Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*  D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
   2/*
   3    Copyright (c) 2001, 2002 by D-Link Corporation
   4    Written by Edward Peng.<edward_peng@dlink.com.tw>
   5    Created 03-May-2001, base on Linux' sundance.c.
   6
   7    This program is free software; you can redistribute it and/or modify
   8    it under the terms of the GNU General Public License as published by
   9    the Free Software Foundation; either version 2 of the License, or
  10    (at your option) any later version.
  11*/
  12
  13#define DRV_NAME	"DL2000/TC902x-based linux driver"
  14#define DRV_VERSION	"v1.19"
  15#define DRV_RELDATE	"2007/08/12"
  16#include "dl2k.h"
  17#include <linux/dma-mapping.h>
  18
  19#define dw32(reg, val)	iowrite32(val, ioaddr + (reg))
  20#define dw16(reg, val)	iowrite16(val, ioaddr + (reg))
  21#define dw8(reg, val)	iowrite8(val, ioaddr + (reg))
  22#define dr32(reg)	ioread32(ioaddr + (reg))
  23#define dr16(reg)	ioread16(ioaddr + (reg))
  24#define dr8(reg)	ioread8(ioaddr + (reg))
  25
  26static char version[] =
  27      KERN_INFO DRV_NAME " " DRV_VERSION " " DRV_RELDATE "\n";
  28#define MAX_UNITS 8
  29static int mtu[MAX_UNITS];
  30static int vlan[MAX_UNITS];
  31static int jumbo[MAX_UNITS];
  32static char *media[MAX_UNITS];
  33static int tx_flow=-1;
  34static int rx_flow=-1;
  35static int copy_thresh;
  36static int rx_coalesce=10;	/* Rx frame count each interrupt */
  37static int rx_timeout=200;	/* Rx DMA wait time in 640ns increments */
  38static int tx_coalesce=16;	/* HW xmit count each TxDMAComplete */
  39
  40
  41MODULE_AUTHOR ("Edward Peng");
  42MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
  43MODULE_LICENSE("GPL");
  44module_param_array(mtu, int, NULL, 0);
  45module_param_array(media, charp, NULL, 0);
  46module_param_array(vlan, int, NULL, 0);
  47module_param_array(jumbo, int, NULL, 0);
  48module_param(tx_flow, int, 0);
  49module_param(rx_flow, int, 0);
  50module_param(copy_thresh, int, 0);
  51module_param(rx_coalesce, int, 0);	/* Rx frame count each interrupt */
  52module_param(rx_timeout, int, 0);	/* Rx DMA wait time in 64ns increments */
  53module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
  54
  55
  56/* Enable the default interrupts */
  57#define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
  58       UpdateStats | LinkEvent)
  59
  60static void dl2k_enable_int(struct netdev_private *np)
  61{
  62	void __iomem *ioaddr = np->ioaddr;
  63
  64	dw16(IntEnable, DEFAULT_INTR);
  65}
  66
  67static const int max_intrloop = 50;
  68static const int multicast_filter_limit = 0x40;
  69
  70static int rio_open (struct net_device *dev);
  71static void rio_timer (struct timer_list *t);
  72static void rio_tx_timeout (struct net_device *dev);
  73static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev);
  74static irqreturn_t rio_interrupt (int irq, void *dev_instance);
  75static void rio_free_tx (struct net_device *dev, int irq);
  76static void tx_error (struct net_device *dev, int tx_status);
  77static int receive_packet (struct net_device *dev);
  78static void rio_error (struct net_device *dev, int int_status);
  79static void set_multicast (struct net_device *dev);
  80static struct net_device_stats *get_stats (struct net_device *dev);
  81static int clear_stats (struct net_device *dev);
  82static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
  83static int rio_close (struct net_device *dev);
  84static int find_miiphy (struct net_device *dev);
  85static int parse_eeprom (struct net_device *dev);
  86static int read_eeprom (struct netdev_private *, int eep_addr);
  87static int mii_wait_link (struct net_device *dev, int wait);
  88static int mii_set_media (struct net_device *dev);
  89static int mii_get_media (struct net_device *dev);
  90static int mii_set_media_pcs (struct net_device *dev);
  91static int mii_get_media_pcs (struct net_device *dev);
  92static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
  93static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
  94		      u16 data);
  95
  96static const struct ethtool_ops ethtool_ops;
  97
  98static const struct net_device_ops netdev_ops = {
  99	.ndo_open		= rio_open,
 100	.ndo_start_xmit	= start_xmit,
 101	.ndo_stop		= rio_close,
 102	.ndo_get_stats		= get_stats,
 103	.ndo_validate_addr	= eth_validate_addr,
 104	.ndo_set_mac_address 	= eth_mac_addr,
 105	.ndo_set_rx_mode	= set_multicast,
 106	.ndo_do_ioctl		= rio_ioctl,
 107	.ndo_tx_timeout		= rio_tx_timeout,
 108};
 109
 110static int
 111rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
 112{
 113	struct net_device *dev;
 114	struct netdev_private *np;
 115	static int card_idx;
 116	int chip_idx = ent->driver_data;
 117	int err, irq;
 118	void __iomem *ioaddr;
 119	static int version_printed;
 120	void *ring_space;
 121	dma_addr_t ring_dma;
 122
 123	if (!version_printed++)
 124		printk ("%s", version);
 125
 126	err = pci_enable_device (pdev);
 127	if (err)
 128		return err;
 129
 130	irq = pdev->irq;
 131	err = pci_request_regions (pdev, "dl2k");
 132	if (err)
 133		goto err_out_disable;
 134
 135	pci_set_master (pdev);
 136
 137	err = -ENOMEM;
 138
 139	dev = alloc_etherdev (sizeof (*np));
 140	if (!dev)
 141		goto err_out_res;
 142	SET_NETDEV_DEV(dev, &pdev->dev);
 143
 144	np = netdev_priv(dev);
 145
 146	/* IO registers range. */
 147	ioaddr = pci_iomap(pdev, 0, 0);
 148	if (!ioaddr)
 149		goto err_out_dev;
 150	np->eeprom_addr = ioaddr;
 151
 152#ifdef MEM_MAPPING
 153	/* MM registers range. */
 154	ioaddr = pci_iomap(pdev, 1, 0);
 155	if (!ioaddr)
 156		goto err_out_iounmap;
 157#endif
 158	np->ioaddr = ioaddr;
 159	np->chip_id = chip_idx;
 160	np->pdev = pdev;
 161	spin_lock_init (&np->tx_lock);
 162	spin_lock_init (&np->rx_lock);
 163
 164	/* Parse manual configuration */
 165	np->an_enable = 1;
 166	np->tx_coalesce = 1;
 167	if (card_idx < MAX_UNITS) {
 168		if (media[card_idx] != NULL) {
 169			np->an_enable = 0;
 170			if (strcmp (media[card_idx], "auto") == 0 ||
 171			    strcmp (media[card_idx], "autosense") == 0 ||
 172			    strcmp (media[card_idx], "0") == 0 ) {
 173				np->an_enable = 2;
 174			} else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
 175			    strcmp (media[card_idx], "4") == 0) {
 176				np->speed = 100;
 177				np->full_duplex = 1;
 178			} else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
 179				   strcmp (media[card_idx], "3") == 0) {
 180				np->speed = 100;
 181				np->full_duplex = 0;
 182			} else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
 183				   strcmp (media[card_idx], "2") == 0) {
 184				np->speed = 10;
 185				np->full_duplex = 1;
 186			} else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
 187				   strcmp (media[card_idx], "1") == 0) {
 188				np->speed = 10;
 189				np->full_duplex = 0;
 190			} else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
 191				 strcmp (media[card_idx], "6") == 0) {
 192				np->speed=1000;
 193				np->full_duplex=1;
 194			} else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
 195				 strcmp (media[card_idx], "5") == 0) {
 196				np->speed = 1000;
 197				np->full_duplex = 0;
 198			} else {
 199				np->an_enable = 1;
 200			}
 201		}
 202		if (jumbo[card_idx] != 0) {
 203			np->jumbo = 1;
 204			dev->mtu = MAX_JUMBO;
 205		} else {
 206			np->jumbo = 0;
 207			if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
 208				dev->mtu = mtu[card_idx];
 209		}
 210		np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
 211		    vlan[card_idx] : 0;
 212		if (rx_coalesce > 0 && rx_timeout > 0) {
 213			np->rx_coalesce = rx_coalesce;
 214			np->rx_timeout = rx_timeout;
 215			np->coalesce = 1;
 216		}
 217		np->tx_flow = (tx_flow == 0) ? 0 : 1;
 218		np->rx_flow = (rx_flow == 0) ? 0 : 1;
 219
 220		if (tx_coalesce < 1)
 221			tx_coalesce = 1;
 222		else if (tx_coalesce > TX_RING_SIZE-1)
 223			tx_coalesce = TX_RING_SIZE - 1;
 224	}
 225	dev->netdev_ops = &netdev_ops;
 226	dev->watchdog_timeo = TX_TIMEOUT;
 227	dev->ethtool_ops = &ethtool_ops;
 228#if 0
 229	dev->features = NETIF_F_IP_CSUM;
 230#endif
 231	/* MTU range: 68 - 1536 or 8000 */
 232	dev->min_mtu = ETH_MIN_MTU;
 233	dev->max_mtu = np->jumbo ? MAX_JUMBO : PACKET_SIZE;
 234
 235	pci_set_drvdata (pdev, dev);
 236
 237	ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma);
 238	if (!ring_space)
 239		goto err_out_iounmap;
 240	np->tx_ring = ring_space;
 241	np->tx_ring_dma = ring_dma;
 242
 243	ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma);
 244	if (!ring_space)
 245		goto err_out_unmap_tx;
 246	np->rx_ring = ring_space;
 247	np->rx_ring_dma = ring_dma;
 248
 249	/* Parse eeprom data */
 250	parse_eeprom (dev);
 251
 252	/* Find PHY address */
 253	err = find_miiphy (dev);
 254	if (err)
 255		goto err_out_unmap_rx;
 256
 257	/* Fiber device? */
 258	np->phy_media = (dr16(ASICCtrl) & PhyMedia) ? 1 : 0;
 259	np->link_status = 0;
 260	/* Set media and reset PHY */
 261	if (np->phy_media) {
 262		/* default Auto-Negotiation for fiber deivices */
 263	 	if (np->an_enable == 2) {
 264			np->an_enable = 1;
 265		}
 266	} else {
 267		/* Auto-Negotiation is mandatory for 1000BASE-T,
 268		   IEEE 802.3ab Annex 28D page 14 */
 269		if (np->speed == 1000)
 270			np->an_enable = 1;
 271	}
 272
 273	err = register_netdev (dev);
 274	if (err)
 275		goto err_out_unmap_rx;
 276
 277	card_idx++;
 278
 279	printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
 280		dev->name, np->name, dev->dev_addr, irq);
 281	if (tx_coalesce > 1)
 282		printk(KERN_INFO "tx_coalesce:\t%d packets\n",
 283				tx_coalesce);
 284	if (np->coalesce)
 285		printk(KERN_INFO
 286		       "rx_coalesce:\t%d packets\n"
 287		       "rx_timeout: \t%d ns\n",
 288				np->rx_coalesce, np->rx_timeout*640);
 289	if (np->vlan)
 290		printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
 291	return 0;
 292
 293err_out_unmap_rx:
 294	pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
 295err_out_unmap_tx:
 296	pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
 297err_out_iounmap:
 298#ifdef MEM_MAPPING
 299	pci_iounmap(pdev, np->ioaddr);
 300#endif
 301	pci_iounmap(pdev, np->eeprom_addr);
 302err_out_dev:
 303	free_netdev (dev);
 304err_out_res:
 305	pci_release_regions (pdev);
 306err_out_disable:
 307	pci_disable_device (pdev);
 308	return err;
 309}
 310
 311static int
 312find_miiphy (struct net_device *dev)
 313{
 314	struct netdev_private *np = netdev_priv(dev);
 315	int i, phy_found = 0;
 316
 317	np->phy_addr = 1;
 318
 319	for (i = 31; i >= 0; i--) {
 320		int mii_status = mii_read (dev, i, 1);
 321		if (mii_status != 0xffff && mii_status != 0x0000) {
 322			np->phy_addr = i;
 323			phy_found++;
 324		}
 325	}
 326	if (!phy_found) {
 327		printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
 328		return -ENODEV;
 329	}
 330	return 0;
 331}
 332
 333static int
 334parse_eeprom (struct net_device *dev)
 335{
 336	struct netdev_private *np = netdev_priv(dev);
 337	void __iomem *ioaddr = np->ioaddr;
 338	int i, j;
 339	u8 sromdata[256];
 340	u8 *psib;
 341	u32 crc;
 342	PSROM_t psrom = (PSROM_t) sromdata;
 343
 344	int cid, next;
 345
 346	for (i = 0; i < 128; i++)
 347		((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom(np, i));
 348
 349	if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) {	/* D-Link Only */
 350		/* Check CRC */
 351		crc = ~ether_crc_le (256 - 4, sromdata);
 352		if (psrom->crc != cpu_to_le32(crc)) {
 353			printk (KERN_ERR "%s: EEPROM data CRC error.\n",
 354					dev->name);
 355			return -1;
 356		}
 357	}
 358
 359	/* Set MAC address */
 360	for (i = 0; i < 6; i++)
 361		dev->dev_addr[i] = psrom->mac_addr[i];
 362
 363	if (np->chip_id == CHIP_IP1000A) {
 364		np->led_mode = psrom->led_mode;
 365		return 0;
 366	}
 367
 368	if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
 369		return 0;
 370	}
 371
 372	/* Parse Software Information Block */
 373	i = 0x30;
 374	psib = (u8 *) sromdata;
 375	do {
 376		cid = psib[i++];
 377		next = psib[i++];
 378		if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
 379			printk (KERN_ERR "Cell data error\n");
 380			return -1;
 381		}
 382		switch (cid) {
 383		case 0:	/* Format version */
 384			break;
 385		case 1:	/* End of cell */
 386			return 0;
 387		case 2:	/* Duplex Polarity */
 388			np->duplex_polarity = psib[i];
 389			dw8(PhyCtrl, dr8(PhyCtrl) | psib[i]);
 390			break;
 391		case 3:	/* Wake Polarity */
 392			np->wake_polarity = psib[i];
 393			break;
 394		case 9:	/* Adapter description */
 395			j = (next - i > 255) ? 255 : next - i;
 396			memcpy (np->name, &(psib[i]), j);
 397			break;
 398		case 4:
 399		case 5:
 400		case 6:
 401		case 7:
 402		case 8:	/* Reversed */
 403			break;
 404		default:	/* Unknown cell */
 405			return -1;
 406		}
 407		i = next;
 408	} while (1);
 409
 410	return 0;
 411}
 412
 413static void rio_set_led_mode(struct net_device *dev)
 414{
 415	struct netdev_private *np = netdev_priv(dev);
 416	void __iomem *ioaddr = np->ioaddr;
 417	u32 mode;
 418
 419	if (np->chip_id != CHIP_IP1000A)
 420		return;
 421
 422	mode = dr32(ASICCtrl);
 423	mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
 424
 425	if (np->led_mode & 0x01)
 426		mode |= IPG_AC_LED_MODE;
 427	if (np->led_mode & 0x02)
 428		mode |= IPG_AC_LED_MODE_BIT_1;
 429	if (np->led_mode & 0x08)
 430		mode |= IPG_AC_LED_SPEED;
 431
 432	dw32(ASICCtrl, mode);
 433}
 434
 435static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
 436{
 437	return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
 438}
 439
 440static void free_list(struct net_device *dev)
 441{
 442	struct netdev_private *np = netdev_priv(dev);
 443	struct sk_buff *skb;
 444	int i;
 445
 446	/* Free all the skbuffs in the queue. */
 447	for (i = 0; i < RX_RING_SIZE; i++) {
 448		skb = np->rx_skbuff[i];
 449		if (skb) {
 450			pci_unmap_single(np->pdev, desc_to_dma(&np->rx_ring[i]),
 451					 skb->len, PCI_DMA_FROMDEVICE);
 452			dev_kfree_skb(skb);
 453			np->rx_skbuff[i] = NULL;
 454		}
 455		np->rx_ring[i].status = 0;
 456		np->rx_ring[i].fraginfo = 0;
 457	}
 458	for (i = 0; i < TX_RING_SIZE; i++) {
 459		skb = np->tx_skbuff[i];
 460		if (skb) {
 461			pci_unmap_single(np->pdev, desc_to_dma(&np->tx_ring[i]),
 462					 skb->len, PCI_DMA_TODEVICE);
 463			dev_kfree_skb(skb);
 464			np->tx_skbuff[i] = NULL;
 465		}
 466	}
 467}
 468
 469static void rio_reset_ring(struct netdev_private *np)
 470{
 471	int i;
 472
 473	np->cur_rx = 0;
 474	np->cur_tx = 0;
 475	np->old_rx = 0;
 476	np->old_tx = 0;
 477
 478	for (i = 0; i < TX_RING_SIZE; i++)
 479		np->tx_ring[i].status = cpu_to_le64(TFDDone);
 480
 481	for (i = 0; i < RX_RING_SIZE; i++)
 482		np->rx_ring[i].status = 0;
 483}
 484
 485 /* allocate and initialize Tx and Rx descriptors */
 486static int alloc_list(struct net_device *dev)
 487{
 488	struct netdev_private *np = netdev_priv(dev);
 489	int i;
 490
 491	rio_reset_ring(np);
 492	np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
 493
 494	/* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
 495	for (i = 0; i < TX_RING_SIZE; i++) {
 496		np->tx_skbuff[i] = NULL;
 497		np->tx_ring[i].next_desc = cpu_to_le64(np->tx_ring_dma +
 498					      ((i + 1) % TX_RING_SIZE) *
 499					      sizeof(struct netdev_desc));
 500	}
 501
 502	/* Initialize Rx descriptors & allocate buffers */
 503	for (i = 0; i < RX_RING_SIZE; i++) {
 504		/* Allocated fixed size of skbuff */
 505		struct sk_buff *skb;
 506
 507		skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
 508		np->rx_skbuff[i] = skb;
 509		if (!skb) {
 510			free_list(dev);
 511			return -ENOMEM;
 512		}
 513
 514		np->rx_ring[i].next_desc = cpu_to_le64(np->rx_ring_dma +
 515						((i + 1) % RX_RING_SIZE) *
 516						sizeof(struct netdev_desc));
 517		/* Rubicon now supports 40 bits of addressing space. */
 518		np->rx_ring[i].fraginfo =
 519		    cpu_to_le64(pci_map_single(
 520				  np->pdev, skb->data, np->rx_buf_sz,
 521				  PCI_DMA_FROMDEVICE));
 522		np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
 523	}
 524
 525	return 0;
 526}
 527
 528static void rio_hw_init(struct net_device *dev)
 529{
 530	struct netdev_private *np = netdev_priv(dev);
 531	void __iomem *ioaddr = np->ioaddr;
 532	int i;
 533	u16 macctrl;
 534
 535	/* Reset all logic functions */
 536	dw16(ASICCtrl + 2,
 537	     GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset);
 538	mdelay(10);
 539
 540	rio_set_led_mode(dev);
 541
 542	/* DebugCtrl bit 4, 5, 9 must set */
 543	dw32(DebugCtrl, dr32(DebugCtrl) | 0x0230);
 544
 545	if (np->chip_id == CHIP_IP1000A &&
 546	    (np->pdev->revision == 0x40 || np->pdev->revision == 0x41)) {
 547		/* PHY magic taken from ipg driver, undocumented registers */
 548		mii_write(dev, np->phy_addr, 31, 0x0001);
 549		mii_write(dev, np->phy_addr, 27, 0x01e0);
 550		mii_write(dev, np->phy_addr, 31, 0x0002);
 551		mii_write(dev, np->phy_addr, 27, 0xeb8e);
 552		mii_write(dev, np->phy_addr, 31, 0x0000);
 553		mii_write(dev, np->phy_addr, 30, 0x005e);
 554		/* advertise 1000BASE-T half & full duplex, prefer MASTER */
 555		mii_write(dev, np->phy_addr, MII_CTRL1000, 0x0700);
 556	}
 557
 558	if (np->phy_media)
 559		mii_set_media_pcs(dev);
 560	else
 561		mii_set_media(dev);
 562
 563	/* Jumbo frame */
 564	if (np->jumbo != 0)
 565		dw16(MaxFrameSize, MAX_JUMBO+14);
 566
 567	/* Set RFDListPtr */
 568	dw32(RFDListPtr0, np->rx_ring_dma);
 569	dw32(RFDListPtr1, 0);
 570
 571	/* Set station address */
 572	/* 16 or 32-bit access is required by TC9020 datasheet but 8-bit works
 573	 * too. However, it doesn't work on IP1000A so we use 16-bit access.
