); i++)
8020			SetPageReserved((page+i));
8021		pfn += (1 << order);
8022	}
8023	spin_unlock_irqrestore(&zone->lock, flags);
 
 
8024}
8025#endif
8026
8027bool is_free_buddy_page(struct page *page)
8028{
8029	struct zone *zone = page_zone(page);
8030	unsigned long pfn = page_to_pfn(page);
8031	unsigned long flags;
8032	unsigned int order;
8033
8034	spin_lock_irqsave(&zone->lock, flags);
8035	for (order = 0; order < MAX_ORDER; order++) {
8036		struct page *page_head = page - (pfn & ((1 << order) - 1));
8037
8038		if (PageBuddy(page_head) && page_order(page_head) >= order)
8039			break;
8040	}
8041	spin_unlock_irqrestore(&zone->lock, flags);
8042
8043	return order < MAX_ORDER;
8044}
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/page_alloc.c
   4 *
   5 *  Manages the free list, the system allocates free pages here.
   6 *  Note that kmalloc() lives in slab.c
   7 *
   8 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   9 *  Swap reorganised 29.12.95, Stephen Tweedie
  10 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  11 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  12 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  13 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  14 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  15 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  16 */
  17
  18#include <linux/stddef.h>
  19#include <linux/mm.h>
  20#include <linux/highmem.h>
  21#include <linux/swap.h>
  22#include <linux/interrupt.h>
  23#include <linux/pagemap.h>
  24#include <linux/jiffies.h>
 
  25#include <linux/memblock.h>
  26#include <linux/compiler.h>
  27#include <linux/kernel.h>
  28#include <linux/kasan.h>
  29#include <linux/module.h>
  30#include <linux/suspend.h>
  31#include <linux/pagevec.h>
  32#include <linux/blkdev.h>
  33#include <linux/slab.h>
  34#include <linux/ratelimit.h>
  35#include <linux/oom.h>
 
  36#include <linux/topology.h>
  37#include <linux/sysctl.h>
  38#include <linux/cpu.h>
  39#include <linux/cpuset.h>
  40#include <linux/memory_hotplug.h>
  41#include <linux/nodemask.h>
  42#include <linux/vmalloc.h>
  43#include <linux/vmstat.h>
  44#include <linux/mempolicy.h>
  45#include <linux/memremap.h>
  46#include <linux/stop_machine.h>
  47#include <linux/random.h>
  48#include <linux/sort.h>
  49#include <linux/pfn.h>
  50#include <linux/backing-dev.h>
  51#include <linux/fault-inject.h>
  52#include <linux/page-isolation.h>
 
  53#include <linux/debugobjects.h>
  54#include <linux/kmemleak.h>
  55#include <linux/compaction.h>
  56#include <trace/events/kmem.h>
  57#include <trace/events/oom.h>
  58#include <linux/prefetch.h>
  59#include <linux/mm_inline.h>
  60#include <linux/migrate.h>
  61#include <linux/hugetlb.h>
  62#include <linux/sched/rt.h>
  63#include <linux/sched/mm.h>
  64#include <linux/page_owner.h>
  65#include <linux/kthread.h>
  66#include <linux/memcontrol.h>
  67#include <linux/ftrace.h>
  68#include <linux/lockdep.h>
  69#include <linux/nmi.h>
  70#include <linux/psi.h>
  71#include <linux/padata.h>
  72#include <linux/khugepaged.h>
  73
  74#include <asm/sections.h>
  75#include <asm/tlbflush.h>
  76#include <asm/div64.h>
  77#include "internal.h"
  78#include "shuffle.h"
  79#include "page_reporting.h"
  80
  81/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  82static DEFINE_MUTEX(pcp_batch_high_lock);
  83#define MIN_PERCPU_PAGELIST_FRACTION	(8)
  84
  85#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  86DEFINE_PER_CPU(int, numa_node);
  87EXPORT_PER_CPU_SYMBOL(numa_node);
  88#endif
  89
  90DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
  91
  92#ifdef CONFIG_HAVE_MEMORYLESS_NODES
  93/*
  94 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  95 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  96 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  97 * defined in <linux/topology.h>.
  98 */
  99DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
 100EXPORT_PER_CPU_SYMBOL(_numa_mem_);
 
 101#endif
 102
 103/* work_structs for global per-cpu drains */
 104struct pcpu_drain {
 105	struct zone *zone;
 106	struct work_struct work;
 107};
 108static DEFINE_MUTEX(pcpu_drain_mutex);
 109static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
 110
 111#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
 112volatile unsigned long latent_entropy __latent_entropy;
 113EXPORT_SYMBOL(latent_entropy);
 114#endif
 115
 116/*
 117 * Array of node states.
 118 */
 119nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
 120	[N_POSSIBLE] = NODE_MASK_ALL,
 121	[N_ONLINE] = { { [0] = 1UL } },
 122#ifndef CONFIG_NUMA
 123	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
 124#ifdef CONFIG_HIGHMEM
 125	[N_HIGH_MEMORY] = { { [0] = 1UL } },
 126#endif
 127	[N_MEMORY] = { { [0] = 1UL } },
 128	[N_CPU] = { { [0] = 1UL } },
 129#endif	/* NUMA */
 130};
 131EXPORT_SYMBOL(node_states);
 132
 133atomic_long_t _totalram_pages __read_mostly;
 134EXPORT_SYMBOL(_totalram_pages);
 
 
 135unsigned long totalreserve_pages __read_mostly;
 136unsigned long totalcma_pages __read_mostly;
 137
 138int percpu_pagelist_fraction;
 139gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
 140#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
 141DEFINE_STATIC_KEY_TRUE(init_on_alloc);
 142#else
 143DEFINE_STATIC_KEY_FALSE(init_on_alloc);
 144#endif
 145EXPORT_SYMBOL(init_on_alloc);
 146
 147#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
 148DEFINE_STATIC_KEY_TRUE(init_on_free);
 149#else
 150DEFINE_STATIC_KEY_FALSE(init_on_free);
 151#endif
 152EXPORT_SYMBOL(init_on_free);
 153
 154static int __init early_init_on_alloc(char *buf)
 155{
 156	int ret;
 157	bool bool_result;
 158
 159	if (!buf)
 160		return -EINVAL;
 161	ret = kstrtobool(buf, &bool_result);
 162	if (bool_result && page_poisoning_enabled())
 163		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
 164	if (bool_result)
 165		static_branch_enable(&init_on_alloc);
 166	else
 167		static_branch_disable(&init_on_alloc);
 168	return ret;
 169}
 170early_param("init_on_alloc", early_init_on_alloc);
 171
 172static int __init early_init_on_free(char *buf)
 173{
 174	int ret;
 175	bool bool_result;
 176
 177	if (!buf)
 178		return -EINVAL;
 179	ret = kstrtobool(buf, &bool_result);
 180	if (bool_result && page_poisoning_enabled())
 181		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
 182	if (bool_result)
 183		static_branch_enable(&init_on_free);
 184	else
 185		static_branch_disable(&init_on_free);
 186	return ret;
 187}
 188early_param("init_on_free", early_init_on_free);
 189
 190/*
 191 * A cached value of the page's pageblock's migratetype, used when the page is
 192 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 193 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 194 * Also the migratetype set in the page does not necessarily match the pcplist
 195 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 196 * other index - this ensures that it will be put on the correct CMA freelist.
 197 */
 198static inline int get_pcppage_migratetype(struct page *page)
 199{
 200	return page->index;
 201}
 202
 203static inline void set_pcppage_migratetype(struct page *page, int migratetype)
 204{
 205	page->index = migratetype;
 206}
 207
 208#ifdef CONFIG_PM_SLEEP
 209/*
 210 * The following functions are used by the suspend/hibernate code to temporarily
 211 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 212 * while devices are suspended.  To avoid races with the suspend/hibernate code,
 213 * they should always be called with system_transition_mutex held
 214 * (gfp_allowed_mask also should only be modified with system_transition_mutex
 215 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
 216 * with that modification).
 217 */
 218
 219static gfp_t saved_gfp_mask;
 220
 221void pm_restore_gfp_mask(void)
 222{
 223	WARN_ON(!mutex_is_locked(&system_transition_mutex));
 224	if (saved_gfp_mask) {
 225		gfp_allowed_mask = saved_gfp_mask;
 226		saved_gfp_mask = 0;
 227	}
 228}
 229
 230void pm_restrict_gfp_mask(void)
 231{
 232	WARN_ON(!mutex_is_locked(&system_transition_mutex));
 233	WARN_ON(saved_gfp_mask);
 234	saved_gfp_mask = gfp_allowed_mask;
 235	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
 236}
 237
 238bool pm_suspended_storage(void)
 239{
 240	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
 241		return false;
 242	return true;
 243}
 244#endif /* CONFIG_PM_SLEEP */
 245
 246#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
 247unsigned int pageblock_order __read_mostly;
 248#endif
 249
 250static void __free_pages_ok(struct page *page, unsigned int order);
 251
 252/*
 253 * results with 256, 32 in the lowmem_reserve sysctl:
 254 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 255 *	1G machine -> (16M dma, 784M normal, 224M high)
 256 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 257 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
 258 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
 259 *
 260 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 261 * don't need any ZONE_NORMAL reservation
 262 */
 263int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
 264#ifdef CONFIG_ZONE_DMA
 265	[ZONE_DMA] = 256,
 266#endif
 267#ifdef CONFIG_ZONE_DMA32
 268	[ZONE_DMA32] = 256,
 269#endif
 270	[ZONE_NORMAL] = 32,
 271#ifdef CONFIG_HIGHMEM
 272	[ZONE_HIGHMEM] = 0,
 273#endif
 274	[ZONE_MOVABLE] = 0,
 275};
 276
 
 
 277static char * const zone_names[MAX_NR_ZONES] = {
 278#ifdef CONFIG_ZONE_DMA
 279	 "DMA",
 280#endif
 281#ifdef CONFIG_ZONE_DMA32
 282	 "DMA32",
 283#endif
 284	 "Normal",
 285#ifdef CONFIG_HIGHMEM
 286	 "HighMem",
 287#endif
 288	 "Movable",
 289#ifdef CONFIG_ZONE_DEVICE
 290	 "Device",
 291#endif
 292};
 293
 294const char * const migratetype_names[MIGRATE_TYPES] = {
 295	"Unmovable",
 296	"Movable",
 297	"Reclaimable",
 298	"HighAtomic",
 299#ifdef CONFIG_CMA
 300	"CMA",
 301#endif
 302#ifdef CONFIG_MEMORY_ISOLATION
 303	"Isolate",
 304#endif
 305};
 306
 307compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
 308	[NULL_COMPOUND_DTOR] = NULL,
 309	[COMPOUND_PAGE_DTOR] = free_compound_page,
 310#ifdef CONFIG_HUGETLB_PAGE
 311	[HUGETLB_PAGE_DTOR] = free_huge_page,
 312#endif
 313#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 314	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
 315#endif
 316};
 317
 318int min_free_kbytes = 1024;
 319int user_min_free_kbytes = -1;
 320#ifdef CONFIG_DISCONTIGMEM
 321/*
 322 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
 323 * are not on separate NUMA nodes. Functionally this works but with
 324 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
 325 * quite small. By default, do not boost watermarks on discontigmem as in
 326 * many cases very high-order allocations like THP are likely to be
 327 * unsupported and the premature reclaim offsets the advantage of long-term
 328 * fragmentation avoidance.
 329 */
 330int watermark_boost_factor __read_mostly;
 331#else
 332int watermark_boost_factor __read_mostly = 15000;
 333#endif
 334int watermark_scale_factor = 10;
 335
 336static unsigned long nr_kernel_pages __initdata;
 337static unsigned long nr_all_pages __initdata;
 338static unsigned long dma_reserve __initdata;
 339
 340static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
 341static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
 
 342static unsigned long required_kernelcore __initdata;
 343static unsigned long required_kernelcore_percent __initdata;
 344static unsigned long required_movablecore __initdata;
 345static unsigned long required_movablecore_percent __initdata;
 346static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
 347static bool mirrored_kernelcore __meminitdata;
 348
 349/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
 350int movable_zone;
 351EXPORT_SYMBOL(movable_zone);
 
 352
 353#if MAX_NUMNODES > 1
 354unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
 355unsigned int nr_online_nodes __read_mostly = 1;
 356EXPORT_SYMBOL(nr_node_ids);
 357EXPORT_SYMBOL(nr_online_nodes);
 358#endif
 359
 360int page_group_by_mobility_disabled __read_mostly;
 361
 362#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 363/*
 364 * During boot we initialize deferred pages on-demand, as needed, but once
 365 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 366 * and we can permanently disable that path.
 367 */
 368static DEFINE_STATIC_KEY_TRUE(deferred_pages);
 369
 370/*
 371 * Calling kasan_free_pages() only after deferred memory initialization
 372 * has completed. Poisoning pages during deferred memory init will greatly
 373 * lengthen the process and cause problem in large memory systems as the
 374 * deferred pages initialization is done with interrupt disabled.
 375 *
 376 * Assuming that there will be no reference to those newly initialized
 377 * pages before they are ever allocated, this should have no effect on
 378 * KASAN memory tracking as the poison will be properly inserted at page
 379 * allocation time. The only corner case is when pages are allocated by
 380 * on-demand allocation and then freed again before the deferred pages
 381 * initialization is done, but this is not likely to happen.
 382 */
 383static inline void kasan_free_nondeferred_pages(struct page *page, int order)
 384{
 385	if (!static_branch_unlikely(&deferred_pages))
 386		kasan_free_pages(page, order);
 387}
 388
 389/* Returns true if the struct page for the pfn is uninitialised */
 390static inline bool __meminit early_page_uninitialised(unsigned long pfn)
 391{
 392	int nid = early_pfn_to_nid(pfn);
 393
 394	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
 395		return true;
 396
 397	return false;
 398}
 399
 400/*
 401 * Returns true when the remaining initialisation should be deferred until
 402 * later in the boot cycle when it can be parallelised.
 403 */
 404static bool __meminit
 405defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
 
 406{
 407	static unsigned long prev_end_pfn, nr_initialised;
 408
 409	/*
 410	 * prev_end_pfn static that contains the end of previous zone
 411	 * No need to protect because called very early in boot before smp_init.
 412	 */
 413	if (prev_end_pfn != end_pfn) {
 414		prev_end_pfn = end_pfn;
 415		nr_initialised = 0;
 416	}
 417
 418	/* Always populate low zones for address-constrained allocations */
 419	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
 
 
 
 
 
 420		return false;
 
 421
 422	/*
 423	 * We start only with one section of pages, more pages are added as
 424	 * needed until the rest of deferred pages are initialized.
 425	 */
 426	nr_initialised++;
 427	if ((nr_initialised > PAGES_PER_SECTION) &&
 428	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
 429		NODE_DATA(nid)->first_deferred_pfn = pfn;
 430		return true;
 431	}
 432	return false;
 433}
 434#else
 435#define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)
 436
 437static inline bool early_page_uninitialised(unsigned long pfn)
 438{
 439	return false;
 440}
 441
 442static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
 
 
 443{
 444	return false;
 445}
 446#endif
 447
 448/* Return a pointer to the bitmap storing bits affecting a block of pages */
 449static inline unsigned long *get_pageblock_bitmap(struct page *page,
 450							unsigned long pfn)
 451{
 452#ifdef CONFIG_SPARSEMEM
 453	return section_to_usemap(__pfn_to_section(pfn));
 454#else
 455	return page_zone(page)->pageblock_flags;
 456#endif /* CONFIG_SPARSEMEM */
 457}
 458
 459static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
 460{
 461#ifdef CONFIG_SPARSEMEM
 462	pfn &= (PAGES_PER_SECTION-1);
 
 463#else
 464	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
 
 465#endif /* CONFIG_SPARSEMEM */
 466	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
 467}
 468
 469/**
 470 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 471 * @page: The page within the block of interest
 472 * @pfn: The target page frame number
 
 473 * @mask: mask of bits that the caller is interested in
 474 *
 475 * Return: pageblock_bits flags
 476 */
 477static __always_inline
 478unsigned long __get_pfnblock_flags_mask(struct page *page,
 479					unsigned long pfn,
 
 480					unsigned long mask)
 481{
 482	unsigned long *bitmap;
 483	unsigned long bitidx, word_bitidx;
 484	unsigned long word;
 485
 486	bitmap = get_pageblock_bitmap(page, pfn);
 487	bitidx = pfn_to_bitidx(page, pfn);
 488	word_bitidx = bitidx / BITS_PER_LONG;
 489	bitidx &= (BITS_PER_LONG-1);
 490
 491	word = bitmap[word_bitidx];
 492	return (word >> bitidx) & mask;
 
 493}
 494
 495unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
 
 496					unsigned long mask)
 497{
 498	return __get_pfnblock_flags_mask(page, pfn, mask);
 499}
 500
 501static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
 502{
 503	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
 504}
 505
 506/**
 507 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 508 * @page: The page within the block of interest
 509 * @flags: The flags to set
 510 * @pfn: The target page frame number
 
 511 * @mask: mask of bits that the caller is interested in
 512 */
 513void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
 514					unsigned long pfn,
 
 515					unsigned long mask)
 516{
 517	unsigned long *bitmap;
 518	unsigned long bitidx, word_bitidx;
 519	unsigned long old_word, word;
 520
 521	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
 522	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
 523
 524	bitmap = get_pageblock_bitmap(page, pfn);
 525	bitidx = pfn_to_bitidx(page, pfn);
 526	word_bitidx = bitidx / BITS_PER_LONG;
 527	bitidx &= (BITS_PER_LONG-1);
 528
 529	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
 530
 531	mask <<= bitidx;
 532	flags <<= bitidx;
 
 533
 534	word = READ_ONCE(bitmap[word_bitidx]);
 535	for (;;) {
 536		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
 537		if (word == old_word)
 538			break;
 539		word = old_word;
 540	}
 541}
 542
 543void set_pageblock_migratetype(struct page *page, int migratetype)
 544{
 545	if (unlikely(page_group_by_mobility_disabled &&
 546		     migratetype < MIGRATE_PCPTYPES))
 547		migratetype = MIGRATE_UNMOVABLE;
 548
 549	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
 550				page_to_pfn(page), MIGRATETYPE_MASK);
 551}
 552
 553#ifdef CONFIG_DEBUG_VM
 554static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
 555{
 556	int ret = 0;
 557	unsigned seq;
 558	unsigned long pfn = page_to_pfn(page);
 559	unsigned long sp, start_pfn;
 560
 561	do {
 562		seq = zone_span_seqbegin(zone);
 563		start_pfn = zone->zone_start_pfn;
 564		sp = zone->spanned_pages;
 565		if (!zone_spans_pfn(zone, pfn))
 566			ret = 1;
 567	} while (zone_span_seqretry(zone, seq));
 568
 569	if (ret)
 570		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
 571			pfn, zone_to_nid(zone), zone->name,
 572			start_pfn, start_pfn + sp);
 573
 574	return ret;
 575}
 576
 577static int page_is_consistent(struct zone *zone, struct page *page)
 578{
 579	if (!pfn_valid_within(page_to_pfn(page)))
 580		return 0;
 581	if (zone != page_zone(page))
 582		return 0;
 583
 584	return 1;
 585}
 586/*
 587 * Temporary debugging check for pages not lying within a given zone.
 588 */
 589static int __maybe_unused bad_range(struct zone *zone, struct page *page)
 590{
 591	if (page_outside_zone_boundaries(zone, page))
 592		return 1;
 593	if (!page_is_consistent(zone, page))
 594		return 1;
 595
 596	return 0;
 597}
 598#else
 599static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
 600{
 601	return 0;
 602}
 603#endif
 604
 605static void bad_page(struct page *page, const char *reason)
 
 606{
 607	static unsigned long resume;
 608	static unsigned long nr_shown;
 609	static unsigned long nr_unshown;
 610
 611	/*
 612	 * Allow a burst of 60 reports, then keep quiet for that minute;
 613	 * or allow a steady drip of one report per second.
 614	 */
 615	if (nr_shown == 60) {
 616		if (time_before(jiffies, resume)) {
 617			nr_unshown++;
 618			goto out;
 619		}
 620		if (nr_unshown) {
 621			pr_alert(
 622			      "BUG: Bad page state: %lu messages suppressed\n",
 623				nr_unshown);
 624			nr_unshown = 0;
 625		}
 626		nr_shown = 0;
 627	}
 628	if (nr_shown++ == 0)
 629		resume = jiffies + 60 * HZ;
 630
 631	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
 632		current->comm, page_to_pfn(page));
 633	__dump_page(page, reason);
 
 
 
 
 634	dump_page_owner(page);
 635
 636	print_modules();
 637	dump_stack();
 638out:
 639	/* Leave bad fields for debug, except PageBuddy could make trouble */
 640	page_mapcount_reset(page); /* remove PageBuddy */
 641	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 642}
 643
 644/*
 645 * Higher-order pages are called "compound pages".  They are structured thusly:
 646 *
 647 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
 648 *
 649 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 650 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
 651 *
 652 * The first tail page's ->compound_dtor holds the offset in array of compound
 653 * page destructors. See compound_page_dtors.
 654 *
 655 * The first tail page's ->compound_order holds the order of allocation.
 656 * This usage means that zero-order pages may not be compound.
 657 */
 658
 659void free_compound_page(struct page *page)
 660{
 661	mem_cgroup_uncharge(page);
 662	__free_pages_ok(page, compound_order(page));
 663}
 664
 665void prep_compound_page(struct page *page, unsigned int order)
 666{
 667	int i;
 668	int nr_pages = 1 << order;
 669
 
 
 670	__SetPageHead(page);
 671	for (i = 1; i < nr_pages; i++) {
 672		struct page *p = page + i;
 673		set_page_count(p, 0);
 674		p->mapping = TAIL_MAPPING;
 675		set_compound_head(p, page);
 676	}
 677
 678	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
 679	set_compound_order(page, order);
 680	atomic_set(compound_mapcount_ptr(page), -1);
 681	if (hpage_pincount_available(page))
 682		atomic_set(compound_pincount_ptr(page), 0);
 683}
 684
 685#ifdef CONFIG_DEBUG_PAGEALLOC
 686unsigned int _debug_guardpage_minorder;
 687
 688bool _debug_pagealloc_enabled_early __read_mostly
 689			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
 690EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
 691DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
 692EXPORT_SYMBOL(_debug_pagealloc_enabled);
 693
 694DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
 695
 696static int __init early_debug_pagealloc(char *buf)
 697{
 698	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
 
 
 699}
 700early_param("debug_pagealloc", early_debug_pagealloc);
 701
 702void init_debug_pagealloc(void)
 
 
 
 
 
 
 
 
 
 
 
 
 703{
 704	if (!debug_pagealloc_enabled())
 705		return;
 706
 707	static_branch_enable(&_debug_pagealloc_enabled);
 708
 709	if (!debug_guardpage_minorder())
 710		return;
 711
 712	static_branch_enable(&_debug_guardpage_enabled);
 713}
 714
 
 
 
 
 
 715static int __init debug_guardpage_minorder_setup(char *buf)
 716{
 717	unsigned long res;
 718
 719	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
 720		pr_err("Bad debug_guardpage_minorder value\n");
 721		return 0;
 722	}
 723	_debug_guardpage_minorder = res;
 724	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
 725	return 0;
 726}
 727early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
 728
 729static inline bool set_page_guard(struct zone *zone, struct page *page,
 730				unsigned int order, int migratetype)
 731{
 
 
 732	if (!debug_guardpage_enabled())
 733		return false;
 734
 735	if (order >= debug_guardpage_minorder())
 736		return false;
 737
 738	__SetPageGuard(page);
 
 
 
 
 
 739	INIT_LIST_HEAD(&page->lru);
 740	set_page_private(page, order);
 741	/* Guard pages are not available for any usage */
 742	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
 743
 744	return true;
 745}
 746
 747static inline void clear_page_guard(struct zone *zone, struct page *page,
 748				unsigned int order, int migratetype)
 749{
 
 
 750	if (!debug_guardpage_enabled())
 751		return;
 752
 753	__ClearPageGuard(page);
 
 
 
 
 754
 755	set_page_private(page, 0);
 756	if (!is_migrate_isolate(migratetype))
 757		__mod_zone_freepage_state(zone, (1 << order), migratetype);
 758}
 759#else
 
 760static inline bool set_page_guard(struct zone *zone, struct page *page,
 761			unsigned int order, int migratetype) { return false; }
 762static inline void clear_page_guard(struct zone *zone, struct page *page,
 763				unsigned int order, int migratetype) {}
 764#endif
 765
 766static inline void set_page_order(struct page *page, unsigned int order)
 767{
 768	set_page_private(page, order);
 769	__SetPageBuddy(page);
 770}
 771
 
 
 
 
 
 
 772/*
 773 * This function checks whether a page is free && is the buddy
 774 * we can coalesce a page and its buddy if
 775 * (a) the buddy is not in a hole (check before calling!) &&
 776 * (b) the buddy is in the buddy system &&
 777 * (c) a page and its buddy have the same order &&
 778 * (d) a page and its buddy are in the same zone.
 779 *
 780 * For recording whether a page is in the buddy system, we set PageBuddy.
 781 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
 
 
 782 *
 783 * For recording page's order, we use page_private(page).
 784 */
 785static inline bool page_is_buddy(struct page *page, struct page *buddy,
 786							unsigned int order)
 787{
 788	if (!page_is_guard(buddy) && !PageBuddy(buddy))
 789		return false;
 
 790
 791	if (page_order(buddy) != order)
 792		return false;
 793
 794	/*
 795	 * zone check is done late to avoid uselessly calculating
 796	 * zone/node ids for pages that could never merge.
 797	 */
 798	if (page_zone_id(page) != page_zone_id(buddy))
 799		return false;
 800
 801	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 
 
 
 
 
 
 
 802
 803	return true;
 804}
 805
 806#ifdef CONFIG_COMPACTION
 807static inline struct capture_control *task_capc(struct zone *zone)
 808{
 809	struct capture_control *capc = current->capture_control;
 810
 811	return unlikely(capc) &&
 812		!(current->flags & PF_KTHREAD) &&
 813		!capc->page &&
 814		capc->cc->zone == zone ? capc : NULL;
 815}
 816
 817static inline bool
 818compaction_capture(struct capture_control *capc, struct page *page,
 819		   int order, int migratetype)
 820{
 821	if (!capc || order != capc->cc->order)
 822		return false;
 823
 824	/* Do not accidentally pollute CMA or isolated regions*/
 825	if (is_migrate_cma(migratetype) ||
 826	    is_migrate_isolate(migratetype))
 827		return false;
 828
 829	/*
 830	 * Do not let lower order allocations polluate a movable pageblock.
 831	 * This might let an unmovable request use a reclaimable pageblock
 832	 * and vice-versa but no more than normal fallback logic which can
 833	 * have trouble finding a high-order free page.
 834	 */
 835	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
 836		return false;
 837
 838	capc->page = page;
 839	return true;
 840}
 841
 842#else
 843static inline struct capture_control *task_capc(struct zone *zone)
 844{
 845	return NULL;
 846}
 847
 848static inline bool
 849compaction_capture(struct capture_control *capc, struct page *page,
 850		   int order, int migratetype)
 851{
 852	return false;
 853}
 854#endif /* CONFIG_COMPACTION */
 855
 856/* Used for pages not on another list */
 857static inline void add_to_free_list(struct page *page, struct zone *zone,
 858				    unsigned int order, int migratetype)
 859{
 860	struct free_area *area = &zone->free_area[order];
 861
 862	list_add(&page->lru, &area->free_list[migratetype]);
 863	area->nr_free++;
 864}
 865
 866/* Used for pages not on another list */
 867static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
 868					 unsigned int order, int migratetype)
 869{
 870	struct free_area *area = &zone->free_area[order];
 871
 872	list_add_tail(&page->lru, &area->free_list[migratetype]);
 873	area->nr_free++;
 874}
 875
 876/* Used for pages which are on another list */
 877static inline void move_to_free_list(struct page *page, struct zone *zone,
 878				     unsigned int order, int migratetype)
 879{
 880	struct free_area *area = &zone->free_area[order];
 881
 882	list_move(&page->lru, &area->free_list[migratetype]);
 883}
 884
 885static inline void del_page_from_free_list(struct page *page, struct zone *zone,
 886					   unsigned int order)
 887{
 888	/* clear reported state and update reported page count */
 889	if (page_reported(page))
 890		__ClearPageReported(page);
 891
 892	list_del(&page->lru);
 893	__ClearPageBuddy(page);
 894	set_page_private(page, 0);
 895	zone->free_area[order].nr_free--;
 896}
 897
 898/*
 899 * If this is not the largest possible page, check if the buddy
 900 * of the next-highest order is free. If it is, it's possible
 901 * that pages are being freed that will coalesce soon. In case,
 902 * that is happening, add the free page to the tail of the list
 903 * so it's less likely to be used soon and more likely to be merged
 904 * as a higher order page
 905 */
 906static inline bool
 907buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
 908		   struct page *page, unsigned int order)
 909{
 910	struct page *higher_page, *higher_buddy;
 911	unsigned long combined_pfn;
 912
 913	if (order >= MAX_ORDER - 2)
 914		return false;
 915
 916	if (!pfn_valid_within(buddy_pfn))
 917		return false;
 918
 919	combined_pfn = buddy_pfn & pfn;
 920	higher_page = page + (combined_pfn - pfn);
 921	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
 922	higher_buddy = higher_page + (buddy_pfn - combined_pfn);
 923
 924	return pfn_valid_within(buddy_pfn) &&
 925	       page_is_buddy(higher_page, higher_buddy, order + 1);
 926}
 927
 928/*
 929 * Freeing function for a buddy system allocator.
 930 *
 931 * The concept of a buddy system is to maintain direct-mapped table
 932 * (containing bit values) for memory blocks of various "orders".
 933 * The bottom level table contains the map for the smallest allocatable
 934 * units of memory (here, pages), and each level above it describes
 935 * pairs of units from the levels below, hence, "buddies".
 936 * At a high level, all that happens here is marking the table entry
 937 * at the bottom level available, and propagating the changes upward
 938 * as necessary, plus some accounting needed to play nicely with other
 939 * parts of the VM system.
 940 * At each level, we keep a list of pages, which are heads of continuous
 941 * free pages of length of (1 << order) and marked with PageBuddy.
 942 * Page's order is recorded in page_private(page) field.
 
