Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 * This contains encryption functions for per-file encryption.
  3 *
  4 * Copyright (C) 2015, Google, Inc.
  5 * Copyright (C) 2015, Motorola Mobility
  6 *
  7 * Written by Michael Halcrow, 2014.
  8 *
  9 * Filename encryption additions
 10 *	Uday Savagaonkar, 2014
 11 * Encryption policy handling additions
 12 *	Ildar Muslukhov, 2014
 13 * Add fscrypt_pullback_bio_page()
 14 *	Jaegeuk Kim, 2015.
 15 *
 16 * This has not yet undergone a rigorous security audit.
 17 *
 18 * The usage of AES-XTS should conform to recommendations in NIST
 19 * Special Publication 800-38E and IEEE P1619/D16.
 20 */
 21
 22#include <linux/pagemap.h>
 23#include <linux/mempool.h>
 24#include <linux/module.h>
 25#include <linux/scatterlist.h>
 26#include <linux/ratelimit.h>
 
 27#include <linux/dcache.h>
 28#include <linux/namei.h>
 29#include <crypto/aes.h>
 30#include <crypto/skcipher.h>
 31#include "fscrypt_private.h"
 32
 33static unsigned int num_prealloc_crypto_pages = 32;
 34static unsigned int num_prealloc_crypto_ctxs = 128;
 35
 36module_param(num_prealloc_crypto_pages, uint, 0444);
 37MODULE_PARM_DESC(num_prealloc_crypto_pages,
 38		"Number of crypto pages to preallocate");
 39module_param(num_prealloc_crypto_ctxs, uint, 0444);
 40MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
 41		"Number of crypto contexts to preallocate");
 42
 43static mempool_t *fscrypt_bounce_page_pool = NULL;
 44
 45static LIST_HEAD(fscrypt_free_ctxs);
 46static DEFINE_SPINLOCK(fscrypt_ctx_lock);
 47
 48struct workqueue_struct *fscrypt_read_workqueue;
 49static DEFINE_MUTEX(fscrypt_init_mutex);
 50
 51static struct kmem_cache *fscrypt_ctx_cachep;
 52struct kmem_cache *fscrypt_info_cachep;
 53
 54/**
 55 * fscrypt_release_ctx() - Releases an encryption context
 56 * @ctx: The encryption context to release.
 57 *
 58 * If the encryption context was allocated from the pre-allocated pool, returns
 59 * it to that pool. Else, frees it.
 60 *
 61 * If there's a bounce page in the context, this frees that.
 62 */
 63void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
 64{
 65	unsigned long flags;
 66
 67	if (ctx->flags & FS_CTX_HAS_BOUNCE_BUFFER_FL && ctx->w.bounce_page) {
 68		mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool);
 69		ctx->w.bounce_page = NULL;
 70	}
 71	ctx->w.control_page = NULL;
 72	if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
 73		kmem_cache_free(fscrypt_ctx_cachep, ctx);
 74	} else {
 75		spin_lock_irqsave(&fscrypt_ctx_lock, flags);
 76		list_add(&ctx->free_list, &fscrypt_free_ctxs);
 77		spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
 78	}
 79}
 80EXPORT_SYMBOL(fscrypt_release_ctx);
 81
 82/**
 83 * fscrypt_get_ctx() - Gets an encryption context
 84 * @inode:       The inode for which we are doing the crypto
 85 * @gfp_flags:   The gfp flag for memory allocation
 86 *
 87 * Allocates and initializes an encryption context.
 88 *
 89 * Return: An allocated and initialized encryption context on success; error
 90 * value or NULL otherwise.
 91 */
 92struct fscrypt_ctx *fscrypt_get_ctx(const struct inode *inode, gfp_t gfp_flags)
 93{
 94	struct fscrypt_ctx *ctx = NULL;
 95	struct fscrypt_info *ci = inode->i_crypt_info;
 96	unsigned long flags;
 97
 98	if (ci == NULL)
 99		return ERR_PTR(-ENOKEY);
100
101	/*
102	 * We first try getting the ctx from a free list because in
103	 * the common case the ctx will have an allocated and
104	 * initialized crypto tfm, so it's probably a worthwhile
105	 * optimization. For the bounce page, we first try getting it
106	 * from the kernel allocator because that's just about as fast
107	 * as getting it from a list and because a cache of free pages
108	 * should generally be a "last resort" option for a filesystem
109	 * to be able to do its job.
110	 */
111	spin_lock_irqsave(&fscrypt_ctx_lock, flags);
112	ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
113					struct fscrypt_ctx, free_list);
114	if (ctx)
115		list_del(&ctx->free_list);
116	spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
117	if (!ctx) {
118		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags);
119		if (!ctx)
120			return ERR_PTR(-ENOMEM);
121		ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
122	} else {
123		ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
124	}
125	ctx->flags &= ~FS_CTX_HAS_BOUNCE_BUFFER_FL;
126	return ctx;
127}
128EXPORT_SYMBOL(fscrypt_get_ctx);
129
130int fscrypt_do_page_crypto(const struct inode *inode, fscrypt_direction_t rw,
131			   u64 lblk_num, struct page *src_page,
132			   struct page *dest_page, unsigned int len,
133			   unsigned int offs, gfp_t gfp_flags)
134{
135	struct {
136		__le64 index;
137		u8 padding[FS_IV_SIZE - sizeof(__le64)];
138	} iv;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
139	struct skcipher_request *req = NULL;
140	DECLARE_CRYPTO_WAIT(wait);
141	struct scatterlist dst, src;
142	struct fscrypt_info *ci = inode->i_crypt_info;
143	struct crypto_skcipher *tfm = ci->ci_ctfm;
144	int res = 0;
145
146	BUG_ON(len == 0);
147
148	BUILD_BUG_ON(sizeof(iv) != FS_IV_SIZE);
149	BUILD_BUG_ON(AES_BLOCK_SIZE != FS_IV_SIZE);
150	iv.index = cpu_to_le64(lblk_num);
151	memset(iv.padding, 0, sizeof(iv.padding));
152
153	if (ci->ci_essiv_tfm != NULL) {
154		crypto_cipher_encrypt_one(ci->ci_essiv_tfm, (u8 *)&iv,
155					  (u8 *)&iv);
156	}
157
158	req = skcipher_request_alloc(tfm, gfp_flags);
159	if (!req) {
160		printk_ratelimited(KERN_ERR
161				"%s: crypto_request_alloc() failed\n",
162				__func__);
163		return -ENOMEM;
164	}
165
166	skcipher_request_set_callback(
167		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
168		crypto_req_done, &wait);
 
