Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * super.c - NILFS module and super block management.
   3 *
   4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * Written by Ryusuke Konishi.
  17 */
  18/*
  19 *  linux/fs/ext2/super.c
  20 *
  21 * Copyright (C) 1992, 1993, 1994, 1995
  22 * Remy Card (card@masi.ibp.fr)
  23 * Laboratoire MASI - Institut Blaise Pascal
  24 * Universite Pierre et Marie Curie (Paris VI)
  25 *
  26 *  from
  27 *
  28 *  linux/fs/minix/inode.c
  29 *
  30 *  Copyright (C) 1991, 1992  Linus Torvalds
  31 *
  32 *  Big-endian to little-endian byte-swapping/bitmaps by
  33 *        David S. Miller (davem@caip.rutgers.edu), 1995
  34 */
  35
  36#include <linux/module.h>
  37#include <linux/string.h>
  38#include <linux/slab.h>
  39#include <linux/init.h>
  40#include <linux/blkdev.h>
  41#include <linux/parser.h>
  42#include <linux/crc32.h>
  43#include <linux/vfs.h>
  44#include <linux/writeback.h>
  45#include <linux/seq_file.h>
  46#include <linux/mount.h>
  47#include "nilfs.h"
  48#include "export.h"
  49#include "mdt.h"
  50#include "alloc.h"
  51#include "btree.h"
  52#include "btnode.h"
  53#include "page.h"
  54#include "cpfile.h"
  55#include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
  56#include "ifile.h"
  57#include "dat.h"
  58#include "segment.h"
  59#include "segbuf.h"
  60
  61MODULE_AUTHOR("NTT Corp.");
  62MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
  63		   "(NILFS)");
  64MODULE_LICENSE("GPL");
  65
  66static struct kmem_cache *nilfs_inode_cachep;
  67struct kmem_cache *nilfs_transaction_cachep;
  68struct kmem_cache *nilfs_segbuf_cachep;
  69struct kmem_cache *nilfs_btree_path_cache;
  70
  71static int nilfs_setup_super(struct super_block *sb, int is_mount);
  72static int nilfs_remount(struct super_block *sb, int *flags, char *data);
  73
  74void __nilfs_msg(struct super_block *sb, const char *level, const char *fmt,
  75		 ...)
  76{
  77	struct va_format vaf;
  78	va_list args;
 
  79
  80	va_start(args, fmt);
  81	vaf.fmt = fmt;
 
 
  82	vaf.va = &args;
 
  83	if (sb)
  84		printk("%sNILFS (%s): %pV\n", level, sb->s_id, &vaf);
 
  85	else
  86		printk("%sNILFS: %pV\n", level, &vaf);
 