 943 * So when we are allocating or freeing one, we can derive the state of the
 944 * other.  That is, if we allocate a small block, and both were
 945 * free, the remainder of the region must be split into blocks.
 946 * If a block is freed, and its buddy is also free, then this
 947 * triggers coalescing into a block of larger size.
 948 *
 949 * -- nyc
 950 */
 951
 952static inline void __free_one_page(struct page *page,
 953		unsigned long pfn,
 954		struct zone *zone, unsigned int order,
 955		int migratetype, bool report)
 956{
 957	struct capture_control *capc = task_capc(zone);
 958	unsigned long buddy_pfn;
 959	unsigned long combined_pfn;
 
 
 960	unsigned int max_order;
 961	struct page *buddy;
 962	bool to_tail;
 963
 964	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
 965
 966	VM_BUG_ON(!zone_is_initialized(zone));
 967	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
 968
 969	VM_BUG_ON(migratetype == -1);
 970	if (likely(!is_migrate_isolate(migratetype)))
 971		__mod_zone_freepage_state(zone, 1 << order, migratetype);
 972
 973	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
 974	VM_BUG_ON_PAGE(bad_range(zone, page), page);
 975
 976continue_merging:
 977	while (order < max_order - 1) {
 978		if (compaction_capture(capc, page, order, migratetype)) {
 979			__mod_zone_freepage_state(zone, -(1 << order),
 980								migratetype);
 981			return;
 982		}
 983		buddy_pfn = __find_buddy_pfn(pfn, order);
 984		buddy = page + (buddy_pfn - pfn);
 985
 986		if (!pfn_valid_within(buddy_pfn))
 987			goto done_merging;
 988		if (!page_is_buddy(page, buddy, order))
 989			goto done_merging;
 990		/*
 991		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
 992		 * merge with it and move up one order.
 993		 */
 994		if (page_is_guard(buddy))
 995			clear_page_guard(zone, buddy, order, migratetype);
 996		else
 997			del_page_from_free_list(buddy, zone, order);
 
 
 
 998		combined_pfn = buddy_pfn & pfn;
 999		page = page + (combined_pfn - pfn);
1000		pfn = combined_pfn;
1001		order++;
1002	}
1003	if (max_order < MAX_ORDER) {
1004		/* If we are here, it means order is >= pageblock_order.
1005		 * We want to prevent merge between freepages on isolate
1006		 * pageblock and normal pageblock. Without this, pageblock
1007		 * isolation could cause incorrect freepage or CMA accounting.
1008		 *
1009		 * We don't want to hit this code for the more frequent
1010		 * low-order merging.
1011		 */
1012		if (unlikely(has_isolate_pageblock(zone))) {
1013			int buddy_mt;
1014
1015			buddy_pfn = __find_buddy_pfn(pfn, order);
1016			buddy = page + (buddy_pfn - pfn);
1017			buddy_mt = get_pageblock_migratetype(buddy);
1018
1019			if (migratetype != buddy_mt
1020					&& (is_migrate_isolate(migratetype) ||
1021						is_migrate_isolate(buddy_mt)))
1022				goto done_merging;
1023		}
1024		max_order++;
1025		goto continue_merging;
1026	}
1027
1028done_merging:
1029	set_page_order(page, order);
1030
1031	if (is_shuffle_order(order))
1032		to_tail = shuffle_pick_tail();
1033	else
1034		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1035
1036	if (to_tail)
1037		add_to_free_list_tail(page, zone, order, migratetype);
1038	else
1039		add_to_free_list(page, zone, order, migratetype);
1040
1041	/* Notify page reporting subsystem of freed page */
1042	if (report)
1043		page_reporting_notify_free(order);
1044}
1045
1046/*
1047 * A bad page could be due to a number of fields. Instead of multiple branches,
1048 * try and check multiple fields with one check. The caller must do a detailed
1049 * check if necessary.
1050 */
1051static inline bool page_expected_state(struct page *page,
1052					unsigned long check_flags)
1053{
1054	if (unlikely(atomic_read(&page->_mapcount) != -1))
1055		return false;
1056
1057	if (unlikely((unsigned long)page->mapping |
1058			page_ref_count(page) |
1059#ifdef CONFIG_MEMCG
1060			(unsigned long)page->mem_cgroup |
1061#endif
1062			(page->flags & check_flags)))
1063		return false;
1064
1065	return true;
1066}
1067
1068static const char *page_bad_reason(struct page *page, unsigned long flags)
1069{
1070	const char *bad_reason = NULL;
 
 
 
 
1071
1072	if (unlikely(atomic_read(&page->_mapcount) != -1))
1073		bad_reason = "nonzero mapcount";
1074	if (unlikely(page->mapping != NULL))
1075		bad_reason = "non-NULL mapping";
1076	if (unlikely(page_ref_count(page) != 0))
1077		bad_reason = "nonzero _refcount";
1078	if (unlikely(page->flags & flags)) {
1079		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1080			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1081		else
1082			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1083	}
1084#ifdef CONFIG_MEMCG
1085	if (unlikely(page->mem_cgroup))
1086		bad_reason = "page still charged to cgroup";
1087#endif
1088	return bad_reason;
1089}
1090
1091static void check_free_page_bad(struct page *page)
1092{
1093	bad_page(page,
1094		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1095}
1096
1097static inline int check_free_page(struct page *page)
1098{
1099	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1100		return 0;
1101
1102	/* Something has gone sideways, find it */
1103	check_free_page_bad(page);
1104	return 1;
1105}
1106
1107static int free_tail_pages_check(struct page *head_page, struct page *page)
1108{
1109	int ret = 1;
1110
1111	/*
1112	 * We rely page->lru.next never has bit 0 set, unless the page
1113	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1114	 */
1115	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1116
1117	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1118		ret = 0;
1119		goto out;
1120	}
1121	switch (page - head_page) {
1122	case 1:
1123		/* the first tail page: ->mapping may be compound_mapcount() */
1124		if (unlikely(compound_mapcount(page))) {
1125			bad_page(page, "nonzero compound_mapcount");
1126			goto out;
1127		}
1128		break;
1129	case 2:
1130		/*
1131		 * the second tail page: ->mapping is
1132		 * deferred_list.next -- ignore value.
1133		 */
1134		break;
1135	default:
1136		if (page->mapping != TAIL_MAPPING) {
1137			bad_page(page, "corrupted mapping in tail page");
1138			goto out;
1139		}
1140		break;
1141	}
1142	if (unlikely(!PageTail(page))) {
1143		bad_page(page, "PageTail not set");
1144		goto out;
1145	}
1146	if (unlikely(compound_head(page) != head_page)) {
1147		bad_page(page, "compound_head not consistent");
1148		goto out;
1149	}
1150	ret = 0;
1151out:
1152	page->mapping = NULL;
1153	clear_compound_head(page);
1154	return ret;
1155}
1156
1157static void kernel_init_free_pages(struct page *page, int numpages)
1158{
1159	int i;
1160
1161	/* s390's use of memset() could override KASAN redzones. */
1162	kasan_disable_current();
1163	for (i = 0; i < numpages; i++)
1164		clear_highpage(page + i);
1165	kasan_enable_current();
1166}
1167
1168static __always_inline bool free_pages_prepare(struct page *page,
1169					unsigned int order, bool check_free)
1170{
1171	int bad = 0;
1172
1173	VM_BUG_ON_PAGE(PageTail(page), page);
1174
1175	trace_mm_page_free(page, order);
1176
1177	/*
1178	 * Check tail pages before head page information is cleared to
1179	 * avoid checking PageCompound for order-0 pages.
1180	 */
1181	if (unlikely(order)) {
1182		bool compound = PageCompound(page);
1183		int i;
1184
1185		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1186
1187		if (compound)
1188			ClearPageDoubleMap(page);
1189		for (i = 1; i < (1 << order); i++) {
1190			if (compound)
1191				bad += free_tail_pages_check(page, page + i);
1192			if (unlikely(check_free_page(page + i))) {
1193				bad++;
1194				continue;
1195			}
1196			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1197		}
1198	}
1199	if (PageMappingFlags(page))
1200		page->mapping = NULL;
1201	if (memcg_kmem_enabled() && PageKmemcg(page))
1202		__memcg_kmem_uncharge_page(page, order);
1203	if (check_free)
1204		bad += check_free_page(page);
1205	if (bad)
1206		return false;
1207
1208	page_cpupid_reset_last(page);
1209	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1210	reset_page_owner(page, order);
1211
1212	if (!PageHighMem(page)) {
1213		debug_check_no_locks_freed(page_address(page),
1214					   PAGE_SIZE << order);
1215		debug_check_no_obj_freed(page_address(page),
1216					   PAGE_SIZE << order);
1217	}
1218	if (want_init_on_free())
1219		kernel_init_free_pages(page, 1 << order);
1220
1221	kernel_poison_pages(page, 1 << order, 0);
1222	/*
1223	 * arch_free_page() can make the page's contents inaccessible.  s390
1224	 * does this.  So nothing which can access the page's contents should
1225	 * happen after this.
1226	 */
1227	arch_free_page(page, order);
1228
1229	if (debug_pagealloc_enabled_static())
1230		kernel_map_pages(page, 1 << order, 0);
1231
1232	kasan_free_nondeferred_pages(page, order);
1233
1234	return true;
1235}
1236
1237#ifdef CONFIG_DEBUG_VM
1238/*
1239 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1240 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1241 * moved from pcp lists to free lists.
1242 */
1243static bool free_pcp_prepare(struct page *page)
1244{
1245	return free_pages_prepare(page, 0, true);
1246}
1247
1248static bool bulkfree_pcp_prepare(struct page *page)
1249{
1250	if (debug_pagealloc_enabled_static())
1251		return check_free_page(page);
1252	else
1253		return false;
1254}
1255#else
1256/*
1257 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1258 * moving from pcp lists to free list in order to reduce overhead. With
1259 * debug_pagealloc enabled, they are checked also immediately when being freed
1260 * to the pcp lists.
1261 */
1262static bool free_pcp_prepare(struct page *page)
1263{
1264	if (debug_pagealloc_enabled_static())
1265		return free_pages_prepare(page, 0, true);
1266	else
1267		return free_pages_prepare(page, 0, false);
1268}
1269
1270static bool bulkfree_pcp_prepare(struct page *page)
1271{
1272	return check_free_page(page);
1273}
1274#endif /* CONFIG_DEBUG_VM */
1275
1276static inline void prefetch_buddy(struct page *page)
1277{
1278	unsigned long pfn = page_to_pfn(page);
1279	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1280	struct page *buddy = page + (buddy_pfn - pfn);
1281
1282	prefetch(buddy);
1283}
1284
1285/*
1286 * Frees a number of pages from the PCP lists
1287 * Assumes all pages on list are in same zone, and of same order.
1288 * count is the number of pages to free.
1289 *
1290 * If the zone was previously in an "all pages pinned" state then look to
1291 * see if this freeing clears that state.
1292 *
1293 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1294 * pinned" detection logic.
1295 */
1296static void free_pcppages_bulk(struct zone *zone, int count,
1297					struct per_cpu_pages *pcp)
1298{
1299	int migratetype = 0;
1300	int batch_free = 0;
1301	int prefetch_nr = 0;
1302	bool isolated_pageblocks;
1303	struct page *page, *tmp;
1304	LIST_HEAD(head);
1305
1306	/*
1307	 * Ensure proper count is passed which otherwise would stuck in the
1308	 * below while (list_empty(list)) loop.
1309	 */
1310	count = min(pcp->count, count);
1311	while (count) {
1312		struct list_head *list;
1313
1314		/*
1315		 * Remove pages from lists in a round-robin fashion. A
1316		 * batch_free count is maintained that is incremented when an
1317		 * empty list is encountered.  This is so more pages are freed
1318		 * off fuller lists instead of spinning excessively around empty
1319		 * lists
1320		 */
1321		do {
1322			batch_free++;
1323			if (++migratetype == MIGRATE_PCPTYPES)
1324				migratetype = 0;
1325			list = &pcp->lists[migratetype];
1326		} while (list_empty(list));
1327
1328		/* This is the only non-empty list. Free them all. */
1329		if (batch_free == MIGRATE_PCPTYPES)
1330			batch_free = count;
1331
1332		do {
1333			page = list_last_entry(list, struct page, lru);
1334			/* must delete to avoid corrupting pcp list */
1335			list_del(&page->lru);
1336			pcp->count--;
1337
1338			if (bulkfree_pcp_prepare(page))
1339				continue;
1340
1341			list_add_tail(&page->lru, &head);
1342
1343			/*
1344			 * We are going to put the page back to the global
1345			 * pool, prefetch its buddy to speed up later access
1346			 * under zone->lock. It is believed the overhead of
1347			 * an additional test and calculating buddy_pfn here
1348			 * can be offset by reduced memory latency later. To
1349			 * avoid excessive prefetching due to large count, only
1350			 * prefetch buddy for the first pcp->batch nr of pages.
1351			 */
1352			if (prefetch_nr++ < pcp->batch)
1353				prefetch_buddy(page);
1354		} while (--count && --batch_free && !list_empty(list));
1355	}
1356
1357	spin_lock(&zone->lock);
1358	isolated_pageblocks = has_isolate_pageblock(zone);
1359
1360	/*
1361	 * Use safe version since after __free_one_page(),
1362	 * page->lru.next will not point to original list.
1363	 */
1364	list_for_each_entry_safe(page, tmp, &head, lru) {
1365		int mt = get_pcppage_migratetype(page);
1366		/* MIGRATE_ISOLATE page should not go to pcplists */
1367		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1368		/* Pageblock could have been isolated meanwhile */
1369		if (unlikely(isolated_pageblocks))
1370			mt = get_pageblock_migratetype(page);
1371
1372		__free_one_page(page, page_to_pfn(page), zone, 0, mt, true);
1373		trace_mm_page_pcpu_drain(page, 0, mt);
1374	}
1375	spin_unlock(&zone->lock);
1376}
1377
1378static void free_one_page(struct zone *zone,
1379				struct page *page, unsigned long pfn,
1380				unsigned int order,
1381				int migratetype)
1382{
1383	spin_lock(&zone->lock);
1384	if (unlikely(has_isolate_pageblock(zone) ||
1385		is_migrate_isolate(migratetype))) {
1386		migratetype = get_pfnblock_migratetype(page, pfn);
1387	}
1388	__free_one_page(page, pfn, zone, order, migratetype, true);
1389	spin_unlock(&zone->lock);
1390}
1391
1392static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1393				unsigned long zone, int nid)
1394{
1395	mm_zero_struct_page(page);
1396	set_page_links(page, zone, nid, pfn);
1397	init_page_count(page);
1398	page_mapcount_reset(page);
1399	page_cpupid_reset_last(page);
1400	page_kasan_tag_reset(page);
1401
1402	INIT_LIST_HEAD(&page->lru);
1403#ifdef WANT_PAGE_VIRTUAL
1404	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1405	if (!is_highmem_idx(zone))
1406		set_page_address(page, __va(pfn << PAGE_SHIFT));
1407#endif
1408}
1409
1410#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1411static void __meminit init_reserved_page(unsigned long pfn)
1412{
1413	pg_data_t *pgdat;
1414	int nid, zid;
1415
1416	if (!early_page_uninitialised(pfn))
1417		return;
1418
1419	nid = early_pfn_to_nid(pfn);
1420	pgdat = NODE_DATA(nid);
1421
1422	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1423		struct zone *zone = &pgdat->node_zones[zid];
1424
1425		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1426			break;
1427	}
1428	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1429}
1430#else
1431static inline void init_reserved_page(unsigned long pfn)
1432{
1433}
1434#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1435
1436/*
1437 * Initialised pages do not have PageReserved set. This function is
1438 * called for each range allocated by the bootmem allocator and
1439 * marks the pages PageReserved. The remaining valid pages are later
1440 * sent to the buddy page allocator.
1441 */
1442void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1443{
1444	unsigned long start_pfn = PFN_DOWN(start);
1445	unsigned long end_pfn = PFN_UP(end);
1446
1447	for (; start_pfn < end_pfn; start_pfn++) {
1448		if (pfn_valid(start_pfn)) {
1449			struct page *page = pfn_to_page(start_pfn);
1450
1451			init_reserved_page(start_pfn);
1452
1453			/* Avoid false-positive PageTail() */
1454			INIT_LIST_HEAD(&page->lru);
1455
1456			/*
1457			 * no need for atomic set_bit because the struct
1458			 * page is not visible yet so nobody should
1459			 * access it yet.
1460			 */
1461			__SetPageReserved(page);
1462		}
1463	}
1464}
1465
1466static void __free_pages_ok(struct page *page, unsigned int order)
1467{
1468	unsigned long flags;
1469	int migratetype;
1470	unsigned long pfn = page_to_pfn(page);
1471
1472	if (!free_pages_prepare(page, order, true))
1473		return;
1474
1475	migratetype = get_pfnblock_migratetype(page, pfn);
1476	local_irq_save(flags);
1477	__count_vm_events(PGFREE, 1 << order);
1478	free_one_page(page_zone(page), page, pfn, order, migratetype);
1479	local_irq_restore(flags);
1480}
1481
1482void __free_pages_core(struct page *page, unsigned int order)
1483{
1484	unsigned int nr_pages = 1 << order;
1485	struct page *p = page;
1486	unsigned int loop;
1487
1488	prefetchw(p);
1489	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1490		prefetchw(p + 1);
1491		__ClearPageReserved(p);
1492		set_page_count(p, 0);
1493	}
1494	__ClearPageReserved(p);
1495	set_page_count(p, 0);
1496
1497	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1498	set_page_refcounted(page);
1499	__free_pages(page, order);
1500}
1501
1502#ifdef CONFIG_NEED_MULTIPLE_NODES
 
1503
1504static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1505
1506#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1507
1508/*
1509 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1510 */
1511int __meminit __early_pfn_to_nid(unsigned long pfn,
1512					struct mminit_pfnnid_cache *state)
1513{
1514	unsigned long start_pfn, end_pfn;
1515	int nid;
1516
1517	if (state->last_start <= pfn && pfn < state->last_end)
1518		return state->last_nid;
1519
1520	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1521	if (nid != NUMA_NO_NODE) {
1522		state->last_start = start_pfn;
1523		state->last_end = end_pfn;
1524		state->last_nid = nid;
1525	}
1526
1527	return nid;
1528}
1529#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1530
1531int __meminit early_pfn_to_nid(unsigned long pfn)
1532{
1533	static DEFINE_SPINLOCK(early_pfn_lock);
1534	int nid;
1535
1536	spin_lock(&early_pfn_lock);
1537	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1538	if (nid < 0)
1539		nid = first_online_node;
1540	spin_unlock(&early_pfn_lock);
1541
1542	return nid;
1543}
1544#endif /* CONFIG_NEED_MULTIPLE_NODES */
1545
1546void __init memblock_free_pages(struct page *page, unsigned long pfn,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1547							unsigned int order)
1548{
1549	if (early_page_uninitialised(pfn))
1550		return;
1551	__free_pages_core(page, order);
1552}
1553
1554/*
1555 * Check that the whole (or subset of) a pageblock given by the interval of
1556 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1557 * with the migration of free compaction scanner. The scanners then need to
1558 * use only pfn_valid_within() check for arches that allow holes within
1559 * pageblocks.
1560 *
1561 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1562 *
1563 * It's possible on some configurations to have a setup like node0 node1 node0
1564 * i.e. it's possible that all pages within a zones range of pages do not
1565 * belong to a single zone. We assume that a border between node0 and node1
1566 * can occur within a single pageblock, but not a node0 node1 node0
1567 * interleaving within a single pageblock. It is therefore sufficient to check
1568 * the first and last page of a pageblock and avoid checking each individual
1569 * page in a pageblock.
1570 */
1571struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1572				     unsigned long end_pfn, struct zone *zone)
1573{
1574	struct page *start_page;
1575	struct page *end_page;
1576
1577	/* end_pfn is one past the range we are checking */
1578	end_pfn--;
1579
1580	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1581		return NULL;
1582
1583	start_page = pfn_to_online_page(start_pfn);
1584	if (!start_page)
1585		return NULL;
1586
1587	if (page_zone(start_page) != zone)
1588		return NULL;
1589
1590	end_page = pfn_to_page(end_pfn);
1591
1592	/* This gives a shorter code than deriving page_zone(end_page) */
1593	if (page_zone_id(start_page) != page_zone_id(end_page))
1594		return NULL;
1595
1596	return start_page;
1597}
1598
1599void set_zone_contiguous(struct zone *zone)
1600{
1601	unsigned long block_start_pfn = zone->zone_start_pfn;
1602	unsigned long block_end_pfn;
1603
1604	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1605	for (; block_start_pfn < zone_end_pfn(zone);
1606			block_start_pfn = block_end_pfn,
1607			 block_end_pfn += pageblock_nr_pages) {
1608
1609		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1610
1611		if (!__pageblock_pfn_to_page(block_start_pfn,
1612					     block_end_pfn, zone))
1613			return;
1614		cond_resched();
1615	}
1616
1617	/* We confirm that there is no hole */
1618	zone->contiguous = true;
1619}
1620
1621void clear_zone_contiguous(struct zone *zone)
1622{
1623	zone->contiguous = false;
1624}
1625
1626#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1627static void __init deferred_free_range(unsigned long pfn,
1628				       unsigned long nr_pages)
1629{
1630	struct page *page;
1631	unsigned long i;
1632
1633	if (!nr_pages)
1634		return;
1635
1636	page = pfn_to_page(pfn);
1637
1638	/* Free a large naturally-aligned chunk if possible */
1639	if (nr_pages == pageblock_nr_pages &&
1640	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1641		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1642		__free_pages_core(page, pageblock_order);
1643		return;
1644	}
1645
1646	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1647		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1648			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1649		__free_pages_core(page, 0);
1650	}
1651}
1652
1653/* Completion tracking for deferred_init_memmap() threads */
1654static atomic_t pgdat_init_n_undone __initdata;
1655static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1656
1657static inline void __init pgdat_init_report_one_done(void)
1658{
1659	if (atomic_dec_and_test(&pgdat_init_n_undone))
1660		complete(&pgdat_init_all_done_comp);
1661}
1662
1663/*
1664 * Returns true if page needs to be initialized or freed to buddy allocator.
1665 *
1666 * First we check if pfn is valid on architectures where it is possible to have
1667 * holes within pageblock_nr_pages. On systems where it is not possible, this
1668 * function is optimized out.
1669 *
1670 * Then, we check if a current large page is valid by only checking the validity
1671 * of the head pfn.
1672 */
1673static inline bool __init deferred_pfn_valid(unsigned long pfn)
 
 
 
 
 
 
1674{
1675	if (!pfn_valid_within(pfn))
1676		return false;
1677	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1678		return false;
 
 
1679	return true;
1680}
1681
1682/*
1683 * Free pages to buddy allocator. Try to free aligned pages in
1684 * pageblock_nr_pages sizes.
1685 */
1686static void __init deferred_free_pages(unsigned long pfn,
1687				       unsigned long end_pfn)
1688{
 
1689	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1690	unsigned long nr_free = 0;
1691
1692	for (; pfn < end_pfn; pfn++) {
1693		if (!deferred_pfn_valid(pfn)) {
1694			deferred_free_range(pfn - nr_free, nr_free);
1695			nr_free = 0;
1696		} else if (!(pfn & nr_pgmask)) {
1697			deferred_free_range(pfn - nr_free, nr_free);
1698			nr_free = 1;
 
1699		} else {
1700			nr_free++;
1701		}
1702	}
1703	/* Free the last block of pages to allocator */
1704	deferred_free_range(pfn - nr_free, nr_free);
1705}
1706
1707/*
1708 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1709 * by performing it only once every pageblock_nr_pages.
1710 * Return number of pages initialized.
1711 */
1712static unsigned long  __init deferred_init_pages(struct zone *zone,
1713						 unsigned long pfn,
1714						 unsigned long end_pfn)
1715{
 
1716	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1717	int nid = zone_to_nid(zone);
1718	unsigned long nr_pages = 0;
1719	int zid = zone_idx(zone);
1720	struct page *page = NULL;
1721
1722	for (; pfn < end_pfn; pfn++) {
1723		if (!deferred_pfn_valid(pfn)) {
1724			page = NULL;
1725			continue;
1726		} else if (!page || !(pfn & nr_pgmask)) {
1727			page = pfn_to_page(pfn);
 
1728		} else {
1729			page++;
1730		}
1731		__init_single_page(page, pfn, zid, nid);
1732		nr_pages++;
1733	}
1734	return (nr_pages);
1735}
1736
1737/*
1738 * This function is meant to pre-load the iterator for the zone init.
1739 * Specifically it walks through the ranges until we are caught up to the
1740 * first_init_pfn value and exits there. If we never encounter the value we
1741 * return false indicating there are no valid ranges left.
1742 */
1743static bool __init
1744deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1745				    unsigned long *spfn, unsigned long *epfn,
1746				    unsigned long first_init_pfn)
1747{
1748	u64 j;
1749
1750	/*
1751	 * Start out by walking through the ranges in this zone that have
1752	 * already been initialized. We don't need to do anything with them
1753	 * so we just need to flush them out of the system.
1754	 */
1755	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1756		if (*epfn <= first_init_pfn)
1757			continue;
1758		if (*spfn < first_init_pfn)
1759			*spfn = first_init_pfn;
1760		*i = j;
1761		return true;
1762	}
1763
1764	return false;
1765}
1766
1767/*
1768 * Initialize and free pages. We do it in two loops: first we initialize
1769 * struct page, then free to buddy allocator, because while we are
1770 * freeing pages we can access pages that are ahead (computing buddy
1771 * page in __free_one_page()).
1772 *
1773 * In order to try and keep some memory in the cache we have the loop
1774 * broken along max page order boundaries. This way we will not cause
1775 * any issues with the buddy page computation.
1776 */
1777static unsigned long __init
1778deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1779		       unsigned long *end_pfn)
1780{
1781	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1782	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1783	unsigned long nr_pages = 0;
1784	u64 j = *i;
1785
1786	/* First we loop through and initialize the page values */
1787	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1788		unsigned long t;
1789
1790		if (mo_pfn <= *start_pfn)
1791			break;
1792
1793		t = min(mo_pfn, *end_pfn);
1794		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1795
1796		if (mo_pfn < *end_pfn) {
1797			*start_pfn = mo_pfn;
1798			break;
1799		}
1800	}
1801
1802	/* Reset values and now loop through freeing pages as needed */
1803	swap(j, *i);
1804
1805	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1806		unsigned long t;
1807
1808		if (mo_pfn <= spfn)
1809			break;
1810
1811		t = min(mo_pfn, epfn);
1812		deferred_free_pages(spfn, t);
1813
1814		if (mo_pfn <= epfn)
1815			break;
1816	}
1817
1818	return nr_pages;
1819}
1820
1821static void __init
1822deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1823			   void *arg)
1824{
1825	unsigned long spfn, epfn;
1826	struct zone *zone = arg;
1827	u64 i;
1828
1829	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1830
1831	/*
1832	 * Initialize and free pages in MAX_ORDER sized increments so that we
1833	 * can avoid introducing any issues with the buddy allocator.
1834	 */
1835	while (spfn < end_pfn) {
1836		deferred_init_maxorder(&i, zone, &spfn, &epfn);
1837		cond_resched();
1838	}
1839}
1840
1841/* An arch may override for more concurrency. */
1842__weak int __init
1843deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1844{
1845	return 1;
1846}
1847
1848/* Initialise remaining memory on a node */
1849static int __init deferred_init_memmap(void *data)
1850{
1851	pg_data_t *pgdat = data;
1852	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1853	unsigned long spfn = 0, epfn = 0;
1854	unsigned long first_init_pfn, flags;
1855	unsigned long start = jiffies;
 
 
 
 
1856	struct zone *zone;
1857	int zid, max_threads;
1858	u64 i;
1859
1860	/* Bind memory initialisation thread to a local node if possible */
1861	if (!cpumask_empty(cpumask))
1862		set_cpus_allowed_ptr(current, cpumask);
1863
1864	pgdat_resize_lock(pgdat, &flags);
1865	first_init_pfn = pgdat->first_deferred_pfn;
1866	if (first_init_pfn == ULONG_MAX) {
1867		pgdat_resize_unlock(pgdat, &flags);
1868		pgdat_init_report_one_done();
1869		return 0;
1870	}
1871
1872	/* Sanity check boundaries */
1873	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1874	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1875	pgdat->first_deferred_pfn = ULONG_MAX;
1876
1877	/*
1878	 * Once we unlock here, the zone cannot be grown anymore, thus if an
1879	 * interrupt thread must allocate this early in boot, zone must be
1880	 * pre-grown prior to start of deferred page initialization.
1881	 */
1882	pgdat_resize_unlock(pgdat, &flags);
1883
1884	/* Only the highest zone is deferred so find it */
1885	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1886		zone = pgdat->node_zones + zid;
1887		if (first_init_pfn < zone_end_pfn(zone))
1888			break;
1889	}
 
1890
1891	/* If the zone is empty somebody else may have cleared out the zone */
1892	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1893						 first_init_pfn))
1894		goto zone_empty;
1895
1896	max_threads = deferred_page_init_max_threads(cpumask);
1897
1898	while (spfn < epfn) {
1899		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1900		struct padata_mt_job job = {
1901			.thread_fn   = deferred_init_memmap_chunk,
1902			.fn_arg      = zone,
1903			.start       = spfn,
1904			.size        = epfn_align - spfn,
1905			.align       = PAGES_PER_SECTION,
1906			.min_chunk   = PAGES_PER_SECTION,
1907			.max_threads = max_threads,
1908		};
1909
1910		padata_do_multithreaded(&job);
1911		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1912						    epfn_align);
1913	}
1914zone_empty:
 
1915	/* Sanity check that the next zone really is unpopulated */
1916	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1917
1918	pr_info("node %d deferred pages initialised in %ums\n",
1919		pgdat->node_id, jiffies_to_msecs(jiffies - start));
1920
1921	pgdat_init_report_one_done();
1922	return 0;
1923}
1924
1925/*
 
 
 
 
 
 
 
1926 * If this zone has deferred pages, try to grow it by initializing enough
1927 * deferred pages to satisfy the allocation specified by order, rounded up to
1928 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
1929 * of SECTION_SIZE bytes by initializing struct pages in increments of
1930 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1931 *
1932 * Return true when zone was grown, otherwise return false. We return true even
1933 * when we grow less than requested, to let the caller decide if there are
1934 * enough pages to satisfy the allocation.
1935 *
1936 * Note: We use noinline because this function is needed only during boot, and
1937 * it is called from a __ref function _deferred_grow_zone. This way we are
1938 * making sure that it is not inlined into permanent text section.
1939 */
1940static noinline bool __init
1941deferred_grow_zone(struct zone *zone, unsigned int order)
1942{
 
 
 
1943	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1944	pg_data_t *pgdat = zone->zone_pgdat;
 
1945	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1946	unsigned long spfn, epfn, flags;
1947	unsigned long nr_pages = 0;
1948	u64 i;
1949
1950	/* Only the last zone may have deferred pages */
1951	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1952		return false;
1953
1954	pgdat_resize_lock(pgdat, &flags);
1955
1956	/*
 
 
 
 
 
 
 
 
 
 
 
1957	 * If someone grew this zone while we were waiting for spinlock, return
1958	 * true, as there might be enough pages already.
1959	 */
1960	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1961		pgdat_resize_unlock(pgdat, &flags);
1962		return true;
1963	}
1964
1965	/* If the zone is empty somebody else may have cleared out the zone */
1966	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1967						 first_deferred_pfn)) {
1968		pgdat->first_deferred_pfn = ULONG_MAX;
1969		pgdat_resize_unlock(pgdat, &flags);
1970		/* Retry only once. */
1971		return first_deferred_pfn != ULONG_MAX;
1972	}
1973
1974	/*
1975	 * Initialize and free pages in MAX_ORDER sized increments so
1976	 * that we can avoid introducing any issues with the buddy
1977	 * allocator.
1978	 */
1979	while (spfn < epfn) {
1980		/* update our first deferred PFN for this section */
1981		first_deferred_pfn = spfn;
 
 
 
1982
1983		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1984		touch_nmi_watchdog();
 
1985
1986		/* We should only stop along section boundaries */
1987		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1988			continue;
 
1989
1990		/* If our quota has been met we can stop here */
1991		if (nr_pages >= nr_pages_needed)
1992			break;
1993	}
1994
1995	pgdat->first_deferred_pfn = spfn;
1996	pgdat_resize_unlock(pgdat, &flags);
1997
1998	return nr_pages > 0;
1999}
2000
2001/*
2002 * deferred_grow_zone() is __init, but it is called from
2003 * get_page_from_freelist() during early boot until deferred_pages permanently
2004 * disables this call. This is why we have refdata wrapper to avoid warning,
2005 * and to ensure that the function body gets unloaded.
2006 */
2007static bool __ref
2008_deferred_grow_zone(struct zone *zone, unsigned int order)
2009{
2010	return deferred_grow_zone(zone, order);
2011}
2012
2013#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2014
2015void __init page_alloc_init_late(void)
2016{
2017	struct zone *zone;
2018	int nid;
2019
2020#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 
2021
2022	/* There will be num_node_state(N_MEMORY) threads */
2023	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2024	for_each_node_state(nid, N_MEMORY) {
2025		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2026	}
2027
2028	/* Block until all are initialised */
2029	wait_for_completion(&pgdat_init_all_done_comp);
2030
2031	/*
2032	 * The number of managed pages has changed due to the initialisation
2033	 * so the pcpu batch and high limits needs to be updated or the limits
2034	 * will be artificially small.
2035	 */
2036	for_each_populated_zone(zone)
2037		zone_pcp_update(zone);
2038
2039	/*
2040	 * We initialized the rest of the deferred pages.  Permanently disable
2041	 * on-demand struct page initialization.
2042	 */
2043	static_branch_disable(&deferred_pages);
2044
2045	/* Reinit limits that are based on free pages after the kernel is up */
2046	files_maxfiles_init();
2047#endif
2048
2049	/* Discard memblock private memory */
2050	memblock_discard();
2051
2052	for_each_node_state(nid, N_MEMORY)
2053		shuffle_free_memory(NODE_DATA(nid));
2054
2055	for_each_populated_zone(zone)
2056		set_zone_contiguous(zone);
2057}
2058
2059#ifdef CONFIG_CMA
2060/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2061void __init init_cma_reserved_pageblock(struct page *page)
2062{
2063	unsigned i = pageblock_nr_pages;
2064	struct page *p = page;
2065
2066	do {
2067		__ClearPageReserved(p);
2068		set_page_count(p, 0);
2069	} while (++p, --i);
2070
2071	set_pageblock_migratetype(page, MIGRATE_CMA);
2072
2073	if (pageblock_order >= MAX_ORDER) {
2074		i = pageblock_nr_pages;
2075		p = page;
2076		do {
2077			set_page_refcounted(p);
2078			__free_pages(p, MAX_ORDER - 1);
2079			p += MAX_ORDER_NR_PAGES;
2080		} while (i -= MAX_ORDER_NR_PAGES);
2081	} else {
2082		set_page_refcounted(page);
2083		__free_pages(page, pageblock_order);
2084	}
2085
2086	adjust_managed_page_count(page, pageblock_nr_pages);
2087}
2088#endif
2089
2090/*
2091 * The order of subdivision here is critical for the IO subsystem.
2092 * Please do not alter this order without good reasons and regression
2093 * testing. Specifically, as large blocks of memory are subdivided,
2094 * the order in which smaller blocks are delivered depends on the order
2095 * they're subdivided in this function. This is the primary factor
2096 * influencing the order in which pages are delivered to the IO
2097 * subsystem according to empirical testing, and this is also justified
2098 * by considering the behavior of a buddy system containing a single
2099 * large block of memory acted on by a series of small allocations.
2100 * This behavior is a critical factor in sglist merging's success.
2101 *
2102 * -- nyc
2103 */
2104static inline void expand(struct zone *zone, struct page *page,
2105	int low, int high, int migratetype)
 
2106{
2107	unsigned long size = 1 << high;
2108
2109	while (high > low) {
 
2110		high--;
2111		size >>= 1;
2112		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2113
2114		/*
2115		 * Mark as guard pages (or page), that will allow to
2116		 * merge back to allocator when buddy will be freed.
2117		 * Corresponding page table entries will not be touched,
2118		 * pages will stay not present in virtual address space
2119		 */
2120		if (set_page_guard(zone, &page[size], high, migratetype))
2121			continue;
2122
2123		add_to_free_list(&page[size], zone, high, migratetype);
 
2124		set_page_order(&page[size], high);
2125	}
2126}
2127
2128static void check_new_page_bad(struct page *page)
2129{
 
 
 
 
 
 
 
 
 
2130	if (unlikely(page->flags & __PG_HWPOISON)) {
 
 
2131		/* Don't complain about hwpoisoned pages */
2132		page_mapcount_reset(page); /* remove PageBuddy */
2133		return;
2134	}
2135
2136	bad_page(page,
2137		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
 
 
 
 
 