 574	 */
 575	for (i = 0; i < 3; i++)
 576		dw16(StationAddr0 + 2 * i,
 577		     cpu_to_le16(((u16 *)dev->dev_addr)[i]));
 578
 579	set_multicast (dev);
 580	if (np->coalesce) {
 581		dw32(RxDMAIntCtrl, np->rx_coalesce | np->rx_timeout << 16);
 582	}
 583	/* Set RIO to poll every N*320nsec. */
 584	dw8(RxDMAPollPeriod, 0x20);
 585	dw8(TxDMAPollPeriod, 0xff);
 586	dw8(RxDMABurstThresh, 0x30);
 587	dw8(RxDMAUrgentThresh, 0x30);
 588	dw32(RmonStatMask, 0x0007ffff);
 589	/* clear statistics */
 590	clear_stats (dev);
 591
 592	/* VLAN supported */
 593	if (np->vlan) {
 594		/* priority field in RxDMAIntCtrl  */
 595		dw32(RxDMAIntCtrl, dr32(RxDMAIntCtrl) | 0x7 << 10);
 596		/* VLANId */
 597		dw16(VLANId, np->vlan);
 598		/* Length/Type should be 0x8100 */
 599		dw32(VLANTag, 0x8100 << 16 | np->vlan);
 600		/* Enable AutoVLANuntagging, but disable AutoVLANtagging.
 601		   VLAN information tagged by TFC' VID, CFI fields. */
 602		dw32(MACCtrl, dr32(MACCtrl) | AutoVLANuntagging);
 603	}
 604
 605	/* Start Tx/Rx */
 606	dw32(MACCtrl, dr32(MACCtrl) | StatsEnable | RxEnable | TxEnable);
 607
 608	macctrl = 0;
 609	macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
 610	macctrl |= (np->full_duplex) ? DuplexSelect : 0;
 611	macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
 612	macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
 613	dw16(MACCtrl, macctrl);
 614}
 615
 616static void rio_hw_stop(struct net_device *dev)
 617{
 618	struct netdev_private *np = netdev_priv(dev);
 619	void __iomem *ioaddr = np->ioaddr;
 620
 621	/* Disable interrupts */
 622	dw16(IntEnable, 0);
 623
 624	/* Stop Tx and Rx logics */
 625	dw32(MACCtrl, TxDisable | RxDisable | StatsDisable);
 626}
 627
 628static int rio_open(struct net_device *dev)
 629{
 630	struct netdev_private *np = netdev_priv(dev);
 631	const int irq = np->pdev->irq;
 632	int i;
 633
 634	i = alloc_list(dev);
 635	if (i)
 636		return i;
 637
 638	rio_hw_init(dev);
 639
 640	i = request_irq(irq, rio_interrupt, IRQF_SHARED, dev->name, dev);
 641	if (i) {
 642		rio_hw_stop(dev);
 643		free_list(dev);
 644		return i;
 645	}
 646
 647	timer_setup(&np->timer, rio_timer, 0);
 648	np->timer.expires = jiffies + 1 * HZ;
 649	add_timer(&np->timer);
 650
 651	netif_start_queue (dev);
 652
 653	dl2k_enable_int(np);
 654	return 0;
 655}
 656
 657static void
 658rio_timer (struct timer_list *t)
 659{
 660	struct netdev_private *np = from_timer(np, t, timer);
 661	struct net_device *dev = pci_get_drvdata(np->pdev);
 662	unsigned int entry;
 663	int next_tick = 1*HZ;
 664	unsigned long flags;
 665
 666	spin_lock_irqsave(&np->rx_lock, flags);
 667	/* Recover rx ring exhausted error */
 668	if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
 669		printk(KERN_INFO "Try to recover rx ring exhausted...\n");
 670		/* Re-allocate skbuffs to fill the descriptor ring */
 671		for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
 672			struct sk_buff *skb;
 673			entry = np->old_rx % RX_RING_SIZE;
 674			/* Dropped packets don't need to re-allocate */
 675			if (np->rx_skbuff[entry] == NULL) {
 676				skb = netdev_alloc_skb_ip_align(dev,
 677								np->rx_buf_sz);
 678				if (skb == NULL) {
 679					np->rx_ring[entry].fraginfo = 0;
 680					printk (KERN_INFO
 681						"%s: Still unable to re-allocate Rx skbuff.#%d\n",
 682						dev->name, entry);
 683					break;
 684				}
 685				np->rx_skbuff[entry] = skb;
 686				np->rx_ring[entry].fraginfo =
 687				    cpu_to_le64 (pci_map_single
 688					 (np->pdev, skb->data, np->rx_buf_sz,
 689					  PCI_DMA_FROMDEVICE));
 690			}
 691			np->rx_ring[entry].fraginfo |=
 692			    cpu_to_le64((u64)np->rx_buf_sz << 48);
 693			np->rx_ring[entry].status = 0;
 694		} /* end for */
 695	} /* end if */
 696	spin_unlock_irqrestore (&np->rx_lock, flags);
 697	np->timer.expires = jiffies + next_tick;
 698	add_timer(&np->timer);
 699}
 700
 701static void
 702rio_tx_timeout (struct net_device *dev)
 703{
 704	struct netdev_private *np = netdev_priv(dev);
 705	void __iomem *ioaddr = np->ioaddr;
 706
 707	printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
 708		dev->name, dr32(TxStatus));
 709	rio_free_tx(dev, 0);
 710	dev->if_port = 0;
 711	netif_trans_update(dev); /* prevent tx timeout */
 712}
 713
 714static netdev_tx_t
 715start_xmit (struct sk_buff *skb, struct net_device *dev)
 716{
 717	struct netdev_private *np = netdev_priv(dev);
 718	void __iomem *ioaddr = np->ioaddr;
 719	struct netdev_desc *txdesc;
 720	unsigned entry;
 721	u64 tfc_vlan_tag = 0;
 722
 723	if (np->link_status == 0) {	/* Link Down */
 724		dev_kfree_skb(skb);
 725		return NETDEV_TX_OK;
 726	}
 727	entry = np->cur_tx % TX_RING_SIZE;
 728	np->tx_skbuff[entry] = skb;
 729	txdesc = &np->tx_ring[entry];
 730
 731#if 0
 732	if (skb->ip_summed == CHECKSUM_PARTIAL) {
 733		txdesc->status |=
 734		    cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
 735				 IPChecksumEnable);
 736	}
 737#endif
 738	if (np->vlan) {
 739		tfc_vlan_tag = VLANTagInsert |
 740		    ((u64)np->vlan << 32) |
 741		    ((u64)skb->priority << 45);
 742	}
 743	txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data,
 744							skb->len,
 745							PCI_DMA_TODEVICE));
 746	txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
 747
 748	/* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
 749	 * Work around: Always use 1 descriptor in 10Mbps mode */
 750	if (entry % np->tx_coalesce == 0 || np->speed == 10)
 751		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
 752					      WordAlignDisable |
 753					      TxDMAIndicate |
 754					      (1 << FragCountShift));
 755	else
 756		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
 757					      WordAlignDisable |
 758					      (1 << FragCountShift));
 759
 760	/* TxDMAPollNow */
 761	dw32(DMACtrl, dr32(DMACtrl) | 0x00001000);
 762	/* Schedule ISR */
 763	dw32(CountDown, 10000);
 764	np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
 765	if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
 766			< TX_QUEUE_LEN - 1 && np->speed != 10) {
 767		/* do nothing */
 768	} else if (!netif_queue_stopped(dev)) {
 769		netif_stop_queue (dev);
 770	}
 771
 772	/* The first TFDListPtr */
 773	if (!dr32(TFDListPtr0)) {
 774		dw32(TFDListPtr0, np->tx_ring_dma +
 775		     entry * sizeof (struct netdev_desc));
 776		dw32(TFDListPtr1, 0);
 777	}
 778
 779	return NETDEV_TX_OK;
 780}
 781
 782static irqreturn_t
 783rio_interrupt (int irq, void *dev_instance)
 784{
 785	struct net_device *dev = dev_instance;
 786	struct netdev_private *np = netdev_priv(dev);
 787	void __iomem *ioaddr = np->ioaddr;
 788	unsigned int_status;
 789	int cnt = max_intrloop;
 790	int handled = 0;
 791
 792	while (1) {
 793		int_status = dr16(IntStatus);
 794		dw16(IntStatus, int_status);
 795		int_status &= DEFAULT_INTR;
 796		if (int_status == 0 || --cnt < 0)
 797			break;
 798		handled = 1;
 799		/* Processing received packets */
 800		if (int_status & RxDMAComplete)
 801			receive_packet (dev);
 802		/* TxDMAComplete interrupt */
 803		if ((int_status & (TxDMAComplete|IntRequested))) {
 804			int tx_status;
 805			tx_status = dr32(TxStatus);
 806			if (tx_status & 0x01)
 807				tx_error (dev, tx_status);
 808			/* Free used tx skbuffs */
 809			rio_free_tx (dev, 1);
 810		}
 811
 812		/* Handle uncommon events */
 813		if (int_status &
 814		    (HostError | LinkEvent | UpdateStats))
 815			rio_error (dev, int_status);
 816	}
 817	if (np->cur_tx != np->old_tx)
 818		dw32(CountDown, 100);
 819	return IRQ_RETVAL(handled);
 820}
 821
 822static void
 823rio_free_tx (struct net_device *dev, int irq)
 824{
 825	struct netdev_private *np = netdev_priv(dev);
 826	int entry = np->old_tx % TX_RING_SIZE;
 827	int tx_use = 0;
 828	unsigned long flag = 0;
 829
 830	if (irq)
 831		spin_lock(&np->tx_lock);
 832	else
 833		spin_lock_irqsave(&np->tx_lock, flag);
 834
 835	/* Free used tx skbuffs */
 836	while (entry != np->cur_tx) {
 837		struct sk_buff *skb;
 838
 839		if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
 840			break;
 841		skb = np->tx_skbuff[entry];
 842		pci_unmap_single (np->pdev,
 843				  desc_to_dma(&np->tx_ring[entry]),
 844				  skb->len, PCI_DMA_TODEVICE);
 845		if (irq)
 846			dev_kfree_skb_irq (skb);
 847		else
 848			dev_kfree_skb (skb);
 849
 850		np->tx_skbuff[entry] = NULL;
 851		entry = (entry + 1) % TX_RING_SIZE;
 852		tx_use++;
 853	}
 854	if (irq)
 855		spin_unlock(&np->tx_lock);
 856	else
 857		spin_unlock_irqrestore(&np->tx_lock, flag);
 858	np->old_tx = entry;
 859
 860	/* If the ring is no longer full, clear tx_full and
 861	   call netif_wake_queue() */
 862
 863	if (netif_queue_stopped(dev) &&
 864	    ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
 865	    < TX_QUEUE_LEN - 1 || np->speed == 10)) {
 866		netif_wake_queue (dev);
 867	}
 868}
 869
 870static void
 871tx_error (struct net_device *dev, int tx_status)
 872{
 873	struct netdev_private *np = netdev_priv(dev);
 874	void __iomem *ioaddr = np->ioaddr;
 875	int frame_id;
 876	int i;
 877
 878	frame_id = (tx_status & 0xffff0000);
 879	printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
 880		dev->name, tx_status, frame_id);
 881	dev->stats.tx_errors++;
 882	/* Ttransmit Underrun */
 883	if (tx_status & 0x10) {
 884		dev->stats.tx_fifo_errors++;
 885		dw16(TxStartThresh, dr16(TxStartThresh) + 0x10);
 886		/* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
 887		dw16(ASICCtrl + 2,
 888		     TxReset | DMAReset | FIFOReset | NetworkReset);
 889		/* Wait for ResetBusy bit clear */
 890		for (i = 50; i > 0; i--) {
 891			if (!(dr16(ASICCtrl + 2) & ResetBusy))
 892				break;
 893			mdelay (1);
 894		}
 895		rio_set_led_mode(dev);
 896		rio_free_tx (dev, 1);
 897		/* Reset TFDListPtr */
 898		dw32(TFDListPtr0, np->tx_ring_dma +
 899		     np->old_tx * sizeof (struct netdev_desc));
 900		dw32(TFDListPtr1, 0);
 901
 902		/* Let TxStartThresh stay default value */
 903	}
 904	/* Late Collision */
 905	if (tx_status & 0x04) {
 906		dev->stats.tx_fifo_errors++;
 907		/* TxReset and clear FIFO */
 908		dw16(ASICCtrl + 2, TxReset | FIFOReset);
 909		/* Wait reset done */
 910		for (i = 50; i > 0; i--) {
 911			if (!(dr16(ASICCtrl + 2) & ResetBusy))
 912				break;
 913			mdelay (1);
 914		}
 915		rio_set_led_mode(dev);
 916		/* Let TxStartThresh stay default value */
 917	}
 918	/* Maximum Collisions */
 919	if (tx_status & 0x08)
 920		dev->stats.collisions++;
 921	/* Restart the Tx */
 922	dw32(MACCtrl, dr16(MACCtrl) | TxEnable);
 923}
 924
 925static int
 926receive_packet (struct net_device *dev)
 927{
 928	struct netdev_private *np = netdev_priv(dev);
 929	int entry = np->cur_rx % RX_RING_SIZE;
 930	int cnt = 30;
 931
 932	/* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
 933	while (1) {
 934		struct netdev_desc *desc = &np->rx_ring[entry];
 935		int pkt_len;
 936		u64 frame_status;
 937
 938		if (!(desc->status & cpu_to_le64(RFDDone)) ||
 939		    !(desc->status & cpu_to_le64(FrameStart)) ||
 940		    !(desc->status & cpu_to_le64(FrameEnd)))
 941			break;
 942
 943		/* Chip omits the CRC. */
 944		frame_status = le64_to_cpu(desc->status);
 945		pkt_len = frame_status & 0xffff;
 946		if (--cnt < 0)
 947			break;
 948		/* Update rx error statistics, drop packet. */
 949		if (frame_status & RFS_Errors) {
 950			dev->stats.rx_errors++;
 951			if (frame_status & (RxRuntFrame | RxLengthError))
 952				dev->stats.rx_length_errors++;
 953			if (frame_status & RxFCSError)
 954				dev->stats.rx_crc_errors++;
 955			if (frame_status & RxAlignmentError && np->speed != 1000)
 956				dev->stats.rx_frame_errors++;
 957			if (frame_status & RxFIFOOverrun)
 958				dev->stats.rx_fifo_errors++;
 959		} else {
 960			struct sk_buff *skb;
 961
 962			/* Small skbuffs for short packets */
 963			if (pkt_len > copy_thresh) {
 964				pci_unmap_single (np->pdev,
 965						  desc_to_dma(desc),
 966						  np->rx_buf_sz,
 967						  PCI_DMA_FROMDEVICE);
 968				skb_put (skb = np->rx_skbuff[entry], pkt_len);
 969				np->rx_skbuff[entry] = NULL;
 970			} else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) {
 971				pci_dma_sync_single_for_cpu(np->pdev,
 972							    desc_to_dma(desc),
 973							    np->rx_buf_sz,
 974							    PCI_DMA_FROMDEVICE);
 975				skb_copy_to_linear_data (skb,
 976						  np->rx_skbuff[entry]->data,
 977						  pkt_len);
 978				skb_put (skb, pkt_len);
 979				pci_dma_sync_single_for_device(np->pdev,
 980							       desc_to_dma(desc),
 981							       np->rx_buf_sz,
 982							       PCI_DMA_FROMDEVICE);
 983			}
 984			skb->protocol = eth_type_trans (skb, dev);
 985#if 0
 986			/* Checksum done by hw, but csum value unavailable. */
 987			if (np->pdev->pci_rev_id >= 0x0c &&
 988				!(frame_status & (TCPError | UDPError | IPError))) {
 989				skb->ip_summed = CHECKSUM_UNNECESSARY;
 990			}
 991#endif
 992			netif_rx (skb);
 993		}
 994		entry = (entry + 1) % RX_RING_SIZE;
 995	}
