Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v4.17
   1/*
   2 * super.c - NILFS module and super block management.
   3 *
   4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * Written by Ryusuke Konishi.
  17 */
  18/*
  19 *  linux/fs/ext2/super.c
  20 *
  21 * Copyright (C) 1992, 1993, 1994, 1995
  22 * Remy Card (card@masi.ibp.fr)
  23 * Laboratoire MASI - Institut Blaise Pascal
  24 * Universite Pierre et Marie Curie (Paris VI)
  25 *
  26 *  from
  27 *
  28 *  linux/fs/minix/inode.c
  29 *
  30 *  Copyright (C) 1991, 1992  Linus Torvalds
  31 *
  32 *  Big-endian to little-endian byte-swapping/bitmaps by
  33 *        David S. Miller (davem@caip.rutgers.edu), 1995
  34 */
  35
  36#include <linux/module.h>
  37#include <linux/string.h>
  38#include <linux/slab.h>
  39#include <linux/init.h>
  40#include <linux/blkdev.h>
  41#include <linux/parser.h>
  42#include <linux/crc32.h>
  43#include <linux/vfs.h>
  44#include <linux/writeback.h>
  45#include <linux/seq_file.h>
  46#include <linux/mount.h>
  47#include "nilfs.h"
  48#include "export.h"
  49#include "mdt.h"
  50#include "alloc.h"
  51#include "btree.h"
  52#include "btnode.h"
  53#include "page.h"
  54#include "cpfile.h"
  55#include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
  56#include "ifile.h"
  57#include "dat.h"
  58#include "segment.h"
  59#include "segbuf.h"
  60
  61MODULE_AUTHOR("NTT Corp.");
  62MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
  63		   "(NILFS)");
  64MODULE_LICENSE("GPL");
  65
  66static struct kmem_cache *nilfs_inode_cachep;
  67struct kmem_cache *nilfs_transaction_cachep;
  68struct kmem_cache *nilfs_segbuf_cachep;
  69struct kmem_cache *nilfs_btree_path_cache;
  70
  71static int nilfs_setup_super(struct super_block *sb, int is_mount);
  72static int nilfs_remount(struct super_block *sb, int *flags, char *data);
  73
  74void __nilfs_msg(struct super_block *sb, const char *level, const char *fmt,
  75		 ...)
  76{
  77	struct va_format vaf;
  78	va_list args;
  79
  80	va_start(args, fmt);
  81	vaf.fmt = fmt;
  82	vaf.va = &args;
  83	if (sb)
  84		printk("%sNILFS (%s): %pV\n", level, sb->s_id, &vaf);
  85	else
  86		printk("%sNILFS: %pV\n", level, &vaf);
  87	va_end(args);
  88}
  89
  90static void nilfs_set_error(struct super_block *sb)
  91{
  92	struct the_nilfs *nilfs = sb->s_fs_info;
  93	struct nilfs_super_block **sbp;
  94
  95	down_write(&nilfs->ns_sem);
  96	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
  97		nilfs->ns_mount_state |= NILFS_ERROR_FS;
  98		sbp = nilfs_prepare_super(sb, 0);
  99		if (likely(sbp)) {
 100			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
 101			if (sbp[1])
 102				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
 103			nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 104		}
 105	}
 106	up_write(&nilfs->ns_sem);
 107}
 108
 109/**
 110 * __nilfs_error() - report failure condition on a filesystem
 111 *
 112 * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
 113 * reporting an error message.  This function should be called when
 114 * NILFS detects incoherences or defects of meta data on disk.
 115 *
 116 * This implements the body of nilfs_error() macro.  Normally,
 117 * nilfs_error() should be used.  As for sustainable errors such as a
 118 * single-shot I/O error, nilfs_msg() should be used instead.
 119 *
 120 * Callers should not add a trailing newline since this will do it.
 121 */
 122void __nilfs_error(struct super_block *sb, const char *function,
 123		   const char *fmt, ...)
 124{
 125	struct the_nilfs *nilfs = sb->s_fs_info;
 126	struct va_format vaf;
 127	va_list args;
 128
 129	va_start(args, fmt);
 130
 131	vaf.fmt = fmt;
 132	vaf.va = &args;
 133
 134	printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
 135	       sb->s_id, function, &vaf);
 136
 137	va_end(args);
 138
 139	if (!sb_rdonly(sb)) {
 140		nilfs_set_error(sb);
 141
 142		if (nilfs_test_opt(nilfs, ERRORS_RO)) {
 143			printk(KERN_CRIT "Remounting filesystem read-only\n");
 144			sb->s_flags |= SB_RDONLY;
 145		}
 146	}
 147
 148	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 149		panic("NILFS (device %s): panic forced after error\n",
 150		      sb->s_id);
 151}
 152
 153struct inode *nilfs_alloc_inode(struct super_block *sb)
 154{
 155	struct nilfs_inode_info *ii;
 156
 157	ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
 158	if (!ii)
 159		return NULL;
 160	ii->i_bh = NULL;
 161	ii->i_state = 0;
 162	ii->i_cno = 0;
 
 163	nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode);
 164	return &ii->vfs_inode;
 165}
 166
 167static void nilfs_i_callback(struct rcu_head *head)
 168{
 169	struct inode *inode = container_of(head, struct inode, i_rcu);
 170
 171	if (nilfs_is_metadata_file_inode(inode))
 172		nilfs_mdt_destroy(inode);
 173
 174	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
 175}
 176
 177void nilfs_destroy_inode(struct inode *inode)
 178{
 179	call_rcu(&inode->i_rcu, nilfs_i_callback);
 180}
 181
 182static int nilfs_sync_super(struct super_block *sb, int flag)
 183{
 184	struct the_nilfs *nilfs = sb->s_fs_info;
 185	int err;
 186
 187 retry:
 188	set_buffer_dirty(nilfs->ns_sbh[0]);
 189	if (nilfs_test_opt(nilfs, BARRIER)) {
 190		err = __sync_dirty_buffer(nilfs->ns_sbh[0],
 191					  REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
 192	} else {
 193		err = sync_dirty_buffer(nilfs->ns_sbh[0]);
 194	}
 195
 196	if (unlikely(err)) {
 197		nilfs_msg(sb, KERN_ERR, "unable to write superblock: err=%d",
 198			  err);
 199		if (err == -EIO && nilfs->ns_sbh[1]) {
 200			/*
 201			 * sbp[0] points to newer log than sbp[1],
 202			 * so copy sbp[0] to sbp[1] to take over sbp[0].
 203			 */
 204			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
 205			       nilfs->ns_sbsize);
 206			nilfs_fall_back_super_block(nilfs);
 207			goto retry;
 208		}
 209	} else {
 210		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
 211
 212		nilfs->ns_sbwcount++;
 213
 214		/*
 215		 * The latest segment becomes trailable from the position
 216		 * written in superblock.
 217		 */
 218		clear_nilfs_discontinued(nilfs);
 219
 220		/* update GC protection for recent segments */
 221		if (nilfs->ns_sbh[1]) {
 222			if (flag == NILFS_SB_COMMIT_ALL) {
 223				set_buffer_dirty(nilfs->ns_sbh[1]);
 224				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
 225					goto out;
 226			}
 227			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
 228			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
 229				sbp = nilfs->ns_sbp[1];
 230		}
 231
 232		spin_lock(&nilfs->ns_last_segment_lock);
 233		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
 234		spin_unlock(&nilfs->ns_last_segment_lock);
 235	}
 236 out:
 237	return err;
 238}
 239
 240void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
 241			  struct the_nilfs *nilfs)
 242{
 243	sector_t nfreeblocks;
 244
 245	/* nilfs->ns_sem must be locked by the caller. */
 246	nilfs_count_free_blocks(nilfs, &nfreeblocks);
 247	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
 248
 249	spin_lock(&nilfs->ns_last_segment_lock);
 250	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
 251	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
 252	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
 253	spin_unlock(&nilfs->ns_last_segment_lock);
 254}
 255
 256struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
 257					       int flip)
 258{
 259	struct the_nilfs *nilfs = sb->s_fs_info;
 260	struct nilfs_super_block **sbp = nilfs->ns_sbp;
 261
 262	/* nilfs->ns_sem must be locked by the caller. */
 263	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 264		if (sbp[1] &&
 265		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
 266			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
 267		} else {
 268			nilfs_msg(sb, KERN_CRIT, "superblock broke");
 269			return NULL;
 270		}
 271	} else if (sbp[1] &&
 272		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 273		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 274	}
 275
 276	if (flip && sbp[1])
 277		nilfs_swap_super_block(nilfs);
 278
 279	return sbp;
 280}
 281
 282int nilfs_commit_super(struct super_block *sb, int flag)
 283{
 284	struct the_nilfs *nilfs = sb->s_fs_info;
 285	struct nilfs_super_block **sbp = nilfs->ns_sbp;
 286	time64_t t;
 287
 288	/* nilfs->ns_sem must be locked by the caller. */
 289	t = ktime_get_real_seconds();
 290	nilfs->ns_sbwtime = t;
 291	sbp[0]->s_wtime = cpu_to_le64(t);
 292	sbp[0]->s_sum = 0;
 293	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 294					     (unsigned char *)sbp[0],
 295					     nilfs->ns_sbsize));
 296	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
 297		sbp[1]->s_wtime = sbp[0]->s_wtime;
 298		sbp[1]->s_sum = 0;
 299		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 300					    (unsigned char *)sbp[1],
 301					    nilfs->ns_sbsize));
 302	}
 303	clear_nilfs_sb_dirty(nilfs);
 304	nilfs->ns_flushed_device = 1;
 305	/* make sure store to ns_flushed_device cannot be reordered */
 306	smp_wmb();
 307	return nilfs_sync_super(sb, flag);
 308}
 309
 310/**
 311 * nilfs_cleanup_super() - write filesystem state for cleanup
 312 * @sb: super block instance to be unmounted or degraded to read-only
 313 *
 314 * This function restores state flags in the on-disk super block.
 315 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
 316 * filesystem was not clean previously.
 317 */
 318int nilfs_cleanup_super(struct super_block *sb)
 319{
 320	struct the_nilfs *nilfs = sb->s_fs_info;
 321	struct nilfs_super_block **sbp;
 322	int flag = NILFS_SB_COMMIT;
 323	int ret = -EIO;
 324
 325	sbp = nilfs_prepare_super(sb, 0);
 326	if (sbp) {
 327		sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
 328		nilfs_set_log_cursor(sbp[0], nilfs);
 329		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
 330			/*
 331			 * make the "clean" flag also to the opposite
 332			 * super block if both super blocks point to
 333			 * the same checkpoint.