 
2138}
2139
2140/*
2141 * This page is about to be returned from the page allocator
2142 */
2143static inline int check_new_page(struct page *page)
2144{
2145	if (likely(page_expected_state(page,
2146				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2147		return 0;
2148
2149	check_new_page_bad(page);
2150	return 1;
2151}
2152
2153static inline bool free_pages_prezeroed(void)
2154{
2155	return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2156		page_poisoning_enabled()) || want_init_on_free();
2157}
2158
2159#ifdef CONFIG_DEBUG_VM
2160/*
2161 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2162 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2163 * also checked when pcp lists are refilled from the free lists.
2164 */
2165static inline bool check_pcp_refill(struct page *page)
2166{
2167	if (debug_pagealloc_enabled_static())
2168		return check_new_page(page);
2169	else
2170		return false;
2171}
2172
2173static inline bool check_new_pcp(struct page *page)
2174{
2175	return check_new_page(page);
2176}
2177#else
2178/*
2179 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2180 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2181 * enabled, they are also checked when being allocated from the pcp lists.
2182 */
2183static inline bool check_pcp_refill(struct page *page)
2184{
2185	return check_new_page(page);
2186}
2187static inline bool check_new_pcp(struct page *page)
2188{
2189	if (debug_pagealloc_enabled_static())
2190		return check_new_page(page);
2191	else
2192		return false;
2193}
2194#endif /* CONFIG_DEBUG_VM */
2195
2196static bool check_new_pages(struct page *page, unsigned int order)
2197{
2198	int i;
2199	for (i = 0; i < (1 << order); i++) {
2200		struct page *p = page + i;
2201
2202		if (unlikely(check_new_page(p)))
2203			return true;
2204	}
2205
2206	return false;
2207}
2208
2209inline void post_alloc_hook(struct page *page, unsigned int order,
2210				gfp_t gfp_flags)
2211{
2212	set_page_private(page, 0);
2213	set_page_refcounted(page);
2214
2215	arch_alloc_page(page, order);
2216	if (debug_pagealloc_enabled_static())
2217		kernel_map_pages(page, 1 << order, 1);
2218	kasan_alloc_pages(page, order);
2219	kernel_poison_pages(page, 1 << order, 1);
2220	set_page_owner(page, order, gfp_flags);
2221}
2222
2223static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2224							unsigned int alloc_flags)
2225{
 
 
2226	post_alloc_hook(page, order, gfp_flags);
2227
2228	if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2229		kernel_init_free_pages(page, 1 << order);
 
2230
2231	if (order && (gfp_flags & __GFP_COMP))
2232		prep_compound_page(page, order);
2233
2234	/*
2235	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2236	 * allocate the page. The expectation is that the caller is taking
2237	 * steps that will free more memory. The caller should avoid the page
2238	 * being used for !PFMEMALLOC purposes.
2239	 */
2240	if (alloc_flags & ALLOC_NO_WATERMARKS)
2241		set_page_pfmemalloc(page);
2242	else
2243		clear_page_pfmemalloc(page);
2244}
2245
2246/*
2247 * Go through the free lists for the given migratetype and remove
2248 * the smallest available page from the freelists
2249 */
2250static __always_inline
2251struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2252						int migratetype)
2253{
2254	unsigned int current_order;
2255	struct free_area *area;
2256	struct page *page;
2257
2258	/* Find a page of the appropriate size in the preferred list */
2259	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2260		area = &(zone->free_area[current_order]);
2261		page = get_page_from_free_area(area, migratetype);
 
2262		if (!page)
2263			continue;
2264		del_page_from_free_list(page, zone, current_order);
2265		expand(zone, page, order, current_order, migratetype);
 
 
2266		set_pcppage_migratetype(page, migratetype);
2267		return page;
2268	}
2269
2270	return NULL;
2271}
2272
2273
2274/*
2275 * This array describes the order lists are fallen back to when
2276 * the free lists for the desirable migrate type are depleted
2277 */
2278static int fallbacks[MIGRATE_TYPES][3] = {
2279	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
 
2280	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2281	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2282#ifdef CONFIG_CMA
2283	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2284#endif
2285#ifdef CONFIG_MEMORY_ISOLATION
2286	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2287#endif
2288};
2289
2290#ifdef CONFIG_CMA
2291static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2292					unsigned int order)
2293{
2294	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2295}
2296#else
2297static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2298					unsigned int order) { return NULL; }
2299#endif
2300
2301/*
2302 * Move the free pages in a range to the free lists of the requested type.
2303 * Note that start_page and end_pages are not aligned on a pageblock
2304 * boundary. If alignment is required, use move_freepages_block()
2305 */
2306static int move_freepages(struct zone *zone,
2307			  struct page *start_page, struct page *end_page,
2308			  int migratetype, int *num_movable)
2309{
2310	struct page *page;
2311	unsigned int order;
2312	int pages_moved = 0;
2313
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2314	for (page = start_page; page <= end_page;) {
2315		if (!pfn_valid_within(page_to_pfn(page))) {
2316			page++;
2317			continue;
2318		}
2319
 
 
 
2320		if (!PageBuddy(page)) {
2321			/*
2322			 * We assume that pages that could be isolated for
2323			 * migration are movable. But we don't actually try
2324			 * isolating, as that would be expensive.
2325			 */
2326			if (num_movable &&
2327					(PageLRU(page) || __PageMovable(page)))
2328				(*num_movable)++;
2329
2330			page++;
2331			continue;
2332		}
2333
2334		/* Make sure we are not inadvertently changing nodes */
2335		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2336		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2337
2338		order = page_order(page);
2339		move_to_free_list(page, zone, order, migratetype);
 
2340		page += 1 << order;
2341		pages_moved += 1 << order;
2342	}
2343
2344	return pages_moved;
2345}
2346
2347int move_freepages_block(struct zone *zone, struct page *page,
2348				int migratetype, int *num_movable)
2349{
2350	unsigned long start_pfn, end_pfn;
2351	struct page *start_page, *end_page;
2352
2353	if (num_movable)
2354		*num_movable = 0;
2355
2356	start_pfn = page_to_pfn(page);
2357	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2358	start_page = pfn_to_page(start_pfn);
2359	end_page = start_page + pageblock_nr_pages - 1;
2360	end_pfn = start_pfn + pageblock_nr_pages - 1;
2361
2362	/* Do not cross zone boundaries */
2363	if (!zone_spans_pfn(zone, start_pfn))
2364		start_page = page;
2365	if (!zone_spans_pfn(zone, end_pfn))
2366		return 0;
2367
2368	return move_freepages(zone, start_page, end_page, migratetype,
2369								num_movable);
2370}
2371
2372static void change_pageblock_range(struct page *pageblock_page,
2373					int start_order, int migratetype)
2374{
2375	int nr_pageblocks = 1 << (start_order - pageblock_order);
2376
2377	while (nr_pageblocks--) {
2378		set_pageblock_migratetype(pageblock_page, migratetype);
2379		pageblock_page += pageblock_nr_pages;
2380	}
2381}
2382
2383/*
2384 * When we are falling back to another migratetype during allocation, try to
2385 * steal extra free pages from the same pageblocks to satisfy further
2386 * allocations, instead of polluting multiple pageblocks.
2387 *
2388 * If we are stealing a relatively large buddy page, it is likely there will
2389 * be more free pages in the pageblock, so try to steal them all. For
2390 * reclaimable and unmovable allocations, we steal regardless of page size,
2391 * as fragmentation caused by those allocations polluting movable pageblocks
2392 * is worse than movable allocations stealing from unmovable and reclaimable
2393 * pageblocks.
2394 */
2395static bool can_steal_fallback(unsigned int order, int start_mt)
2396{
2397	/*
2398	 * Leaving this order check is intended, although there is
2399	 * relaxed order check in next check. The reason is that
2400	 * we can actually steal whole pageblock if this condition met,
2401	 * but, below check doesn't guarantee it and that is just heuristic
2402	 * so could be changed anytime.
2403	 */
2404	if (order >= pageblock_order)
2405		return true;
2406
2407	if (order >= pageblock_order / 2 ||
2408		start_mt == MIGRATE_RECLAIMABLE ||
2409		start_mt == MIGRATE_UNMOVABLE ||
2410		page_group_by_mobility_disabled)
2411		return true;
2412
2413	return false;
2414}
2415
2416static inline void boost_watermark(struct zone *zone)
2417{
2418	unsigned long max_boost;
2419
2420	if (!watermark_boost_factor)
2421		return;
2422	/*
2423	 * Don't bother in zones that are unlikely to produce results.
2424	 * On small machines, including kdump capture kernels running
2425	 * in a small area, boosting the watermark can cause an out of
2426	 * memory situation immediately.
2427	 */
2428	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2429		return;
2430
2431	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2432			watermark_boost_factor, 10000);
2433
2434	/*
2435	 * high watermark may be uninitialised if fragmentation occurs
2436	 * very early in boot so do not boost. We do not fall
2437	 * through and boost by pageblock_nr_pages as failing
2438	 * allocations that early means that reclaim is not going
2439	 * to help and it may even be impossible to reclaim the
2440	 * boosted watermark resulting in a hang.
2441	 */
2442	if (!max_boost)
2443		return;
2444
2445	max_boost = max(pageblock_nr_pages, max_boost);
2446
2447	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2448		max_boost);
2449}
2450
2451/*
2452 * This function implements actual steal behaviour. If order is large enough,
2453 * we can steal whole pageblock. If not, we first move freepages in this
2454 * pageblock to our migratetype and determine how many already-allocated pages
2455 * are there in the pageblock with a compatible migratetype. If at least half
2456 * of pages are free or compatible, we can change migratetype of the pageblock
2457 * itself, so pages freed in the future will be put on the correct free list.
2458 */
2459static void steal_suitable_fallback(struct zone *zone, struct page *page,
2460		unsigned int alloc_flags, int start_type, bool whole_block)
2461{
2462	unsigned int current_order = page_order(page);
 
2463	int free_pages, movable_pages, alike_pages;
2464	int old_block_type;
2465
2466	old_block_type = get_pageblock_migratetype(page);
2467
2468	/*
2469	 * This can happen due to races and we want to prevent broken
2470	 * highatomic accounting.
2471	 */
2472	if (is_migrate_highatomic(old_block_type))
2473		goto single_page;
2474
2475	/* Take ownership for orders >= pageblock_order */
2476	if (current_order >= pageblock_order) {
2477		change_pageblock_range(page, current_order, start_type);
2478		goto single_page;
2479	}
2480
2481	/*
2482	 * Boost watermarks to increase reclaim pressure to reduce the
2483	 * likelihood of future fallbacks. Wake kswapd now as the node
2484	 * may be balanced overall and kswapd will not wake naturally.
2485	 */
2486	boost_watermark(zone);
2487	if (alloc_flags & ALLOC_KSWAPD)
2488		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2489
2490	/* We are not allowed to try stealing from the whole block */
2491	if (!whole_block)
2492		goto single_page;
2493
2494	free_pages = move_freepages_block(zone, page, start_type,
2495						&movable_pages);
2496	/*
2497	 * Determine how many pages are compatible with our allocation.
2498	 * For movable allocation, it's the number of movable pages which
2499	 * we just obtained. For other types it's a bit more tricky.
2500	 */
2501	if (start_type == MIGRATE_MOVABLE) {
2502		alike_pages = movable_pages;
2503	} else {
2504		/*
2505		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2506		 * to MOVABLE pageblock, consider all non-movable pages as
2507		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2508		 * vice versa, be conservative since we can't distinguish the
2509		 * exact migratetype of non-movable pages.
2510		 */
2511		if (old_block_type == MIGRATE_MOVABLE)
2512			alike_pages = pageblock_nr_pages
2513						- (free_pages + movable_pages);
2514		else
2515			alike_pages = 0;
2516	}
2517
2518	/* moving whole block can fail due to zone boundary conditions */
2519	if (!free_pages)
2520		goto single_page;
2521
2522	/*
2523	 * If a sufficient number of pages in the block are either free or of
2524	 * comparable migratability as our allocation, claim the whole block.
2525	 */
2526	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2527			page_group_by_mobility_disabled)
2528		set_pageblock_migratetype(page, start_type);
2529
2530	return;
2531
2532single_page:
2533	move_to_free_list(page, zone, current_order, start_type);
 
2534}
2535
2536/*
2537 * Check whether there is a suitable fallback freepage with requested order.
2538 * If only_stealable is true, this function returns fallback_mt only if
2539 * we can steal other freepages all together. This would help to reduce
2540 * fragmentation due to mixed migratetype pages in one pageblock.
2541 */
2542int find_suitable_fallback(struct free_area *area, unsigned int order,
2543			int migratetype, bool only_stealable, bool *can_steal)
2544{
2545	int i;
2546	int fallback_mt;
2547
2548	if (area->nr_free == 0)
2549		return -1;
2550
2551	*can_steal = false;
2552	for (i = 0;; i++) {
2553		fallback_mt = fallbacks[migratetype][i];
2554		if (fallback_mt == MIGRATE_TYPES)
2555			break;
2556
2557		if (free_area_empty(area, fallback_mt))
2558			continue;
2559
2560		if (can_steal_fallback(order, migratetype))
2561			*can_steal = true;
2562
2563		if (!only_stealable)
2564			return fallback_mt;
2565
2566		if (*can_steal)
2567			return fallback_mt;
2568	}
2569
2570	return -1;
2571}
2572
2573/*
2574 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2575 * there are no empty page blocks that contain a page with a suitable order
2576 */
2577static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2578				unsigned int alloc_order)
2579{
2580	int mt;
2581	unsigned long max_managed, flags;
2582
2583	/*
2584	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2585	 * Check is race-prone but harmless.
2586	 */
2587	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2588	if (zone->nr_reserved_highatomic >= max_managed)
2589		return;
2590
2591	spin_lock_irqsave(&zone->lock, flags);
2592
2593	/* Recheck the nr_reserved_highatomic limit under the lock */
2594	if (zone->nr_reserved_highatomic >= max_managed)
2595		goto out_unlock;
2596
2597	/* Yoink! */
2598	mt = get_pageblock_migratetype(page);
2599	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2600	    && !is_migrate_cma(mt)) {
2601		zone->nr_reserved_highatomic += pageblock_nr_pages;
2602		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2603		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2604	}
2605
2606out_unlock:
2607	spin_unlock_irqrestore(&zone->lock, flags);
2608}
2609
2610/*
2611 * Used when an allocation is about to fail under memory pressure. This
2612 * potentially hurts the reliability of high-order allocations when under
2613 * intense memory pressure but failed atomic allocations should be easier
2614 * to recover from than an OOM.
2615 *
2616 * If @force is true, try to unreserve a pageblock even though highatomic
2617 * pageblock is exhausted.
2618 */
2619static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2620						bool force)
2621{
2622	struct zonelist *zonelist = ac->zonelist;
2623	unsigned long flags;
2624	struct zoneref *z;
2625	struct zone *zone;
2626	struct page *page;
2627	int order;
2628	bool ret;
2629
2630	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2631								ac->nodemask) {
2632		/*
2633		 * Preserve at least one pageblock unless memory pressure
2634		 * is really high.
2635		 */
2636		if (!force && zone->nr_reserved_highatomic <=
2637					pageblock_nr_pages)
2638			continue;
2639
2640		spin_lock_irqsave(&zone->lock, flags);
2641		for (order = 0; order < MAX_ORDER; order++) {
2642			struct free_area *area = &(zone->free_area[order]);
2643
2644			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
 
 
2645			if (!page)
2646				continue;
2647
2648			/*
2649			 * In page freeing path, migratetype change is racy so
2650			 * we can counter several free pages in a pageblock
2651			 * in this loop althoug we changed the pageblock type
2652			 * from highatomic to ac->migratetype. So we should
2653			 * adjust the count once.
2654			 */
2655			if (is_migrate_highatomic_page(page)) {
2656				/*
2657				 * It should never happen but changes to
2658				 * locking could inadvertently allow a per-cpu
2659				 * drain to add pages to MIGRATE_HIGHATOMIC
2660				 * while unreserving so be safe and watch for
2661				 * underflows.
2662				 */
2663				zone->nr_reserved_highatomic -= min(
2664						pageblock_nr_pages,
2665						zone->nr_reserved_highatomic);
2666			}
2667
2668			/*
2669			 * Convert to ac->migratetype and avoid the normal
2670			 * pageblock stealing heuristics. Minimally, the caller
2671			 * is doing the work and needs the pages. More
2672			 * importantly, if the block was always converted to
2673			 * MIGRATE_UNMOVABLE or another type then the number
2674			 * of pageblocks that cannot be completely freed
2675			 * may increase.
2676			 */
2677			set_pageblock_migratetype(page, ac->migratetype);
2678			ret = move_freepages_block(zone, page, ac->migratetype,
2679									NULL);
2680			if (ret) {
2681				spin_unlock_irqrestore(&zone->lock, flags);
2682				return ret;
2683			}
2684		}
2685		spin_unlock_irqrestore(&zone->lock, flags);
2686	}
2687
2688	return false;
2689}
2690
2691/*
2692 * Try finding a free buddy page on the fallback list and put it on the free
2693 * list of requested migratetype, possibly along with other pages from the same
2694 * block, depending on fragmentation avoidance heuristics. Returns true if
2695 * fallback was found so that __rmqueue_smallest() can grab it.
2696 *
2697 * The use of signed ints for order and current_order is a deliberate
2698 * deviation from the rest of this file, to make the for loop
2699 * condition simpler.
2700 */
2701static __always_inline bool
2702__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2703						unsigned int alloc_flags)
2704{
2705	struct free_area *area;
2706	int current_order;
2707	int min_order = order;
2708	struct page *page;
2709	int fallback_mt;
2710	bool can_steal;
2711
2712	/*
2713	 * Do not steal pages from freelists belonging to other pageblocks
2714	 * i.e. orders < pageblock_order. If there are no local zones free,
2715	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2716	 */
2717	if (alloc_flags & ALLOC_NOFRAGMENT)
2718		min_order = pageblock_order;
2719
2720	/*
2721	 * Find the largest available free page in the other list. This roughly
2722	 * approximates finding the pageblock with the most free pages, which
2723	 * would be too costly to do exactly.
2724	 */
2725	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2726				--current_order) {
2727		area = &(zone->free_area[current_order]);
2728		fallback_mt = find_suitable_fallback(area, current_order,
2729				start_migratetype, false, &can_steal);
2730		if (fallback_mt == -1)
2731			continue;
2732
2733		/*
2734		 * We cannot steal all free pages from the pageblock and the
2735		 * requested migratetype is movable. In that case it's better to
2736		 * steal and split the smallest available page instead of the
2737		 * largest available page, because even if the next movable
2738		 * allocation falls back into a different pageblock than this
2739		 * one, it won't cause permanent fragmentation.
2740		 */
2741		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2742					&& current_order > order)
2743			goto find_smallest;
2744
2745		goto do_steal;
2746	}
2747
2748	return false;
2749
2750find_smallest:
2751	for (current_order = order; current_order < MAX_ORDER;
2752							current_order++) {
2753		area = &(zone->free_area[current_order]);
2754		fallback_mt = find_suitable_fallback(area, current_order,
2755				start_migratetype, false, &can_steal);
2756		if (fallback_mt != -1)
2757			break;
2758	}
2759
2760	/*
2761	 * This should not happen - we already found a suitable fallback
2762	 * when looking for the largest page.
2763	 */
2764	VM_BUG_ON(current_order == MAX_ORDER);
2765
2766do_steal:
2767	page = get_page_from_free_area(area, fallback_mt);
 
2768
2769	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2770								can_steal);
2771
2772	trace_mm_page_alloc_extfrag(page, order, current_order,
2773		start_migratetype, fallback_mt);
2774
2775	return true;
2776
2777}
2778
2779/*
2780 * Do the hard work of removing an element from the buddy allocator.
2781 * Call me with the zone->lock already held.
2782 */
2783static __always_inline struct page *
2784__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2785						unsigned int alloc_flags)
2786{
2787	struct page *page;
2788
2789#ifdef CONFIG_CMA
2790	/*
2791	 * Balance movable allocations between regular and CMA areas by
2792	 * allocating from CMA when over half of the zone's free memory
2793	 * is in the CMA area.
2794	 */
2795	if (alloc_flags & ALLOC_CMA &&
2796	    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2797	    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2798		page = __rmqueue_cma_fallback(zone, order);
2799		if (page)
2800			return page;
2801	}
2802#endif
2803retry:
2804	page = __rmqueue_smallest(zone, order, migratetype);
2805	if (unlikely(!page)) {
2806		if (alloc_flags & ALLOC_CMA)
2807			page = __rmqueue_cma_fallback(zone, order);
2808
2809		if (!page && __rmqueue_fallback(zone, order, migratetype,
2810								alloc_flags))
2811			goto retry;
2812	}
2813
2814	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2815	return page;
2816}
2817
2818/*
2819 * Obtain a specified number of elements from the buddy allocator, all under
2820 * a single hold of the lock, for efficiency.  Add them to the supplied list.
2821 * Returns the number of new pages which were placed at *list.
2822 */
2823static int rmqueue_bulk(struct zone *zone, unsigned int order,
2824			unsigned long count, struct list_head *list,
2825			int migratetype, unsigned int alloc_flags)
2826{
2827	int i, alloced = 0;
2828
2829	spin_lock(&zone->lock);
2830	for (i = 0; i < count; ++i) {
2831		struct page *page = __rmqueue(zone, order, migratetype,
2832								alloc_flags);
2833		if (unlikely(page == NULL))
2834			break;
2835
2836		if (unlikely(check_pcp_refill(page)))
2837			continue;
2838
2839		/*
2840		 * Split buddy pages returned by expand() are received here in
2841		 * physical page order. The page is added to the tail of
2842		 * caller's list. From the callers perspective, the linked list
2843		 * is ordered by page number under some conditions. This is
2844		 * useful for IO devices that can forward direction from the
2845		 * head, thus also in the physical page order. This is useful
2846		 * for IO devices that can merge IO requests if the physical
2847		 * pages are ordered properly.
2848		 */
2849		list_add_tail(&page->lru, list);
2850		alloced++;
2851		if (is_migrate_cma(get_pcppage_migratetype(page)))
2852			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2853					      -(1 << order));
2854	}
2855
2856	/*
2857	 * i pages were removed from the buddy list even if some leak due
2858	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2859	 * on i. Do not confuse with 'alloced' which is the number of
2860	 * pages added to the pcp list.
2861	 */
2862	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2863	spin_unlock(&zone->lock);
2864	return alloced;
2865}
2866
2867#ifdef CONFIG_NUMA
2868/*
2869 * Called from the vmstat counter updater to drain pagesets of this
2870 * currently executing processor on remote nodes after they have
2871 * expired.
2872 *
2873 * Note that this function must be called with the thread pinned to
2874 * a single processor.
2875 */
2876void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2877{
2878	unsigned long flags;
2879	int to_drain, batch;
2880
2881	local_irq_save(flags);
2882	batch = READ_ONCE(pcp->batch);
2883	to_drain = min(pcp->count, batch);
2884	if (to_drain > 0)
2885		free_pcppages_bulk(zone, to_drain, pcp);
2886	local_irq_restore(flags);
2887}
2888#endif
2889
2890/*
2891 * Drain pcplists of the indicated processor and zone.
2892 *
2893 * The processor must either be the current processor and the
2894 * thread pinned to the current processor or a processor that
2895 * is not online.
2896 */
2897static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2898{
2899	unsigned long flags;
2900	struct per_cpu_pageset *pset;
2901	struct per_cpu_pages *pcp;
2902
2903	local_irq_save(flags);
2904	pset = per_cpu_ptr(zone->pageset, cpu);
2905
2906	pcp = &pset->pcp;
2907	if (pcp->count)
2908		free_pcppages_bulk(zone, pcp->count, pcp);
2909	local_irq_restore(flags);
2910}
2911
2912/*
2913 * Drain pcplists of all zones on the indicated processor.
2914 *
2915 * The processor must either be the current processor and the
2916 * thread pinned to the current processor or a processor that
2917 * is not online.
2918 */
2919static void drain_pages(unsigned int cpu)
2920{
2921	struct zone *zone;
2922
2923	for_each_populated_zone(zone) {
2924		drain_pages_zone(cpu, zone);
2925	}
2926}
2927
2928/*
2929 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2930 *
2931 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2932 * the single zone's pages.
2933 */
2934void drain_local_pages(struct zone *zone)
2935{
2936	int cpu = smp_processor_id();
2937
2938	if (zone)
2939		drain_pages_zone(cpu, zone);
2940	else
2941		drain_pages(cpu);
2942}
2943
2944static void drain_local_pages_wq(struct work_struct *work)
2945{
2946	struct pcpu_drain *drain;
2947
2948	drain = container_of(work, struct pcpu_drain, work);
2949
2950	/*
2951	 * drain_all_pages doesn't use proper cpu hotplug protection so
2952	 * we can race with cpu offline when the WQ can move this from
2953	 * a cpu pinned worker to an unbound one. We can operate on a different
2954	 * cpu which is allright but we also have to make sure to not move to
2955	 * a different one.
2956	 */
2957	preempt_disable();
2958	drain_local_pages(drain->zone);
2959	preempt_enable();
2960}
2961
2962/*
2963 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2964 *
2965 * When zone parameter is non-NULL, spill just the single zone's pages.
2966 *
2967 * Note that this can be extremely slow as the draining happens in a workqueue.
2968 */
2969void drain_all_pages(struct zone *zone)
2970{
2971	int cpu;
2972
2973	/*
2974	 * Allocate in the BSS so we wont require allocation in
2975	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2976	 */
2977	static cpumask_t cpus_with_pcps;
2978
2979	/*
2980	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2981	 * initialized.
2982	 */
2983	if (WARN_ON_ONCE(!mm_percpu_wq))
2984		return;
2985
2986	/*
2987	 * Do not drain if one is already in progress unless it's specific to
2988	 * a zone. Such callers are primarily CMA and memory hotplug and need
2989	 * the drain to be complete when the call returns.
2990	 */
2991	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2992		if (!zone)
2993			return;
2994		mutex_lock(&pcpu_drain_mutex);
2995	}
2996
2997	/*
2998	 * We don't care about racing with CPU hotplug event
2999	 * as offline notification will cause the notified
3000	 * cpu to drain that CPU pcps and on_each_cpu_mask
3001	 * disables preemption as part of its processing
3002	 */
3003	for_each_online_cpu(cpu) {
3004		struct per_cpu_pageset *pcp;
3005		struct zone *z;
3006		bool has_pcps = false;
3007
3008		if (zone) {
3009			pcp = per_cpu_ptr(zone->pageset, cpu);
3010			if (pcp->pcp.count)
3011				has_pcps = true;
3012		} else {
3013			for_each_populated_zone(z) {
3014				pcp = per_cpu_ptr(z->pageset, cpu);
3015				if (pcp->pcp.count) {
3016					has_pcps = true;
3017					break;
3018				}
3019			}
3020		}
3021
3022		if (has_pcps)
3023			cpumask_set_cpu(cpu, &cpus_with_pcps);
3024		else
3025			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3026	}
3027
3028	for_each_cpu(cpu, &cpus_with_pcps) {
3029		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3030
3031		drain->zone = zone;
3032		INIT_WORK(&drain->work, drain_local_pages_wq);
3033		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3034	}
3035	for_each_cpu(cpu, &cpus_with_pcps)
3036		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3037
3038	mutex_unlock(&pcpu_drain_mutex);
3039}
3040
3041#ifdef CONFIG_HIBERNATION
3042
3043/*
3044 * Touch the watchdog for every WD_PAGE_COUNT pages.
3045 */
3046#define WD_PAGE_COUNT	(128*1024)
3047
3048void mark_free_pages(struct zone *zone)
3049{
3050	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3051	unsigned long flags;
3052	unsigned int order, t;
3053	struct page *page;
3054
3055	if (zone_is_empty(zone))
3056		return;
3057
3058	spin_lock_irqsave(&zone->lock, flags);
3059
3060	max_zone_pfn = zone_end_pfn(zone);
3061	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3062		if (pfn_valid(pfn)) {
3063			page = pfn_to_page(pfn);
3064
3065			if (!--page_count) {
3066				touch_nmi_watchdog();
3067				page_count = WD_PAGE_COUNT;
3068			}
3069
3070			if (page_zone(page) != zone)
3071				continue;
3072
3073			if (!swsusp_page_is_forbidden(page))
3074				swsusp_unset_page_free(page);
3075		}
3076
3077	for_each_migratetype_order(order, t) {
3078		list_for_each_entry(page,
3079				&zone->free_area[order].free_list[t], lru) {
3080			unsigned long i;
3081
3082			pfn = page_to_pfn(page);
3083			for (i = 0; i < (1UL << order); i++) {
3084				if (!--page_count) {
3085					touch_nmi_watchdog();
3086					page_count = WD_PAGE_COUNT;
3087				}
3088				swsusp_set_page_free(pfn_to_page(pfn + i));
3089			}
3090		}
3091	}
3092	spin_unlock_irqrestore(&zone->lock, flags);
3093}
3094#endif /* CONFIG_PM */
3095
3096static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3097{
3098	int migratetype;
3099
3100	if (!free_pcp_prepare(page))
3101		return false;
3102
3103	migratetype = get_pfnblock_migratetype(page, pfn);
3104	set_pcppage_migratetype(page, migratetype);
3105	return true;
3106}
3107
3108static void free_unref_page_commit(struct page *page, unsigned long pfn)
3109{
3110	struct zone *zone = page_zone(page);
3111	struct per_cpu_pages *pcp;
3112	int migratetype;
3113
3114	migratetype = get_pcppage_migratetype(page);
3115	__count_vm_event(PGFREE);
3116
3117	/*
3118	 * We only track unmovable, reclaimable and movable on pcp lists.
3119	 * Free ISOLATE pages back to the allocator because they are being
3120	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3121	 * areas back if necessary. Otherwise, we may have to free
3122	 * excessively into the page allocator
3123	 */
3124	if (migratetype >= MIGRATE_PCPTYPES) {
3125		if (unlikely(is_migrate_isolate(migratetype))) {
3126			free_one_page(zone, page, pfn, 0, migratetype);
3127			return;
3128		}
3129		migratetype = MIGRATE_MOVABLE;
3130	}
3131
3132	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3133	list_add(&page->lru, &pcp->lists[migratetype]);
3134	pcp->count++;
3135	if (pcp->count >= pcp->high) {
3136		unsigned long batch = READ_ONCE(pcp->batch);
3137		free_pcppages_bulk(zone, batch, pcp);
3138	}
3139}
3140
3141/*
3142 * Free a 0-order page
3143 */
3144void free_unref_page(struct page *page)
3145{
3146	unsigned long flags;
3147	unsigned long pfn = page_to_pfn(page);
3148
3149	if (!free_unref_page_prepare(page, pfn))
3150		return;
3151
3152	local_irq_save(flags);
3153	free_unref_page_commit(page, pfn);
3154	local_irq_restore(flags);
3155}
3156
3157/*
3158 * Free a list of 0-order pages
3159 */
3160void free_unref_page_list(struct list_head *list)
3161{
3162	struct page *page, *next;
3163	unsigned long flags, pfn;
3164	int batch_count = 0;
3165
3166	/* Prepare pages for freeing */
3167	list_for_each_entry_safe(page, next, list, lru) {
3168		pfn = page_to_pfn(page);
3169		if (!free_unref_page_prepare(page, pfn))
3170			list_del(&page->lru);
3171		set_page_private(page, pfn);
3172	}
3173
3174	local_irq_save(flags);
3175	list_for_each_entry_safe(page, next, list, lru) {
3176		unsigned long pfn = page_private(page);
3177
3178		set_page_private(page, 0);
3179		trace_mm_page_free_batched(page);
3180		free_unref_page_commit(page, pfn);
3181
3182		/*
3183		 * Guard against excessive IRQ disabled times when we get
3184		 * a large list of pages to free.
3185		 */
3186		if (++batch_count == SWAP_CLUSTER_MAX) {
3187			local_irq_restore(flags);
3188			batch_count = 0;
3189			local_irq_save(flags);
3190		}
3191	}
3192	local_irq_restore(flags);
3193}
3194
3195/*
3196 * split_page takes a non-compound higher-order page, and splits it into
3197 * n (1<<order) sub-pages: page[0..n]
3198 * Each sub-page must be freed individually.
3199 *
3200 * Note: this is probably too low level an operation for use in drivers.
3201 * Please consult with lkml before using this in your driver.
3202 */
3203void split_page(struct page *page, unsigned int order)
3204{
3205	int i;
3206
3207	VM_BUG_ON_PAGE(PageCompound(page), page);
3208	VM_BUG_ON_PAGE(!page_count(page), page);
3209
3210	for (i = 1; i < (1 << order); i++)
3211		set_page_refcounted(page + i);
3212	split_page_owner(page, order);
3213}
3214EXPORT_SYMBOL_GPL(split_page);
3215
3216int __isolate_free_page(struct page *page, unsigned int order)
3217{
3218	unsigned long watermark;
3219	struct zone *zone;
3220	int mt;
3221
3222	BUG_ON(!PageBuddy(page));
3223
3224	zone = page_zone(page);
3225	mt = get_pageblock_migratetype(page);
3226
3227	if (!is_migrate_isolate(mt)) {
3228		/*
3229		 * Obey watermarks as if the page was being allocated. We can
3230		 * emulate a high-order watermark check with a raised order-0
3231		 * watermark, because we already know our high-order page
3232		 * exists.
3233		 */
3234		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3235		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3236			return 0;
3237
3238		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3239	}
3240
3241	/* Remove page from free list */
3242
3243	del_page_from_free_list(page, zone, order);
 
