Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 * arch/xtensa/kernel/process.c
  3 *
  4 * Xtensa Processor version.
  5 *
  6 * This file is subject to the terms and conditions of the GNU General Public
  7 * License.  See the file "COPYING" in the main directory of this archive
  8 * for more details.
  9 *
 10 * Copyright (C) 2001 - 2005 Tensilica Inc.
 11 *
 12 * Joe Taylor <joe@tensilica.com, joetylr@yahoo.com>
 13 * Chris Zankel <chris@zankel.net>
 14 * Marc Gauthier <marc@tensilica.com, marc@alumni.uwaterloo.ca>
 15 * Kevin Chea
 16 */
 17
 18#include <linux/errno.h>
 19#include <linux/sched.h>
 20#include <linux/sched/debug.h>
 21#include <linux/sched/task.h>
 22#include <linux/sched/task_stack.h>
 23#include <linux/kernel.h>
 24#include <linux/mm.h>
 25#include <linux/smp.h>
 26#include <linux/stddef.h>
 27#include <linux/unistd.h>
 28#include <linux/ptrace.h>
 29#include <linux/elf.h>
 30#include <linux/hw_breakpoint.h>
 31#include <linux/init.h>
 32#include <linux/prctl.h>
 33#include <linux/init_task.h>
 34#include <linux/module.h>
 35#include <linux/mqueue.h>
 36#include <linux/fs.h>
 37#include <linux/slab.h>
 38#include <linux/rcupdate.h>
 39
 40#include <asm/pgtable.h>
 41#include <linux/uaccess.h>
 42#include <asm/io.h>
 43#include <asm/processor.h>
 44#include <asm/platform.h>
 45#include <asm/mmu.h>
 46#include <asm/irq.h>
 47#include <linux/atomic.h>
 48#include <asm/asm-offsets.h>
 49#include <asm/regs.h>
 50#include <asm/hw_breakpoint.h>
 51
 52extern void ret_from_fork(void);
 53extern void ret_from_kernel_thread(void);
 54
 55struct task_struct *current_set[NR_CPUS] = {&init_task, };
 56
 57void (*pm_power_off)(void) = NULL;
 58EXPORT_SYMBOL(pm_power_off);
 59
 60
 61#ifdef CONFIG_CC_STACKPROTECTOR
 62#include <linux/stackprotector.h>
 63unsigned long __stack_chk_guard __read_mostly;
 64EXPORT_SYMBOL(__stack_chk_guard);
 65#endif
 66
 67#if XTENSA_HAVE_COPROCESSORS
 68
 69void coprocessor_release_all(struct thread_info *ti)
 70{
 71	unsigned long cpenable;
 72	int i;
 73
 74	/* Make sure we don't switch tasks during this operation. */
 75
 76	preempt_disable();
 77
 78	/* Walk through all cp owners and release it for the requested one. */
 79
 80	cpenable = ti->cpenable;
 81
 82	for (i = 0; i < XCHAL_CP_MAX; i++) {
 83		if (coprocessor_owner[i] == ti) {
 84			coprocessor_owner[i] = 0;
 85			cpenable &= ~(1 << i);
 86		}
 87	}
 88
 89	ti->cpenable = cpenable;
 90	coprocessor_clear_cpenable();
 
 91
 92	preempt_enable();
 93}
 94
 95void coprocessor_flush_all(struct thread_info *ti)
 96{
 97	unsigned long cpenable;
 98	int i;
 99
100	preempt_disable();
101
 
102	cpenable = ti->cpenable;
 
103
104	for (i = 0; i < XCHAL_CP_MAX; i++) {
105		if ((cpenable & 1) != 0 && coprocessor_owner[i] == ti)
106			coprocessor_flush(ti, i);
107		cpenable >>= 1;
108	}
 
109
110	preempt_enable();
111}
112
113#endif
114
115
116/*
117 * Powermanagement idle function, if any is provided by the platform.
118 */
119void arch_cpu_idle(void)
120{
121	platform_idle();
122}
123
124/*
125 * This is called when the thread calls exit().
