Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * This contains encryption functions for per-file encryption.
  3 *
  4 * Copyright (C) 2015, Google, Inc.
  5 * Copyright (C) 2015, Motorola Mobility
  6 *
  7 * Written by Michael Halcrow, 2014.
  8 *
  9 * Filename encryption additions
 10 *	Uday Savagaonkar, 2014
 11 * Encryption policy handling additions
 12 *	Ildar Muslukhov, 2014
 13 * Add fscrypt_pullback_bio_page()
 14 *	Jaegeuk Kim, 2015.
 15 *
 16 * This has not yet undergone a rigorous security audit.
 17 *
 18 * The usage of AES-XTS should conform to recommendations in NIST
 19 * Special Publication 800-38E and IEEE P1619/D16.
 20 */
 21
 22#include <linux/pagemap.h>
 23#include <linux/mempool.h>
 24#include <linux/module.h>
 25#include <linux/scatterlist.h>
 26#include <linux/ratelimit.h>
 27#include <linux/dcache.h>
 28#include <linux/namei.h>
 29#include <crypto/aes.h>
 30#include <crypto/skcipher.h>
 31#include "fscrypt_private.h"
 32
 33static unsigned int num_prealloc_crypto_pages = 32;
 34static unsigned int num_prealloc_crypto_ctxs = 128;
 35
 36module_param(num_prealloc_crypto_pages, uint, 0444);
 37MODULE_PARM_DESC(num_prealloc_crypto_pages,
 38		"Number of crypto pages to preallocate");
 39module_param(num_prealloc_crypto_ctxs, uint, 0444);
 40MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
 41		"Number of crypto contexts to preallocate");
 42
 43static mempool_t *fscrypt_bounce_page_pool = NULL;
 44
 45static LIST_HEAD(fscrypt_free_ctxs);
 46static DEFINE_SPINLOCK(fscrypt_ctx_lock);
 47
 48struct workqueue_struct *fscrypt_read_workqueue;
 49static DEFINE_MUTEX(fscrypt_init_mutex);
 50
 51static struct kmem_cache *fscrypt_ctx_cachep;
 52struct kmem_cache *fscrypt_info_cachep;
 53
 54/**
 55 * fscrypt_release_ctx() - Releases an encryption context
 56 * @ctx: The encryption context to release.
 57 *
 58 * If the encryption context was allocated from the pre-allocated pool, returns
 59 * it to that pool. Else, frees it.
 60 *
 61 * If there's a bounce page in the context, this frees that.
 62 */
 63void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
 64{
 65	unsigned long flags;
 
 
 66
 67	if (ctx->flags & FS_CTX_HAS_BOUNCE_BUFFER_FL && ctx->w.bounce_page) {
 68		mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool);
 69		ctx->w.bounce_page = NULL;
 70	}
 71	ctx->w.control_page = NULL;
 72	if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
 73		kmem_cache_free(fscrypt_ctx_cachep, ctx);
 74	} else {
 75		spin_lock_irqsave(&fscrypt_ctx_lock, flags);
 76		list_add(&ctx->free_list, &fscrypt_free_ctxs);
 77		spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
 78	}
 79}
 80EXPORT_SYMBOL(fscrypt_release_ctx);
 81
 82/**
 83 * fscrypt_get_ctx() - Gets an encryption context
 84 * @inode:       The inode for which we are doing the crypto
 85 * @gfp_flags:   The gfp flag for memory allocation
 86 *
 87 * Allocates and initializes an encryption context.
 88 *
 89 * Return: An allocated and initialized encryption context on success; error
 90 * value or NULL otherwise.
 91 */
 92struct fscrypt_ctx *fscrypt_get_ctx(const struct inode *inode, gfp_t gfp_flags)
 93{
 94	struct fscrypt_ctx *ctx = NULL;
 95	struct fscrypt_info *ci = inode->i_crypt_info;
 96	unsigned long flags;
 97
 98	if (ci == NULL)
 99		return ERR_PTR(-ENOKEY);
100
101	/*
102	 * We first try getting the ctx from a free list because in
103	 * the common case the ctx will have an allocated and
104	 * initialized crypto tfm, so it's probably a worthwhile
105	 * optimization. For the bounce page, we first try getting it
106	 * from the kernel allocator because that's just about as fast
107	 * as getting it from a list and because a cache of free pages
108	 * should generally be a "last resort" option for a filesystem
109	 * to be able to do its job.
110	 */
111	spin_lock_irqsave(&fscrypt_ctx_lock, flags);
112	ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
113					struct fscrypt_ctx, free_list);
114	if (ctx)
115		list_del(&ctx->free_list);
116	spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
117	if (!ctx) {
118		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags);
119		if (!ctx)
120			return ERR_PTR(-ENOMEM);
121		ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
122	} else {
123		ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
124	}
125	ctx->flags &= ~FS_CTX_HAS_BOUNCE_BUFFER_FL;
126	return ctx;
127}
128EXPORT_SYMBOL(fscrypt_get_ctx);
129
130int fscrypt_do_page_crypto(const struct inode *inode, fscrypt_direction_t rw,
131			   u64 lblk_num, struct page *src_page,
132			   struct page *dest_page, unsigned int len,
133			   unsigned int offs, gfp_t gfp_flags)
134{
135	struct {
136		__le64 index;
137		u8 padding[FS_IV_SIZE - sizeof(__le64)];
138	} iv;
139	struct skcipher_request *req = NULL;
140	DECLARE_CRYPTO_WAIT(wait);
141	struct scatterlist dst, src;
142	struct fscrypt_info *ci = inode->i_crypt_info;
143	struct crypto_skcipher *tfm = ci->ci_ctfm;
144	int res = 0;
145
146	BUG_ON(len == 0);
 