3244
3245	/*
3246	 * Set the pageblock if the isolated page is at least half of a
3247	 * pageblock
3248	 */
3249	if (order >= pageblock_order - 1) {
3250		struct page *endpage = page + (1 << order) - 1;
3251		for (; page < endpage; page += pageblock_nr_pages) {
3252			int mt = get_pageblock_migratetype(page);
3253			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3254			    && !is_migrate_highatomic(mt))
3255				set_pageblock_migratetype(page,
3256							  MIGRATE_MOVABLE);
3257		}
3258	}
3259
3260
3261	return 1UL << order;
3262}
3263
3264/**
3265 * __putback_isolated_page - Return a now-isolated page back where we got it
3266 * @page: Page that was isolated
3267 * @order: Order of the isolated page
3268 * @mt: The page's pageblock's migratetype
3269 *
3270 * This function is meant to return a page pulled from the free lists via
3271 * __isolate_free_page back to the free lists they were pulled from.
3272 */
3273void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3274{
3275	struct zone *zone = page_zone(page);
3276
3277	/* zone lock should be held when this function is called */
3278	lockdep_assert_held(&zone->lock);
3279
3280	/* Return isolated page to tail of freelist. */
3281	__free_one_page(page, page_to_pfn(page), zone, order, mt, false);
3282}
3283
3284/*
3285 * Update NUMA hit/miss statistics
3286 *
3287 * Must be called with interrupts disabled.
3288 */
3289static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3290{
3291#ifdef CONFIG_NUMA
3292	enum numa_stat_item local_stat = NUMA_LOCAL;
3293
3294	/* skip numa counters update if numa stats is disabled */
3295	if (!static_branch_likely(&vm_numa_stat_key))
3296		return;
3297
3298	if (zone_to_nid(z) != numa_node_id())
3299		local_stat = NUMA_OTHER;
3300
3301	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3302		__inc_numa_state(z, NUMA_HIT);
3303	else {
3304		__inc_numa_state(z, NUMA_MISS);
3305		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3306	}
3307	__inc_numa_state(z, local_stat);
3308#endif
3309}
3310
3311/* Remove page from the per-cpu list, caller must protect the list */
3312static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3313			unsigned int alloc_flags,
3314			struct per_cpu_pages *pcp,
3315			struct list_head *list)
3316{
3317	struct page *page;
3318
3319	do {
3320		if (list_empty(list)) {
3321			pcp->count += rmqueue_bulk(zone, 0,
3322					pcp->batch, list,
3323					migratetype, alloc_flags);
3324			if (unlikely(list_empty(list)))
3325				return NULL;
3326		}
3327
3328		page = list_first_entry(list, struct page, lru);
3329		list_del(&page->lru);
3330		pcp->count--;
3331	} while (check_new_pcp(page));
3332
3333	return page;
3334}
3335
3336/* Lock and remove page from the per-cpu list */
3337static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3338			struct zone *zone, gfp_t gfp_flags,
3339			int migratetype, unsigned int alloc_flags)
3340{
3341	struct per_cpu_pages *pcp;
3342	struct list_head *list;
3343	struct page *page;
3344	unsigned long flags;
3345
3346	local_irq_save(flags);
3347	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3348	list = &pcp->lists[migratetype];
3349	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3350	if (page) {
3351		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3352		zone_statistics(preferred_zone, zone);
3353	}
3354	local_irq_restore(flags);
3355	return page;
3356}
3357
3358/*
3359 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3360 */
3361static inline
3362struct page *rmqueue(struct zone *preferred_zone,
3363			struct zone *zone, unsigned int order,
3364			gfp_t gfp_flags, unsigned int alloc_flags,
3365			int migratetype)
3366{
3367	unsigned long flags;
3368	struct page *page;
3369
3370	if (likely(order == 0)) {
3371		/*
3372		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3373		 * we need to skip it when CMA area isn't allowed.
3374		 */
3375		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3376				migratetype != MIGRATE_MOVABLE) {
3377			page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3378					migratetype, alloc_flags);
3379			goto out;
3380		}
3381	}
3382
3383	/*
3384	 * We most definitely don't want callers attempting to
3385	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3386	 */
3387	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3388	spin_lock_irqsave(&zone->lock, flags);
3389
3390	do {
3391		page = NULL;
3392		/*
3393		 * order-0 request can reach here when the pcplist is skipped
3394		 * due to non-CMA allocation context. HIGHATOMIC area is
3395		 * reserved for high-order atomic allocation, so order-0
3396		 * request should skip it.
3397		 */
3398		if (order > 0 && alloc_flags & ALLOC_HARDER) {
3399			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3400			if (page)
3401				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3402		}
3403		if (!page)
3404			page = __rmqueue(zone, order, migratetype, alloc_flags);
3405	} while (page && check_new_pages(page, order));
3406	spin_unlock(&zone->lock);
3407	if (!page)
3408		goto failed;
3409	__mod_zone_freepage_state(zone, -(1 << order),
3410				  get_pcppage_migratetype(page));
3411
3412	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3413	zone_statistics(preferred_zone, zone);
3414	local_irq_restore(flags);
3415
3416out:
3417	/* Separate test+clear to avoid unnecessary atomics */
3418	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3419		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3420		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3421	}
3422
3423	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3424	return page;
3425
3426failed:
3427	local_irq_restore(flags);
3428	return NULL;
3429}
3430
3431#ifdef CONFIG_FAIL_PAGE_ALLOC
3432
3433static struct {
3434	struct fault_attr attr;
3435
3436	bool ignore_gfp_highmem;
3437	bool ignore_gfp_reclaim;
3438	u32 min_order;
3439} fail_page_alloc = {
3440	.attr = FAULT_ATTR_INITIALIZER,
3441	.ignore_gfp_reclaim = true,
3442	.ignore_gfp_highmem = true,
3443	.min_order = 1,
3444};
3445
3446static int __init setup_fail_page_alloc(char *str)
3447{
3448	return setup_fault_attr(&fail_page_alloc.attr, str);
3449}
3450__setup("fail_page_alloc=", setup_fail_page_alloc);
3451
3452static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3453{
3454	if (order < fail_page_alloc.min_order)
3455		return false;
3456	if (gfp_mask & __GFP_NOFAIL)
3457		return false;
3458	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3459		return false;
3460	if (fail_page_alloc.ignore_gfp_reclaim &&
3461			(gfp_mask & __GFP_DIRECT_RECLAIM))
3462		return false;
3463
3464	return should_fail(&fail_page_alloc.attr, 1 << order);
3465}
3466
3467#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3468
3469static int __init fail_page_alloc_debugfs(void)
3470{
3471	umode_t mode = S_IFREG | 0600;
3472	struct dentry *dir;
3473
3474	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3475					&fail_page_alloc.attr);
 
 
3476
3477	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3478			    &fail_page_alloc.ignore_gfp_reclaim);
3479	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3480			    &fail_page_alloc.ignore_gfp_highmem);
3481	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
 
 
 
 
3482
3483	return 0;
 
 
 
 
3484}
3485
3486late_initcall(fail_page_alloc_debugfs);
3487
3488#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3489
3490#else /* CONFIG_FAIL_PAGE_ALLOC */
3491
3492static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3493{
3494	return false;
3495}
3496
3497#endif /* CONFIG_FAIL_PAGE_ALLOC */
3498
3499static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3500{
3501	return __should_fail_alloc_page(gfp_mask, order);
3502}
3503ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3504
3505static inline long __zone_watermark_unusable_free(struct zone *z,
3506				unsigned int order, unsigned int alloc_flags)
3507{
3508	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3509	long unusable_free = (1 << order) - 1;
3510
3511	/*
3512	 * If the caller does not have rights to ALLOC_HARDER then subtract
3513	 * the high-atomic reserves. This will over-estimate the size of the
3514	 * atomic reserve but it avoids a search.
3515	 */
3516	if (likely(!alloc_harder))
3517		unusable_free += z->nr_reserved_highatomic;
3518
3519#ifdef CONFIG_CMA
3520	/* If allocation can't use CMA areas don't use free CMA pages */
3521	if (!(alloc_flags & ALLOC_CMA))
3522		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3523#endif
3524
3525	return unusable_free;
3526}
3527
3528/*
3529 * Return true if free base pages are above 'mark'. For high-order checks it
3530 * will return true of the order-0 watermark is reached and there is at least
3531 * one free page of a suitable size. Checking now avoids taking the zone lock
3532 * to check in the allocation paths if no pages are free.
3533 */
3534bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3535			 int highest_zoneidx, unsigned int alloc_flags,
3536			 long free_pages)
3537{
3538	long min = mark;
3539	int o;
3540	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3541
3542	/* free_pages may go negative - that's OK */
3543	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3544
3545	if (alloc_flags & ALLOC_HIGH)
3546		min -= min / 2;
3547
3548	if (unlikely(alloc_harder)) {
 
 
 
 
 
 
 
3549		/*
3550		 * OOM victims can try even harder than normal ALLOC_HARDER
3551		 * users on the grounds that it's definitely going to be in
3552		 * the exit path shortly and free memory. Any allocation it
3553		 * makes during the free path will be small and short-lived.
3554		 */
3555		if (alloc_flags & ALLOC_OOM)
3556			min -= min / 2;
3557		else
3558			min -= min / 4;
3559	}
3560
 
 
 
 
 
 
 
3561	/*
3562	 * Check watermarks for an order-0 allocation request. If these
3563	 * are not met, then a high-order request also cannot go ahead
3564	 * even if a suitable page happened to be free.
3565	 */
3566	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3567		return false;
3568
3569	/* If this is an order-0 request then the watermark is fine */
3570	if (!order)
3571		return true;
3572
3573	/* For a high-order request, check at least one suitable page is free */
3574	for (o = order; o < MAX_ORDER; o++) {
3575		struct free_area *area = &z->free_area[o];
3576		int mt;
3577
3578		if (!area->nr_free)
3579			continue;
3580
3581		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3582			if (!free_area_empty(area, mt))
3583				return true;
3584		}
3585
3586#ifdef CONFIG_CMA
3587		if ((alloc_flags & ALLOC_CMA) &&
3588		    !free_area_empty(area, MIGRATE_CMA)) {
3589			return true;
3590		}
3591#endif
3592		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
 
3593			return true;
3594	}
3595	return false;
3596}
3597
3598bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3599		      int highest_zoneidx, unsigned int alloc_flags)
3600{
3601	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3602					zone_page_state(z, NR_FREE_PAGES));
3603}
3604
3605static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3606				unsigned long mark, int highest_zoneidx,
3607				unsigned int alloc_flags, gfp_t gfp_mask)
3608{
3609	long free_pages;
 
3610
3611	free_pages = zone_page_state(z, NR_FREE_PAGES);
 
 
 
 
3612
3613	/*
3614	 * Fast check for order-0 only. If this fails then the reserves
3615	 * need to be calculated.
 
 
 
3616	 */
3617	if (!order) {
3618		long fast_free;
3619
3620		fast_free = free_pages;
3621		fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3622		if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3623			return true;
3624	}
3625
3626	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3627					free_pages))
3628		return true;
3629	/*
3630	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3631	 * when checking the min watermark. The min watermark is the
3632	 * point where boosting is ignored so that kswapd is woken up
3633	 * when below the low watermark.
3634	 */
3635	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3636		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3637		mark = z->_watermark[WMARK_MIN];
3638		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3639					alloc_flags, free_pages);
3640	}
3641
3642	return false;
 
3643}
3644
3645bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3646			unsigned long mark, int highest_zoneidx)
3647{
3648	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3649
3650	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3651		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3652
3653	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3654								free_pages);
3655}
3656
3657#ifdef CONFIG_NUMA
3658static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3659{
3660	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3661				node_reclaim_distance;
3662}
3663#else	/* CONFIG_NUMA */
3664static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3665{
3666	return true;
3667}
3668#endif	/* CONFIG_NUMA */
3669
3670/*
3671 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3672 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3673 * premature use of a lower zone may cause lowmem pressure problems that
3674 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3675 * probably too small. It only makes sense to spread allocations to avoid
3676 * fragmentation between the Normal and DMA32 zones.
3677 */
3678static inline unsigned int
3679alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3680{
3681	unsigned int alloc_flags;
3682
3683	/*
3684	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3685	 * to save a branch.
3686	 */
3687	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3688
3689#ifdef CONFIG_ZONE_DMA32
3690	if (!zone)
3691		return alloc_flags;
3692
3693	if (zone_idx(zone) != ZONE_NORMAL)
3694		return alloc_flags;
3695
3696	/*
3697	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3698	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3699	 * on UMA that if Normal is populated then so is DMA32.
3700	 */
3701	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3702	if (nr_online_nodes > 1 && !populated_zone(--zone))
3703		return alloc_flags;
3704
3705	alloc_flags |= ALLOC_NOFRAGMENT;
3706#endif /* CONFIG_ZONE_DMA32 */
3707	return alloc_flags;
3708}
3709
3710static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3711					unsigned int alloc_flags)
3712{
3713#ifdef CONFIG_CMA
3714	unsigned int pflags = current->flags;
3715
3716	if (!(pflags & PF_MEMALLOC_NOCMA) &&
3717			gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3718		alloc_flags |= ALLOC_CMA;
3719
3720#endif
3721	return alloc_flags;
3722}
3723
3724/*
3725 * get_page_from_freelist goes through the zonelist trying to allocate
3726 * a page.
3727 */
3728static struct page *
3729get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3730						const struct alloc_context *ac)
3731{
3732	struct zoneref *z;
3733	struct zone *zone;
3734	struct pglist_data *last_pgdat_dirty_limit = NULL;
3735	bool no_fallback;
3736
3737retry:
3738	/*
3739	 * Scan zonelist, looking for a zone with enough free.
3740	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3741	 */
3742	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3743	z = ac->preferred_zoneref;
3744	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist,
3745					ac->highest_zoneidx, ac->nodemask) {
3746		struct page *page;
3747		unsigned long mark;
3748
3749		if (cpusets_enabled() &&
3750			(alloc_flags & ALLOC_CPUSET) &&
3751			!__cpuset_zone_allowed(zone, gfp_mask))
3752				continue;
3753		/*
3754		 * When allocating a page cache page for writing, we
3755		 * want to get it from a node that is within its dirty
3756		 * limit, such that no single node holds more than its
3757		 * proportional share of globally allowed dirty pages.
3758		 * The dirty limits take into account the node's
3759		 * lowmem reserves and high watermark so that kswapd
3760		 * should be able to balance it without having to
3761		 * write pages from its LRU list.
3762		 *
3763		 * XXX: For now, allow allocations to potentially
3764		 * exceed the per-node dirty limit in the slowpath
3765		 * (spread_dirty_pages unset) before going into reclaim,
3766		 * which is important when on a NUMA setup the allowed
3767		 * nodes are together not big enough to reach the
3768		 * global limit.  The proper fix for these situations
3769		 * will require awareness of nodes in the
3770		 * dirty-throttling and the flusher threads.
3771		 */
3772		if (ac->spread_dirty_pages) {
3773			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3774				continue;
3775
3776			if (!node_dirty_ok(zone->zone_pgdat)) {
3777				last_pgdat_dirty_limit = zone->zone_pgdat;
3778				continue;
3779			}
3780		}
3781
3782		if (no_fallback && nr_online_nodes > 1 &&
3783		    zone != ac->preferred_zoneref->zone) {
3784			int local_nid;
3785
3786			/*
3787			 * If moving to a remote node, retry but allow
3788			 * fragmenting fallbacks. Locality is more important
3789			 * than fragmentation avoidance.
3790			 */
3791			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3792			if (zone_to_nid(zone) != local_nid) {
3793				alloc_flags &= ~ALLOC_NOFRAGMENT;
3794				goto retry;
3795			}
3796		}
3797
3798		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3799		if (!zone_watermark_fast(zone, order, mark,
3800				       ac->highest_zoneidx, alloc_flags,
3801				       gfp_mask)) {
3802			int ret;
3803
3804#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3805			/*
3806			 * Watermark failed for this zone, but see if we can
3807			 * grow this zone if it contains deferred pages.
3808			 */
3809			if (static_branch_unlikely(&deferred_pages)) {
3810				if (_deferred_grow_zone(zone, order))
3811					goto try_this_zone;
3812			}
3813#endif
3814			/* Checked here to keep the fast path fast */
3815			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3816			if (alloc_flags & ALLOC_NO_WATERMARKS)
3817				goto try_this_zone;
3818
3819			if (node_reclaim_mode == 0 ||
3820			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3821				continue;
3822
3823			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3824			switch (ret) {
3825			case NODE_RECLAIM_NOSCAN:
3826				/* did not scan */
3827				continue;
3828			case NODE_RECLAIM_FULL:
3829				/* scanned but unreclaimable */
3830				continue;
3831			default:
3832				/* did we reclaim enough */
3833				if (zone_watermark_ok(zone, order, mark,
3834					ac->highest_zoneidx, alloc_flags))
3835					goto try_this_zone;
3836
3837				continue;
3838			}
3839		}
3840
3841try_this_zone:
3842		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3843				gfp_mask, alloc_flags, ac->migratetype);
3844		if (page) {
3845			prep_new_page(page, order, gfp_mask, alloc_flags);
3846
3847			/*
3848			 * If this is a high-order atomic allocation then check
3849			 * if the pageblock should be reserved for the future
3850			 */
3851			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3852				reserve_highatomic_pageblock(page, zone, order);
3853
3854			return page;
3855		} else {
3856#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3857			/* Try again if zone has deferred pages */
3858			if (static_branch_unlikely(&deferred_pages)) {
3859				if (_deferred_grow_zone(zone, order))
3860					goto try_this_zone;
3861			}
3862#endif
3863		}
3864	}
3865
3866	/*
3867	 * It's possible on a UMA machine to get through all zones that are
3868	 * fragmented. If avoiding fragmentation, reset and try again.
3869	 */
3870	if (no_fallback) {
3871		alloc_flags &= ~ALLOC_NOFRAGMENT;
3872		goto retry;
3873	}
 
 
3874
3875	return NULL;
 
 
 
3876}
3877
3878static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3879{
3880	unsigned int filter = SHOW_MEM_FILTER_NODES;
 
 
 
 
3881
3882	/*
3883	 * This documents exceptions given to allocations in certain
3884	 * contexts that are allowed to allocate outside current's set
3885	 * of allowed nodes.
3886	 */
3887	if (!(gfp_mask & __GFP_NOMEMALLOC))
3888		if (tsk_is_oom_victim(current) ||
3889		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3890			filter &= ~SHOW_MEM_FILTER_NODES;
3891	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3892		filter &= ~SHOW_MEM_FILTER_NODES;
3893
3894	show_mem(filter, nodemask);
3895}
3896
3897void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3898{
3899	struct va_format vaf;
3900	va_list args;
3901	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
 
3902
3903	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3904		return;
3905
3906	va_start(args, fmt);
3907	vaf.fmt = fmt;
3908	vaf.va = &args;
3909	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3910			current->comm, &vaf, gfp_mask, &gfp_mask,
3911			nodemask_pr_args(nodemask));
3912	va_end(args);
3913
3914	cpuset_print_current_mems_allowed();
3915	pr_cont("\n");
3916	dump_stack();
3917	warn_alloc_show_mem(gfp_mask, nodemask);
3918}
3919
3920static inline struct page *
3921__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3922			      unsigned int alloc_flags,
3923			      const struct alloc_context *ac)
3924{
3925	struct page *page;
3926
3927	page = get_page_from_freelist(gfp_mask, order,
3928			alloc_flags|ALLOC_CPUSET, ac);
3929	/*
3930	 * fallback to ignore cpuset restriction if our nodes
3931	 * are depleted
3932	 */
3933	if (!page)
3934		page = get_page_from_freelist(gfp_mask, order,
3935				alloc_flags, ac);
3936
3937	return page;
3938}
3939
3940static inline struct page *
3941__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3942	const struct alloc_context *ac, unsigned long *did_some_progress)
3943{
3944	struct oom_control oc = {
3945		.zonelist = ac->zonelist,
3946		.nodemask = ac->nodemask,
3947		.memcg = NULL,
3948		.gfp_mask = gfp_mask,
3949		.order = order,
3950	};
3951	struct page *page;
3952
3953	*did_some_progress = 0;
3954
3955	/*
3956	 * Acquire the oom lock.  If that fails, somebody else is
3957	 * making progress for us.
3958	 */
3959	if (!mutex_trylock(&oom_lock)) {
3960		*did_some_progress = 1;
3961		schedule_timeout_uninterruptible(1);
3962		return NULL;
3963	}
3964
3965	/*
3966	 * Go through the zonelist yet one more time, keep very high watermark
3967	 * here, this is only to catch a parallel oom killing, we must fail if
3968	 * we're still under heavy pressure. But make sure that this reclaim
3969	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3970	 * allocation which will never fail due to oom_lock already held.
3971	 */
3972	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3973				      ~__GFP_DIRECT_RECLAIM, order,
3974				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3975	if (page)
3976		goto out;
3977
3978	/* Coredumps can quickly deplete all memory reserves */
3979	if (current->flags & PF_DUMPCORE)
3980		goto out;
3981	/* The OOM killer will not help higher order allocs */
3982	if (order > PAGE_ALLOC_COSTLY_ORDER)
3983		goto out;
3984	/*
3985	 * We have already exhausted all our reclaim opportunities without any
3986	 * success so it is time to admit defeat. We will skip the OOM killer
3987	 * because it is very likely that the caller has a more reasonable
3988	 * fallback than shooting a random task.
3989	 */
3990	if (gfp_mask & __GFP_RETRY_MAYFAIL)
3991		goto out;
3992	/* The OOM killer does not needlessly kill tasks for lowmem */
3993	if (ac->highest_zoneidx < ZONE_NORMAL)
3994		goto out;
3995	if (pm_suspended_storage())
3996		goto out;
3997	/*
3998	 * XXX: GFP_NOFS allocations should rather fail than rely on
3999	 * other request to make a forward progress.
4000	 * We are in an unfortunate situation where out_of_memory cannot
4001	 * do much for this context but let's try it to at least get
4002	 * access to memory reserved if the current task is killed (see
4003	 * out_of_memory). Once filesystems are ready to handle allocation
4004	 * failures more gracefully we should just bail out here.
4005	 */
4006
4007	/* The OOM killer may not free memory on a specific node */
4008	if (gfp_mask & __GFP_THISNODE)
4009		goto out;
4010
4011	/* Exhausted what can be done so it's blame time */
4012	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4013		*did_some_progress = 1;
4014
4015		/*
4016		 * Help non-failing allocations by giving them access to memory
4017		 * reserves
4018		 */
4019		if (gfp_mask & __GFP_NOFAIL)
4020			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4021					ALLOC_NO_WATERMARKS, ac);
4022	}
4023out:
4024	mutex_unlock(&oom_lock);
4025	return page;
4026}
4027
4028/*
4029 * Maximum number of compaction retries wit a progress before OOM
4030 * killer is consider as the only way to move forward.
4031 */
4032#define MAX_COMPACT_RETRIES 16
4033
4034#ifdef CONFIG_COMPACTION
4035/* Try memory compaction for high-order allocations before reclaim */
4036static struct page *
4037__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4038		unsigned int alloc_flags, const struct alloc_context *ac,
4039		enum compact_priority prio, enum compact_result *compact_result)
4040{
4041	struct page *page = NULL;
4042	unsigned long pflags;
4043	unsigned int noreclaim_flag;
4044
4045	if (!order)
4046		return NULL;
4047
4048	psi_memstall_enter(&pflags);
4049	noreclaim_flag = memalloc_noreclaim_save();
4050
4051	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4052								prio, &page);
 
4053
4054	memalloc_noreclaim_restore(noreclaim_flag);
4055	psi_memstall_leave(&pflags);
4056
4057	/*
4058	 * At least in one zone compaction wasn't deferred or skipped, so let's
4059	 * count a compaction stall
4060	 */
4061	count_vm_event(COMPACTSTALL);
4062
4063	/* Prep a captured page if available */
4064	if (page)
4065		prep_new_page(page, order, gfp_mask, alloc_flags);
4066
4067	/* Try get a page from the freelist if available */
4068	if (!page)
4069		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4070
4071	if (page) {
4072		struct zone *zone = page_zone(page);
4073
4074		zone->compact_blockskip_flush = false;
4075		compaction_defer_reset(zone, order, true);
4076		count_vm_event(COMPACTSUCCESS);
4077		return page;
4078	}
4079
4080	/*
4081	 * It's bad if compaction run occurs and fails. The most likely reason
4082	 * is that pages exist, but not enough to satisfy watermarks.
4083	 */
4084	count_vm_event(COMPACTFAIL);
4085
4086	cond_resched();
4087
4088	return NULL;
4089}
4090
4091static inline bool
4092should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4093		     enum compact_result compact_result,
4094		     enum compact_priority *compact_priority,
4095		     int *compaction_retries)
4096{
4097	int max_retries = MAX_COMPACT_RETRIES;
4098	int min_priority;
4099	bool ret = false;
4100	int retries = *compaction_retries;
4101	enum compact_priority priority = *compact_priority;
4102
4103	if (!order)
4104		return false;
4105
4106	if (compaction_made_progress(compact_result))
4107		(*compaction_retries)++;
4108
4109	/*
4110	 * compaction considers all the zone as desperately out of memory
4111	 * so it doesn't really make much sense to retry except when the
4112	 * failure could be caused by insufficient priority
4113	 */
4114	if (compaction_failed(compact_result))
4115		goto check_priority;
4116
4117	/*
4118	 * compaction was skipped because there are not enough order-0 pages
4119	 * to work with, so we retry only if it looks like reclaim can help.
4120	 */
4121	if (compaction_needs_reclaim(compact_result)) {
4122		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4123		goto out;
4124	}
4125
4126	/*
4127	 * make sure the compaction wasn't deferred or didn't bail out early
4128	 * due to locks contention before we declare that we should give up.
4129	 * But the next retry should use a higher priority if allowed, so
4130	 * we don't just keep bailing out endlessly.
4131	 */
4132	if (compaction_withdrawn(compact_result)) {
4133		goto check_priority;
 
4134	}
4135
4136	/*
4137	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4138	 * costly ones because they are de facto nofail and invoke OOM
4139	 * killer to move on while costly can fail and users are ready
4140	 * to cope with that. 1/4 retries is rather arbitrary but we
4141	 * would need much more detailed feedback from compaction to
4142	 * make a better decision.
4143	 */
4144	if (order > PAGE_ALLOC_COSTLY_ORDER)
4145		max_retries /= 4;
4146	if (*compaction_retries <= max_retries) {
4147		ret = true;
4148		goto out;
4149	}
4150
4151	/*
4152	 * Make sure there are attempts at the highest priority if we exhausted
4153	 * all retries or failed at the lower priorities.
4154	 */
4155check_priority:
4156	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4157			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4158
4159	if (*compact_priority > min_priority) {
4160		(*compact_priority)--;
4161		*compaction_retries = 0;
4162		ret = true;
4163	}
4164out:
4165	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4166	return ret;
4167}
4168#else
4169static inline struct page *
4170__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4171		unsigned int alloc_flags, const struct alloc_context *ac,
4172		enum compact_priority prio, enum compact_result *compact_result)
4173{
4174	*compact_result = COMPACT_SKIPPED;
4175	return NULL;
4176}
4177
4178static inline bool
4179should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4180		     enum compact_result compact_result,
4181		     enum compact_priority *compact_priority,
4182		     int *compaction_retries)
4183{
4184	struct zone *zone;
4185	struct zoneref *z;
4186
4187	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4188		return false;
4189
4190	/*
4191	 * There are setups with compaction disabled which would prefer to loop
4192	 * inside the allocator rather than hit the oom killer prematurely.
4193	 * Let's give them a good hope and keep retrying while the order-0
4194	 * watermarks are OK.
4195	 */
4196	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4197				ac->highest_zoneidx, ac->nodemask) {
4198		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4199					ac->highest_zoneidx, alloc_flags))
4200			return true;
4201	}
4202	return false;
4203}
4204#endif /* CONFIG_COMPACTION */
4205
4206#ifdef CONFIG_LOCKDEP
4207static struct lockdep_map __fs_reclaim_map =
4208	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4209
4210static bool __need_fs_reclaim(gfp_t gfp_mask)
4211{
4212	gfp_mask = current_gfp_context(gfp_mask);
4213
4214	/* no reclaim without waiting on it */
4215	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4216		return false;
4217
4218	/* this guy won't enter reclaim */
4219	if (current->flags & PF_MEMALLOC)
4220		return false;
4221
4222	/* We're only interested __GFP_FS allocations for now */
4223	if (!(gfp_mask & __GFP_FS))
4224		return false;
4225
4226	if (gfp_mask & __GFP_NOLOCKDEP)
4227		return false;
4228
4229	return true;
4230}
4231
4232void __fs_reclaim_acquire(void)
4233{
4234	lock_map_acquire(&__fs_reclaim_map);
4235}
4236
4237void __fs_reclaim_release(void)
4238{
4239	lock_map_release(&__fs_reclaim_map);
4240}
4241
4242void fs_reclaim_acquire(gfp_t gfp_mask)
4243{
4244	if (__need_fs_reclaim(gfp_mask))
4245		__fs_reclaim_acquire();
4246}
4247EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4248
4249void fs_reclaim_release(gfp_t gfp_mask)
4250{
4251	if (__need_fs_reclaim(gfp_mask))
4252		__fs_reclaim_release();
4253}
4254EXPORT_SYMBOL_GPL(fs_reclaim_release);
4255#endif
4256
4257/* Perform direct synchronous page reclaim */
4258static int
4259__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4260					const struct alloc_context *ac)
4261{
 
4262	int progress;
4263	unsigned int noreclaim_flag;
4264	unsigned long pflags;
4265
4266	cond_resched();
4267
4268	/* We now go into synchronous reclaim */
4269	cpuset_memory_pressure_bump();
4270	psi_memstall_enter(&pflags);
4271	fs_reclaim_acquire(gfp_mask);
4272	noreclaim_flag = memalloc_noreclaim_save();
 
4273
4274	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4275								ac->nodemask);
4276
 
 
4277	memalloc_noreclaim_restore(noreclaim_flag);
4278	fs_reclaim_release(gfp_mask);
4279	psi_memstall_leave(&pflags);
4280
4281	cond_resched();
4282
4283	return progress;
4284}
4285
4286/* The really slow allocator path where we enter direct reclaim */
4287static inline struct page *
4288__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4289		unsigned int alloc_flags, const struct alloc_context *ac,
4290		unsigned long *did_some_progress)
4291{
4292	struct page *page = NULL;
4293	bool drained = false;
4294
4295	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4296	if (unlikely(!(*did_some_progress)))
4297		return NULL;
4298
4299retry:
4300	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4301
4302	/*
4303	 * If an allocation failed after direct reclaim, it could be because
4304	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4305	 * Shrink them and try again
4306	 */
4307	if (!page && !drained) {
4308		unreserve_highatomic_pageblock(ac, false);
4309		drain_all_pages(NULL);
4310		drained = true;
4311		goto retry;
4312	}
4313
4314	return page;
4315}
4316
4317static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4318			     const struct alloc_context *ac)
4319{
4320	struct zoneref *z;
4321	struct zone *zone;
4322	pg_data_t *last_pgdat = NULL;
4323	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4324
4325	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4326					ac->nodemask) {
4327		if (last_pgdat != zone->zone_pgdat)
4328			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4329		last_pgdat = zone->zone_pgdat;
4330	}
4331}
4332
4333static inline unsigned int
4334gfp_to_alloc_flags(gfp_t gfp_mask)
4335{
4336	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4337
4338	/*
4339	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4340	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4341	 * to save two branches.
4342	 */
4343	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4344	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4345
4346	/*
4347	 * The caller may dip into page reserves a bit more if the caller
4348	 * cannot run direct reclaim, or if the caller has realtime scheduling
4349	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4350	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4351	 */
4352	alloc_flags |= (__force int)
4353		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4354
4355	if (gfp_mask & __GFP_ATOMIC) {
4356		/*
4357		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4358		 * if it can't schedule.
4359		 */
4360		if (!(gfp_mask & __GFP_NOMEMALLOC))
4361			alloc_flags |= ALLOC_HARDER;
4362		/*
4363		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4364		 * comment for __cpuset_node_allowed().
4365		 */
4366		alloc_flags &= ~ALLOC_CPUSET;
4367	} else if (unlikely(rt_task(current)) && !in_interrupt())
4368		alloc_flags |= ALLOC_HARDER;
4369
4370	alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4371
 
 
4372	return alloc_flags;
4373}
4374
4375static bool oom_reserves_allowed(struct task_struct *tsk)
4376{
4377	if (!tsk_is_oom_victim(tsk))
4378		return false;
4379
4380	/*
4381	 * !MMU doesn't have oom reaper so give access to memory reserves
4382	 * only to the thread with TIF_MEMDIE set
4383	 */
4384	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4385		return false;
4386
4387	return true;
4388}
4389
4390/*
4391 * Distinguish requests which really need access to full memory
4392 * reserves from oom victims which can live with a portion of it
4393 */
4394static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4395{
4396	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4397		return 0;
4398	if (gfp_mask & __GFP_MEMALLOC)
4399		return ALLOC_NO_WATERMARKS;
4400	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4401		return ALLOC_NO_WATERMARKS;
4402	if (!in_interrupt()) {
4403		if (current->flags & PF_MEMALLOC)
4404			return ALLOC_NO_WATERMARKS;
4405		else if (oom_reserves_allowed(current))
4406			return ALLOC_OOM;
4407	}
4408
4409	return 0;
4410}
4411
4412bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4413{
4414	return !!__gfp_pfmemalloc_flags(gfp_mask);
4415}
4416
4417/*
4418 * Checks whether it makes sense to retry the reclaim to make a forward progress
4419 * for the given allocation request.
4420 *
4421 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4422 * without success, or when we couldn't even meet the watermark if we
4423 * reclaimed all remaining pages on the LRU lists.
4424 *
4425 * Returns true if a retry is viable or false to enter the oom path.
4426 */
4427static inline bool
4428should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4429		     struct alloc_context *ac, int alloc_flags,
4430		     bool did_some_progress, int *no_progress_loops)
4431{
4432	struct zone *zone;
4433	struct zoneref *z;
4434	bool ret = false;
4435
4436	/*
4437	 * Costly allocations might have made a progress but this doesn't mean
4438	 * their order will become available due to high fragmentation so
4439	 * always increment the no progress counter for them
4440	 */
4441	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4442		*no_progress_loops = 0;
4443	else
4444		(*no_progress_loops)++;
4445
4446	/*
4447	 * Make sure we converge to OOM if we cannot make any progress
4448	 * several times in the row.
4449	 */
4450	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4451		/* Before OOM, exhaust highatomic_reserve */
4452		return unreserve_highatomic_pageblock(ac, true);
4453	}
4454
4455	/*
4456	 * Keep reclaiming pages while there is a chance this will lead
4457	 * somewhere.  If none of the target zones can satisfy our allocation
4458	 * request even if all reclaimable pages are considered then we are
4459	 * screwed and have to go OOM.
4460	 */
4461	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4462				ac->highest_zoneidx, ac->nodemask) {
4463		unsigned long available;
4464		unsigned long reclaimable;
4465		unsigned long min_wmark = min_wmark_pages(zone);
4466		bool wmark;
4467
4468		available = reclaimable = zone_reclaimable_pages(zone);
4469		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4470
4471		/*
4472		 * Would the allocation succeed if we reclaimed all
4473		 * reclaimable pages?
4474		 */
4475		wmark = __zone_watermark_ok(zone, order, min_wmark,
4476				ac->highest_zoneidx, alloc_flags, available);
4477		trace_reclaim_retry_zone(z, order, reclaimable,
4478				available, min_wmark, *no_progress_loops, wmark);
4479		if (wmark) {
4480			/*
4481			 * If we didn't make any progress and have a lot of
4482			 * dirty + writeback pages then we should wait for
4483			 * an IO to complete to slow down the reclaim and
4484			 * prevent from pre mature OOM
4485			 */
4486			if (!did_some_progress) {
4487				unsigned long write_pending;
4488
4489				write_pending = zone_page_state_snapshot(zone,
4490							NR_ZONE_WRITE_PENDING);
4491
4492				if (2 * write_pending > reclaimable) {
4493					congestion_wait(BLK_RW_ASYNC, HZ/10);
4494					return true;
4495				}
4496			}
4497
4498			ret = true;
4499			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
4500		}
4501	}
4502
4503out:
4504	/*
4505	 * Memory allocation/reclaim might be called from a WQ context and the
4506	 * current implementation of the WQ concurrency control doesn't
4507	 * recognize that a particular WQ is congested if the worker thread is
4508	 * looping without ever sleeping. Therefore we have to do a short sleep
4509	 * here rather than calling cond_resched().
4510	 */
4511	if (current->flags & PF_WQ_WORKER)
4512		schedule_timeout_uninterruptible(1);
4513	else
4514		cond_resched();
4515	return ret;
4516}
4517
4518static inline bool
4519check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4520{
4521	/*
4522	 * It's possible that cpuset's mems_allowed and the nodemask from
4523	 * mempolicy don't intersect. This should be normally dealt with by
4524	 * policy_nodemask(), but it's possible to race with cpuset update in
4525	 * such a way the check therein was true, and then it became false
4526	 * before we got our cpuset_mems_cookie here.
4527	 * This assumes that for all allocations, ac->nodemask can come only
4528	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4529	 * when it does not intersect with the cpuset restrictions) or the
4530	 * caller can deal with a violated nodemask.
4531	 */
4532	if (cpusets_enabled() && ac->nodemask &&
4533			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4534		ac->nodemask = NULL;
4535		return true;
4536	}
4537
4538	/*
4539	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4540	 * possible to race with parallel threads in such a way that our
4541	 * allocation can fail while the mask is being updated. If we are about
4542	 * to fail, check if the cpuset changed during allocation and if so,
4543	 * retry.
4544	 */
4545	if (read_mems_allowed_retry(cpuset_mems_cookie))
4546		return true;
4547
4548	return false;
4549}
4550
4551static inline struct page *
4552__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4553						struct alloc_context *ac)
4554{
4555	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4556	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4557	struct page *page = NULL;
4558	unsigned int alloc_flags;
4559	unsigned long did_some_progress;
4560	enum compact_priority compact_priority;
4561	enum compact_result compact_result;
4562	int compaction_retries;
4563	int no_progress_loops;
4564	unsigned int cpuset_mems_cookie;
4565	int reserve_flags;
4566
4567	/*
 