 996	spin_lock(&np->rx_lock);
 997	np->cur_rx = entry;
 998	/* Re-allocate skbuffs to fill the descriptor ring */
 999	entry = np->old_rx;
1000	while (entry != np->cur_rx) {
1001		struct sk_buff *skb;
1002		/* Dropped packets don't need to re-allocate */
1003		if (np->rx_skbuff[entry] == NULL) {
1004			skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
1005			if (skb == NULL) {
1006				np->rx_ring[entry].fraginfo = 0;
1007				printk (KERN_INFO
1008					"%s: receive_packet: "
1009					"Unable to re-allocate Rx skbuff.#%d\n",
1010					dev->name, entry);
1011				break;
1012			}
1013			np->rx_skbuff[entry] = skb;
1014			np->rx_ring[entry].fraginfo =
1015			    cpu_to_le64 (pci_map_single
1016					 (np->pdev, skb->data, np->rx_buf_sz,
1017					  PCI_DMA_FROMDEVICE));
1018		}
1019		np->rx_ring[entry].fraginfo |=
1020		    cpu_to_le64((u64)np->rx_buf_sz << 48);
1021		np->rx_ring[entry].status = 0;
1022		entry = (entry + 1) % RX_RING_SIZE;
1023	}
1024	np->old_rx = entry;
1025	spin_unlock(&np->rx_lock);
1026	return 0;
1027}
1028
1029static void
1030rio_error (struct net_device *dev, int int_status)
1031{
1032	struct netdev_private *np = netdev_priv(dev);
1033	void __iomem *ioaddr = np->ioaddr;
1034	u16 macctrl;
1035
1036	/* Link change event */
1037	if (int_status & LinkEvent) {
1038		if (mii_wait_link (dev, 10) == 0) {
1039			printk (KERN_INFO "%s: Link up\n", dev->name);
1040			if (np->phy_media)
1041				mii_get_media_pcs (dev);
1042			else
1043				mii_get_media (dev);
1044			if (np->speed == 1000)
1045				np->tx_coalesce = tx_coalesce;
1046			else
1047				np->tx_coalesce = 1;
1048			macctrl = 0;
1049			macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
1050			macctrl |= (np->full_duplex) ? DuplexSelect : 0;
1051			macctrl |= (np->tx_flow) ?
1052				TxFlowControlEnable : 0;
1053			macctrl |= (np->rx_flow) ?
1054				RxFlowControlEnable : 0;
1055			dw16(MACCtrl, macctrl);
1056			np->link_status = 1;
1057			netif_carrier_on(dev);
1058		} else {
1059			printk (KERN_INFO "%s: Link off\n", dev->name);
1060			np->link_status = 0;
1061			netif_carrier_off(dev);
1062		}
1063	}
1064
1065	/* UpdateStats statistics registers */
1066	if (int_status & UpdateStats) {
1067		get_stats (dev);
1068	}
1069
1070	/* PCI Error, a catastronphic error related to the bus interface
1071	   occurs, set GlobalReset and HostReset to reset. */
1072	if (int_status & HostError) {
1073		printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
1074			dev->name, int_status);
1075		dw16(ASICCtrl + 2, GlobalReset | HostReset);
1076		mdelay (500);
1077		rio_set_led_mode(dev);
1078	}
1079}
1080
1081static struct net_device_stats *
1082get_stats (struct net_device *dev)
1083{
1084	struct netdev_private *np = netdev_priv(dev);
1085	void __iomem *ioaddr = np->ioaddr;
1086#ifdef MEM_MAPPING
1087	int i;
1088#endif
1089	unsigned int stat_reg;
1090
1091	/* All statistics registers need to be acknowledged,
1092	   else statistic overflow could cause problems */
1093
1094	dev->stats.rx_packets += dr32(FramesRcvOk);
1095	dev->stats.tx_packets += dr32(FramesXmtOk);
1096	dev->stats.rx_bytes += dr32(OctetRcvOk);
1097	dev->stats.tx_bytes += dr32(OctetXmtOk);
1098
1099	dev->stats.multicast = dr32(McstFramesRcvdOk);
1100	dev->stats.collisions += dr32(SingleColFrames)
1101			     +  dr32(MultiColFrames);
1102
1103	/* detailed tx errors */
1104	stat_reg = dr16(FramesAbortXSColls);
1105	dev->stats.tx_aborted_errors += stat_reg;
1106	dev->stats.tx_errors += stat_reg;
1107
1108	stat_reg = dr16(CarrierSenseErrors);
1109	dev->stats.tx_carrier_errors += stat_reg;
1110	dev->stats.tx_errors += stat_reg;
1111
1112	/* Clear all other statistic register. */
1113	dr32(McstOctetXmtOk);
1114	dr16(BcstFramesXmtdOk);
1115	dr32(McstFramesXmtdOk);
1116	dr16(BcstFramesRcvdOk);
1117	dr16(MacControlFramesRcvd);
1118	dr16(FrameTooLongErrors);
1119	dr16(InRangeLengthErrors);
1120	dr16(FramesCheckSeqErrors);
1121	dr16(FramesLostRxErrors);
1122	dr32(McstOctetXmtOk);
1123	dr32(BcstOctetXmtOk);
1124	dr32(McstFramesXmtdOk);
1125	dr32(FramesWDeferredXmt);
1126	dr32(LateCollisions);
1127	dr16(BcstFramesXmtdOk);
1128	dr16(MacControlFramesXmtd);
1129	dr16(FramesWEXDeferal);
1130
1131#ifdef MEM_MAPPING
1132	for (i = 0x100; i <= 0x150; i += 4)
1133		dr32(i);
1134#endif
1135	dr16(TxJumboFrames);
1136	dr16(RxJumboFrames);
1137	dr16(TCPCheckSumErrors);
1138	dr16(UDPCheckSumErrors);
1139	dr16(IPCheckSumErrors);
1140	return &dev->stats;
1141}
1142
1143static int
1144clear_stats (struct net_device *dev)
1145{
1146	struct netdev_private *np = netdev_priv(dev);
1147	void __iomem *ioaddr = np->ioaddr;
1148#ifdef MEM_MAPPING
1149	int i;
1150#endif
1151
1152	/* All statistics registers need to be acknowledged,
1153	   else statistic overflow could cause problems */
1154	dr32(FramesRcvOk);
1155	dr32(FramesXmtOk);
1156	dr32(OctetRcvOk);
1157	dr32(OctetXmtOk);
1158
1159	dr32(McstFramesRcvdOk);
1160	dr32(SingleColFrames);
1161	dr32(MultiColFrames);
1162	dr32(LateCollisions);
1163	/* detailed rx errors */
1164	dr16(FrameTooLongErrors);
1165	dr16(InRangeLengthErrors);
1166	dr16(FramesCheckSeqErrors);
1167	dr16(FramesLostRxErrors);
1168
1169	/* detailed tx errors */
1170	dr16(FramesAbortXSColls);
1171	dr16(CarrierSenseErrors);
1172
1173	/* Clear all other statistic register. */
1174	dr32(McstOctetXmtOk);
1175	dr16(BcstFramesXmtdOk);
1176	dr32(McstFramesXmtdOk);
1177	dr16(BcstFramesRcvdOk);
1178	dr16(MacControlFramesRcvd);
1179	dr32(McstOctetXmtOk);
1180	dr32(BcstOctetXmtOk);
1181	dr32(McstFramesXmtdOk);
1182	dr32(FramesWDeferredXmt);
1183	dr16(BcstFramesXmtdOk);
1184	dr16(MacControlFramesXmtd);
1185	dr16(FramesWEXDeferal);
1186#ifdef MEM_MAPPING
1187	for (i = 0x100; i <= 0x150; i += 4)
1188		dr32(i);
1189#endif
1190	dr16(TxJumboFrames);
1191	dr16(RxJumboFrames);
1192	dr16(TCPCheckSumErrors);
1193	dr16(UDPCheckSumErrors);
1194	dr16(IPCheckSumErrors);
1195	return 0;
1196}
1197
1198static void
1199set_multicast (struct net_device *dev)
1200{
1201	struct netdev_private *np = netdev_priv(dev);
1202	void __iomem *ioaddr = np->ioaddr;
1203	u32 hash_table[2];
1204	u16 rx_mode = 0;
1205
1206	hash_table[0] = hash_table[1] = 0;
1207	/* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1208	hash_table[1] |= 0x02000000;
1209	if (dev->flags & IFF_PROMISC) {
1210		/* Receive all frames promiscuously. */
1211		rx_mode = ReceiveAllFrames;
1212	} else if ((dev->flags & IFF_ALLMULTI) ||
1213			(netdev_mc_count(dev) > multicast_filter_limit)) {
1214		/* Receive broadcast and multicast frames */
1215		rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1216	} else if (!netdev_mc_empty(dev)) {
1217		struct netdev_hw_addr *ha;
1218		/* Receive broadcast frames and multicast frames filtering
1219		   by Hashtable */
1220		rx_mode =
1221		    ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1222		netdev_for_each_mc_addr(ha, dev) {
1223			int bit, index = 0;
1224			int crc = ether_crc_le(ETH_ALEN, ha->addr);
1225			/* The inverted high significant 6 bits of CRC are
1226			   used as an index to hashtable */
1227			for (bit = 0; bit < 6; bit++)
1228				if (crc & (1 << (31 - bit)))
1229					index |= (1 << bit);
1230			hash_table[index / 32] |= (1 << (index % 32));
1231		}
1232	} else {
1233		rx_mode = ReceiveBroadcast | ReceiveUnicast;
1234	}
1235	if (np->vlan) {
1236		/* ReceiveVLANMatch field in ReceiveMode */
1237		rx_mode |= ReceiveVLANMatch;
1238	}
1239
1240	dw32(HashTable0, hash_table[0]);
1241	dw32(HashTable1, hash_table[1]);
1242	dw16(ReceiveMode, rx_mode);
1243}
1244
1245static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1246{
1247	struct netdev_private *np = netdev_priv(dev);
1248
1249	strlcpy(info->driver, "dl2k", sizeof(info->driver));
1250	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1251	strlcpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info));
1252}
1253
1254static int rio_get_link_ksettings(struct net_device *dev,
1255				  struct ethtool_link_ksettings *cmd)
1256{
1257	struct netdev_private *np = netdev_priv(dev);
1258	u32 supported, advertising;
1259
1260	if (np->phy_media) {
1261		/* fiber device */
1262		supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1263		advertising = ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1264		cmd->base.port = PORT_FIBRE;
1265	} else {
1266		/* copper device */
1267		supported = SUPPORTED_10baseT_Half |
1268			SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1269			| SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1270			SUPPORTED_Autoneg | SUPPORTED_MII;
1271		advertising = ADVERTISED_10baseT_Half |
1272			ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1273			ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full |
1274			ADVERTISED_Autoneg | ADVERTISED_MII;
1275		cmd->base.port = PORT_MII;
1276	}
1277	if (np->link_status) {
1278		cmd->base.speed = np->speed;
1279		cmd->base.duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1280	} else {
1281		cmd->base.speed = SPEED_UNKNOWN;
1282		cmd->base.duplex = DUPLEX_UNKNOWN;
1283	}
1284	if (np->an_enable)
1285		cmd->base.autoneg = AUTONEG_ENABLE;
1286	else
1287		cmd->base.autoneg = AUTONEG_DISABLE;
1288
1289	cmd->base.phy_address = np->phy_addr;
1290
1291	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1292						supported);
1293	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
1294						advertising);
1295
1296	return 0;
1297}
1298
1299static int rio_set_link_ksettings(struct net_device *dev,
1300				  const struct ethtool_link_ksettings *cmd)
1301{
1302	struct netdev_private *np = netdev_priv(dev);
1303	u32 speed = cmd->base.speed;
1304	u8 duplex = cmd->base.duplex;
1305
1306	netif_carrier_off(dev);
1307	if (cmd->base.autoneg == AUTONEG_ENABLE) {
1308		if (np->an_enable) {
1309			return 0;
1310		} else {
1311			np->an_enable = 1;
1312			mii_set_media(dev);
1313			return 0;
1314		}
1315	} else {
1316		np->an_enable = 0;
1317		if (np->speed == 1000) {
1318			speed = SPEED_100;
1319			duplex = DUPLEX_FULL;
1320			printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1321		}
1322		switch (speed) {
1323		case SPEED_10:
1324			np->speed = 10;
1325			np->full_duplex = (duplex == DUPLEX_FULL);
1326			break;
1327		case SPEED_100:
1328			np->speed = 100;
1329			np->full_duplex = (duplex == DUPLEX_FULL);
1330			break;
1331		case SPEED_1000: /* not supported */
1332		default:
1333			return -EINVAL;
1334		}
1335		mii_set_media(dev);
1336	}
1337	return 0;
1338}
1339
1340static u32 rio_get_link(struct net_device *dev)
1341{
1342	struct netdev_private *np = netdev_priv(dev);
1343	return np->link_status;
1344}
1345
1346static const struct ethtool_ops ethtool_ops = {
1347	.get_drvinfo = rio_get_drvinfo,
1348	.get_link = rio_get_link,
1349	.get_link_ksettings = rio_get_link_ksettings,
1350	.set_link_ksettings = rio_set_link_ksettings,
1351};
1352
1353static int
1354rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1355{
1356	int phy_addr;
1357	struct netdev_private *np = netdev_priv(dev);
1358	struct mii_ioctl_data *miidata = if_mii(rq);
1359
1360	phy_addr = np->phy_addr;
1361	switch (cmd) {
1362	case SIOCGMIIPHY:
1363		miidata->phy_id = phy_addr;
1364		break;
1365	case SIOCGMIIREG:
1366		miidata->val_out = mii_read (dev, phy_addr, miidata->reg_num);
1367		break;
1368	case SIOCSMIIREG:
1369		if (!capable(CAP_NET_ADMIN))
1370			return -EPERM;
1371		mii_write (dev, phy_addr, miidata->reg_num, miidata->val_in);
1372		break;
1373	default:
1374		return -EOPNOTSUPP;
1375	}
1376	return 0;
1377}
1378
1379#define EEP_READ 0x0200
1380#define EEP_BUSY 0x8000
1381/* Read the EEPROM word */
1382/* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1383static int read_eeprom(struct netdev_private *np, int eep_addr)
1384{
1385	void __iomem *ioaddr = np->eeprom_addr;
1386	int i = 1000;
1387
1388	dw16(EepromCtrl, EEP_READ | (eep_addr & 0xff));
1389	while (i-- > 0) {
1390		if (!(dr16(EepromCtrl) & EEP_BUSY))
1391			return dr16(EepromData);
1392	}
1393	return 0;
1394}
1395
1396enum phy_ctrl_bits {
1397	MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1398	MII_DUPLEX = 0x08,
1399};
1400
1401#define mii_delay() dr8(PhyCtrl)
1402static void
1403mii_sendbit (struct net_device *dev, u32 data)
1404{
1405	struct netdev_private *np = netdev_priv(dev);
1406	void __iomem *ioaddr = np->ioaddr;
1407
1408	data = ((data) ? MII_DATA1 : 0) | (dr8(PhyCtrl) & 0xf8) | MII_WRITE;
1409	dw8(PhyCtrl, data);
1410	mii_delay ();
1411	dw8(PhyCtrl, data | MII_CLK);
1412	mii_delay ();
1413}
1414
1415static int
1416mii_getbit (struct net_device *dev)
1417{
1418	struct netdev_private *np = netdev_priv(dev);
1419	void __iomem *ioaddr = np->ioaddr;
1420	u8 data;
1421
1422	data = (dr8(PhyCtrl) & 0xf8) | MII_READ;
1423	dw8(PhyCtrl, data);
1424	mii_delay ();
1425	dw8(PhyCtrl, data | MII_CLK);
1426	mii_delay ();
1427	return (dr8(PhyCtrl) >> 1) & 1;
1428}
1429
1430static void
1431mii_send_bits (struct net_device *dev, u32 data, int len)
1432{
1433	int i;
1434
1435	for (i = len - 1; i >= 0; i--) {