 
  87	va_end(args);
  88}
  89
  90static void nilfs_set_error(struct super_block *sb)
  91{
  92	struct the_nilfs *nilfs = sb->s_fs_info;
  93	struct nilfs_super_block **sbp;
  94
  95	down_write(&nilfs->ns_sem);
  96	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
  97		nilfs->ns_mount_state |= NILFS_ERROR_FS;
  98		sbp = nilfs_prepare_super(sb, 0);
  99		if (likely(sbp)) {
 100			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
 101			if (sbp[1])
 102				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
 103			nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 104		}
 105	}
 106	up_write(&nilfs->ns_sem);
 107}
 108
 109/**
 110 * __nilfs_error() - report failure condition on a filesystem
 111 *
 112 * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
 113 * reporting an error message.  This function should be called when
 114 * NILFS detects incoherences or defects of meta data on disk.
 115 *
 116 * This implements the body of nilfs_error() macro.  Normally,
 117 * nilfs_error() should be used.  As for sustainable errors such as a
 118 * single-shot I/O error, nilfs_msg() should be used instead.
 119 *
 120 * Callers should not add a trailing newline since this will do it.
 121 */
 122void __nilfs_error(struct super_block *sb, const char *function,
 123		   const char *fmt, ...)
 124{
 125	struct the_nilfs *nilfs = sb->s_fs_info;
 126	struct va_format vaf;
 127	va_list args;
 128
 129	va_start(args, fmt);
 130
 131	vaf.fmt = fmt;
 132	vaf.va = &args;
 133
 134	printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
 135	       sb->s_id, function, &vaf);
 136
 137	va_end(args);
 138
 139	if (!sb_rdonly(sb)) {
 140		nilfs_set_error(sb);
 141
 142		if (nilfs_test_opt(nilfs, ERRORS_RO)) {
 143			printk(KERN_CRIT "Remounting filesystem read-only\n");
 144			sb->s_flags |= SB_RDONLY;
 145		}
 146	}
 147
 148	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 149		panic("NILFS (device %s): panic forced after error\n",
 150		      sb->s_id);
 151}
 152
 153struct inode *nilfs_alloc_inode(struct super_block *sb)
 154{
 155	struct nilfs_inode_info *ii;
 156
 157	ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
 158	if (!ii)
 159		return NULL;
 160	ii->i_bh = NULL;
 161	ii->i_state = 0;
 162	ii->i_cno = 0;
 163	nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode);
 164	return &ii->vfs_inode;
 165}
 166
 167static void nilfs_i_callback(struct rcu_head *head)
 168{
 169	struct inode *inode = container_of(head, struct inode, i_rcu);
 170
 171	if (nilfs_is_metadata_file_inode(inode))
 172		nilfs_mdt_destroy(inode);
 173
 174	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
 175}
 176
 177void nilfs_destroy_inode(struct inode *inode)
 178{
 179	call_rcu(&inode->i_rcu, nilfs_i_callback);
 180}
 181
 182static int nilfs_sync_super(struct super_block *sb, int flag)
 183{
 184	struct the_nilfs *nilfs = sb->s_fs_info;
 185	int err;
 186
 187 retry:
 188	set_buffer_dirty(nilfs->ns_sbh[0]);
 189	if (nilfs_test_opt(nilfs, BARRIER)) {
 190		err = __sync_dirty_buffer(nilfs->ns_sbh[0],
 191					  REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
 192	} else {
 193		err = sync_dirty_buffer(nilfs->ns_sbh[0]);
 194	}
 195
 196	if (unlikely(err)) {
 197		nilfs_msg(sb, KERN_ERR, "unable to write superblock: err=%d",
 198			  err);
 199		if (err == -EIO && nilfs->ns_sbh[1]) {
 200			/*
 201			 * sbp[0] points to newer log than sbp[1],
 202			 * so copy sbp[0] to sbp[1] to take over sbp[0].
 203			 */
 204			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
 205			       nilfs->ns_sbsize);
 206			nilfs_fall_back_super_block(nilfs);
 207			goto retry;
 208		}
 209	} else {
 210		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
 211
 212		nilfs->ns_sbwcount++;
 213
 214		/*
 215		 * The latest segment becomes trailable from the position
 216		 * written in superblock.
 217		 */
 218		clear_nilfs_discontinued(nilfs);
 219
 220		/* update GC protection for recent segments */
 221		if (nilfs->ns_sbh[1]) {
 222			if (flag == NILFS_SB_COMMIT_ALL) {
 223				set_buffer_dirty(nilfs->ns_sbh[1]);
 224				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
 225					goto out;
 226			}
 227			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
 228			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
 229				sbp = nilfs->ns_sbp[1];
 230		}
 231
 232		spin_lock(&nilfs->ns_last_segment_lock);
 233		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
 234		spin_unlock(&nilfs->ns_last_segment_lock);
 235	}
 236 out:
 237	return err;
 238}
 239
 240void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
 241			  struct the_nilfs *nilfs)
 242{
 243	sector_t nfreeblocks;
 244
 245	/* nilfs->ns_sem must be locked by the caller. */
 246	nilfs_count_free_blocks(nilfs, &nfreeblocks);
 247	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
 248
 249	spin_lock(&nilfs->ns_last_segment_lock);
 250	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
 251	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
 252	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
 253	spin_unlock(&nilfs->ns_last_segment_lock);
 254}
 255
 256struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
 257					       int flip)
 258{
 259	struct the_nilfs *nilfs = sb->s_fs_info;
 260	struct nilfs_super_block **sbp = nilfs->ns_sbp;
 261
 262	/* nilfs->ns_sem must be locked by the caller. */
 263	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 264		if (sbp[1] &&
 265		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
 266			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
 267		} else {
 268			nilfs_msg(sb, KERN_CRIT, "superblock broke");
 269			return NULL;
 270		}
 271	} else if (sbp[1] &&
 272		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 273		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 274	}
 275
 276	if (flip && sbp[1])
 277		nilfs_swap_super_block(nilfs);
 278
 279	return sbp;
 280}
 281
 282int nilfs_commit_super(struct super_block *sb, int flag)
 283{
 284	struct the_nilfs *nilfs = sb->s_fs_info;
 285	struct nilfs_super_block **sbp = nilfs->ns_sbp;
 286	time64_t t;
 287
 288	/* nilfs->ns_sem must be locked by the caller. */
 289	t = ktime_get_real_seconds();
 290	nilfs->ns_sbwtime = t;
 291	sbp[0]->s_wtime = cpu_to_le64(t);
 292	sbp[0]->s_sum = 0;
 293	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 294					     (unsigned char *)sbp[0],
 295					     nilfs->ns_sbsize));
 296	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
 297		sbp[1]->s_wtime = sbp[0]->s_wtime;
 298		sbp[1]->s_sum = 0;
 299		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 300					    (unsigned char *)sbp[1],
 301					    nilfs->ns_sbsize));
 302	}
 303	clear_nilfs_sb_dirty(nilfs);
 304	nilfs->ns_flushed_device = 1;
 305	/* make sure store to ns_flushed_device cannot be reordered */
 306	smp_wmb();
 307	return nilfs_sync_super(sb, flag);
 308}
 309
 310/**
 311 * nilfs_cleanup_super() - write filesystem state for cleanup
 312 * @sb: super block instance to be unmounted or degraded to read-only
 313 *
 314 * This function restores state flags in the on-disk super block.
 315 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
 316 * filesystem was not clean previously.
 317 */
 318int nilfs_cleanup_super(struct super_block *sb)
 319{
 320	struct the_nilfs *nilfs = sb->s_fs_info;
 321	struct nilfs_super_block **sbp;
 322	int flag = NILFS_SB_COMMIT;
 323	int ret = -EIO;
 324
 325	sbp = nilfs_prepare_super(sb, 0);
 326	if (sbp) {
 327		sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
 328		nilfs_set_log_cursor(sbp[0], nilfs);
 329		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
 330			/*
 331			 * make the "clean" flag also to the opposite
 332			 * super block if both super blocks point to
 333			 * the same checkpoint.
 334			 */
 335			sbp[1]->s_state = sbp[0]->s_state;
 336			flag = NILFS_SB_COMMIT_ALL;
 337		}
 338		ret = nilfs_commit_super(sb, flag);
 339	}
 340	return ret;
 341}
 342
 343/**
 344 * nilfs_move_2nd_super - relocate secondary super block
 345 * @sb: super block instance
 346 * @sb2off: new offset of the secondary super block (in bytes)
 347 */
 348static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
 349{
 350	struct the_nilfs *nilfs = sb->s_fs_info;
 351	struct buffer_head *nsbh;
 352	struct nilfs_super_block *nsbp;
 353	sector_t blocknr, newblocknr;
 354	unsigned long offset;
 355	int sb2i;  /* array index of the secondary superblock */
 356	int ret = 0;
 357
 358	/* nilfs->ns_sem must be locked by the caller. */
 359	if (nilfs->ns_sbh[1] &&
 360	    nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
 361		sb2i = 1;
 362		blocknr = nilfs->ns_sbh[1]->b_blocknr;
 363	} else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
 364		sb2i = 0;
 365		blocknr = nilfs->ns_sbh[0]->b_blocknr;
 366	} else {
 367		sb2i = -1;
 368		blocknr = 0;
 369	}
 370	if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
 371		goto out;  /* super block location is unchanged */
 372
 373	/* Get new super block buffer */
 374	newblocknr = sb2off >> nilfs->ns_blocksize_bits;
 375	offset = sb2off & (nilfs->ns_blocksize - 1);
 376	nsbh = sb_getblk(sb, newblocknr);
 377	if (!nsbh) {
 378		nilfs_msg(sb, KERN_WARNING,
 379			  "unable to move secondary superblock to block %llu",
 380			  (unsigned long long)newblocknr);
 381		ret = -EIO;
 382		goto out;
 383	}
 384	nsbp = (void *)nsbh->b_data + offset;
 385	memset(nsbp, 0, nilfs->ns_blocksize);
 386
 387	if (sb2i >= 0) {
 388		memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
 389		brelse(nilfs->ns_sbh[sb2i]);
 390		nilfs->ns_sbh[sb2i] = nsbh;
 391		nilfs->ns_sbp[sb2i] = nsbp;
 392	} else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
 393		/* secondary super block will be restored to index 1 */
 394		nilfs->ns_sbh[1] = nsbh;
 395		nilfs->ns_sbp[1] = nsbp;
 396	} else {
 397		brelse(nsbh);
 398	}
 399out:
 400	return ret;
 401}
 402
 403/**
 404 * nilfs_resize_fs - resize the filesystem
