Loading...
1/*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34#include <linux/module.h>
35
36#include <net/tcp.h>
37#include <net/inet_common.h>
38#include <linux/highmem.h>
39#include <linux/netdevice.h>
40#include <linux/sched/signal.h>
41#include <linux/inetdevice.h>
42
43#include <net/tls.h>
44
45MODULE_AUTHOR("Mellanox Technologies");
46MODULE_DESCRIPTION("Transport Layer Security Support");
47MODULE_LICENSE("Dual BSD/GPL");
48
49enum {
50 TLSV4,
51 TLSV6,
52 TLS_NUM_PROTS,
53};
54
55enum {
56 TLS_BASE,
57 TLS_SW_TX,
58 TLS_SW_RX,
59 TLS_SW_RXTX,
60 TLS_HW_RECORD,
61 TLS_NUM_CONFIG,
62};
63
64static struct proto *saved_tcpv6_prot;
65static DEFINE_MUTEX(tcpv6_prot_mutex);
66static LIST_HEAD(device_list);
67static DEFINE_MUTEX(device_mutex);
68static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG];
69static struct proto_ops tls_sw_proto_ops;
70
71static inline void update_sk_prot(struct sock *sk, struct tls_context *ctx)
72{
73 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
74
75 sk->sk_prot = &tls_prots[ip_ver][ctx->conf];
76}
77
78int wait_on_pending_writer(struct sock *sk, long *timeo)
79{
80 int rc = 0;
81 DEFINE_WAIT_FUNC(wait, woken_wake_function);
82
83 add_wait_queue(sk_sleep(sk), &wait);
84 while (1) {
85 if (!*timeo) {
86 rc = -EAGAIN;
87 break;
88 }
89
90 if (signal_pending(current)) {
91 rc = sock_intr_errno(*timeo);
92 break;
93 }
94
95 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
96 break;
97 }
98 remove_wait_queue(sk_sleep(sk), &wait);
99 return rc;
100}
101
102int tls_push_sg(struct sock *sk,
103 struct tls_context *ctx,
104 struct scatterlist *sg,
105 u16 first_offset,
106 int flags)
107{
108 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
109 int ret = 0;
110 struct page *p;
111 size_t size;
112 int offset = first_offset;
113
114 size = sg->length - offset;
115 offset += sg->offset;
116
117 ctx->in_tcp_sendpages = true;
118 while (1) {
119 if (sg_is_last(sg))
120 sendpage_flags = flags;
121
122 /* is sending application-limited? */
123 tcp_rate_check_app_limited(sk);
124 p = sg_page(sg);
125retry:
126 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
127
128 if (ret != size) {
129 if (ret > 0) {
130 offset += ret;
131 size -= ret;
132 goto retry;
133 }
134
135 offset -= sg->offset;
136 ctx->partially_sent_offset = offset;
137 ctx->partially_sent_record = (void *)sg;
138 ctx->in_tcp_sendpages = false;
139 return ret;
140 }
141
142 put_page(p);
143 sk_mem_uncharge(sk, sg->length);
144 sg = sg_next(sg);
145 if (!sg)
146 break;
147
148 offset = sg->offset;
149 size = sg->length;
150 }
151
152 clear_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags);
153 ctx->in_tcp_sendpages = false;
154 ctx->sk_write_space(sk);
155
156 return 0;
157}
158
159static int tls_handle_open_record(struct sock *sk, int flags)
160{
161 struct tls_context *ctx = tls_get_ctx(sk);
162
163 if (tls_is_pending_open_record(ctx))
164 return ctx->push_pending_record(sk, flags);
165
166 return 0;
167}
168
169int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
170 unsigned char *record_type)
171{
172 struct cmsghdr *cmsg;
173 int rc = -EINVAL;
174
175 for_each_cmsghdr(cmsg, msg) {
176 if (!CMSG_OK(msg, cmsg))
177 return -EINVAL;
178 if (cmsg->cmsg_level != SOL_TLS)
179 continue;
180
181 switch (cmsg->cmsg_type) {
182 case TLS_SET_RECORD_TYPE:
183 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