 334			 */
 335			sbp[1]->s_state = sbp[0]->s_state;
 336			flag = NILFS_SB_COMMIT_ALL;
 337		}
 338		ret = nilfs_commit_super(sb, flag);
 339	}
 340	return ret;
 341}
 342
 343/**
 344 * nilfs_move_2nd_super - relocate secondary super block
 345 * @sb: super block instance
 346 * @sb2off: new offset of the secondary super block (in bytes)
 347 */
 348static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
 349{
 350	struct the_nilfs *nilfs = sb->s_fs_info;
 351	struct buffer_head *nsbh;
 352	struct nilfs_super_block *nsbp;
 353	sector_t blocknr, newblocknr;
 354	unsigned long offset;
 355	int sb2i;  /* array index of the secondary superblock */
 356	int ret = 0;
 357
 358	/* nilfs->ns_sem must be locked by the caller. */
 359	if (nilfs->ns_sbh[1] &&
 360	    nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
 361		sb2i = 1;
 362		blocknr = nilfs->ns_sbh[1]->b_blocknr;
 363	} else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
 364		sb2i = 0;
 365		blocknr = nilfs->ns_sbh[0]->b_blocknr;
 366	} else {
 367		sb2i = -1;
 368		blocknr = 0;
 369	}
 370	if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
 371		goto out;  /* super block location is unchanged */
 372
 373	/* Get new super block buffer */
 374	newblocknr = sb2off >> nilfs->ns_blocksize_bits;
 375	offset = sb2off & (nilfs->ns_blocksize - 1);
 376	nsbh = sb_getblk(sb, newblocknr);
 377	if (!nsbh) {
 378		nilfs_msg(sb, KERN_WARNING,
 379			  "unable to move secondary superblock to block %llu",
 380			  (unsigned long long)newblocknr);
 381		ret = -EIO;
 382		goto out;
 383	}
 384	nsbp = (void *)nsbh->b_data + offset;
 385	memset(nsbp, 0, nilfs->ns_blocksize);
 386
 387	if (sb2i >= 0) {
 388		memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
 389		brelse(nilfs->ns_sbh[sb2i]);
 390		nilfs->ns_sbh[sb2i] = nsbh;
 391		nilfs->ns_sbp[sb2i] = nsbp;
 392	} else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
 393		/* secondary super block will be restored to index 1 */
 394		nilfs->ns_sbh[1] = nsbh;
 395		nilfs->ns_sbp[1] = nsbp;
 396	} else {
 397		brelse(nsbh);
 398	}
 399out:
 400	return ret;
 401}
 402
 403/**
 404 * nilfs_resize_fs - resize the filesystem
 405 * @sb: super block instance
 406 * @newsize: new size of the filesystem (in bytes)
 407 */
 408int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
 409{
 410	struct the_nilfs *nilfs = sb->s_fs_info;
 411	struct nilfs_super_block **sbp;
 412	__u64 devsize, newnsegs;
 413	loff_t sb2off;
 414	int ret;
 415
 416	ret = -ERANGE;
 417	devsize = i_size_read(sb->s_bdev->bd_inode);
 418	if (newsize > devsize)
 419		goto out;
 420
 421	/*
 422	 * Write lock is required to protect some functions depending
 423	 * on the number of segments, the number of reserved segments,
 424	 * and so forth.
 425	 */
 426	down_write(&nilfs->ns_segctor_sem);
 427
 428	sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
 429	newnsegs = sb2off >> nilfs->ns_blocksize_bits;
 430	do_div(newnsegs, nilfs->ns_blocks_per_segment);
 431
 432	ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
 433	up_write(&nilfs->ns_segctor_sem);
 434	if (ret < 0)
 435		goto out;
 436
 437	ret = nilfs_construct_segment(sb);
 438	if (ret < 0)
 439		goto out;
 440
 441	down_write(&nilfs->ns_sem);
 442	nilfs_move_2nd_super(sb, sb2off);
 443	ret = -EIO;
 444	sbp = nilfs_prepare_super(sb, 0);
 445	if (likely(sbp)) {
 446		nilfs_set_log_cursor(sbp[0], nilfs);
 447		/*
 448		 * Drop NILFS_RESIZE_FS flag for compatibility with
 449		 * mount-time resize which may be implemented in a
 450		 * future release.
 451		 */
 452		sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
 453					      ~NILFS_RESIZE_FS);
 454		sbp[0]->s_dev_size = cpu_to_le64(newsize);
 455		sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
 456		if (sbp[1])
 457			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 458		ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 459	}
 460	up_write(&nilfs->ns_sem);
 461
 462	/*
 463	 * Reset the range of allocatable segments last.  This order
 464	 * is important in the case of expansion because the secondary
 465	 * superblock must be protected from log write until migration
 466	 * completes.
 467	 */
 468	if (!ret)
 469		nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
 470out:
 471	return ret;
 472}
 473
 474static void nilfs_put_super(struct super_block *sb)
 475{
 476	struct the_nilfs *nilfs = sb->s_fs_info;
 477
 478	nilfs_detach_log_writer(sb);
 479
 480	if (!sb_rdonly(sb)) {
 481		down_write(&nilfs->ns_sem);
 482		nilfs_cleanup_super(sb);
 483		up_write(&nilfs->ns_sem);
 484	}
 485
 486	iput(nilfs->ns_sufile);
 487	iput(nilfs->ns_cpfile);
 488	iput(nilfs->ns_dat);
 489
 490	destroy_nilfs(nilfs);
 491	sb->s_fs_info = NULL;
 492}
 493
 494static int nilfs_sync_fs(struct super_block *sb, int wait)
 495{
 496	struct the_nilfs *nilfs = sb->s_fs_info;
 497	struct nilfs_super_block **sbp;
 498	int err = 0;
 499
 500	/* This function is called when super block should be written back */
 501	if (wait)
 502		err = nilfs_construct_segment(sb);
 503
 504	down_write(&nilfs->ns_sem);
 505	if (nilfs_sb_dirty(nilfs)) {
 506		sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
 507		if (likely(sbp)) {
 508			nilfs_set_log_cursor(sbp[0], nilfs);
 509			nilfs_commit_super(sb, NILFS_SB_COMMIT);
 510		}
 511	}
 512	up_write(&nilfs->ns_sem);
 513
 514	if (!err)
 515		err = nilfs_flush_device(nilfs);
 516
 517	return err;
 518}
 519
 520int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
 521			    struct nilfs_root **rootp)
 522{
 523	struct the_nilfs *nilfs = sb->s_fs_info;
 524	struct nilfs_root *root;
 525	struct nilfs_checkpoint *raw_cp;
 526	struct buffer_head *bh_cp;
 527	int err = -ENOMEM;
 528
 529	root = nilfs_find_or_create_root(
 530		nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
 531	if (!root)
 532		return err;
 533
 534	if (root->ifile)
 535		goto reuse; /* already attached checkpoint */
 536
 537	down_read(&nilfs->ns_segctor_sem);
 538	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
 539					  &bh_cp);
 540	up_read(&nilfs->ns_segctor_sem);
 541	if (unlikely(err)) {
 542		if (err == -ENOENT || err == -EINVAL) {
 543			nilfs_msg(sb, KERN_ERR,
 544				  "Invalid checkpoint (checkpoint number=%llu)",
 545				  (unsigned long long)cno);
 546			err = -EINVAL;
 547		}
 548		goto failed;
 549	}
 550
 551	err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
 552			       &raw_cp->cp_ifile_inode, &root->ifile);
 553	if (err)
 554		goto failed_bh;
 555
 556	atomic64_set(&root->inodes_count,
 557			le64_to_cpu(raw_cp->cp_inodes_count));
 558	atomic64_set(&root->blocks_count,
 559			le64_to_cpu(raw_cp->cp_blocks_count));
 560
 561	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
 562
 563 reuse:
 564	*rootp = root;
 565	return 0;
 566
 567 failed_bh:
 568	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
 569 failed:
 570	nilfs_put_root(root);
 571
 572	return err;
 573}
 574
 575static int nilfs_freeze(struct super_block *sb)
 576{
 577	struct the_nilfs *nilfs = sb->s_fs_info;
 578	int err;
 579
 580	if (sb_rdonly(sb))
 581		return 0;
 582
 583	/* Mark super block clean */
 584	down_write(&nilfs->ns_sem);
 585	err = nilfs_cleanup_super(sb);
 586	up_write(&nilfs->ns_sem);
 587	return err;
 588}
 589
 590static int nilfs_unfreeze(struct super_block *sb)
 591{
 592	struct the_nilfs *nilfs = sb->s_fs_info;
 593
 594	if (sb_rdonly(sb))
 595		return 0;
 596
 597	down_write(&nilfs->ns_sem);
 598	nilfs_setup_super(sb, false);
 599	up_write(&nilfs->ns_sem);
 600	return 0;
 601}
 602
 603static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
 604{
 605	struct super_block *sb = dentry->d_sb;
 606	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
 607	struct the_nilfs *nilfs = root->nilfs;
 608	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
 609	unsigned long long blocks;
 610	unsigned long overhead;
 611	unsigned long nrsvblocks;
 612	sector_t nfreeblocks;
 613	u64 nmaxinodes, nfreeinodes;
 614	int err;
 615
 616	/*
 617	 * Compute all of the segment blocks
 618	 *
 619	 * The blocks before first segment and after last segment
 620	 * are excluded.
 621	 */
 622	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
 623		- nilfs->ns_first_data_block;
 624	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
 625
 626	/*
 627	 * Compute the overhead
 628	 *
 629	 * When distributing meta data blocks outside segment structure,
 630	 * We must count them as the overhead.
 631	 */
 632	overhead = 0;
 633
 634	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
 635	if (unlikely(err))
 636		return err;
 637
 638	err = nilfs_ifile_count_free_inodes(root->ifile,
 639					    &nmaxinodes, &nfreeinodes);
 640	if (unlikely(err)) {
 641		nilfs_msg(sb, KERN_WARNING,
 642			  "failed to count free inodes: err=%d", err);
 643		if (err == -ERANGE) {
 644			/*
 645			 * If nilfs_palloc_count_max_entries() returns
 646			 * -ERANGE error code then we simply treat
 647			 * curent inodes count as maximum possible and
 648			 * zero as free inodes value.