126 */
127void exit_thread(struct task_struct *tsk)
128{
129#if XTENSA_HAVE_COPROCESSORS
130	coprocessor_release_all(task_thread_info(tsk));
131#endif
132}
133
134/*
135 * Flush thread state. This is called when a thread does an execve()
136 * Note that we flush coprocessor registers for the case execve fails.
137 */
138void flush_thread(void)
139{
140#if XTENSA_HAVE_COPROCESSORS
141	struct thread_info *ti = current_thread_info();
142	coprocessor_flush_all(ti);
143	coprocessor_release_all(ti);
144#endif
145	flush_ptrace_hw_breakpoint(current);
146}
147
148/*
149 * this gets called so that we can store coprocessor state into memory and
150 * copy the current task into the new thread.
151 */
152int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
153{
154#if XTENSA_HAVE_COPROCESSORS
155	coprocessor_flush_all(task_thread_info(src));
156#endif
157	*dst = *src;
158	return 0;
159}
160
161/*
162 * Copy thread.
163 *
164 * There are two modes in which this function is called:
165 * 1) Userspace thread creation,
166 *    regs != NULL, usp_thread_fn is userspace stack pointer.
167 *    It is expected to copy parent regs (in case CLONE_VM is not set
168 *    in the clone_flags) and set up passed usp in the childregs.
169 * 2) Kernel thread creation,
170 *    regs == NULL, usp_thread_fn is the function to run in the new thread
171 *    and thread_fn_arg is its parameter.
172 *    childregs are not used for the kernel threads.
173 *
174 * The stack layout for the new thread looks like this:
175 *
176 *	+------------------------+
177 *	|       childregs        |
178 *	+------------------------+ <- thread.sp = sp in dummy-frame
179 *	|      dummy-frame       |    (saved in dummy-frame spill-area)
180 *	+------------------------+
181 *
182 * We create a dummy frame to return to either ret_from_fork or
183 *   ret_from_kernel_thread:
184 *   a0 points to ret_from_fork/ret_from_kernel_thread (simulating a call4)
185 *   sp points to itself (thread.sp)
186 *   a2, a3 are unused for userspace threads,
187 *   a2 points to thread_fn, a3 holds thread_fn arg for kernel threads.
188 *
189 * Note: This is a pristine frame, so we don't need any spill region on top of
190 *       childregs.
191 *
192 * The fun part:  if we're keeping the same VM (i.e. cloning a thread,
193 * not an entire process), we're normally given a new usp, and we CANNOT share
194 * any live address register windows.  If we just copy those live frames over,
195 * the two threads (parent and child) will overflow the same frames onto the
196 * parent stack at different times, likely corrupting the parent stack (esp.
197 * if the parent returns from functions that called clone() and calls new
198 * ones, before the child overflows its now old copies of its parent windows).
199 * One solution is to spill windows to the parent stack, but that's fairly
200 * involved.  Much simpler to just not copy those live frames across.
201 */
202
203int copy_thread(unsigned long clone_flags, unsigned long usp_thread_fn,
204		unsigned long thread_fn_arg, struct task_struct *p)
 
205{
206	struct pt_regs *childregs = task_pt_regs(p);
207
208#if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
209	struct thread_info *ti;
210#endif
211
212	/* Create a call4 dummy-frame: a0 = 0, a1 = childregs. */
213	SPILL_SLOT(childregs, 1) = (unsigned long)childregs;
214	SPILL_SLOT(childregs, 0) = 0;
215
216	p->thread.sp = (unsigned long)childregs;
217
218	if (!(p->flags & PF_KTHREAD)) {
219		struct pt_regs *regs = current_pt_regs();
220		unsigned long usp = usp_thread_fn ?
221			usp_thread_fn : regs->areg[1];
222
223		p->thread.ra = MAKE_RA_FOR_CALL(
224				(unsigned long)ret_from_fork, 0x1);
225
226		/* This does not copy all the regs.
227		 * In a bout of brilliance or madness,
228		 * ARs beyond a0-a15 exist past the end of the struct.
229		 */
230		*childregs = *regs;
231		childregs->areg[1] = usp;
232		childregs->areg[2] = 0;
233
234		/* When sharing memory with the parent thread, the child
235		   usually starts on a pristine stack, so we have to reset
236		   windowbase, windowstart and wmask.