 
 
 
 
169
170	sg_init_table(&dst, 1);
171	sg_set_page(&dst, dest_page, len, offs);
172	sg_init_table(&src, 1);
173	sg_set_page(&src, src_page, len, offs);
174	skcipher_request_set_crypt(req, &src, &dst, len, &iv);
 
175	if (rw == FS_DECRYPT)
176		res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
177	else
178		res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
 
 
 
 
 
179	skcipher_request_free(req);
180	if (res) {
181		printk_ratelimited(KERN_ERR
182			"%s: crypto_skcipher_encrypt() returned %d\n",
183			__func__, res);
184		return res;
185	}
186	return 0;
187}
188
189struct page *fscrypt_alloc_bounce_page(struct fscrypt_ctx *ctx,
190				       gfp_t gfp_flags)
191{
192	ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
193	if (ctx->w.bounce_page == NULL)
194		return ERR_PTR(-ENOMEM);
195	ctx->flags |= FS_CTX_HAS_BOUNCE_BUFFER_FL;
196	return ctx->w.bounce_page;
197}
198
199/**
200 * fscypt_encrypt_page() - Encrypts a page
201 * @inode:     The inode for which the encryption should take place
202 * @page:      The page to encrypt. Must be locked for bounce-page
203 *             encryption.
204 * @len:       Length of data to encrypt in @page and encrypted
205 *             data in returned page.
206 * @offs:      Offset of data within @page and returned
207 *             page holding encrypted data.
208 * @lblk_num:  Logical block number. This must be unique for multiple
209 *             calls with same inode, except when overwriting
210 *             previously written data.
211 * @gfp_flags: The gfp flag for memory allocation
212 *
213 * Encrypts @page using the ctx encryption context. Performs encryption
214 * either in-place or into a newly allocated bounce page.
215 * Called on the page write path.
216 *
217 * Bounce page allocation is the default.
218 * In this case, the contents of @page are encrypted and stored in an
219 * allocated bounce page. @page has to be locked and the caller must call
220 * fscrypt_restore_control_page() on the returned ciphertext page to
221 * release the bounce buffer and the encryption context.
222 *
223 * In-place encryption is used by setting the FS_CFLG_OWN_PAGES flag in
224 * fscrypt_operations. Here, the input-page is returned with its content
225 * encrypted.
226 *
227 * Return: A page with the encrypted content on success. Else, an
228 * error value or NULL.
229 */
230struct page *fscrypt_encrypt_page(const struct inode *inode,
231				struct page *page,
232				unsigned int len,
233				unsigned int offs,
234				u64 lblk_num, gfp_t gfp_flags)
235
236{
237	struct fscrypt_ctx *ctx;
238	struct page *ciphertext_page = page;
239	int err;
240
241	BUG_ON(len % FS_CRYPTO_BLOCK_SIZE != 0);
242
243	if (inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES) {
244		/* with inplace-encryption we just encrypt the page */
245		err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num, page,
246					     ciphertext_page, len, offs,
247					     gfp_flags);
248		if (err)
249			return ERR_PTR(err);
250
251		return ciphertext_page;
252	}
253
254	BUG_ON(!PageLocked(page));
255
256	ctx = fscrypt_get_ctx(inode, gfp_flags);
257	if (IS_ERR(ctx))
258		return (struct page *)ctx;
259
260	/* The encryption operation will require a bounce page. */
261	ciphertext_page = fscrypt_alloc_bounce_page(ctx, gfp_flags);
262	if (IS_ERR(ciphertext_page))
263		goto errout;
264
265	ctx->w.control_page = page;
266	err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num,
267				     page, ciphertext_page, len, offs,
268				     gfp_flags);
269	if (err) {
270		ciphertext_page = ERR_PTR(err);
271		goto errout;
272	}
273	SetPagePrivate(ciphertext_page);
274	set_page_private(ciphertext_page, (unsigned long)ctx);
275	lock_page(ciphertext_page);
276	return ciphertext_page;
277
278errout:
279	fscrypt_release_ctx(ctx);
280	return ciphertext_page;
281}
282EXPORT_SYMBOL(fscrypt_encrypt_page);
283
284/**
285 * fscrypt_decrypt_page() - Decrypts a page in-place
286 * @inode:     The corresponding inode for the page to decrypt.
287 * @page:      The page to decrypt. Must be locked in case
288 *             it is a writeback page (FS_CFLG_OWN_PAGES unset).
289 * @len:       Number of bytes in @page to be decrypted.
290 * @offs:      Start of data in @page.
291 * @lblk_num:  Logical block number.
292 *
293 * Decrypts page in-place using the ctx encryption context.
294 *
295 * Called from the read completion callback.
296 *
297 * Return: Zero on success, non-zero otherwise.
298 */
299int fscrypt_decrypt_page(const struct inode *inode, struct page *page,
300			unsigned int len, unsigned int offs, u64 lblk_num)
301{
302	if (!(inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES))
303		BUG_ON(!PageLocked(page));
304
305	return fscrypt_do_page_crypto(inode, FS_DECRYPT, lblk_num, page, page,
306				      len, offs, GFP_NOFS);
307}
308EXPORT_SYMBOL(fscrypt_decrypt_page);
309
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
310/*
311 * Validate dentries for encrypted directories to make sure we aren't
312 * potentially caching stale data after a key has been added or
313 * removed.
314 */
315static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
316{
317	struct dentry *dir;
 
318	int dir_has_key, cached_with_key;
319
320	if (flags & LOOKUP_RCU)
321		return -ECHILD;
322
323	dir = dget_parent(dentry);
324	if (!IS_ENCRYPTED(d_inode(dir))) {
325		dput(dir);
326		return 0;
327	}
328
 
 
 
 
 
 
 