 405 * @sb: super block instance
 406 * @newsize: new size of the filesystem (in bytes)
 407 */
 408int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
 409{
 410	struct the_nilfs *nilfs = sb->s_fs_info;
 411	struct nilfs_super_block **sbp;
 412	__u64 devsize, newnsegs;
 413	loff_t sb2off;
 414	int ret;
 415
 416	ret = -ERANGE;
 417	devsize = i_size_read(sb->s_bdev->bd_inode);
 418	if (newsize > devsize)
 419		goto out;
 420
 421	/*
 422	 * Write lock is required to protect some functions depending
 423	 * on the number of segments, the number of reserved segments,
 424	 * and so forth.
 425	 */
 426	down_write(&nilfs->ns_segctor_sem);
 427
 428	sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
 429	newnsegs = sb2off >> nilfs->ns_blocksize_bits;
 430	do_div(newnsegs, nilfs->ns_blocks_per_segment);
 431
 432	ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
 433	up_write(&nilfs->ns_segctor_sem);
 434	if (ret < 0)
 435		goto out;
 436
 437	ret = nilfs_construct_segment(sb);
 438	if (ret < 0)
 439		goto out;
 440
 441	down_write(&nilfs->ns_sem);
 442	nilfs_move_2nd_super(sb, sb2off);
 443	ret = -EIO;
 444	sbp = nilfs_prepare_super(sb, 0);
 445	if (likely(sbp)) {
 446		nilfs_set_log_cursor(sbp[0], nilfs);
 447		/*
 448		 * Drop NILFS_RESIZE_FS flag for compatibility with
 449		 * mount-time resize which may be implemented in a
 450		 * future release.
 451		 */
 452		sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
 453					      ~NILFS_RESIZE_FS);
 454		sbp[0]->s_dev_size = cpu_to_le64(newsize);
 455		sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
 456		if (sbp[1])
 457			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 458		ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 459	}
 460	up_write(&nilfs->ns_sem);
 461
 462	/*
 463	 * Reset the range of allocatable segments last.  This order
 464	 * is important in the case of expansion because the secondary
 465	 * superblock must be protected from log write until migration
 466	 * completes.
 467	 */
 468	if (!ret)
 469		nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
 470out:
 471	return ret;
 472}
 473
 474static void nilfs_put_super(struct super_block *sb)
 475{
 476	struct the_nilfs *nilfs = sb->s_fs_info;
 477
 478	nilfs_detach_log_writer(sb);
 479
 480	if (!sb_rdonly(sb)) {
 481		down_write(&nilfs->ns_sem);
 482		nilfs_cleanup_super(sb);
 483		up_write(&nilfs->ns_sem);
 484	}
 485
 486	iput(nilfs->ns_sufile);
 487	iput(nilfs->ns_cpfile);
 488	iput(nilfs->ns_dat);
 489
 490	destroy_nilfs(nilfs);
 491	sb->s_fs_info = NULL;
 492}
 493
 494static int nilfs_sync_fs(struct super_block *sb, int wait)
 495{
 496	struct the_nilfs *nilfs = sb->s_fs_info;
 497	struct nilfs_super_block **sbp;
 498	int err = 0;
 499
 500	/* This function is called when super block should be written back */
 501	if (wait)
 502		err = nilfs_construct_segment(sb);
 503
 504	down_write(&nilfs->ns_sem);
 505	if (nilfs_sb_dirty(nilfs)) {
 506		sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
 507		if (likely(sbp)) {
 508			nilfs_set_log_cursor(sbp[0], nilfs);
 509			nilfs_commit_super(sb, NILFS_SB_COMMIT);
 510		}
 511	}
 512	up_write(&nilfs->ns_sem);
 513
 514	if (!err)
 515		err = nilfs_flush_device(nilfs);
 516
 517	return err;
 518}
 519
 520int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
 521			    struct nilfs_root **rootp)
 522{
 523	struct the_nilfs *nilfs = sb->s_fs_info;
 524	struct nilfs_root *root;
 525	struct nilfs_checkpoint *raw_cp;
 526	struct buffer_head *bh_cp;
 527	int err = -ENOMEM;
 528
 529	root = nilfs_find_or_create_root(
 530		nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
 531	if (!root)
 532		return err;
 533
 534	if (root->ifile)
 535		goto reuse; /* already attached checkpoint */
 536
 537	down_read(&nilfs->ns_segctor_sem);
 538	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
 539					  &bh_cp);
 540	up_read(&nilfs->ns_segctor_sem);
 541	if (unlikely(err)) {
 542		if (err == -ENOENT || err == -EINVAL) {
 543			nilfs_msg(sb, KERN_ERR,
 544				  "Invalid checkpoint (checkpoint number=%llu)",
 545				  (unsigned long long)cno);
 546			err = -EINVAL;
 547		}
 548		goto failed;
 549	}
 550
 551	err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
 552			       &raw_cp->cp_ifile_inode, &root->ifile);
 553	if (err)
 554		goto failed_bh;
 555
 556	atomic64_set(&root->inodes_count,
 557			le64_to_cpu(raw_cp->cp_inodes_count));
 558	atomic64_set(&root->blocks_count,
 559			le64_to_cpu(raw_cp->cp_blocks_count));
 560
 561	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
 562
 563 reuse:
 564	*rootp = root;
 565	return 0;
 566
 567 failed_bh:
 568	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
 569 failed:
 570	nilfs_put_root(root);
 571
 572	return err;
 573}
 574
 575static int nilfs_freeze(struct super_block *sb)
 576{
 577	struct the_nilfs *nilfs = sb->s_fs_info;
 578	int err;
 579
 580	if (sb_rdonly(sb))
 581		return 0;
 582
 583	/* Mark super block clean */
 584	down_write(&nilfs->ns_sem);
 585	err = nilfs_cleanup_super(sb);
 586	up_write(&nilfs->ns_sem);
 587	return err;
 588}
 589
 590static int nilfs_unfreeze(struct super_block *sb)
 591{
 592	struct the_nilfs *nilfs = sb->s_fs_info;
 593
 594	if (sb_rdonly(sb))
 595		return 0;
 596
 597	down_write(&nilfs->ns_sem);
 598	nilfs_setup_super(sb, false);
 599	up_write(&nilfs->ns_sem);
 600	return 0;
 601}
 602
 603static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
 604{
 605	struct super_block *sb = dentry->d_sb;
 606	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
 607	struct the_nilfs *nilfs = root->nilfs;
 608	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
 609	unsigned long long blocks;
 610	unsigned long overhead;
 611	unsigned long nrsvblocks;
 612	sector_t nfreeblocks;
 613	u64 nmaxinodes, nfreeinodes;
 614	int err;
 615
 616	/*
 617	 * Compute all of the segment blocks
 618	 *
 619	 * The blocks before first segment and after last segment
 620	 * are excluded.
 621	 */
 622	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
 623		- nilfs->ns_first_data_block;
 624	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
 625
 626	/*
 627	 * Compute the overhead
 628	 *
 629	 * When distributing meta data blocks outside segment structure,
 630	 * We must count them as the overhead.
 631	 */
 632	overhead = 0;
 633
 634	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
 635	if (unlikely(err))
 636		return err;
 637
 638	err = nilfs_ifile_count_free_inodes(root->ifile,
 639					    &nmaxinodes, &nfreeinodes);
 640	if (unlikely(err)) {
 641		nilfs_msg(sb, KERN_WARNING,
 642			  "failed to count free inodes: err=%d", err);
 643		if (err == -ERANGE) {
 644			/*
 645			 * If nilfs_palloc_count_max_entries() returns
 646			 * -ERANGE error code then we simply treat
 647			 * curent inodes count as maximum possible and
 648			 * zero as free inodes value.
 649			 */
 650			nmaxinodes = atomic64_read(&root->inodes_count);
 651			nfreeinodes = 0;
 652			err = 0;
 653		} else
 654			return err;
 655	}
 656
 657	buf->f_type = NILFS_SUPER_MAGIC;
 658	buf->f_bsize = sb->s_blocksize;
 659	buf->f_blocks = blocks - overhead;
 660	buf->f_bfree = nfreeblocks;
 661	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
 662		(buf->f_bfree - nrsvblocks) : 0;
 663	buf->f_files = nmaxinodes;
 664	buf->f_ffree = nfreeinodes;
 665	buf->f_namelen = NILFS_NAME_LEN;
 666	buf->f_fsid.val[0] = (u32)id;
 667	buf->f_fsid.val[1] = (u32)(id >> 32);
 668
 669	return 0;
 670}
 671
 672static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
 673{
 674	struct super_block *sb = dentry->d_sb;
 675	struct the_nilfs *nilfs = sb->s_fs_info;
 676	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
 677
 678	if (!nilfs_test_opt(nilfs, BARRIER))
 679		seq_puts(seq, ",nobarrier");
 680	if (root->cno != NILFS_CPTREE_CURRENT_CNO)
 681		seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
 682	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 683		seq_puts(seq, ",errors=panic");
 684	if (nilfs_test_opt(nilfs, ERRORS_CONT))
 685		seq_puts(seq, ",errors=continue");
 686	if (nilfs_test_opt(nilfs, STRICT_ORDER))
 687		seq_puts(seq, ",order=strict");
 688	if (nilfs_test_opt(nilfs, NORECOVERY))
 689		seq_puts(seq, ",norecovery");
 690	if (nilfs_test_opt(nilfs, DISCARD))
 691		seq_puts(seq, ",discard");
 692
 693	return 0;
 694}
 695
 696static const struct super_operations nilfs_sops = {
 697	.alloc_inode    = nilfs_alloc_inode,
 698	.destroy_inode  = nilfs_destroy_inode,
 699	.dirty_inode    = nilfs_dirty_inode,
 700	.evict_inode    = nilfs_evict_inode,
 701	.put_super      = nilfs_put_super,
 702	.sync_fs        = nilfs_sync_fs,
 703	.freeze_fs	= nilfs_freeze,
 704	.unfreeze_fs	= nilfs_unfreeze,
 705	.statfs         = nilfs_statfs,
 706	.remount_fs     = nilfs_remount,
 707	.show_options = nilfs_show_options
 708};
 709
 710enum {
 711	Opt_err_cont, Opt_err_panic, Opt_err_ro,
 712	Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
 713	Opt_discard, Opt_nodiscard, Opt_err,
 714};
 715
 716static match_table_t tokens = {
 717	{Opt_err_cont, "errors=continue"},
 718	{Opt_err_panic, "errors=panic"},
 719	{Opt_err_ro, "errors=remount-ro"},
 720	{Opt_barrier, "barrier"},
 721	{Opt_nobarrier, "nobarrier"},
 722	{Opt_snapshot, "cp=%u"},
 723	{Opt_order, "order=%s"},
 724	{Opt_norecovery, "norecovery"},
 725	{Opt_discard, "discard"},
 726	{Opt_nodiscard, "nodiscard"},
 727	{Opt_err, NULL}
 728};
 729
 730static int parse_options(char *options, struct super_block *sb, int is_remount)
 731{
 732	struct the_nilfs *nilfs = sb->s_fs_info;
 733	char *p;
 734	substring_t args[MAX_OPT_ARGS];
 735
 736	if (!options)
 737		return 1;
 738
 739	while ((p = strsep(&options, ",")) != NULL) {
 740		int token;
 741
 742		if (!*p)
 743			continue;
 744
 745		token = match_token(p, tokens, args);
 746		switch (token) {
 747		case Opt_barrier:
 748			nilfs_set_opt(nilfs, BARRIER);
 749			break;
 750		case Opt_nobarrier:
 751			nilfs_clear_opt(nilfs, BARRIER);
 752			break;
 753		case Opt_order:
 754			if (strcmp(args[0].from, "relaxed") == 0)
 755				/* Ordered data semantics */
 756				nilfs_clear_opt(nilfs, STRICT_ORDER);
 757			else if (strcmp(args[0].from, "strict") == 0)
 758				/* Strict in-order semantics */
 759				nilfs_set_opt(nilfs, STRICT_ORDER);
 760			else
 761				return 0;
 762			break;
 763		case Opt_err_panic:
 764			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
 765			break;
 766		case Opt_err_ro:
 767			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
 768			break;
 769		case Opt_err_cont:
 770			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
 771			break;
 772		case Opt_snapshot:
 773			if (is_remount) {
 774				nilfs_msg(sb, KERN_ERR,
 775					  "\"%s\" option is invalid for remount",
 776					  p);
 777				return 0;
 778			}
 779			break;
 780		case Opt_norecovery:
 781			nilfs_set_opt(nilfs, NORECOVERY);
 782			break;
 783		case Opt_discard:
 784			nilfs_set_opt(nilfs, DISCARD);
 785			break;
 786		case Opt_nodiscard:
 787			nilfs_clear_opt(nilfs, DISCARD);
 788			break;
 789		default:
 790			nilfs_msg(sb, KERN_ERR,
 791				  "unrecognized mount option \"%s\"", p);
 792			return 0;
 793		}
 794	}
 795	return 1;
 796}
 797
 798static inline void
 799nilfs_set_default_options(struct super_block *sb,
 800			  struct nilfs_super_block *sbp)
 801{
 802	struct the_nilfs *nilfs = sb->s_fs_info;
 803
 804	nilfs->ns_mount_opt =
 805		NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
 806}
 807
 808static int nilfs_setup_super(struct super_block *sb, int is_mount)
 809{
 810	struct the_nilfs *nilfs = sb->s_fs_info;
 811	struct nilfs_super_block **sbp;
 812	int max_mnt_count;
 813	int mnt_count;
 814
 815	/* nilfs->ns_sem must be locked by the caller. */
 816	sbp = nilfs_prepare_super(sb, 0);
 817	if (!sbp)
 818		return -EIO;
 819
 820	if (!is_mount)
 821		goto skip_mount_setup;
 822
 823	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
 824	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
 825
 826	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
 827		nilfs_msg(sb, KERN_WARNING, "mounting fs with errors");
 828#if 0
 829	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
 830		nilfs_msg(sb, KERN_WARNING, "maximal mount count reached");
 831#endif
 832	}
 833	if (!max_mnt_count)
 834		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
 835
 836	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
 837	sbp[0]->s_mtime = cpu_to_le64(get_seconds());
 838
 839skip_mount_setup:
 840	sbp[0]->s_state =
 841		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
 842	/* synchronize sbp[1] with sbp[0] */
 843	if (sbp[1])
 844		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 845	return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 846}
 847
 848struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
 849						 u64 pos, int blocksize,
 850						 struct buffer_head **pbh)
 851{
 852	unsigned long long sb_index = pos;
 853	unsigned long offset;
 854
 855	offset = do_div(sb_index, blocksize);
 856	*pbh = sb_bread(sb, sb_index);
 857	if (!*pbh)
 858		return NULL;
 859	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
 860}
 861
 862int nilfs_store_magic_and_option(struct super_block *sb,
 863				 struct nilfs_super_block *sbp,
 864				 char *data)
 865{
 866	struct the_nilfs *nilfs = sb->s_fs_info;
 867
 868	sb->s_magic = le16_to_cpu(sbp->s_magic);
 869
 870	/* FS independent flags */
 871#ifdef NILFS_ATIME_DISABLE
 872	sb->s_flags |= SB_NOATIME;
 873#endif
 874
 875	nilfs_set_default_options(sb, sbp);
 876
 877	nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
 878	nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
 879	nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
 880	nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
 881
 882	return !parse_options(data, sb, 0) ? -EINVAL : 0;
 883}
 884
 885int nilfs_check_feature_compatibility(struct super_block *sb,
 886				      struct nilfs_super_block *sbp)
 887{
 888	__u64 features;
 889
 890	features = le64_to_cpu(sbp->s_feature_incompat) &
 891		~NILFS_FEATURE_INCOMPAT_SUPP;
 892	if (features) {
 893		nilfs_msg(sb, KERN_ERR,
 894			  "couldn't mount because of unsupported optional features (%llx)",
 895			  (unsigned long long)features);
 896		return -EINVAL;
 897	}
 898	features = le64_to_cpu(sbp->s_feature_compat_ro) &
 899		~NILFS_FEATURE_COMPAT_RO_SUPP;
 900	if (!sb_rdonly(sb) && features) {
 901		nilfs_msg(sb, KERN_ERR,
 902			  "couldn't mount RDWR because of unsupported optional features (%llx)",
 903			  (unsigned long long)features);
 904		return -EINVAL;
 905	}
 906	return 0;
 907}
 908
 909static int nilfs_get_root_dentry(struct super_block *sb,
 910				 struct nilfs_root *root,
 911				 struct dentry **root_dentry)
 912{
 913	struct inode *inode;
 914	struct dentry *dentry;
 915	int ret = 0;
 916
 917	inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
 918	if (IS_ERR(inode)) {
 919		ret = PTR_ERR(inode);
 920		nilfs_msg(sb, KERN_ERR, "error %d getting root inode", ret);
 921		goto out;
 922	}
 923	if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
 924		iput(inode);
 925		nilfs_msg(sb, KERN_ERR, "corrupt root inode");
 926		ret = -EINVAL;
 927		goto out;
 928	}
 929
 930	if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
 931		dentry = d_find_alias(inode);
 932		if (!dentry) {
 933			dentry = d_make_root(inode);
 934			if (!dentry) {
 935				ret = -ENOMEM;
 936				goto failed_dentry;
 937			}
 938		} else {
 939			iput(inode);
 940		}
 941	} else {
 942		dentry = d_obtain_root(inode);
 943		if (IS_ERR(dentry)) {
 944			ret = PTR_ERR(dentry);
 945			goto failed_dentry;
 946		}
 947	}
 948	*root_dentry = dentry;
 949 out:
 950	return ret;
 951
 952 failed_dentry:
 953	nilfs_msg(sb, KERN_ERR, "error %d getting root dentry", ret);
 954	goto out;
 955}
 956
 957static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
 958				 struct dentry **root_dentry)
 959{
 960	struct the_nilfs *nilfs = s->s_fs_info;
 961	struct nilfs_root *root;
 962	int ret;
 963
 964	mutex_lock(&nilfs->ns_snapshot_mount_mutex);
 965
 966	down_read(&nilfs->ns_segctor_sem);
 967	ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
 968	up_read(&nilfs->ns_segctor_sem);
 969	if (ret < 0) {
 970		ret = (ret == -ENOENT) ? -EINVAL : ret;
 971		goto out;
 972	} else if (!ret) {
 973		nilfs_msg(s, KERN_ERR,
 974			  "The specified checkpoint is not a snapshot (checkpoint number=%llu)",
 975			  (unsigned long long)cno);
 976		ret = -EINVAL;
 977		goto out;
 978	}
 979
 980	ret = nilfs_attach_checkpoint(s, cno, false, &root);
 981	if (ret) {
 982		nilfs_msg(s, KERN_ERR,
 983			  "error %d while loading snapshot (checkpoint number=%llu)",
 984			  ret, (unsigned long long)cno);
 985		goto out;
 986	}
 987	ret = nilfs_get_root_dentry(s, root, root_dentry);
 988	nilfs_put_root(root);
 989 out:
 990	mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
 991	return ret;
 992}
 993
 994/**
 995 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
 996 * @root_dentry: root dentry of the tree to be shrunk
 997 *
 998 * This function returns true if the tree was in-use.
 999 */
1000static bool nilfs_tree_is_busy(struct dentry *root_dentry)
1001{
1002	shrink_dcache_parent(root_dentry);
1003	return d_count(root_dentry) > 1;
1004}
1005
1006int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1007{
1008	struct the_nilfs *nilfs = sb->s_fs_info;
1009	struct nilfs_root *root;
1010	struct inode *inode;
1011	struct dentry *dentry;
1012	int ret;
1013
1014	if (cno > nilfs->ns_cno)
1015		return false;
1016
1017	if (cno >= nilfs_last_cno(nilfs))
1018		return true;	/* protect recent checkpoints */
1019
1020	ret = false;
1021	root = nilfs_lookup_root(nilfs, cno);
1022	if (root) {
1023		inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1024		if (inode) {
1025			dentry = d_find_alias(inode);
1026			if (dentry) {
1027				ret = nilfs_tree_is_busy(dentry);
1028				dput(dentry);
1029			}
1030			iput(inode);
1031		}
1032		nilfs_put_root(root);
1033	}
1034	return ret;
1035}
1036
1037/**
1038 * nilfs_fill_super() - initialize a super block instance
1039 * @sb: super_block
1040 * @data: mount options
1041 * @silent: silent mode flag
1042 *
1043 * This function is called exclusively by nilfs->ns_mount_mutex.
1044 * So, the recovery process is protected from other simultaneous mounts.
1045 */
1046static int
1047nilfs_fill_super(struct super_block *sb, void *data, int silent)
1048{
1049	struct the_nilfs *nilfs;
1050	struct nilfs_root *fsroot;
1051	__u64 cno;
1052	int err;
1053
1054	nilfs = alloc_nilfs(sb);
1055	if (!nilfs)
1056		return -ENOMEM;
1057
1058	sb->s_fs_info = nilfs;
1059
1060	err = init_nilfs(nilfs, sb, (char *)data);
1061	if (err)
1062		goto failed_nilfs;
1063
1064	sb->s_op = &nilfs_sops;
1065	sb->s_export_op = &nilfs_export_ops;
1066	sb->s_root = NULL;
1067	sb->s_time_gran = 1;
1068	sb->s_max_links = NILFS_LINK_MAX;
1069
1070	sb->s_bdi = bdi_get(sb->s_bdev->bd_bdi);
1071
1072	err = load_nilfs(nilfs, sb);
1073	if (err)
1074		goto failed_nilfs;
1075
1076	cno = nilfs_last_cno(nilfs);
1077	err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1078	if (err) {
1079		nilfs_msg(sb, KERN_ERR,
1080			  "error %d while loading last checkpoint (checkpoint number=%llu)",
1081			  err, (unsigned long long)cno);
1082		goto failed_unload;
1083	}
1084
1085	if (!sb_rdonly(sb)) {
1086		err = nilfs_attach_log_writer(sb, fsroot);
1087		if (err)
1088			goto failed_checkpoint;
1089	}
1090
1091	err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1092	if (err)
1093		goto failed_segctor;
1094
1095	nilfs_put_root(fsroot);
1096
1097	if (!sb_rdonly(sb)) {
1098		down_write(&nilfs->ns_sem);
1099		nilfs_setup_super(sb, true);
1100		up_write(&nilfs->ns_sem);
1101	}
1102
1103	return 0;
1104
1105 failed_segctor:
1106	nilfs_detach_log_writer(sb);
1107
1108 failed_checkpoint:
1109	nilfs_put_root(fsroot);
1110