1436		mii_sendbit (dev, data & (1 << i));
1437	}
1438}
1439
1440static int
1441mii_read (struct net_device *dev, int phy_addr, int reg_num)
1442{
1443	u32 cmd;
1444	int i;
1445	u32 retval = 0;
1446
1447	/* Preamble */
1448	mii_send_bits (dev, 0xffffffff, 32);
1449	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1450	/* ST,OP = 0110'b for read operation */
1451	cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1452	mii_send_bits (dev, cmd, 14);
1453	/* Turnaround */
1454	if (mii_getbit (dev))
1455		goto err_out;
1456	/* Read data */
1457	for (i = 0; i < 16; i++) {
1458		retval |= mii_getbit (dev);
1459		retval <<= 1;
1460	}
1461	/* End cycle */
1462	mii_getbit (dev);
1463	return (retval >> 1) & 0xffff;
1464
1465      err_out:
1466	return 0;
1467}
1468static int
1469mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1470{
1471	u32 cmd;
1472
1473	/* Preamble */
1474	mii_send_bits (dev, 0xffffffff, 32);
1475	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1476	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1477	cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1478	mii_send_bits (dev, cmd, 32);
1479	/* End cycle */
1480	mii_getbit (dev);
1481	return 0;
1482}
1483static int
1484mii_wait_link (struct net_device *dev, int wait)
1485{
1486	__u16 bmsr;
1487	int phy_addr;
1488	struct netdev_private *np;
1489
1490	np = netdev_priv(dev);
1491	phy_addr = np->phy_addr;
1492
1493	do {
1494		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1495		if (bmsr & BMSR_LSTATUS)
1496			return 0;
1497		mdelay (1);
1498	} while (--wait > 0);
1499	return -1;
1500}
1501static int
1502mii_get_media (struct net_device *dev)
1503{
1504	__u16 negotiate;
1505	__u16 bmsr;
1506	__u16 mscr;
1507	__u16 mssr;
1508	int phy_addr;
1509	struct netdev_private *np;
1510
1511	np = netdev_priv(dev);
1512	phy_addr = np->phy_addr;
1513
1514	bmsr = mii_read (dev, phy_addr, MII_BMSR);
1515	if (np->an_enable) {
1516		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1517			/* Auto-Negotiation not completed */
1518			return -1;
1519		}
1520		negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) &
1521			mii_read (dev, phy_addr, MII_LPA);
1522		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1523		mssr = mii_read (dev, phy_addr, MII_STAT1000);
1524		if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) {
1525			np->speed = 1000;
1526			np->full_duplex = 1;
1527			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1528		} else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) {
1529			np->speed = 1000;
1530			np->full_duplex = 0;
1531			printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1532		} else if (negotiate & ADVERTISE_100FULL) {
1533			np->speed = 100;
1534			np->full_duplex = 1;
1535			printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1536		} else if (negotiate & ADVERTISE_100HALF) {
1537			np->speed = 100;
1538			np->full_duplex = 0;
1539			printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1540		} else if (negotiate & ADVERTISE_10FULL) {
1541			np->speed = 10;
1542			np->full_duplex = 1;
1543			printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1544		} else if (negotiate & ADVERTISE_10HALF) {
1545			np->speed = 10;
1546			np->full_duplex = 0;
1547			printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1548		}
1549		if (negotiate & ADVERTISE_PAUSE_CAP) {
1550			np->tx_flow &= 1;
1551			np->rx_flow &= 1;
1552		} else if (negotiate & ADVERTISE_PAUSE_ASYM) {
1553			np->tx_flow = 0;
1554			np->rx_flow &= 1;
1555		}
1556		/* else tx_flow, rx_flow = user select  */
1557	} else {
1558		__u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1559		switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) {
1560		case BMCR_SPEED1000:
1561			printk (KERN_INFO "Operating at 1000 Mbps, ");
1562			break;
1563		case BMCR_SPEED100:
1564			printk (KERN_INFO "Operating at 100 Mbps, ");
1565			break;
1566		case 0:
1567			printk (KERN_INFO "Operating at 10 Mbps, ");
1568		}
1569		if (bmcr & BMCR_FULLDPLX) {
1570			printk (KERN_CONT "Full duplex\n");
1571		} else {
1572			printk (KERN_CONT "Half duplex\n");
1573		}
1574	}
1575	if (np->tx_flow)
1576		printk(KERN_INFO "Enable Tx Flow Control\n");
1577	else
1578		printk(KERN_INFO "Disable Tx Flow Control\n");
1579	if (np->rx_flow)
1580		printk(KERN_INFO "Enable Rx Flow Control\n");
1581	else
1582		printk(KERN_INFO "Disable Rx Flow Control\n");
1583
1584	return 0;
1585}
1586
1587static int
1588mii_set_media (struct net_device *dev)
1589{
1590	__u16 pscr;
1591	__u16 bmcr;
1592	__u16 bmsr;
1593	__u16 anar;
1594	int phy_addr;
1595	struct netdev_private *np;
1596	np = netdev_priv(dev);
1597	phy_addr = np->phy_addr;
1598
1599	/* Does user set speed? */
1600	if (np->an_enable) {
1601		/* Advertise capabilities */
1602		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1603		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1604			~(ADVERTISE_100FULL | ADVERTISE_10FULL |
1605			  ADVERTISE_100HALF | ADVERTISE_10HALF |
1606			  ADVERTISE_100BASE4);
1607		if (bmsr & BMSR_100FULL)
1608			anar |= ADVERTISE_100FULL;
1609		if (bmsr & BMSR_100HALF)
1610			anar |= ADVERTISE_100HALF;
1611		if (bmsr & BMSR_100BASE4)
1612			anar |= ADVERTISE_100BASE4;
1613		if (bmsr & BMSR_10FULL)
1614			anar |= ADVERTISE_10FULL;
1615		if (bmsr & BMSR_10HALF)
1616			anar |= ADVERTISE_10HALF;
1617		anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1618		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1619
1620		/* Enable Auto crossover */
1621		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1622		pscr |= 3 << 5;	/* 11'b */
1623		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1624
1625		/* Soft reset PHY */
1626		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1627		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1628		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1629		mdelay(1);
1630	} else {
1631		/* Force speed setting */
1632		/* 1) Disable Auto crossover */
1633		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1634		pscr &= ~(3 << 5);
1635		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1636
1637		/* 2) PHY Reset */
1638		bmcr = mii_read (dev, phy_addr, MII_BMCR);
1639		bmcr |= BMCR_RESET;
1640		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1641
1642		/* 3) Power Down */
1643		bmcr = 0x1940;	/* must be 0x1940 */
1644		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1645		mdelay (100);	/* wait a certain time */
1646
1647		/* 4) Advertise nothing */
1648		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1649
1650		/* 5) Set media and Power Up */
1651		bmcr = BMCR_PDOWN;
1652		if (np->speed == 100) {
1653			bmcr |= BMCR_SPEED100;
1654			printk (KERN_INFO "Manual 100 Mbps, ");
1655		} else if (np->speed == 10) {
1656			printk (KERN_INFO "Manual 10 Mbps, ");
1657		}
1658		if (np->full_duplex) {
1659			bmcr |= BMCR_FULLDPLX;
1660			printk (KERN_CONT "Full duplex\n");
1661		} else {
1662			printk (KERN_CONT "Half duplex\n");
1663		}
1664#if 0
1665		/* Set 1000BaseT Master/Slave setting */
1666		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1667		mscr |= MII_MSCR_CFG_ENABLE;
1668		mscr &= ~MII_MSCR_CFG_VALUE = 0;
1669#endif
1670		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1671		mdelay(10);
1672	}
1673	return 0;
1674}
1675
1676static int
1677mii_get_media_pcs (struct net_device *dev)
1678{
1679	__u16 negotiate;
1680	__u16 bmsr;
1681	int phy_addr;
1682	struct netdev_private *np;
1683
1684	np = netdev_priv(dev);
1685	phy_addr = np->phy_addr;
1686
1687	bmsr = mii_read (dev, phy_addr, PCS_BMSR);
1688	if (np->an_enable) {
1689		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1690			/* Auto-Negotiation not completed */
1691			return -1;
1692		}
1693		negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
1694			mii_read (dev, phy_addr, PCS_ANLPAR);
1695		np->speed = 1000;
1696		if (negotiate & PCS_ANAR_FULL_DUPLEX) {
1697			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1698			np->full_duplex = 1;
1699		} else {
1700			printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1701			np->full_duplex = 0;
1702		}
1703		if (negotiate & PCS_ANAR_PAUSE) {
1704			np->tx_flow &= 1;
1705			np->rx_flow &= 1;
1706		} else if (negotiate & PCS_ANAR_ASYMMETRIC) {
1707			np->tx_flow = 0;
1708			np->rx_flow &= 1;
1709		}
1710		/* else tx_flow, rx_flow = user select  */
1711	} else {
1712		__u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
1713		printk (KERN_INFO "Operating at 1000 Mbps, ");
1714		if (bmcr & BMCR_FULLDPLX) {
1715			printk (KERN_CONT "Full duplex\n");
1716		} else {
1717			printk (KERN_CONT "Half duplex\n");
1718		}
1719	}
1720	if (np->tx_flow)
1721		printk(KERN_INFO "Enable Tx Flow Control\n");
1722	else
1723		printk(KERN_INFO "Disable Tx Flow Control\n");
1724	if (np->rx_flow)
1725		printk(KERN_INFO "Enable Rx Flow Control\n");
1726	else
1727		printk(KERN_INFO "Disable Rx Flow Control\n");
1728
1729	return 0;
1730}
1731
1732static int
1733mii_set_media_pcs (struct net_device *dev)
1734{
1735	__u16 bmcr;
1736	__u16 esr;
1737	__u16 anar;
1738	int phy_addr;
1739	struct netdev_private *np;
1740	np = netdev_priv(dev);
1741	phy_addr = np->phy_addr;
1742
1743	/* Auto-Negotiation? */
1744	if (np->an_enable) {
1745		/* Advertise capabilities */
1746		esr = mii_read (dev, phy_addr, PCS_ESR);
1747		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1748			~PCS_ANAR_HALF_DUPLEX &
1749			~PCS_ANAR_FULL_DUPLEX;
1750		if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
1751			anar |= PCS_ANAR_HALF_DUPLEX;
1752		if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
1753			anar |= PCS_ANAR_FULL_DUPLEX;
1754		anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
1755		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1756
1757		/* Soft reset PHY */
1758		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1759		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1760		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1761		mdelay(1);
1762	} else {
1763		/* Force speed setting */
1764		/* PHY Reset */
1765		bmcr = BMCR_RESET;
1766		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1767		mdelay(10);
1768		if (np->full_duplex) {
1769			bmcr = BMCR_FULLDPLX;
1770			printk (KERN_INFO "Manual full duplex\n");
1771		} else {
1772			bmcr = 0;
1773			printk (KERN_INFO "Manual half duplex\n");
1774		}
1775		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1776		mdelay(10);
1777
1778		/*  Advertise nothing */
1779		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1780	}
1781	return 0;
1782}
1783
1784
1785static int
1786rio_close (struct net_device *dev)
1787{
1788	struct netdev_private *np = netdev_priv(dev);
1789	struct pci_dev *pdev = np->pdev;
1790
1791	netif_stop_queue (dev);
1792
1793	rio_hw_stop(dev);
1794
1795	free_irq(pdev->irq, dev);
1796	del_timer_sync (&np->timer);
1797
1798	free_list(dev);
1799
1800	return 0;
1801}
1802
1803static void
1804rio_remove1 (struct pci_dev *pdev)
1805{
1806	struct net_device *dev = pci_get_drvdata (pdev);
1807
1808	if (dev) {
1809		struct netdev_private *np = netdev_priv(dev);
1810
1811		unregister_netdev (dev);
1812		pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring,
1813				     np->rx_ring_dma);
1814		pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring,
1815				     np->tx_ring_dma);
1816#ifdef MEM_MAPPING
1817		pci_iounmap(pdev, np->ioaddr);
1818#endif
1819		pci_iounmap(pdev, np->eeprom_addr);
1820		free_netdev (dev);
1821		pci_release_regions (pdev);
1822		pci_disable_device (pdev);
1823	}
1824}
1825
1826#ifdef CONFIG_PM_SLEEP
1827static int rio_suspend(struct device *device)
1828{
1829	struct net_device *dev = dev_get_drvdata(device);
1830	struct netdev_private *np = netdev_priv(dev);
1831
1832	if (!netif_running(dev))
1833		return 0;
1834
1835	netif_device_detach(dev);
1836	del_timer_sync(&np->timer);
1837	rio_hw_stop(dev);
1838
1839	return 0;
1840}
1841
1842static int rio_resume(struct device *device)
1843{
1844	struct net_device *dev = dev_get_drvdata(device);
1845	struct netdev_private *np = netdev_priv(dev);
1846
1847	if (!netif_running(dev))
1848		return 0;
1849
1850	rio_reset_ring(np);
1851	rio_hw_init(dev);
1852	np->timer.expires = jiffies + 1 * HZ;
1853	add_timer(&np->timer);
1854	netif_device_attach(dev);
1855	dl2k_enable_int(np);
1856
1857	return 0;
1858}
1859
1860static SIMPLE_DEV_PM_OPS(rio_pm_ops, rio_suspend, rio_resume);
1861#define RIO_PM_OPS    (&rio_pm_ops)
1862
1863#else
1864
1865#define RIO_PM_OPS	NULL
1866
1867#endif /* CONFIG_PM_SLEEP */
1868
1869static struct pci_driver rio_driver = {
1870	.name		= "dl2k",
1871	.id_table	= rio_pci_tbl,
1872	.probe		= rio_probe1,
1873	.remove		= rio_remove1,
1874	.driver.pm	= RIO_PM_OPS,
1875};
1876
1877module_pci_driver(rio_driver);
1878/*
1879
1880Compile command:
1881
1882gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
1883
1884Read Documentation/networking/dl2k.txt for details.