329	/* this should eventually be an flag in d_flags */
330	spin_lock(&dentry->d_lock);
331	cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY;
332	spin_unlock(&dentry->d_lock);
333	dir_has_key = (d_inode(dir)->i_crypt_info != NULL);
334	dput(dir);
335
336	/*
337	 * If the dentry was cached without the key, and it is a
338	 * negative dentry, it might be a valid name.  We can't check
339	 * if the key has since been made available due to locking
340	 * reasons, so we fail the validation so ext4_lookup() can do
341	 * this check.
342	 *
343	 * We also fail the validation if the dentry was created with
344	 * the key present, but we no longer have the key, or vice versa.
345	 */
346	if ((!cached_with_key && d_is_negative(dentry)) ||
347			(!cached_with_key && dir_has_key) ||
348			(cached_with_key && !dir_has_key))
349		return 0;
350	return 1;
351}
352
353const struct dentry_operations fscrypt_d_ops = {
354	.d_revalidate = fscrypt_d_revalidate,
355};
356EXPORT_SYMBOL(fscrypt_d_ops);
357
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358void fscrypt_restore_control_page(struct page *page)
359{
360	struct fscrypt_ctx *ctx;
361
362	ctx = (struct fscrypt_ctx *)page_private(page);
363	set_page_private(page, (unsigned long)NULL);
364	ClearPagePrivate(page);
365	unlock_page(page);
366	fscrypt_release_ctx(ctx);
367}
368EXPORT_SYMBOL(fscrypt_restore_control_page);
369
370static void fscrypt_destroy(void)
371{
372	struct fscrypt_ctx *pos, *n;
373
374	list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
375		kmem_cache_free(fscrypt_ctx_cachep, pos);
376	INIT_LIST_HEAD(&fscrypt_free_ctxs);
377	mempool_destroy(fscrypt_bounce_page_pool);
378	fscrypt_bounce_page_pool = NULL;
379}
380
381/**
382 * fscrypt_initialize() - allocate major buffers for fs encryption.
383 * @cop_flags:  fscrypt operations flags
384 *
385 * We only call this when we start accessing encrypted files, since it
386 * results in memory getting allocated that wouldn't otherwise be used.
387 *
388 * Return: Zero on success, non-zero otherwise.
389 */
390int fscrypt_initialize(unsigned int cop_flags)
391{
392	int i, res = -ENOMEM;
393
394	/* No need to allocate a bounce page pool if this FS won't use it. */
395	if (cop_flags & FS_CFLG_OWN_PAGES)
396		return 0;
397
398	mutex_lock(&fscrypt_init_mutex);
399	if (fscrypt_bounce_page_pool)
400		goto already_initialized;
401
402	for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
403		struct fscrypt_ctx *ctx;
404
405		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
406		if (!ctx)
407			goto fail;
408		list_add(&ctx->free_list, &fscrypt_free_ctxs);
409	}
410
411	fscrypt_bounce_page_pool =
412		mempool_create_page_pool(num_prealloc_crypto_pages, 0);
413	if (!fscrypt_bounce_page_pool)
414		goto fail;
415
416already_initialized:
417	mutex_unlock(&fscrypt_init_mutex);
418	return 0;
419fail:
420	fscrypt_destroy();
421	mutex_unlock(&fscrypt_init_mutex);
422	return res;
423}
 
424
425/**
426 * fscrypt_init() - Set up for fs encryption.
427 */
428static int __init fscrypt_init(void)
429{
430	fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
431							WQ_HIGHPRI, 0);
432	if (!fscrypt_read_workqueue)
433		goto fail;
434
435	fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
436	if (!fscrypt_ctx_cachep)
437		goto fail_free_queue;
438
439	fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
440	if (!fscrypt_info_cachep)
441		goto fail_free_ctx;
442
443	return 0;
444
445fail_free_ctx:
446	kmem_cache_destroy(fscrypt_ctx_cachep);
447fail_free_queue:
448	destroy_workqueue(fscrypt_read_workqueue);
449fail:
450	return -ENOMEM;
451}
452module_init(fscrypt_init)
453
454/**
455 * fscrypt_exit() - Shutdown the fs encryption system
456 */
457static void __exit fscrypt_exit(void)
458{
459	fscrypt_destroy();
460
461	if (fscrypt_read_workqueue)
462		destroy_workqueue(fscrypt_read_workqueue);
463	kmem_cache_destroy(fscrypt_ctx_cachep);
464	kmem_cache_destroy(fscrypt_info_cachep);
465
466	fscrypt_essiv_cleanup();
467}
468module_exit(fscrypt_exit);
469
470MODULE_LICENSE("GPL");
v4.6
  1/*
  2 * This contains encryption functions for per-file encryption.
  3 *
  4 * Copyright (C) 2015, Google, Inc.
  5 * Copyright (C) 2015, Motorola Mobility
  6 *
  7 * Written by Michael Halcrow, 2014.
  8 *
  9 * Filename encryption additions
 10 *	Uday Savagaonkar, 2014
 11 * Encryption policy handling additions
 12 *	Ildar Muslukhov, 2014
 13 * Add fscrypt_pullback_bio_page()
 14 *	Jaegeuk Kim, 2015.
 15 *
 16 * This has not yet undergone a rigorous security audit.
 17 *
 18 * The usage of AES-XTS should conform to recommendations in NIST
 19 * Special Publication 800-38E and IEEE P1619/D16.
 20 */
 21
 22#include <linux/pagemap.h>
 23#include <linux/mempool.h>
 24#include <linux/module.h>
 25#include <linux/scatterlist.h>
 26#include <linux/ratelimit.h>
 27#include <linux/bio.h>
 28#include <linux/dcache.h>
 29#include <linux/namei.h>
 30#include <linux/fscrypto.h>
 31#include <linux/ecryptfs.h>
 