184 return -EINVAL;
185
186 if (msg->msg_flags & MSG_MORE)
187 return -EINVAL;
188
189 rc = tls_handle_open_record(sk, msg->msg_flags);
190 if (rc)
191 return rc;
192
193 *record_type = *(unsigned char *)CMSG_DATA(cmsg);
194 rc = 0;
195 break;
196 default:
197 return -EINVAL;
198 }
199 }
200
201 return rc;
202}
203
204int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx,
205 int flags, long *timeo)
206{
207 struct scatterlist *sg;
208 u16 offset;
209
210 if (!tls_is_partially_sent_record(ctx))
211 return ctx->push_pending_record(sk, flags);
212
213 sg = ctx->partially_sent_record;
214 offset = ctx->partially_sent_offset;
215
216 ctx->partially_sent_record = NULL;
217 return tls_push_sg(sk, ctx, sg, offset, flags);
218}
219
220static void tls_write_space(struct sock *sk)
221{
222 struct tls_context *ctx = tls_get_ctx(sk);
223
224 /* We are already sending pages, ignore notification */
225 if (ctx->in_tcp_sendpages)
226 return;
227
228 if (!sk->sk_write_pending && tls_is_pending_closed_record(ctx)) {
229 gfp_t sk_allocation = sk->sk_allocation;
230 int rc;
231 long timeo = 0;
232
233 sk->sk_allocation = GFP_ATOMIC;
234 rc = tls_push_pending_closed_record(sk, ctx,
235 MSG_DONTWAIT |
236 MSG_NOSIGNAL,
237 &timeo);
238 sk->sk_allocation = sk_allocation;
239
240 if (rc < 0)
241 return;
242 }
243
244 ctx->sk_write_space(sk);
245}
246
247static void tls_sk_proto_close(struct sock *sk, long timeout)
248{
249 struct tls_context *ctx = tls_get_ctx(sk);
250 long timeo = sock_sndtimeo(sk, 0);
251 void (*sk_proto_close)(struct sock *sk, long timeout);
252 bool free_ctx = false;
253
254 lock_sock(sk);
255 sk_proto_close = ctx->sk_proto_close;
256
257 if (ctx->conf == TLS_BASE || ctx->conf == TLS_HW_RECORD) {
258 free_ctx = true;
259 goto skip_tx_cleanup;
260 }
261
262 if (!tls_complete_pending_work(sk, ctx, 0, &timeo))
263 tls_handle_open_record(sk, 0);
264
265 if (ctx->partially_sent_record) {
266 struct scatterlist *sg = ctx->partially_sent_record;
267
268 while (1) {
269 put_page(sg_page(sg));
270 sk_mem_uncharge(sk, sg->length);
271
272 if (sg_is_last(sg))
273 break;
274 sg++;
275 }
276 }
277
278 kfree(ctx->tx.rec_seq);
279 kfree(ctx->tx.iv);
280 kfree(ctx->rx.rec_seq);
281 kfree(ctx->rx.iv);
282
283 if (ctx->conf == TLS_SW_TX ||
284 ctx->conf == TLS_SW_RX ||
285 ctx->conf == TLS_SW_RXTX) {
286 tls_sw_free_resources(sk);
287 }
288
289skip_tx_cleanup:
290 release_sock(sk);
291 sk_proto_close(sk, timeout);
292 /* free ctx for TLS_HW_RECORD, used by tcp_set_state
293 * for sk->sk_prot->unhash [tls_hw_unhash]
294 */
295 if (free_ctx)
296 kfree(ctx);
297}
298
299static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
300 int __user *optlen)
301{
302 int rc = 0;
303 struct tls_context *ctx = tls_get_ctx(sk);
304 struct tls_crypto_info *crypto_info;
305 int len;
306
307 if (get_user(len, optlen))
308 return -EFAULT;
309
310 if (!optval || (len < sizeof(*crypto_info))) {
311 rc = -EINVAL;
312 goto out;
313 }
314
315 if (!ctx) {
316 rc = -EBUSY;
317 goto out;
318 }
319
320 /* get user crypto info */
321 crypto_info = &ctx->crypto_send;
322
323 if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
324 rc = -EBUSY;
325 goto out;
326 }
327
328 if (len == sizeof(*crypto_info)) {
329 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
330 rc = -EFAULT;
331 goto out;
332 }
333
334 switch (crypto_info->cipher_type) {
335 case TLS_CIPHER_AES_GCM_128: {