 
 
147
148	BUILD_BUG_ON(sizeof(iv) != FS_IV_SIZE);
149	BUILD_BUG_ON(AES_BLOCK_SIZE != FS_IV_SIZE);
150	iv.index = cpu_to_le64(lblk_num);
151	memset(iv.padding, 0, sizeof(iv.padding));
152
153	if (ci->ci_essiv_tfm != NULL) {
154		crypto_cipher_encrypt_one(ci->ci_essiv_tfm, (u8 *)&iv,
155					  (u8 *)&iv);
156	}
157
158	req = skcipher_request_alloc(tfm, gfp_flags);
159	if (!req) {
160		printk_ratelimited(KERN_ERR
161				"%s: crypto_request_alloc() failed\n",
162				__func__);
163		return -ENOMEM;
164	}
165
166	skcipher_request_set_callback(
167		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
168		crypto_req_done, &wait);
169
170	sg_init_table(&dst, 1);
171	sg_set_page(&dst, dest_page, len, offs);
172	sg_init_table(&src, 1);
173	sg_set_page(&src, src_page, len, offs);
174	skcipher_request_set_crypt(req, &src, &dst, len, &iv);
175	if (rw == FS_DECRYPT)
176		res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
177	else
178		res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
179	skcipher_request_free(req);
180	if (res) {
181		printk_ratelimited(KERN_ERR
182			"%s: crypto_skcipher_encrypt() returned %d\n",
183			__func__, res);
184		return res;
185	}
186	return 0;
187}
188
189struct page *fscrypt_alloc_bounce_page(struct fscrypt_ctx *ctx,
190				       gfp_t gfp_flags)
191{
192	ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
193	if (ctx->w.bounce_page == NULL)
194		return ERR_PTR(-ENOMEM);
195	ctx->flags |= FS_CTX_HAS_BOUNCE_BUFFER_FL;
196	return ctx->w.bounce_page;
197}
198
199/**
200 * fscypt_encrypt_page() - Encrypts a page
201 * @inode:     The inode for which the encryption should take place
202 * @page:      The page to encrypt. Must be locked for bounce-page
203 *             encryption.
204 * @len:       Length of data to encrypt in @page and encrypted
205 *             data in returned page.
206 * @offs:      Offset of data within @page and returned
207 *             page holding encrypted data.
208 * @lblk_num:  Logical block number. This must be unique for multiple
209 *             calls with same inode, except when overwriting
210 *             previously written data.
211 * @gfp_flags: The gfp flag for memory allocation
212 *
213 * Encrypts @page using the ctx encryption context. Performs encryption
214 * either in-place or into a newly allocated bounce page.
215 * Called on the page write path.
216 *
217 * Bounce page allocation is the default.
218 * In this case, the contents of @page are encrypted and stored in an
219 * allocated bounce page. @page has to be locked and the caller must call
220 * fscrypt_restore_control_page() on the returned ciphertext page to
221 * release the bounce buffer and the encryption context.
222 *
223 * In-place encryption is used by setting the FS_CFLG_OWN_PAGES flag in
224 * fscrypt_operations. Here, the input-page is returned with its content
225 * encrypted.
226 *
227 * Return: A page with the encrypted content on success. Else, an
228 * error value or NULL.
229 */
230struct page *fscrypt_encrypt_page(const struct inode *inode,
231				struct page *page,
232				unsigned int len,
233				unsigned int offs,
234				u64 lblk_num, gfp_t gfp_flags)
235
236{
237	struct fscrypt_ctx *ctx;
238	struct page *ciphertext_page = page;
 