 
 
 
 
 
 
 
 
 
 
4568	 * We also sanity check to catch abuse of atomic reserves being used by
4569	 * callers that are not in atomic context.
4570	 */
4571	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4572				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4573		gfp_mask &= ~__GFP_ATOMIC;
4574
4575retry_cpuset:
4576	compaction_retries = 0;
4577	no_progress_loops = 0;
4578	compact_priority = DEF_COMPACT_PRIORITY;
4579	cpuset_mems_cookie = read_mems_allowed_begin();
4580
4581	/*
4582	 * The fast path uses conservative alloc_flags to succeed only until
4583	 * kswapd needs to be woken up, and to avoid the cost of setting up
4584	 * alloc_flags precisely. So we do that now.
4585	 */
4586	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4587
4588	/*
4589	 * We need to recalculate the starting point for the zonelist iterator
4590	 * because we might have used different nodemask in the fast path, or
4591	 * there was a cpuset modification and we are retrying - otherwise we
4592	 * could end up iterating over non-eligible zones endlessly.
4593	 */
4594	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4595					ac->highest_zoneidx, ac->nodemask);
4596	if (!ac->preferred_zoneref->zone)
4597		goto nopage;
4598
4599	if (alloc_flags & ALLOC_KSWAPD)
4600		wake_all_kswapds(order, gfp_mask, ac);
4601
4602	/*
4603	 * The adjusted alloc_flags might result in immediate success, so try
4604	 * that first
4605	 */
4606	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4607	if (page)
4608		goto got_pg;
4609
4610	/*
4611	 * For costly allocations, try direct compaction first, as it's likely
4612	 * that we have enough base pages and don't need to reclaim. For non-
4613	 * movable high-order allocations, do that as well, as compaction will
4614	 * try prevent permanent fragmentation by migrating from blocks of the
4615	 * same migratetype.
4616	 * Don't try this for allocations that are allowed to ignore
4617	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4618	 */
4619	if (can_direct_reclaim &&
4620			(costly_order ||
4621			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4622			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4623		page = __alloc_pages_direct_compact(gfp_mask, order,
4624						alloc_flags, ac,
4625						INIT_COMPACT_PRIORITY,
4626						&compact_result);
4627		if (page)
4628			goto got_pg;
4629
4630		/*
4631		 * Checks for costly allocations with __GFP_NORETRY, which
4632		 * includes some THP page fault allocations
4633		 */
4634		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4635			/*
4636			 * If allocating entire pageblock(s) and compaction
4637			 * failed because all zones are below low watermarks
4638			 * or is prohibited because it recently failed at this
4639			 * order, fail immediately unless the allocator has
4640			 * requested compaction and reclaim retry.
4641			 *
4642			 * Reclaim is
4643			 *  - potentially very expensive because zones are far
4644			 *    below their low watermarks or this is part of very
4645			 *    bursty high order allocations,
4646			 *  - not guaranteed to help because isolate_freepages()
4647			 *    may not iterate over freed pages as part of its
4648			 *    linear scan, and
4649			 *  - unlikely to make entire pageblocks free on its
4650			 *    own.
4651			 */
4652			if (compact_result == COMPACT_SKIPPED ||
4653			    compact_result == COMPACT_DEFERRED)
4654				goto nopage;
4655
4656			/*
4657			 * Looks like reclaim/compaction is worth trying, but
4658			 * sync compaction could be very expensive, so keep
4659			 * using async compaction.
4660			 */
4661			compact_priority = INIT_COMPACT_PRIORITY;
4662		}
4663	}
4664
4665retry:
4666	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4667	if (alloc_flags & ALLOC_KSWAPD)
4668		wake_all_kswapds(order, gfp_mask, ac);
4669
4670	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4671	if (reserve_flags)
4672		alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
4673
4674	/*
4675	 * Reset the nodemask and zonelist iterators if memory policies can be
4676	 * ignored. These allocations are high priority and system rather than
4677	 * user oriented.
4678	 */
4679	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4680		ac->nodemask = NULL;
4681		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4682					ac->highest_zoneidx, ac->nodemask);
4683	}
4684
4685	/* Attempt with potentially adjusted zonelist and alloc_flags */
4686	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4687	if (page)
4688		goto got_pg;
4689
4690	/* Caller is not willing to reclaim, we can't balance anything */
4691	if (!can_direct_reclaim)
4692		goto nopage;
4693
4694	/* Avoid recursion of direct reclaim */
4695	if (current->flags & PF_MEMALLOC)
4696		goto nopage;
4697
4698	/* Try direct reclaim and then allocating */
4699	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4700							&did_some_progress);
4701	if (page)
4702		goto got_pg;
4703
4704	/* Try direct compaction and then allocating */
4705	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4706					compact_priority, &compact_result);
4707	if (page)
4708		goto got_pg;
4709
4710	/* Do not loop if specifically requested */
4711	if (gfp_mask & __GFP_NORETRY)
4712		goto nopage;
4713
4714	/*
4715	 * Do not retry costly high order allocations unless they are
4716	 * __GFP_RETRY_MAYFAIL
4717	 */
4718	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4719		goto nopage;
4720
4721	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4722				 did_some_progress > 0, &no_progress_loops))
4723		goto retry;
4724
4725	/*
4726	 * It doesn't make any sense to retry for the compaction if the order-0
4727	 * reclaim is not able to make any progress because the current
4728	 * implementation of the compaction depends on the sufficient amount
4729	 * of free memory (see __compaction_suitable)
4730	 */
4731	if (did_some_progress > 0 &&
4732			should_compact_retry(ac, order, alloc_flags,
4733				compact_result, &compact_priority,
4734				&compaction_retries))
4735		goto retry;
4736
4737
4738	/* Deal with possible cpuset update races before we start OOM killing */
4739	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4740		goto retry_cpuset;
4741
4742	/* Reclaim has failed us, start killing things */
4743	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4744	if (page)
4745		goto got_pg;
4746
4747	/* Avoid allocations with no watermarks from looping endlessly */
4748	if (tsk_is_oom_victim(current) &&
4749	    (alloc_flags & ALLOC_OOM ||
4750	     (gfp_mask & __GFP_NOMEMALLOC)))
4751		goto nopage;
4752
4753	/* Retry as long as the OOM killer is making progress */
4754	if (did_some_progress) {
4755		no_progress_loops = 0;
4756		goto retry;
4757	}
4758
4759nopage:
4760	/* Deal with possible cpuset update races before we fail */
4761	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4762		goto retry_cpuset;
4763
4764	/*
4765	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4766	 * we always retry
4767	 */
4768	if (gfp_mask & __GFP_NOFAIL) {
4769		/*
4770		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4771		 * of any new users that actually require GFP_NOWAIT
4772		 */
4773		if (WARN_ON_ONCE(!can_direct_reclaim))
4774			goto fail;
4775
4776		/*
4777		 * PF_MEMALLOC request from this context is rather bizarre
4778		 * because we cannot reclaim anything and only can loop waiting
4779		 * for somebody to do a work for us
4780		 */
4781		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4782
4783		/*
4784		 * non failing costly orders are a hard requirement which we
4785		 * are not prepared for much so let's warn about these users
4786		 * so that we can identify them and convert them to something
4787		 * else.
4788		 */
4789		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4790
4791		/*
4792		 * Help non-failing allocations by giving them access to memory
4793		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4794		 * could deplete whole memory reserves which would just make
4795		 * the situation worse
4796		 */
4797		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4798		if (page)
4799			goto got_pg;
4800
4801		cond_resched();
4802		goto retry;
4803	}
4804fail:
4805	warn_alloc(gfp_mask, ac->nodemask,
4806			"page allocation failure: order:%u", order);
4807got_pg:
4808	return page;
4809}
4810
4811static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4812		int preferred_nid, nodemask_t *nodemask,
4813		struct alloc_context *ac, gfp_t *alloc_mask,
4814		unsigned int *alloc_flags)
4815{
4816	ac->highest_zoneidx = gfp_zone(gfp_mask);
4817	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4818	ac->nodemask = nodemask;
4819	ac->migratetype = gfp_migratetype(gfp_mask);
4820
4821	if (cpusets_enabled()) {
4822		*alloc_mask |= __GFP_HARDWALL;
4823		/*
4824		 * When we are in the interrupt context, it is irrelevant
4825		 * to the current task context. It means that any node ok.
4826		 */
4827		if (!in_interrupt() && !ac->nodemask)
4828			ac->nodemask = &cpuset_current_mems_allowed;
4829		else
4830			*alloc_flags |= ALLOC_CPUSET;
4831	}
4832
4833	fs_reclaim_acquire(gfp_mask);
4834	fs_reclaim_release(gfp_mask);
4835
4836	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4837
4838	if (should_fail_alloc_page(gfp_mask, order))
4839		return false;
4840
4841	*alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
 
4842
4843	return true;
4844}
4845
4846/* Determine whether to spread dirty pages and what the first usable zone */
4847static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
 
4848{
4849	/* Dirty zone balancing only done in the fast path */
4850	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4851
4852	/*
4853	 * The preferred zone is used for statistics but crucially it is
4854	 * also used as the starting point for the zonelist iterator. It
4855	 * may get reset for allocations that ignore memory policies.
4856	 */
4857	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4858					ac->highest_zoneidx, ac->nodemask);
4859}
4860
4861/*
4862 * This is the 'heart' of the zoned buddy allocator.
4863 */
4864struct page *
4865__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4866							nodemask_t *nodemask)
4867{
4868	struct page *page;
4869	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4870	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4871	struct alloc_context ac = { };
4872
4873	/*
4874	 * There are several places where we assume that the order value is sane
4875	 * so bail out early if the request is out of bound.
4876	 */
4877	if (unlikely(order >= MAX_ORDER)) {
4878		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4879		return NULL;
4880	}
4881
4882	gfp_mask &= gfp_allowed_mask;
4883	alloc_mask = gfp_mask;
4884	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4885		return NULL;
4886
4887	finalise_ac(gfp_mask, &ac);
4888
4889	/*
4890	 * Forbid the first pass from falling back to types that fragment
4891	 * memory until all local zones are considered.
4892	 */
4893	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4894
4895	/* First allocation attempt */
4896	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4897	if (likely(page))
4898		goto out;
4899
4900	/*
4901	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4902	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4903	 * from a particular context which has been marked by
4904	 * memalloc_no{fs,io}_{save,restore}.
4905	 */
4906	alloc_mask = current_gfp_context(gfp_mask);
4907	ac.spread_dirty_pages = false;
4908
4909	/*
4910	 * Restore the original nodemask if it was potentially replaced with
4911	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4912	 */
4913	ac.nodemask = nodemask;
 
4914
4915	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4916
4917out:
4918	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4919	    unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
4920		__free_pages(page, order);
4921		page = NULL;
4922	}
4923
4924	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4925
4926	return page;
4927}
4928EXPORT_SYMBOL(__alloc_pages_nodemask);
4929
4930/*
4931 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4932 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4933 * you need to access high mem.
4934 */
4935unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4936{
4937	struct page *page;
4938
4939	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
 
 
 
 
 
 
4940	if (!page)
4941		return 0;
4942	return (unsigned long) page_address(page);
4943}
4944EXPORT_SYMBOL(__get_free_pages);
4945
4946unsigned long get_zeroed_page(gfp_t gfp_mask)
4947{
4948	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4949}
4950EXPORT_SYMBOL(get_zeroed_page);
4951
4952static inline void free_the_page(struct page *page, unsigned int order)
4953{
4954	if (order == 0)		/* Via pcp? */
4955		free_unref_page(page);
4956	else
4957		__free_pages_ok(page, order);
 
 
4958}
4959
4960void __free_pages(struct page *page, unsigned int order)
4961{
4962	if (put_page_testzero(page))
4963		free_the_page(page, order);
4964}
4965EXPORT_SYMBOL(__free_pages);
4966
4967void free_pages(unsigned long addr, unsigned int order)
4968{
4969	if (addr != 0) {
4970		VM_BUG_ON(!virt_addr_valid((void *)addr));
4971		__free_pages(virt_to_page((void *)addr), order);
4972	}
4973}
4974
4975EXPORT_SYMBOL(free_pages);
4976
4977/*
4978 * Page Fragment:
4979 *  An arbitrary-length arbitrary-offset area of memory which resides
4980 *  within a 0 or higher order page.  Multiple fragments within that page
4981 *  are individually refcounted, in the page's reference counter.
4982 *
4983 * The page_frag functions below provide a simple allocation framework for
4984 * page fragments.  This is used by the network stack and network device
4985 * drivers to provide a backing region of memory for use as either an
4986 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4987 */
4988static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4989					     gfp_t gfp_mask)
4990{
4991	struct page *page = NULL;
4992	gfp_t gfp = gfp_mask;
4993
4994#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4995	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4996		    __GFP_NOMEMALLOC;
4997	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4998				PAGE_FRAG_CACHE_MAX_ORDER);
4999	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5000#endif
5001	if (unlikely(!page))
5002		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5003
5004	nc->va = page ? page_address(page) : NULL;
5005
5006	return page;
5007}
5008
5009void __page_frag_cache_drain(struct page *page, unsigned int count)
5010{
5011	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5012
5013	if (page_ref_sub_and_test(page, count))
5014		free_the_page(page, compound_order(page));
 
 
 
 
 
 
5015}
5016EXPORT_SYMBOL(__page_frag_cache_drain);
5017
5018void *page_frag_alloc(struct page_frag_cache *nc,
5019		      unsigned int fragsz, gfp_t gfp_mask)
5020{
5021	unsigned int size = PAGE_SIZE;
5022	struct page *page;
5023	int offset;
5024
5025	if (unlikely(!nc->va)) {
5026refill:
5027		page = __page_frag_cache_refill(nc, gfp_mask);
5028		if (!page)
5029			return NULL;
5030
5031#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5032		/* if size can vary use size else just use PAGE_SIZE */
5033		size = nc->size;
5034#endif
5035		/* Even if we own the page, we do not use atomic_set().
5036		 * This would break get_page_unless_zero() users.
5037		 */
5038		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5039
5040		/* reset page count bias and offset to start of new frag */
5041		nc->pfmemalloc = page_is_pfmemalloc(page);
5042		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5043		nc->offset = size;
5044	}
5045
5046	offset = nc->offset - fragsz;
5047	if (unlikely(offset < 0)) {
5048		page = virt_to_page(nc->va);
5049
5050		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5051			goto refill;
5052
5053#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5054		/* if size can vary use size else just use PAGE_SIZE */
5055		size = nc->size;
5056#endif
5057		/* OK, page count is 0, we can safely set it */
5058		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5059
5060		/* reset page count bias and offset to start of new frag */
5061		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5062		offset = size - fragsz;
5063	}
5064
5065	nc->pagecnt_bias--;
5066	nc->offset = offset;
5067
5068	return nc->va + offset;
5069}
5070EXPORT_SYMBOL(page_frag_alloc);
5071
5072/*
5073 * Frees a page fragment allocated out of either a compound or order 0 page.
5074 */
5075void page_frag_free(void *addr)
5076{
5077	struct page *page = virt_to_head_page(addr);
5078
5079	if (unlikely(put_page_testzero(page)))
5080		free_the_page(page, compound_order(page));
5081}
5082EXPORT_SYMBOL(page_frag_free);
5083
5084static void *make_alloc_exact(unsigned long addr, unsigned int order,
5085		size_t size)
5086{
5087	if (addr) {
5088		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5089		unsigned long used = addr + PAGE_ALIGN(size);
5090
5091		split_page(virt_to_page((void *)addr), order);
5092		while (used < alloc_end) {
5093			free_page(used);
5094			used += PAGE_SIZE;
5095		}
5096	}
5097	return (void *)addr;
5098}
5099
5100/**
5101 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5102 * @size: the number of bytes to allocate
5103 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5104 *
5105 * This function is similar to alloc_pages(), except that it allocates the
5106 * minimum number of pages to satisfy the request.  alloc_pages() can only
5107 * allocate memory in power-of-two pages.
5108 *
5109 * This function is also limited by MAX_ORDER.
5110 *
5111 * Memory allocated by this function must be released by free_pages_exact().
5112 *
5113 * Return: pointer to the allocated area or %NULL in case of error.
5114 */
5115void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5116{
5117	unsigned int order = get_order(size);
5118	unsigned long addr;
5119
5120	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5121		gfp_mask &= ~__GFP_COMP;
5122
5123	addr = __get_free_pages(gfp_mask, order);
5124	return make_alloc_exact(addr, order, size);
5125}
5126EXPORT_SYMBOL(alloc_pages_exact);
5127
5128/**
5129 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5130 *			   pages on a node.
5131 * @nid: the preferred node ID where memory should be allocated
5132 * @size: the number of bytes to allocate
5133 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5134 *
5135 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5136 * back.
5137 *
5138 * Return: pointer to the allocated area or %NULL in case of error.
5139 */
5140void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5141{
5142	unsigned int order = get_order(size);
5143	struct page *p;
5144
5145	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5146		gfp_mask &= ~__GFP_COMP;
5147
5148	p = alloc_pages_node(nid, gfp_mask, order);
5149	if (!p)
5150		return NULL;
5151	return make_alloc_exact((unsigned long)page_address(p), order, size);
5152}
5153
5154/**
5155 * free_pages_exact - release memory allocated via alloc_pages_exact()
5156 * @virt: the value returned by alloc_pages_exact.
5157 * @size: size of allocation, same value as passed to alloc_pages_exact().
5158 *
5159 * Release the memory allocated by a previous call to alloc_pages_exact.
5160 */
5161void free_pages_exact(void *virt, size_t size)
5162{
5163	unsigned long addr = (unsigned long)virt;
5164	unsigned long end = addr + PAGE_ALIGN(size);
5165
5166	while (addr < end) {
5167		free_page(addr);
5168		addr += PAGE_SIZE;
5169	}
5170}
5171EXPORT_SYMBOL(free_pages_exact);
5172
5173/**
5174 * nr_free_zone_pages - count number of pages beyond high watermark
5175 * @offset: The zone index of the highest zone
5176 *
5177 * nr_free_zone_pages() counts the number of pages which are beyond the
5178 * high watermark within all zones at or below a given zone index.  For each
5179 * zone, the number of pages is calculated as:
5180 *
5181 *     nr_free_zone_pages = managed_pages - high_pages
5182 *
5183 * Return: number of pages beyond high watermark.
5184 */
5185static unsigned long nr_free_zone_pages(int offset)
5186{
5187	struct zoneref *z;
5188	struct zone *zone;
5189
5190	/* Just pick one node, since fallback list is circular */
5191	unsigned long sum = 0;
5192
5193	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5194
5195	for_each_zone_zonelist(zone, z, zonelist, offset) {
5196		unsigned long size = zone_managed_pages(zone);
5197		unsigned long high = high_wmark_pages(zone);
5198		if (size > high)
5199			sum += size - high;
5200	}
5201
5202	return sum;
5203}
5204
5205/**
5206 * nr_free_buffer_pages - count number of pages beyond high watermark
5207 *
5208 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5209 * watermark within ZONE_DMA and ZONE_NORMAL.
5210 *
5211 * Return: number of pages beyond high watermark within ZONE_DMA and
5212 * ZONE_NORMAL.
5213 */
5214unsigned long nr_free_buffer_pages(void)
5215{
5216	return nr_free_zone_pages(gfp_zone(GFP_USER));
5217}
5218EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5219
 
 
 
 
 
 
 
 
 
 
 
5220static inline void show_node(struct zone *zone)
5221{
5222	if (IS_ENABLED(CONFIG_NUMA))
5223		printk("Node %d ", zone_to_nid(zone));
5224}
5225
5226long si_mem_available(void)
5227{
5228	long available;
5229	unsigned long pagecache;
5230	unsigned long wmark_low = 0;
5231	unsigned long pages[NR_LRU_LISTS];
5232	unsigned long reclaimable;
5233	struct zone *zone;
5234	int lru;
5235
5236	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5237		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5238
5239	for_each_zone(zone)
5240		wmark_low += low_wmark_pages(zone);
5241
5242	/*
5243	 * Estimate the amount of memory available for userspace allocations,
5244	 * without causing swapping.
5245	 */
5246	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5247
5248	/*
5249	 * Not all the page cache can be freed, otherwise the system will
5250	 * start swapping. Assume at least half of the page cache, or the
5251	 * low watermark worth of cache, needs to stay.
5252	 */
5253	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5254	pagecache -= min(pagecache / 2, wmark_low);
5255	available += pagecache;
5256
5257	/*
5258	 * Part of the reclaimable slab and other kernel memory consists of
5259	 * items that are in use, and cannot be freed. Cap this estimate at the
5260	 * low watermark.
5261	 */
5262	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5263		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5264	available += reclaimable - min(reclaimable / 2, wmark_low);
 
 
 
 
 
 
5265
5266	if (available < 0)
5267		available = 0;
5268	return available;
5269}
5270EXPORT_SYMBOL_GPL(si_mem_available);
5271
5272void si_meminfo(struct sysinfo *val)
5273{
5274	val->totalram = totalram_pages();
5275	val->sharedram = global_node_page_state(NR_SHMEM);
5276	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5277	val->bufferram = nr_blockdev_pages();
5278	val->totalhigh = totalhigh_pages();
5279	val->freehigh = nr_free_highpages();
5280	val->mem_unit = PAGE_SIZE;
5281}
5282
5283EXPORT_SYMBOL(si_meminfo);
5284
5285#ifdef CONFIG_NUMA
5286void si_meminfo_node(struct sysinfo *val, int nid)
5287{
5288	int zone_type;		/* needs to be signed */
5289	unsigned long managed_pages = 0;
5290	unsigned long managed_highpages = 0;
5291	unsigned long free_highpages = 0;
5292	pg_data_t *pgdat = NODE_DATA(nid);
5293
5294	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5295		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5296	val->totalram = managed_pages;
5297	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5298	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5299#ifdef CONFIG_HIGHMEM
5300	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5301		struct zone *zone = &pgdat->node_zones[zone_type];
5302
5303		if (is_highmem(zone)) {
5304			managed_highpages += zone_managed_pages(zone);
5305			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5306		}
5307	}
5308	val->totalhigh = managed_highpages;
5309	val->freehigh = free_highpages;
5310#else
5311	val->totalhigh = managed_highpages;
5312	val->freehigh = free_highpages;
5313#endif
5314	val->mem_unit = PAGE_SIZE;
5315}
5316#endif
5317
5318/*
5319 * Determine whether the node should be displayed or not, depending on whether
5320 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5321 */
5322static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5323{
5324	if (!(flags & SHOW_MEM_FILTER_NODES))
5325		return false;
5326
5327	/*
5328	 * no node mask - aka implicit memory numa policy. Do not bother with
5329	 * the synchronization - read_mems_allowed_begin - because we do not
5330	 * have to be precise here.
5331	 */
5332	if (!nodemask)
5333		nodemask = &cpuset_current_mems_allowed;
5334
5335	return !node_isset(nid, *nodemask);
5336}
5337
5338#define K(x) ((x) << (PAGE_SHIFT-10))
5339
5340static void show_migration_types(unsigned char type)
5341{
5342	static const char types[MIGRATE_TYPES] = {
5343		[MIGRATE_UNMOVABLE]	= 'U',
5344		[MIGRATE_MOVABLE]	= 'M',
5345		[MIGRATE_RECLAIMABLE]	= 'E',
5346		[MIGRATE_HIGHATOMIC]	= 'H',
5347#ifdef CONFIG_CMA
5348		[MIGRATE_CMA]		= 'C',
5349#endif
5350#ifdef CONFIG_MEMORY_ISOLATION
5351		[MIGRATE_ISOLATE]	= 'I',
5352#endif
5353	};
5354	char tmp[MIGRATE_TYPES + 1];
5355	char *p = tmp;
5356	int i;
5357
5358	for (i = 0; i < MIGRATE_TYPES; i++) {
5359		if (type & (1 << i))
5360			*p++ = types[i];
5361	}
5362
5363	*p = '\0';
5364	printk(KERN_CONT "(%s) ", tmp);
5365}
5366
5367/*
5368 * Show free area list (used inside shift_scroll-lock stuff)
5369 * We also calculate the percentage fragmentation. We do this by counting the
5370 * memory on each free list with the exception of the first item on the list.
5371 *
5372 * Bits in @filter:
5373 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5374 *   cpuset.
5375 */
5376void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5377{
5378	unsigned long free_pcp = 0;
5379	int cpu;
5380	struct zone *zone;
5381	pg_data_t *pgdat;
5382
5383	for_each_populated_zone(zone) {
5384		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5385			continue;
5386
5387		for_each_online_cpu(cpu)
5388			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5389	}
5390
5391	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5392		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5393		" unevictable:%lu dirty:%lu writeback:%lu\n"
5394		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5395		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5396		" free:%lu free_pcp:%lu free_cma:%lu\n",
5397		global_node_page_state(NR_ACTIVE_ANON),
5398		global_node_page_state(NR_INACTIVE_ANON),
5399		global_node_page_state(NR_ISOLATED_ANON),
5400		global_node_page_state(NR_ACTIVE_FILE),
5401		global_node_page_state(NR_INACTIVE_FILE),
5402		global_node_page_state(NR_ISOLATED_FILE),
5403		global_node_page_state(NR_UNEVICTABLE),
5404		global_node_page_state(NR_FILE_DIRTY),
5405		global_node_page_state(NR_WRITEBACK),
5406		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5407		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
 
5408		global_node_page_state(NR_FILE_MAPPED),
5409		global_node_page_state(NR_SHMEM),
5410		global_zone_page_state(NR_PAGETABLE),
5411		global_zone_page_state(NR_BOUNCE),
5412		global_zone_page_state(NR_FREE_PAGES),
5413		free_pcp,
5414		global_zone_page_state(NR_FREE_CMA_PAGES));
5415
5416	for_each_online_pgdat(pgdat) {
5417		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5418			continue;
5419
5420		printk("Node %d"
5421			" active_anon:%lukB"
5422			" inactive_anon:%lukB"
5423			" active_file:%lukB"
5424			" inactive_file:%lukB"
5425			" unevictable:%lukB"
5426			" isolated(anon):%lukB"
5427			" isolated(file):%lukB"
5428			" mapped:%lukB"
5429			" dirty:%lukB"
5430			" writeback:%lukB"
5431			" shmem:%lukB"
5432#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5433			" shmem_thp: %lukB"
5434			" shmem_pmdmapped: %lukB"
5435			" anon_thp: %lukB"
5436#endif
5437			" writeback_tmp:%lukB"
5438			" kernel_stack:%lukB"
5439#ifdef CONFIG_SHADOW_CALL_STACK
5440			" shadow_call_stack:%lukB"
5441#endif
5442			" all_unreclaimable? %s"
5443			"\n",
5444			pgdat->node_id,
5445			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5446			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5447			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5448			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5449			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5450			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5451			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5452			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5453			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5454			K(node_page_state(pgdat, NR_WRITEBACK)),
5455			K(node_page_state(pgdat, NR_SHMEM)),
5456#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5457			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5458			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5459					* HPAGE_PMD_NR),
5460			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5461#endif
5462			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5463			node_page_state(pgdat, NR_KERNEL_STACK_KB),
5464#ifdef CONFIG_SHADOW_CALL_STACK
5465			node_page_state(pgdat, NR_KERNEL_SCS_KB),
5466#endif
5467			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5468				"yes" : "no");
5469	}
5470
5471	for_each_populated_zone(zone) {
5472		int i;
5473
5474		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5475			continue;
5476
5477		free_pcp = 0;
5478		for_each_online_cpu(cpu)
5479			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5480
5481		show_node(zone);
5482		printk(KERN_CONT
5483			"%s"
5484			" free:%lukB"
5485			" min:%lukB"
5486			" low:%lukB"
5487			" high:%lukB"
5488			" reserved_highatomic:%luKB"
5489			" active_anon:%lukB"
5490			" inactive_anon:%lukB"
5491			" active_file:%lukB"
5492			" inactive_file:%lukB"
5493			" unevictable:%lukB"
5494			" writepending:%lukB"
5495			" present:%lukB"
5496			" managed:%lukB"
5497			" mlocked:%lukB"
 
5498			" pagetables:%lukB"
5499			" bounce:%lukB"
5500			" free_pcp:%lukB"
5501			" local_pcp:%ukB"
5502			" free_cma:%lukB"
5503			"\n",
5504			zone->name,
5505			K(zone_page_state(zone, NR_FREE_PAGES)),
5506			K(min_wmark_pages(zone)),
5507			K(low_wmark_pages(zone)),
5508			K(high_wmark_pages(zone)),
5509			K(zone->nr_reserved_highatomic),
5510			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5511			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5512			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5513			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5514			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5515			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5516			K(zone->present_pages),
5517			K(zone_managed_pages(zone)),
5518			K(zone_page_state(zone, NR_MLOCK)),
 
5519			K(zone_page_state(zone, NR_PAGETABLE)),
5520			K(zone_page_state(zone, NR_BOUNCE)),
5521			K(free_pcp),
5522			K(this_cpu_read(zone->pageset->pcp.count)),
5523			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5524		printk("lowmem_reserve[]:");
5525		for (i = 0; i < MAX_NR_ZONES; i++)
5526			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5527		printk(KERN_CONT "\n");
5528	}
5529
5530	for_each_populated_zone(zone) {
5531		unsigned int order;
5532		unsigned long nr[MAX_ORDER], flags, total = 0;
5533		unsigned char types[MAX_ORDER];
5534
5535		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5536			continue;
5537		show_node(zone);
5538		printk(KERN_CONT "%s: ", zone->name);
5539
5540		spin_lock_irqsave(&zone->lock, flags);
5541		for (order = 0; order < MAX_ORDER; order++) {
5542			struct free_area *area = &zone->free_area[order];
5543			int type;
5544
5545			nr[order] = area->nr_free;
5546			total += nr[order] << order;
5547
5548			types[order] = 0;
5549			for (type = 0; type < MIGRATE_TYPES; type++) {
5550				if (!free_area_empty(area, type))
5551					types[order] |= 1 << type;
5552			}
5553		}
5554		spin_unlock_irqrestore(&zone->lock, flags);
5555		for (order = 0; order < MAX_ORDER; order++) {
5556			printk(KERN_CONT "%lu*%lukB ",
5557			       nr[order], K(1UL) << order);
5558			if (nr[order])
5559				show_migration_types(types[order]);
5560		}
5561		printk(KERN_CONT "= %lukB\n", K(total));
5562	}
5563
5564	hugetlb_show_meminfo();
5565
5566	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5567
5568	show_swap_cache_info();
5569}
5570
5571static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5572{
5573	zoneref->zone = zone;
5574	zoneref->zone_idx = zone_idx(zone);
5575}
5576
5577/*
5578 * Builds allocation fallback zone lists.
5579 *
5580 * Add all populated zones of a node to the zonelist.
5581 */
5582static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5583{
5584	struct zone *zone;
5585	enum zone_type zone_type = MAX_NR_ZONES;
5586	int nr_zones = 0;
5587
5588	do {
5589		zone_type--;
5590		zone = pgdat->node_zones + zone_type;
5591		if (managed_zone(zone)) {
5592			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5593			check_highest_zone(zone_type);
5594		}
5595	} while (zone_type);
5596
5597	return nr_zones;
5598}
5599
5600#ifdef CONFIG_NUMA
5601
5602static int __parse_numa_zonelist_order(char *s)
5603{
5604	/*
5605	 * We used to support different zonlists modes but they turned
5606	 * out to be just not useful. Let's keep the warning in place
5607	 * if somebody still use the cmd line parameter so that we do
5608	 * not fail it silently
5609	 */
5610	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5611		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5612		return -EINVAL;
5613	}
5614	return 0;
5615}
5616
 