336 struct tls12_crypto_info_aes_gcm_128 *
337 crypto_info_aes_gcm_128 =
338 container_of(crypto_info,
339 struct tls12_crypto_info_aes_gcm_128,
340 info);
341
342 if (len != sizeof(*crypto_info_aes_gcm_128)) {
343 rc = -EINVAL;
344 goto out;
345 }
346 lock_sock(sk);
347 memcpy(crypto_info_aes_gcm_128->iv,
348 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
349 TLS_CIPHER_AES_GCM_128_IV_SIZE);
350 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
351 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
352 release_sock(sk);
353 if (copy_to_user(optval,
354 crypto_info_aes_gcm_128,
355 sizeof(*crypto_info_aes_gcm_128)))
356 rc = -EFAULT;
357 break;
358 }
359 default:
360 rc = -EINVAL;
361 }
362
363out:
364 return rc;
365}
366
367static int do_tls_getsockopt(struct sock *sk, int optname,
368 char __user *optval, int __user *optlen)
369{
370 int rc = 0;
371
372 switch (optname) {
373 case TLS_TX:
374 rc = do_tls_getsockopt_tx(sk, optval, optlen);
375 break;
376 default:
377 rc = -ENOPROTOOPT;
378 break;
379 }
380 return rc;
381}
382
383static int tls_getsockopt(struct sock *sk, int level, int optname,
384 char __user *optval, int __user *optlen)
385{
386 struct tls_context *ctx = tls_get_ctx(sk);
387
388 if (level != SOL_TLS)
389 return ctx->getsockopt(sk, level, optname, optval, optlen);
390
391 return do_tls_getsockopt(sk, optname, optval, optlen);
392}
393
394static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
395 unsigned int optlen, int tx)
396{
397 struct tls_crypto_info *crypto_info;
398 struct tls_context *ctx = tls_get_ctx(sk);
399 int rc = 0;
400 int conf;
401
402 if (!optval || (optlen < sizeof(*crypto_info))) {
403 rc = -EINVAL;
404 goto out;
405 }
406
407 if (tx)
408 crypto_info = &ctx->crypto_send;
409 else
410 crypto_info = &ctx->crypto_recv;
411
412 /* Currently we don't support set crypto info more than one time */
413 if (TLS_CRYPTO_INFO_READY(crypto_info)) {
414 rc = -EBUSY;
415 goto out;
416 }
417
418 rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
419 if (rc) {
420 rc = -EFAULT;
421 goto err_crypto_info;
422 }
423
424 /* check version */
425 if (crypto_info->version != TLS_1_2_VERSION) {
426 rc = -ENOTSUPP;
427 goto err_crypto_info;
428 }
429
430 switch (crypto_info->cipher_type) {
431 case TLS_CIPHER_AES_GCM_128: {
432 if (optlen != sizeof(struct tls12_crypto_info_aes_gcm_128)) {
433 rc = -EINVAL;
434 goto err_crypto_info;
435 }
436 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
437 optlen - sizeof(*crypto_info));
438 if (rc) {
439 rc = -EFAULT;
440 goto err_crypto_info;
441 }
442 break;
443 }
444 default:
445 rc = -EINVAL;
446 goto err_crypto_info;
447 }
448
449 /* currently SW is default, we will have ethtool in future */
450 if (tx) {
451 rc = tls_set_sw_offload(sk, ctx, 1);
452 if (ctx->conf == TLS_SW_RX)
453 conf = TLS_SW_RXTX;
454 else
455 conf = TLS_SW_TX;
456 } else {
457 rc = tls_set_sw_offload(sk, ctx, 0);
458 if (ctx->conf == TLS_SW_TX)
459 conf = TLS_SW_RXTX;
460 else
461 conf = TLS_SW_RX;
462 }
463
464 if (rc)
465 goto err_crypto_info;
466
467 ctx->conf = conf;
468 update_sk_prot(sk, ctx);
469 if (tx) {
470 ctx->sk_write_space = sk->sk_write_space;
471 sk->sk_write_space = tls_write_space;
472 } else {
473 sk->sk_socket->ops = &tls_sw_proto_ops;
474 }
475 goto out;
476
477err_crypto_info:
478 memset(crypto_info, 0, sizeof(*crypto_info));
479out:
480 return rc;