 
 
 
 
239	int err;
240
241	BUG_ON(len % FS_CRYPTO_BLOCK_SIZE != 0);
 
242
243	if (inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES) {
244		/* with inplace-encryption we just encrypt the page */
245		err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num, page,
246					     ciphertext_page, len, offs,
247					     gfp_flags);
248		if (err)
249			return ERR_PTR(err);
250
251		return ciphertext_page;
252	}
253
254	BUG_ON(!PageLocked(page));
 
 
255
256	ctx = fscrypt_get_ctx(inode, gfp_flags);
257	if (IS_ERR(ctx))
258		return (struct page *)ctx;
259
260	/* The encryption operation will require a bounce page. */
261	ciphertext_page = fscrypt_alloc_bounce_page(ctx, gfp_flags);
262	if (IS_ERR(ciphertext_page))
263		goto errout;
264
265	ctx->w.control_page = page;
266	err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num,
267				     page, ciphertext_page, len, offs,
268				     gfp_flags);
269	if (err) {
270		ciphertext_page = ERR_PTR(err);
271		goto errout;
272	}
273	SetPagePrivate(ciphertext_page);
274	set_page_private(ciphertext_page, (unsigned long)ctx);
275	lock_page(ciphertext_page);
276	return ciphertext_page;
277
278errout:
279	fscrypt_release_ctx(ctx);
280	return ciphertext_page;
281}
282EXPORT_SYMBOL(fscrypt_encrypt_page);
283
284/**
285 * fscrypt_decrypt_page() - Decrypts a page in-place
286 * @inode:     The corresponding inode for the page to decrypt.
287 * @page:      The page to decrypt. Must be locked in case
288 *             it is a writeback page (FS_CFLG_OWN_PAGES unset).
289 * @len:       Number of bytes in @page to be decrypted.
290 * @offs:      Start of data in @page.
291 * @lblk_num:  Logical block number.
292 *
293 * Decrypts page in-place using the ctx encryption context.
 
 
 
 
294 *
295 * Called from the read completion callback.
296 *
297 * Return: Zero on success, non-zero otherwise.
298 */
299int fscrypt_decrypt_page(const struct inode *inode, struct page *page,
300			unsigned int len, unsigned int offs, u64 lblk_num)
 
301{
302	if (!(inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES))
303		BUG_ON(!PageLocked(page));
304
305	return fscrypt_do_page_crypto(inode, FS_DECRYPT, lblk_num, page, page,
306				      len, offs, GFP_NOFS);
307}
308EXPORT_SYMBOL(fscrypt_decrypt_page);
309
310/*
311 * Validate dentries for encrypted directories to make sure we aren't
312 * potentially caching stale data after a key has been added or
313 * removed.
 