1885
1886*/
1887
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*  D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
   3/*
   4    Copyright (c) 2001, 2002 by D-Link Corporation
   5    Written by Edward Peng.<edward_peng@dlink.com.tw>
   6    Created 03-May-2001, base on Linux' sundance.c.
   7
 
 
 
 
   8*/
   9
  10#define DRV_NAME	"DL2000/TC902x-based linux driver"
 
 
  11#include "dl2k.h"
  12#include <linux/dma-mapping.h>
  13
  14#define dw32(reg, val)	iowrite32(val, ioaddr + (reg))
  15#define dw16(reg, val)	iowrite16(val, ioaddr + (reg))
  16#define dw8(reg, val)	iowrite8(val, ioaddr + (reg))
  17#define dr32(reg)	ioread32(ioaddr + (reg))
  18#define dr16(reg)	ioread16(ioaddr + (reg))
  19#define dr8(reg)	ioread8(ioaddr + (reg))
  20
 
 
  21#define MAX_UNITS 8
  22static int mtu[MAX_UNITS];
  23static int vlan[MAX_UNITS];
  24static int jumbo[MAX_UNITS];
  25static char *media[MAX_UNITS];
  26static int tx_flow=-1;
  27static int rx_flow=-1;
  28static int copy_thresh;
  29static int rx_coalesce=10;	/* Rx frame count each interrupt */
  30static int rx_timeout=200;	/* Rx DMA wait time in 640ns increments */
  31static int tx_coalesce=16;	/* HW xmit count each TxDMAComplete */
  32
  33
  34MODULE_AUTHOR ("Edward Peng");
  35MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
  36MODULE_LICENSE("GPL");
  37module_param_array(mtu, int, NULL, 0);
  38module_param_array(media, charp, NULL, 0);
  39module_param_array(vlan, int, NULL, 0);
  40module_param_array(jumbo, int, NULL, 0);
  41module_param(tx_flow, int, 0);
  42module_param(rx_flow, int, 0);
  43module_param(copy_thresh, int, 0);
  44module_param(rx_coalesce, int, 0);	/* Rx frame count each interrupt */
  45module_param(rx_timeout, int, 0);	/* Rx DMA wait time in 64ns increments */
  46module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
  47
  48
  49/* Enable the default interrupts */
  50#define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
  51       UpdateStats | LinkEvent)
  52
  53static void dl2k_enable_int(struct netdev_private *np)
  54{
  55	void __iomem *ioaddr = np->ioaddr;
  56
  57	dw16(IntEnable, DEFAULT_INTR);
  58}
  59
  60static const int max_intrloop = 50;
  61static const int multicast_filter_limit = 0x40;
  62
  63static int rio_open (struct net_device *dev);
  64static void rio_timer (struct timer_list *t);
  65static void rio_tx_timeout (struct net_device *dev, unsigned int txqueue);
  66static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev);
  67static irqreturn_t rio_interrupt (int irq, void *dev_instance);
  68static void rio_free_tx (struct net_device *dev, int irq);
  69static void tx_error (struct net_device *dev, int tx_status);
  70static int receive_packet (struct net_device *dev);
  71static void rio_error (struct net_device *dev, int int_status);
  72static void set_multicast (struct net_device *dev);
  73static struct net_device_stats *get_stats (struct net_device *dev);
  74static int clear_stats (struct net_device *dev);
  75static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
  76static int rio_close (struct net_device *dev);
  77static int find_miiphy (struct net_device *dev);
  78static int parse_eeprom (struct net_device *dev);
  79static int read_eeprom (struct netdev_private *, int eep_addr);
  80static int mii_wait_link (struct net_device *dev, int wait);
  81static int mii_set_media (struct net_device *dev);
  82static int mii_get_media (struct net_device *dev);
  83static int mii_set_media_pcs (struct net_device *dev);
  84static int mii_get_media_pcs (struct net_device *dev);
  85static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
  86static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
  87		      u16 data);
  88
  89static const struct ethtool_ops ethtool_ops;
  90
  91static const struct net_device_ops netdev_ops = {
  92	.ndo_open		= rio_open,
  93	.ndo_start_xmit	= start_xmit,
  94	.ndo_stop		= rio_close,
  95	.ndo_get_stats		= get_stats,
  96	.ndo_validate_addr	= eth_validate_addr,
  97	.ndo_set_mac_address 	= eth_mac_addr,
  98	.ndo_set_rx_mode	= set_multicast,
  99	.ndo_do_ioctl		= rio_ioctl,
 100	.ndo_tx_timeout		= rio_tx_timeout,
 101};
 102
 103static int
 104rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
 105{
 106	struct net_device *dev;
 107	struct netdev_private *np;
 108	static int card_idx;
 109	int chip_idx = ent->driver_data;
 110	int err, irq;
 111	void __iomem *ioaddr;
 
 112	void *ring_space;
 113	dma_addr_t ring_dma;
 114
 
 
 
 115	err = pci_enable_device (pdev);
 116	if (err)
 117		return err;
 118
 119	irq = pdev->irq;
 120	err = pci_request_regions (pdev, "dl2k");
 121	if (err)
 122		goto err_out_disable;
 123
 124	pci_set_master (pdev);
 125
 126	err = -ENOMEM;
 127
 128	dev = alloc_etherdev (sizeof (*np));
 129	if (!dev)
 130		goto err_out_res;
 131	SET_NETDEV_DEV(dev, &pdev->dev);
 132
 133	np = netdev_priv(dev);
 134
 135	/* IO registers range. */
 136	ioaddr = pci_iomap(pdev, 0, 0);
 137	if (!ioaddr)
 138		goto err_out_dev;
 139	np->eeprom_addr = ioaddr;
 140
 141#ifdef MEM_MAPPING
 142	/* MM registers range. */
 143	ioaddr = pci_iomap(pdev, 1, 0);
 144	if (!ioaddr)
 145		goto err_out_iounmap;
 146#endif
 147	np->ioaddr = ioaddr;
 148	np->chip_id = chip_idx;
 149	np->pdev = pdev;
 150	spin_lock_init (&np->tx_lock);
 151	spin_lock_init (&np->rx_lock);
 152
 153	/* Parse manual configuration */
 154	np->an_enable = 1;
 155	np->tx_coalesce = 1;
 156	if (card_idx < MAX_UNITS) {
 157		if (media[card_idx] != NULL) {
 158			np->an_enable = 0;
 159			if (strcmp (media[card_idx], "auto") == 0 ||
 160			    strcmp (media[card_idx], "autosense") == 0 ||
 161			    strcmp (media[card_idx], "0") == 0 ) {
 162				np->an_enable = 2;
 163			} else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
 164			    strcmp (media[card_idx], "4") == 0) {
 165				np->speed = 100;
 166				np->full_duplex = 1;
 167			} else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
 168				   strcmp (media[card_idx], "3") == 0) {
 169				np->speed = 100;
 170				np->full_duplex = 0;
 171			} else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
 172				   strcmp (media[card_idx], "2") == 0) {
 173				np->speed = 10;
 174				np->full_duplex = 1;
 175			} else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
 176				   strcmp (media[card_idx], "1") == 0) {
 177				np->speed = 10;
 178				np->full_duplex = 0;
 179			} else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
 180				 strcmp (media[card_idx], "6") == 0) {
 181				np->speed=1000;
 182				np->full_duplex=1;
 183			} else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
 184				 strcmp (media[card_idx], "5") == 0) {
 185				np->speed = 1000;
 186				np->full_duplex = 0;
 187			} else {
 188				np->an_enable = 1;
 189			}
 190		}
 191		if (jumbo[card_idx] != 0) {
 192			np->jumbo = 1;
 193			dev->mtu = MAX_JUMBO;
 194		} else {
 195			np->jumbo = 0;
 196			if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
 197				dev->mtu = mtu[card_idx];
 198		}
 199		np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
 200		    vlan[card_idx] : 0;
 201		if (rx_coalesce > 0 && rx_timeout > 0) {
 202			np->rx_coalesce = rx_coalesce;
 203			np->rx_timeout = rx_timeout;
 204			np->coalesce = 1;
 205		}
 206		np->tx_flow = (tx_flow == 0) ? 0 : 1;
 207		np->rx_flow = (rx_flow == 0) ? 0 : 1;
 208
 209		if (tx_coalesce < 1)
 210			tx_coalesce = 1;
 211		else if (tx_coalesce > TX_RING_SIZE-1)
 212			tx_coalesce = TX_RING_SIZE - 1;
 213	}
 214	dev->netdev_ops = &netdev_ops;
 215	dev->watchdog_timeo = TX_TIMEOUT;
 216	dev->ethtool_ops = &ethtool_ops;
 217#if 0
 218	dev->features = NETIF_F_IP_CSUM;
 219#endif
 220	/* MTU range: 68 - 1536 or 8000 */
 221	dev->min_mtu = ETH_MIN_MTU;
 222	dev->max_mtu = np->jumbo ? MAX_JUMBO : PACKET_SIZE;
 223
 224	pci_set_drvdata (pdev, dev);
 225
 226	ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma);
 227	if (!ring_space)
 228		goto err_out_iounmap;
 229	np->tx_ring = ring_space;
 230	np->tx_ring_dma = ring_dma;
 231
 232	ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma);
 233	if (!ring_space)
 234		goto err_out_unmap_tx;
 235	np->rx_ring = ring_space;
 236	np->rx_ring_dma = ring_dma;
 237
 238	/* Parse eeprom data */
 239	parse_eeprom (dev);
 240
 241	/* Find PHY address */
 242	err = find_miiphy (dev);
 243	if (err)
 244		goto err_out_unmap_rx;
 245
 246	/* Fiber device? */
 247	np->phy_media = (dr16(ASICCtrl) & PhyMedia) ? 1 : 0;
 248	np->link_status = 0;
 249	/* Set media and reset PHY */
 250	if (np->phy_media) {
 251		/* default Auto-Negotiation for fiber deivices */
 252	 	if (np->an_enable == 2) {
 253			np->an_enable = 1;
 254		}
 255	} else {
 256		/* Auto-Negotiation is mandatory for 1000BASE-T,
 257		   IEEE 802.3ab Annex 28D page 14 */
 258		if (np->speed == 1000)
 259			np->an_enable = 1;
 260	}
 261
 262	err = register_netdev (dev);
 263	if (err)
 264		goto err_out_unmap_rx;
 265
 266	card_idx++;
 267
 268	printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
 269		dev->name, np->name, dev->dev_addr, irq);
 270	if (tx_coalesce > 1)
 271		printk(KERN_INFO "tx_coalesce:\t%d packets\n",
 272				tx_coalesce);
 273	if (np->coalesce)
 274		printk(KERN_INFO
 275		       "rx_coalesce:\t%d packets\n"
 276		       "rx_timeout: \t%d ns\n",
 277				np->rx_coalesce, np->rx_timeout*640);
 278	if (np->vlan)
 279		printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
 280	return 0;
 281
 282err_out_unmap_rx:
 283	pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
 284err_out_unmap_tx:
 285	pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
 286err_out_iounmap:
 287#ifdef MEM_MAPPING
 288	pci_iounmap(pdev, np->ioaddr);
 289#endif
 290	pci_iounmap(pdev, np->eeprom_addr);
 291err_out_dev:
 292	free_netdev (dev);
 293err_out_res:
 294	pci_release_regions (pdev);
 295err_out_disable:
 296	pci_disable_device (pdev);
 297	return err;
 298}
 299
 300static int
 301find_miiphy (struct net_device *dev)
 302{
 303	struct netdev_private *np = netdev_priv(dev);
 304	int i, phy_found = 0;
 305
 306	np->phy_addr = 1;
 307
 308	for (i = 31; i >= 0; i--) {
 309		int mii_status = mii_read (dev, i, 1);
 310		if (mii_status != 0xffff && mii_status != 0x0000) {
 311			np->phy_addr = i;
 312			phy_found++;
 313		}
 314	}
 315	if (!phy_found) {
 316		printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
 317		return -ENODEV;
 318	}
 319	return 0;
 320}
 321
 322static int
 323parse_eeprom (struct net_device *dev)
 324{
 325	struct netdev_private *np = netdev_priv(dev);
 326	void __iomem *ioaddr = np->ioaddr;
 327	int i, j;
 328	u8 sromdata[256];
 329	u8 *psib;
 330	u32 crc;
 331	PSROM_t psrom = (PSROM_t) sromdata;
 332
 333	int cid, next;
 334
 335	for (i = 0; i < 128; i++)
 336		((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom(np, i));
 337
 338	if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) {	/* D-Link Only */
 339		/* Check CRC */
 340		crc = ~ether_crc_le (256 - 4, sromdata);
 341		if (psrom->crc != cpu_to_le32(crc)) {
 342			printk (KERN_ERR "%s: EEPROM data CRC error.\n",
 343					dev->name);
 344			return -1;
 345		}
 346	}
 347
 348	/* Set MAC address */
 349	for (i = 0; i < 6; i++)
 350		dev->dev_addr[i] = psrom->mac_addr[i];
 351
 352	if (np->chip_id == CHIP_IP1000A) {
 353		np->led_mode = psrom->led_mode;
 354		return 0;
 355	}
 356
 357	if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
 358		return 0;
 359	}
 360
 361	/* Parse Software Information Block */
 362	i = 0x30;
 363	psib = (u8 *) sromdata;
 364	do {
 365		cid = psib[i++];
 366		next = psib[i++];
 367		if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
 368			printk (KERN_ERR "Cell data error\n");
 369			return -1;
 370		}
 371		switch (cid) {
 372		case 0:	/* Format version */
 373			break;
 374		case 1:	/* End of cell */
 375			return 0;
 376		case 2:	/* Duplex Polarity */
 377			np->duplex_polarity = psib[i];
 378			dw8(PhyCtrl, dr8(PhyCtrl) | psib[i]);
 379			break;
 380		case 3:	/* Wake Polarity */
 381			np->wake_polarity = psib[i];
 382			break;
 383		case 9:	/* Adapter description */
 384			j = (next - i > 255) ? 255 : next - i;
 385			memcpy (np->name, &(psib[i]), j);
 386			break;
 387		case 4:
 388		case 5:
 389		case 6:
 390		case 7:
 391		case 8:	/* Reversed */
 392			break;
 393		default:	/* Unknown cell */
 394			return -1;
 395		}
 396		i = next;
 397	} while (1);
 398
 399	return 0;
 400}
 401
 402static void rio_set_led_mode(struct net_device *dev)
 403{
 404	struct netdev_private *np = netdev_priv(dev);
 405	void __iomem *ioaddr = np->ioaddr;
 406	u32 mode;
 407
 408	if (np->chip_id != CHIP_IP1000A)
 409		return;
 410
 411	mode = dr32(ASICCtrl);
 412	mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
 413
 414	if (np->led_mode & 0x01)
 415		mode |= IPG_AC_LED_MODE;
 416	if (np->led_mode & 0x02)
 417		mode |= IPG_AC_LED_MODE_BIT_1;
 418	if (np->led_mode & 0x08)
 419		mode |= IPG_AC_LED_SPEED;
 420
 421	dw32(ASICCtrl, mode);
 422}
 423
 424static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
 425{
 426	return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
 427}
 428
 429static void free_list(struct net_device *dev)
 430{
 431	struct netdev_private *np = netdev_priv(dev);
 432	struct sk_buff *skb;
 433	int i;
 434
 435	/* Free all the skbuffs in the queue. */
 436	for (i = 0; i < RX_RING_SIZE; i++) {
 437		skb = np->rx_skbuff[i];
 438		if (skb) {
 439			pci_unmap_single(np->pdev, desc_to_dma(&np->rx_ring[i]),
 440					 skb->len, PCI_DMA_FROMDEVICE);
 441			dev_kfree_skb(skb);
 442			np->rx_skbuff[i] = NULL;
 443		}
 444		np->rx_ring[i].status = 0;
 445		np->rx_ring[i].fraginfo = 0;
 446	}
 447	for (i = 0; i < TX_RING_SIZE; i++) {
 448		skb = np->tx_skbuff[i];
 449		if (skb) {
 450			pci_unmap_single(np->pdev, desc_to_dma(&np->tx_ring[i]),
 451					 skb->len, PCI_DMA_TODEVICE);
 452			dev_kfree_skb(skb);
 453			np->tx_skbuff[i] = NULL;
 454		}
 455	}
 456}
 457
 458static void rio_reset_ring(struct netdev_private *np)
 459{
 460	int i;
 461
 462	np->cur_rx = 0;
 463	np->cur_tx = 0;
 464	np->old_rx = 0;
 465	np->old_tx = 0;
 466
 467	for (i = 0; i < TX_RING_SIZE; i++)
 468		np->tx_ring[i].status = cpu_to_le64(TFDDone);
 469
 470	for (i = 0; i < RX_RING_SIZE; i++)
 471		np->rx_ring[i].status = 0;
 472}
 473
 474 /* allocate and initialize Tx and Rx descriptors */
 475static int alloc_list(struct net_device *dev)
 476{
 477	struct netdev_private *np = netdev_priv(dev);
 478	int i;
 479
 480	rio_reset_ring(np);
 481	np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
 482
 483	/* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
 484	for (i = 0; i < TX_RING_SIZE; i++) {
 485		np->tx_skbuff[i] = NULL;
 486		np->tx_ring[i].next_desc = cpu_to_le64(np->tx_ring_dma +
 487					      ((i + 1) % TX_RING_SIZE) *
 488					      sizeof(struct netdev_desc));
 489	}
 490
 491	/* Initialize Rx descriptors & allocate buffers */
 492	for (i = 0; i < RX_RING_SIZE; i++) {
 493		/* Allocated fixed size of skbuff */
 494		struct sk_buff *skb;
 495
 496		skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
 497		np->rx_skbuff[i] = skb;
 498		if (!skb) {
 499			free_list(dev);
 500			return -ENOMEM;
 501		}
 502
 503		np->rx_ring[i].next_desc = cpu_to_le64(np->rx_ring_dma +
 504						((i + 1) % RX_RING_SIZE) *
 505						sizeof(struct netdev_desc));
 506		/* Rubicon now supports 40 bits of addressing space. */
 507		np->rx_ring[i].fraginfo =
 508		    cpu_to_le64(pci_map_single(
 509				  np->pdev, skb->data, np->rx_buf_sz,
 510				  PCI_DMA_FROMDEVICE));
 511		np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
 512	}
 513
 514	return 0;
 515}
 516
 517static void rio_hw_init(struct net_device *dev)
 518{
 519	struct netdev_private *np = netdev_priv(dev);
 520	void __iomem *ioaddr = np->ioaddr;
 521	int i;
 522	u16 macctrl;
 523
 524	/* Reset all logic functions */
 525	dw16(ASICCtrl + 2,
 526	     GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset);
 527	mdelay(10);
 528
 529	rio_set_led_mode(dev);
 530
 531	/* DebugCtrl bit 4, 5, 9 must set */
 532	dw32(DebugCtrl, dr32(DebugCtrl) | 0x0230);
 533
 534	if (np->chip_id == CHIP_IP1000A &&
 535	    (np->pdev->revision == 0x40 || np->pdev->revision == 0x41)) {
 536		/* PHY magic taken from ipg driver, undocumented registers */
 537		mii_write(dev, np->phy_addr, 31, 0x0001);
 538		mii_write(dev, np->phy_addr, 27, 0x01e0);
 539		mii_write(dev, np->phy_addr, 31, 0x0002);
 540		mii_write(dev, np->phy_addr, 27, 0xeb8e);
 541		mii_write(dev, np->phy_addr, 31, 0x0000);
 542		mii_write(dev, np->phy_addr, 30, 0x005e);
 543		/* advertise 1000BASE-T half & full duplex, prefer MASTER */
 544		mii_write(dev, np->phy_addr, MII_CTRL1000, 0x0700);
 545	}
 546
 547	if (np->phy_media)
 548		mii_set_media_pcs(dev);
 549	else
 550		mii_set_media(dev);
 551
 552	/* Jumbo frame */
 553	if (np->jumbo != 0)
 554		dw16(MaxFrameSize, MAX_JUMBO+14);
 555
 556	/* Set RFDListPtr */
 557	dw32(RFDListPtr0, np->rx_ring_dma);
 558	dw32(RFDListPtr1, 0);
 559
 560	/* Set station address */
 561	/* 16 or 32-bit access is required by TC9020 datasheet but 8-bit works
 562	 * too. However, it doesn't work on IP1000A so we use 16-bit access.