481}
482
483static int do_tls_setsockopt(struct sock *sk, int optname,
484 char __user *optval, unsigned int optlen)
485{
486 int rc = 0;
487
488 switch (optname) {
489 case TLS_TX:
490 case TLS_RX:
491 lock_sock(sk);
492 rc = do_tls_setsockopt_conf(sk, optval, optlen,
493 optname == TLS_TX);
494 release_sock(sk);
495 break;
496 default:
497 rc = -ENOPROTOOPT;
498 break;
499 }
500 return rc;
501}
502
503static int tls_setsockopt(struct sock *sk, int level, int optname,
504 char __user *optval, unsigned int optlen)
505{
506 struct tls_context *ctx = tls_get_ctx(sk);
507
508 if (level != SOL_TLS)
509 return ctx->setsockopt(sk, level, optname, optval, optlen);
510
511 return do_tls_setsockopt(sk, optname, optval, optlen);
512}
513
514static struct tls_context *create_ctx(struct sock *sk)
515{
516 struct inet_connection_sock *icsk = inet_csk(sk);
517 struct tls_context *ctx;
518
519 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
520 if (!ctx)
521 return NULL;
522
523 icsk->icsk_ulp_data = ctx;
524 return ctx;
525}
526
527static int tls_hw_prot(struct sock *sk)
528{
529 struct tls_context *ctx;
530 struct tls_device *dev;
531 int rc = 0;
532
533 mutex_lock(&device_mutex);
534 list_for_each_entry(dev, &device_list, dev_list) {
535 if (dev->feature && dev->feature(dev)) {
536 ctx = create_ctx(sk);
537 if (!ctx)
538 goto out;
539
540 ctx->hash = sk->sk_prot->hash;
541 ctx->unhash = sk->sk_prot->unhash;
542 ctx->sk_proto_close = sk->sk_prot->close;
543 ctx->conf = TLS_HW_RECORD;
544 update_sk_prot(sk, ctx);
545 rc = 1;
546 break;
547 }
548 }
549out:
550 mutex_unlock(&device_mutex);
551 return rc;
552}
553
554static void tls_hw_unhash(struct sock *sk)
555{
556 struct tls_context *ctx = tls_get_ctx(sk);
557 struct tls_device *dev;
558
559 mutex_lock(&device_mutex);
560 list_for_each_entry(dev, &device_list, dev_list) {
561 if (dev->unhash)
562 dev->unhash(dev, sk);
563 }
564 mutex_unlock(&device_mutex);
565 ctx->unhash(sk);
566}
567
568static int tls_hw_hash(struct sock *sk)
569{
570 struct tls_context *ctx = tls_get_ctx(sk);
571 struct tls_device *dev;
572 int err;
573
574 err = ctx->hash(sk);
575 mutex_lock(&device_mutex);
576 list_for_each_entry(dev, &device_list, dev_list) {
577 if (dev->hash)
578 err |= dev->hash(dev, sk);
579 }
580 mutex_unlock(&device_mutex);
581
582 if (err)
583 tls_hw_unhash(sk);
584 return err;
585}
586
587static void build_protos(struct proto *prot, struct proto *base)
588{
589 prot[TLS_BASE] = *base;
590 prot[TLS_BASE].setsockopt = tls_setsockopt;
591 prot[TLS_BASE].getsockopt = tls_getsockopt;
592 prot[TLS_BASE].close = tls_sk_proto_close;
593
594 prot[TLS_SW_TX] = prot[TLS_BASE];
595 prot[TLS_SW_TX].sendmsg = tls_sw_sendmsg;
596 prot[TLS_SW_TX].sendpage = tls_sw_sendpage;
597
598 prot[TLS_SW_RX] = prot[TLS_BASE];
599 prot[TLS_SW_RX].recvmsg = tls_sw_recvmsg;
600 prot[TLS_SW_RX].close = tls_sk_proto_close;
601
602 prot[TLS_SW_RXTX] = prot[TLS_SW_TX];
603 prot[TLS_SW_RXTX].recvmsg = tls_sw_recvmsg;
604 prot[TLS_SW_RXTX].close = tls_sk_proto_close;
605
606 prot[TLS_HW_RECORD] = *base;
607 prot[TLS_HW_RECORD].hash = tls_hw_hash;
608 prot[TLS_HW_RECORD].unhash = tls_hw_unhash;
609 prot[TLS_HW_RECORD].close = tls_sk_proto_close;
610}
611
612static int tls_init(struct sock *sk)
613{
614 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
615 struct tls_context *ctx;
616 int rc = 0;
617
618 if (tls_hw_prot(sk))