237		   (Note that such a new thread is required to always create
238		   an initial call4 frame)
239		   The exception is vfork, where the new thread continues to
240		   run on the parent's stack until it calls execve. This could
241		   be a call8 or call12, which requires a legal stack frame
242		   of the previous caller for the overflow handlers to work.
243		   (Note that it's always legal to overflow live registers).
244		   In this case, ensure to spill at least the stack pointer
245		   of that frame. */
246
247		if (clone_flags & CLONE_VM) {
248			/* check that caller window is live and same stack */
249			int len = childregs->wmask & ~0xf;
250			if (regs->areg[1] == usp && len != 0) {
251				int callinc = (regs->areg[0] >> 30) & 3;
252				int caller_ars = XCHAL_NUM_AREGS - callinc * 4;
253				put_user(regs->areg[caller_ars+1],
254					 (unsigned __user*)(usp - 12));
255			}
256			childregs->wmask = 1;
257			childregs->windowstart = 1;
258			childregs->windowbase = 0;
259		} else {
260			int len = childregs->wmask & ~0xf;
261			memcpy(&childregs->areg[XCHAL_NUM_AREGS - len/4],
262			       &regs->areg[XCHAL_NUM_AREGS - len/4], len);
263		}
264
265		/* The thread pointer is passed in the '4th argument' (= a5) */
 
266		if (clone_flags & CLONE_SETTLS)
267			childregs->threadptr = childregs->areg[5];
268	} else {
269		p->thread.ra = MAKE_RA_FOR_CALL(
270				(unsigned long)ret_from_kernel_thread, 1);
271
272		/* pass parameters to ret_from_kernel_thread:
273		 * a2 = thread_fn, a3 = thread_fn arg
274		 */
275		SPILL_SLOT(childregs, 3) = thread_fn_arg;
276		SPILL_SLOT(childregs, 2) = usp_thread_fn;
277
278		/* Childregs are only used when we're going to userspace
279		 * in which case start_thread will set them up.
280		 */
281	}
282
283#if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
284	ti = task_thread_info(p);
285	ti->cpenable = 0;
286#endif
287
288	clear_ptrace_hw_breakpoint(p);
289
290	return 0;
291}
292
293
294/*
295 * These bracket the sleeping functions..
296 */
297
298unsigned long get_wchan(struct task_struct *p)
299{
300	unsigned long sp, pc;
301	unsigned long stack_page = (unsigned long) task_stack_page(p);
302	int count = 0;
303
304	if (!p || p == current || p->state == TASK_RUNNING)
305		return 0;
306
307	sp = p->thread.sp;
308	pc = MAKE_PC_FROM_RA(p->thread.ra, p->thread.sp);
309
310	do {
311		if (sp < stack_page + sizeof(struct task_struct) ||
312		    sp >= (stack_page + THREAD_SIZE) ||
313		    pc == 0)
314			return 0;
315		if (!in_sched_functions(pc))
316			return pc;
317
318		/* Stack layout: sp-4: ra, sp-3: sp' */
319
320		pc = MAKE_PC_FROM_RA(*(unsigned long*)sp - 4, sp);
321		sp = *(unsigned long *)sp - 3;
322	} while (count++ < 16);
323	return 0;
324}
325
326/*
327 * xtensa_gregset_t and 'struct pt_regs' are vastly different formats
328 * of processor registers.  Besides different ordering,
329 * xtensa_gregset_t contains non-live register information that
330 * 'struct pt_regs' does not.  Exception handling (primarily) uses
331 * 'struct pt_regs'.  Core files and ptrace use xtensa_gregset_t.
332 *
333 */
334
335void xtensa_elf_core_copy_regs (xtensa_gregset_t *elfregs, struct pt_regs *regs)
336{
337	unsigned long wb, ws, wm;
338	int live, last;
339
340	wb = regs->windowbase;
341	ws = regs->windowstart;
342	wm = regs->wmask;
343	ws = ((ws >> wb) | (ws << (WSBITS - wb))) & ((1 << WSBITS) - 1);
344
345	/* Don't leak any random bits. */
346
347	memset(elfregs, 0, sizeof(*elfregs));
348
349	/* Note:  PS.EXCM is not set while user task is running; its
350	 * being set in regs->ps is for exception handling convenience.
