Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 | /* * arch/xtensa/kernel/process.c * * Xtensa Processor version. * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2001 - 2005 Tensilica Inc. * * Joe Taylor <joe@tensilica.com, joetylr@yahoo.com> * Chris Zankel <chris@zankel.net> * Marc Gauthier <marc@tensilica.com, marc@alumni.uwaterloo.ca> * Kevin Chea */ #include <linux/errno.h> #include <linux/sched.h> #include <linux/sched/debug.h> #include <linux/sched/task.h> #include <linux/sched/task_stack.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/smp.h> #include <linux/stddef.h> #include <linux/unistd.h> #include <linux/ptrace.h> #include <linux/elf.h> #include <linux/hw_breakpoint.h> #include <linux/init.h> #include <linux/prctl.h> #include <linux/init_task.h> #include <linux/module.h> #include <linux/mqueue.h> #include <linux/fs.h> #include <linux/slab.h> #include <linux/rcupdate.h> #include <linux/uaccess.h> #include <asm/io.h> #include <asm/processor.h> #include <asm/platform.h> #include <asm/mmu.h> #include <asm/irq.h> #include <linux/atomic.h> #include <asm/asm-offsets.h> #include <asm/regs.h> #include <asm/hw_breakpoint.h> #include <asm/sections.h> #include <asm/traps.h> extern void ret_from_fork(void); extern void ret_from_kernel_thread(void); void (*pm_power_off)(void) = NULL; EXPORT_SYMBOL(pm_power_off); #ifdef CONFIG_STACKPROTECTOR #include <linux/stackprotector.h> unsigned long __stack_chk_guard __read_mostly; EXPORT_SYMBOL(__stack_chk_guard); #endif #if XTENSA_HAVE_COPROCESSORS void local_coprocessors_flush_release_all(void) { struct thread_info **coprocessor_owner; struct thread_info *unique_owner[XCHAL_CP_MAX]; int n = 0; int i, j; coprocessor_owner = this_cpu_ptr(&exc_table)->coprocessor_owner; xtensa_set_sr(XCHAL_CP_MASK, cpenable); for (i = 0; i < XCHAL_CP_MAX; i++) { struct thread_info *ti = coprocessor_owner[i]; if (ti) { coprocessor_flush(ti, i); for (j = 0; j < n; j++) if (unique_owner[j] == ti) break; if (j == n) unique_owner[n++] = ti; coprocessor_owner[i] = NULL; } } for (i = 0; i < n; i++) { /* pairs with memw (1) in fast_coprocessor and memw in switch_to */ smp_wmb(); unique_owner[i]->cpenable = 0; } xtensa_set_sr(0, cpenable); } static void local_coprocessor_release_all(void *info) { struct thread_info *ti = info; struct thread_info **coprocessor_owner; int i; coprocessor_owner = this_cpu_ptr(&exc_table)->coprocessor_owner; /* Walk through all cp owners and release it for the requested one. */ for (i = 0; i < XCHAL_CP_MAX; i++) { if (coprocessor_owner[i] == ti) coprocessor_owner[i] = NULL; } /* pairs with memw (1) in fast_coprocessor and memw in switch_to */ smp_wmb(); ti->cpenable = 0; if (ti == current_thread_info()) xtensa_set_sr(0, cpenable); } void coprocessor_release_all(struct thread_info *ti) { if (ti->cpenable) { /* pairs with memw (2) in fast_coprocessor */ smp_rmb(); smp_call_function_single(ti->cp_owner_cpu, local_coprocessor_release_all, ti, true); } } static void local_coprocessor_flush_all(void *info) { struct thread_info *ti = info; struct thread_info **coprocessor_owner; unsigned long old_cpenable; int i; coprocessor_owner = this_cpu_ptr(&exc_table)->coprocessor_owner; old_cpenable = xtensa_xsr(ti->cpenable, cpenable); for (i = 0; i < XCHAL_CP_MAX; i++) { if (coprocessor_owner[i] == ti) coprocessor_flush(ti, i); } xtensa_set_sr(old_cpenable, cpenable); } void coprocessor_flush_all(struct thread_info *ti) { if (ti->cpenable) { /* pairs with memw (2) in fast_coprocessor */ smp_rmb(); smp_call_function_single(ti->cp_owner_cpu, local_coprocessor_flush_all, ti, true); } } static void local_coprocessor_flush_release_all(void *info) { local_coprocessor_flush_all(info); local_coprocessor_release_all(info); } void coprocessor_flush_release_all(struct thread_info *ti) { if (ti->cpenable) { /* pairs with memw (2) in fast_coprocessor */ smp_rmb(); smp_call_function_single(ti->cp_owner_cpu, local_coprocessor_flush_release_all, ti, true); } } #endif /* * Powermanagement idle function, if any is provided by the platform. */ void arch_cpu_idle(void) { platform_idle(); raw_local_irq_disable(); } /* * This is called when the thread calls exit(). */ void exit_thread(struct task_struct *tsk) { #if XTENSA_HAVE_COPROCESSORS coprocessor_release_all(task_thread_info(tsk)); #endif } /* * Flush thread state. This is called when a thread does an execve() * Note that we flush coprocessor registers for the case execve fails. */ void flush_thread(void) { #if XTENSA_HAVE_COPROCESSORS struct thread_info *ti = current_thread_info(); coprocessor_flush_release_all(ti); #endif flush_ptrace_hw_breakpoint(current); } /* * this gets called so that we can store coprocessor state into memory and * copy the current task into the new thread. */ int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) { #if XTENSA_HAVE_COPROCESSORS coprocessor_flush_all(task_thread_info(src)); #endif *dst = *src; return 0; } /* * Copy thread. * * There are two modes in which this function is called: * 1) Userspace thread creation, * regs != NULL, usp_thread_fn is userspace stack pointer. * It is expected to copy parent regs (in case CLONE_VM is not set * in the