 
 
 
 
 
 
 
 
 
 
 
314 */
315static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
 
316{
317	struct dentry *dir;
318	int dir_has_key, cached_with_key;
319
320	if (flags & LOOKUP_RCU)
321		return -ECHILD;
322
323	dir = dget_parent(dentry);
324	if (!IS_ENCRYPTED(d_inode(dir))) {
325		dput(dir);
326		return 0;
327	}
328
329	/* this should eventually be an flag in d_flags */
330	spin_lock(&dentry->d_lock);
331	cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY;
332	spin_unlock(&dentry->d_lock);
333	dir_has_key = (d_inode(dir)->i_crypt_info != NULL);
334	dput(dir);
335
336	/*
337	 * If the dentry was cached without the key, and it is a
338	 * negative dentry, it might be a valid name.  We can't check
339	 * if the key has since been made available due to locking
340	 * reasons, so we fail the validation so ext4_lookup() can do
341	 * this check.
342	 *
343	 * We also fail the validation if the dentry was created with
344	 * the key present, but we no longer have the key, or vice versa.
345	 */
346	if ((!cached_with_key && d_is_negative(dentry)) ||
347			(!cached_with_key && dir_has_key) ||
348			(cached_with_key && !dir_has_key))
349		return 0;
350	return 1;
351}
352
353const struct dentry_operations fscrypt_d_ops = {
354	.d_revalidate = fscrypt_d_revalidate,
355};
356EXPORT_SYMBOL(fscrypt_d_ops);
357
358void fscrypt_restore_control_page(struct page *page)
359{
360	struct fscrypt_ctx *ctx;
361
362	ctx = (struct fscrypt_ctx *)page_private(page);
363	set_page_private(page, (unsigned long)NULL);
364	ClearPagePrivate(page);
365	unlock_page(page);
366	fscrypt_release_ctx(ctx);
 
 
367}
368EXPORT_SYMBOL(fscrypt_restore_control_page);
369
370static void fscrypt_destroy(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
371{
372	struct fscrypt_ctx *pos, *n;
373
374	list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
375		kmem_cache_free(fscrypt_ctx_cachep, pos);
376	INIT_LIST_HEAD(&fscrypt_free_ctxs);
377	mempool_destroy(fscrypt_bounce_page_pool);
378	fscrypt_bounce_page_pool = NULL;
379}
 
380
381/**
382 * fscrypt_initialize() - allocate major buffers for fs encryption.
383 * @cop_flags:  fscrypt operations flags
384 *
385 * We only call this when we start accessing encrypted files, since it
386 * results in memory getting allocated that wouldn't otherwise be used.
387 *
388 * Return: Zero on success, non-zero otherwise.
389 */
390int fscrypt_initialize(unsigned int cop_flags)
391{
392	int i, res = -ENOMEM;
393
394	/* No need to allocate a bounce page pool if this FS won't use it. */
395	if (cop_flags & FS_CFLG_OWN_PAGES)
396		return 0;
397
398	mutex_lock(&fscrypt_init_mutex);
399	if (fscrypt_bounce_page_pool)
400		goto already_initialized;
401
402	for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
403		struct fscrypt_ctx *ctx;
404
405		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
406		if (!ctx)
407			goto fail;
408		list_add(&ctx->free_list, &fscrypt_free_ctxs);
409	}
410
 
411	fscrypt_bounce_page_pool =
412		mempool_create_page_pool(num_prealloc_crypto_pages, 0);
413	if (!fscrypt_bounce_page_pool)
414		goto fail;
415
416already_initialized:
 
417	mutex_unlock(&fscrypt_init_mutex);
418	return 0;
419fail:
420	fscrypt_destroy();
421	mutex_unlock(&fscrypt_init_mutex);
422	return res;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
423}
424
425/**
426 * fscrypt_init() - Set up for fs encryption.
 
 
427 */
428static int __init fscrypt_init(void)
429{
 
 
 
 
 
 
 
 
 
 
430	fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
431							WQ_HIGHPRI, 0);
 
432	if (!fscrypt_read_workqueue)
433		goto fail;
434
435	fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
436	if (!fscrypt_ctx_cachep)
437		goto fail_free_queue;
438
439	fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
440	if (!fscrypt_info_cachep)
441		goto fail_free_ctx;
 
 
 