351	 */
352
353	elfregs->pc		= regs->pc;
354	elfregs->ps		= (regs->ps & ~(1 << PS_EXCM_BIT));
355	elfregs->lbeg		= regs->lbeg;
356	elfregs->lend		= regs->lend;
357	elfregs->lcount		= regs->lcount;
358	elfregs->sar		= regs->sar;
359	elfregs->windowstart	= ws;
360
361	live = (wm & 2) ? 4 : (wm & 4) ? 8 : (wm & 8) ? 12 : 16;
362	last = XCHAL_NUM_AREGS - (wm >> 4) * 4;
363	memcpy(elfregs->a, regs->areg, live * 4);
364	memcpy(elfregs->a + last, regs->areg + last, (wm >> 4) * 16);
365}
366
367int dump_fpu(void)
368{
369	return 0;
370}
v5.9
  1/*
  2 * arch/xtensa/kernel/process.c
  3 *
  4 * Xtensa Processor version.
  5 *
  6 * This file is subject to the terms and conditions of the GNU General Public
  7 * License.  See the file "COPYING" in the main directory of this archive
  8 * for more details.
  9 *
 10 * Copyright (C) 2001 - 2005 Tensilica Inc.
 11 *
 12 * Joe Taylor <joe@tensilica.com, joetylr@yahoo.com>
 13 * Chris Zankel <chris@zankel.net>
 14 * Marc Gauthier <marc@tensilica.com, marc@alumni.uwaterloo.ca>
 15 * Kevin Chea
 16 */
 17
 18#include <linux/errno.h>
 19#include <linux/sched.h>
 20#include <linux/sched/debug.h>
 21#include <linux/sched/task.h>
 22#include <linux/sched/task_stack.h>
 23#include <linux/kernel.h>
 24#include <linux/mm.h>
 25#include <linux/smp.h>
 26#include <linux/stddef.h>
 27#include <linux/unistd.h>
 28#include <linux/ptrace.h>
 29#include <linux/elf.h>
 30#include <linux/hw_breakpoint.h>
 31#include <linux/init.h>
 32#include <linux/prctl.h>
 33#include <linux/init_task.h>
 34#include <linux/module.h>
 35#include <linux/mqueue.h>
 36#include <linux/fs.h>
 37#include <linux/slab.h>
 38#include <linux/rcupdate.h>
 39
 
 40#include <linux/uaccess.h>
 41#include <asm/io.h>
 42#include <asm/processor.h>
 43#include <asm/platform.h>
 44#include <asm/mmu.h>
 45#include <asm/irq.h>
 46#include <linux/atomic.h>
 47#include <asm/asm-offsets.h>
 48#include <asm/regs.h>
 49#include <asm/hw_breakpoint.h>
 50
 51extern void ret_from_fork(void);
 52extern void ret_from_kernel_thread(void);
 53
 
 
 54void (*pm_power_off)(void) = NULL;
 55EXPORT_SYMBOL(pm_power_off);
 56
 57
 58#ifdef CONFIG_STACKPROTECTOR
 59#include <linux/stackprotector.h>
 60unsigned long __stack_chk_guard __read_mostly;
 61EXPORT_SYMBOL(__stack_chk_guard);
 62#endif
 63
 64#if XTENSA_HAVE_COPROCESSORS
 65
 66void coprocessor_release_all(struct thread_info *ti)
 67{
 68	unsigned long cpenable;
 69	int i;
 70
 71	/* Make sure we don't switch tasks during this operation. */
 72
 73	preempt_disable();
 74
 75	/* Walk through all cp owners and release it for the requested one. */
 76
 77	cpenable = ti->cpenable;
 78
 79	for (i = 0; i < XCHAL_CP_MAX; i++) {
 80		if (coprocessor_owner[i] == ti) {
 81			coprocessor_owner[i] = 0;
 82			cpenable &= ~(1 << i);
 83		}
 84	}
 85
 86	ti->cpenable = cpenable;
 87	if (ti == current_thread_info())
 88		xtensa_set_sr(0, cpenable);
 89
 90	preempt_enable();
 91}
 92
 93void coprocessor_flush_all(struct thread_info *ti)
 94{
 95	unsigned long cpenable, old_cpenable;
 96	int i;
 97
 98	preempt_disable();
 99
100	old_cpenable = xtensa_get_sr(cpenable);
101	cpenable = ti->cpenable;
102	xtensa_set_sr(cpenable, cpenable);
103
104	for (i = 0; i < XCHAL_CP_MAX; i++) {
105		if ((cpenable & 1) != 0 && coprocessor_owner[i] == ti)
106			coprocessor_flush(ti, i);
107		cpenable >>= 1;
108	}
109	xtensa_set_sr(old_cpenable, cpenable);
110
111	preempt_enable();
112}
113
114#endif
115
116
117/*
118 * Powermanagement idle function, if any is provided by the platform.