619 goto out;
620
621 /* The TLS ulp is currently supported only for TCP sockets
622 * in ESTABLISHED state.
623 * Supporting sockets in LISTEN state will require us
624 * to modify the accept implementation to clone rather then
625 * share the ulp context.
626 */
627 if (sk->sk_state != TCP_ESTABLISHED)
628 return -ENOTSUPP;
629
630 /* allocate tls context */
631 ctx = create_ctx(sk);
632 if (!ctx) {
633 rc = -ENOMEM;
634 goto out;
635 }
636 ctx->setsockopt = sk->sk_prot->setsockopt;
637 ctx->getsockopt = sk->sk_prot->getsockopt;
638 ctx->sk_proto_close = sk->sk_prot->close;
639
640 /* Build IPv6 TLS whenever the address of tcpv6_prot changes */
641 if (ip_ver == TLSV6 &&
642 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
643 mutex_lock(&tcpv6_prot_mutex);
644 if (likely(sk->sk_prot != saved_tcpv6_prot)) {
645 build_protos(tls_prots[TLSV6], sk->sk_prot);
646 smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
647 }
648 mutex_unlock(&tcpv6_prot_mutex);
649 }
650
651 ctx->conf = TLS_BASE;
652 update_sk_prot(sk, ctx);
653out:
654 return rc;
655}
656
657void tls_register_device(struct tls_device *device)
658{
659 mutex_lock(&device_mutex);
660 list_add_tail(&device->dev_list, &device_list);
661 mutex_unlock(&device_mutex);
662}
663EXPORT_SYMBOL(tls_register_device);
664
665void tls_unregister_device(struct tls_device *device)
666{
667 mutex_lock(&device_mutex);
668 list_del(&device->dev_list);
669 mutex_unlock(&device_mutex);
670}
671EXPORT_SYMBOL(tls_unregister_device);
672
673static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
674 .name = "tls",
675 .uid = TCP_ULP_TLS,
676 .user_visible = true,
677 .owner = THIS_MODULE,
678 .init = tls_init,
679};
680
681static int __init tls_register(void)
682{
683 build_protos(tls_prots[TLSV4], &tcp_prot);
684
685 tls_sw_proto_ops = inet_stream_ops;
686 tls_sw_proto_ops.poll = tls_sw_poll;
687 tls_sw_proto_ops.splice_read = tls_sw_splice_read;
688
689 tcp_register_ulp(&tcp_tls_ulp_ops);
690
691 return 0;
692}
693
694static void __exit tls_unregister(void)
695{
696 tcp_unregister_ulp(&tcp_tls_ulp_ops);
697}
698
699module_init(tls_register);
700module_exit(tls_unregister);
1/*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34#include <linux/module.h>
35
36#include <net/tcp.h>
37#include <net/inet_common.h>
38#include <linux/highmem.h>
39#include <linux/netdevice.h>
40#include <linux/sched/signal.h>
41#include <linux/inetdevice.h>
42#include <linux/inet_diag.h>
43
44#include <net/snmp.h>
45#include <net/tls.h>
46#include <net/tls_toe.h>
47
48MODULE_AUTHOR("Mellanox Technologies");
49MODULE_DESCRIPTION("Transport Layer Security Support");
50MODULE_LICENSE("Dual BSD/GPL");
51MODULE_ALIAS_TCP_ULP("tls");
52
53enum {
54 TLSV4,
55 TLSV6,
56 TLS_NUM_PROTS,
57};
58
59static const struct proto *saved_tcpv6_prot;
60static DEFINE_MUTEX(tcpv6_prot_mutex);
61static const struct proto *saved_tcpv4_prot;
62static DEFINE_MUTEX(tcpv4_prot_mutex);
63static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
64static struct proto_ops tls_sw_proto_ops;
65static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
66 const struct proto *base);
67
68void update_sk_prot(struct sock *sk, struct tls_context *ctx)
69{
70 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
71
72 WRITE_ONCE(sk->sk_prot,
73 &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
74}
75