 563	 */
 564	for (i = 0; i < 3; i++)
 565		dw16(StationAddr0 + 2 * i,
 566		     cpu_to_le16(((u16 *)dev->dev_addr)[i]));
 567
 568	set_multicast (dev);
 569	if (np->coalesce) {
 570		dw32(RxDMAIntCtrl, np->rx_coalesce | np->rx_timeout << 16);
 571	}
 572	/* Set RIO to poll every N*320nsec. */
 573	dw8(RxDMAPollPeriod, 0x20);
 574	dw8(TxDMAPollPeriod, 0xff);
 575	dw8(RxDMABurstThresh, 0x30);
 576	dw8(RxDMAUrgentThresh, 0x30);
 577	dw32(RmonStatMask, 0x0007ffff);
 578	/* clear statistics */
 579	clear_stats (dev);
 580
 581	/* VLAN supported */
 582	if (np->vlan) {
 583		/* priority field in RxDMAIntCtrl  */
 584		dw32(RxDMAIntCtrl, dr32(RxDMAIntCtrl) | 0x7 << 10);
 585		/* VLANId */
 586		dw16(VLANId, np->vlan);
 587		/* Length/Type should be 0x8100 */
 588		dw32(VLANTag, 0x8100 << 16 | np->vlan);
 589		/* Enable AutoVLANuntagging, but disable AutoVLANtagging.
 590		   VLAN information tagged by TFC' VID, CFI fields. */
 591		dw32(MACCtrl, dr32(MACCtrl) | AutoVLANuntagging);
 592	}
 593
 594	/* Start Tx/Rx */
 595	dw32(MACCtrl, dr32(MACCtrl) | StatsEnable | RxEnable | TxEnable);
 596
 597	macctrl = 0;
 598	macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
 599	macctrl |= (np->full_duplex) ? DuplexSelect : 0;
 600	macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
 601	macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
 602	dw16(MACCtrl, macctrl);
 603}
 604
 605static void rio_hw_stop(struct net_device *dev)
 606{
 607	struct netdev_private *np = netdev_priv(dev);
 608	void __iomem *ioaddr = np->ioaddr;
 609
 610	/* Disable interrupts */
 611	dw16(IntEnable, 0);
 612
 613	/* Stop Tx and Rx logics */
 614	dw32(MACCtrl, TxDisable | RxDisable | StatsDisable);
 615}
 616
 617static int rio_open(struct net_device *dev)
 618{
 619	struct netdev_private *np = netdev_priv(dev);
 620	const int irq = np->pdev->irq;
 621	int i;
 622
 623	i = alloc_list(dev);
 624	if (i)
 625		return i;
 626
 627	rio_hw_init(dev);
 628
 629	i = request_irq(irq, rio_interrupt, IRQF_SHARED, dev->name, dev);
 630	if (i) {
 631		rio_hw_stop(dev);
 632		free_list(dev);
 633		return i;
 634	}
 635
 636	timer_setup(&np->timer, rio_timer, 0);
 637	np->timer.expires = jiffies + 1 * HZ;
 638	add_timer(&np->timer);
 639
 640	netif_start_queue (dev);
 641
 642	dl2k_enable_int(np);
 643	return 0;
 644}
 645
 646static void
 647rio_timer (struct timer_list *t)
 648{
 649	struct netdev_private *np = from_timer(np, t, timer);
 650	struct net_device *dev = pci_get_drvdata(np->pdev);
 651	unsigned int entry;
 652	int next_tick = 1*HZ;
 653	unsigned long flags;
 654
 655	spin_lock_irqsave(&np->rx_lock, flags);
 656	/* Recover rx ring exhausted error */
 657	if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
 658		printk(KERN_INFO "Try to recover rx ring exhausted...\n");
 659		/* Re-allocate skbuffs to fill the descriptor ring */
 660		for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
 661			struct sk_buff *skb;
 662			entry = np->old_rx % RX_RING_SIZE;
 663			/* Dropped packets don't need to re-allocate */
 664			if (np->rx_skbuff[entry] == NULL) {
 665				skb = netdev_alloc_skb_ip_align(dev,
 666								np->rx_buf_sz);
 667				if (skb == NULL) {
 668					np->rx_ring[entry].fraginfo = 0;
 669					printk (KERN_INFO
 670						"%s: Still unable to re-allocate Rx skbuff.#%d\n",
 671						dev->name, entry);
 672					break;
 673				}
 674				np->rx_skbuff[entry] = skb;
 675				np->rx_ring[entry].fraginfo =
 676				    cpu_to_le64 (pci_map_single
 677					 (np->pdev, skb->data, np->rx_buf_sz,
 678					  PCI_DMA_FROMDEVICE));
 679			}
 680			np->rx_ring[entry].fraginfo |=
 681			    cpu_to_le64((u64)np->rx_buf_sz << 48);
 682			np->rx_ring[entry].status = 0;
 683		} /* end for */
 684	} /* end if */
 685	spin_unlock_irqrestore (&np->rx_lock, flags);
 686	np->timer.expires = jiffies + next_tick;
 687	add_timer(&np->timer);
 688}
 689
 690static void
 691rio_tx_timeout (struct net_device *dev, unsigned int txqueue)
 692{
 693	struct netdev_private *np = netdev_priv(dev);
 694	void __iomem *ioaddr = np->ioaddr;
 695
 696	printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
 697		dev->name, dr32(TxStatus));
 698	rio_free_tx(dev, 0);
 699	dev->if_port = 0;
 700	netif_trans_update(dev); /* prevent tx timeout */
 701}
 702
 703static netdev_tx_t
 704start_xmit (struct sk_buff *skb, struct net_device *dev)
 705{
 706	struct netdev_private *np = netdev_priv(dev);
 707	void __iomem *ioaddr = np->ioaddr;
 708	struct netdev_desc *txdesc;
 709	unsigned entry;
 710	u64 tfc_vlan_tag = 0;
 711
 712	if (np->link_status == 0) {	/* Link Down */
 713		dev_kfree_skb(skb);
 714		return NETDEV_TX_OK;
 715	}
 716	entry = np->cur_tx % TX_RING_SIZE;
 717	np->tx_skbuff[entry] = skb;
 718	txdesc = &np->tx_ring[entry];
 719
 720#if 0
 721	if (skb->ip_summed == CHECKSUM_PARTIAL) {
 722		txdesc->status |=
 723		    cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
 724				 IPChecksumEnable);
 725	}
 726#endif
 727	if (np->vlan) {
 728		tfc_vlan_tag = VLANTagInsert |
 729		    ((u64)np->vlan << 32) |
 730		    ((u64)skb->priority << 45);
 731	}
 732	txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data,
 733							skb->len,
 734							PCI_DMA_TODEVICE));
 735	txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
 736
 737	/* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
 738	 * Work around: Always use 1 descriptor in 10Mbps mode */
 739	if (entry % np->tx_coalesce == 0 || np->speed == 10)
 740		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
 741					      WordAlignDisable |
 742					      TxDMAIndicate |
 743					      (1 << FragCountShift));
 744	else
 745		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
 746					      WordAlignDisable |
 747					      (1 << FragCountShift));
 748
 749	/* TxDMAPollNow */
 750	dw32(DMACtrl, dr32(DMACtrl) | 0x00001000);
 751	/* Schedule ISR */
 752	dw32(CountDown, 10000);
 753	np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
 754	if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
 755			< TX_QUEUE_LEN - 1 && np->speed != 10) {
 756		/* do nothing */
 757	} else if (!netif_queue_stopped(dev)) {
 758		netif_stop_queue (dev);
 759	}
 760
 761	/* The first TFDListPtr */
 762	if (!dr32(TFDListPtr0)) {
 763		dw32(TFDListPtr0, np->tx_ring_dma +
 764		     entry * sizeof (struct netdev_desc));
 765		dw32(TFDListPtr1, 0);
 766	}
 767
 768	return NETDEV_TX_OK;
 769}
 770
 771static irqreturn_t
 772rio_interrupt (int irq, void *dev_instance)
 773{
 774	struct net_device *dev = dev_instance;
 775	struct netdev_private *np = netdev_priv(dev);
 776	void __iomem *ioaddr = np->ioaddr;
 777	unsigned int_status;
 778	int cnt = max_intrloop;
 779	int handled = 0;
 780
 781	while (1) {
 782		int_status = dr16(IntStatus);
 783		dw16(IntStatus, int_status);
 784		int_status &= DEFAULT_INTR;
 785		if (int_status == 0 || --cnt < 0)
 786			break;
 787		handled = 1;
 788		/* Processing received packets */
 789		if (int_status & RxDMAComplete)
 790			receive_packet (dev);
 791		/* TxDMAComplete interrupt */
 792		if ((int_status & (TxDMAComplete|IntRequested))) {
 793			int tx_status;
 794			tx_status = dr32(TxStatus);
 795			if (tx_status & 0x01)
 796				tx_error (dev, tx_status);
 797			/* Free used tx skbuffs */
 798			rio_free_tx (dev, 1);
 799		}
 800
 801		/* Handle uncommon events */
 802		if (int_status &
 803		    (HostError | LinkEvent | UpdateStats))
 804			rio_error (dev, int_status);
 805	}
 806	if (np->cur_tx != np->old_tx)
 807		dw32(CountDown, 100);
 808	return IRQ_RETVAL(handled);
 809}
 810
 811static void
 812rio_free_tx (struct net_device *dev, int irq)
 813{
 814	struct netdev_private *np = netdev_priv(dev);
 815	int entry = np->old_tx % TX_RING_SIZE;
 816	int tx_use = 0;
 817	unsigned long flag = 0;
 818
 819	if (irq)
 820		spin_lock(&np->tx_lock);
 821	else
 822		spin_lock_irqsave(&np->tx_lock, flag);
 823
 824	/* Free used tx skbuffs */
 825	while (entry != np->cur_tx) {
 826		struct sk_buff *skb;
 827
 828		if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
 829			break;
 830		skb = np->tx_skbuff[entry];
 831		pci_unmap_single (np->pdev,
 832				  desc_to_dma(&np->tx_ring[entry]),
 833				  skb->len, PCI_DMA_TODEVICE);
 834		if (irq)
 835			dev_consume_skb_irq(skb);
 836		else
 837			dev_kfree_skb(skb);
 838
 839		np->tx_skbuff[entry] = NULL;
 840		entry = (entry + 1) % TX_RING_SIZE;
 841		tx_use++;
 842	}
 843	if (irq)
 844		spin_unlock(&np->tx_lock);
 845	else
 846		spin_unlock_irqrestore(&np->tx_lock, flag);
 847	np->old_tx = entry;
 848
 849	/* If the ring is no longer full, clear tx_full and
 850	   call netif_wake_queue() */
 851
 852	if (netif_queue_stopped(dev) &&
 853	    ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
 854	    < TX_QUEUE_LEN - 1 || np->speed == 10)) {
 855		netif_wake_queue (dev);
 856	}
 857}
 858
 859static void
 860tx_error (struct net_device *dev, int tx_status)
 861{
 862	struct netdev_private *np = netdev_priv(dev);
 863	void __iomem *ioaddr = np->ioaddr;
 864	int frame_id;
 865	int i;
 866
 867	frame_id = (tx_status & 0xffff0000);
 868	printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
 869		dev->name, tx_status, frame_id);
 870	dev->stats.tx_errors++;
 871	/* Ttransmit Underrun */
 872	if (tx_status & 0x10) {
 873		dev->stats.tx_fifo_errors++;
 874		dw16(TxStartThresh, dr16(TxStartThresh) + 0x10);
 875		/* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
 876		dw16(ASICCtrl + 2,
 877		     TxReset | DMAReset | FIFOReset | NetworkReset);
 878		/* Wait for ResetBusy bit clear */
 879		for (i = 50; i > 0; i--) {
 880			if (!(dr16(ASICCtrl + 2) & ResetBusy))
 881				break;
 882			mdelay (1);
 883		}
 884		rio_set_led_mode(dev);
 885		rio_free_tx (dev, 1);
 886		/* Reset TFDListPtr */
 887		dw32(TFDListPtr0, np->tx_ring_dma +
 888		     np->old_tx * sizeof (struct netdev_desc));
 889		dw32(TFDListPtr1, 0);
 890
 891		/* Let TxStartThresh stay default value */
 892	}
 893	/* Late Collision */
 894	if (tx_status & 0x04) {
 895		dev->stats.tx_fifo_errors++;
 896		/* TxReset and clear FIFO */
 897		dw16(ASICCtrl + 2, TxReset | FIFOReset);
 898		/* Wait reset done */
 899		for (i = 50; i > 0; i--) {
 900			if (!(dr16(ASICCtrl + 2) & ResetBusy))
 901				break;
 902			mdelay (1);
 903		}
 904		rio_set_led_mode(dev);
 905		/* Let TxStartThresh stay default value */
 906	}
 907	/* Maximum Collisions */
 908	if (tx_status & 0x08)
 909		dev->stats.collisions++;
 910	/* Restart the Tx */
 911	dw32(MACCtrl, dr16(MACCtrl) | TxEnable);
 912}
 913
 914static int
 915receive_packet (struct net_device *dev)
 916{
 917	struct netdev_private *np = netdev_priv(dev);
 918	int entry = np->cur_rx % RX_RING_SIZE;
 919	int cnt = 30;
 920
 921	/* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
 922	while (1) {
 923		struct netdev_desc *desc = &np->rx_ring[entry];
 924		int pkt_len;
 925		u64 frame_status;
 926
 927		if (!(desc->status & cpu_to_le64(RFDDone)) ||
 928		    !(desc->status & cpu_to_le64(FrameStart)) ||
 929		    !(desc->status & cpu_to_le64(FrameEnd)))
 930			break;
 931
 932		/* Chip omits the CRC. */
 933		frame_status = le64_to_cpu(desc->status);
 934		pkt_len = frame_status & 0xffff;
 935		if (--cnt < 0)
 936			break;
 937		/* Update rx error statistics, drop packet. */
 938		if (frame_status & RFS_Errors) {
 939			dev->stats.rx_errors++;
 940			if (frame_status & (RxRuntFrame | RxLengthError))
 941				dev->stats.rx_length_errors++;
 942			if (frame_status & RxFCSError)
 943				dev->stats.rx_crc_errors++;
 944			if (frame_status & RxAlignmentError && np->speed != 1000)
 945				dev->stats.rx_frame_errors++;
 946			if (frame_status & RxFIFOOverrun)
 947				dev->stats.rx_fifo_errors++;
 948		} else {
 949			struct sk_buff *skb;
 950
 951			/* Small skbuffs for short packets */
 952			if (pkt_len > copy_thresh) {
 953				pci_unmap_single (np->pdev,
 954						  desc_to_dma(desc),
 955						  np->rx_buf_sz,
 956						  PCI_DMA_FROMDEVICE);
 957				skb_put (skb = np->rx_skbuff[entry], pkt_len);
 958				np->rx_skbuff[entry] = NULL;
 959			} else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) {
 960				pci_dma_sync_single_for_cpu(np->pdev,
 961							    desc_to_dma(desc),
 962							    np->rx_buf_sz,
 963							    PCI_DMA_FROMDEVICE);
 964				skb_copy_to_linear_data (skb,
 965						  np->rx_skbuff[entry]->data,
 966						  pkt_len);
 967				skb_put (skb, pkt_len);
 968				pci_dma_sync_single_for_device(np->pdev,
 969							       desc_to_dma(desc),
 970							       np->rx_buf_sz,
 971							       PCI_DMA_FROMDEVICE);
 972			}
 973			skb->protocol = eth_type_trans (skb, dev);
 974#if 0
 975			/* Checksum done by hw, but csum value unavailable. */
 976			if (np->pdev->pci_rev_id >= 0x0c &&
 977				!(frame_status & (TCPError | UDPError | IPError))) {
 978				skb->ip_summed = CHECKSUM_UNNECESSARY;
 979			}
 980#endif
 981			netif_rx (skb);
 982		}