119 */
120void arch_cpu_idle(void)
121{
122	platform_idle();
123}
124
125/*
126 * This is called when the thread calls exit().
127 */
128void exit_thread(struct task_struct *tsk)
129{
130#if XTENSA_HAVE_COPROCESSORS
131	coprocessor_release_all(task_thread_info(tsk));
132#endif
133}
134
135/*
136 * Flush thread state. This is called when a thread does an execve()
137 * Note that we flush coprocessor registers for the case execve fails.
138 */
139void flush_thread(void)
140{
141#if XTENSA_HAVE_COPROCESSORS
142	struct thread_info *ti = current_thread_info();
143	coprocessor_flush_all(ti);
144	coprocessor_release_all(ti);
145#endif
146	flush_ptrace_hw_breakpoint(current);
147}
148
149/*
150 * this gets called so that we can store coprocessor state into memory and
151 * copy the current task into the new thread.
152 */
153int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
154{
155#if XTENSA_HAVE_COPROCESSORS
156	coprocessor_flush_all(task_thread_info(src));
157#endif
158	*dst = *src;
159	return 0;
160}
161
162/*
163 * Copy thread.
164 *
165 * There are two modes in which this function is called:
166 * 1) Userspace thread creation,
167 *    regs != NULL, usp_thread_fn is userspace stack pointer.
168 *    It is expected to copy parent regs (in case CLONE_VM is not set
169 *    in the clone_flags) and set up passed usp in the childregs.
170 * 2) Kernel thread creation,
171 *    regs == NULL, usp_thread_fn is the function to run in the new thread
172 *    and thread_fn_arg is its parameter.
173 *    childregs are not used for the kernel threads.
174 *
175 * The stack layout for the new thread looks like this:
176 *
177 *	+------------------------+
178 *	|       childregs        |
179 *	+------------------------+ <- thread.sp = sp in dummy-frame
180 *	|      dummy-frame       |    (saved in dummy-frame spill-area)
181 *	+------------------------+
182 *
183 * We create a dummy frame to return to either ret_from_fork or
184 *   ret_from_kernel_thread:
185 *   a0 points to ret_from_fork/ret_from_kernel_thread (simulating a call4)
186 *   sp points to itself (thread.sp)
187 *   a2, a3 are unused for userspace threads,
188 *   a2 points to thread_fn, a3 holds thread_fn arg for kernel threads.
189 *
190 * Note: This is a pristine frame, so we don't need any spill region on top of
191 *       childregs.
192 *
193 * The fun part:  if we're keeping the same VM (i.e. cloning a thread,
194 * not an entire process), we're normally given a new usp, and we CANNOT share
195 * any live address register windows.  If we just copy those live frames over,
196 * the two threads (parent and child) will overflow the same frames onto the
197 * parent stack at different times, likely corrupting the parent stack (esp.
198 * if the parent returns from functions that called clone() and calls new
199 * ones, before the child overflows its now old copies of its parent windows).
200 * One solution is to spill windows to the parent stack, but that's fairly
201 * involved.  Much simpler to just not copy those live frames across.
202 */
203
204int copy_thread(unsigned long clone_flags, unsigned long usp_thread_fn,
205		unsigned long thread_fn_arg, struct task_struct *p,
206		unsigned long tls)
207{
208	struct pt_regs *childregs = task_pt_regs(p);
209
210#if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
211	struct thread_info *ti;
212#endif
213
214	/* Create a call4 dummy-frame: a0 = 0, a1 = childregs. */
215	SPILL_SLOT(childregs, 1) = (unsigned long)childregs;
216	SPILL_SLOT(childregs, 0) = 0;
217
218	p->thread.sp = (unsigned long)childregs;
219
220	if (!(p->flags & PF_KTHREAD)) {
221		struct pt_regs *regs = current_pt_regs();
222		unsigned long usp = usp_thread_fn ?