 649			 */
 650			nmaxinodes = atomic64_read(&root->inodes_count);
 651			nfreeinodes = 0;
 652			err = 0;
 653		} else
 654			return err;
 655	}
 656
 657	buf->f_type = NILFS_SUPER_MAGIC;
 658	buf->f_bsize = sb->s_blocksize;
 659	buf->f_blocks = blocks - overhead;
 660	buf->f_bfree = nfreeblocks;
 661	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
 662		(buf->f_bfree - nrsvblocks) : 0;
 663	buf->f_files = nmaxinodes;
 664	buf->f_ffree = nfreeinodes;
 665	buf->f_namelen = NILFS_NAME_LEN;
 666	buf->f_fsid.val[0] = (u32)id;
 667	buf->f_fsid.val[1] = (u32)(id >> 32);
 668
 669	return 0;
 670}
 671
 672static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
 673{
 674	struct super_block *sb = dentry->d_sb;
 675	struct the_nilfs *nilfs = sb->s_fs_info;
 676	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
 677
 678	if (!nilfs_test_opt(nilfs, BARRIER))
 679		seq_puts(seq, ",nobarrier");
 680	if (root->cno != NILFS_CPTREE_CURRENT_CNO)
 681		seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
 682	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 683		seq_puts(seq, ",errors=panic");
 684	if (nilfs_test_opt(nilfs, ERRORS_CONT))
 685		seq_puts(seq, ",errors=continue");
 686	if (nilfs_test_opt(nilfs, STRICT_ORDER))
 687		seq_puts(seq, ",order=strict");
 688	if (nilfs_test_opt(nilfs, NORECOVERY))
 689		seq_puts(seq, ",norecovery");
 690	if (nilfs_test_opt(nilfs, DISCARD))
 691		seq_puts(seq, ",discard");
 692
 693	return 0;
 694}
 695
 696static const struct super_operations nilfs_sops = {
 697	.alloc_inode    = nilfs_alloc_inode,
 698	.destroy_inode  = nilfs_destroy_inode,
 699	.dirty_inode    = nilfs_dirty_inode,
 700	.evict_inode    = nilfs_evict_inode,
 701	.put_super      = nilfs_put_super,
 702	.sync_fs        = nilfs_sync_fs,
 703	.freeze_fs	= nilfs_freeze,
 704	.unfreeze_fs	= nilfs_unfreeze,
 705	.statfs         = nilfs_statfs,
 706	.remount_fs     = nilfs_remount,
 707	.show_options = nilfs_show_options
 708};
 709
 710enum {
 711	Opt_err_cont, Opt_err_panic, Opt_err_ro,
 712	Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
 713	Opt_discard, Opt_nodiscard, Opt_err,
 714};
 715
 716static match_table_t tokens = {
 717	{Opt_err_cont, "errors=continue"},
 718	{Opt_err_panic, "errors=panic"},
 719	{Opt_err_ro, "errors=remount-ro"},
 720	{Opt_barrier, "barrier"},
 721	{Opt_nobarrier, "nobarrier"},
 722	{Opt_snapshot, "cp=%u"},
 723	{Opt_order, "order=%s"},
 724	{Opt_norecovery, "norecovery"},
 725	{Opt_discard, "discard"},
 726	{Opt_nodiscard, "nodiscard"},
 727	{Opt_err, NULL}
 728};
 729
 730static int parse_options(char *options, struct super_block *sb, int is_remount)
 731{
 732	struct the_nilfs *nilfs = sb->s_fs_info;
 733	char *p;
 734	substring_t args[MAX_OPT_ARGS];
 735
 736	if (!options)
 737		return 1;
 738
 739	while ((p = strsep(&options, ",")) != NULL) {
 740		int token;
 741
 742		if (!*p)
 743			continue;
 744
 745		token = match_token(p, tokens, args);
 746		switch (token) {
 747		case Opt_barrier:
 748			nilfs_set_opt(nilfs, BARRIER);
 749			break;
 750		case Opt_nobarrier:
 751			nilfs_clear_opt(nilfs, BARRIER);
 752			break;
 753		case Opt_order:
 754			if (strcmp(args[0].from, "relaxed") == 0)
 755				/* Ordered data semantics */
 756				nilfs_clear_opt(nilfs, STRICT_ORDER);
 757			else if (strcmp(args[0].from, "strict") == 0)
 758				/* Strict in-order semantics */
 759				nilfs_set_opt(nilfs, STRICT_ORDER);
 760			else
 761				return 0;
 762			break;
 763		case Opt_err_panic:
 764			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
 765			break;
 766		case Opt_err_ro:
 767			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
 768			break;
 769		case Opt_err_cont:
 770			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
 771			break;
 772		case Opt_snapshot:
 773			if (is_remount) {
 774				nilfs_msg(sb, KERN_ERR,
 775					  "\"%s\" option is invalid for remount",
 776					  p);
 777				return 0;
 778			}
 779			break;
 780		case Opt_norecovery:
 781			nilfs_set_opt(nilfs, NORECOVERY);
 782			break;
 783		case Opt_discard:
 784			nilfs_set_opt(nilfs, DISCARD);
 785			break;
 786		case Opt_nodiscard:
 787			nilfs_clear_opt(nilfs, DISCARD);
 788			break;
 789		default:
 790			nilfs_msg(sb, KERN_ERR,
 791				  "unrecognized mount option \"%s\"", p);
 792			return 0;
 793		}
 794	}
 795	return 1;
 796}
 797
 798static inline void
 799nilfs_set_default_options(struct super_block *sb,
 800			  struct nilfs_super_block *sbp)
 801{
 802	struct the_nilfs *nilfs = sb->s_fs_info;
 803
 804	nilfs->ns_mount_opt =
 805		NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
 806}
 807
 808static int nilfs_setup_super(struct super_block *sb, int is_mount)
 809{
 810	struct the_nilfs *nilfs = sb->s_fs_info;
 811	struct nilfs_super_block **sbp;
 812	int max_mnt_count;
 813	int mnt_count;
 814
 815	/* nilfs->ns_sem must be locked by the caller. */
 816	sbp = nilfs_prepare_super(sb, 0);
 817	if (!sbp)
 818		return -EIO;
 819
 820	if (!is_mount)
 821		goto skip_mount_setup;
 822
 823	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
 824	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
 825
 826	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
 827		nilfs_msg(sb, KERN_WARNING, "mounting fs with errors");
 828#if 0
 829	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
 830		nilfs_msg(sb, KERN_WARNING, "maximal mount count reached");
 831#endif
 832	}
 833	if (!max_mnt_count)
 834		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
 835
 836	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
 837	sbp[0]->s_mtime = cpu_to_le64(get_seconds());
 838
 839skip_mount_setup:
 840	sbp[0]->s_state =
 841		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
 842	/* synchronize sbp[1] with sbp[0] */
 843	if (sbp[1])
 844		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 845	return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 846}
 847
 848struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
 849						 u64 pos, int blocksize,
 850						 struct buffer_head **pbh)
 851{
 852	unsigned long long sb_index = pos;
 853	unsigned long offset;
 854
 855	offset = do_div(sb_index, blocksize);
 856	*pbh = sb_bread(sb, sb_index);
 857	if (!*pbh)
 858		return NULL;
 859	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
 860}
 861
 862int nilfs_store_magic_and_option(struct super_block *sb,
 863				 struct nilfs_super_block *sbp,
 864				 char *data)
 865{
 866	struct the_nilfs *nilfs = sb->s_fs_info;
 867
 868	sb->s_magic = le16_to_cpu(sbp->s_magic);
 869
 870	/* FS independent flags */
 871#ifdef NILFS_ATIME_DISABLE
 872	sb->s_flags |= SB_NOATIME;
 873#endif
 874
 875	nilfs_set_default_options(sb, sbp);
 876
 877	nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
 878	nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
 879	nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
 880	nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
 881
 882	return !parse_options(data, sb, 0) ? -EINVAL : 0;
 883}
 884
 885int nilfs_check_feature_compatibility(struct super_block *sb,
 886				      struct nilfs_super_block *sbp)
 887{
 888	__u64 features;
 889
 890	features = le64_to_cpu(sbp->s_feature_incompat) &
 891		~NILFS_FEATURE_INCOMPAT_SUPP;
 892	if (features) {
 893		nilfs_msg(sb, KERN_ERR,
 894			  "couldn't mount because of unsupported optional features (%llx)",
 895			  (unsigned long long)features);
 896		return -EINVAL;
 897	}
 898	features = le64_to_cpu(sbp->s_feature_compat_ro) &
 899		~NILFS_FEATURE_COMPAT_RO_SUPP;
 900	if (!sb_rdonly(sb) && features) {
 901		nilfs_msg(sb, KERN_ERR,
 902			  "couldn't mount RDWR because of unsupported optional features (%llx)",
 903			  (unsigned long long)features);
 904		return -EINVAL;
 905	}
 906	return 0;
 907}
 908
 909static int nilfs_get_root_dentry(struct super_block *sb,
 910				 struct nilfs_root *root,
 911				 struct dentry **root_dentry)
 912{
 913	struct inode *inode;
 914	struct dentry *dentry;
 915	int ret = 0;
 916
 917	inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
 918	if (IS_ERR(inode)) {
 919		ret = PTR_ERR(inode);
 920		nilfs_msg(sb, KERN_ERR, "error %d getting root inode", ret);
 921		goto out;
 922	}
 923	if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
 924		iput(inode);
 925		nilfs_msg(sb, KERN_ERR, "corrupt root inode");
 926		ret = -EINVAL;
 927		goto out;
 928	}
 929
 930	if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
 931		dentry = d_find_alias(inode);
 932		if (!dentry) {
 933			dentry = d_make_root(inode);
 934			if (!dentry) {
 935				ret = -ENOMEM;
 936				goto failed_dentry;
 937			}
 938		} else {
 939			iput(inode);
 940		}
 941	} else {
 942		dentry = d_obtain_root(inode);
 943		if (IS_ERR(dentry)) {
 944			ret = PTR_ERR(dentry);
 945			goto failed_dentry;
 946		}
 947	}
 948	*root_dentry = dentry;
 949 out:
 950	return ret;
 951
 952 failed_dentry:
 953	nilfs_msg(sb, KERN_ERR, "error %d getting root dentry", ret);
 954	goto out;
 955}
 956
 957static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
 958				 struct dentry **root_dentry)
 959{
 960	struct the_nilfs *nilfs = s->s_fs_info;
 961	struct nilfs_root *root;
 962	int ret;
 963
 964	mutex_lock(&nilfs->ns_snapshot_mount_mutex);
 965
 966	down_read(&nilfs->ns_segctor_sem);
 967	ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
 968	up_read(&nilfs->ns_segctor_sem);
 969	if (ret < 0) {
 970		ret = (ret == -ENOENT) ? -EINVAL : ret;
 971		goto out;
 972	} else if (!ret) {
 973		nilfs_msg(s, KERN_ERR,
 974			  "The specified checkpoint is not a snapshot (checkpoint number=%llu)",
 975			  (unsigned long long)cno);
 976		ret = -EINVAL;
 977		goto out;
 978	}
 979
 980	ret = nilfs_attach_checkpoint(s, cno, false, &root);
 981	if (ret) {
 982		nilfs_msg(s, KERN_ERR,
 983			  "error %d while loading snapshot (checkpoint number=%llu)",
 984			  ret, (unsigned long long)cno);
 985		goto out;
 986	}
 987	ret = nilfs_get_root_dentry(s, root, root_dentry);
 988	nilfs_put_root(root);
 989 out:
 990	mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
 991	return ret;
 992}
 993
 994/**
 995 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
 996 * @root_dentry: root dentry of the tree to be shrunk
 997 *
 998 * This function returns true if the tree was in-use.
 999 */
1000static bool nilfs_tree_is_busy(struct dentry *root_dentry)
1001{
1002	shrink_dcache_parent(root_dentry);
1003	return d_count(root_dentry) > 1;
1004}
1005
1006int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1007{
1008	struct the_nilfs *nilfs = sb->s_fs_info;
1009	struct nilfs_root *root;
1010	struct inode *inode;
1011	struct dentry *dentry;
1012	int ret;
1013
1014	if (cno > nilfs->ns_cno)
1015		return false;
1016
1017	if (cno >= nilfs_last_cno(nilfs))
1018		return true;	/* protect recent checkpoints */
1019
1020	ret = false;
1021	root = nilfs_lookup_root(nilfs, cno);
1022	if (root) {
1023		inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1024		if (inode) {
1025			dentry = d_find_alias(inode);
1026			if (dentry) {
1027				ret = nilfs_tree_is_busy(dentry);
1028				dput(dentry);
1029			}
1030			iput(inode);
1031		}
1032		nilfs_put_root(root);
1033	}
1034	return ret;
1035}
1036
1037/**
1038 * nilfs_fill_super() - initialize a super block instance
1039 * @sb: super_block
1040 * @data: mount options
1041 * @silent: silent mode flag
1042 *
1043 * This function is called exclusively by nilfs->ns_mount_mutex.
1044 * So, the recovery process is protected from other simultaneous mounts.
1045 */
1046static int
1047nilfs_fill_super(struct super_block *sb, void *data, int silent)
1048{
1049	struct the_nilfs *nilfs;
1050	struct nilfs_root *fsroot;
1051	__u64 cno;
1052	int err;
1053
1054	nilfs = alloc_nilfs(sb);
1055	if (!nilfs)
1056		return -ENOMEM;
1057
1058	sb->s_fs_info = nilfs;
1059
1060	err = init_nilfs(nilfs, sb, (char *)data);
1061	if (err)
1062		goto failed_nilfs;
1063
1064	sb->s_op = &nilfs_sops;
1065	sb->s_export_op = &nilfs_export_ops;
1066	sb->s_root = NULL;
1067	sb->s_time_gran = 1;
1068	sb->s_max_links = NILFS_LINK_MAX;
1069
1070	sb->s_bdi = bdi_get(sb->s_bdev->bd_bdi);
1071
1072	err = load_nilfs(nilfs, sb);
1073	if (err)
1074		goto failed_nilfs;
1075
1076	cno = nilfs_last_cno(nilfs);
1077	err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1078	if (err) {
1079		nilfs_msg(sb, KERN_ERR,
1080			  "error %d while loading last checkpoint (checkpoint number=%llu)",
1081			  err, (unsigned long long)cno);
1082		goto failed_unload;
1083	}
1084
1085	if (!sb_rdonly(sb)) {
1086		err = nilfs_attach_log_writer(sb, fsroot);
1087		if (err)
1088			goto failed_checkpoint;
1089	}
1090
1091	err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1092	if (err)
1093		goto failed_segctor;
1094
1095	nilfs_put_root(fsroot);
1096
1097	if (!sb_rdonly(sb)) {
1098		down_write(&nilfs->ns_sem);
1099		nilfs_setup_super(sb, true);
1100		up_write(&nilfs->ns_sem);
1101	}
1102
1103	return 0;
1104
1105 failed_segctor:
1106	nilfs_detach_log_writer(sb);
1107
1108 failed_checkpoint:
1109	nilfs_put_root(fsroot);
1110
1111 failed_unload:
1112	iput(nilfs->ns_sufile);
1113	iput(nilfs->ns_cpfile);
1114	iput(nilfs->ns_dat);
1115
1116 failed_nilfs:
1117	destroy_nilfs(nilfs);
1118	return err;
1119}
1120
1121static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1122{
1123	struct the_nilfs *nilfs = sb->s_fs_info;
1124	unsigned long old_sb_flags;
1125	unsigned long old_mount_opt;
1126	int err;
1127
1128	sync_filesystem(sb);
1129	old_sb_flags = sb->s_flags;
1130	old_mount_opt = nilfs->ns_mount_opt;
1131
1132	if (!parse_options(data, sb, 1)) {
1133		err = -EINVAL;
1134		goto restore_opts;
1135	}
1136	sb->s_flags = (sb->s_flags & ~SB_POSIXACL);
1137
1138	err = -EINVAL;
1139
1140	if (!nilfs_valid_fs(nilfs)) {
1141		nilfs_msg(sb, KERN_WARNING,
1142			  "couldn't remount because the filesystem is in an incomplete recovery state");
1143		goto restore_opts;
1144	}
1145
1146	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1147		goto out;
1148	if (*flags & SB_RDONLY) {
1149		/* Shutting down log writer */
1150		nilfs_detach_log_writer(sb);
1151		sb->s_flags |= SB_RDONLY;
1152
1153		/*
1154		 * Remounting a valid RW partition RDONLY, so set
1155		 * the RDONLY flag and then mark the partition as valid again.