 32
 33static unsigned int num_prealloc_crypto_pages = 32;
 34static unsigned int num_prealloc_crypto_ctxs = 128;
 35
 36module_param(num_prealloc_crypto_pages, uint, 0444);
 37MODULE_PARM_DESC(num_prealloc_crypto_pages,
 38		"Number of crypto pages to preallocate");
 39module_param(num_prealloc_crypto_ctxs, uint, 0444);
 40MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
 41		"Number of crypto contexts to preallocate");
 42
 43static mempool_t *fscrypt_bounce_page_pool = NULL;
 44
 45static LIST_HEAD(fscrypt_free_ctxs);
 46static DEFINE_SPINLOCK(fscrypt_ctx_lock);
 47
 48static struct workqueue_struct *fscrypt_read_workqueue;
 49static DEFINE_MUTEX(fscrypt_init_mutex);
 50
 51static struct kmem_cache *fscrypt_ctx_cachep;
 52struct kmem_cache *fscrypt_info_cachep;
 53
 54/**
 55 * fscrypt_release_ctx() - Releases an encryption context
 56 * @ctx: The encryption context to release.
 57 *
 58 * If the encryption context was allocated from the pre-allocated pool, returns
 59 * it to that pool. Else, frees it.
 60 *
 61 * If there's a bounce page in the context, this frees that.
 62 */
 63void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
 64{
 65	unsigned long flags;
 66
 67	if (ctx->flags & FS_WRITE_PATH_FL && ctx->w.bounce_page) {
 68		mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool);
 69		ctx->w.bounce_page = NULL;
 70	}
 71	ctx->w.control_page = NULL;
 72	if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
 73		kmem_cache_free(fscrypt_ctx_cachep, ctx);
 74	} else {
 75		spin_lock_irqsave(&fscrypt_ctx_lock, flags);
 76		list_add(&ctx->free_list, &fscrypt_free_ctxs);
 77		spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
 78	}
 79}
 80EXPORT_SYMBOL(fscrypt_release_ctx);
 81
 82/**
 83 * fscrypt_get_ctx() - Gets an encryption context
 84 * @inode:       The inode for which we are doing the crypto
 85 * @gfp_flags:   The gfp flag for memory allocation
 86 *
 87 * Allocates and initializes an encryption context.
 88 *
 89 * Return: An allocated and initialized encryption context on success; error
 90 * value or NULL otherwise.
 91 */
 92struct fscrypt_ctx *fscrypt_get_ctx(struct inode *inode, gfp_t gfp_flags)
 93{
 94	struct fscrypt_ctx *ctx = NULL;
 95	struct fscrypt_info *ci = inode->i_crypt_info;
 96	unsigned long flags;
 97
 98	if (ci == NULL)
 99		return ERR_PTR(-ENOKEY);
100
101	/*
102	 * We first try getting the ctx from a free list because in
103	 * the common case the ctx will have an allocated and
104	 * initialized crypto tfm, so it's probably a worthwhile
105	 * optimization. For the bounce page, we first try getting it
106	 * from the kernel allocator because that's just about as fast
107	 * as getting it from a list and because a cache of free pages
108	 * should generally be a "last resort" option for a filesystem
109	 * to be able to do its job.
110	 */
111	spin_lock_irqsave(&fscrypt_ctx_lock, flags);
112	ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
113					struct fscrypt_ctx, free_list);
114	if (ctx)
115		list_del(&ctx->free_list);
116	spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
117	if (!ctx) {
118		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags);
119		if (!ctx)
120			return ERR_PTR(-ENOMEM);
121		ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
122	} else {
123		ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
124	}
125	ctx->flags &= ~FS_WRITE_PATH_FL;
126	return ctx;
127}
128EXPORT_SYMBOL(fscrypt_get_ctx);
129
130/**
131 * fscrypt_complete() - The completion callback for page encryption
132 * @req: The asynchronous encryption request context
133 * @res: The result of the encryption operation
134 */
135static void fscrypt_complete(struct crypto_async_request *req, int res)
136{
137	struct fscrypt_completion_result *ecr = req->data;
138
139	if (res == -EINPROGRESS)
140		return;
141	ecr->res = res;
142	complete(&ecr->completion);
143}
144
145typedef enum {
146	FS_DECRYPT = 0,
147	FS_ENCRYPT,
148} fscrypt_direction_t;
149
150static int do_page_crypto(struct inode *inode,
151			fscrypt_direction_t rw, pgoff_t index,
152			struct page *src_page, struct page *dest_page,
153			gfp_t gfp_flags)
154{
155	u8 xts_tweak[FS_XTS_TWEAK_SIZE];
156	struct skcipher_request *req = NULL;
157	DECLARE_FS_COMPLETION_RESULT(ecr);
158	struct scatterlist dst, src;
159	struct fscrypt_info *ci = inode->i_crypt_info;
160	struct crypto_skcipher *tfm = ci->ci_ctfm;
161	int res = 0;
162
 
 
 
 
 
 
 
 
 
 
 