 
442
443	return 0;
444
445fail_free_ctx:
446	kmem_cache_destroy(fscrypt_ctx_cachep);
447fail_free_queue:
448	destroy_workqueue(fscrypt_read_workqueue);
449fail:
450	return -ENOMEM;
451}
452module_init(fscrypt_init)
453
454/**
455 * fscrypt_exit() - Shutdown the fs encryption system
456 */
457static void __exit fscrypt_exit(void)
458{
459	fscrypt_destroy();
460
461	if (fscrypt_read_workqueue)
462		destroy_workqueue(fscrypt_read_workqueue);
463	kmem_cache_destroy(fscrypt_ctx_cachep);
464	kmem_cache_destroy(fscrypt_info_cachep);
465
466	fscrypt_essiv_cleanup();
467}
468module_exit(fscrypt_exit);
469
470MODULE_LICENSE("GPL");
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * This contains encryption functions for per-file encryption.
  4 *
  5 * Copyright (C) 2015, Google, Inc.
  6 * Copyright (C) 2015, Motorola Mobility
  7 *
  8 * Written by Michael Halcrow, 2014.
  9 *
 10 * Filename encryption additions
 11 *	Uday Savagaonkar, 2014
 12 * Encryption policy handling additions
 13 *	Ildar Muslukhov, 2014
 14 * Add fscrypt_pullback_bio_page()
 15 *	Jaegeuk Kim, 2015.
 16 *
 17 * This has not yet undergone a rigorous security audit.
 18 *
 19 * The usage of AES-XTS should conform to recommendations in NIST
 20 * Special Publication 800-38E and IEEE P1619/D16.
 21 */
 22
 23#include <linux/pagemap.h>
 24#include <linux/mempool.h>
 25#include <linux/module.h>
 26#include <linux/scatterlist.h>
 27#include <linux/ratelimit.h>
 
 
 
 28#include <crypto/skcipher.h>
 29#include "fscrypt_private.h"
 30
 31static unsigned int num_prealloc_crypto_pages = 32;
 
 32
 33module_param(num_prealloc_crypto_pages, uint, 0444);
 34MODULE_PARM_DESC(num_prealloc_crypto_pages,
 35		"Number of crypto pages to preallocate");
 
 
 
 36
 37static mempool_t *fscrypt_bounce_page_pool = NULL;
 38
 39static struct workqueue_struct *fscrypt_read_workqueue;
 
 
 
 40static DEFINE_MUTEX(fscrypt_init_mutex);
 41
 
 42struct kmem_cache *fscrypt_info_cachep;
 43
 44void fscrypt_enqueue_decrypt_work(struct work_struct *work)
 
 
 
 
 
 
 
 
 
 45{
 46	queue_work(fscrypt_read_workqueue, work);
 47}
 48EXPORT_SYMBOL(fscrypt_enqueue_decrypt_work);
 49
 50struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags)
 51{
 52	return mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
 
 
 
 
 
 
 
 
 
 53}
 
 54
 55/**
 56 * fscrypt_free_bounce_page() - free a ciphertext bounce page
 57 * @bounce_page: the bounce page to free, or NULL
 
 58 *
 59 * Free a bounce page that was allocated by fscrypt_encrypt_pagecache_blocks(),
 60 * or by fscrypt_alloc_bounce_page() directly.
 
 
 61 */
 62void fscrypt_free_bounce_page(struct page *bounce_page)
 63{
 64	if (!bounce_page)
 65		return;
 66	set_page_private(bounce_page, (unsigned long)NULL);
 67	ClearPagePrivate(bounce_page);
 68	mempool_free(bounce_page, fscrypt_bounce_page_pool);
 69}
 70EXPORT_SYMBOL(fscrypt_free_bounce_page);
 71
 72void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num,
 73			 const struct fscrypt_info *ci)
 74{
 75	u8 flags = fscrypt_policy_flags(&ci->ci_policy);
 76
 77	memset(iv, 0, ci->ci_mode->ivsize);
 78
 79	if (flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) {
 80		WARN_ON_ONCE(lblk_num > U32_MAX);
 81		WARN_ON_ONCE(ci->ci_inode->i_ino > U32_MAX);
 82		lblk_num |= (u64)ci->ci_inode->i_ino << 32;
 83	} else if (flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) {
 84		WARN_ON_ONCE(lblk_num > U32_MAX);
 85		lblk_num = (u32)(ci->ci_hashed_ino + lblk_num);
 86	} else if (flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) {
 87		memcpy(iv->nonce, ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE);
 
 
 
 
 
 
 88	}
 89	iv->lblk_num = cpu_to_le64(lblk_num);
 