1156		 */
1157		down_write(&nilfs->ns_sem);
1158		nilfs_cleanup_super(sb);
1159		up_write(&nilfs->ns_sem);
1160	} else {
1161		__u64 features;
1162		struct nilfs_root *root;
1163
1164		/*
1165		 * Mounting a RDONLY partition read-write, so reread and
1166		 * store the current valid flag.  (It may have been changed
1167		 * by fsck since we originally mounted the partition.)
1168		 */
1169		down_read(&nilfs->ns_sem);
1170		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1171			~NILFS_FEATURE_COMPAT_RO_SUPP;
1172		up_read(&nilfs->ns_sem);
1173		if (features) {
1174			nilfs_msg(sb, KERN_WARNING,
1175				  "couldn't remount RDWR because of unsupported optional features (%llx)",
1176				  (unsigned long long)features);
1177			err = -EROFS;
1178			goto restore_opts;
1179		}
1180
1181		sb->s_flags &= ~SB_RDONLY;
1182
1183		root = NILFS_I(d_inode(sb->s_root))->i_root;
1184		err = nilfs_attach_log_writer(sb, root);
1185		if (err)
1186			goto restore_opts;
1187
1188		down_write(&nilfs->ns_sem);
1189		nilfs_setup_super(sb, true);
1190		up_write(&nilfs->ns_sem);
1191	}
1192 out:
1193	return 0;
1194
1195 restore_opts:
1196	sb->s_flags = old_sb_flags;
1197	nilfs->ns_mount_opt = old_mount_opt;
1198	return err;
1199}
1200
1201struct nilfs_super_data {
1202	struct block_device *bdev;
1203	__u64 cno;
1204	int flags;
1205};
1206
1207static int nilfs_parse_snapshot_option(const char *option,
1208				       const substring_t *arg,
1209				       struct nilfs_super_data *sd)
1210{
1211	unsigned long long val;
1212	const char *msg = NULL;
1213	int err;
1214
1215	if (!(sd->flags & SB_RDONLY)) {
1216		msg = "read-only option is not specified";
1217		goto parse_error;
1218	}
1219
1220	err = kstrtoull(arg->from, 0, &val);
1221	if (err) {
1222		if (err == -ERANGE)
1223			msg = "too large checkpoint number";
1224		else
1225			msg = "malformed argument";
1226		goto parse_error;
1227	} else if (val == 0) {
1228		msg = "invalid checkpoint number 0";
1229		goto parse_error;
1230	}
1231	sd->cno = val;
1232	return 0;
1233
1234parse_error:
1235	nilfs_msg(NULL, KERN_ERR, "invalid option \"%s\": %s", option, msg);
1236	return 1;
1237}
1238
1239/**
1240 * nilfs_identify - pre-read mount options needed to identify mount instance
1241 * @data: mount options
1242 * @sd: nilfs_super_data
1243 */
1244static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1245{
1246	char *p, *options = data;
1247	substring_t args[MAX_OPT_ARGS];
1248	int token;
1249	int ret = 0;
1250
1251	do {
1252		p = strsep(&options, ",");
1253		if (p != NULL && *p) {
1254			token = match_token(p, tokens, args);
1255			if (token == Opt_snapshot)
1256				ret = nilfs_parse_snapshot_option(p, &args[0],
1257								  sd);
1258		}
1259		if (!options)
1260			break;
1261		BUG_ON(options == data);
1262		*(options - 1) = ',';
1263	} while (!ret);
1264	return ret;
1265}
1266
1267static int nilfs_set_bdev_super(struct super_block *s, void *data)
1268{
1269	s->s_bdev = data;
1270	s->s_dev = s->s_bdev->bd_dev;
1271	return 0;
1272}
1273
1274static int nilfs_test_bdev_super(struct super_block *s, void *data)
1275{
1276	return (void *)s->s_bdev == data;
1277}
1278
1279static struct dentry *
1280nilfs_mount(struct file_system_type *fs_type, int flags,
1281	     const char *dev_name, void *data)
1282{
1283	struct nilfs_super_data sd;
1284	struct super_block *s;
1285	fmode_t mode = FMODE_READ | FMODE_EXCL;
1286	struct dentry *root_dentry;
1287	int err, s_new = false;
1288
1289	if (!(flags & SB_RDONLY))
1290		mode |= FMODE_WRITE;
1291
1292	sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1293	if (IS_ERR(sd.bdev))
1294		return ERR_CAST(sd.bdev);
1295
1296	sd.cno = 0;
1297	sd.flags = flags;
1298	if (nilfs_identify((char *)data, &sd)) {
1299		err = -EINVAL;
1300		goto failed;
1301	}
1302
1303	/*
1304	 * once the super is inserted into the list by sget, s_umount
1305	 * will protect the lockfs code from trying to start a snapshot
1306	 * while we are mounting
1307	 */
1308	mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1309	if (sd.bdev->bd_fsfreeze_count > 0) {
1310		mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1311		err = -EBUSY;
1312		goto failed;
1313	}
1314	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1315		 sd.bdev);
1316	mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1317	if (IS_ERR(s)) {
1318		err = PTR_ERR(s);
1319		goto failed;
1320	}
1321
1322	if (!s->s_root) {
1323		s_new = true;
1324
1325		/* New superblock instance created */
1326		s->s_mode = mode;
1327		snprintf(s->s_id, sizeof(s->s_id), "%pg", sd.bdev);
1328		sb_set_blocksize(s, block_size(sd.bdev));
1329
1330		err = nilfs_fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1331		if (err)
1332			goto failed_super;
1333
1334		s->s_flags |= SB_ACTIVE;
1335	} else if (!sd.cno) {
1336		if (nilfs_tree_is_busy(s->s_root)) {
1337			if ((flags ^ s->s_flags) & SB_RDONLY) {
1338				nilfs_msg(s, KERN_ERR,
1339					  "the device already has a %s mount.",
1340					  sb_rdonly(s) ? "read-only" : "read/write");
 
1341				err = -EBUSY;
1342				goto failed_super;
1343			}
1344		} else {
1345			/*
1346			 * Try remount to setup mount states if the current
1347			 * tree is not mounted and only snapshots use this sb.
1348			 */
1349			err = nilfs_remount(s, &flags, data);
1350			if (err)
1351				goto failed_super;
1352		}
1353	}
1354
1355	if (sd.cno) {
1356		err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1357		if (err)
1358			goto failed_super;
1359	} else {
1360		root_dentry = dget(s->s_root);
1361	}
1362
1363	if (!s_new)
1364		blkdev_put(sd.bdev, mode);
1365
1366	return root_dentry;
1367
1368 failed_super:
1369	deactivate_locked_super(s);
1370
1371 failed:
1372	if (!s_new)
1373		blkdev_put(sd.bdev, mode);
1374	return ERR_PTR(err);
1375}
1376
1377struct file_system_type nilfs_fs_type = {
1378	.owner    = THIS_MODULE,
1379	.name     = "nilfs2",
1380	.mount    = nilfs_mount,
1381	.kill_sb  = kill_block_super,
1382	.fs_flags = FS_REQUIRES_DEV,
1383};
1384MODULE_ALIAS_FS("nilfs2");
1385
1386static void nilfs_inode_init_once(void *obj)
1387{
1388	struct nilfs_inode_info *ii = obj;
1389
1390	INIT_LIST_HEAD(&ii->i_dirty);
1391#ifdef CONFIG_NILFS_XATTR
1392	init_rwsem(&ii->xattr_sem);
1393#endif
1394	address_space_init_once(&ii->i_btnode_cache);
1395	ii->i_bmap = &ii->i_bmap_data;
1396	inode_init_once(&ii->vfs_inode);
1397}
1398
1399static void nilfs_segbuf_init_once(void *obj)
1400{
1401	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1402}
1403
1404static void nilfs_destroy_cachep(void)
1405{
1406	/*
1407	 * Make sure all delayed rcu free inodes are flushed before we
1408	 * destroy cache.
1409	 */
1410	rcu_barrier();
1411
1412	kmem_cache_destroy(nilfs_inode_cachep);
1413	kmem_cache_destroy(nilfs_transaction_cachep);
1414	kmem_cache_destroy(nilfs_segbuf_cachep);
1415	kmem_cache_destroy(nilfs_btree_path_cache);
1416}
1417
1418static int __init nilfs_init_cachep(void)
1419{
1420	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1421			sizeof(struct nilfs_inode_info), 0,
1422			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1423			nilfs_inode_init_once);
1424	if (!nilfs_inode_cachep)
1425		goto fail;
1426
1427	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1428			sizeof(struct nilfs_transaction_info), 0,
1429			SLAB_RECLAIM_ACCOUNT, NULL);
1430	if (!nilfs_transaction_cachep)
1431		goto fail;
1432
1433	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1434			sizeof(struct nilfs_segment_buffer), 0,
1435			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1436	if (!nilfs_segbuf_cachep)
1437		goto fail;
1438
1439	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1440			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1441			0, 0, NULL);
1442	if (!nilfs_btree_path_cache)
1443		goto fail;
1444
1445	return 0;
1446
1447fail:
1448	nilfs_destroy_cachep();
1449	return -ENOMEM;
1450}
1451
1452static int __init init_nilfs_fs(void)
1453{
1454	int err;
1455
1456	err = nilfs_init_cachep();
1457	if (err)
1458		goto fail;
1459
1460	err = nilfs_sysfs_init();
1461	if (err)
1462		goto free_cachep;
1463
1464	err = register_filesystem(&nilfs_fs_type);
1465	if (err)
1466		goto deinit_sysfs_entry;
1467
1468	printk(KERN_INFO "NILFS version 2 loaded\n");
1469	return 0;
1470
1471deinit_sysfs_entry:
1472	nilfs_sysfs_exit();
1473free_cachep:
1474	nilfs_destroy_cachep();
1475fail:
1476	return err;
1477}
1478
1479static void __exit exit_nilfs_fs(void)
1480{
1481	nilfs_destroy_cachep();
1482	nilfs_sysfs_exit();
1483	unregister_filesystem(&nilfs_fs_type);
1484}
1485
1486module_init(init_nilfs_fs)
1487module_exit(exit_nilfs_fs)
v4.10.11
   1/*
   2 * super.c - NILFS module and super block management.