1111 failed_unload:
1112	iput(nilfs->ns_sufile);
1113	iput(nilfs->ns_cpfile);
1114	iput(nilfs->ns_dat);
1115
1116 failed_nilfs:
1117	destroy_nilfs(nilfs);
1118	return err;
1119}
1120
1121static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1122{
1123	struct the_nilfs *nilfs = sb->s_fs_info;
1124	unsigned long old_sb_flags;
1125	unsigned long old_mount_opt;
1126	int err;
1127
1128	sync_filesystem(sb);
1129	old_sb_flags = sb->s_flags;
1130	old_mount_opt = nilfs->ns_mount_opt;
1131
1132	if (!parse_options(data, sb, 1)) {
1133		err = -EINVAL;
1134		goto restore_opts;
1135	}
1136	sb->s_flags = (sb->s_flags & ~SB_POSIXACL);
1137
1138	err = -EINVAL;
1139
1140	if (!nilfs_valid_fs(nilfs)) {
1141		nilfs_msg(sb, KERN_WARNING,
1142			  "couldn't remount because the filesystem is in an incomplete recovery state");
1143		goto restore_opts;
1144	}
1145
1146	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1147		goto out;
1148	if (*flags & SB_RDONLY) {
1149		/* Shutting down log writer */
1150		nilfs_detach_log_writer(sb);
1151		sb->s_flags |= SB_RDONLY;
1152
1153		/*
1154		 * Remounting a valid RW partition RDONLY, so set
1155		 * the RDONLY flag and then mark the partition as valid again.
1156		 */
1157		down_write(&nilfs->ns_sem);
1158		nilfs_cleanup_super(sb);
1159		up_write(&nilfs->ns_sem);
1160	} else {
1161		__u64 features;
1162		struct nilfs_root *root;
1163
1164		/*
1165		 * Mounting a RDONLY partition read-write, so reread and
1166		 * store the current valid flag.  (It may have been changed
1167		 * by fsck since we originally mounted the partition.)
1168		 */
1169		down_read(&nilfs->ns_sem);
1170		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1171			~NILFS_FEATURE_COMPAT_RO_SUPP;
1172		up_read(&nilfs->ns_sem);
1173		if (features) {
1174			nilfs_msg(sb, KERN_WARNING,
1175				  "couldn't remount RDWR because of unsupported optional features (%llx)",
1176				  (unsigned long long)features);
1177			err = -EROFS;
1178			goto restore_opts;
1179		}
1180
1181		sb->s_flags &= ~SB_RDONLY;
1182
1183		root = NILFS_I(d_inode(sb->s_root))->i_root;
1184		err = nilfs_attach_log_writer(sb, root);
1185		if (err)
1186			goto restore_opts;
1187
1188		down_write(&nilfs->ns_sem);
1189		nilfs_setup_super(sb, true);
1190		up_write(&nilfs->ns_sem);
1191	}
1192 out:
1193	return 0;
1194
1195 restore_opts:
1196	sb->s_flags = old_sb_flags;
1197	nilfs->ns_mount_opt = old_mount_opt;
1198	return err;
1199}
1200
1201struct nilfs_super_data {
1202	struct block_device *bdev;
1203	__u64 cno;
1204	int flags;
1205};
1206
1207static int nilfs_parse_snapshot_option(const char *option,
1208				       const substring_t *arg,
1209				       struct nilfs_super_data *sd)
1210{
1211	unsigned long long val;
1212	const char *msg = NULL;
1213	int err;
1214
1215	if (!(sd->flags & SB_RDONLY)) {
1216		msg = "read-only option is not specified";
1217		goto parse_error;
1218	}
1219
1220	err = kstrtoull(arg->from, 0, &val);
1221	if (err) {
1222		if (err == -ERANGE)
1223			msg = "too large checkpoint number";
1224		else
1225			msg = "malformed argument";
1226		goto parse_error;
1227	} else if (val == 0) {
1228		msg = "invalid checkpoint number 0";
1229		goto parse_error;
1230	}
1231	sd->cno = val;
1232	return 0;
1233
1234parse_error:
1235	nilfs_msg(NULL, KERN_ERR, "invalid option \"%s\": %s", option, msg);
1236	return 1;
1237}
1238
1239/**
1240 * nilfs_identify - pre-read mount options needed to identify mount instance
1241 * @data: mount options
1242 * @sd: nilfs_super_data
1243 */
1244static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1245{
1246	char *p, *options = data;
1247	substring_t args[MAX_OPT_ARGS];
1248	int token;
1249	int ret = 0;
1250
1251	do {
1252		p = strsep(&options, ",");
1253		if (p != NULL && *p) {
1254			token = match_token(p, tokens, args);
1255			if (token == Opt_snapshot)
1256				ret = nilfs_parse_snapshot_option(p, &args[0],
1257								  sd);
1258		}
1259		if (!options)
1260			break;
1261		BUG_ON(options == data);
1262		*(options - 1) = ',';
1263	} while (!ret);
1264	return ret;
1265}
1266
1267static int nilfs_set_bdev_super(struct super_block *s, void *data)
1268{
1269	s->s_bdev = data;
1270	s->s_dev = s->s_bdev->bd_dev;
1271	return 0;
1272}
1273
1274static int nilfs_test_bdev_super(struct super_block *s, void *data)
1275{
1276	return (void *)s->s_bdev == data;
1277}
1278
1279static struct dentry *
1280nilfs_mount(struct file_system_type *fs_type, int flags,
1281	     const char *dev_name, void *data)
1282{
1283	struct nilfs_super_data sd;
1284	struct super_block *s;
1285	fmode_t mode = FMODE_READ | FMODE_EXCL;
1286	struct dentry *root_dentry;
1287	int err, s_new = false;
1288
1289	if (!(flags & SB_RDONLY))
1290		mode |= FMODE_WRITE;
1291
1292	sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1293	if (IS_ERR(sd.bdev))
1294		return ERR_CAST(sd.bdev);
1295
1296	sd.cno = 0;
1297	sd.flags = flags;
1298	if (nilfs_identify((char *)data, &sd)) {
1299		err = -EINVAL;
1300		goto failed;
1301	}
1302
1303	/*
1304	 * once the super is inserted into the list by sget, s_umount
1305	 * will protect the lockfs code from trying to start a snapshot
1306	 * while we are mounting
1307	 */
1308	mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1309	if (sd.bdev->bd_fsfreeze_count > 0) {
1310		mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1311		err = -EBUSY;
1312		goto failed;
1313	}
1314	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1315		 sd.bdev);
1316	mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1317	if (IS_ERR(s)) {
1318		err = PTR_ERR(s);
1319		goto failed;
1320	}
1321
1322	if (!s->s_root) {
1323		s_new = true;
1324
1325		/* New superblock instance created */
1326		s->s_mode = mode;
1327		snprintf(s->s_id, sizeof(s->s_id), "%pg", sd.bdev);
1328		sb_set_blocksize(s, block_size(sd.bdev));
1329
1330		err = nilfs_fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1331		if (err)
1332			goto failed_super;
1333
1334		s->s_flags |= SB_ACTIVE;
1335	} else if (!sd.cno) {
1336		if (nilfs_tree_is_busy(s->s_root)) {
1337			if ((flags ^ s->s_flags) & SB_RDONLY) {
1338				nilfs_msg(s, KERN_ERR,
1339					  "the device already has a %s mount.",
1340					  sb_rdonly(s) ? "read-only" : "read/write");
1341				err = -EBUSY;
1342				goto failed_super;
1343			}
1344		} else {
1345			/*
1346			 * Try remount to setup mount states if the current
1347			 * tree is not mounted and only snapshots use this sb.
1348			 */
1349			err = nilfs_remount(s, &flags, data);
1350			if (err)
1351				goto failed_super;
1352		}
1353	}
1354
1355	if (sd.cno) {
1356		err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1357		if (err)
1358			goto failed_super;
1359	} else {
1360		root_dentry = dget(s->s_root);
1361	}
1362
1363	if (!s_new)
1364		blkdev_put(sd.bdev, mode);
1365
1366	return root_dentry;
1367
1368 failed_super:
1369	deactivate_locked_super(s);
1370
1371 failed:
1372	if (!s_new)
1373		blkdev_put(sd.bdev, mode);
1374	return ERR_PTR(err);
1375}
1376
1377struct file_system_type nilfs_fs_type = {
1378	.owner    = THIS_MODULE,
1379	.name     = "nilfs2",
1380	.mount    = nilfs_mount,
1381	.kill_sb  = kill_block_super,
1382	.fs_flags = FS_REQUIRES_DEV,
1383};
1384MODULE_ALIAS_FS("nilfs2");
1385
1386static void nilfs_inode_init_once(void *obj)
1387{
1388	struct nilfs_inode_info *ii = obj;
1389
1390	INIT_LIST_HEAD(&ii->i_dirty);
1391#ifdef CONFIG_NILFS_XATTR
1392	init_rwsem(&ii->xattr_sem);
1393#endif
1394	address_space_init_once(&ii->i_btnode_cache);
1395	ii->i_bmap = &ii->i_bmap_data;
1396	inode_init_once(&ii->vfs_inode);
1397}
1398
1399static void nilfs_segbuf_init_once(void *obj)
1400{
1401	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1402}
1403
1404static void nilfs_destroy_cachep(void)
1405{
1406	/*
1407	 * Make sure all delayed rcu free inodes are flushed before we
1408	 * destroy cache.
1409	 */
1410	rcu_barrier();
1411
1412	kmem_cache_destroy(nilfs_inode_cachep);
1413	kmem_cache_destroy(nilfs_transaction_cachep);
1414	kmem_cache_destroy(nilfs_segbuf_cachep);
1415	kmem_cache_destroy(nilfs_btree_path_cache);
1416}
1417
1418static int __init nilfs_init_cachep(void)
1419{
1420	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1421			sizeof(struct nilfs_inode_info), 0,
1422			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1423			nilfs_inode_init_once);
1424	if (!nilfs_inode_cachep)
1425		goto fail;
1426
1427	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1428			sizeof(struct nilfs_transaction_info), 0,
1429			SLAB_RECLAIM_ACCOUNT, NULL);
1430	if (!nilfs_transaction_cachep)
1431		goto fail;
1432
1433	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1434			sizeof(struct nilfs_segment_buffer), 0,
1435			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1436	if (!nilfs_segbuf_cachep)
1437		goto fail;
1438
1439	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1440			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1441			0, 0, NULL);
1442	if (!nilfs_btree_path_cache)
1443		goto fail;
1444
1445	return 0;
1446
1447fail:
1448	nilfs_destroy_cachep();
1449	return -ENOMEM;
1450}
1451
1452static int __init init_nilfs_fs(void)
1453{
1454	int err;
1455
1456	err = nilfs_init_cachep();
1457	if (err)
1458		goto fail;
1459
1460	err = nilfs_sysfs_init();
1461	if (err)
1462		goto free_cachep;
1463
1464	err = register_filesystem(&nilfs_fs_type);
1465	if (err)
1466		goto deinit_sysfs_entry;
1467
1468	printk(KERN_INFO "NILFS version 2 loaded\n");
1469	return 0;
1470
1471deinit_sysfs_entry:
1472	nilfs_sysfs_exit();
1473free_cachep:
1474	nilfs_destroy_cachep();
1475fail:
1476	return err;
1477}
1478
1479static void __exit exit_nilfs_fs(void)
1480{
1481	nilfs_destroy_cachep();
1482	nilfs_sysfs_exit();
1483	unregister_filesystem(&nilfs_fs_type);
1484}
1485
1486module_init(init_nilfs_fs)
1487module_exit(exit_nilfs_fs)
v5.9
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * super.c - NILFS module and super block management.
   4 *
   5 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
   6 *
 