 90}
 
 91
 92/* Encrypt or decrypt a single filesystem block of file contents */
 93int fscrypt_crypt_block(const struct inode *inode, fscrypt_direction_t rw,
 94			u64 lblk_num, struct page *src_page,
 95			struct page *dest_page, unsigned int len,
 96			unsigned int offs, gfp_t gfp_flags)
 97{
 98	union fscrypt_iv iv;
 
 
 99	struct skcipher_request *req = NULL;
100	DECLARE_CRYPTO_WAIT(wait);
101	struct scatterlist dst, src;
102	struct fscrypt_info *ci = inode->i_crypt_info;
103	struct crypto_skcipher *tfm = ci->ci_enc_key.tfm;
104	int res = 0;
105
106	if (WARN_ON_ONCE(len <= 0))
107		return -EINVAL;
108	if (WARN_ON_ONCE(len % FS_CRYPTO_BLOCK_SIZE != 0))
109		return -EINVAL;
110
111	fscrypt_generate_iv(&iv, lblk_num, ci);
 
 
 
 
 
 
 
 
112
113	req = skcipher_request_alloc(tfm, gfp_flags);
114	if (!req)
 
 
 
115		return -ENOMEM;
 
116
117	skcipher_request_set_callback(
118		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
119		crypto_req_done, &wait);
120
121	sg_init_table(&dst, 1);
122	sg_set_page(&dst, dest_page, len, offs);
123	sg_init_table(&src, 1);
124	sg_set_page(&src, src_page, len, offs);
125	skcipher_request_set_crypt(req, &src, &dst, len, &iv);
126	if (rw == FS_DECRYPT)
127		res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
128	else
129		res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
130	skcipher_request_free(req);
131	if (res) {
132		fscrypt_err(inode, "%scryption failed for block %llu: %d",
133			    (rw == FS_DECRYPT ? "De" : "En"), lblk_num, res);
 
134		return res;
135	}
136	return 0;
137}
138
 
 
 
 
 
 
 
 
 
 
139/**
140 * fscrypt_encrypt_pagecache_blocks() - Encrypt filesystem blocks from a
141 *					pagecache page
142 * @page:      The locked pagecache page containing the block(s) to encrypt
143 * @len:       Total size of the block(s) to encrypt.  Must be a nonzero
144 *		multiple of the filesystem's block size.
145 * @offs:      Byte offset within @page of the first block to encrypt.  Must be
146 *		a multiple of the filesystem's block size.
147 * @gfp_flags: Memory allocation flags.  See details below.
148 *
149 * A new bounce page is allocated, and the specified block(s) are encrypted into
150 * it.  In the bounce page, the ciphertext block(s) will be located at the same
151 * offsets at which the plaintext block(s) were located in the source page; any
152 * other parts of the bounce page will be left uninitialized.  However, normally
153 * blocksize == PAGE_SIZE and the whole page is encrypted at once.
154 *
155 * This is for use by the filesystem's ->writepages() method.
156 *
157 * The bounce page allocation is mempool-backed, so it will always succeed when
158 * @gfp_flags includes __GFP_DIRECT_RECLAIM, e.g. when it's GFP_NOFS.  However,
159 * only the first page of each bio can be allocated this way.  To prevent
160 * deadlocks, for any additional pages a mask like GFP_NOWAIT must be used.
 
 
 
 
 
161 *
162 * Return: the new encrypted bounce page on success; an ERR_PTR() on failure
 
163 */
164struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
165					      unsigned int len,
166					      unsigned int offs,
167					      gfp_t gfp_flags)
 
168
169{
170	const struct inode *inode = page->mapping->host;
171	const unsigned int blockbits = inode->i_blkbits;
172	const unsigned int blocksize = 1 << blockbits;
173	struct page *ciphertext_page;
174	u64 lblk_num = ((u64)page->index << (PAGE_SHIFT - blockbits)) +
175		       (offs >> blockbits);
176	unsigned int i;
177	int err;
178
179	if (WARN_ON_ONCE(!PageLocked(page)))
180		return ERR_PTR(-EINVAL);
181
182	if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offs, blocksize)))
183		return ERR_PTR(-EINVAL);
 