 983		entry = (entry + 1) % RX_RING_SIZE;
 984	}
 985	spin_lock(&np->rx_lock);
 986	np->cur_rx = entry;
 987	/* Re-allocate skbuffs to fill the descriptor ring */
 988	entry = np->old_rx;
 989	while (entry != np->cur_rx) {
 990		struct sk_buff *skb;
 991		/* Dropped packets don't need to re-allocate */
 992		if (np->rx_skbuff[entry] == NULL) {
 993			skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
 994			if (skb == NULL) {
 995				np->rx_ring[entry].fraginfo = 0;
 996				printk (KERN_INFO
 997					"%s: receive_packet: "
 998					"Unable to re-allocate Rx skbuff.#%d\n",
 999					dev->name, entry);
1000				break;
1001			}
1002			np->rx_skbuff[entry] = skb;
1003			np->rx_ring[entry].fraginfo =
1004			    cpu_to_le64 (pci_map_single
1005					 (np->pdev, skb->data, np->rx_buf_sz,
1006					  PCI_DMA_FROMDEVICE));
1007		}
1008		np->rx_ring[entry].fraginfo |=
1009		    cpu_to_le64((u64)np->rx_buf_sz << 48);
1010		np->rx_ring[entry].status = 0;
1011		entry = (entry + 1) % RX_RING_SIZE;
1012	}
1013	np->old_rx = entry;
1014	spin_unlock(&np->rx_lock);
1015	return 0;
1016}
1017
1018static void
1019rio_error (struct net_device *dev, int int_status)
1020{
1021	struct netdev_private *np = netdev_priv(dev);
1022	void __iomem *ioaddr = np->ioaddr;
1023	u16 macctrl;
1024
1025	/* Link change event */
1026	if (int_status & LinkEvent) {
1027		if (mii_wait_link (dev, 10) == 0) {
1028			printk (KERN_INFO "%s: Link up\n", dev->name);
1029			if (np->phy_media)
1030				mii_get_media_pcs (dev);
1031			else
1032				mii_get_media (dev);
1033			if (np->speed == 1000)
1034				np->tx_coalesce = tx_coalesce;
1035			else
1036				np->tx_coalesce = 1;
1037			macctrl = 0;
1038			macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
1039			macctrl |= (np->full_duplex) ? DuplexSelect : 0;
1040			macctrl |= (np->tx_flow) ?
1041				TxFlowControlEnable : 0;
1042			macctrl |= (np->rx_flow) ?
1043				RxFlowControlEnable : 0;
1044			dw16(MACCtrl, macctrl);
1045			np->link_status = 1;
1046			netif_carrier_on(dev);
1047		} else {
1048			printk (KERN_INFO "%s: Link off\n", dev->name);
1049			np->link_status = 0;
1050			netif_carrier_off(dev);
1051		}
1052	}
1053
1054	/* UpdateStats statistics registers */
1055	if (int_status & UpdateStats) {
1056		get_stats (dev);
1057	}
1058
1059	/* PCI Error, a catastronphic error related to the bus interface
1060	   occurs, set GlobalReset and HostReset to reset. */
1061	if (int_status & HostError) {
1062		printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
1063			dev->name, int_status);
1064		dw16(ASICCtrl + 2, GlobalReset | HostReset);
1065		mdelay (500);
1066		rio_set_led_mode(dev);
1067	}
1068}
1069
1070static struct net_device_stats *
1071get_stats (struct net_device *dev)
1072{
1073	struct netdev_private *np = netdev_priv(dev);
1074	void __iomem *ioaddr = np->ioaddr;
1075#ifdef MEM_MAPPING
1076	int i;
1077#endif
1078	unsigned int stat_reg;
1079
1080	/* All statistics registers need to be acknowledged,
1081	   else statistic overflow could cause problems */
1082
1083	dev->stats.rx_packets += dr32(FramesRcvOk);
1084	dev->stats.tx_packets += dr32(FramesXmtOk);
1085	dev->stats.rx_bytes += dr32(OctetRcvOk);
1086	dev->stats.tx_bytes += dr32(OctetXmtOk);
1087
1088	dev->stats.multicast = dr32(McstFramesRcvdOk);
1089	dev->stats.collisions += dr32(SingleColFrames)
1090			     +  dr32(MultiColFrames);
1091
1092	/* detailed tx errors */
1093	stat_reg = dr16(FramesAbortXSColls);
1094	dev->stats.tx_aborted_errors += stat_reg;
1095	dev->stats.tx_errors += stat_reg;
1096
1097	stat_reg = dr16(CarrierSenseErrors);
1098	dev->stats.tx_carrier_errors += stat_reg;
1099	dev->stats.tx_errors += stat_reg;
1100
1101	/* Clear all other statistic register. */
1102	dr32(McstOctetXmtOk);
1103	dr16(BcstFramesXmtdOk);
1104	dr32(McstFramesXmtdOk);
1105	dr16(BcstFramesRcvdOk);
1106	dr16(MacControlFramesRcvd);
1107	dr16(FrameTooLongErrors);
1108	dr16(InRangeLengthErrors);
1109	dr16(FramesCheckSeqErrors);
1110	dr16(FramesLostRxErrors);
1111	dr32(McstOctetXmtOk);
1112	dr32(BcstOctetXmtOk);
1113	dr32(McstFramesXmtdOk);
1114	dr32(FramesWDeferredXmt);
1115	dr32(LateCollisions);
1116	dr16(BcstFramesXmtdOk);
1117	dr16(MacControlFramesXmtd);
1118	dr16(FramesWEXDeferal);
1119
1120#ifdef MEM_MAPPING
1121	for (i = 0x100; i <= 0x150; i += 4)
1122		dr32(i);
1123#endif
1124	dr16(TxJumboFrames);
1125	dr16(RxJumboFrames);
1126	dr16(TCPCheckSumErrors);
1127	dr16(UDPCheckSumErrors);
1128	dr16(IPCheckSumErrors);
1129	return &dev->stats;
1130}
1131
1132static int
1133clear_stats (struct net_device *dev)
1134{
1135	struct netdev_private *np = netdev_priv(dev);
1136	void __iomem *ioaddr = np->ioaddr;
1137#ifdef MEM_MAPPING
1138	int i;
1139#endif
1140
1141	/* All statistics registers need to be acknowledged,
1142	   else statistic overflow could cause problems */
1143	dr32(FramesRcvOk);
1144	dr32(FramesXmtOk);
1145	dr32(OctetRcvOk);
1146	dr32(OctetXmtOk);
1147
1148	dr32(McstFramesRcvdOk);
1149	dr32(SingleColFrames);
1150	dr32(MultiColFrames);
1151	dr32(LateCollisions);
1152	/* detailed rx errors */
1153	dr16(FrameTooLongErrors);
1154	dr16(InRangeLengthErrors);
1155	dr16(FramesCheckSeqErrors);
1156	dr16(FramesLostRxErrors);
1157
1158	/* detailed tx errors */
1159	dr16(FramesAbortXSColls);
1160	dr16(CarrierSenseErrors);
1161
1162	/* Clear all other statistic register. */
1163	dr32(McstOctetXmtOk);
1164	dr16(BcstFramesXmtdOk);
1165	dr32(McstFramesXmtdOk);
1166	dr16(BcstFramesRcvdOk);
1167	dr16(MacControlFramesRcvd);
1168	dr32(McstOctetXmtOk);
1169	dr32(BcstOctetXmtOk);
1170	dr32(McstFramesXmtdOk);
1171	dr32(FramesWDeferredXmt);
1172	dr16(BcstFramesXmtdOk);
1173	dr16(MacControlFramesXmtd);
1174	dr16(FramesWEXDeferal);
1175#ifdef MEM_MAPPING
1176	for (i = 0x100; i <= 0x150; i += 4)
1177		dr32(i);
1178#endif
1179	dr16(TxJumboFrames);
1180	dr16(RxJumboFrames);
1181	dr16(TCPCheckSumErrors);
1182	dr16(UDPCheckSumErrors);
1183	dr16(IPCheckSumErrors);
1184	return 0;
1185}
1186
1187static void
1188set_multicast (struct net_device *dev)
1189{
1190	struct netdev_private *np = netdev_priv(dev);
1191	void __iomem *ioaddr = np->ioaddr;
1192	u32 hash_table[2];
1193	u16 rx_mode = 0;
1194
1195	hash_table[0] = hash_table[1] = 0;
1196	/* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1197	hash_table[1] |= 0x02000000;
1198	if (dev->flags & IFF_PROMISC) {
1199		/* Receive all frames promiscuously. */
1200		rx_mode = ReceiveAllFrames;
1201	} else if ((dev->flags & IFF_ALLMULTI) ||
1202			(netdev_mc_count(dev) > multicast_filter_limit)) {
1203		/* Receive broadcast and multicast frames */
1204		rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1205	} else if (!netdev_mc_empty(dev)) {
1206		struct netdev_hw_addr *ha;
1207		/* Receive broadcast frames and multicast frames filtering
1208		   by Hashtable */
1209		rx_mode =
1210		    ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1211		netdev_for_each_mc_addr(ha, dev) {
1212			int bit, index = 0;
1213			int crc = ether_crc_le(ETH_ALEN, ha->addr);
1214			/* The inverted high significant 6 bits of CRC are
1215			   used as an index to hashtable */
1216			for (bit = 0; bit < 6; bit++)
1217				if (crc & (1 << (31 - bit)))
1218					index |= (1 << bit);
1219			hash_table[index / 32] |= (1 << (index % 32));
1220		}
1221	} else {
1222		rx_mode = ReceiveBroadcast | ReceiveUnicast;
1223	}
1224	if (np->vlan) {
1225		/* ReceiveVLANMatch field in ReceiveMode */
1226		rx_mode |= ReceiveVLANMatch;
1227	}
1228
1229	dw32(HashTable0, hash_table[0]);
1230	dw32(HashTable1, hash_table[1]);
1231	dw16(ReceiveMode, rx_mode);
1232}
1233
1234static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1235{
1236	struct netdev_private *np = netdev_priv(dev);
1237
1238	strlcpy(info->driver, "dl2k", sizeof(info->driver));
 
1239	strlcpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info));
1240}
1241
1242static int rio_get_link_ksettings(struct net_device *dev,
1243				  struct ethtool_link_ksettings *cmd)
1244{
1245	struct netdev_private *np = netdev_priv(dev);
1246	u32 supported, advertising;
1247
1248	if (np->phy_media) {
1249		/* fiber device */
1250		supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1251		advertising = ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1252		cmd->base.port = PORT_FIBRE;
1253	} else {
1254		/* copper device */
1255		supported = SUPPORTED_10baseT_Half |
1256			SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1257			| SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1258			SUPPORTED_Autoneg | SUPPORTED_MII;
1259		advertising = ADVERTISED_10baseT_Half |
1260			ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1261			ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full |
1262			ADVERTISED_Autoneg | ADVERTISED_MII;
1263		cmd->base.port = PORT_MII;
1264	}
1265	if (np->link_status) {
1266		cmd->base.speed = np->speed;
1267		cmd->base.duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1268	} else {
1269		cmd->base.speed = SPEED_UNKNOWN;
1270		cmd->base.duplex = DUPLEX_UNKNOWN;
1271	}
1272	if (np->an_enable)
1273		cmd->base.autoneg = AUTONEG_ENABLE;
1274	else
1275		cmd->base.autoneg = AUTONEG_DISABLE;
1276
1277	cmd->base.phy_address = np->phy_addr;
1278
1279	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1280						supported);
1281	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
1282						advertising);
1283
1284	return 0;
1285}
1286
1287static int rio_set_link_ksettings(struct net_device *dev,
1288				  const struct ethtool_link_ksettings *cmd)
1289{
1290	struct netdev_private *np = netdev_priv(dev);
1291	u32 speed = cmd->base.speed;
1292	u8 duplex = cmd->base.duplex;
1293
1294	netif_carrier_off(dev);
1295	if (cmd->base.autoneg == AUTONEG_ENABLE) {
1296		if (np->an_enable) {
1297			return 0;
1298		} else {
1299			np->an_enable = 1;
1300			mii_set_media(dev);
1301			return 0;
1302		}
1303	} else {
1304		np->an_enable = 0;
1305		if (np->speed == 1000) {
1306			speed = SPEED_100;
1307			duplex = DUPLEX_FULL;
1308			printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1309		}
1310		switch (speed) {
1311		case SPEED_10:
1312			np->speed = 10;
1313			np->full_duplex = (duplex == DUPLEX_FULL);
1314			break;
1315		case SPEED_100:
1316			np->speed = 100;
1317			np->full_duplex = (duplex == DUPLEX_FULL);
1318			break;
1319		case SPEED_1000: /* not supported */
1320		default:
1321			return -EINVAL;
1322		}
1323		mii_set_media(dev);
1324	}
1325	return 0;
1326}
1327
1328static u32 rio_get_link(struct net_device *dev)
1329{
1330	struct netdev_private *np = netdev_priv(dev);
1331	return np->link_status;
1332}
1333
1334static const struct ethtool_ops ethtool_ops = {
1335	.get_drvinfo = rio_get_drvinfo,
1336	.get_link = rio_get_link,
1337	.get_link_ksettings = rio_get_link_ksettings,
1338	.set_link_ksettings = rio_set_link_ksettings,
1339};
1340
1341static int
1342rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1343{
1344	int phy_addr;
1345	struct netdev_private *np = netdev_priv(dev);
1346	struct mii_ioctl_data *miidata = if_mii(rq);
1347
1348	phy_addr = np->phy_addr;
1349	switch (cmd) {
1350	case SIOCGMIIPHY:
1351		miidata->phy_id = phy_addr;
1352		break;
1353	case SIOCGMIIREG:
1354		miidata->val_out = mii_read (dev, phy_addr, miidata->reg_num);
1355		break;
1356	case SIOCSMIIREG:
1357		if (!capable(CAP_NET_ADMIN))
1358			return -EPERM;
1359		mii_write (dev, phy_addr, miidata->reg_num, miidata->val_in);
1360		break;
1361	default:
1362		return -EOPNOTSUPP;
1363	}
1364	return 0;
1365}
1366
1367#define EEP_READ 0x0200
1368#define EEP_BUSY 0x8000
1369/* Read the EEPROM word */
1370/* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1371static int read_eeprom(struct netdev_private *np, int eep_addr)
1372{
1373	void __iomem *ioaddr = np->eeprom_addr;
1374	int i = 1000;
1375
1376	dw16(EepromCtrl, EEP_READ | (eep_addr & 0xff));
1377	while (i-- > 0) {
1378		if (!(dr16(EepromCtrl) & EEP_BUSY))
1379			return dr16(EepromData);
1380	}
1381	return 0;
1382}
1383
1384enum phy_ctrl_bits {
1385	MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1386	MII_DUPLEX = 0x08,
1387};
1388
1389#define mii_delay() dr8(PhyCtrl)
1390static void
1391mii_sendbit (struct net_device *dev, u32 data)
1392{
1393	struct netdev_private *np = netdev_priv(dev);
1394	void __iomem *ioaddr = np->ioaddr;
1395
1396	data = ((data) ? MII_DATA1 : 0) | (dr8(PhyCtrl) & 0xf8) | MII_WRITE;
1397	dw8(PhyCtrl, data);
1398	mii_delay ();
1399	dw8(PhyCtrl, data | MII_CLK);
1400	mii_delay ();
1401}
1402
1403static int
1404mii_getbit (struct net_device *dev)
1405{
1406	struct netdev_private *np = netdev_priv(dev);
1407	void __iomem *ioaddr = np->ioaddr;
1408	u8 data;
1409
1410	data = (dr8(PhyCtrl) & 0xf8) | MII_READ;
1411	dw8(PhyCtrl, data);
1412	mii_delay ();
1413	dw8(PhyCtrl, data | MII_CLK);
1414	mii_delay ();
1415	return (dr8(PhyCtrl) >> 1) & 1;
1416}
1417
1418static void
1419mii_send_bits (struct net_device *dev, u32 data, int len)
1420{
1421	int i;