 
163	req = skcipher_request_alloc(tfm, gfp_flags);
164	if (!req) {
165		printk_ratelimited(KERN_ERR
166				"%s: crypto_request_alloc() failed\n",
167				__func__);
168		return -ENOMEM;
169	}
170
171	skcipher_request_set_callback(
172		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
173		fscrypt_complete, &ecr);
174
175	BUILD_BUG_ON(FS_XTS_TWEAK_SIZE < sizeof(index));
176	memcpy(xts_tweak, &index, sizeof(index));
177	memset(&xts_tweak[sizeof(index)], 0,
178			FS_XTS_TWEAK_SIZE - sizeof(index));
179
180	sg_init_table(&dst, 1);
181	sg_set_page(&dst, dest_page, PAGE_SIZE, 0);
182	sg_init_table(&src, 1);
183	sg_set_page(&src, src_page, PAGE_SIZE, 0);
184	skcipher_request_set_crypt(req, &src, &dst, PAGE_SIZE,
185					xts_tweak);
186	if (rw == FS_DECRYPT)
187		res = crypto_skcipher_decrypt(req);
188	else
189		res = crypto_skcipher_encrypt(req);
190	if (res == -EINPROGRESS || res == -EBUSY) {
191		BUG_ON(req->base.data != &ecr);
192		wait_for_completion(&ecr.completion);
193		res = ecr.res;
194	}
195	skcipher_request_free(req);
196	if (res) {
197		printk_ratelimited(KERN_ERR
198			"%s: crypto_skcipher_encrypt() returned %d\n",
199			__func__, res);
200		return res;
201	}
202	return 0;
203}
204
205static struct page *alloc_bounce_page(struct fscrypt_ctx *ctx, gfp_t gfp_flags)
 
206{
207	ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
208	if (ctx->w.bounce_page == NULL)
209		return ERR_PTR(-ENOMEM);
210	ctx->flags |= FS_WRITE_PATH_FL;
211	return ctx->w.bounce_page;
212}
213
214/**
215 * fscypt_encrypt_page() - Encrypts a page
216 * @inode:          The inode for which the encryption should take place
217 * @plaintext_page: The page to encrypt. Must be locked.
218 * @gfp_flags:      The gfp flag for memory allocation
219 *
220 * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx
221 * encryption context.
222 *
223 * Called on the page write path.  The caller must call
 
 
 
 
 
 
 
 
 
 
 
224 * fscrypt_restore_control_page() on the returned ciphertext page to
225 * release the bounce buffer and the encryption context.
226 *
227 * Return: An allocated page with the encrypted content on success. Else, an
 
 
 
 
228 * error value or NULL.
229 */
230struct page *fscrypt_encrypt_page(struct inode *inode,
231				struct page *plaintext_page, gfp_t gfp_flags)
 
 
 
 
232{
233	struct fscrypt_ctx *ctx;
234	struct page *ciphertext_page = NULL;
235	int err;
236
237	BUG_ON(!PageLocked(plaintext_page));
 
 
 
 
 
 
 
 
 
 
 
 
 
238
239	ctx = fscrypt_get_ctx(inode, gfp_flags);
240	if (IS_ERR(ctx))
241		return (struct page *)ctx;
242
243	/* The encryption operation will require a bounce page. */
244	ciphertext_page = alloc_bounce_page(ctx, gfp_flags);
245	if (IS_ERR(ciphertext_page))
246		goto errout;
247
248	ctx->w.control_page = plaintext_page;
249	err = do_page_crypto(inode, FS_ENCRYPT, plaintext_page->index,
250					plaintext_page, ciphertext_page,
251					gfp_flags);
252	if (err) {
253		ciphertext_page = ERR_PTR(err);
254		goto errout;
255	}
256	SetPagePrivate(ciphertext_page);
257	set_page_private(ciphertext_page, (unsigned long)ctx);
258	lock_page(ciphertext_page);
259	return ciphertext_page;
260
261errout:
262	fscrypt_release_ctx(ctx);
263	return ciphertext_page;
264}
265EXPORT_SYMBOL(fscrypt_encrypt_page);
266
267/**
268 * f2crypt_decrypt_page() - Decrypts a page in-place
269 * @page: The page to decrypt. Must be locked.
 