 
 
 
 
 
 
 
184
185	ciphertext_page = fscrypt_alloc_bounce_page(gfp_flags);
186	if (!ciphertext_page)
187		return ERR_PTR(-ENOMEM);
188
189	for (i = offs; i < offs + len; i += blocksize, lblk_num++) {
190		err = fscrypt_crypt_block(inode, FS_ENCRYPT, lblk_num,
191					  page, ciphertext_page,
192					  blocksize, i, gfp_flags);
193		if (err) {
194			fscrypt_free_bounce_page(ciphertext_page);
195			return ERR_PTR(err);
196		}
 
 
 
 
 
 
 
 
197	}
198	SetPagePrivate(ciphertext_page);
199	set_page_private(ciphertext_page, (unsigned long)page);
 
 
 
 
 
200	return ciphertext_page;
201}
202EXPORT_SYMBOL(fscrypt_encrypt_pagecache_blocks);
203
204/**
205 * fscrypt_encrypt_block_inplace() - Encrypt a filesystem block in-place
206 * @inode:     The inode to which this block belongs
207 * @page:      The page containing the block to encrypt
208 * @len:       Size of block to encrypt.  Doesn't need to be a multiple of the
209 *		fs block size, but must be a multiple of FS_CRYPTO_BLOCK_SIZE.
210 * @offs:      Byte offset within @page at which the block to encrypt begins
211 * @lblk_num:  Filesystem logical block number of the block, i.e. the 0-based
212 *		number of the block within the file
213 * @gfp_flags: Memory allocation flags
214 *
215 * Encrypt a possibly-compressed filesystem block that is located in an
216 * arbitrary page, not necessarily in the original pagecache page.  The @inode
217 * and @lblk_num must be specified, as they can't be determined from @page.
218 *
219 * Return: 0 on success; -errno on failure
 
 
220 */
221int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page,
222				  unsigned int len, unsigned int offs,
223				  u64 lblk_num, gfp_t gfp_flags)
224{
225	return fscrypt_crypt_block(inode, FS_ENCRYPT, lblk_num, page, page,
226				   len, offs, gfp_flags);
 
 
 
227}
228EXPORT_SYMBOL(fscrypt_encrypt_block_inplace);
229
230/**
231 * fscrypt_decrypt_pagecache_blocks() - Decrypt filesystem blocks in a
232 *					pagecache page
233 * @page:      The locked pagecache page containing the block(s) to decrypt
234 * @len:       Total size of the block(s) to decrypt.  Must be a nonzero
235 *		multiple of the filesystem's block size.
236 * @offs:      Byte offset within @page of the first block to decrypt.  Must be
237 *		a multiple of the filesystem's block size.
238 *
239 * The specified block(s) are decrypted in-place within the pagecache page,
240 * which must still be locked and not uptodate.  Normally, blocksize ==
241 * PAGE_SIZE and the whole page is decrypted at once.
242 *
243 * This is for use by the filesystem's ->readpages() method.
244 *
245 * Return: 0 on success; -errno on failure
246 */
247int fscrypt_decrypt_pagecache_blocks(struct page *page, unsigned int len,
248				     unsigned int offs)
249{
250	const struct inode *inode = page->mapping->host;
251	const unsigned int blockbits = inode->i_blkbits;
252	const unsigned int blocksize = 1 << blockbits;
253	u64 lblk_num = ((u64)page->index << (PAGE_SHIFT - blockbits)) +
254		       (offs >> blockbits);
255	unsigned int i;
256	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
257
258	if (WARN_ON_ONCE(!PageLocked(page)))
259		return -EINVAL;
 
 
260
261	if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offs, blocksize)))
262		return -EINVAL;
 