76int wait_on_pending_writer(struct sock *sk, long *timeo)
77{
78 int rc = 0;
79 DEFINE_WAIT_FUNC(wait, woken_wake_function);
80
81 add_wait_queue(sk_sleep(sk), &wait);
82 while (1) {
83 if (!*timeo) {
84 rc = -EAGAIN;
85 break;
86 }
87
88 if (signal_pending(current)) {
89 rc = sock_intr_errno(*timeo);
90 break;
91 }
92
93 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
94 break;
95 }
96 remove_wait_queue(sk_sleep(sk), &wait);
97 return rc;
98}
99
100int tls_push_sg(struct sock *sk,
101 struct tls_context *ctx,
102 struct scatterlist *sg,
103 u16 first_offset,
104 int flags)
105{
106 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
107 int ret = 0;
108 struct page *p;
109 size_t size;
110 int offset = first_offset;
111
112 size = sg->length - offset;
113 offset += sg->offset;
114
115 ctx->in_tcp_sendpages = true;
116 while (1) {
117 if (sg_is_last(sg))
118 sendpage_flags = flags;
119
120 /* is sending application-limited? */
121 tcp_rate_check_app_limited(sk);
122 p = sg_page(sg);
123retry:
124 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
125
126 if (ret != size) {
127 if (ret > 0) {
128 offset += ret;
129 size -= ret;
130 goto retry;
131 }
132
133 offset -= sg->offset;
134 ctx->partially_sent_offset = offset;
135 ctx->partially_sent_record = (void *)sg;
136 ctx->in_tcp_sendpages = false;
137 return ret;
138 }
139
140 put_page(p);
141 sk_mem_uncharge(sk, sg->length);
142 sg = sg_next(sg);
143 if (!sg)
144 break;
145
146 offset = sg->offset;
147 size = sg->length;
148 }
149
150 ctx->in_tcp_sendpages = false;
151
152 return 0;
153}
154
155static int tls_handle_open_record(struct sock *sk, int flags)
156{
157 struct tls_context *ctx = tls_get_ctx(sk);
158
159 if (tls_is_pending_open_record(ctx))
160 return ctx->push_pending_record(sk, flags);
161
162 return 0;
163}
164
165int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
166 unsigned char *record_type)
167{
168 struct cmsghdr *cmsg;
169 int rc = -EINVAL;
170
171 for_each_cmsghdr(cmsg, msg) {
172 if (!CMSG_OK(msg, cmsg))
173 return -EINVAL;
174 if (cmsg->cmsg_level != SOL_TLS)
175 continue;
176
177 switch (cmsg->cmsg_type) {
178 case TLS_SET_RECORD_TYPE:
179 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
180 return -EINVAL;
181
182 if (msg->msg_flags & MSG_MORE)
183 return -EINVAL;
184
185 rc = tls_handle_open_record(sk, msg->msg_flags);
186 if (rc)
187 return rc;
188
189 *record_type = *(unsigned char *)CMSG_DATA(cmsg);
190 rc = 0;
191 break;
192 default:
193 return -EINVAL;
194 }
195 }
196
197 return rc;
198}
199
200int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
201 int flags)
202{
203 struct scatterlist *sg;
204 u16 offset;
205
206 sg = ctx->partially_sent_record;
207 offset = ctx->partially_sent_offset;
208
209 ctx->partially_sent_record = NULL;
210 return tls_push_sg(sk, ctx, sg, offset, flags);
211}
212
213void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
214{
215 struct scatterlist *sg;
216
217 for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
218 put_page(sg_page(sg));
219 sk_mem_uncharge(sk, sg->length);
220 }
221 ctx->partially_sent_record = NULL;
222}
223
224static void tls_write_space(struct sock *sk)
225{
226 struct tls_context *ctx = tls_get_ctx(sk);
227
228 /* If in_tcp_sendpages call lower protocol write space handler
229 * to ensure we wake up any waiting operations there. For example
230 * if do_tcp_sendpages where to call sk_wait_event.