 
 
 
 
270 *
271 * Decrypts page in-place using the ctx encryption context.
272 *
273 * Called from the read completion callback.
274 *
275 * Return: Zero on success, non-zero otherwise.
276 */
277int fscrypt_decrypt_page(struct page *page)
 
278{
279	BUG_ON(!PageLocked(page));
 
280
281	return do_page_crypto(page->mapping->host,
282			FS_DECRYPT, page->index, page, page, GFP_NOFS);
283}
284EXPORT_SYMBOL(fscrypt_decrypt_page);
285
286int fscrypt_zeroout_range(struct inode *inode, pgoff_t lblk,
287				sector_t pblk, unsigned int len)
288{
289	struct fscrypt_ctx *ctx;
290	struct page *ciphertext_page = NULL;
291	struct bio *bio;
292	int ret, err = 0;
293
294	BUG_ON(inode->i_sb->s_blocksize != PAGE_SIZE);
295
296	ctx = fscrypt_get_ctx(inode, GFP_NOFS);
297	if (IS_ERR(ctx))
298		return PTR_ERR(ctx);
299
300	ciphertext_page = alloc_bounce_page(ctx, GFP_NOWAIT);
301	if (IS_ERR(ciphertext_page)) {
302		err = PTR_ERR(ciphertext_page);
303		goto errout;
304	}
305
306	while (len--) {
307		err = do_page_crypto(inode, FS_ENCRYPT, lblk,
308					ZERO_PAGE(0), ciphertext_page,
309					GFP_NOFS);
310		if (err)
311			goto errout;
312
313		bio = bio_alloc(GFP_NOWAIT, 1);
314		if (!bio) {
315			err = -ENOMEM;
316			goto errout;
317		}
318		bio->bi_bdev = inode->i_sb->s_bdev;
319		bio->bi_iter.bi_sector =
320			pblk << (inode->i_sb->s_blocksize_bits - 9);
321		ret = bio_add_page(bio, ciphertext_page,
322					inode->i_sb->s_blocksize, 0);
323		if (ret != inode->i_sb->s_blocksize) {
324			/* should never happen! */
325			WARN_ON(1);
326			bio_put(bio);
327			err = -EIO;
328			goto errout;
329		}
330		err = submit_bio_wait(WRITE, bio);
331		if ((err == 0) && bio->bi_error)
332			err = -EIO;
333		bio_put(bio);
334		if (err)
335			goto errout;
336		lblk++;
337		pblk++;
338	}
339	err = 0;
340errout:
341	fscrypt_release_ctx(ctx);
342	return err;
343}
344EXPORT_SYMBOL(fscrypt_zeroout_range);
345
346/*
347 * Validate dentries for encrypted directories to make sure we aren't
348 * potentially caching stale data after a key has been added or
349 * removed.
350 */
351static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
352{
353	struct dentry *dir;
354	struct fscrypt_info *ci;
355	int dir_has_key, cached_with_key;
356
357	if (flags & LOOKUP_RCU)
358		return -ECHILD;
359
360	dir = dget_parent(dentry);
361	if (!d_inode(dir)->i_sb->s_cop->is_encrypted(d_inode(dir))) {
362		dput(dir);
363		return 0;
364	}
365
366	ci = d_inode(dir)->i_crypt_info;
367	if (ci && ci->ci_keyring_key &&
368	    (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
369					  (1 << KEY_FLAG_REVOKED) |
370					  (1 << KEY_FLAG_DEAD))))
371		ci = NULL;
372
373	/* this should eventually be an flag in d_flags */
374	spin_lock(&dentry->d_lock);
375	cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY;
376	spin_unlock(&dentry->d_lock);
377	dir_has_key = (ci != NULL);
378	dput(dir);
379
380	/*