263
264	for (i = offs; i < offs + len; i += blocksize, lblk_num++) {
265		err = fscrypt_crypt_block(inode, FS_DECRYPT, lblk_num, page,
266					  page, blocksize, i, GFP_NOFS);
267		if (err)
268			return err;
269	}
270	return 0;
271}
272EXPORT_SYMBOL(fscrypt_decrypt_pagecache_blocks);
273
274/**
275 * fscrypt_decrypt_block_inplace() - Decrypt a filesystem block in-place
276 * @inode:     The inode to which this block belongs
277 * @page:      The page containing the block to decrypt
278 * @len:       Size of block to decrypt.  Doesn't need to be a multiple of the
279 *		fs block size, but must be a multiple of FS_CRYPTO_BLOCK_SIZE.
280 * @offs:      Byte offset within @page at which the block to decrypt begins
281 * @lblk_num:  Filesystem logical block number of the block, i.e. the 0-based
282 *		number of the block within the file
283 *
284 * Decrypt a possibly-compressed filesystem block that is located in an
285 * arbitrary page, not necessarily in the original pagecache page.  The @inode
286 * and @lblk_num must be specified, as they can't be determined from @page.
287 *
288 * Return: 0 on success; -errno on failure
289 */
290int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page,
291				  unsigned int len, unsigned int offs,
292				  u64 lblk_num)
293{
294	return fscrypt_crypt_block(inode, FS_DECRYPT, lblk_num, page, page,
295				   len, offs, GFP_NOFS);
 
 
 
 
 
296}
297EXPORT_SYMBOL(fscrypt_decrypt_block_inplace);
298
299/**
300 * fscrypt_initialize() - allocate major buffers for fs encryption.
301 * @cop_flags:  fscrypt operations flags
302 *
303 * We only call this when we start accessing encrypted files, since it
304 * results in memory getting allocated that wouldn't otherwise be used.
305 *
306 * Return: 0 on success; -errno on failure
307 */
308int fscrypt_initialize(unsigned int cop_flags)
309{
310	int err = 0;
311
312	/* No need to allocate a bounce page pool if this FS won't use it. */
313	if (cop_flags & FS_CFLG_OWN_PAGES)
314		return 0;
315
316	mutex_lock(&fscrypt_init_mutex);
317	if (fscrypt_bounce_page_pool)
318		goto out_unlock;
 
 
 
 
 
 
 
 
 
319
320	err = -ENOMEM;
321	fscrypt_bounce_page_pool =
322		mempool_create_page_pool(num_prealloc_crypto_pages, 0);
323	if (!fscrypt_bounce_page_pool)
324		goto out_unlock;
325
326	err = 0;
327out_unlock:
328	mutex_unlock(&fscrypt_init_mutex);
329	return err;
330}
331
332void fscrypt_msg(const struct inode *inode, const char *level,
333		 const char *fmt, ...)
334{
335	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
336				      DEFAULT_RATELIMIT_BURST);
337	struct va_format vaf;
338	va_list args;
339
340	if (!__ratelimit(&rs))
341		return;
342
343	va_start(args, fmt);
344	vaf.fmt = fmt;
345	vaf.va = &args;
346	if (inode)
347		printk("%sfscrypt (%s, inode %lu): %pV\n",
348		       level, inode->i_sb->s_id, inode->i_ino, &vaf);
349	else
350		printk("%sfscrypt: %pV\n", level, &vaf);
351	va_end(args);
352}
353
354/**
355 * fscrypt_init() - Set up for fs encryption.
356 *
357 * Return: 0 on success; -errno on failure
358 */
359static int __init fscrypt_init(void)
360{
361	int err = -ENOMEM;
362
363	/*
364	 * Use an unbound workqueue to allow bios to be decrypted in parallel
365	 * even when they happen to complete on the same CPU.  This sacrifices
366	 * locality, but it's worthwhile since decryption is CPU-intensive.
367	 *
368	 * Also use a high-priority workqueue to prioritize decryption work,
369	 * which blocks reads from completing, over regular application tasks.
370	 */
371	fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
372						 WQ_UNBOUND | WQ_HIGHPRI,
373						 num_online_cpus());
374	if (!fscrypt_read_workqueue)
375		goto fail;
376
 
 
 
 
377	fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
378	if (!fscrypt_info_cachep)
379		goto fail_free_queue;
380
381	err = fscrypt_init_keyring();
382	if (err)
383		goto fail_free_info;
384
385	return 0;
386
387fail_free_info:
388	kmem_cache_destroy(fscrypt_info_cachep);
389fail_free_queue:
390	destroy_workqueue(fscrypt_read_workqueue);
391fail:
392	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
393}
394late_initcall(fscrypt_init)