 
 
 
 
 
 
 
 
 
   7 * Written by Ryusuke Konishi.
   8 */
   9/*
  10 *  linux/fs/ext2/super.c
  11 *
  12 * Copyright (C) 1992, 1993, 1994, 1995
  13 * Remy Card (card@masi.ibp.fr)
  14 * Laboratoire MASI - Institut Blaise Pascal
  15 * Universite Pierre et Marie Curie (Paris VI)
  16 *
  17 *  from
  18 *
  19 *  linux/fs/minix/inode.c
  20 *
  21 *  Copyright (C) 1991, 1992  Linus Torvalds
  22 *
  23 *  Big-endian to little-endian byte-swapping/bitmaps by
  24 *        David S. Miller (davem@caip.rutgers.edu), 1995
  25 */
  26
  27#include <linux/module.h>
  28#include <linux/string.h>
  29#include <linux/slab.h>
  30#include <linux/init.h>
  31#include <linux/blkdev.h>
  32#include <linux/parser.h>
  33#include <linux/crc32.h>
  34#include <linux/vfs.h>
  35#include <linux/writeback.h>
  36#include <linux/seq_file.h>
  37#include <linux/mount.h>
  38#include "nilfs.h"
  39#include "export.h"
  40#include "mdt.h"
  41#include "alloc.h"
  42#include "btree.h"
  43#include "btnode.h"
  44#include "page.h"
  45#include "cpfile.h"
  46#include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
  47#include "ifile.h"
  48#include "dat.h"
  49#include "segment.h"
  50#include "segbuf.h"
  51
  52MODULE_AUTHOR("NTT Corp.");
  53MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
  54		   "(NILFS)");
  55MODULE_LICENSE("GPL");
  56
  57static struct kmem_cache *nilfs_inode_cachep;
  58struct kmem_cache *nilfs_transaction_cachep;
  59struct kmem_cache *nilfs_segbuf_cachep;
  60struct kmem_cache *nilfs_btree_path_cache;
  61
  62static int nilfs_setup_super(struct super_block *sb, int is_mount);
  63static int nilfs_remount(struct super_block *sb, int *flags, char *data);
  64
  65void __nilfs_msg(struct super_block *sb, const char *fmt, ...)
 
  66{
  67	struct va_format vaf;
  68	va_list args;
  69	int level;
  70
  71	va_start(args, fmt);
  72
  73	level = printk_get_level(fmt);
  74	vaf.fmt = printk_skip_level(fmt);
  75	vaf.va = &args;
  76
  77	if (sb)
  78		printk("%c%cNILFS (%s): %pV\n",
  79		       KERN_SOH_ASCII, level, sb->s_id, &vaf);
  80	else
  81		printk("%c%cNILFS: %pV\n",
  82		       KERN_SOH_ASCII, level, &vaf);
  83
  84	va_end(args);
  85}
  86
  87static void nilfs_set_error(struct super_block *sb)
  88{
  89	struct the_nilfs *nilfs = sb->s_fs_info;
  90	struct nilfs_super_block **sbp;
  91
  92	down_write(&nilfs->ns_sem);
  93	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
  94		nilfs->ns_mount_state |= NILFS_ERROR_FS;
  95		sbp = nilfs_prepare_super(sb, 0);
  96		if (likely(sbp)) {
  97			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
  98			if (sbp[1])
  99				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
 100			nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 101		}
 102	}
 103	up_write(&nilfs->ns_sem);
 104}
 105
 106/**
 107 * __nilfs_error() - report failure condition on a filesystem
 108 *
 109 * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
 110 * reporting an error message.  This function should be called when
 111 * NILFS detects incoherences or defects of meta data on disk.
 112 *
 113 * This implements the body of nilfs_error() macro.  Normally,
 114 * nilfs_error() should be used.  As for sustainable errors such as a
 115 * single-shot I/O error, nilfs_err() should be used instead.
 116 *
 117 * Callers should not add a trailing newline since this will do it.
 118 */
 119void __nilfs_error(struct super_block *sb, const char *function,
 120		   const char *fmt, ...)
 121{
 122	struct the_nilfs *nilfs = sb->s_fs_info;
 123	struct va_format vaf;
 124	va_list args;
 125
 126	va_start(args, fmt);
 127
 128	vaf.fmt = fmt;
 129	vaf.va = &args;
 130
 131	printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
 132	       sb->s_id, function, &vaf);
 133
 134	va_end(args);
 135
 136	if (!sb_rdonly(sb)) {
 137		nilfs_set_error(sb);
 138
 139		if (nilfs_test_opt(nilfs, ERRORS_RO)) {
 140			printk(KERN_CRIT "Remounting filesystem read-only\n");
 141			sb->s_flags |= SB_RDONLY;
 142		}
 143	}
 144
 145	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 146		panic("NILFS (device %s): panic forced after error\n",
 147		      sb->s_id);
 148}
 149
 150struct inode *nilfs_alloc_inode(struct super_block *sb)
 151{
 152	struct nilfs_inode_info *ii;
 153
 154	ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
 155	if (!ii)
 156		return NULL;
 157	ii->i_bh = NULL;
 158	ii->i_state = 0;
 159	ii->i_cno = 0;
 160	nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode);
 161	return &ii->vfs_inode;
 162}
 163
 164static void nilfs_free_inode(struct inode *inode)
 165{
 
 
 166	if (nilfs_is_metadata_file_inode(inode))
 167		nilfs_mdt_destroy(inode);
 168
 169	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
 170}
 171
 
 
 
 
 
 172static int nilfs_sync_super(struct super_block *sb, int flag)
 173{
 174	struct the_nilfs *nilfs = sb->s_fs_info;
 175	int err;
 176
 177 retry:
 178	set_buffer_dirty(nilfs->ns_sbh[0]);
 179	if (nilfs_test_opt(nilfs, BARRIER)) {
 180		err = __sync_dirty_buffer(nilfs->ns_sbh[0],
 181					  REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
 182	} else {
 183		err = sync_dirty_buffer(nilfs->ns_sbh[0]);
 184	}
 185
 186	if (unlikely(err)) {
 187		nilfs_err(sb, "unable to write superblock: err=%d", err);
 