   3 *
   4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * Written by Ryusuke Konishi.
  17 */
  18/*
  19 *  linux/fs/ext2/super.c
  20 *
  21 * Copyright (C) 1992, 1993, 1994, 1995
  22 * Remy Card (card@masi.ibp.fr)
  23 * Laboratoire MASI - Institut Blaise Pascal
  24 * Universite Pierre et Marie Curie (Paris VI)
  25 *
  26 *  from
  27 *
  28 *  linux/fs/minix/inode.c
  29 *
  30 *  Copyright (C) 1991, 1992  Linus Torvalds
  31 *
  32 *  Big-endian to little-endian byte-swapping/bitmaps by
  33 *        David S. Miller (davem@caip.rutgers.edu), 1995
  34 */
  35
  36#include <linux/module.h>
  37#include <linux/string.h>
  38#include <linux/slab.h>
  39#include <linux/init.h>
  40#include <linux/blkdev.h>
  41#include <linux/parser.h>
  42#include <linux/crc32.h>
  43#include <linux/vfs.h>
  44#include <linux/writeback.h>
  45#include <linux/seq_file.h>
  46#include <linux/mount.h>
  47#include "nilfs.h"
  48#include "export.h"
  49#include "mdt.h"
  50#include "alloc.h"
  51#include "btree.h"
  52#include "btnode.h"
  53#include "page.h"
  54#include "cpfile.h"
  55#include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
  56#include "ifile.h"
  57#include "dat.h"
  58#include "segment.h"
  59#include "segbuf.h"
  60
  61MODULE_AUTHOR("NTT Corp.");
  62MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
  63		   "(NILFS)");
  64MODULE_LICENSE("GPL");
  65
  66static struct kmem_cache *nilfs_inode_cachep;
  67struct kmem_cache *nilfs_transaction_cachep;
  68struct kmem_cache *nilfs_segbuf_cachep;
  69struct kmem_cache *nilfs_btree_path_cache;
  70
  71static int nilfs_setup_super(struct super_block *sb, int is_mount);
  72static int nilfs_remount(struct super_block *sb, int *flags, char *data);
  73
  74void __nilfs_msg(struct super_block *sb, const char *level, const char *fmt,
  75		 ...)
  76{
  77	struct va_format vaf;
  78	va_list args;
  79
  80	va_start(args, fmt);
  81	vaf.fmt = fmt;
  82	vaf.va = &args;
  83	if (sb)
  84		printk("%sNILFS (%s): %pV\n", level, sb->s_id, &vaf);
  85	else
  86		printk("%sNILFS: %pV\n", level, &vaf);
  87	va_end(args);
  88}
  89
  90static void nilfs_set_error(struct super_block *sb)
  91{
  92	struct the_nilfs *nilfs = sb->s_fs_info;
  93	struct nilfs_super_block **sbp;
  94
  95	down_write(&nilfs->ns_sem);
  96	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
  97		nilfs->ns_mount_state |= NILFS_ERROR_FS;
  98		sbp = nilfs_prepare_super(sb, 0);
  99		if (likely(sbp)) {
 100			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
 101			if (sbp[1])
 102				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
 103			nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 104		}
 105	}
 106	up_write(&nilfs->ns_sem);
 107}
 108
 109/**
 110 * __nilfs_error() - report failure condition on a filesystem
 111 *
 112 * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
 113 * reporting an error message.  This function should be called when
 114 * NILFS detects incoherences or defects of meta data on disk.
 115 *
 116 * This implements the body of nilfs_error() macro.  Normally,
 117 * nilfs_error() should be used.  As for sustainable errors such as a
 118 * single-shot I/O error, nilfs_msg() should be used instead.
 119 *
 120 * Callers should not add a trailing newline since this will do it.
 121 */
 122void __nilfs_error(struct super_block *sb, const char *function,
 123		   const char *fmt, ...)
 124{
 125	struct the_nilfs *nilfs = sb->s_fs_info;
 126	struct va_format vaf;
 127	va_list args;
 128
 129	va_start(args, fmt);
 130
 131	vaf.fmt = fmt;
 132	vaf.va = &args;
 133
 134	printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
 135	       sb->s_id, function, &vaf);
 136
 137	va_end(args);
 138
 139	if (!(sb->s_flags & MS_RDONLY)) {
 140		nilfs_set_error(sb);
 141
 142		if (nilfs_test_opt(nilfs, ERRORS_RO)) {
 143			printk(KERN_CRIT "Remounting filesystem read-only\n");
 144			sb->s_flags |= MS_RDONLY;
 145		}
 146	}
 147
 148	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 149		panic("NILFS (device %s): panic forced after error\n",
 150		      sb->s_id);
 151}
 152
 153struct inode *nilfs_alloc_inode(struct super_block *sb)
 154{
 155	struct nilfs_inode_info *ii;
 156
 157	ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
 158	if (!ii)
 159		return NULL;
 160	ii->i_bh = NULL;
 161	ii->i_state = 0;
 162	ii->i_cno = 0;
 163	ii->vfs_inode.i_version = 1;
 164	nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode);
 165	return &ii->vfs_inode;
 166}
 167
 168static void nilfs_i_callback(struct rcu_head *head)
 169{
 170	struct inode *inode = container_of(head, struct inode, i_rcu);
 171
 172	if (nilfs_is_metadata_file_inode(inode))
 173		nilfs_mdt_destroy(inode);
 174
 175	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
 176}
 177
 178void nilfs_destroy_inode(struct inode *inode)
 179{
 180	call_rcu(&inode->i_rcu, nilfs_i_callback);
 181}
 182
 183static int nilfs_sync_super(struct super_block *sb, int flag)
 184{
 185	struct the_nilfs *nilfs = sb->s_fs_info;
 186	int err;
 187
 188 retry:
 189	set_buffer_dirty(nilfs->ns_sbh[0]);
 190	if (nilfs_test_opt(nilfs, BARRIER)) {
 191		err = __sync_dirty_buffer(nilfs->ns_sbh[0],
 192					  REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
 193	} else {
 194		err = sync_dirty_buffer(nilfs->ns_sbh[0]);
 195	}
 196
 197	if (unlikely(err)) {
 198		nilfs_msg(sb, KERN_ERR, "unable to write superblock: err=%d",
 199			  err);
 200		if (err == -EIO && nilfs->ns_sbh[1]) {
 201			/*
 202			 * sbp[0] points to newer log than sbp[1],
 203			 * so copy sbp[0] to sbp[1] to take over sbp[0].
 204			 */
 205			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
 206			       nilfs->ns_sbsize);
 207			nilfs_fall_back_super_block(nilfs);
 208			goto retry;
 209		}
 210	} else {
 211		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
 212
 213		nilfs->ns_sbwcount++;
 214
 215		/*
 216		 * The latest segment becomes trailable from the position
 217		 * written in superblock.
 218		 */
 219		clear_nilfs_discontinued(nilfs);
 220
 221		/* update GC protection for recent segments */
 222		if (nilfs->ns_sbh[1]) {
 223			if (flag == NILFS_SB_COMMIT_ALL) {
 224				set_buffer_dirty(nilfs->ns_sbh[1]);
 225				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
 226					goto out;
 227			}
 228			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
 229			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
 230				sbp = nilfs->ns_sbp[1];
 231		}
 232
 233		spin_lock(&nilfs->ns_last_segment_lock);
 234		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
 235		spin_unlock(&nilfs->ns_last_segment_lock);
 236	}
 237 out:
 238	return err;
 239}
 240
 241void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
 242			  struct the_nilfs *nilfs)
 243{
 244	sector_t nfreeblocks;
 245
 246	/* nilfs->ns_sem must be locked by the caller. */
 247	nilfs_count_free_blocks(nilfs, &nfreeblocks);
 248	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
 249
 250	spin_lock(&nilfs->ns_last_segment_lock);
 251	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
 252	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
 253	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
 254	spin_unlock(&nilfs->ns_last_segment_lock);
 255}
 256
 257struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
 258					       int flip)
 259{
 260	struct the_nilfs *nilfs = sb->s_fs_info;
 261	struct nilfs_super_block **sbp = nilfs->ns_sbp;
 262
 263	/* nilfs->ns_sem must be locked by the caller. */
 264	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 265		if (sbp[1] &&
 266		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
 267			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
 268		} else {
 269			nilfs_msg(sb, KERN_CRIT, "superblock broke");
 270			return NULL;
 271		}
 272	} else if (sbp[1] &&
 273		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 274		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 275	}
 276
 277	if (flip && sbp[1])
 278		nilfs_swap_super_block(nilfs);
 279
 280	return sbp;
 281}
 282
 283int nilfs_commit_super(struct super_block *sb, int flag)
 284{
 285	struct the_nilfs *nilfs = sb->s_fs_info;
 286	struct nilfs_super_block **sbp = nilfs->ns_sbp;
 287	time_t t;
 288
 289	/* nilfs->ns_sem must be locked by the caller. */
 290	t = get_seconds();
 291	nilfs->ns_sbwtime = t;
 292	sbp[0]->s_wtime = cpu_to_le64(t);
 293	sbp[0]->s_sum = 0;
 294	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 295					     (unsigned char *)sbp[0],
 296					     nilfs->ns_sbsize));
 297	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
 298		sbp[1]->s_wtime = sbp[0]->s_wtime;
 299		sbp[1]->s_sum = 0;
 300		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 301					    (unsigned char *)sbp[1],
 302					    nilfs->ns_sbsize));
 303	}
 304	clear_nilfs_sb_dirty(nilfs);
 305	nilfs->ns_flushed_device = 1;
 306	/* make sure store to ns_flushed_device cannot be reordered */
 307	smp_wmb();
 308	return nilfs_sync_super(sb, flag);
 309}
 310
 311/**
 312 * nilfs_cleanup_super() - write filesystem state for cleanup
 313 * @sb: super block instance to be unmounted or degraded to read-only
 314 *
 315 * This function restores state flags in the on-disk super block.
 316 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
 317 * filesystem was not clean previously.
 318 */
 319int nilfs_cleanup_super(struct super_block *sb)
 320{
 321	struct the_nilfs *nilfs = sb->s_fs_info;
 322	struct nilfs_super_block **sbp;
 323	int flag = NILFS_SB_COMMIT;
 324	int ret = -EIO;
 325
 326	sbp = nilfs_prepare_super(sb, 0);
 327	if (sbp) {
 328		sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
 329		nilfs_set_log_cursor(sbp[0], nilfs);
 330		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
 331			/*
 332			 * make the "clean" flag also to the opposite
 333			 * super block if both super blocks point to
 334			 * the same checkpoint.