clone_flags) and set up passed usp in the childregs. * 2) Kernel thread creation, * regs == NULL, usp_thread_fn is the function to run in the new thread * and thread_fn_arg is its parameter. * childregs are not used for the kernel threads. * * The stack layout for the new thread looks like this: * * +------------------------+ * | childregs | * +------------------------+ <- thread.sp = sp in dummy-frame * | dummy-frame | (saved in dummy-frame spill-area) * +------------------------+ * * We create a dummy frame to return to either ret_from_fork or * ret_from_kernel_thread: * a0 points to ret_from_fork/ret_from_kernel_thread (simulating a call4) * sp points to itself (thread.sp) * a2, a3 are unused for userspace threads, * a2 points to thread_fn, a3 holds thread_fn arg for kernel threads. * * Note: This is a pristine frame, so we don't need any spill region on top of * childregs. * * The fun part: if we're keeping the same VM (i.e. cloning a thread, * not an entire process), we're normally given a new usp, and we CANNOT share * any live address register windows. If we just copy those live frames over, * the two threads (parent and child) will overflow the same frames onto the * parent stack at different times, likely corrupting the parent stack (esp. * if the parent returns from functions that called clone() and calls new * ones, before the child overflows its now old copies of its parent windows). * One solution is to spill windows to the parent stack, but that's fairly * involved. Much simpler to just not copy those live frames across. */ int copy_thread(struct task_struct *p, const struct kernel_clone_args *args) { unsigned long clone_flags = args->flags; unsigned long usp_thread_fn = args->stack; unsigned long tls = args->tls; struct pt_regs *childregs = task_pt_regs(p); #if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS) struct thread_info *ti; #endif #if defined(__XTENSA_WINDOWED_ABI__) /* Create a call4 dummy-frame: a0 = 0, a1 = childregs. */ SPILL_SLOT(childregs, 1) = (unsigned long)childregs; SPILL_SLOT(childregs, 0) = 0; p->thread.sp = (unsigned long)childregs; #elif defined(__XTENSA_CALL0_ABI__) /* Reserve 16 bytes for the _switch_to stack frame. */ p->thread.sp = (unsigned long)childregs - 16; #else #error Unsupported Xtensa ABI #endif if (!args->fn) { struct pt_regs *regs = current_pt_regs(); unsigned long usp = usp_thread_fn ? usp_thread_fn : regs->areg[1]; p->thread.ra = MAKE_RA_FOR_CALL( (unsigned long)ret_from_fork, 0x1); *childregs = *regs; childregs->areg[1] = usp; childregs->areg[2] = 0; /* When sharing memory with the parent thread, the child usually starts on a pristine stack, so we have to reset windowbase, windowstart and wmask. (Note that such a new thread is required to always create an initial call4 frame) The exception is vfork, where the new thread continues to run on the parent's stack until it calls execve. This could be a call8 or call12, which requires a legal stack frame of the previous caller for the overflow handlers to work. (Note that it's always legal to overflow live registers). In this case, ensure to spill at least the stack pointer of that frame. */ if (clone_flags & CLONE_VM) { /* check that caller window is live and same stack */ int len = childregs->wmask & ~0xf; if (regs->areg[1] == usp && len != 0) { int callinc = (regs->areg[0] >> 30) & 3; int caller_ars = XCHAL_NUM_AREGS - callinc * 4; put_user(regs->areg[caller_ars+1], (unsigned __user*)(usp - 12)); } childregs->wmask = 1; childregs->windowstart = 1; childregs->windowbase = 0; } if (clone_flags & CLONE_SETTLS) childregs->threadptr = tls; } else { p->thread.ra = MAKE_RA_FOR_CALL( (unsigned long)ret_from_kernel_thread, 1); /* pass parameters to ret_from_kernel_thread: */ #if defined(__XTENSA_WINDOWED_ABI__) /* * a2 = thread_fn, a3 = thread_fn arg. * Window underflow will load registers from the * spill slots on the stack on return from _switch_to. */ SPILL_SLOT(childregs, 2) = (unsigned long)args->fn; SPILL_SLOT(childregs, 3) = (unsigned long)args->fn_arg; #elif defined(__XTENSA_CALL0_ABI__) /* * a12 = thread_fn, a13 = thread_fn arg. * _switch_to epilogue will load registers from the stack. */ ((unsigned long *)p->thread.sp)[0] = (unsigned long)args->fn; ((unsigned long *)p->thread.sp)[1] = (unsigned long)args->fn_arg; #else #error Unsupported Xtensa ABI #endif /* Childregs are only used when we're going to userspace * in which case start_thread will set them up. */ } #if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS) ti = task_thread_info(p); ti->cpenable = 0; #endif clear_ptrace_hw_breakpoint(p); return 0; } /* * These bracket the sleeping functions.. */ unsigned long __get_wchan(struct task_struct *p) { unsigned long sp, pc; unsigned long stack_page = (unsigned long) task_stack_page(p); int count = 0; sp = p->thread.sp; pc = MAKE_PC_FROM_RA(p->thread.ra, _text); do { if (sp < stack_page + sizeof(struct task_struct) || sp >= (stack_page + THREAD_SIZE) || pc == 0) return 0; if (!in_sched_functions(pc)) return pc; /* Stack layout: sp-4: ra, sp-3: sp' */ pc = MAKE_PC_FROM_RA(SPILL_SLOT(sp, 0), _text); sp = SPILL_SLOT(sp, 1); } while (count++ < 16); return 0; } |