 188		if (err == -EIO && nilfs->ns_sbh[1]) {
 189			/*
 190			 * sbp[0] points to newer log than sbp[1],
 191			 * so copy sbp[0] to sbp[1] to take over sbp[0].
 192			 */
 193			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
 194			       nilfs->ns_sbsize);
 195			nilfs_fall_back_super_block(nilfs);
 196			goto retry;
 197		}
 198	} else {
 199		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
 200
 201		nilfs->ns_sbwcount++;
 202
 203		/*
 204		 * The latest segment becomes trailable from the position
 205		 * written in superblock.
 206		 */
 207		clear_nilfs_discontinued(nilfs);
 208
 209		/* update GC protection for recent segments */
 210		if (nilfs->ns_sbh[1]) {
 211			if (flag == NILFS_SB_COMMIT_ALL) {
 212				set_buffer_dirty(nilfs->ns_sbh[1]);
 213				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
 214					goto out;
 215			}
 216			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
 217			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
 218				sbp = nilfs->ns_sbp[1];
 219		}
 220
 221		spin_lock(&nilfs->ns_last_segment_lock);
 222		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
 223		spin_unlock(&nilfs->ns_last_segment_lock);
 224	}
 225 out:
 226	return err;
 227}
 228
 229void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
 230			  struct the_nilfs *nilfs)
 231{
 232	sector_t nfreeblocks;
 233
 234	/* nilfs->ns_sem must be locked by the caller. */
 235	nilfs_count_free_blocks(nilfs, &nfreeblocks);
 236	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
 237
 238	spin_lock(&nilfs->ns_last_segment_lock);
 239	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
 240	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
 241	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
 242	spin_unlock(&nilfs->ns_last_segment_lock);
 243}
 244
 245struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
 246					       int flip)
 247{
 248	struct the_nilfs *nilfs = sb->s_fs_info;
 249	struct nilfs_super_block **sbp = nilfs->ns_sbp;
 250
 251	/* nilfs->ns_sem must be locked by the caller. */
 252	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 253		if (sbp[1] &&
 254		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
 255			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
 256		} else {
 257			nilfs_crit(sb, "superblock broke");
 258			return NULL;
 259		}
 260	} else if (sbp[1] &&
 261		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 262		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 263	}
 264
 265	if (flip && sbp[1])
 266		nilfs_swap_super_block(nilfs);
 267
 268	return sbp;
 269}
 270
 271int nilfs_commit_super(struct super_block *sb, int flag)
 272{
 273	struct the_nilfs *nilfs = sb->s_fs_info;
 274	struct nilfs_super_block **sbp = nilfs->ns_sbp;
 275	time64_t t;
 276
 277	/* nilfs->ns_sem must be locked by the caller. */
 278	t = ktime_get_real_seconds();
 279	nilfs->ns_sbwtime = t;
 280	sbp[0]->s_wtime = cpu_to_le64(t);
 281	sbp[0]->s_sum = 0;
 282	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 283					     (unsigned char *)sbp[0],
 284					     nilfs->ns_sbsize));
 285	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
 286		sbp[1]->s_wtime = sbp[0]->s_wtime;
 287		sbp[1]->s_sum = 0;
 288		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 289					    (unsigned char *)sbp[1],
 290					    nilfs->ns_sbsize));
 291	}
 292	clear_nilfs_sb_dirty(nilfs);
 293	nilfs->ns_flushed_device = 1;
 294	/* make sure store to ns_flushed_device cannot be reordered */
 295	smp_wmb();
 296	return nilfs_sync_super(sb, flag);
 297}
 298
 299/**
 300 * nilfs_cleanup_super() - write filesystem state for cleanup
 301 * @sb: super block instance to be unmounted or degraded to read-only
 302 *
 303 * This function restores state flags in the on-disk super block.
 304 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
 305 * filesystem was not clean previously.
 306 */
 307int nilfs_cleanup_super(struct super_block *sb)
 308{
 309	struct the_nilfs *nilfs = sb->s_fs_info;
 310	struct nilfs_super_block **sbp;
 311	int flag = NILFS_SB_COMMIT;
 312	int ret = -EIO;
 313
 314	sbp = nilfs_prepare_super(sb, 0);
 315	if (sbp) {
 316		sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
 317		nilfs_set_log_cursor(sbp[0], nilfs);
 318		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
 319			/*
 320			 * make the "clean" flag also to the opposite
 321			 * super block if both super blocks point to
 322			 * the same checkpoint.
 323			 */
 324			sbp[1]->s_state = sbp[0]->s_state;
 325			flag = NILFS_SB_COMMIT_ALL;
 326		}
 327		ret = nilfs_commit_super(sb, flag);
 328	}
 329	return ret;
 330}
 331
 332/**
 333 * nilfs_move_2nd_super - relocate secondary super block
 334 * @sb: super block instance
 335 * @sb2off: new offset of the secondary super block (in bytes)
 336 */
 337static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
 338{
 339	struct the_nilfs *nilfs = sb->s_fs_info;
 340	struct buffer_head *nsbh;
 341	struct nilfs_super_block *nsbp;
 342	sector_t blocknr, newblocknr;
 343	unsigned long offset;
 344	int sb2i;  /* array index of the secondary superblock */
 345	int ret = 0;
 346
 347	/* nilfs->ns_sem must be locked by the caller. */
 348	if (nilfs->ns_sbh[1] &&
 349	    nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
 350		sb2i = 1;
 351		blocknr = nilfs->ns_sbh[1]->b_blocknr;
 352	} else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
 353		sb2i = 0;
 354		blocknr = nilfs->ns_sbh[0]->b_blocknr;
 355	} else {
 356		sb2i = -1;
 357		blocknr = 0;
 358	}
 359	if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
 360		goto out;  /* super block location is unchanged */
 361
 362	/* Get new super block buffer */
 363	newblocknr = sb2off >> nilfs->ns_blocksize_bits;
 364	offset = sb2off & (nilfs->ns_blocksize - 1);
 365	nsbh = sb_getblk(sb, newblocknr);
 366	if (!nsbh) {
 367		nilfs_warn(sb,
 368			   "unable to move secondary superblock to block %llu",
 369			   (unsigned long long)newblocknr);
 370		ret = -EIO;
 371		goto out;
 372	}
 373	nsbp = (void *)nsbh->b_data + offset;
 374	memset(nsbp, 0, nilfs->ns_blocksize);
 375
 376	if (sb2i >= 0) {
 377		memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
 378		brelse(nilfs->ns_sbh[sb2i]);
 379		nilfs->ns_sbh[sb2i] = nsbh;
 380		nilfs->ns_sbp[sb2i] = nsbp;
 381	} else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
 382		/* secondary super block will be restored to index 1 */
 383		nilfs->ns_sbh[1] = nsbh;
 384		nilfs->ns_sbp[1] = nsbp;
 385	} else {
 386		brelse(nsbh);
 387	}
 388out:
 389	return ret;
 390}
 391
 392/**
 393 * nilfs_resize_fs - resize the filesystem
 394 * @sb: super block instance
 395 * @newsize: new size of the filesystem (in bytes)
 396 */
 397int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
 398{
 399	struct the_nilfs *nilfs = sb->s_fs_info;
 400	struct nilfs_super_block **sbp;
 401	__u64 devsize, newnsegs;
 402	loff_t sb2off;
 403	int ret;
 404
 405	ret = -ERANGE;
 406	devsize = i_size_read(sb->s_bdev->bd_inode);
 407	if (newsize > devsize)
 408		goto out;
 409
 410	/*
 411	 * Write lock is required to protect some functions depending
 412	 * on the number of segments, the number of reserved segments,
 413	 * and so forth.
 414	 */
 415	down_write(&nilfs->ns_segctor_sem);
 416
 417	sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
 418	newnsegs = sb2off >> nilfs->ns_blocksize_bits;
 419	do_div(newnsegs, nilfs->ns_blocks_per_segment);
 420
 421	ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
 422	up_write(&nilfs->ns_segctor_sem);
 423	if (ret < 0)
 424		goto out;
 425
 426	ret = nilfs_construct_segment(sb);
 427	if (ret < 0)
 428		goto out;
 429
 430	down_write(&nilfs->ns_sem);
 431	nilfs_move_2nd_super(sb, sb2off);
 432	ret = -EIO;
 433	sbp = nilfs_prepare_super(sb, 0);
 434	if (likely(sbp)) {
 435		nilfs_set_log_cursor(sbp[0], nilfs);
 436		/*
 437		 * Drop NILFS_RESIZE_FS flag for compatibility with
 438		 * mount-time resize which may be implemented in a
 439		 * future release.
 440		 */
 441		sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
 442					      ~NILFS_RESIZE_FS);
 443		sbp[0]->s_dev_size = cpu_to_le64(newsize);
 444		sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
 445		if (sbp[1])
 446			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 447		ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 448	}
 449	up_write(&nilfs->ns_sem);
 450
 451	/*
 452	 * Reset the range of allocatable segments last.  This order
 453	 * is important in the case of expansion because the secondary
 454	 * superblock must be protected from log write until migration
 455	 * completes.
 456	 */
 457	if (!ret)
 458		nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
 459out:
 460	return ret;
 461}
 462
 463static void nilfs_put_super(struct super_block *sb)
 464{
 465	struct the_nilfs *nilfs = sb->s_fs_info;
 466
 467	nilfs_detach_log_writer(sb);
 468
 469	if (!sb_rdonly(sb)) {
 470		down_write(&nilfs->ns_sem);
 471		nilfs_cleanup_super(sb);
 472		up_write(&nilfs->ns_sem);
 473	}
 474
 475	iput(nilfs->ns_sufile);
 476	iput(nilfs->ns_cpfile);
 477	iput(nilfs->ns_dat);
 478
 479	destroy_nilfs(nilfs);
 480	sb->s_fs_info = NULL;
 481}
 482
 483static int nilfs_sync_fs(struct super_block *sb, int wait)
 484{
 485	struct the_nilfs *nilfs = sb->s_fs_info;
 486	struct nilfs_super_block **sbp;
 487	int err = 0;
 488
 489	/* This function is called when super block should be written back */
 490	if (wait)
 491		err = nilfs_construct_segment(sb);
 492
 493	down_write(&nilfs->ns_sem);
 494	if (nilfs_sb_dirty(nilfs)) {
 495		sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
 496		if (likely(sbp)) {
 497			nilfs_set_log_cursor(sbp[0], nilfs);
 498			nilfs_commit_super(sb, NILFS_SB_COMMIT);
 499		}
 500	}
 501	up_write(&nilfs->ns_sem);
 502
 503	if (!err)
 504		err = nilfs_flush_device(nilfs);
 505
 506	return err;
 507}
 508
 509int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
 510			    struct nilfs_root **rootp)
 511{
 512	struct the_nilfs *nilfs = sb->s_fs_info;
 513	struct nilfs_root *root;
 514	struct nilfs_checkpoint *raw_cp;
 515	struct buffer_head *bh_cp;
 516	int err = -ENOMEM;
 517
 518	root = nilfs_find_or_create_root(
 519		nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
 520	if (!root)
 521		return err;
 522
 523	if (root->ifile)
 524		goto reuse; /* already attached checkpoint */
 525
 526	down_read(&nilfs->ns_segctor_sem);
 527	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
 528					  &bh_cp);
 529	up_read(&nilfs->ns_segctor_sem);
 530	if (unlikely(err)) {
 531		if (err == -ENOENT || err == -EINVAL) {
 532			nilfs_err(sb,
 533				  "Invalid checkpoint (checkpoint number=%llu)",
 534				  (unsigned long long)cno);
 535			err = -EINVAL;
 536		}
 537		goto failed;
 538	}
 539
 540	err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
 541			       &raw_cp->cp_ifile_inode, &root->ifile);
 542	if (err)
 543		goto failed_bh;
 544
 545	atomic64_set(&root->inodes_count,
 546			le64_to_cpu(raw_cp->cp_inodes_count));
 547	atomic64_set(&root->blocks_count,
 548			le64_to_cpu(raw_cp->cp_blocks_count));
 549
 550	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
 551
 552 reuse:
 553	*rootp = root;
 554	return 0;
 555
 556 failed_bh:
 557	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
 558 failed:
 559	nilfs_put_root(root);
 560
 561	return err;
 562}
 563
 564static int nilfs_freeze(struct super_block *sb)
 565{
 566	struct the_nilfs *nilfs = sb->s_fs_info;
 567	int err;
 568
 569	if (sb_rdonly(sb))
 570		return 0;
 571
 572	/* Mark super block clean */
 573	down_write(&nilfs->ns_sem);
 574	err = nilfs_cleanup_super(sb);
 575	up_write(&nilfs->ns_sem);
 576	return err;
 577}
 578
 579static int nilfs_unfreeze(struct super_block *sb)
 580{
 581	struct the_nilfs *nilfs = sb->s_fs_info;
 582
 583	if (sb_rdonly(sb))
 584		return 0;
 585
 586	down_write(&nilfs->ns_sem);
 587	nilfs_setup_super(sb, false);
 588	up_write(&nilfs->ns_sem);
 589	return 0;
 590}
 591
 592static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
 593{
 594	struct super_block *sb = dentry->d_sb;
 595	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
 596	struct the_nilfs *nilfs = root->nilfs;
 597	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
 598	unsigned long long blocks;
 599	unsigned long overhead;
 600	unsigned long nrsvblocks;
 601	sector_t nfreeblocks;
 602	u64 nmaxinodes, nfreeinodes;
 603	int err;
 604
 605	/*
 606	 * Compute all of the segment blocks
 607	 *
 608	 * The blocks before first segment and after last segment
 609	 * are excluded.
 610	 */
 611	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
 612		- nilfs->ns_first_data_block;
 613	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
 614
 615	/*
 616	 * Compute the overhead
 617	 *
 618	 * When distributing meta data blocks outside segment structure,
 619	 * We must count them as the overhead.
 620	 */
 621	overhead = 0;
 622
 623	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
 624	if (unlikely(err))
 625		return err;
 626
 627	err = nilfs_ifile_count_free_inodes(root->ifile,
 628					    &nmaxinodes, &nfreeinodes);
 629	if (unlikely(err)) {
 630		nilfs_warn(sb, "failed to count free inodes: err=%d", err);
 
 631		if (err == -ERANGE) {
 632			/*
 633			 * If nilfs_palloc_count_max_entries() returns
 634			 * -ERANGE error code then we simply treat
 635			 * curent inodes count as maximum possible and
 636			 * zero as free inodes value.
 637			 */
 638			nmaxinodes = atomic64_read(&root->inodes_count);
 639			nfreeinodes = 0;
 640			err = 0;
 641		} else
 642			return err;
 643	}
 644
 645	buf->f_type = NILFS_SUPER_MAGIC;
 646	buf->f_bsize = sb->s_blocksize;
 647	buf->f_blocks = blocks - overhead;
 648	buf->f_bfree = nfreeblocks;
 649	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
 650		(buf->f_bfree - nrsvblocks) : 0;
 651	buf->f_files = nmaxinodes;
 652	buf->f_ffree = nfreeinodes;
 653	buf->f_namelen = NILFS_NAME_LEN;
 654	buf->f_fsid.val[0] = (u32)id;
 655	buf->f_fsid.val[1] = (u32)(id >> 32);
 656
 657	return 0;
 658}
 659
 660static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
 661{
 662	struct super_block *sb = dentry->d_sb;
 663	struct the_nilfs *nilfs = sb->s_fs_info;
 664	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
 665
 666	if (!nilfs_test_opt(nilfs, BARRIER))
 667		seq_puts(seq, ",nobarrier");
 668	if (root->cno != NILFS_CPTREE_CURRENT_CNO)
 669		seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
 670	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 671		seq_puts(seq, ",errors=panic");
 672	if (nilfs_test_opt(nilfs, ERRORS_CONT))
 673		seq_puts(seq, ",errors=continue");
 674	if (nilfs_test_opt(nilfs, STRICT_ORDER))
 675		seq_puts(seq, ",order=strict");
 676	if (nilfs_test_opt(nilfs, NORECOVERY))
 677		seq_puts(seq, ",norecovery");
 678	if (nilfs_test_opt(nilfs, DISCARD))
 679		seq_puts(seq, ",discard");
 680
 681	return 0;
 682}
 683
 684static const struct super_operations nilfs_sops = {
 685	.alloc_inode    = nilfs_alloc_inode,
 686	.free_inode     = nilfs_free_inode,
 687	.dirty_inode    = nilfs_dirty_inode,
 688	.evict_inode    = nilfs_evict_inode,
 689	.put_super      = nilfs_put_super,
 690	.sync_fs        = nilfs_sync_fs,
 691	.freeze_fs	= nilfs_freeze,
 692	.unfreeze_fs	= nilfs_unfreeze,
 693	.statfs         = nilfs_statfs,
 694	.remount_fs     = nilfs_remount,
 695	.show_options = nilfs_show_options
 696};
 697
 698enum {
 699	Opt_err_cont, Opt_err_panic, Opt_err_ro,
 700	Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
 701	Opt_discard, Opt_nodiscard, Opt_err,
 702};
 703
 704static match_table_t tokens = {
 705	{Opt_err_cont, "errors=continue"},
 706	{Opt_err_panic, "errors=panic"},
 707	{Opt_err_ro, "errors=remount-ro"},
 708	{Opt_barrier, "barrier"},
 709	{Opt_nobarrier, "nobarrier"},
 710	{Opt_snapshot, "cp=%u"},
 711	{Opt_order, "order=%s"},
 712	{Opt_norecovery, "norecovery"},
 713	{Opt_discard, "discard"},
 714	{Opt_nodiscard, "nodiscard"},
 715	{Opt_err, NULL}
 716};
 717
 718static int parse_options(char *options, struct super_block *sb, int is_remount)
 719{
 720	struct the_nilfs *nilfs = sb->s_fs_info;
 721	char *p;
 722	substring_t args[MAX_OPT_ARGS];
 723
 724	if (!options)
 725		return 1;
 726
 727	while ((p = strsep(&options, ",")) != NULL) {
 728		int token;
 729
 730		if (!*p)
 731			continue;
 732
 733		token = match_token(p, tokens, args);
 734		switch (token) {
 735		case Opt_barrier:
 736			nilfs_set_opt(nilfs, BARRIER);
 737			break;
 738		case Opt_nobarrier:
 739			nilfs_clear_opt(nilfs, BARRIER);
 740			break;
 741		case Opt_order:
 742			if (strcmp(args[0].from, "relaxed") == 0)
 743				/* Ordered data semantics */
 744				nilfs_clear_opt(nilfs, STRICT_ORDER);
 745			else if (strcmp(args[0].from, "strict") == 0)
 746				/* Strict in-order semantics */
 747				nilfs_set_opt(nilfs, STRICT_ORDER);
 748			else
 749				return 0;
 750			break;
 751		case Opt_err_panic:
 752			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
 753			break;
 754		case Opt_err_ro:
 755			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
 756			break;
 757		case Opt_err_cont:
 758			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
 759			break;
 760		case Opt_snapshot:
 761			if (is_remount) {
 762				nilfs_err(sb,
 763					  "\"%s\" option is invalid for remount",
 764					  p);
 765				return 0;
 766			}
 767			break;
 768		case Opt_norecovery:
 769			nilfs_set_opt(nilfs, NORECOVERY);
 770			break;
 771		case Opt_discard:
 772			nilfs_set_opt(nilfs, DISCARD);
 773			break;
 774		case Opt_nodiscard:
 775			nilfs_clear_opt(nilfs, DISCARD);
 776			break;
 777		default:
 778			nilfs_err(sb, "unrecognized mount option \"%s\"", p);
 