 335			 */
 336			sbp[1]->s_state = sbp[0]->s_state;
 337			flag = NILFS_SB_COMMIT_ALL;
 338		}
 339		ret = nilfs_commit_super(sb, flag);
 340	}
 341	return ret;
 342}
 343
 344/**
 345 * nilfs_move_2nd_super - relocate secondary super block
 346 * @sb: super block instance
 347 * @sb2off: new offset of the secondary super block (in bytes)
 348 */
 349static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
 350{
 351	struct the_nilfs *nilfs = sb->s_fs_info;
 352	struct buffer_head *nsbh;
 353	struct nilfs_super_block *nsbp;
 354	sector_t blocknr, newblocknr;
 355	unsigned long offset;
 356	int sb2i;  /* array index of the secondary superblock */
 357	int ret = 0;
 358
 359	/* nilfs->ns_sem must be locked by the caller. */
 360	if (nilfs->ns_sbh[1] &&
 361	    nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
 362		sb2i = 1;
 363		blocknr = nilfs->ns_sbh[1]->b_blocknr;
 364	} else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
 365		sb2i = 0;
 366		blocknr = nilfs->ns_sbh[0]->b_blocknr;
 367	} else {
 368		sb2i = -1;
 369		blocknr = 0;
 370	}
 371	if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
 372		goto out;  /* super block location is unchanged */
 373
 374	/* Get new super block buffer */
 375	newblocknr = sb2off >> nilfs->ns_blocksize_bits;
 376	offset = sb2off & (nilfs->ns_blocksize - 1);
 377	nsbh = sb_getblk(sb, newblocknr);
 378	if (!nsbh) {
 379		nilfs_msg(sb, KERN_WARNING,
 380			  "unable to move secondary superblock to block %llu",
 381			  (unsigned long long)newblocknr);
 382		ret = -EIO;
 383		goto out;
 384	}
 385	nsbp = (void *)nsbh->b_data + offset;
 386	memset(nsbp, 0, nilfs->ns_blocksize);
 387
 388	if (sb2i >= 0) {
 389		memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
 390		brelse(nilfs->ns_sbh[sb2i]);
 391		nilfs->ns_sbh[sb2i] = nsbh;
 392		nilfs->ns_sbp[sb2i] = nsbp;
 393	} else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
 394		/* secondary super block will be restored to index 1 */
 395		nilfs->ns_sbh[1] = nsbh;
 396		nilfs->ns_sbp[1] = nsbp;
 397	} else {
 398		brelse(nsbh);
 399	}
 400out:
 401	return ret;
 402}
 403
 404/**
 405 * nilfs_resize_fs - resize the filesystem
 406 * @sb: super block instance
 407 * @newsize: new size of the filesystem (in bytes)
 408 */
 409int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
 410{
 411	struct the_nilfs *nilfs = sb->s_fs_info;
 412	struct nilfs_super_block **sbp;
 413	__u64 devsize, newnsegs;
 414	loff_t sb2off;
 415	int ret;
 416
 417	ret = -ERANGE;
 418	devsize = i_size_read(sb->s_bdev->bd_inode);
 419	if (newsize > devsize)
 420		goto out;
 421
 422	/*
 423	 * Write lock is required to protect some functions depending
 424	 * on the number of segments, the number of reserved segments,
 425	 * and so forth.
 426	 */
 427	down_write(&nilfs->ns_segctor_sem);
 428
 429	sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
 430	newnsegs = sb2off >> nilfs->ns_blocksize_bits;
 431	do_div(newnsegs, nilfs->ns_blocks_per_segment);
 432
 433	ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
 434	up_write(&nilfs->ns_segctor_sem);
 435	if (ret < 0)
 436		goto out;
 437
 438	ret = nilfs_construct_segment(sb);
 439	if (ret < 0)
 440		goto out;
 441
 442	down_write(&nilfs->ns_sem);
 443	nilfs_move_2nd_super(sb, sb2off);
 444	ret = -EIO;
 445	sbp = nilfs_prepare_super(sb, 0);
 446	if (likely(sbp)) {
 447		nilfs_set_log_cursor(sbp[0], nilfs);
 448		/*
 449		 * Drop NILFS_RESIZE_FS flag for compatibility with
 450		 * mount-time resize which may be implemented in a
 451		 * future release.
 452		 */
 453		sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
 454					      ~NILFS_RESIZE_FS);
 455		sbp[0]->s_dev_size = cpu_to_le64(newsize);
 456		sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
 457		if (sbp[1])
 458			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 459		ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 460	}
 461	up_write(&nilfs->ns_sem);
 462
 463	/*
 464	 * Reset the range of allocatable segments last.  This order
 465	 * is important in the case of expansion because the secondary
 466	 * superblock must be protected from log write until migration
 467	 * completes.
 468	 */
 469	if (!ret)
 470		nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
 471out:
 472	return ret;
 473}
 474
 475static void nilfs_put_super(struct super_block *sb)
 476{
 477	struct the_nilfs *nilfs = sb->s_fs_info;
 478
 479	nilfs_detach_log_writer(sb);
 480
 481	if (!(sb->s_flags & MS_RDONLY)) {
 482		down_write(&nilfs->ns_sem);
 483		nilfs_cleanup_super(sb);
 484		up_write(&nilfs->ns_sem);
 485	}
 486
 487	iput(nilfs->ns_sufile);
 488	iput(nilfs->ns_cpfile);
 489	iput(nilfs->ns_dat);
 490
 491	destroy_nilfs(nilfs);
 492	sb->s_fs_info = NULL;
 493}
 494
 495static int nilfs_sync_fs(struct super_block *sb, int wait)
 496{
 497	struct the_nilfs *nilfs = sb->s_fs_info;
 498	struct nilfs_super_block **sbp;
 499	int err = 0;
 500
 501	/* This function is called when super block should be written back */
 502	if (wait)
 503		err = nilfs_construct_segment(sb);
 504
 505	down_write(&nilfs->ns_sem);
 506	if (nilfs_sb_dirty(nilfs)) {
 507		sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
 508		if (likely(sbp)) {
 509			nilfs_set_log_cursor(sbp[0], nilfs);
 510			nilfs_commit_super(sb, NILFS_SB_COMMIT);
 511		}
 512	}
 513	up_write(&nilfs->ns_sem);
 514
 515	if (!err)
 516		err = nilfs_flush_device(nilfs);
 517
 518	return err;
 519}
 520
 521int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
 522			    struct nilfs_root **rootp)
 523{
 524	struct the_nilfs *nilfs = sb->s_fs_info;
 525	struct nilfs_root *root;
 526	struct nilfs_checkpoint *raw_cp;
 527	struct buffer_head *bh_cp;
 528	int err = -ENOMEM;
 529
 530	root = nilfs_find_or_create_root(
 531		nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
 532	if (!root)
 533		return err;
 534
 535	if (root->ifile)
 536		goto reuse; /* already attached checkpoint */
 537
 538	down_read(&nilfs->ns_segctor_sem);
 539	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
 540					  &bh_cp);
 541	up_read(&nilfs->ns_segctor_sem);
 542	if (unlikely(err)) {
 543		if (err == -ENOENT || err == -EINVAL) {
 544			nilfs_msg(sb, KERN_ERR,
 545				  "Invalid checkpoint (checkpoint number=%llu)",
 546				  (unsigned long long)cno);
 547			err = -EINVAL;
 548		}
 549		goto failed;
 550	}
 551
 552	err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
 553			       &raw_cp->cp_ifile_inode, &root->ifile);
 554	if (err)
 555		goto failed_bh;
 556
 557	atomic64_set(&root->inodes_count,
 558			le64_to_cpu(raw_cp->cp_inodes_count));
 559	atomic64_set(&root->blocks_count,
 560			le64_to_cpu(raw_cp->cp_blocks_count));
 561
 562	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
 563
 564 reuse:
 565	*rootp = root;
 566	return 0;
 567
 568 failed_bh:
 569	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
 570 failed:
 571	nilfs_put_root(root);
 572
 573	return err;
 574}
 575
 576static int nilfs_freeze(struct super_block *sb)
 577{
 578	struct the_nilfs *nilfs = sb->s_fs_info;
 579	int err;
 580
 581	if (sb->s_flags & MS_RDONLY)
 582		return 0;
 583
 584	/* Mark super block clean */
 585	down_write(&nilfs->ns_sem);
 586	err = nilfs_cleanup_super(sb);
 587	up_write(&nilfs->ns_sem);
 588	return err;
 589}
 590
 591static int nilfs_unfreeze(struct super_block *sb)
 592{
 593	struct the_nilfs *nilfs = sb->s_fs_info;
 594
 595	if (sb->s_flags & MS_RDONLY)
 596		return 0;
 597
 598	down_write(&nilfs->ns_sem);
 599	nilfs_setup_super(sb, false);
 600	up_write(&nilfs->ns_sem);
 601	return 0;
 602}
 603
 604static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
 605{
 606	struct super_block *sb = dentry->d_sb;
 607	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
 608	struct the_nilfs *nilfs = root->nilfs;
 609	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
 610	unsigned long long blocks;
 611	unsigned long overhead;
 612	unsigned long nrsvblocks;
 613	sector_t nfreeblocks;
 614	u64 nmaxinodes, nfreeinodes;
 615	int err;
 616
 617	/*
 618	 * Compute all of the segment blocks
 619	 *
 620	 * The blocks before first segment and after last segment
 621	 * are excluded.
 622	 */
 623	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
 624		- nilfs->ns_first_data_block;
 625	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
 626
 627	/*
 628	 * Compute the overhead
 629	 *
 630	 * When distributing meta data blocks outside segment structure,
 631	 * We must count them as the overhead.
 632	 */
 633	overhead = 0;
 634
 635	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
 636	if (unlikely(err))
 637		return err;
 638
 639	err = nilfs_ifile_count_free_inodes(root->ifile,
 640					    &nmaxinodes, &nfreeinodes);
 641	if (unlikely(err)) {
 642		nilfs_msg(sb, KERN_WARNING,
 643			  "failed to count free inodes: err=%d", err);
 644		if (err == -ERANGE) {
 645			/*
 646			 * If nilfs_palloc_count_max_entries() returns
 647			 * -ERANGE error code then we simply treat
 648			 * curent inodes count as maximum possible and
 649			 * zero as free inodes value.