381	 * If the dentry was cached without the key, and it is a
382	 * negative dentry, it might be a valid name.  We can't check
383	 * if the key has since been made available due to locking
384	 * reasons, so we fail the validation so ext4_lookup() can do
385	 * this check.
386	 *
387	 * We also fail the validation if the dentry was created with
388	 * the key present, but we no longer have the key, or vice versa.
389	 */
390	if ((!cached_with_key && d_is_negative(dentry)) ||
391			(!cached_with_key && dir_has_key) ||
392			(cached_with_key && !dir_has_key))
393		return 0;
394	return 1;
395}
396
397const struct dentry_operations fscrypt_d_ops = {
398	.d_revalidate = fscrypt_d_revalidate,
399};
400EXPORT_SYMBOL(fscrypt_d_ops);
401
402/*
403 * Call fscrypt_decrypt_page on every single page, reusing the encryption
404 * context.
405 */
406static void completion_pages(struct work_struct *work)
407{
408	struct fscrypt_ctx *ctx =
409		container_of(work, struct fscrypt_ctx, r.work);
410	struct bio *bio = ctx->r.bio;
411	struct bio_vec *bv;
412	int i;
413
414	bio_for_each_segment_all(bv, bio, i) {
415		struct page *page = bv->bv_page;
416		int ret = fscrypt_decrypt_page(page);
417
418		if (ret) {
419			WARN_ON_ONCE(1);
420			SetPageError(page);
421		} else {
422			SetPageUptodate(page);
423		}
424		unlock_page(page);
425	}
426	fscrypt_release_ctx(ctx);
427	bio_put(bio);
428}
429
430void fscrypt_decrypt_bio_pages(struct fscrypt_ctx *ctx, struct bio *bio)
431{
432	INIT_WORK(&ctx->r.work, completion_pages);
433	ctx->r.bio = bio;
434	queue_work(fscrypt_read_workqueue, &ctx->r.work);
435}
436EXPORT_SYMBOL(fscrypt_decrypt_bio_pages);
437
438void fscrypt_pullback_bio_page(struct page **page, bool restore)
439{
440	struct fscrypt_ctx *ctx;
441	struct page *bounce_page;
442
443	/* The bounce data pages are unmapped. */
444	if ((*page)->mapping)
445		return;
446
447	/* The bounce data page is unmapped. */
448	bounce_page = *page;
449	ctx = (struct fscrypt_ctx *)page_private(bounce_page);
450
451	/* restore control page */
452	*page = ctx->w.control_page;
453
454	if (restore)
455		fscrypt_restore_control_page(bounce_page);
456}
457EXPORT_SYMBOL(fscrypt_pullback_bio_page);
458
459void fscrypt_restore_control_page(struct page *page)
460{
461	struct fscrypt_ctx *ctx;
462
463	ctx = (struct fscrypt_ctx *)page_private(page);
464	set_page_private(page, (unsigned long)NULL);
465	ClearPagePrivate(page);
466	unlock_page(page);
467	fscrypt_release_ctx(ctx);
468}
469EXPORT_SYMBOL(fscrypt_restore_control_page);
470
471static void fscrypt_destroy(void)
472{
473	struct fscrypt_ctx *pos, *n;
474
475	list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
476		kmem_cache_free(fscrypt_ctx_cachep, pos);
477	INIT_LIST_HEAD(&fscrypt_free_ctxs);
478	mempool_destroy(fscrypt_bounce_page_pool);
479	fscrypt_bounce_page_pool = NULL;
480}
481
482/**
483 * fscrypt_initialize() - allocate major buffers for fs encryption.
 