 
 
 
 
 
 
 
 
5617char numa_zonelist_order[] = "Node";
5618
5619/*
5620 * sysctl handler for numa_zonelist_order
5621 */
5622int numa_zonelist_order_handler(struct ctl_table *table, int write,
5623		void *buffer, size_t *length, loff_t *ppos)
 
5624{
5625	if (write)
5626		return __parse_numa_zonelist_order(buffer);
5627	return proc_dostring(table, write, buffer, length, ppos);
 
 
 
 
 
 
 
 
 
5628}
5629
5630
5631#define MAX_NODE_LOAD (nr_online_nodes)
5632static int node_load[MAX_NUMNODES];
5633
5634/**
5635 * find_next_best_node - find the next node that should appear in a given node's fallback list
5636 * @node: node whose fallback list we're appending
5637 * @used_node_mask: nodemask_t of already used nodes
5638 *
5639 * We use a number of factors to determine which is the next node that should
5640 * appear on a given node's fallback list.  The node should not have appeared
5641 * already in @node's fallback list, and it should be the next closest node
5642 * according to the distance array (which contains arbitrary distance values
5643 * from each node to each node in the system), and should also prefer nodes
5644 * with no CPUs, since presumably they'll have very little allocation pressure
5645 * on them otherwise.
5646 *
5647 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5648 */
5649static int find_next_best_node(int node, nodemask_t *used_node_mask)
5650{
5651	int n, val;
5652	int min_val = INT_MAX;
5653	int best_node = NUMA_NO_NODE;
5654	const struct cpumask *tmp = cpumask_of_node(0);
5655
5656	/* Use the local node if we haven't already */
5657	if (!node_isset(node, *used_node_mask)) {
5658		node_set(node, *used_node_mask);
5659		return node;
5660	}
5661
5662	for_each_node_state(n, N_MEMORY) {
5663
5664		/* Don't want a node to appear more than once */
5665		if (node_isset(n, *used_node_mask))
5666			continue;
5667
5668		/* Use the distance array to find the distance */
5669		val = node_distance(node, n);
5670
5671		/* Penalize nodes under us ("prefer the next node") */
5672		val += (n < node);
5673
5674		/* Give preference to headless and unused nodes */
5675		tmp = cpumask_of_node(n);
5676		if (!cpumask_empty(tmp))
5677			val += PENALTY_FOR_NODE_WITH_CPUS;
5678
5679		/* Slight preference for less loaded node */
5680		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5681		val += node_load[n];
5682
5683		if (val < min_val) {
5684			min_val = val;
5685			best_node = n;
5686		}
5687	}
5688
5689	if (best_node >= 0)
5690		node_set(best_node, *used_node_mask);
5691
5692	return best_node;
5693}
5694
5695
5696/*
5697 * Build zonelists ordered by node and zones within node.
5698 * This results in maximum locality--normal zone overflows into local
5699 * DMA zone, if any--but risks exhausting DMA zone.
5700 */
5701static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5702		unsigned nr_nodes)
5703{
5704	struct zoneref *zonerefs;
5705	int i;
5706
5707	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5708
5709	for (i = 0; i < nr_nodes; i++) {
5710		int nr_zones;
5711
5712		pg_data_t *node = NODE_DATA(node_order[i]);
5713
5714		nr_zones = build_zonerefs_node(node, zonerefs);
5715		zonerefs += nr_zones;
5716	}
5717	zonerefs->zone = NULL;
5718	zonerefs->zone_idx = 0;
5719}
5720
5721/*
5722 * Build gfp_thisnode zonelists
5723 */
5724static void build_thisnode_zonelists(pg_data_t *pgdat)
5725{
5726	struct zoneref *zonerefs;
5727	int nr_zones;
5728
5729	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5730	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5731	zonerefs += nr_zones;
5732	zonerefs->zone = NULL;
5733	zonerefs->zone_idx = 0;
5734}
5735
5736/*
5737 * Build zonelists ordered by zone and nodes within zones.
5738 * This results in conserving DMA zone[s] until all Normal memory is
5739 * exhausted, but results in overflowing to remote node while memory
5740 * may still exist in local DMA zone.
5741 */
5742
5743static void build_zonelists(pg_data_t *pgdat)
5744{
5745	static int node_order[MAX_NUMNODES];
5746	int node, load, nr_nodes = 0;
5747	nodemask_t used_mask = NODE_MASK_NONE;
5748	int local_node, prev_node;
5749
5750	/* NUMA-aware ordering of nodes */
5751	local_node = pgdat->node_id;
5752	load = nr_online_nodes;
5753	prev_node = local_node;
 
5754
5755	memset(node_order, 0, sizeof(node_order));
5756	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5757		/*
5758		 * We don't want to pressure a particular node.
5759		 * So adding penalty to the first node in same
5760		 * distance group to make it round-robin.
5761		 */
5762		if (node_distance(local_node, node) !=
5763		    node_distance(local_node, prev_node))
5764			node_load[node] = load;
5765
5766		node_order[nr_nodes++] = node;
5767		prev_node = node;
5768		load--;
5769	}
5770
5771	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5772	build_thisnode_zonelists(pgdat);
5773}
5774
5775#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5776/*
5777 * Return node id of node used for "local" allocations.
5778 * I.e., first node id of first zone in arg node's generic zonelist.
5779 * Used for initializing percpu 'numa_mem', which is used primarily
5780 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5781 */
5782int local_memory_node(int node)
5783{
5784	struct zoneref *z;
5785
5786	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5787				   gfp_zone(GFP_KERNEL),
5788				   NULL);
5789	return zone_to_nid(z->zone);
5790}
5791#endif
5792
5793static void setup_min_unmapped_ratio(void);
5794static void setup_min_slab_ratio(void);
5795#else	/* CONFIG_NUMA */
5796
5797static void build_zonelists(pg_data_t *pgdat)
5798{
5799	int node, local_node;
5800	struct zoneref *zonerefs;
5801	int nr_zones;
5802
5803	local_node = pgdat->node_id;
5804
5805	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5806	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5807	zonerefs += nr_zones;
5808
5809	/*
5810	 * Now we build the zonelist so that it contains the zones
5811	 * of all the other nodes.
5812	 * We don't want to pressure a particular node, so when
5813	 * building the zones for node N, we make sure that the
5814	 * zones coming right after the local ones are those from
5815	 * node N+1 (modulo N)
5816	 */
5817	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5818		if (!node_online(node))
5819			continue;
5820		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5821		zonerefs += nr_zones;
5822	}
5823	for (node = 0; node < local_node; node++) {
5824		if (!node_online(node))
5825			continue;
5826		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5827		zonerefs += nr_zones;
5828	}
5829
5830	zonerefs->zone = NULL;
5831	zonerefs->zone_idx = 0;
5832}
5833
5834#endif	/* CONFIG_NUMA */
5835
5836/*
5837 * Boot pageset table. One per cpu which is going to be used for all
5838 * zones and all nodes. The parameters will be set in such a way
5839 * that an item put on a list will immediately be handed over to
5840 * the buddy list. This is safe since pageset manipulation is done
5841 * with interrupts disabled.
5842 *
5843 * The boot_pagesets must be kept even after bootup is complete for
5844 * unused processors and/or zones. They do play a role for bootstrapping
5845 * hotplugged processors.
5846 *
5847 * zoneinfo_show() and maybe other functions do
5848 * not check if the processor is online before following the pageset pointer.
5849 * Other parts of the kernel may not check if the zone is available.
5850 */
5851static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5852static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5853static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5854
5855static void __build_all_zonelists(void *data)
5856{
5857	int nid;
5858	int __maybe_unused cpu;
5859	pg_data_t *self = data;
5860	static DEFINE_SPINLOCK(lock);
5861
5862	spin_lock(&lock);
5863
5864#ifdef CONFIG_NUMA
5865	memset(node_load, 0, sizeof(node_load));
5866#endif
5867
5868	/*
5869	 * This node is hotadded and no memory is yet present.   So just
5870	 * building zonelists is fine - no need to touch other nodes.
5871	 */
5872	if (self && !node_online(self->node_id)) {
5873		build_zonelists(self);
5874	} else {
5875		for_each_online_node(nid) {
5876			pg_data_t *pgdat = NODE_DATA(nid);
5877
5878			build_zonelists(pgdat);
5879		}
5880
5881#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5882		/*
5883		 * We now know the "local memory node" for each node--
5884		 * i.e., the node of the first zone in the generic zonelist.
5885		 * Set up numa_mem percpu variable for on-line cpus.  During
5886		 * boot, only the boot cpu should be on-line;  we'll init the
5887		 * secondary cpus' numa_mem as they come on-line.  During
5888		 * node/memory hotplug, we'll fixup all on-line cpus.
5889		 */
5890		for_each_online_cpu(cpu)
5891			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5892#endif
5893	}
5894
5895	spin_unlock(&lock);
5896}
5897
5898static noinline void __init
5899build_all_zonelists_init(void)
5900{
5901	int cpu;
5902
5903	__build_all_zonelists(NULL);
5904
5905	/*
5906	 * Initialize the boot_pagesets that are going to be used
5907	 * for bootstrapping processors. The real pagesets for
5908	 * each zone will be allocated later when the per cpu
5909	 * allocator is available.
5910	 *
5911	 * boot_pagesets are used also for bootstrapping offline
5912	 * cpus if the system is already booted because the pagesets
5913	 * are needed to initialize allocators on a specific cpu too.
5914	 * F.e. the percpu allocator needs the page allocator which
5915	 * needs the percpu allocator in order to allocate its pagesets
5916	 * (a chicken-egg dilemma).
5917	 */
5918	for_each_possible_cpu(cpu)
5919		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5920
5921	mminit_verify_zonelist();
5922	cpuset_init_current_mems_allowed();
5923}
5924
5925/*
5926 * unless system_state == SYSTEM_BOOTING.
5927 *
5928 * __ref due to call of __init annotated helper build_all_zonelists_init
5929 * [protected by SYSTEM_BOOTING].
5930 */
5931void __ref build_all_zonelists(pg_data_t *pgdat)
5932{
5933	unsigned long vm_total_pages;
5934
5935	if (system_state == SYSTEM_BOOTING) {
5936		build_all_zonelists_init();
5937	} else {
5938		__build_all_zonelists(pgdat);
5939		/* cpuset refresh routine should be here */
5940	}
5941	/* Get the number of free pages beyond high watermark in all zones. */
5942	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5943	/*
5944	 * Disable grouping by mobility if the number of pages in the
5945	 * system is too low to allow the mechanism to work. It would be
5946	 * more accurate, but expensive to check per-zone. This check is
5947	 * made on memory-hotadd so a system can start with mobility
5948	 * disabled and enable it later
5949	 */
5950	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5951		page_group_by_mobility_disabled = 1;
5952	else
5953		page_group_by_mobility_disabled = 0;
5954
5955	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5956		nr_online_nodes,
5957		page_group_by_mobility_disabled ? "off" : "on",
5958		vm_total_pages);
5959#ifdef CONFIG_NUMA
5960	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5961#endif
5962}
5963
5964/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5965static bool __meminit
5966overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5967{
5968	static struct memblock_region *r;
5969
5970	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5971		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5972			for_each_memblock(memory, r) {
5973				if (*pfn < memblock_region_memory_end_pfn(r))
5974					break;
5975			}
5976		}
5977		if (*pfn >= memblock_region_memory_base_pfn(r) &&
5978		    memblock_is_mirror(r)) {
5979			*pfn = memblock_region_memory_end_pfn(r);
5980			return true;
5981		}
5982	}
5983	return false;
5984}
5985
5986/*
5987 * Initially all pages are reserved - free ones are freed
5988 * up by memblock_free_all() once the early boot process is
5989 * done. Non-atomic initialization, single-pass.
5990 */
5991void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5992		unsigned long start_pfn, enum meminit_context context,
5993		struct vmem_altmap *altmap)
5994{
5995	unsigned long pfn, end_pfn = start_pfn + size;
 
 
 
5996	struct page *page;
 
 
 
5997
5998	if (highest_memmap_pfn < end_pfn - 1)
5999		highest_memmap_pfn = end_pfn - 1;
6000
6001#ifdef CONFIG_ZONE_DEVICE
6002	/*
6003	 * Honor reservation requested by the driver for this ZONE_DEVICE
6004	 * memory. We limit the total number of pages to initialize to just
6005	 * those that might contain the memory mapping. We will defer the
6006	 * ZONE_DEVICE page initialization until after we have released
6007	 * the hotplug lock.
6008	 */
6009	if (zone == ZONE_DEVICE) {
6010		if (!altmap)
6011			return;
6012
6013		if (start_pfn == altmap->base_pfn)
6014			start_pfn += altmap->reserve;
6015		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6016	}
6017#endif
6018
6019	for (pfn = start_pfn; pfn < end_pfn; ) {
6020		/*
6021		 * There can be holes in boot-time mem_map[]s handed to this
6022		 * function.  They do not exist on hotplugged memory.
6023		 */
6024		if (context == MEMINIT_EARLY) {
6025			if (overlap_memmap_init(zone, &pfn))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6026				continue;
6027			if (defer_init(nid, pfn, end_pfn))
6028				break;
6029		}
 
6030
 
6031		page = pfn_to_page(pfn);
6032		__init_single_page(page, pfn, zone, nid);
6033		if (context == MEMINIT_HOTPLUG)
6034			__SetPageReserved(page);
6035
6036		/*
6037		 * Mark the block movable so that blocks are reserved for
6038		 * movable at startup. This will force kernel allocations
6039		 * to reserve their blocks rather than leaking throughout
6040		 * the address space during boot when many long-lived
6041		 * kernel allocations are made.
6042		 *
6043		 * bitmap is created for zone's valid pfn range. but memmap
6044		 * can be created for invalid pages (for alignment)
6045		 * check here not to call set_pageblock_migratetype() against
6046		 * pfn out of zone.
6047		 */
6048		if (!(pfn & (pageblock_nr_pages - 1))) {
6049			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6050			cond_resched();
6051		}
6052		pfn++;
6053	}
6054}
6055
6056#ifdef CONFIG_ZONE_DEVICE
6057void __ref memmap_init_zone_device(struct zone *zone,
6058				   unsigned long start_pfn,
6059				   unsigned long nr_pages,
6060				   struct dev_pagemap *pgmap)
6061{
6062	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6063	struct pglist_data *pgdat = zone->zone_pgdat;
6064	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6065	unsigned long zone_idx = zone_idx(zone);
6066	unsigned long start = jiffies;
6067	int nid = pgdat->node_id;
6068
6069	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6070		return;
6071
6072	/*
6073	 * The call to memmap_init_zone should have already taken care
6074	 * of the pages reserved for the memmap, so we can just jump to
6075	 * the end of that region and start processing the device pages.
6076	 */
6077	if (altmap) {
6078		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6079		nr_pages = end_pfn - start_pfn;
6080	}
6081
6082	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6083		struct page *page = pfn_to_page(pfn);
6084
6085		__init_single_page(page, pfn, zone_idx, nid);
6086
6087		/*
6088		 * Mark page reserved as it will need to wait for onlining
6089		 * phase for it to be fully associated with a zone.
6090		 *
6091		 * We can use the non-atomic __set_bit operation for setting
6092		 * the flag as we are still initializing the pages.
6093		 */
6094		__SetPageReserved(page);
6095
6096		/*
6097		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6098		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6099		 * ever freed or placed on a driver-private list.
6100		 */
6101		page->pgmap = pgmap;
6102		page->zone_device_data = NULL;
6103
6104		/*
6105		 * Mark the block movable so that blocks are reserved for
6106		 * movable at startup. This will force kernel allocations
6107		 * to reserve their blocks rather than leaking throughout
6108		 * the address space during boot when many long-lived
6109		 * kernel allocations are made.
6110		 *
6111		 * bitmap is created for zone's valid pfn range. but memmap
6112		 * can be created for invalid pages (for alignment)
6113		 * check here not to call set_pageblock_migratetype() against
6114		 * pfn out of zone.
6115		 *
6116		 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6117		 * because this is done early in section_activate()
6118		 */
6119		if (!(pfn & (pageblock_nr_pages - 1))) {
6120			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6121			cond_resched();
6122		}
6123	}
6124
6125	pr_info("%s initialised %lu pages in %ums\n", __func__,
6126		nr_pages, jiffies_to_msecs(jiffies - start));
6127}
6128
6129#endif
6130static void __meminit zone_init_free_lists(struct zone *zone)
6131{
6132	unsigned int order, t;
6133	for_each_migratetype_order(order, t) {
6134		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6135		zone->free_area[order].nr_free = 0;
6136	}
6137}
6138
6139void __meminit __weak memmap_init(unsigned long size, int nid,
6140				  unsigned long zone,
6141				  unsigned long range_start_pfn)
6142{
6143	unsigned long start_pfn, end_pfn;
6144	unsigned long range_end_pfn = range_start_pfn + size;
6145	int i;
6146
6147	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6148		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6149		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6150
6151		if (end_pfn > start_pfn) {
6152			size = end_pfn - start_pfn;
6153			memmap_init_zone(size, nid, zone, start_pfn,
6154					 MEMINIT_EARLY, NULL);
6155		}
6156	}
6157}
6158
6159static int zone_batchsize(struct zone *zone)
6160{
6161#ifdef CONFIG_MMU
6162	int batch;
6163
6164	/*
6165	 * The per-cpu-pages pools are set to around 1000th of the
6166	 * size of the zone.
 
 
6167	 */
6168	batch = zone_managed_pages(zone) / 1024;
6169	/* But no more than a meg. */
6170	if (batch * PAGE_SIZE > 1024 * 1024)
6171		batch = (1024 * 1024) / PAGE_SIZE;
6172	batch /= 4;		/* We effectively *= 4 below */
6173	if (batch < 1)
6174		batch = 1;
6175
6176	/*
6177	 * Clamp the batch to a 2^n - 1 value. Having a power
6178	 * of 2 value was found to be more likely to have
6179	 * suboptimal cache aliasing properties in some cases.
6180	 *
6181	 * For example if 2 tasks are alternately allocating
6182	 * batches of pages, one task can end up with a lot
6183	 * of pages of one half of the possible page colors
6184	 * and the other with pages of the other colors.
6185	 */
6186	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6187
6188	return batch;
6189
6190#else
6191	/* The deferral and batching of frees should be suppressed under NOMMU
6192	 * conditions.
6193	 *
6194	 * The problem is that NOMMU needs to be able to allocate large chunks
6195	 * of contiguous memory as there's no hardware page translation to
6196	 * assemble apparent contiguous memory from discontiguous pages.
6197	 *
6198	 * Queueing large contiguous runs of pages for batching, however,
6199	 * causes the pages to actually be freed in smaller chunks.  As there
6200	 * can be a significant delay between the individual batches being
6201	 * recycled, this leads to the once large chunks of space being
6202	 * fragmented and becoming unavailable for high-order allocations.
6203	 */
6204	return 0;
6205#endif
6206}
6207
6208/*
6209 * pcp->high and pcp->batch values are related and dependent on one another:
6210 * ->batch must never be higher then ->high.
6211 * The following function updates them in a safe manner without read side
6212 * locking.
6213 *
6214 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6215 * those fields changing asynchronously (acording to the above rule).
6216 *
6217 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6218 * outside of boot time (or some other assurance that no concurrent updaters
6219 * exist).
6220 */
6221static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6222		unsigned long batch)
6223{
6224       /* start with a fail safe value for batch */
6225	pcp->batch = 1;
6226	smp_wmb();
6227
6228       /* Update high, then batch, in order */
6229	pcp->high = high;
6230	smp_wmb();
6231
6232	pcp->batch = batch;
6233}
6234
6235/* a companion to pageset_set_high() */
6236static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6237{
6238	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6239}
6240
6241static void pageset_init(struct per_cpu_pageset *p)
6242{
6243	struct per_cpu_pages *pcp;
6244	int migratetype;
6245
6246	memset(p, 0, sizeof(*p));
6247
6248	pcp = &p->pcp;
 
6249	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6250		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6251}
6252
6253static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6254{
6255	pageset_init(p);
6256	pageset_set_batch(p, batch);
6257}
6258
6259/*
6260 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6261 * to the value high for the pageset p.
6262 */
6263static void pageset_set_high(struct per_cpu_pageset *p,
6264				unsigned long high)
6265{
6266	unsigned long batch = max(1UL, high / 4);
6267	if ((high / 4) > (PAGE_SHIFT * 8))
6268		batch = PAGE_SHIFT * 8;
6269
6270	pageset_update(&p->pcp, high, batch);
6271}
6272
6273static void pageset_set_high_and_batch(struct zone *zone,
6274				       struct per_cpu_pageset *pcp)
6275{
6276	if (percpu_pagelist_fraction)
6277		pageset_set_high(pcp,
6278			(zone_managed_pages(zone) /
6279				percpu_pagelist_fraction));
6280	else
6281		pageset_set_batch(pcp, zone_batchsize(zone));
6282}
6283
6284static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6285{
6286	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6287
6288	pageset_init(pcp);
6289	pageset_set_high_and_batch(zone, pcp);
6290}
6291
6292void __meminit setup_zone_pageset(struct zone *zone)
6293{
6294	int cpu;
6295	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6296	for_each_possible_cpu(cpu)
6297		zone_pageset_init(zone, cpu);
6298}
6299
6300/*
6301 * Allocate per cpu pagesets and initialize them.
6302 * Before this call only boot pagesets were available.
6303 */
6304void __init setup_per_cpu_pageset(void)
6305{
6306	struct pglist_data *pgdat;
6307	struct zone *zone;
6308	int __maybe_unused cpu;
6309
6310	for_each_populated_zone(zone)
6311		setup_zone_pageset(zone);
6312
6313#ifdef CONFIG_NUMA
6314	/*
6315	 * Unpopulated zones continue using the boot pagesets.
6316	 * The numa stats for these pagesets need to be reset.
6317	 * Otherwise, they will end up skewing the stats of
6318	 * the nodes these zones are associated with.
6319	 */
6320	for_each_possible_cpu(cpu) {
6321		struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6322		memset(pcp->vm_numa_stat_diff, 0,
6323		       sizeof(pcp->vm_numa_stat_diff));
6324	}
6325#endif
6326
6327	for_each_online_pgdat(pgdat)
6328		pgdat->per_cpu_nodestats =
6329			alloc_percpu(struct per_cpu_nodestat);
6330}
6331
6332static __meminit void zone_pcp_init(struct zone *zone)
6333{
6334	/*
6335	 * per cpu subsystem is not up at this point. The following code
6336	 * relies on the ability of the linker to provide the
6337	 * offset of a (static) per cpu variable into the per cpu area.
6338	 */
6339	zone->pageset = &boot_pageset;
6340
6341	if (populated_zone(zone))
6342		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
6343			zone->name, zone->present_pages,
6344					 zone_batchsize(zone));
6345}
6346
6347void __meminit init_currently_empty_zone(struct zone *zone,
6348					unsigned long zone_start_pfn,
6349					unsigned long size)
6350{
6351	struct pglist_data *pgdat = zone->zone_pgdat;
6352	int zone_idx = zone_idx(zone) + 1;
6353
6354	if (zone_idx > pgdat->nr_zones)
6355		pgdat->nr_zones = zone_idx;
6356
6357	zone->zone_start_pfn = zone_start_pfn;
6358
6359	mminit_dprintk(MMINIT_TRACE, "memmap_init",
6360			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
6361			pgdat->node_id,
6362			(unsigned long)zone_idx(zone),
6363			zone_start_pfn, (zone_start_pfn + size));
6364
6365	zone_init_free_lists(zone);
6366	zone->initialized = 1;
6367}
6368
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6369/**
6370 * get_pfn_range_for_nid - Return the start and end page frames for a node
6371 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6372 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6373 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6374 *
6375 * It returns the start and end page frame of a node based on information
6376 * provided by memblock_set_node(). If called for a node
6377 * with no available memory, a warning is printed and the start and end
6378 * PFNs will be 0.
6379 */
6380void __init get_pfn_range_for_nid(unsigned int nid,
6381			unsigned long *start_pfn, unsigned long *end_pfn)
6382{
6383	unsigned long this_start_pfn, this_end_pfn;
6384	int i;
6385
6386	*start_pfn = -1UL;
6387	*end_pfn = 0;
6388
6389	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6390		*start_pfn = min(*start_pfn, this_start_pfn);
6391		*end_pfn = max(*end_pfn, this_end_pfn);
6392	}
6393
6394	if (*start_pfn == -1UL)
6395		*start_pfn = 0;
6396}
6397
6398/*
6399 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6400 * assumption is made that zones within a node are ordered in monotonic
6401 * increasing memory addresses so that the "highest" populated zone is used
6402 */
6403static void __init find_usable_zone_for_movable(void)
6404{
6405	int zone_index;
6406	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6407		if (zone_index == ZONE_MOVABLE)
6408			continue;
6409
6410		if (arch_zone_highest_possible_pfn[zone_index] >
6411				arch_zone_lowest_possible_pfn[zone_index])
6412			break;
6413	}
6414
6415	VM_BUG_ON(zone_index == -1);
6416	movable_zone = zone_index;
6417}
6418
6419/*
6420 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6421 * because it is sized independent of architecture. Unlike the other zones,
6422 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6423 * in each node depending on the size of each node and how evenly kernelcore
6424 * is distributed. This helper function adjusts the zone ranges
6425 * provided by the architecture for a given node by using the end of the
6426 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6427 * zones within a node are in order of monotonic increases memory addresses
6428 */
6429static void __init adjust_zone_range_for_zone_movable(int nid,
6430					unsigned long zone_type,
6431					unsigned long node_start_pfn,
6432					unsigned long node_end_pfn,
6433					unsigned long *zone_start_pfn,
6434					unsigned long *zone_end_pfn)
6435{
6436	/* Only adjust if ZONE_MOVABLE is on this node */
6437	if (zone_movable_pfn[nid]) {
6438		/* Size ZONE_MOVABLE */
6439		if (zone_type == ZONE_MOVABLE) {
6440			*zone_start_pfn = zone_movable_pfn[nid];
6441			*zone_end_pfn = min(node_end_pfn,
6442				arch_zone_highest_possible_pfn[movable_zone]);
6443
6444		/* Adjust for ZONE_MOVABLE starting within this range */
6445		} else if (!mirrored_kernelcore &&
6446			*zone_start_pfn < zone_movable_pfn[nid] &&
6447			*zone_end_pfn > zone_movable_pfn[nid]) {
6448			*zone_end_pfn = zone_movable_pfn[nid];
6449
6450		/* Check if this whole range is within ZONE_MOVABLE */
6451		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
6452			*zone_start_pfn = *zone_end_pfn;
6453	}
6454}
6455
6456/*
6457 * Return the number of pages a zone spans in a node, including holes
6458 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6459 */
6460static unsigned long __init zone_spanned_pages_in_node(int nid,
6461					unsigned long zone_type,
6462					unsigned long node_start_pfn,
6463					unsigned long node_end_pfn,
6464					unsigned long *zone_start_pfn,
6465					unsigned long *zone_end_pfn)
 
6466{
6467	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6468	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6469	/* When hotadd a new node from cpu_up(), the node should be empty */
6470	if (!node_start_pfn && !node_end_pfn)
6471		return 0;
6472
6473	/* Get the start and end of the zone */
6474	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6475	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6476	adjust_zone_range_for_zone_movable(nid, zone_type,
6477				node_start_pfn, node_end_pfn,
6478				zone_start_pfn, zone_end_pfn);
6479
6480	/* Check that this node has pages within the zone's required range */
6481	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6482		return 0;
6483
6484	/* Move the zone boundaries inside the node if necessary */
6485	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6486	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6487
6488	/* Return the spanned pages */
6489	return *zone_end_pfn - *zone_start_pfn;
6490}
6491
6492/*
6493 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6494 * then all holes in the requested range will be accounted for.
6495 */
6496unsigned long __init __absent_pages_in_range(int nid,
6497				unsigned long range_start_pfn,
6498				unsigned long range_end_pfn)
6499{
6500	unsigned long nr_absent = range_end_pfn - range_start_pfn;
6501	unsigned long start_pfn, end_pfn;
6502	int i;
6503
6504	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6505		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6506		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6507		nr_absent -= end_pfn - start_pfn;
6508	}
6509	return nr_absent;
6510}
6511
6512/**
6513 * absent_pages_in_range - Return number of page frames in holes within a range
6514 * @start_pfn: The start PFN to start searching for holes
6515 * @end_pfn: The end PFN to stop searching for holes
6516 *
6517 * Return: the number of pages frames in memory holes within a range.
6518 */
6519unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6520							unsigned long end_pfn)
6521{
6522	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6523}
6524
6525/* Return the number of page frames in holes in a zone on a node */
6526static unsigned long __init zone_absent_pages_in_node(int nid,
6527					unsigned long zone_type,
6528					unsigned long node_start_pfn,
6529					unsigned long node_end_pfn)
 