1422
1423	for (i = len - 1; i >= 0; i--) {
1424		mii_sendbit (dev, data & (1 << i));
1425	}
1426}
1427
1428static int
1429mii_read (struct net_device *dev, int phy_addr, int reg_num)
1430{
1431	u32 cmd;
1432	int i;
1433	u32 retval = 0;
1434
1435	/* Preamble */
1436	mii_send_bits (dev, 0xffffffff, 32);
1437	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1438	/* ST,OP = 0110'b for read operation */
1439	cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1440	mii_send_bits (dev, cmd, 14);
1441	/* Turnaround */
1442	if (mii_getbit (dev))
1443		goto err_out;
1444	/* Read data */
1445	for (i = 0; i < 16; i++) {
1446		retval |= mii_getbit (dev);
1447		retval <<= 1;
1448	}
1449	/* End cycle */
1450	mii_getbit (dev);
1451	return (retval >> 1) & 0xffff;
1452
1453      err_out:
1454	return 0;
1455}
1456static int
1457mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1458{
1459	u32 cmd;
1460
1461	/* Preamble */
1462	mii_send_bits (dev, 0xffffffff, 32);
1463	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1464	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1465	cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1466	mii_send_bits (dev, cmd, 32);
1467	/* End cycle */
1468	mii_getbit (dev);
1469	return 0;
1470}
1471static int
1472mii_wait_link (struct net_device *dev, int wait)
1473{
1474	__u16 bmsr;
1475	int phy_addr;
1476	struct netdev_private *np;
1477
1478	np = netdev_priv(dev);
1479	phy_addr = np->phy_addr;
1480
1481	do {
1482		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1483		if (bmsr & BMSR_LSTATUS)
1484			return 0;
1485		mdelay (1);
1486	} while (--wait > 0);
1487	return -1;
1488}
1489static int
1490mii_get_media (struct net_device *dev)
1491{
1492	__u16 negotiate;
1493	__u16 bmsr;
1494	__u16 mscr;
1495	__u16 mssr;
1496	int phy_addr;
1497	struct netdev_private *np;
1498
1499	np = netdev_priv(dev);
1500	phy_addr = np->phy_addr;
1501
1502	bmsr = mii_read (dev, phy_addr, MII_BMSR);
1503	if (np->an_enable) {
1504		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1505			/* Auto-Negotiation not completed */
1506			return -1;
1507		}
1508		negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) &
1509			mii_read (dev, phy_addr, MII_LPA);
1510		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1511		mssr = mii_read (dev, phy_addr, MII_STAT1000);
1512		if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) {
1513			np->speed = 1000;
1514			np->full_duplex = 1;
1515			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1516		} else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) {
1517			np->speed = 1000;
1518			np->full_duplex = 0;
1519			printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1520		} else if (negotiate & ADVERTISE_100FULL) {
1521			np->speed = 100;
1522			np->full_duplex = 1;
1523			printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1524		} else if (negotiate & ADVERTISE_100HALF) {
1525			np->speed = 100;
1526			np->full_duplex = 0;
1527			printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1528		} else if (negotiate & ADVERTISE_10FULL) {
1529			np->speed = 10;
1530			np->full_duplex = 1;
1531			printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1532		} else if (negotiate & ADVERTISE_10HALF) {
1533			np->speed = 10;
1534			np->full_duplex = 0;
1535			printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1536		}
1537		if (negotiate & ADVERTISE_PAUSE_CAP) {
1538			np->tx_flow &= 1;
1539			np->rx_flow &= 1;
1540		} else if (negotiate & ADVERTISE_PAUSE_ASYM) {
1541			np->tx_flow = 0;
1542			np->rx_flow &= 1;
1543		}
1544		/* else tx_flow, rx_flow = user select  */
1545	} else {
1546		__u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1547		switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) {
1548		case BMCR_SPEED1000:
1549			printk (KERN_INFO "Operating at 1000 Mbps, ");
1550			break;
1551		case BMCR_SPEED100:
1552			printk (KERN_INFO "Operating at 100 Mbps, ");
1553			break;
1554		case 0:
1555			printk (KERN_INFO "Operating at 10 Mbps, ");
1556		}
1557		if (bmcr & BMCR_FULLDPLX) {
1558			printk (KERN_CONT "Full duplex\n");
1559		} else {
1560			printk (KERN_CONT "Half duplex\n");
1561		}
1562	}
1563	if (np->tx_flow)
1564		printk(KERN_INFO "Enable Tx Flow Control\n");
1565	else
1566		printk(KERN_INFO "Disable Tx Flow Control\n");
1567	if (np->rx_flow)
1568		printk(KERN_INFO "Enable Rx Flow Control\n");
1569	else
1570		printk(KERN_INFO "Disable Rx Flow Control\n");
1571
1572	return 0;
1573}
1574
1575static int
1576mii_set_media (struct net_device *dev)
1577{
1578	__u16 pscr;
1579	__u16 bmcr;
1580	__u16 bmsr;
1581	__u16 anar;
1582	int phy_addr;
1583	struct netdev_private *np;
1584	np = netdev_priv(dev);
1585	phy_addr = np->phy_addr;
1586
1587	/* Does user set speed? */
1588	if (np->an_enable) {
1589		/* Advertise capabilities */
1590		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1591		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1592			~(ADVERTISE_100FULL | ADVERTISE_10FULL |
1593			  ADVERTISE_100HALF | ADVERTISE_10HALF |
1594			  ADVERTISE_100BASE4);
1595		if (bmsr & BMSR_100FULL)
1596			anar |= ADVERTISE_100FULL;
1597		if (bmsr & BMSR_100HALF)
1598			anar |= ADVERTISE_100HALF;
1599		if (bmsr & BMSR_100BASE4)
1600			anar |= ADVERTISE_100BASE4;
1601		if (bmsr & BMSR_10FULL)
1602			anar |= ADVERTISE_10FULL;
1603		if (bmsr & BMSR_10HALF)
1604			anar |= ADVERTISE_10HALF;
1605		anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1606		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1607
1608		/* Enable Auto crossover */
1609		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1610		pscr |= 3 << 5;	/* 11'b */
1611		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1612
1613		/* Soft reset PHY */
1614		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1615		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1616		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1617		mdelay(1);
1618	} else {
1619		/* Force speed setting */
1620		/* 1) Disable Auto crossover */
1621		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1622		pscr &= ~(3 << 5);
1623		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1624
1625		/* 2) PHY Reset */
1626		bmcr = mii_read (dev, phy_addr, MII_BMCR);
1627		bmcr |= BMCR_RESET;
1628		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1629
1630		/* 3) Power Down */
1631		bmcr = 0x1940;	/* must be 0x1940 */
1632		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1633		mdelay (100);	/* wait a certain time */
1634
1635		/* 4) Advertise nothing */
1636		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1637
1638		/* 5) Set media and Power Up */
1639		bmcr = BMCR_PDOWN;
1640		if (np->speed == 100) {
1641			bmcr |= BMCR_SPEED100;
1642			printk (KERN_INFO "Manual 100 Mbps, ");
1643		} else if (np->speed == 10) {
1644			printk (KERN_INFO "Manual 10 Mbps, ");
1645		}
1646		if (np->full_duplex) {
1647			bmcr |= BMCR_FULLDPLX;
1648			printk (KERN_CONT "Full duplex\n");
1649		} else {
1650			printk (KERN_CONT "Half duplex\n");
1651		}
1652#if 0
1653		/* Set 1000BaseT Master/Slave setting */
1654		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1655		mscr |= MII_MSCR_CFG_ENABLE;
1656		mscr &= ~MII_MSCR_CFG_VALUE = 0;
1657#endif
1658		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1659		mdelay(10);
1660	}
1661	return 0;
1662}
1663
1664static int
1665mii_get_media_pcs (struct net_device *dev)
1666{
1667	__u16 negotiate;
1668	__u16 bmsr;
1669	int phy_addr;
1670	struct netdev_private *np;
1671
1672	np = netdev_priv(dev);
1673	phy_addr = np->phy_addr;
1674
1675	bmsr = mii_read (dev, phy_addr, PCS_BMSR);
1676	if (np->an_enable) {
1677		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1678			/* Auto-Negotiation not completed */
1679			return -1;
1680		}
1681		negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
1682			mii_read (dev, phy_addr, PCS_ANLPAR);
1683		np->speed = 1000;
1684		if (negotiate & PCS_ANAR_FULL_DUPLEX) {
1685			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1686			np->full_duplex = 1;
1687		} else {
1688			printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1689			np->full_duplex = 0;
1690		}
1691		if (negotiate & PCS_ANAR_PAUSE) {
1692			np->tx_flow &= 1;
1693			np->rx_flow &= 1;
1694		} else if (negotiate & PCS_ANAR_ASYMMETRIC) {
1695			np->tx_flow = 0;
1696			np->rx_flow &= 1;
1697		}
1698		/* else tx_flow, rx_flow = user select  */
1699	} else {
1700		__u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
1701		printk (KERN_INFO "Operating at 1000 Mbps, ");
1702		if (bmcr & BMCR_FULLDPLX) {
1703			printk (KERN_CONT "Full duplex\n");
1704		} else {
1705			printk (KERN_CONT "Half duplex\n");
1706		}
1707	}
1708	if (np->tx_flow)
1709		printk(KERN_INFO "Enable Tx Flow Control\n");
1710	else
1711		printk(KERN_INFO "Disable Tx Flow Control\n");
1712	if (np->rx_flow)
1713		printk(KERN_INFO "Enable Rx Flow Control\n");
1714	else
1715		printk(KERN_INFO "Disable Rx Flow Control\n");
1716
1717	return 0;
1718}
1719
1720static int
1721mii_set_media_pcs (struct net_device *dev)
1722{
1723	__u16 bmcr;
1724	__u16 esr;
1725	__u16 anar;
1726	int phy_addr;
1727	struct netdev_private *np;
1728	np = netdev_priv(dev);
1729	phy_addr = np->phy_addr;
1730
1731	/* Auto-Negotiation? */
1732	if (np->an_enable) {
1733		/* Advertise capabilities */
1734		esr = mii_read (dev, phy_addr, PCS_ESR);
1735		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1736			~PCS_ANAR_HALF_DUPLEX &
1737			~PCS_ANAR_FULL_DUPLEX;
1738		if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
1739			anar |= PCS_ANAR_HALF_DUPLEX;
1740		if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
1741			anar |= PCS_ANAR_FULL_DUPLEX;
1742		anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
1743		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1744
1745		/* Soft reset PHY */
1746		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1747		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1748		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1749		mdelay(1);
1750	} else {
1751		/* Force speed setting */
1752		/* PHY Reset */
1753		bmcr = BMCR_RESET;
1754		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1755		mdelay(10);
1756		if (np->full_duplex) {
1757			bmcr = BMCR_FULLDPLX;
1758			printk (KERN_INFO "Manual full duplex\n");
1759		} else {
1760			bmcr = 0;
1761			printk (KERN_INFO "Manual half duplex\n");
1762		}
1763		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1764		mdelay(10);
1765
1766		/*  Advertise nothing */
1767		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1768	}
1769	return 0;
1770}
1771
1772
1773static int
1774rio_close (struct net_device *dev)
1775{
1776	struct netdev_private *np = netdev_priv(dev);
1777	struct pci_dev *pdev = np->pdev;
1778
1779	netif_stop_queue (dev);
1780
1781	rio_hw_stop(dev);
1782
1783	free_irq(pdev->irq, dev);
1784	del_timer_sync (&np->timer);
1785
1786	free_list(dev);
1787
1788	return 0;
1789}
1790
1791static void
1792rio_remove1 (struct pci_dev *pdev)
1793{
1794	struct net_device *dev = pci_get_drvdata (pdev);
1795
1796	if (dev) {
1797		struct netdev_private *np = netdev_priv(dev);
1798
1799		unregister_netdev (dev);
1800		pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring,
1801				     np->rx_ring_dma);
1802		pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring,
1803				     np->tx_ring_dma);
1804#ifdef MEM_MAPPING
1805		pci_iounmap(pdev, np->ioaddr);
1806#endif
1807		pci_iounmap(pdev, np->eeprom_addr);
1808		free_netdev (dev);
1809		pci_release_regions (pdev);
1810		pci_disable_device (pdev);
1811	}
1812}
1813
1814#ifdef CONFIG_PM_SLEEP
1815static int rio_suspend(struct device *device)
1816{
1817	struct net_device *dev = dev_get_drvdata(device);
1818	struct netdev_private *np = netdev_priv(dev);
1819
1820	if (!netif_running(dev))
1821		return 0;
1822
1823	netif_device_detach(dev);
1824	del_timer_sync(&np->timer);
1825	rio_hw_stop(dev);
1826
1827	return 0;
1828}
1829
1830static int rio_resume(struct device *device)
1831{
1832	struct net_device *dev = dev_get_drvdata(device);
1833	struct netdev_private *np = netdev_priv(dev);
1834
1835	if (!netif_running(dev))
1836		return 0;
1837
1838	rio_reset_ring(np);
1839	rio_hw_init(dev);
1840	np->timer.expires = jiffies + 1 * HZ;
1841	add_timer(&np->timer);
1842	netif_device_attach(dev);
1843	dl2k_enable_int(np);
1844
1845	return 0;
1846}
1847
1848static SIMPLE_DEV_PM_OPS(rio_pm_ops, rio_suspend, rio_resume);
1849#define RIO_PM_OPS    (&rio_pm_ops)
1850
1851#else
1852
1853#define RIO_PM_OPS	NULL
1854
1855#endif /* CONFIG_PM_SLEEP */
1856
1857static struct pci_driver rio_driver = {
1858	.name		= "dl2k",
1859	.id_table	= rio_pci_tbl,
1860	.probe		= rio_probe1,
1861	.remove		= rio_remove1,
1862	.driver.pm	= RIO_PM_OPS,
1863};
1864
1865module_pci_driver(rio_driver);
 
 
 
 
 
 
 
 
 
1866
1867/* Read Documentation/networking/device_drivers/ethernet/dlink/dl2k.rst. */