 779			return 0;
 780		}
 781	}
 782	return 1;
 783}
 784
 785static inline void
 786nilfs_set_default_options(struct super_block *sb,
 787			  struct nilfs_super_block *sbp)
 788{
 789	struct the_nilfs *nilfs = sb->s_fs_info;
 790
 791	nilfs->ns_mount_opt =
 792		NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
 793}
 794
 795static int nilfs_setup_super(struct super_block *sb, int is_mount)
 796{
 797	struct the_nilfs *nilfs = sb->s_fs_info;
 798	struct nilfs_super_block **sbp;
 799	int max_mnt_count;
 800	int mnt_count;
 801
 802	/* nilfs->ns_sem must be locked by the caller. */
 803	sbp = nilfs_prepare_super(sb, 0);
 804	if (!sbp)
 805		return -EIO;
 806
 807	if (!is_mount)
 808		goto skip_mount_setup;
 809
 810	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
 811	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
 812
 813	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
 814		nilfs_warn(sb, "mounting fs with errors");
 815#if 0
 816	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
 817		nilfs_warn(sb, "maximal mount count reached");
 818#endif
 819	}
 820	if (!max_mnt_count)
 821		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
 822
 823	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
 824	sbp[0]->s_mtime = cpu_to_le64(ktime_get_real_seconds());
 825
 826skip_mount_setup:
 827	sbp[0]->s_state =
 828		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
 829	/* synchronize sbp[1] with sbp[0] */
 830	if (sbp[1])
 831		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 832	return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 833}
 834
 835struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
 836						 u64 pos, int blocksize,
 837						 struct buffer_head **pbh)
 838{
 839	unsigned long long sb_index = pos;
 840	unsigned long offset;
 841
 842	offset = do_div(sb_index, blocksize);
 843	*pbh = sb_bread(sb, sb_index);
 844	if (!*pbh)
 845		return NULL;
 846	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
 847}
 848
 849int nilfs_store_magic_and_option(struct super_block *sb,
 850				 struct nilfs_super_block *sbp,
 851				 char *data)
 852{
 853	struct the_nilfs *nilfs = sb->s_fs_info;
 854
 855	sb->s_magic = le16_to_cpu(sbp->s_magic);
 856
 857	/* FS independent flags */
 858#ifdef NILFS_ATIME_DISABLE
 859	sb->s_flags |= SB_NOATIME;
 860#endif
 861
 862	nilfs_set_default_options(sb, sbp);
 863
 864	nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
 865	nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
 866	nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
 867	nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
 868
 869	return !parse_options(data, sb, 0) ? -EINVAL : 0;
 870}
 871
 872int nilfs_check_feature_compatibility(struct super_block *sb,
 873				      struct nilfs_super_block *sbp)
 874{
 875	__u64 features;
 876
 877	features = le64_to_cpu(sbp->s_feature_incompat) &
 878		~NILFS_FEATURE_INCOMPAT_SUPP;
 879	if (features) {
 880		nilfs_err(sb,
 881			  "couldn't mount because of unsupported optional features (%llx)",
 882			  (unsigned long long)features);
 883		return -EINVAL;
 884	}
 885	features = le64_to_cpu(sbp->s_feature_compat_ro) &
 886		~NILFS_FEATURE_COMPAT_RO_SUPP;
 887	if (!sb_rdonly(sb) && features) {
 888		nilfs_err(sb,
 889			  "couldn't mount RDWR because of unsupported optional features (%llx)",
 890			  (unsigned long long)features);
 891		return -EINVAL;
 892	}
 893	return 0;
 894}
 895
 896static int nilfs_get_root_dentry(struct super_block *sb,
 897				 struct nilfs_root *root,
 898				 struct dentry **root_dentry)
 899{
 900	struct inode *inode;
 901	struct dentry *dentry;
 902	int ret = 0;
 903
 904	inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
 905	if (IS_ERR(inode)) {
 906		ret = PTR_ERR(inode);
 907		nilfs_err(sb, "error %d getting root inode", ret);
 908		goto out;
 909	}
 910	if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
 911		iput(inode);
 912		nilfs_err(sb, "corrupt root inode");
 913		ret = -EINVAL;
 914		goto out;
 915	}
 916
 917	if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
 918		dentry = d_find_alias(inode);
 919		if (!dentry) {
 920			dentry = d_make_root(inode);
 921			if (!dentry) {
 922				ret = -ENOMEM;
 923				goto failed_dentry;
 924			}
 925		} else {
 926			iput(inode);
 927		}
 928	} else {
 929		dentry = d_obtain_root(inode);
 930		if (IS_ERR(dentry)) {
 931			ret = PTR_ERR(dentry);
 932			goto failed_dentry;
 933		}
 934	}
 935	*root_dentry = dentry;
 936 out:
 937	return ret;
 938
 939 failed_dentry:
 940	nilfs_err(sb, "error %d getting root dentry", ret);
 941	goto out;
 942}
 943
 944static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
 945				 struct dentry **root_dentry)
 946{
 947	struct the_nilfs *nilfs = s->s_fs_info;
 948	struct nilfs_root *root;
 949	int ret;
 950
 951	mutex_lock(&nilfs->ns_snapshot_mount_mutex);
 952
 953	down_read(&nilfs->ns_segctor_sem);
 954	ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
 955	up_read(&nilfs->ns_segctor_sem);
 956	if (ret < 0) {
 957		ret = (ret == -ENOENT) ? -EINVAL : ret;
 958		goto out;
 959	} else if (!ret) {
 960		nilfs_err(s,
 961			  "The specified checkpoint is not a snapshot (checkpoint number=%llu)",
 962			  (unsigned long long)cno);
 963		ret = -EINVAL;
 964		goto out;
 965	}
 966
 967	ret = nilfs_attach_checkpoint(s, cno, false, &root);
 968	if (ret) {
 969		nilfs_err(s,
 970			  "error %d while loading snapshot (checkpoint number=%llu)",
 971			  ret, (unsigned long long)cno);
 972		goto out;
 973	}
 974	ret = nilfs_get_root_dentry(s, root, root_dentry);
 975	nilfs_put_root(root);
 976 out:
 977	mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
 978	return ret;
 979}
 980
 981/**
 982 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
 983 * @root_dentry: root dentry of the tree to be shrunk
 984 *
 985 * This function returns true if the tree was in-use.
 986 */
 987static bool nilfs_tree_is_busy(struct dentry *root_dentry)
 988{
 989	shrink_dcache_parent(root_dentry);
 990	return d_count(root_dentry) > 1;
 991}
 992
 993int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
 994{
 995	struct the_nilfs *nilfs = sb->s_fs_info;
 996	struct nilfs_root *root;
 997	struct inode *inode;
 998	struct dentry *dentry;
 999	int ret;
1000
1001	if (cno > nilfs->ns_cno)
1002		return false;
1003
1004	if (cno >= nilfs_last_cno(nilfs))
1005		return true;	/* protect recent checkpoints */
1006
1007	ret = false;
1008	root = nilfs_lookup_root(nilfs, cno);
1009	if (root) {
1010		inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1011		if (inode) {
1012			dentry = d_find_alias(inode);
1013			if (dentry) {
1014				ret = nilfs_tree_is_busy(dentry);
1015				dput(dentry);
1016			}
1017			iput(inode);
1018		}
1019		nilfs_put_root(root);
1020	}
1021	return ret;
1022}
1023
1024/**
1025 * nilfs_fill_super() - initialize a super block instance
1026 * @sb: super_block
1027 * @data: mount options
1028 * @silent: silent mode flag
1029 *
1030 * This function is called exclusively by nilfs->ns_mount_mutex.
1031 * So, the recovery process is protected from other simultaneous mounts.
1032 */
1033static int
1034nilfs_fill_super(struct super_block *sb, void *data, int silent)
1035{
1036	struct the_nilfs *nilfs;
1037	struct nilfs_root *fsroot;
1038	__u64 cno;
1039	int err;
1040
1041	nilfs = alloc_nilfs(sb);
1042	if (!nilfs)
1043		return -ENOMEM;
1044
1045	sb->s_fs_info = nilfs;
1046
1047	err = init_nilfs(nilfs, sb, (char *)data);
1048	if (err)
1049		goto failed_nilfs;
1050
1051	sb->s_op = &nilfs_sops;
1052	sb->s_export_op = &nilfs_export_ops;
1053	sb->s_root = NULL;
1054	sb->s_time_gran = 1;
1055	sb->s_max_links = NILFS_LINK_MAX;
1056
1057	sb->s_bdi = bdi_get(sb->s_bdev->bd_bdi);
1058
1059	err = load_nilfs(nilfs, sb);
1060	if (err)
1061		goto failed_nilfs;
1062
1063	cno = nilfs_last_cno(nilfs);
1064	err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1065	if (err) {
1066		nilfs_err(sb,
1067			  "error %d while loading last checkpoint (checkpoint number=%llu)",
1068			  err, (unsigned long long)cno);
1069		goto failed_unload;
1070	}
1071
1072	if (!sb_rdonly(sb)) {
1073		err = nilfs_attach_log_writer(sb, fsroot);
1074		if (err)
1075			goto failed_checkpoint;
1076	}
1077
1078	err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1079	if (err)
1080		goto failed_segctor;
1081
1082	nilfs_put_root(fsroot);
1083
1084	if (!sb_rdonly(sb)) {
1085		down_write(&nilfs->ns_sem);
1086		nilfs_setup_super(sb, true);
1087		up_write(&nilfs->ns_sem);
1088	}
1089
1090	return 0;
1091
1092 failed_segctor:
1093	nilfs_detach_log_writer(sb);
1094
1095 failed_checkpoint:
1096	nilfs_put_root(fsroot);
1097
1098 failed_unload:
1099	iput(nilfs->ns_sufile);
1100	iput(nilfs->ns_cpfile);
1101	iput(nilfs->ns_dat);
1102
1103 failed_nilfs:
1104	destroy_nilfs(nilfs);
1105	return err;
1106}
1107
1108static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1109{
1110	struct the_nilfs *nilfs = sb->s_fs_info;
1111	unsigned long old_sb_flags;
1112	unsigned long old_mount_opt;
1113	int err;
1114
1115	sync_filesystem(sb);
1116	old_sb_flags = sb->s_flags;
1117	old_mount_opt = nilfs->ns_mount_opt;
1118
1119	if (!parse_options(data, sb, 1)) {
1120		err = -EINVAL;
1121		goto restore_opts;
1122	}
1123	sb->s_flags = (sb->s_flags & ~SB_POSIXACL);
1124
1125	err = -EINVAL;
1126
1127	if (!nilfs_valid_fs(nilfs)) {
1128		nilfs_warn(sb,
1129			   "couldn't remount because the filesystem is in an incomplete recovery state");
1130		goto restore_opts;
1131	}
1132
1133	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1134		goto out;
1135	if (*flags & SB_RDONLY) {
1136		/* Shutting down log writer */
1137		nilfs_detach_log_writer(sb);
1138		sb->s_flags |= SB_RDONLY;
1139
1140		/*
1141		 * Remounting a valid RW partition RDONLY, so set
1142		 * the RDONLY flag and then mark the partition as valid again.
1143		 */
1144		down_write(&nilfs->ns_sem);
1145		nilfs_cleanup_super(sb);
1146		up_write(&nilfs->ns_sem);
1147	} else {
1148		__u64 features;
1149		struct nilfs_root *root;
1150
1151		/*
1152		 * Mounting a RDONLY partition read-write, so reread and
1153		 * store the current valid flag.  (It may have been changed
1154		 * by fsck since we originally mounted the partition.)
1155		 */
1156		down_read(&nilfs->ns_sem);
1157		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1158			~NILFS_FEATURE_COMPAT_RO_SUPP;
1159		up_read(&nilfs->ns_sem);
1160		if (features) {
1161			nilfs_warn(sb,
1162				   "couldn't remount RDWR because of unsupported optional features (%llx)",
1163				   (unsigned long long)features);
1164			err = -EROFS;
1165			goto restore_opts;
1166		}
1167
1168		sb->s_flags &= ~SB_RDONLY;
1169
1170		root = NILFS_I(d_inode(sb->s_root))->i_root;
1171		err = nilfs_attach_log_writer(sb, root);
1172		if (err)
1173			goto restore_opts;
1174
1175		down_write(&nilfs->ns_sem);
1176		nilfs_setup_super(sb, true);
1177		up_write(&nilfs->ns_sem);
1178	}
1179 out:
1180	return 0;
1181
1182 restore_opts:
1183	sb->s_flags = old_sb_flags;
1184	nilfs->ns_mount_opt = old_mount_opt;
1185	return err;
1186}
1187
1188struct nilfs_super_data {
1189	struct block_device *bdev;
1190	__u64 cno;
1191	int flags;
1192};
1193
1194static int nilfs_parse_snapshot_option(const char *option,
1195				       const substring_t *arg,
1196				       struct nilfs_super_data *sd)
1197{
1198	unsigned long long val;
1199	const char *msg = NULL;
1200	int err;
1201
1202	if (!(sd->flags & SB_RDONLY)) {
1203		msg = "read-only option is not specified";
1204		goto parse_error;
1205	}
1206
1207	err = kstrtoull(arg->from, 0, &val);
1208	if (err) {
1209		if (err == -ERANGE)
1210			msg = "too large checkpoint number";
1211		else
1212			msg = "malformed argument";
1213		goto parse_error;
1214	} else if (val == 0) {
1215		msg = "invalid checkpoint number 0";
1216		goto parse_error;
1217	}
1218	sd->cno = val;
1219	return 0;
1220
1221parse_error:
1222	nilfs_err(NULL, "invalid option \"%s\": %s", option, msg);
1223	return 1;
1224}
1225
1226/**
1227 * nilfs_identify - pre-read mount options needed to identify mount instance
1228 * @data: mount options
1229 * @sd: nilfs_super_data
1230 */
1231static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1232{
1233	char *p, *options = data;
1234	substring_t args[MAX_OPT_ARGS];
1235	int token;
1236	int ret = 0;
1237
1238	do {
1239		p = strsep(&options, ",");
1240		if (p != NULL && *p) {
1241			token = match_token(p, tokens, args);
1242			if (token == Opt_snapshot)
1243				ret = nilfs_parse_snapshot_option(p, &args[0],
1244								  sd);
1245		}
1246		if (!options)
1247			break;
1248		BUG_ON(options == data);
1249		*(options - 1) = ',';
1250	} while (!ret);
1251	return ret;
1252}
1253
1254static int nilfs_set_bdev_super(struct super_block *s, void *data)
1255{
1256	s->s_bdev = data;
1257	s->s_dev = s->s_bdev->bd_dev;
1258	return 0;
1259}
1260
1261static int nilfs_test_bdev_super(struct super_block *s, void *data)
1262{
1263	return (void *)s->s_bdev == data;
1264}
1265
1266static struct dentry *
1267nilfs_mount(struct file_system_type *fs_type, int flags,
1268	     const char *dev_name, void *data)
1269{
1270	struct nilfs_super_data sd;
1271	struct super_block *s;
1272	fmode_t mode = FMODE_READ | FMODE_EXCL;
1273	struct dentry *root_dentry;
1274	int err, s_new = false;
1275
1276	if (!(flags & SB_RDONLY))
1277		mode |= FMODE_WRITE;
1278
1279	sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1280	if (IS_ERR(sd.bdev))
1281		return ERR_CAST(sd.bdev);
1282
1283	sd.cno = 0;
1284	sd.flags = flags;
1285	if (nilfs_identify((char *)data, &sd)) {
1286		err = -EINVAL;
1287		goto failed;
1288	}
1289
1290	/*
1291	 * once the super is inserted into the list by sget, s_umount
1292	 * will protect the lockfs code from trying to start a snapshot
1293	 * while we are mounting
1294	 */
1295	mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1296	if (sd.bdev->bd_fsfreeze_count > 0) {
1297		mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1298		err = -EBUSY;
1299		goto failed;
1300	}
1301	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1302		 sd.bdev);
1303	mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1304	if (IS_ERR(s)) {
1305		err = PTR_ERR(s);
1306		goto failed;
1307	}
1308
1309	if (!s->s_root) {
1310		s_new = true;
1311
1312		/* New superblock instance created */
1313		s->s_mode = mode;
1314		snprintf(s->s_id, sizeof(s->s_id), "%pg", sd.bdev);
1315		sb_set_blocksize(s, block_size(sd.bdev));
1316
1317		err = nilfs_fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1318		if (err)
1319			goto failed_super;
1320
1321		s->s_flags |= SB_ACTIVE;
1322	} else if (!sd.cno) {
1323		if (nilfs_tree_is_busy(s->s_root)) {
1324			if ((flags ^ s->s_flags) & SB_RDONLY) {
1325				nilfs_err(s,
1326					  "the device already has a %s mount.",
1327					  sb_rdonly(s) ? "read-only" : "read/write");
1328				err = -EBUSY;
1329				goto failed_super;
1330			}
1331		} else {
1332			/*
1333			 * Try remount to setup mount states if the current
1334			 * tree is not mounted and only snapshots use this sb.
1335			 */
1336			err = nilfs_remount(s, &flags, data);
1337			if (err)
1338				goto failed_super;
1339		}
1340	}
1341
1342	if (sd.cno) {
1343		err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1344		if (err)
1345			goto failed_super;
1346	} else {
1347		root_dentry = dget(s->s_root);
1348	}
1349
1350	if (!s_new)
1351		blkdev_put(sd.bdev, mode);
1352
1353	return root_dentry;
1354
1355 failed_super:
1356	deactivate_locked_super(s);
1357
1358 failed:
1359	if (!s_new)
1360		blkdev_put(sd.bdev, mode);
1361	return ERR_PTR(err);
1362}
1363
1364struct file_system_type nilfs_fs_type = {
1365	.owner    = THIS_MODULE,
1366	.name     = "nilfs2",
1367	.mount    = nilfs_mount,
1368	.kill_sb  = kill_block_super,
1369	.fs_flags = FS_REQUIRES_DEV,
1370};
1371MODULE_ALIAS_FS("nilfs2");
1372
1373static void nilfs_inode_init_once(void *obj)
1374{
1375	struct nilfs_inode_info *ii = obj;
1376
1377	INIT_LIST_HEAD(&ii->i_dirty);
1378#ifdef CONFIG_NILFS_XATTR
1379	init_rwsem(&ii->xattr_sem);
1380#endif
1381	address_space_init_once(&ii->i_btnode_cache);
1382	ii->i_bmap = &ii->i_bmap_data;
1383	inode_init_once(&ii->vfs_inode);
1384}
1385
1386static void nilfs_segbuf_init_once(void *obj)
1387{
1388	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1389}
1390
1391static void nilfs_destroy_cachep(void)
1392{
1393	/*
1394	 * Make sure all delayed rcu free inodes are flushed before we
1395	 * destroy cache.
1396	 */
1397	rcu_barrier();
1398
1399	kmem_cache_destroy(nilfs_inode_cachep);
1400	kmem_cache_destroy(nilfs_transaction_cachep);
1401	kmem_cache_destroy(nilfs_segbuf_cachep);
1402	kmem_cache_destroy(nilfs_btree_path_cache);
1403}
1404
1405static int __init nilfs_init_cachep(void)
1406{
1407	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1408			sizeof(struct nilfs_inode_info), 0,
1409			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1410			nilfs_inode_init_once);
1411	if (!nilfs_inode_cachep)
1412		goto fail;
1413
1414	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1415			sizeof(struct nilfs_transaction_info), 0,
1416			SLAB_RECLAIM_ACCOUNT, NULL);
1417	if (!nilfs_transaction_cachep)
1418		goto fail;
1419
1420	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1421			sizeof(struct nilfs_segment_buffer), 0,
1422			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1423	if (!nilfs_segbuf_cachep)
1424		goto fail;
1425
1426	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1427			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1428			0, 0, NULL);
1429	if (!nilfs_btree_path_cache)
1430		goto fail;
1431
1432	return 0;
1433
1434fail:
1435	nilfs_destroy_cachep();
1436	return -ENOMEM;
1437}
1438
1439static int __init init_nilfs_fs(void)
1440{
1441	int err;
1442
1443	err = nilfs_init_cachep();
1444	if (err)
1445		goto fail;
1446
1447	err = nilfs_sysfs_init();
1448	if (err)
1449		goto free_cachep;
1450
1451	err = register_filesystem(&nilfs_fs_type);
1452	if (err)
1453		goto deinit_sysfs_entry;
1454
1455	printk(KERN_INFO "NILFS version 2 loaded\n");
1456	return 0;
1457
1458deinit_sysfs_entry:
1459	nilfs_sysfs_exit();
1460free_cachep:
1461	nilfs_destroy_cachep();
1462fail:
1463	return err;
1464}
1465
1466static void __exit exit_nilfs_fs(void)
1467{
1468	nilfs_destroy_cachep();
1469	nilfs_sysfs_exit();
1470	unregister_filesystem(&nilfs_fs_type);
1471}
1472
1473module_init(init_nilfs_fs)
1474module_exit(exit_nilfs_fs)