 650			 */
 651			nmaxinodes = atomic64_read(&root->inodes_count);
 652			nfreeinodes = 0;
 653			err = 0;
 654		} else
 655			return err;
 656	}
 657
 658	buf->f_type = NILFS_SUPER_MAGIC;
 659	buf->f_bsize = sb->s_blocksize;
 660	buf->f_blocks = blocks - overhead;
 661	buf->f_bfree = nfreeblocks;
 662	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
 663		(buf->f_bfree - nrsvblocks) : 0;
 664	buf->f_files = nmaxinodes;
 665	buf->f_ffree = nfreeinodes;
 666	buf->f_namelen = NILFS_NAME_LEN;
 667	buf->f_fsid.val[0] = (u32)id;
 668	buf->f_fsid.val[1] = (u32)(id >> 32);
 669
 670	return 0;
 671}
 672
 673static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
 674{
 675	struct super_block *sb = dentry->d_sb;
 676	struct the_nilfs *nilfs = sb->s_fs_info;
 677	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
 678
 679	if (!nilfs_test_opt(nilfs, BARRIER))
 680		seq_puts(seq, ",nobarrier");
 681	if (root->cno != NILFS_CPTREE_CURRENT_CNO)
 682		seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
 683	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 684		seq_puts(seq, ",errors=panic");
 685	if (nilfs_test_opt(nilfs, ERRORS_CONT))
 686		seq_puts(seq, ",errors=continue");
 687	if (nilfs_test_opt(nilfs, STRICT_ORDER))
 688		seq_puts(seq, ",order=strict");
 689	if (nilfs_test_opt(nilfs, NORECOVERY))
 690		seq_puts(seq, ",norecovery");
 691	if (nilfs_test_opt(nilfs, DISCARD))
 692		seq_puts(seq, ",discard");
 693
 694	return 0;
 695}
 696
 697static const struct super_operations nilfs_sops = {
 698	.alloc_inode    = nilfs_alloc_inode,
 699	.destroy_inode  = nilfs_destroy_inode,
 700	.dirty_inode    = nilfs_dirty_inode,
 701	.evict_inode    = nilfs_evict_inode,
 702	.put_super      = nilfs_put_super,
 703	.sync_fs        = nilfs_sync_fs,
 704	.freeze_fs	= nilfs_freeze,
 705	.unfreeze_fs	= nilfs_unfreeze,
 706	.statfs         = nilfs_statfs,
 707	.remount_fs     = nilfs_remount,
 708	.show_options = nilfs_show_options
 709};
 710
 711enum {
 712	Opt_err_cont, Opt_err_panic, Opt_err_ro,
 713	Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
 714	Opt_discard, Opt_nodiscard, Opt_err,
 715};
 716
 717static match_table_t tokens = {
 718	{Opt_err_cont, "errors=continue"},
 719	{Opt_err_panic, "errors=panic"},
 720	{Opt_err_ro, "errors=remount-ro"},
 721	{Opt_barrier, "barrier"},
 722	{Opt_nobarrier, "nobarrier"},
 723	{Opt_snapshot, "cp=%u"},
 724	{Opt_order, "order=%s"},
 725	{Opt_norecovery, "norecovery"},
 726	{Opt_discard, "discard"},
 727	{Opt_nodiscard, "nodiscard"},
 728	{Opt_err, NULL}
 729};
 730
 731static int parse_options(char *options, struct super_block *sb, int is_remount)
 732{
 733	struct the_nilfs *nilfs = sb->s_fs_info;
 734	char *p;
 735	substring_t args[MAX_OPT_ARGS];
 736
 737	if (!options)
 738		return 1;
 739
 740	while ((p = strsep(&options, ",")) != NULL) {
 741		int token;
 742
 743		if (!*p)
 744			continue;
 745
 746		token = match_token(p, tokens, args);
 747		switch (token) {
 748		case Opt_barrier:
 749			nilfs_set_opt(nilfs, BARRIER);
 750			break;
 751		case Opt_nobarrier:
 752			nilfs_clear_opt(nilfs, BARRIER);
 753			break;
 754		case Opt_order:
 755			if (strcmp(args[0].from, "relaxed") == 0)
 756				/* Ordered data semantics */
 757				nilfs_clear_opt(nilfs, STRICT_ORDER);
 758			else if (strcmp(args[0].from, "strict") == 0)
 759				/* Strict in-order semantics */
 760				nilfs_set_opt(nilfs, STRICT_ORDER);
 761			else
 762				return 0;
 763			break;
 764		case Opt_err_panic:
 765			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
 766			break;
 767		case Opt_err_ro:
 768			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
 769			break;
 770		case Opt_err_cont:
 771			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
 772			break;
 773		case Opt_snapshot:
 774			if (is_remount) {
 775				nilfs_msg(sb, KERN_ERR,
 776					  "\"%s\" option is invalid for remount",
 777					  p);
 778				return 0;
 779			}
 780			break;
 781		case Opt_norecovery:
 782			nilfs_set_opt(nilfs, NORECOVERY);
 783			break;
 784		case Opt_discard:
 785			nilfs_set_opt(nilfs, DISCARD);
 786			break;
 787		case Opt_nodiscard:
 788			nilfs_clear_opt(nilfs, DISCARD);
 789			break;
 790		default:
 791			nilfs_msg(sb, KERN_ERR,
 792				  "unrecognized mount option \"%s\"", p);
 793			return 0;
 794		}
 795	}
 796	return 1;
 797}
 798
 799static inline void
 800nilfs_set_default_options(struct super_block *sb,
 801			  struct nilfs_super_block *sbp)
 802{
 803	struct the_nilfs *nilfs = sb->s_fs_info;
 804
 805	nilfs->ns_mount_opt =
 806		NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
 807}
 808
 809static int nilfs_setup_super(struct super_block *sb, int is_mount)
 810{
 811	struct the_nilfs *nilfs = sb->s_fs_info;
 812	struct nilfs_super_block **sbp;
 813	int max_mnt_count;
 814	int mnt_count;
 815
 816	/* nilfs->ns_sem must be locked by the caller. */
 817	sbp = nilfs_prepare_super(sb, 0);
 818	if (!sbp)
 819		return -EIO;
 820
 821	if (!is_mount)
 822		goto skip_mount_setup;
 823
 824	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
 825	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
 826
 827	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
 828		nilfs_msg(sb, KERN_WARNING, "mounting fs with errors");
 829#if 0
 830	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
 831		nilfs_msg(sb, KERN_WARNING, "maximal mount count reached");
 832#endif
 833	}
 834	if (!max_mnt_count)
 835		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
 836
 837	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
 838	sbp[0]->s_mtime = cpu_to_le64(get_seconds());
 839
 840skip_mount_setup:
 841	sbp[0]->s_state =
 842		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
 843	/* synchronize sbp[1] with sbp[0] */
 844	if (sbp[1])
 845		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 846	return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 847}
 848
 849struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
 850						 u64 pos, int blocksize,
 851						 struct buffer_head **pbh)
 852{
 853	unsigned long long sb_index = pos;
 854	unsigned long offset;
 855
 856	offset = do_div(sb_index, blocksize);
 857	*pbh = sb_bread(sb, sb_index);
 858	if (!*pbh)
 859		return NULL;
 860	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
 861}
 862
 863int nilfs_store_magic_and_option(struct super_block *sb,
 864				 struct nilfs_super_block *sbp,
 865				 char *data)
 866{
 867	struct the_nilfs *nilfs = sb->s_fs_info;
 868
 869	sb->s_magic = le16_to_cpu(sbp->s_magic);
 870
 871	/* FS independent flags */
 872#ifdef NILFS_ATIME_DISABLE
 873	sb->s_flags |= MS_NOATIME;
 874#endif
 875
 876	nilfs_set_default_options(sb, sbp);
 877
 878	nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
 879	nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
 880	nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
 881	nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
 882
 883	return !parse_options(data, sb, 0) ? -EINVAL : 0;
 884}
 885
 886int nilfs_check_feature_compatibility(struct super_block *sb,
 887				      struct nilfs_super_block *sbp)
 888{
 889	__u64 features;
 890
 891	features = le64_to_cpu(sbp->s_feature_incompat) &
 892		~NILFS_FEATURE_INCOMPAT_SUPP;
 893	if (features) {
 894		nilfs_msg(sb, KERN_ERR,
 895			  "couldn't mount because of unsupported optional features (%llx)",
 896			  (unsigned long long)features);
 897		return -EINVAL;
 898	}
 899	features = le64_to_cpu(sbp->s_feature_compat_ro) &
 900		~NILFS_FEATURE_COMPAT_RO_SUPP;
 901	if (!(sb->s_flags & MS_RDONLY) && features) {
 902		nilfs_msg(sb, KERN_ERR,
 903			  "couldn't mount RDWR because of unsupported optional features (%llx)",
 904			  (unsigned long long)features);
 905		return -EINVAL;
 906	}
 907	return 0;
 908}
 909
 910static int nilfs_get_root_dentry(struct super_block *sb,
 911				 struct nilfs_root *root,
 912				 struct dentry **root_dentry)
 913{
 914	struct inode *inode;
 915	struct dentry *dentry;
 916	int ret = 0;
 917
 918	inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
 919	if (IS_ERR(inode)) {
 920		ret = PTR_ERR(inode);
 921		nilfs_msg(sb, KERN_ERR, "error %d getting root inode", ret);
 922		goto out;
 923	}
 924	if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
 925		iput(inode);
 926		nilfs_msg(sb, KERN_ERR, "corrupt root inode");
 927		ret = -EINVAL;
 928		goto out;
 929	}
 930
 931	if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
 932		dentry = d_find_alias(inode);
 933		if (!dentry) {
 934			dentry = d_make_root(inode);
 935			if (!dentry) {
 936				ret = -ENOMEM;
 937				goto failed_dentry;
 938			}
 939		} else {
 940			iput(inode);
 941		}
 942	} else {
 943		dentry = d_obtain_root(inode);
 944		if (IS_ERR(dentry)) {
 945			ret = PTR_ERR(dentry);
 946			goto failed_dentry;
 947		}
 948	}
 949	*root_dentry = dentry;
 950 out:
 951	return ret;
 952
 953 failed_dentry:
 954	nilfs_msg(sb, KERN_ERR, "error %d getting root dentry", ret);
 955	goto out;
 956}
 957
 958static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
 959				 struct dentry **root_dentry)
 960{
 961	struct the_nilfs *nilfs = s->s_fs_info;
 962	struct nilfs_root *root;
 963	int ret;
 964
 965	mutex_lock(&nilfs->ns_snapshot_mount_mutex);
 966
 967	down_read(&nilfs->ns_segctor_sem);
 968	ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
 969	up_read(&nilfs->ns_segctor_sem);
 970	if (ret < 0) {
 971		ret = (ret == -ENOENT) ? -EINVAL : ret;
 972		goto out;
 973	} else if (!ret) {
 974		nilfs_msg(s, KERN_ERR,
 975			  "The specified checkpoint is not a snapshot (checkpoint number=%llu)",
 976			  (unsigned long long)cno);
 977		ret = -EINVAL;
 978		goto out;
 979	}
 980
 981	ret = nilfs_attach_checkpoint(s, cno, false, &root);
 982	if (ret) {
 983		nilfs_msg(s, KERN_ERR,
 984			  "error %d while loading snapshot (checkpoint number=%llu)",
 985			  ret, (unsigned long long)cno);
 986		goto out;
 987	}
 988	ret = nilfs_get_root_dentry(s, root, root_dentry);
 989	nilfs_put_root(root);
 990 out:
 991	mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
 992	return ret;
 993}
 994
 995/**
 996 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
 997 * @root_dentry: root dentry of the tree to be shrunk
 998 *
 999 * This function returns true if the tree was in-use.
1000 */
1001static bool nilfs_tree_is_busy(struct dentry *root_dentry)
1002{
1003	shrink_dcache_parent(root_dentry);
1004	return d_count(root_dentry) > 1;
1005}
1006
1007int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1008{
1009	struct the_nilfs *nilfs = sb->s_fs_info;
1010	struct nilfs_root *root;
1011	struct inode *inode;
1012	struct dentry *dentry;
1013	int ret;
1014
1015	if (cno > nilfs->ns_cno)
1016		return false;
1017
1018	if (cno >= nilfs_last_cno(nilfs))
1019		return true;	/* protect recent checkpoints */
1020
1021	ret = false;
1022	root = nilfs_lookup_root(nilfs, cno);
1023	if (root) {
1024		inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1025		if (inode) {
1026			dentry = d_find_alias(inode);
1027			if (dentry) {
1028				ret = nilfs_tree_is_busy(dentry);
1029				dput(dentry);
1030			}
1031			iput(inode);
1032		}
1033		nilfs_put_root(root);
1034	}
1035	return ret;
1036}
1037
1038/**
1039 * nilfs_fill_super() - initialize a super block instance
1040 * @sb: super_block
1041 * @data: mount options
1042 * @silent: silent mode flag
1043 *
1044 * This function is called exclusively by nilfs->ns_mount_mutex.
1045 * So, the recovery process is protected from other simultaneous mounts.