223			usp_thread_fn : regs->areg[1];
224
225		p->thread.ra = MAKE_RA_FOR_CALL(
226				(unsigned long)ret_from_fork, 0x1);
227
228		/* This does not copy all the regs.
229		 * In a bout of brilliance or madness,
230		 * ARs beyond a0-a15 exist past the end of the struct.
231		 */
232		*childregs = *regs;
233		childregs->areg[1] = usp;
234		childregs->areg[2] = 0;
235
236		/* When sharing memory with the parent thread, the child
237		   usually starts on a pristine stack, so we have to reset
238		   windowbase, windowstart and wmask.
239		   (Note that such a new thread is required to always create
240		   an initial call4 frame)
241		   The exception is vfork, where the new thread continues to
242		   run on the parent's stack until it calls execve. This could
243		   be a call8 or call12, which requires a legal stack frame
244		   of the previous caller for the overflow handlers to work.
245		   (Note that it's always legal to overflow live registers).
246		   In this case, ensure to spill at least the stack pointer
247		   of that frame. */
248
249		if (clone_flags & CLONE_VM) {
250			/* check that caller window is live and same stack */
251			int len = childregs->wmask & ~0xf;
252			if (regs->areg[1] == usp && len != 0) {
253				int callinc = (regs->areg[0] >> 30) & 3;
254				int caller_ars = XCHAL_NUM_AREGS - callinc * 4;
255				put_user(regs->areg[caller_ars+1],
256					 (unsigned __user*)(usp - 12));
257			}
258			childregs->wmask = 1;
259			childregs->windowstart = 1;
260			childregs->windowbase = 0;
261		} else {
262			int len = childregs->wmask & ~0xf;
263			memcpy(&childregs->areg[XCHAL_NUM_AREGS - len/4],
264			       &regs->areg[XCHAL_NUM_AREGS - len/4], len);
265		}
266
267		childregs->syscall = regs->syscall;
268
269		if (clone_flags & CLONE_SETTLS)
270			childregs->threadptr = tls;
271	} else {
272		p->thread.ra = MAKE_RA_FOR_CALL(
273				(unsigned long)ret_from_kernel_thread, 1);
274
275		/* pass parameters to ret_from_kernel_thread:
276		 * a2 = thread_fn, a3 = thread_fn arg
277		 */
278		SPILL_SLOT(childregs, 3) = thread_fn_arg;
279		SPILL_SLOT(childregs, 2) = usp_thread_fn;
280
281		/* Childregs are only used when we're going to userspace
282		 * in which case start_thread will set them up.
283		 */
284	}
285
286#if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
287	ti = task_thread_info(p);
288	ti->cpenable = 0;
289#endif
290
291	clear_ptrace_hw_breakpoint(p);
292
293	return 0;
294}
295
296
297/*
298 * These bracket the sleeping functions..
299 */
300
301unsigned long get_wchan(struct task_struct *p)
302{
303	unsigned long sp, pc;
304	unsigned long stack_page = (unsigned long) task_stack_page(p);
305	int count = 0;
306
307	if (!p || p == current || p->state == TASK_RUNNING)
308		return 0;
309
310	sp = p->thread.sp;
311	pc = MAKE_PC_FROM_RA(p->thread.ra, p->thread.sp);
312
313	do {
314		if (sp < stack_page + sizeof(struct task_struct) ||
315		    sp >= (stack_page + THREAD_SIZE) ||
316		    pc == 0)
317			return 0;
318		if (!in_sched_functions(pc))
319			return pc;
320
321		/* Stack layout: sp-4: ra, sp-3: sp' */
322
323		pc = MAKE_PC_FROM_RA(SPILL_SLOT(sp, 0), sp);
324		sp = SPILL_SLOT(sp, 1);
325	} while (count++ < 16);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
326	return 0;
327}