484 *
485 * We only call this when we start accessing encrypted files, since it
486 * results in memory getting allocated that wouldn't otherwise be used.
487 *
488 * Return: Zero on success, non-zero otherwise.
489 */
490int fscrypt_initialize(void)
491{
492	int i, res = -ENOMEM;
493
494	if (fscrypt_bounce_page_pool)
 
495		return 0;
496
497	mutex_lock(&fscrypt_init_mutex);
498	if (fscrypt_bounce_page_pool)
499		goto already_initialized;
500
501	for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
502		struct fscrypt_ctx *ctx;
503
504		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
505		if (!ctx)
506			goto fail;
507		list_add(&ctx->free_list, &fscrypt_free_ctxs);
508	}
509
510	fscrypt_bounce_page_pool =
511		mempool_create_page_pool(num_prealloc_crypto_pages, 0);
512	if (!fscrypt_bounce_page_pool)
513		goto fail;
514
515already_initialized:
516	mutex_unlock(&fscrypt_init_mutex);
517	return 0;
518fail:
519	fscrypt_destroy();
520	mutex_unlock(&fscrypt_init_mutex);
521	return res;
522}
523EXPORT_SYMBOL(fscrypt_initialize);
524
525/**
526 * fscrypt_init() - Set up for fs encryption.
527 */
528static int __init fscrypt_init(void)
529{
530	fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
531							WQ_HIGHPRI, 0);
532	if (!fscrypt_read_workqueue)
533		goto fail;
534
535	fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
536	if (!fscrypt_ctx_cachep)
537		goto fail_free_queue;
538
539	fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
540	if (!fscrypt_info_cachep)
541		goto fail_free_ctx;
542
543	return 0;
544
545fail_free_ctx:
546	kmem_cache_destroy(fscrypt_ctx_cachep);
547fail_free_queue:
548	destroy_workqueue(fscrypt_read_workqueue);
549fail:
550	return -ENOMEM;
551}
552module_init(fscrypt_init)
553
554/**
555 * fscrypt_exit() - Shutdown the fs encryption system
556 */
557static void __exit fscrypt_exit(void)
558{
559	fscrypt_destroy();
560
561	if (fscrypt_read_workqueue)
562		destroy_workqueue(fscrypt_read_workqueue);
563	kmem_cache_destroy(fscrypt_ctx_cachep);
564	kmem_cache_destroy(fscrypt_info_cachep);
 
 
565}
566module_exit(fscrypt_exit);
567
568MODULE_LICENSE("GPL");