1046 */
1047static int
1048nilfs_fill_super(struct super_block *sb, void *data, int silent)
1049{
1050	struct the_nilfs *nilfs;
1051	struct nilfs_root *fsroot;
1052	__u64 cno;
1053	int err;
1054
1055	nilfs = alloc_nilfs(sb);
1056	if (!nilfs)
1057		return -ENOMEM;
1058
1059	sb->s_fs_info = nilfs;
1060
1061	err = init_nilfs(nilfs, sb, (char *)data);
1062	if (err)
1063		goto failed_nilfs;
1064
1065	sb->s_op = &nilfs_sops;
1066	sb->s_export_op = &nilfs_export_ops;
1067	sb->s_root = NULL;
1068	sb->s_time_gran = 1;
1069	sb->s_max_links = NILFS_LINK_MAX;
1070
1071	sb->s_bdi = &bdev_get_queue(sb->s_bdev)->backing_dev_info;
1072
1073	err = load_nilfs(nilfs, sb);
1074	if (err)
1075		goto failed_nilfs;
1076
1077	cno = nilfs_last_cno(nilfs);
1078	err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1079	if (err) {
1080		nilfs_msg(sb, KERN_ERR,
1081			  "error %d while loading last checkpoint (checkpoint number=%llu)",
1082			  err, (unsigned long long)cno);
1083		goto failed_unload;
1084	}
1085
1086	if (!(sb->s_flags & MS_RDONLY)) {
1087		err = nilfs_attach_log_writer(sb, fsroot);
1088		if (err)
1089			goto failed_checkpoint;
1090	}
1091
1092	err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1093	if (err)
1094		goto failed_segctor;
1095
1096	nilfs_put_root(fsroot);
1097
1098	if (!(sb->s_flags & MS_RDONLY)) {
1099		down_write(&nilfs->ns_sem);
1100		nilfs_setup_super(sb, true);
1101		up_write(&nilfs->ns_sem);
1102	}
1103
1104	return 0;
1105
1106 failed_segctor:
1107	nilfs_detach_log_writer(sb);
1108
1109 failed_checkpoint:
1110	nilfs_put_root(fsroot);
1111
1112 failed_unload:
1113	iput(nilfs->ns_sufile);
1114	iput(nilfs->ns_cpfile);
1115	iput(nilfs->ns_dat);
1116
1117 failed_nilfs:
1118	destroy_nilfs(nilfs);
1119	return err;
1120}
1121
1122static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1123{
1124	struct the_nilfs *nilfs = sb->s_fs_info;
1125	unsigned long old_sb_flags;
1126	unsigned long old_mount_opt;
1127	int err;
1128
1129	sync_filesystem(sb);
1130	old_sb_flags = sb->s_flags;
1131	old_mount_opt = nilfs->ns_mount_opt;
1132
1133	if (!parse_options(data, sb, 1)) {
1134		err = -EINVAL;
1135		goto restore_opts;
1136	}
1137	sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
1138
1139	err = -EINVAL;
1140
1141	if (!nilfs_valid_fs(nilfs)) {
1142		nilfs_msg(sb, KERN_WARNING,
1143			  "couldn't remount because the filesystem is in an incomplete recovery state");
1144		goto restore_opts;
1145	}
1146
1147	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1148		goto out;
1149	if (*flags & MS_RDONLY) {
1150		/* Shutting down log writer */
1151		nilfs_detach_log_writer(sb);
1152		sb->s_flags |= MS_RDONLY;
1153
1154		/*
1155		 * Remounting a valid RW partition RDONLY, so set
1156		 * the RDONLY flag and then mark the partition as valid again.
1157		 */
1158		down_write(&nilfs->ns_sem);
1159		nilfs_cleanup_super(sb);
1160		up_write(&nilfs->ns_sem);
1161	} else {
1162		__u64 features;
1163		struct nilfs_root *root;
1164
1165		/*
1166		 * Mounting a RDONLY partition read-write, so reread and
1167		 * store the current valid flag.  (It may have been changed
1168		 * by fsck since we originally mounted the partition.)
1169		 */
1170		down_read(&nilfs->ns_sem);
1171		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1172			~NILFS_FEATURE_COMPAT_RO_SUPP;
1173		up_read(&nilfs->ns_sem);
1174		if (features) {
1175			nilfs_msg(sb, KERN_WARNING,
1176				  "couldn't remount RDWR because of unsupported optional features (%llx)",
1177				  (unsigned long long)features);
1178			err = -EROFS;
1179			goto restore_opts;
1180		}
1181
1182		sb->s_flags &= ~MS_RDONLY;
1183
1184		root = NILFS_I(d_inode(sb->s_root))->i_root;
1185		err = nilfs_attach_log_writer(sb, root);
1186		if (err)
1187			goto restore_opts;
1188
1189		down_write(&nilfs->ns_sem);
1190		nilfs_setup_super(sb, true);
1191		up_write(&nilfs->ns_sem);
1192	}
1193 out:
1194	return 0;
1195
1196 restore_opts:
1197	sb->s_flags = old_sb_flags;
1198	nilfs->ns_mount_opt = old_mount_opt;
1199	return err;
1200}
1201
1202struct nilfs_super_data {
1203	struct block_device *bdev;
1204	__u64 cno;
1205	int flags;
1206};
1207
1208static int nilfs_parse_snapshot_option(const char *option,
1209				       const substring_t *arg,
1210				       struct nilfs_super_data *sd)
1211{
1212	unsigned long long val;
1213	const char *msg = NULL;
1214	int err;
1215
1216	if (!(sd->flags & MS_RDONLY)) {
1217		msg = "read-only option is not specified";
1218		goto parse_error;
1219	}
1220
1221	err = kstrtoull(arg->from, 0, &val);
1222	if (err) {
1223		if (err == -ERANGE)
1224			msg = "too large checkpoint number";
1225		else
1226			msg = "malformed argument";
1227		goto parse_error;
1228	} else if (val == 0) {
1229		msg = "invalid checkpoint number 0";
1230		goto parse_error;
1231	}
1232	sd->cno = val;
1233	return 0;
1234
1235parse_error:
1236	nilfs_msg(NULL, KERN_ERR, "invalid option \"%s\": %s", option, msg);
1237	return 1;
1238}
1239
1240/**
1241 * nilfs_identify - pre-read mount options needed to identify mount instance
1242 * @data: mount options
1243 * @sd: nilfs_super_data
1244 */
1245static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1246{
1247	char *p, *options = data;
1248	substring_t args[MAX_OPT_ARGS];
1249	int token;
1250	int ret = 0;
1251
1252	do {
1253		p = strsep(&options, ",");
1254		if (p != NULL && *p) {
1255			token = match_token(p, tokens, args);
1256			if (token == Opt_snapshot)
1257				ret = nilfs_parse_snapshot_option(p, &args[0],
1258								  sd);
1259		}
1260		if (!options)
1261			break;
1262		BUG_ON(options == data);
1263		*(options - 1) = ',';
1264	} while (!ret);
1265	return ret;
1266}
1267
1268static int nilfs_set_bdev_super(struct super_block *s, void *data)
1269{
1270	s->s_bdev = data;
1271	s->s_dev = s->s_bdev->bd_dev;
1272	return 0;
1273}
1274
1275static int nilfs_test_bdev_super(struct super_block *s, void *data)
1276{
1277	return (void *)s->s_bdev == data;
1278}
1279
1280static struct dentry *
1281nilfs_mount(struct file_system_type *fs_type, int flags,
1282	     const char *dev_name, void *data)
1283{
1284	struct nilfs_super_data sd;
1285	struct super_block *s;
1286	fmode_t mode = FMODE_READ | FMODE_EXCL;
1287	struct dentry *root_dentry;
1288	int err, s_new = false;
1289
1290	if (!(flags & MS_RDONLY))
1291		mode |= FMODE_WRITE;
1292
1293	sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1294	if (IS_ERR(sd.bdev))
1295		return ERR_CAST(sd.bdev);
1296
1297	sd.cno = 0;
1298	sd.flags = flags;
1299	if (nilfs_identify((char *)data, &sd)) {
1300		err = -EINVAL;
1301		goto failed;
1302	}
1303
1304	/*
1305	 * once the super is inserted into the list by sget, s_umount
1306	 * will protect the lockfs code from trying to start a snapshot
1307	 * while we are mounting
1308	 */
1309	mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1310	if (sd.bdev->bd_fsfreeze_count > 0) {
1311		mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1312		err = -EBUSY;
1313		goto failed;
1314	}
1315	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1316		 sd.bdev);
1317	mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1318	if (IS_ERR(s)) {
1319		err = PTR_ERR(s);
1320		goto failed;
1321	}
1322
1323	if (!s->s_root) {
1324		s_new = true;
1325
1326		/* New superblock instance created */
1327		s->s_mode = mode;
1328		snprintf(s->s_id, sizeof(s->s_id), "%pg", sd.bdev);
1329		sb_set_blocksize(s, block_size(sd.bdev));
1330
1331		err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1332		if (err)
1333			goto failed_super;
1334
1335		s->s_flags |= MS_ACTIVE;
1336	} else if (!sd.cno) {
1337		if (nilfs_tree_is_busy(s->s_root)) {
1338			if ((flags ^ s->s_flags) & MS_RDONLY) {
1339				nilfs_msg(s, KERN_ERR,
1340					  "the device already has a %s mount.",
1341					  (s->s_flags & MS_RDONLY) ?
1342					  "read-only" : "read/write");
1343				err = -EBUSY;
1344				goto failed_super;
1345			}
1346		} else {
1347			/*
1348			 * Try remount to setup mount states if the current
1349			 * tree is not mounted and only snapshots use this sb.
1350			 */
1351			err = nilfs_remount(s, &flags, data);
1352			if (err)
1353				goto failed_super;
1354		}
1355	}
1356
1357	if (sd.cno) {
1358		err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1359		if (err)
1360			goto failed_super;
1361	} else {
1362		root_dentry = dget(s->s_root);
1363	}
1364
1365	if (!s_new)
1366		blkdev_put(sd.bdev, mode);
1367
1368	return root_dentry;
1369
1370 failed_super:
1371	deactivate_locked_super(s);
1372
1373 failed:
1374	if (!s_new)
1375		blkdev_put(sd.bdev, mode);
1376	return ERR_PTR(err);
1377}
1378
1379struct file_system_type nilfs_fs_type = {
1380	.owner    = THIS_MODULE,
1381	.name     = "nilfs2",
1382	.mount    = nilfs_mount,
1383	.kill_sb  = kill_block_super,
1384	.fs_flags = FS_REQUIRES_DEV,
1385};
1386MODULE_ALIAS_FS("nilfs2");
1387
1388static void nilfs_inode_init_once(void *obj)
1389{
1390	struct nilfs_inode_info *ii = obj;
1391
1392	INIT_LIST_HEAD(&ii->i_dirty);
1393#ifdef CONFIG_NILFS_XATTR
1394	init_rwsem(&ii->xattr_sem);
1395#endif
1396	address_space_init_once(&ii->i_btnode_cache);
1397	ii->i_bmap = &ii->i_bmap_data;
1398	inode_init_once(&ii->vfs_inode);
1399}
1400
1401static void nilfs_segbuf_init_once(void *obj)
1402{
1403	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1404}
1405
1406static void nilfs_destroy_cachep(void)
1407{
1408	/*
1409	 * Make sure all delayed rcu free inodes are flushed before we
1410	 * destroy cache.
1411	 */
1412	rcu_barrier();
1413
1414	kmem_cache_destroy(nilfs_inode_cachep);
1415	kmem_cache_destroy(nilfs_transaction_cachep);
1416	kmem_cache_destroy(nilfs_segbuf_cachep);
1417	kmem_cache_destroy(nilfs_btree_path_cache);
1418}
1419
1420static int __init nilfs_init_cachep(void)
1421{
1422	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1423			sizeof(struct nilfs_inode_info), 0,
1424			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1425			nilfs_inode_init_once);
1426	if (!nilfs_inode_cachep)
1427		goto fail;
1428
1429	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1430			sizeof(struct nilfs_transaction_info), 0,
1431			SLAB_RECLAIM_ACCOUNT, NULL);
1432	if (!nilfs_transaction_cachep)
1433		goto fail;
1434
1435	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1436			sizeof(struct nilfs_segment_buffer), 0,
1437			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1438	if (!nilfs_segbuf_cachep)
1439		goto fail;
1440
1441	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1442			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1443			0, 0, NULL);
1444	if (!nilfs_btree_path_cache)
1445		goto fail;
1446
1447	return 0;
1448
1449fail:
1450	nilfs_destroy_cachep();
1451	return -ENOMEM;
1452}
1453
1454static int __init init_nilfs_fs(void)
1455{
1456	int err;
1457
1458	err = nilfs_init_cachep();
1459	if (err)
1460		goto fail;
1461
1462	err = nilfs_sysfs_init();
1463	if (err)
1464		goto free_cachep;
1465
1466	err = register_filesystem(&nilfs_fs_type);
1467	if (err)
1468		goto deinit_sysfs_entry;
1469
1470	printk(KERN_INFO "NILFS version 2 loaded\n");
1471	return 0;
1472
1473deinit_sysfs_entry:
1474	nilfs_sysfs_exit();
1475free_cachep:
1476	nilfs_destroy_cachep();
1477fail:
1478	return err;
1479}
1480
1481static void __exit exit_nilfs_fs(void)
1482{
1483	nilfs_destroy_cachep();
1484	nilfs_sysfs_exit();
1485	unregister_filesystem(&nilfs_fs_type);
1486}
1487
1488module_init(init_nilfs_fs)
1489module_exit(exit_nilfs_fs)