6530{
6531	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6532	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6533	unsigned long zone_start_pfn, zone_end_pfn;
6534	unsigned long nr_absent;
6535
6536	/* When hotadd a new node from cpu_up(), the node should be empty */
6537	if (!node_start_pfn && !node_end_pfn)
6538		return 0;
6539
6540	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6541	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6542
6543	adjust_zone_range_for_zone_movable(nid, zone_type,
6544			node_start_pfn, node_end_pfn,
6545			&zone_start_pfn, &zone_end_pfn);
6546	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6547
6548	/*
6549	 * ZONE_MOVABLE handling.
6550	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6551	 * and vice versa.
6552	 */
6553	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6554		unsigned long start_pfn, end_pfn;
6555		struct memblock_region *r;
6556
6557		for_each_memblock(memory, r) {
6558			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6559					  zone_start_pfn, zone_end_pfn);
6560			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6561					zone_start_pfn, zone_end_pfn);
6562
6563			if (zone_type == ZONE_MOVABLE &&
6564			    memblock_is_mirror(r))
6565				nr_absent += end_pfn - start_pfn;
6566
6567			if (zone_type == ZONE_NORMAL &&
6568			    !memblock_is_mirror(r))
6569				nr_absent += end_pfn - start_pfn;
6570		}
6571	}
6572
6573	return nr_absent;
6574}
6575
6576static void __init calculate_node_totalpages(struct pglist_data *pgdat,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6577						unsigned long node_start_pfn,
6578						unsigned long node_end_pfn)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6579{
6580	unsigned long realtotalpages = 0, totalpages = 0;
6581	enum zone_type i;
6582
6583	for (i = 0; i < MAX_NR_ZONES; i++) {
6584		struct zone *zone = pgdat->node_zones + i;
6585		unsigned long zone_start_pfn, zone_end_pfn;
6586		unsigned long spanned, absent;
6587		unsigned long size, real_size;
6588
6589		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6590						     node_start_pfn,
6591						     node_end_pfn,
6592						     &zone_start_pfn,
6593						     &zone_end_pfn);
6594		absent = zone_absent_pages_in_node(pgdat->node_id, i,
6595						   node_start_pfn,
6596						   node_end_pfn);
6597
6598		size = spanned;
6599		real_size = size - absent;
6600
6601		if (size)
6602			zone->zone_start_pfn = zone_start_pfn;
6603		else
6604			zone->zone_start_pfn = 0;
6605		zone->spanned_pages = size;
6606		zone->present_pages = real_size;
6607
6608		totalpages += size;
6609		realtotalpages += real_size;
6610	}
6611
6612	pgdat->node_spanned_pages = totalpages;
6613	pgdat->node_present_pages = realtotalpages;
6614	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6615							realtotalpages);
6616}
6617
6618#ifndef CONFIG_SPARSEMEM
6619/*
6620 * Calculate the size of the zone->blockflags rounded to an unsigned long
6621 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6622 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6623 * round what is now in bits to nearest long in bits, then return it in
6624 * bytes.
6625 */
6626static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6627{
6628	unsigned long usemapsize;
6629
6630	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6631	usemapsize = roundup(zonesize, pageblock_nr_pages);
6632	usemapsize = usemapsize >> pageblock_order;
6633	usemapsize *= NR_PAGEBLOCK_BITS;
6634	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6635
6636	return usemapsize / 8;
6637}
6638
6639static void __ref setup_usemap(struct pglist_data *pgdat,
6640				struct zone *zone,
6641				unsigned long zone_start_pfn,
6642				unsigned long zonesize)
6643{
6644	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6645	zone->pageblock_flags = NULL;
6646	if (usemapsize) {
6647		zone->pageblock_flags =
6648			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6649					    pgdat->node_id);
6650		if (!zone->pageblock_flags)
6651			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6652			      usemapsize, zone->name, pgdat->node_id);
6653	}
6654}
6655#else
6656static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6657				unsigned long zone_start_pfn, unsigned long zonesize) {}
6658#endif /* CONFIG_SPARSEMEM */
6659
6660#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6661
6662/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6663void __init set_pageblock_order(void)
6664{
6665	unsigned int order;
6666
6667	/* Check that pageblock_nr_pages has not already been setup */
6668	if (pageblock_order)
6669		return;
6670
6671	if (HPAGE_SHIFT > PAGE_SHIFT)
6672		order = HUGETLB_PAGE_ORDER;
6673	else
6674		order = MAX_ORDER - 1;
6675
6676	/*
6677	 * Assume the largest contiguous order of interest is a huge page.
6678	 * This value may be variable depending on boot parameters on IA64 and
6679	 * powerpc.
6680	 */
6681	pageblock_order = order;
6682}
6683#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6684
6685/*
6686 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6687 * is unused as pageblock_order is set at compile-time. See
6688 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6689 * the kernel config
6690 */
6691void __init set_pageblock_order(void)
6692{
6693}
6694
6695#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6696
6697static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6698						unsigned long present_pages)
6699{
6700	unsigned long pages = spanned_pages;
6701
6702	/*
6703	 * Provide a more accurate estimation if there are holes within
6704	 * the zone and SPARSEMEM is in use. If there are holes within the
6705	 * zone, each populated memory region may cost us one or two extra
6706	 * memmap pages due to alignment because memmap pages for each
6707	 * populated regions may not be naturally aligned on page boundary.
6708	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6709	 */
6710	if (spanned_pages > present_pages + (present_pages >> 4) &&
6711	    IS_ENABLED(CONFIG_SPARSEMEM))
6712		pages = present_pages;
6713
6714	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6715}
6716
6717#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6718static void pgdat_init_split_queue(struct pglist_data *pgdat)
6719{
6720	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6721
6722	spin_lock_init(&ds_queue->split_queue_lock);
6723	INIT_LIST_HEAD(&ds_queue->split_queue);
6724	ds_queue->split_queue_len = 0;
6725}
6726#else
6727static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6728#endif
6729
6730#ifdef CONFIG_COMPACTION
6731static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6732{
6733	init_waitqueue_head(&pgdat->kcompactd_wait);
6734}
6735#else
6736static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6737#endif
6738
6739static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6740{
6741	pgdat_resize_init(pgdat);
6742
6743	pgdat_init_split_queue(pgdat);
6744	pgdat_init_kcompactd(pgdat);
6745
6746	init_waitqueue_head(&pgdat->kswapd_wait);
6747	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6748
6749	pgdat_page_ext_init(pgdat);
6750	spin_lock_init(&pgdat->lru_lock);
6751	lruvec_init(&pgdat->__lruvec);
6752}
6753
6754static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6755							unsigned long remaining_pages)
6756{
6757	atomic_long_set(&zone->managed_pages, remaining_pages);
6758	zone_set_nid(zone, nid);
6759	zone->name = zone_names[idx];
6760	zone->zone_pgdat = NODE_DATA(nid);
6761	spin_lock_init(&zone->lock);
6762	zone_seqlock_init(zone);
6763	zone_pcp_init(zone);
6764}
6765
6766/*
6767 * Set up the zone data structures
6768 * - init pgdat internals
6769 * - init all zones belonging to this node
6770 *
6771 * NOTE: this function is only called during memory hotplug
6772 */
6773#ifdef CONFIG_MEMORY_HOTPLUG
6774void __ref free_area_init_core_hotplug(int nid)
6775{
6776	enum zone_type z;
6777	pg_data_t *pgdat = NODE_DATA(nid);
6778
6779	pgdat_init_internals(pgdat);
6780	for (z = 0; z < MAX_NR_ZONES; z++)
6781		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6782}
6783#endif
6784
6785/*
6786 * Set up the zone data structures:
6787 *   - mark all pages reserved
6788 *   - mark all memory queues empty
6789 *   - clear the memory bitmaps
6790 *
6791 * NOTE: pgdat should get zeroed by caller.
6792 * NOTE: this function is only called during early init.
6793 */
6794static void __init free_area_init_core(struct pglist_data *pgdat)
6795{
6796	enum zone_type j;
6797	int nid = pgdat->node_id;
6798
6799	pgdat_init_internals(pgdat);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6800	pgdat->per_cpu_nodestats = &boot_nodestats;
6801
6802	for (j = 0; j < MAX_NR_ZONES; j++) {
6803		struct zone *zone = pgdat->node_zones + j;
6804		unsigned long size, freesize, memmap_pages;
6805		unsigned long zone_start_pfn = zone->zone_start_pfn;
6806
6807		size = zone->spanned_pages;
6808		freesize = zone->present_pages;
6809
6810		/*
6811		 * Adjust freesize so that it accounts for how much memory
6812		 * is used by this zone for memmap. This affects the watermark
6813		 * and per-cpu initialisations
6814		 */
6815		memmap_pages = calc_memmap_size(size, freesize);
6816		if (!is_highmem_idx(j)) {
6817			if (freesize >= memmap_pages) {
6818				freesize -= memmap_pages;
6819				if (memmap_pages)
6820					printk(KERN_DEBUG
6821					       "  %s zone: %lu pages used for memmap\n",
6822					       zone_names[j], memmap_pages);
6823			} else
6824				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6825					zone_names[j], memmap_pages, freesize);
6826		}
6827
6828		/* Account for reserved pages */
6829		if (j == 0 && freesize > dma_reserve) {
6830			freesize -= dma_reserve;
6831			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6832					zone_names[0], dma_reserve);
6833		}
6834
6835		if (!is_highmem_idx(j))
6836			nr_kernel_pages += freesize;
6837		/* Charge for highmem memmap if there are enough kernel pages */
6838		else if (nr_kernel_pages > memmap_pages * 2)
6839			nr_kernel_pages -= memmap_pages;
6840		nr_all_pages += freesize;
6841
6842		/*
6843		 * Set an approximate value for lowmem here, it will be adjusted
6844		 * when the bootmem allocator frees pages into the buddy system.
6845		 * And all highmem pages will be managed by the buddy system.
6846		 */
6847		zone_init_internals(zone, j, nid, freesize);
 
 
 
 
 
 
 
 
6848
6849		if (!size)
6850			continue;
6851
6852		set_pageblock_order();
6853		setup_usemap(pgdat, zone, zone_start_pfn, size);
6854		init_currently_empty_zone(zone, zone_start_pfn, size);
6855		memmap_init(size, nid, j, zone_start_pfn);
6856	}
6857}
6858
6859#ifdef CONFIG_FLAT_NODE_MEM_MAP
6860static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6861{
6862	unsigned long __maybe_unused start = 0;
6863	unsigned long __maybe_unused offset = 0;
6864
6865	/* Skip empty nodes */
6866	if (!pgdat->node_spanned_pages)
6867		return;
6868
6869	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6870	offset = pgdat->node_start_pfn - start;
6871	/* ia64 gets its own node_mem_map, before this, without bootmem */
6872	if (!pgdat->node_mem_map) {
6873		unsigned long size, end;
6874		struct page *map;
6875
6876		/*
6877		 * The zone's endpoints aren't required to be MAX_ORDER
6878		 * aligned but the node_mem_map endpoints must be in order
6879		 * for the buddy allocator to function correctly.
6880		 */
6881		end = pgdat_end_pfn(pgdat);
6882		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6883		size =  (end - start) * sizeof(struct page);
6884		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6885					  pgdat->node_id);
6886		if (!map)
6887			panic("Failed to allocate %ld bytes for node %d memory map\n",
6888			      size, pgdat->node_id);
6889		pgdat->node_mem_map = map + offset;
6890	}
6891	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6892				__func__, pgdat->node_id, (unsigned long)pgdat,
6893				(unsigned long)pgdat->node_mem_map);
6894#ifndef CONFIG_NEED_MULTIPLE_NODES
6895	/*
6896	 * With no DISCONTIG, the global mem_map is just set as node 0's
6897	 */
6898	if (pgdat == NODE_DATA(0)) {
6899		mem_map = NODE_DATA(0)->node_mem_map;
 
6900		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6901			mem_map -= offset;
 
6902	}
6903#endif
6904}
6905#else
6906static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6907#endif /* CONFIG_FLAT_NODE_MEM_MAP */
6908
6909#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6910static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6911{
6912	pgdat->first_deferred_pfn = ULONG_MAX;
6913}
6914#else
6915static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6916#endif
6917
6918static void __init free_area_init_node(int nid)
6919{
6920	pg_data_t *pgdat = NODE_DATA(nid);
6921	unsigned long start_pfn = 0;
6922	unsigned long end_pfn = 0;
6923
6924	/* pg_data_t should be reset to zero when it's allocated */
6925	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
6926
6927	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6928
6929	pgdat->node_id = nid;
6930	pgdat->node_start_pfn = start_pfn;
6931	pgdat->per_cpu_nodestats = NULL;
6932
 
6933	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6934		(u64)start_pfn << PAGE_SHIFT,
6935		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6936	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
 
 
 
 
6937
6938	alloc_node_mem_map(pgdat);
6939	pgdat_set_deferred_range(pgdat);
6940
 
 
 
 
 
 
 
 
 
6941	free_area_init_core(pgdat);
6942}
6943
6944void __init free_area_init_memoryless_node(int nid)
6945{
6946	free_area_init_node(nid);
6947}
6948
6949#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6950/*
6951 * Initialize all valid struct pages in the range [spfn, epfn) and mark them
6952 * PageReserved(). Return the number of struct pages that were initialized.
6953 */
6954static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
6955{
6956	unsigned long pfn;
6957	u64 pgcnt = 0;
6958
6959	for (pfn = spfn; pfn < epfn; pfn++) {
6960		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6961			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6962				+ pageblock_nr_pages - 1;
6963			continue;
6964		}
6965		/*
6966		 * Use a fake node/zone (0) for now. Some of these pages
6967		 * (in memblock.reserved but not in memblock.memory) will
6968		 * get re-initialized via reserve_bootmem_region() later.
6969		 */
6970		__init_single_page(pfn_to_page(pfn), pfn, 0, 0);
6971		__SetPageReserved(pfn_to_page(pfn));
6972		pgcnt++;
6973	}
6974
6975	return pgcnt;
6976}
6977
6978/*
6979 * Only struct pages that are backed by physical memory are zeroed and
6980 * initialized by going through __init_single_page(). But, there are some
6981 * struct pages which are reserved in memblock allocator and their fields
6982 * may be accessed (for example page_to_pfn() on some configuration accesses
6983 * flags). We must explicitly initialize those struct pages.
6984 *
6985 * This function also addresses a similar issue where struct pages are left
6986 * uninitialized because the physical address range is not covered by
6987 * memblock.memory or memblock.reserved. That could happen when memblock
6988 * layout is manually configured via memmap=, or when the highest physical
6989 * address (max_pfn) does not end on a section boundary.
6990 */
6991static void __init init_unavailable_mem(void)
6992{
6993	phys_addr_t start, end;
 
6994	u64 i, pgcnt;
6995	phys_addr_t next = 0;
6996
6997	/*
6998	 * Loop through unavailable ranges not covered by memblock.memory.
 
6999	 */
7000	pgcnt = 0;
7001	for_each_mem_range(i, &memblock.memory, NULL,
7002			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
7003		if (next < start)
7004			pgcnt += init_unavailable_range(PFN_DOWN(next),
7005							PFN_UP(start));
7006		next = end;
 
7007	}
7008
7009	/*
7010	 * Early sections always have a fully populated memmap for the whole
7011	 * section - see pfn_valid(). If the last section has holes at the
7012	 * end and that section is marked "online", the memmap will be
7013	 * considered initialized. Make sure that memmap has a well defined
7014	 * state.
7015	 */
7016	pgcnt += init_unavailable_range(PFN_DOWN(next),
7017					round_up(max_pfn, PAGES_PER_SECTION));
7018
7019	/*
7020	 * Struct pages that do not have backing memory. This could be because
7021	 * firmware is using some of this memory, or for some other reasons.
 
 
 
7022	 */
7023	if (pgcnt)
7024		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
7025}
7026#else
7027static inline void __init init_unavailable_mem(void)
7028{
7029}
7030#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
7031
7032#if MAX_NUMNODES > 1
7033/*
7034 * Figure out the number of possible node ids.
7035 */
7036void __init setup_nr_node_ids(void)
7037{
7038	unsigned int highest;
7039
7040	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7041	nr_node_ids = highest + 1;
7042}
7043#endif
7044
7045/**
7046 * node_map_pfn_alignment - determine the maximum internode alignment
7047 *
7048 * This function should be called after node map is populated and sorted.
7049 * It calculates the maximum power of two alignment which can distinguish
7050 * all the nodes.
7051 *
7052 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7053 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7054 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7055 * shifted, 1GiB is enough and this function will indicate so.
7056 *
7057 * This is used to test whether pfn -> nid mapping of the chosen memory
7058 * model has fine enough granularity to avoid incorrect mapping for the
7059 * populated node map.
7060 *
7061 * Return: the determined alignment in pfn's.  0 if there is no alignment
7062 * requirement (single node).
7063 */
7064unsigned long __init node_map_pfn_alignment(void)
7065{
7066	unsigned long accl_mask = 0, last_end = 0;
7067	unsigned long start, end, mask;
7068	int last_nid = NUMA_NO_NODE;
7069	int i, nid;
7070
7071	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7072		if (!start || last_nid < 0 || last_nid == nid) {
7073			last_nid = nid;
7074			last_end = end;
7075			continue;
7076		}
7077
7078		/*
7079		 * Start with a mask granular enough to pin-point to the
7080		 * start pfn and tick off bits one-by-one until it becomes
7081		 * too coarse to separate the current node from the last.
7082		 */
7083		mask = ~((1 << __ffs(start)) - 1);
7084		while (mask && last_end <= (start & (mask << 1)))
7085			mask <<= 1;
7086
7087		/* accumulate all internode masks */
7088		accl_mask |= mask;
7089	}
7090
7091	/* convert mask to number of pages */
7092	return ~accl_mask + 1;
7093}
7094
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7095/**
7096 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7097 *
7098 * Return: the minimum PFN based on information provided via
7099 * memblock_set_node().
7100 */
7101unsigned long __init find_min_pfn_with_active_regions(void)
7102{
7103	return PHYS_PFN(memblock_start_of_DRAM());
7104}
7105
7106/*
7107 * early_calculate_totalpages()
7108 * Sum pages in active regions for movable zone.
7109 * Populate N_MEMORY for calculating usable_nodes.
7110 */
7111static unsigned long __init early_calculate_totalpages(void)
7112{
7113	unsigned long totalpages = 0;
7114	unsigned long start_pfn, end_pfn;
7115	int i, nid;
7116
7117	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7118		unsigned long pages = end_pfn - start_pfn;
7119
7120		totalpages += pages;
7121		if (pages)
7122			node_set_state(nid, N_MEMORY);
7123	}
7124	return totalpages;
7125}
7126
7127/*
7128 * Find the PFN the Movable zone begins in each node. Kernel memory
7129 * is spread evenly between nodes as long as the nodes have enough
7130 * memory. When they don't, some nodes will have more kernelcore than
7131 * others
7132 */
7133static void __init find_zone_movable_pfns_for_nodes(void)
7134{
7135	int i, nid;
7136	unsigned long usable_startpfn;
7137	unsigned long kernelcore_node, kernelcore_remaining;
7138	/* save the state before borrow the nodemask */
7139	nodemask_t saved_node_state = node_states[N_MEMORY];
7140	unsigned long totalpages = early_calculate_totalpages();
7141	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7142	struct memblock_region *r;
7143
7144	/* Need to find movable_zone earlier when movable_node is specified. */
7145	find_usable_zone_for_movable();
7146
7147	/*
7148	 * If movable_node is specified, ignore kernelcore and movablecore
7149	 * options.
7150	 */
7151	if (movable_node_is_enabled()) {
7152		for_each_memblock(memory, r) {
7153			if (!memblock_is_hotpluggable(r))
7154				continue;
7155
7156			nid = memblock_get_region_node(r);
7157
7158			usable_startpfn = PFN_DOWN(r->base);
7159			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7160				min(usable_startpfn, zone_movable_pfn[nid]) :
7161				usable_startpfn;
7162		}
7163
7164		goto out2;
7165	}
7166
7167	/*
7168	 * If kernelcore=mirror is specified, ignore movablecore option
7169	 */
7170	if (mirrored_kernelcore) {
7171		bool mem_below_4gb_not_mirrored = false;
7172
7173		for_each_memblock(memory, r) {
7174			if (memblock_is_mirror(r))
7175				continue;
7176
7177			nid = memblock_get_region_node(r);
7178
7179			usable_startpfn = memblock_region_memory_base_pfn(r);
7180
7181			if (usable_startpfn < 0x100000) {
7182				mem_below_4gb_not_mirrored = true;
7183				continue;
7184			}
7185
7186			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7187				min(usable_startpfn, zone_movable_pfn[nid]) :
7188				usable_startpfn;
7189		}
7190
7191		if (mem_below_4gb_not_mirrored)
7192			pr_warn("This configuration results in unmirrored kernel memory.\n");
7193
7194		goto out2;
7195	}
7196
7197	/*
7198	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7199	 * amount of necessary memory.
7200	 */
7201	if (required_kernelcore_percent)
7202		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7203				       10000UL;
7204	if (required_movablecore_percent)
7205		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7206					10000UL;
7207
7208	/*
7209	 * If movablecore= was specified, calculate what size of
7210	 * kernelcore that corresponds so that memory usable for
7211	 * any allocation type is evenly spread. If both kernelcore
7212	 * and movablecore are specified, then the value of kernelcore
7213	 * will be used for required_kernelcore if it's greater than
7214	 * what movablecore would have allowed.
7215	 */
7216	if (required_movablecore) {
7217		unsigned long corepages;
7218
7219		/*
7220		 * Round-up so that ZONE_MOVABLE is at least as large as what
7221		 * was requested by the user
7222		 */
7223		required_movablecore =
7224			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7225		required_movablecore = min(totalpages, required_movablecore);
7226		corepages = totalpages - required_movablecore;
7227
7228		required_kernelcore = max(required_kernelcore, corepages);
7229	}
7230
7231	/*
7232	 * If kernelcore was not specified or kernelcore size is larger
7233	 * than totalpages, there is no ZONE_MOVABLE.
7234	 */
7235	if (!required_kernelcore || required_kernelcore >= totalpages)
7236		goto out;
7237
7238	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7239	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7240
7241restart:
7242	/* Spread kernelcore memory as evenly as possible throughout nodes */
7243	kernelcore_node = required_kernelcore / usable_nodes;
7244	for_each_node_state(nid, N_MEMORY) {
7245		unsigned long start_pfn, end_pfn;
7246
7247		/*
7248		 * Recalculate kernelcore_node if the division per node
7249		 * now exceeds what is necessary to satisfy the requested
7250		 * amount of memory for the kernel
7251		 */
7252		if (required_kernelcore < kernelcore_node)
7253			kernelcore_node = required_kernelcore / usable_nodes;
7254
7255		/*
7256		 * As the map is walked, we track how much memory is usable
7257		 * by the kernel using kernelcore_remaining. When it is
7258		 * 0, the rest of the node is usable by ZONE_MOVABLE
7259		 */
7260		kernelcore_remaining = kernelcore_node;
7261
7262		/* Go through each range of PFNs within this node */
7263		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7264			unsigned long size_pages;
7265
7266			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7267			if (start_pfn >= end_pfn)
7268				continue;
7269
7270			/* Account for what is only usable for kernelcore */
7271			if (start_pfn < usable_startpfn) {
7272				unsigned long kernel_pages;
7273				kernel_pages = min(end_pfn, usable_startpfn)
7274								- start_pfn;
7275
7276				kernelcore_remaining -= min(kernel_pages,
7277							kernelcore_remaining);
7278				required_kernelcore -= min(kernel_pages,
7279							required_kernelcore);
7280
7281				/* Continue if range is now fully accounted */
7282				if (end_pfn <= usable_startpfn) {
7283
7284					/*
7285					 * Push zone_movable_pfn to the end so
7286					 * that if we have to rebalance
7287					 * kernelcore across nodes, we will
7288					 * not double account here
7289					 */
7290					zone_movable_pfn[nid] = end_pfn;
7291					continue;
7292				}
7293				start_pfn = usable_startpfn;
7294			}
7295
7296			/*
7297			 * The usable PFN range for ZONE_MOVABLE is from
7298			 * start_pfn->end_pfn. Calculate size_pages as the
7299			 * number of pages used as kernelcore
7300			 */
7301			size_pages = end_pfn - start_pfn;
7302			if (size_pages > kernelcore_remaining)
7303				size_pages = kernelcore_remaining;
7304			zone_movable_pfn[nid] = start_pfn + size_pages;
7305
7306			/*
7307			 * Some kernelcore has been met, update counts and
7308			 * break if the kernelcore for this node has been
7309			 * satisfied
7310			 */
7311			required_kernelcore -= min(required_kernelcore,
7312								size_pages);
7313			kernelcore_remaining -= size_pages;
7314			if (!kernelcore_remaining)
7315				break;
7316		}
7317	}
7318
7319	/*
7320	 * If there is still required_kernelcore, we do another pass with one
7321	 * less node in the count. This will push zone_movable_pfn[nid] further
7322	 * along on the nodes that still have memory until kernelcore is
7323	 * satisfied
7324	 */
7325	usable_nodes--;
7326	if (usable_nodes && required_kernelcore > usable_nodes)
7327		goto restart;
7328
7329out2:
7330	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7331	for (nid = 0; nid < MAX_NUMNODES; nid++)
7332		zone_movable_pfn[nid] =
7333			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7334
7335out:
7336	/* restore the node_state */
7337	node_states[N_MEMORY] = saved_node_state;
7338}
7339
7340/* Any regular or high memory on that node ? */
7341static void check_for_memory(pg_data_t *pgdat, int nid)
7342{
7343	enum zone_type zone_type;
7344
 
 
 
7345	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7346		struct zone *zone = &pgdat->node_zones[zone_type];
7347		if (populated_zone(zone)) {
7348			if (IS_ENABLED(CONFIG_HIGHMEM))
7349				node_set_state(nid, N_HIGH_MEMORY);
7350			if (zone_type <= ZONE_NORMAL)
7351				node_set_state(nid, N_NORMAL_MEMORY);
7352			break;
7353		}
7354	}
7355}
7356
7357/*
7358 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7359 * such cases we allow max_zone_pfn sorted in the descending order
7360 */
7361bool __weak arch_has_descending_max_zone_pfns(void)
7362{
7363	return false;
7364}
7365
7366/**
7367 * free_area_init - Initialise all pg_data_t and zone data
7368 * @max_zone_pfn: an array of max PFNs for each zone
7369 *
7370 * This will call free_area_init_node() for each active node in the system.
7371 * Using the page ranges provided by memblock_set_node(), the size of each
7372 * zone in each node and their holes is calculated. If the maximum PFN
7373 * between two adjacent zones match, it is assumed that the zone is empty.
7374 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7375 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7376 * starts where the previous one ended. For example, ZONE_DMA32 starts
7377 * at arch_max_dma_pfn.
7378 */
7379void __init free_area_init(unsigned long *max_zone_pfn)
7380{
7381	unsigned long start_pfn, end_pfn;
7382	int i, nid, zone;
7383	bool descending;
7384
7385	/* Record where the zone boundaries are */
7386	memset(arch_zone_lowest_possible_pfn, 0,
7387				sizeof(arch_zone_lowest_possible_pfn));
7388	memset(arch_zone_highest_possible_pfn, 0,
7389				sizeof(arch_zone_highest_possible_pfn));
7390
7391	start_pfn = find_min_pfn_with_active_regions();
7392	descending = arch_has_descending_max_zone_pfns();
7393
7394	for (i = 0; i < MAX_NR_ZONES; i++) {
7395		if (descending)
7396			zone = MAX_NR_ZONES - i - 1;
7397		else
7398			zone = i;
7399
7400		if (zone == ZONE_MOVABLE)
7401			continue;
7402
7403		end_pfn = max(max_zone_pfn[zone], start_pfn);
7404		arch_zone_lowest_possible_pfn[zone] = start_pfn;
7405		arch_zone_highest_possible_pfn[zone] = end_pfn;
7406
7407		start_pfn = end_pfn;
7408	}
7409
7410	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7411	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7412	find_zone_movable_pfns_for_nodes();
7413
7414	/* Print out the zone ranges */
7415	pr_info("Zone ranges:\n");
7416	for (i = 0; i < MAX_NR_ZONES; i++) {
7417		if (i == ZONE_MOVABLE)
7418			continue;
7419		pr_info("  %-8s ", zone_names[i]);
7420		if (arch_zone_lowest_possible_pfn[i] ==
7421				arch_zone_highest_possible_pfn[i])
7422			pr_cont("empty\n");
7423		else
7424			pr_cont("[mem %#018Lx-%#018Lx]\n",
7425				(u64)arch_zone_lowest_possible_pfn[i]
7426					<< PAGE_SHIFT,
7427				((u64)arch_zone_highest_possible_pfn[i]
7428					<< PAGE_SHIFT) - 1);
7429	}
7430
7431	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7432	pr_info("Movable zone start for each node\n");
7433	for (i = 0; i < MAX_NUMNODES; i++) {
7434		if (zone_movable_pfn[i])
7435			pr_info("  Node %d: %#018Lx\n", i,
7436			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7437	}
7438
7439	/*
7440	 * Print out the early node map, and initialize the
7441	 * subsection-map relative to active online memory ranges to
7442	 * enable future "sub-section" extensions of the memory map.
7443	 */
7444	pr_info("Early memory node ranges\n");
7445	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7446		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7447			(u64)start_pfn << PAGE_SHIFT,
7448			((u64)end_pfn << PAGE_SHIFT) - 1);
7449		subsection_map_init(start_pfn, end_pfn - start_pfn);
7450	}
7451
7452	/* Initialise every node */
7453	mminit_verify_pageflags_layout();
7454	setup_nr_node_ids();
7455	init_unavailable_mem();
7456	for_each_online_node(nid) {
7457		pg_data_t *pgdat = NODE_DATA(nid);
7458		free_area_init_node(nid);
 
7459
7460		/* Any memory on that node */
7461		if (pgdat->node_present_pages)
7462			node_set_state(nid, N_MEMORY);
7463		check_for_memory(pgdat, nid);
7464	}
 
7465}
7466
7467static int __init cmdline_parse_core(char *p, unsigned long *core,
7468				     unsigned long *percent)
7469{
7470	unsigned long long coremem;
7471	char *endptr;
7472
7473	if (!p)
7474		return -EINVAL;
7475
7476	/* Value may be a percentage of total memory, otherwise bytes */
7477	coremem = simple_strtoull(p, &endptr, 0);
7478	if (*endptr == '%') {
7479		/* Paranoid check for percent values greater than 100 */
7480		WARN_ON(coremem > 100);
7481
7482		*percent = coremem;
7483	} else {
7484		coremem = memparse(p, &p);
7485		/* Paranoid check that UL is enough for the coremem value */
7486		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7487
7488		*core = coremem >> PAGE_SHIFT;
7489		*percent = 0UL;
7490	}
7491	return 0;
7492}
7493
7494/*
7495 * kernelcore=size sets the amount of memory for use for allocations that
7496 * cannot be reclaimed or migrated.
7497 */
7498static int __init cmdline_parse_kernelcore(char *p)
7499{
7500	/* parse kernelcore=mirror */
7501	if (parse_option_str(p, "mirror")) {
7502		mirrored_kernelcore = true;
7503		return 0;
7504	}
7505
7506	return cmdline_parse_core(p, &required_kernelcore,
7507				  &required_kernelcore_percent);
7508}
7509
7510/*
7511 * movablecore=size sets the amount of memory for use for allocations that
7512 * can be reclaimed or migrated.
7513 */
7514static int __init cmdline_parse_movablecore(char *p)
7515{
7516	return cmdline_parse_core(p, &required_movablecore,
7517				  &required_movablecore_percent);
7518}
7519
7520early_param("kernelcore", cmdline_parse_kernelcore);
7521early_param("movablecore", cmdline_parse_movablecore);
7522
 
 
7523void adjust_managed_page_count(struct page *page, long count)
7524{
7525	atomic_long_add(count, &page_zone(page)->managed_pages);
7526	totalram_pages_add(count);
 
7527#ifdef CONFIG_HIGHMEM
7528	if (PageHighMem(page))
7529		totalhigh_pages_add(count);
7530#endif
 
7531}
7532EXPORT_SYMBOL(adjust_managed_page_count);
7533
7534unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7535{
7536	void *pos;
7537	unsigned long pages = 0;
7538
7539	start = (void *)PAGE_ALIGN((unsigned long)start);
7540	end = (void *)((unsigned long)end & PAGE_MASK);
7541	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7542		struct page *page = virt_to_page(pos);
7543		void *direct_map_addr;
7544
7545		/*
7546		 * 'direct_map_addr' might be different from 'pos'
7547		 * because some architectures' virt_to_page()
7548		 * work with aliases.  Getting the direct map
7549		 * address ensures that we get a _writeable_
7550		 * alias for the memset().
7551		 */
7552		direct_map_addr = page_address(page);
7553		if ((unsigned int)poison <= 0xFF)
7554			memset(direct_map_addr, poison, PAGE_SIZE);
7555
7556		free_reserved_page(page);
7557	}
7558
7559	if (pages && s)
7560		pr_info("Freeing %s memory: %ldK\n",
7561			s, pages << (PAGE_SHIFT - 10));
7562
7563	return pages;
7564}
 
7565
7566#ifdef	CONFIG_HIGHMEM
7567void free_highmem_page(struct page *page)
7568{
7569	__free_reserved_page(page);
7570	totalram_pages_inc();
7571	atomic_long_inc(&page_zone(page)->managed_pages);
7572	totalhigh_pages_inc();
7573}
7574#endif
7575
7576
7577void __init mem_init_print_info(const char *str)
7578{
7579	unsigned long physpages, codesize, datasize, rosize, bss_size;
7580	unsigned long init_code_size, init_data_size;
7581
7582	physpages = get_num_physpages();
7583	codesize = _etext - _stext;
7584	datasize = _edata - _sdata;
7585	rosize = __end_rodata - __start_rodata;
7586	bss_size = __bss_stop - __bss_start;
7587	init_data_size = __init_end - __init_begin;
7588	init_code_size = _einittext - _sinittext;
7589
7590	/*
7591	 * Detect special cases and adjust section sizes accordingly:
7592	 * 1) .init.* may be embedded into .data sections
7593	 * 2) .init.text.* may be out of [__init_begin, __init_end],
7594	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
7595	 * 3) .rodata.* may be embedded into .text or .data sections.
7596	 */
7597#define adj_init_size(start, end, size, pos, adj) \
7598	do { \
7599		if (start <= pos && pos < end && size > adj) \
7600			size -= adj; \
7601	} while (0)
7602
7603	adj_init_size(__init_begin, __init_end, init_data_size,
7604		     _sinittext, init_code_size);
7605	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7606	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7607	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7608	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7609
7610#undef	adj_init_size
7611
7612	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7613#ifdef	CONFIG_HIGHMEM
7614		", %luK highmem"
7615#endif
7616		"%s%s)\n",
7617		nr_free_pages() << (PAGE_SHIFT - 10),
7618		physpages << (PAGE_SHIFT - 10),
7619		codesize >> 10, datasize >> 10, rosize >> 10,
7620		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7621		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7622		totalcma_pages << (PAGE_SHIFT - 10),
7623#ifdef	CONFIG_HIGHMEM
7624		totalhigh_pages() << (PAGE_SHIFT - 10),
7625#endif
7626		str ? ", " : "", str ? str : "");
7627}
7628
7629/**
7630 * set_dma_reserve - set the specified number of pages reserved in the first zone
7631 * @new_dma_reserve: The number of pages to mark reserved
7632 *
7633 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7634 * In the DMA zone, a significant percentage may be consumed by kernel image
7635 * and other unfreeable allocations which can skew the watermarks badly. This
7636 * function may optionally be used to account for unfreeable pages in the
7637 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7638 * smaller per-cpu batchsize.
7639 */
7640void __init set_dma_reserve(unsigned long new_dma_reserve)
7641{
7642	dma_reserve = new_dma_reserve;
7643}
7644
 
 
 
 
 
 
 
7645static int page_alloc_cpu_dead(unsigned int cpu)
7646{
7647
7648	lru_add_drain_cpu(cpu);
7649	drain_pages(cpu);
7650
7651	/*
7652	 * Spill the event counters of the dead processor
7653	 * into the current processors event counters.
7654	 * This artificially elevates the count of the current
7655	 * processor.
7656	 */
7657	vm_events_fold_cpu(cpu);
7658
7659	/*
7660	 * Zero the differential counters of the dead processor
7661	 * so that the vm statistics are consistent.
7662	 *
7663	 * This is only okay since the processor is dead and cannot
7664	 * race with what we are doing.
7665	 */
7666	cpu_vm_stats_fold(cpu);
7667	return 0;
7668}
7669
7670#ifdef CONFIG_NUMA
7671int hashdist = HASHDIST_DEFAULT;
7672
7673static int __init set_hashdist(char *str)
7674{
7675	if (!str)
7676		return 0;
7677	hashdist = simple_strtoul(str, &str, 0);
7678	return 1;
7679}
7680__setup("hashdist=", set_hashdist);
7681#endif
7682
7683void __init page_alloc_init(void)
7684{
7685	int ret;
7686
7687#ifdef CONFIG_NUMA
7688	if (num_node_state(N_MEMORY) == 1)
7689		hashdist = 0;
7690#endif
7691
7692	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7693					"mm/page_alloc:dead", NULL,
7694					page_alloc_cpu_dead);
7695	WARN_ON(ret < 0);
7696}
7697
7698/*
7699 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7700 *	or min_free_kbytes changes.
7701 */
7702static void calculate_totalreserve_pages(void)
7703{
7704	struct pglist_data *pgdat;
7705	unsigned long reserve_pages = 0;
7706	enum zone_type i, j;
7707
7708	for_each_online_pgdat(pgdat) {
7709
7710		pgdat->totalreserve_pages = 0;
7711
7712		for (i = 0; i < MAX_NR_ZONES; i++) {
7713			struct zone *zone = pgdat->node_zones + i;
7714			long max = 0;
7715			unsigned long managed_pages = zone_managed_pages(zone);
7716
7717			/* Find valid and maximum lowmem_reserve in the zone */
7718			for (j = i; j < MAX_NR_ZONES; j++) {
7719				if (zone->lowmem_reserve[j] > max)
7720					max = zone->lowmem_reserve[j];
7721			}
7722
7723			/* we treat the high watermark as reserved pages. */
7724			max += high_wmark_pages(zone);
7725
7726			if (max > managed_pages)
7727				max = managed_pages;
7728
7729			pgdat->totalreserve_pages += max;
7730
7731			reserve_pages += max;
7732		}
7733	}
7734	totalreserve_pages = reserve_pages;
7735}
7736
7737/*
7738 * setup_per_zone_lowmem_reserve - called whenever
7739 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7740 *	has a correct pages reserved value, so an adequate number of
7741 *	pages are left in the zone after a successful __alloc_pages().
7742 */
7743static void setup_per_zone_lowmem_reserve(void)
7744{
7745	struct pglist_data *pgdat;
7746	enum zone_type j, idx;
7747
7748	for_each_online_pgdat(pgdat) {
7749		for (j = 0; j < MAX_NR_ZONES; j++) {
7750			struct zone *zone = pgdat->node_zones + j;
7751			unsigned long managed_pages = zone_managed_pages(zone);
7752
7753			zone->lowmem_reserve[j] = 0;
7754
7755			idx = j;
7756			while (idx) {
7757				struct zone *lower_zone;
7758
7759				idx--;
7760				lower_zone = pgdat->node_zones + idx;
7761
7762				if (!sysctl_lowmem_reserve_ratio[idx] ||
7763				    !zone_managed_pages(lower_zone)) {
7764					lower_zone->lowmem_reserve[j] = 0;
7765					continue;
7766				} else {
7767					lower_zone->lowmem_reserve[j] =
7768						managed_pages / sysctl_lowmem_reserve_ratio[idx];
7769				}
7770				managed_pages += zone_managed_pages(lower_zone);
7771			}
7772		}
7773	}
7774
7775	/* update totalreserve_pages */
7776	calculate_totalreserve_pages();
7777}
7778
7779static void __setup_per_zone_wmarks(void)
7780{
7781	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7782	unsigned long lowmem_pages = 0;
7783	struct zone *zone;
7784	unsigned long flags;
7785
7786	/* Calculate total number of !ZONE_HIGHMEM pages */
7787	for_each_zone(zone) {
7788		if (!is_highmem(zone))
7789			lowmem_pages += zone_managed_pages(zone);
7790	}
7791
7792	for_each_zone(zone) {
7793		u64 tmp;
7794
7795		spin_lock_irqsave(&zone->lock, flags);
7796		tmp = (u64)pages_min * zone_managed_pages(zone);
7797		do_div(tmp, lowmem_pages);
7798		if (is_highmem(zone)) {
7799			/*
7800			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7801			 * need highmem pages, so cap pages_min to a small
7802			 * value here.
7803			 *
7804			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7805			 * deltas control async page reclaim, and so should
7806			 * not be capped for highmem.
7807			 */
7808			unsigned long min_pages;
7809
7810			min_pages = zone_managed_pages(zone) / 1024;
7811			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7812			zone->_watermark[WMARK_MIN] = min_pages;
7813		} else {
7814			/*
7815			 * If it's a lowmem zone, reserve a number of pages
7816			 * proportionate to the zone's size.
7817			 */
7818			zone->_watermark[WMARK_MIN] = tmp;
7819		}
7820
7821		/*
7822		 * Set the kswapd watermarks distance according to the
7823		 * scale factor in proportion to available memory, but
7824		 * ensure a minimum size on small systems.
7825		 */
7826		tmp = max_t(u64, tmp >> 2,
7827			    mult_frac(zone_managed_pages(zone),
7828				      watermark_scale_factor, 10000));
7829
7830		zone->watermark_boost = 0;
7831		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7832		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7833
7834		spin_unlock_irqrestore(&zone->lock, flags);
7835	}
7836
7837	/* update totalreserve_pages */
7838	calculate_totalreserve_pages();
7839}
7840
7841/**
7842 * setup_per_zone_wmarks - called when min_free_kbytes changes
7843 * or when memory is hot-{added|removed}
7844 *
7845 * Ensures that the watermark[min,low,high] values for each zone are set
7846 * correctly with respect to min_free_kbytes.
7847 */
7848void setup_per_zone_wmarks(void)
7849{
7850	static DEFINE_SPINLOCK(lock);
7851
7852	spin_lock(&lock);
7853	__setup_per_zone_wmarks();
7854	spin_unlock(&lock);
7855}
7856
7857/*
7858 * Initialise min_free_kbytes.
7859 *
7860 * For small machines we want it small (128k min).  For large machines
7861 * we want it large (256MB max).  But it is not linear, because network
7862 * bandwidth does not increase linearly with machine size.  We use
7863 *
7864 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7865 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7866 *
7867 * which yields
7868 *
7869 * 16MB:	512k
7870 * 32MB:	724k
7871 * 64MB:	1024k
7872 * 128MB:	1448k
7873 * 256MB:	2048k
7874 * 512MB:	2896k
7875 * 1024MB:	4096k
7876 * 2048MB:	5792k
7877 * 4096MB:	8192k
7878 * 8192MB:	11584k
7879 * 16384MB:	16384k
7880 */
7881int __meminit init_per_zone_wmark_min(void)
7882{
7883	unsigned long lowmem_kbytes;
7884	int new_min_free_kbytes;
7885
7886	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7887	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7888
7889	if (new_min_free_kbytes > user_min_free_kbytes) {
7890		min_free_kbytes = new_min_free_kbytes;
7891		if (min_free_kbytes < 128)
7892			min_free_kbytes = 128;
7893		if (min_free_kbytes > 262144)
7894			min_free_kbytes = 262144;
7895	} else {
7896		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7897				new_min_free_kbytes, user_min_free_kbytes);
7898	}
7899	setup_per_zone_wmarks();
7900	refresh_zone_stat_thresholds();
7901	setup_per_zone_lowmem_reserve();
7902
7903#ifdef CONFIG_NUMA
7904	setup_min_unmapped_ratio();
7905	setup_min_slab_ratio();
7906#endif
7907
7908	khugepaged_min_free_kbytes_update();
7909
7910	return 0;
7911}
7912postcore_initcall(init_per_zone_wmark_min)
7913
7914/*
7915 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7916 *	that we can call two helper functions whenever min_free_kbytes
7917 *	changes.
7918 */
7919int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7920		void *buffer, size_t *length, loff_t *ppos)
7921{
7922	int rc;
7923
7924	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7925	if (rc)
7926		return rc;
7927
7928	if (write) {
7929		user_min_free_kbytes = min_free_kbytes;
7930		setup_per_zone_wmarks();
7931	}
7932	return 0;
7933}
7934
7935int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7936		void *buffer, size_t *length, loff_t *ppos)
7937{
7938	int rc;
7939
7940	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7941	if (rc)
7942		return rc;
7943
7944	if (write)
7945		setup_per_zone_wmarks();
7946
7947	return 0;
7948}
7949
7950#ifdef CONFIG_NUMA
7951static void setup_min_unmapped_ratio(void)
7952{
7953	pg_data_t *pgdat;
7954	struct zone *zone;
7955
7956	for_each_online_pgdat(pgdat)
7957		pgdat->min_unmapped_pages = 0;
7958
7959	for_each_zone(zone)
7960		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7961						         sysctl_min_unmapped_ratio) / 100;
7962}
7963
7964
7965int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7966		void *buffer, size_t *length, loff_t *ppos)
7967{
7968	int rc;
7969
7970	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7971	if (rc)
7972		return rc;
7973
7974	setup_min_unmapped_ratio();
7975
7976	return 0;
7977}
7978
7979static void setup_min_slab_ratio(void)
7980{
7981	pg_data_t *pgdat;
7982	struct zone *zone;
7983
7984	for_each_online_pgdat(pgdat)
7985		pgdat->min_slab_pages = 0;
7986
7987	for_each_zone(zone)
7988		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7989						     sysctl_min_slab_ratio) / 100;
7990}
7991
7992int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7993		void *buffer, size_t *length, loff_t *ppos)
7994{
7995	int rc;
7996
7997	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7998	if (rc)
7999		return rc;
8000
8001	setup_min_slab_ratio();
8002
8003	return 0;
8004}
8005#endif
8006
8007/*
8008 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8009 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8010 *	whenever sysctl_lowmem_reserve_ratio changes.
8011 *
8012 * The reserve ratio obviously has absolutely no relation with the
8013 * minimum watermarks. The lowmem reserve ratio can only make sense
8014 * if in function of the boot time zone sizes.
8015 */
8016int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8017		void *buffer, size_t *length, loff_t *ppos)
8018{
8019	int i;
8020
8021	proc_dointvec_minmax(table, write, buffer, length, ppos);
8022
8023	for (i = 0; i < MAX_NR_ZONES; i++) {
8024		if (sysctl_lowmem_reserve_ratio[i] < 1)
8025			sysctl_lowmem_reserve_ratio[i] = 0;
8026	}
8027
8028	setup_per_zone_lowmem_reserve();
8029	return 0;
8030}
8031
8032static void __zone_pcp_update(struct zone *zone)
8033{
8034	unsigned int cpu;
8035
8036	for_each_possible_cpu(cpu)
8037		pageset_set_high_and_batch(zone,
8038				per_cpu_ptr(zone->pageset, cpu));
8039}
8040
8041/*
8042 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8043 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
8044 * pagelist can have before it gets flushed back to buddy allocator.
8045 */
8046int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8047		void *buffer, size_t *length, loff_t *ppos)
8048{
8049	struct zone *zone;
8050	int old_percpu_pagelist_fraction;
8051	int ret;
8052
8053	mutex_lock(&pcp_batch_high_lock);
8054	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8055
8056	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8057	if (!write || ret < 0)
8058		goto out;
8059
8060	/* Sanity checking to avoid pcp imbalance */
8061	if (percpu_pagelist_fraction &&
8062	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8063		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8064		ret = -EINVAL;
8065		goto out;
8066	}
8067
8068	/* No change? */
8069	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8070		goto out;
8071
8072	for_each_populated_zone(zone)
8073		__zone_pcp_update(zone);
 
 
 
 
 
8074out:
8075	mutex_unlock(&pcp_batch_high_lock);
8076	return ret;
8077}
8078
 
 
 
 
 
 
 
 
 
 
 
 
 
8079#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8080/*
8081 * Returns the number of pages that arch has reserved but
8082 * is not known to alloc_large_system_hash().
8083 */
8084static unsigned long __init arch_reserved_kernel_pages(void)
8085{
8086	return 0;
8087}
8088#endif
8089
8090/*
8091 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8092 * machines. As memory size is increased the scale is also increased but at
8093 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8094 * quadruples the scale is increased by one, which means the size of hash table
8095 * only doubles, instead of quadrupling as well.
8096 * Because 32-bit systems cannot have large physical memory, where this scaling
8097 * makes sense, it is disabled on such platforms.
8098 */
8099#if __BITS_PER_LONG > 32
8100#define ADAPT_SCALE_BASE	(64ul << 30)
8101#define ADAPT_SCALE_SHIFT	2
8102#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8103#endif
8104
8105/*
8106 * allocate a large system hash table from bootmem
8107 * - it is assumed that the hash table must contain an exact power-of-2
8108 *   quantity of entries
8109 * - limit is the number of hash buckets, not the total allocation size
8110 */
8111void *__init alloc_large_system_hash(const char *tablename,
8112				     unsigned long bucketsize,
8113				     unsigned long numentries,
8114				     int scale,
8115				     int flags,
8116				     unsigned int *_hash_shift,
8117				     unsigned int *_hash_mask,
8118				     unsigned long low_limit,
8119				     unsigned long high_limit)
8120{
8121	unsigned long long max = high_limit;
8122	unsigned long log2qty, size;
8123	void *table = NULL;
8124	gfp_t gfp_flags;
8125	bool virt;
8126
8127	/* allow the kernel cmdline to have a say */
8128	if (!numentries) {
8129		/* round applicable memory size up to nearest megabyte */
8130		numentries = nr_kernel_pages;
8131		numentries -= arch_reserved_kernel_pages();
8132
8133		/* It isn't necessary when PAGE_SIZE >= 1MB */
8134		if (PAGE_SHIFT < 20)
8135			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8136
8137#if __BITS_PER_LONG > 32
8138		if (!high_limit) {
8139			unsigned long adapt;
8140
8141			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8142			     adapt <<= ADAPT_SCALE_SHIFT)
8143				scale++;
8144		}
8145#endif
8146
8147		/* limit to 1 bucket per 2^scale bytes of low memory */
8148		if (scale > PAGE_SHIFT)
8149			numentries >>= (scale - PAGE_SHIFT);
8150		else
8151			numentries <<= (PAGE_SHIFT - scale);
8152
8153		/* Make sure we've got at least a 0-order allocation.. */
8154		if (unlikely(flags & HASH_SMALL)) {
8155			/* Makes no sense without HASH_EARLY */
8156			WARN_ON(!(flags & HASH_EARLY));
8157			if (!(numentries >> *_hash_shift)) {
8158				numentries = 1UL << *_hash_shift;
8159				BUG_ON(!numentries);
8160			}
8161		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8162			numentries = PAGE_SIZE / bucketsize;
8163	}
8164	numentries = roundup_pow_of_two(numentries);
8165
8166	/* limit allocation size to 1/16 total memory by default */
8167	if (max == 0) {
8168		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8169		do_div(max, bucketsize);
8170	}
8171	max = min(max, 0x80000000ULL);
8172
8173	if (numentries < low_limit)
8174		numentries = low_limit;
8175	if (numentries > max)
8176		numentries = max;
8177
8178	log2qty = ilog2(numentries);
8179
8180	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8181	do {
8182		virt = false;
8183		size = bucketsize << log2qty;
8184		if (flags & HASH_EARLY) {
8185			if (flags & HASH_ZERO)
8186				table = memblock_alloc(size, SMP_CACHE_BYTES);
8187			else
8188				table = memblock_alloc_raw(size,
8189							   SMP_CACHE_BYTES);
8190		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8191			table = __vmalloc(size, gfp_flags);
8192			virt = true;
8193		} else {
8194			/*
8195			 * If bucketsize is not a power-of-two, we may free
8196			 * some pages at the end of hash table which
8197			 * alloc_pages_exact() automatically does
8198			 */
8199			table = alloc_pages_exact(size, gfp_flags);
8200			kmemleak_alloc(table, size, 1, gfp_flags);
 
 
8201		}
8202	} while (!table && size > PAGE_SIZE && --log2qty);
8203
8204	if (!table)
8205		panic("Failed to allocate %s hash table\n", tablename);
8206
8207	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8208		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8209		virt ? "vmalloc" : "linear");
8210
8211	if (_hash_shift)
8212		*_hash_shift = log2qty;
8213	if (_hash_mask)
8214		*_hash_mask = (1 << log2qty) - 1;
8215
8216	return table;
8217}
8218
8219/*
8220 * This function checks whether pageblock includes unmovable pages or not.
 
8221 *
8222 * PageLRU check without isolation or lru_lock could race so that
8223 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8224 * check without lock_page also may miss some movable non-lru pages at
8225 * race condition. So you can't expect this function should be exact.
8226 *
8227 * Returns a page without holding a reference. If the caller wants to
8228 * dereference that page (e.g., dumping), it has to make sure that it
8229 * cannot get removed (e.g., via memory unplug) concurrently.
8230 *
8231 */
8232struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8233				 int migratetype, int flags)
 
8234{
8235	unsigned long iter = 0;
8236	unsigned long pfn = page_to_pfn(page);
8237
8238	/*
8239	 * TODO we could make this much more efficient by not checking every
8240	 * page in the range if we know all of them are in MOVABLE_ZONE and
8241	 * that the movable zone guarantees that pages are migratable but
8242	 * the later is not the case right now unfortunatelly. E.g. movablecore
8243	 * can still lead to having bootmem allocations in zone_movable.
8244	 */
8245
8246	if (is_migrate_cma_page(page)) {
8247		/*
8248		 * CMA allocations (alloc_contig_range) really need to mark
8249		 * isolate CMA pageblocks even when they are not movable in fact
8250		 * so consider them movable here.
8251		 */
8252		if (is_migrate_cma(migratetype))
8253			return NULL;
8254
8255		return page;
8256	}
 
8257
8258	for (; iter < pageblock_nr_pages; iter++) {
8259		if (!pfn_valid_within(pfn + iter))
8260			continue;
8261
8262		page = pfn_to_page(pfn + iter);
8263
8264		if (PageReserved(page))
8265			return page;
8266
8267		/*
8268		 * If the zone is movable and we have ruled out all reserved
8269		 * pages then it should be reasonably safe to assume the rest
8270		 * is movable.
8271		 */
8272		if (zone_idx(zone) == ZONE_MOVABLE)
8273			continue;
8274
8275		/*
8276		 * Hugepages are not in LRU lists, but they're movable.
8277		 * THPs are on the LRU, but need to be counted as #small pages.
8278		 * We need not scan over tail pages because we don't
8279		 * handle each tail page individually in migration.
8280		 */
8281		if (PageHuge(page) || PageTransCompound(page)) {
8282			struct page *head = compound_head(page);
8283			unsigned int skip_pages;
8284
8285			if (PageHuge(page)) {
8286				if (!hugepage_migration_supported(page_hstate(head)))
8287					return page;
8288			} else if (!PageLRU(head) && !__PageMovable(head)) {
8289				return page;
8290			}
8291
8292			skip_pages = compound_nr(head) - (page - head);
8293			iter += skip_pages - 1;
8294			continue;
8295		}
8296
8297		/*
8298		 * We can't use page_count without pin a page
8299		 * because another CPU can free compound page.
8300		 * This check already skips compound tails of THP
8301		 * because their page->_refcount is zero at all time.
8302		 */
8303		if (!page_ref_count(page)) {
8304			if (PageBuddy(page))
8305				iter += (1 << page_order(page)) - 1;
8306			continue;
8307		}
8308
8309		/*
8310		 * The HWPoisoned page may be not in buddy system, and
8311		 * page_count() is not 0.
8312		 */
8313		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8314			continue;
8315
8316		/*
8317		 * We treat all PageOffline() pages as movable when offlining
8318		 * to give drivers a chance to decrement their reference count
8319		 * in MEM_GOING_OFFLINE in order to indicate that these pages
8320		 * can be offlined as there are no direct references anymore.
8321		 * For actually unmovable PageOffline() where the driver does
8322		 * not support this, we will fail later when trying to actually
8323		 * move these pages that still have a reference count > 0.
8324		 * (false negatives in this function only)
8325		 */
8326		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8327			continue;
8328
8329		if (__PageMovable(page) || PageLRU(page))
8330			continue;
8331
 
 
8332		/*
8333		 * If there are RECLAIMABLE pages, we need to check
8334		 * it.  But now, memory offline itself doesn't call
8335		 * shrink_node_slabs() and it still to be fixed.
8336		 */
8337		/*
8338		 * If the page is not RAM, page_count()should be 0.
8339		 * we don't need more check. This is an _used_ not-movable page.
8340		 *
8341		 * The problematic thing here is PG_reserved pages. PG_reserved
8342		 * is set to both of a memory hole page and a _used_ kernel
8343		 * page at boot.
8344		 */
8345		return page;
 
8346	}
8347	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8348}
8349
8350#ifdef CONFIG_CONTIG_ALLOC
 
8351static unsigned long pfn_max_align_down(unsigned long pfn)
8352{
8353	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8354			     pageblock_nr_pages) - 1);
8355}
8356
8357static unsigned long pfn_max_align_up(unsigned long pfn)
8358{
8359	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8360				pageblock_nr_pages));
8361}
8362
8363/* [start, end) must belong to a single zone. */
8364static int __alloc_contig_migrate_range(struct compact_control *cc,
8365					unsigned long start, unsigned long end)
8366{
8367	/* This function is based on compact_zone() from compaction.c. */
8368	unsigned int nr_reclaimed;
8369	unsigned long pfn = start;
8370	unsigned int tries = 0;
8371	int ret = 0;
8372	struct migration_target_control mtc = {
8373		.nid = zone_to_nid(cc->zone),
8374		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8375	};
8376
8377	migrate_prep();
8378
8379	while (pfn < end || !list_empty(&cc->migratepages)) {
8380		if (fatal_signal_pending(current)) {
8381			ret = -EINTR;
8382			break;
8383		}
8384
8385		if (list_empty(&cc->migratepages)) {
8386			cc->nr_migratepages = 0;
8387			pfn = isolate_migratepages_range(cc, pfn, end);
8388			if (!pfn) {
8389				ret = -EINTR;
8390				break;
8391			}
8392			tries = 0;
8393		} else if (++tries == 5) {
8394			ret = ret < 0 ? ret : -EBUSY;
8395			break;
8396		}
8397
8398		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8399							&cc->migratepages);
8400		cc->nr_migratepages -= nr_reclaimed;
8401
8402		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8403				NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8404	}
8405	if (ret < 0) {
8406		putback_movable_pages(&cc->migratepages);
8407		return ret;
8408	}
8409	return 0;
8410}
8411
8412/**
8413 * alloc_contig_range() -- tries to allocate given range of pages
8414 * @start:	start PFN to allocate
8415 * @end:	one-past-the-last PFN to allocate
8416 * @migratetype:	migratetype of the underlaying pageblocks (either
8417 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
8418 *			in range must have the same migratetype and it must
8419 *			be either of the two.
8420 * @gfp_mask:	GFP mask to use during compaction
8421 *
8422 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8423 * aligned.  The PFN range must belong to a single zone.
8424 *
8425 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8426 * pageblocks in the range.  Once isolated, the pageblocks should not
8427 * be modified by others.
8428 *
8429 * Return: zero on success or negative error code.  On success all
8430 * pages which PFN is in [start, end) are allocated for the caller and
8431 * need to be freed with free_contig_range().
8432 */
8433int alloc_contig_range(unsigned long start, unsigned long end,
8434		       unsigned migratetype, gfp_t gfp_mask)
8435{
8436	unsigned long outer_start, outer_end;
8437	unsigned int order;
8438	int ret = 0;
8439
8440	struct compact_control cc = {
8441		.nr_migratepages = 0,
8442		.order = -1,
8443		.zone = page_zone(pfn_to_page(start)),
8444		.mode = MIGRATE_SYNC,
8445		.ignore_skip_hint = true,
8446		.no_set_skip_hint = true,
8447		.gfp_mask = current_gfp_context(gfp_mask),
8448		.alloc_contig = true,
8449	};
8450	INIT_LIST_HEAD(&cc.migratepages);
8451
8452	/*
8453	 * What we do here is we mark all pageblocks in range as
8454	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
8455	 * have different sizes, and due to the way page allocator
8456	 * work, we align the range to biggest of the two pages so
8457	 * that page allocator won't try to merge buddies from
8458	 * different pageblocks and change MIGRATE_ISOLATE to some
8459	 * other migration type.
8460	 *
8461	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8462	 * migrate the pages from an unaligned range (ie. pages that
8463	 * we are interested in).  This will put all the pages in
8464	 * range back to page allocator as MIGRATE_ISOLATE.
8465	 *
8466	 * When this is done, we take the pages in range from page
8467	 * allocator removing them from the buddy system.  This way
8468	 * page allocator will never consider using them.
8469	 *
8470	 * This lets us mark the pageblocks back as
8471	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8472	 * aligned range but not in the unaligned, original range are
8473	 * put back to page allocator so that buddy can use them.
8474	 */
8475
8476	ret = start_isolate_page_range(pfn_max_align_down(start),
8477				       pfn_max_align_up(end), migratetype, 0);
8478	if (ret < 0)
 
8479		return ret;
8480
8481	/*
8482	 * In case of -EBUSY, we'd like to know which page causes problem.
8483	 * So, just fall through. test_pages_isolated() has a tracepoint
8484	 * which will report the busy page.
8485	 *
8486	 * It is possible that busy pages could become available before
8487	 * the call to test_pages_isolated, and the range will actually be
8488	 * allocated.  So, if we fall through be sure to clear ret so that
8489	 * -EBUSY is not accidentally used or returned to caller.
8490	 */
8491	ret = __alloc_contig_migrate_range(&cc, start, end);
8492	if (ret && ret != -EBUSY)
8493		goto done;
8494	ret =0;
8495
8496	/*
8497	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8498	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
8499	 * more, all pages in [start, end) are free in page allocator.
8500	 * What we are going to do is to allocate all pages from
8501	 * [start, end) (that is remove them from page allocator).
8502	 *
8503	 * The only problem is that pages at the beginning and at the
8504	 * end of interesting range may be not aligned with pages that
8505	 * page allocator holds, ie. they can be part of higher order
8506	 * pages.  Because of this, we reserve the bigger range and
8507	 * once this is done free the pages we are not interested in.
8508	 *
8509	 * We don't have to hold zone->lock here because the pages are
8510	 * isolated thus they won't get removed from buddy.
8511	 */
8512
8513	lru_add_drain_all();
 
8514
8515	order = 0;
8516	outer_start = start;
8517	while (!PageBuddy(pfn_to_page(outer_start))) {
8518		if (++order >= MAX_ORDER) {
8519			outer_start = start;
8520			break;
8521		}
8522		outer_start &= ~0UL << order;
8523	}
8524
8525	if (outer_start != start) {
8526		order = page_order(pfn_to_page(outer_start));
8527
8528		/*
8529		 * outer_start page could be small order buddy page and
8530		 * it doesn't include start page. Adjust outer_start
8531		 * in this case to report failed page properly
8532		 * on tracepoint in test_pages_isolated()
8533		 */
8534		if (outer_start + (1UL << order) <= start)
8535			outer_start = start;
8536	}
8537
8538	/* Make sure the range is really isolated. */
8539	if (test_pages_isolated(outer_start, end, 0)) {
8540		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8541			__func__, outer_start, end);
8542		ret = -EBUSY;
8543		goto done;
8544	}
8545
8546	/* Grab isolated pages from freelists. */
8547	outer_end = isolate_freepages_range(&cc, outer_start, end);
8548	if (!outer_end) {
8549		ret = -EBUSY;
8550		goto done;
8551	}
8552
8553	/* Free head and tail (if any) */
8554	if (start != outer_start)
8555		free_contig_range(outer_start, start - outer_start);
8556	if (end != outer_end)
8557		free_contig_range(end, outer_end - end);
8558
8559done:
8560	undo_isolate_page_range(pfn_max_align_down(start),
8561				pfn_max_align_up(end), migratetype);
8562	return ret;
8563}
8564EXPORT_SYMBOL(alloc_contig_range);
8565
8566static int __alloc_contig_pages(unsigned long start_pfn,
8567				unsigned long nr_pages, gfp_t gfp_mask)
8568{
8569	unsigned long end_pfn = start_pfn + nr_pages;
8570
8571	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8572				  gfp_mask);
8573}
8574
8575static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8576				   unsigned long nr_pages)
8577{
8578	unsigned long i, end_pfn = start_pfn + nr_pages;
8579	struct page *page;
8580
8581	for (i = start_pfn; i < end_pfn; i++) {
8582		page = pfn_to_online_page(i);
8583		if (!page)
8584			return false;
8585
8586		if (page_zone(page) != z)
8587			return false;
8588
8589		if (PageReserved(page))
8590			return false;
8591
8592		if (page_count(page) > 0)
8593			return false;
8594
8595		if (PageHuge(page))
8596			return false;
8597	}
8598	return true;
8599}
8600
8601static bool zone_spans_last_pfn(const struct zone *zone,
8602				unsigned long start_pfn, unsigned long nr_pages)
8603{
8604	unsigned long last_pfn = start_pfn + nr_pages - 1;
8605
8606	return zone_spans_pfn(zone, last_pfn);
8607}
8608
8609/**
8610 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8611 * @nr_pages:	Number of contiguous pages to allocate
8612 * @gfp_mask:	GFP mask to limit search and used during compaction
8613 * @nid:	Target node
8614 * @nodemask:	Mask for other possible nodes
8615 *
8616 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8617 * on an applicable zonelist to find a contiguous pfn range which can then be
8618 * tried for allocation with alloc_contig_range(). This routine is intended
8619 * for allocation requests which can not be fulfilled with the buddy allocator.
8620 *
8621 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8622 * power of two then the alignment is guaranteed to be to the given nr_pages
8623 * (e.g. 1GB request would be aligned to 1GB).
8624 *
8625 * Allocated pages can be freed with free_contig_range() or by manually calling
8626 * __free_page() on each allocated page.
8627 *
8628 * Return: pointer to contiguous pages on success, or NULL if not successful.
8629 */
8630struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8631				int nid, nodemask_t *nodemask)
8632{
8633	unsigned long ret, pfn, flags;
8634	struct zonelist *zonelist;
8635	struct zone *zone;
8636	struct zoneref *z;
8637
8638	zonelist = node_zonelist(nid, gfp_mask);
8639	for_each_zone_zonelist_nodemask(zone, z, zonelist,
8640					gfp_zone(gfp_mask), nodemask) {
8641		spin_lock_irqsave(&zone->lock, flags);
8642
8643		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8644		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8645			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8646				/*
8647				 * We release the zone lock here because
8648				 * alloc_contig_range() will also lock the zone
8649				 * at some point. If there's an allocation
8650				 * spinning on this lock, it may win the race
8651				 * and cause alloc_contig_range() to fail...
8652				 */
8653				spin_unlock_irqrestore(&zone->lock, flags);
8654				ret = __alloc_contig_pages(pfn, nr_pages,
8655							gfp_mask);
8656				if (!ret)
8657					return pfn_to_page(pfn);
8658				spin_lock_irqsave(&zone->lock, flags);
8659			}
8660			pfn += nr_pages;
8661		}
8662		spin_unlock_irqrestore(&zone->lock, flags);
8663	}
8664	return NULL;
8665}
8666#endif /* CONFIG_CONTIG_ALLOC */
8667
8668void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8669{
8670	unsigned int count = 0;
8671
8672	for (; nr_pages--; pfn++) {
8673		struct page *page = pfn_to_page(pfn);
8674
8675		count += page_count(page) != 1;
8676		__free_page(page);
8677	}
8678	WARN(count != 0, "%d pages are still in use!\n", count);
8679}
8680EXPORT_SYMBOL(free_contig_range);
8681
 
8682/*
8683 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8684 * page high values need to be recalulated.
8685 */
8686void __meminit zone_pcp_update(struct zone *zone)
8687{
 
8688	mutex_lock(&pcp_batch_high_lock);
8689	__zone_pcp_update(zone);
 
 
8690	mutex_unlock(&pcp_batch_high_lock);
8691}
 
8692
8693void zone_pcp_reset(struct zone *zone)
8694{
8695	unsigned long flags;
8696	int cpu;
8697	struct per_cpu_pageset *pset;
8698
8699	/* avoid races with drain_pages()  */
8700	local_irq_save(flags);
8701	if (zone->pageset != &boot_pageset) {
8702		for_each_online_cpu(cpu) {
8703			pset = per_cpu_ptr(zone->pageset, cpu);
8704			drain_zonestat(zone, pset);
8705		}
8706		free_percpu(zone->pageset);
8707		zone->pageset = &boot_pageset;
8708	}
8709	local_irq_restore(flags);
8710}
8711
8712#ifdef CONFIG_MEMORY_HOTREMOVE
8713/*
8714 * All pages in the range must be in a single zone and isolated
8715 * before calling this.
8716 */
8717unsigned long
8718__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8719{
8720	struct page *page;
8721	struct zone *zone;
8722	unsigned int order;
8723	unsigned long pfn;
8724	unsigned long flags;
8725	unsigned long offlined_pages = 0;
8726
8727	/* find the first valid pfn */
8728	for (pfn = start_pfn; pfn < end_pfn; pfn++)
8729		if (pfn_valid(pfn))
8730			break;
8731	if (pfn == end_pfn)
8732		return offlined_pages;
8733
8734	offline_mem_sections(pfn, end_pfn);
8735	zone = page_zone(pfn_to_page(pfn));
8736	spin_lock_irqsave(&zone->lock, flags);
8737	pfn = start_pfn;
8738	while (pfn < end_pfn) {
8739		if (!pfn_valid(pfn)) {
8740			pfn++;
8741			continue;
8742		}
8743		page = pfn_to_page(pfn);
8744		/*
8745		 * The HWPoisoned page may be not in buddy system, and
8746		 * page_count() is not 0.
8747		 */
8748		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8749			pfn++;
8750			offlined_pages++;
8751			continue;
8752		}
8753		/*
8754		 * At this point all remaining PageOffline() pages have a
8755		 * reference count of 0 and can simply be skipped.
8756		 */
8757		if (PageOffline(page)) {
8758			BUG_ON(page_count(page));
8759			BUG_ON(PageBuddy(page));
8760			pfn++;
8761			offlined_pages++;
8762			continue;
8763		}
8764
8765		BUG_ON(page_count(page));
8766		BUG_ON(!PageBuddy(page));
8767		order = page_order(page);
8768		offlined_pages += 1 << order;
8769		del_page_from_free_list(page, zone, order);
 
 
 
 
 
 
 
8770		pfn += (1 << order);
8771	}
8772	spin_unlock_irqrestore(&zone->lock, flags);
8773
8774	return offlined_pages;
8775}
8776#endif
8777
8778bool is_free_buddy_page(struct page *page)
8779{
8780	struct zone *zone = page_zone(page);
8781	unsigned long pfn = page_to_pfn(page);
8782	unsigned long flags;
8783	unsigned int order;
8784
8785	spin_lock_irqsave(&zone->lock, flags);
8786	for (order = 0; order < MAX_ORDER; order++) {
8787		struct page *page_head = page - (pfn & ((1 << order) - 1));
8788
8789		if (PageBuddy(page_head) && page_order(page_head) >= order)
8790			break;
8791	}
8792	spin_unlock_irqrestore(&zone->lock, flags);
8793
8794	return order < MAX_ORDER;
8795}
8796
8797#ifdef CONFIG_MEMORY_FAILURE
8798/*
8799 * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
8800 * test is performed under the zone lock to prevent a race against page
8801 * allocation.
8802 */
8803bool set_hwpoison_free_buddy_page(struct page *page)
8804{
8805	struct zone *zone = page_zone(page);
8806	unsigned long pfn = page_to_pfn(page);
8807	unsigned long flags;
8808	unsigned int order;
8809	bool hwpoisoned = false;
8810
8811	spin_lock_irqsave(&zone->lock, flags);
8812	for (order = 0; order < MAX_ORDER; order++) {
8813		struct page *page_head = page - (pfn & ((1 << order) - 1));
8814
8815		if (PageBuddy(page_head) && page_order(page_head) >= order) {
8816			if (!TestSetPageHWPoison(page))
8817				hwpoisoned = true;
8818			break;
8819		}
8820	}
8821	spin_unlock_irqrestore(&zone->lock, flags);
8822
8823	return hwpoisoned;
8824}
8825#endif