231 */
232 if (ctx->in_tcp_sendpages) {
233 ctx->sk_write_space(sk);
234 return;
235 }
236
237#ifdef CONFIG_TLS_DEVICE
238 if (ctx->tx_conf == TLS_HW)
239 tls_device_write_space(sk, ctx);
240 else
241#endif
242 tls_sw_write_space(sk, ctx);
243
244 ctx->sk_write_space(sk);
245}
246
247/**
248 * tls_ctx_free() - free TLS ULP context
249 * @sk: socket to with @ctx is attached
250 * @ctx: TLS context structure
251 *
252 * Free TLS context. If @sk is %NULL caller guarantees that the socket
253 * to which @ctx was attached has no outstanding references.
254 */
255void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
256{
257 if (!ctx)
258 return;
259
260 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
261 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
262 mutex_destroy(&ctx->tx_lock);
263
264 if (sk)
265 kfree_rcu(ctx, rcu);
266 else
267 kfree(ctx);
268}
269
270static void tls_sk_proto_cleanup(struct sock *sk,
271 struct tls_context *ctx, long timeo)
272{
273 if (unlikely(sk->sk_write_pending) &&
274 !wait_on_pending_writer(sk, &timeo))
275 tls_handle_open_record(sk, 0);
276
277 /* We need these for tls_sw_fallback handling of other packets */
278 if (ctx->tx_conf == TLS_SW) {
279 kfree(ctx->tx.rec_seq);
280 kfree(ctx->tx.iv);
281 tls_sw_release_resources_tx(sk);
282 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
283 } else if (ctx->tx_conf == TLS_HW) {
284 tls_device_free_resources_tx(sk);
285 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
286 }
287
288 if (ctx->rx_conf == TLS_SW) {
289 tls_sw_release_resources_rx(sk);
290 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
291 } else if (ctx->rx_conf == TLS_HW) {
292 tls_device_offload_cleanup_rx(sk);
293 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
294 }
295}
296
297static void tls_sk_proto_close(struct sock *sk, long timeout)
298{
299 struct inet_connection_sock *icsk = inet_csk(sk);
300 struct tls_context *ctx = tls_get_ctx(sk);
301 long timeo = sock_sndtimeo(sk, 0);
302 bool free_ctx;
303
304 if (ctx->tx_conf == TLS_SW)
305 tls_sw_cancel_work_tx(ctx);
306
307 lock_sock(sk);
308 free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
309
310 if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
311 tls_sk_proto_cleanup(sk, ctx, timeo);
312
313 write_lock_bh(&sk->sk_callback_lock);
314 if (free_ctx)
315 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
316 WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
317 if (sk->sk_write_space == tls_write_space)
318 sk->sk_write_space = ctx->sk_write_space;
319 write_unlock_bh(&sk->sk_callback_lock);
320 release_sock(sk);
321 if (ctx->tx_conf == TLS_SW)
322 tls_sw_free_ctx_tx(ctx);
323 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
324 tls_sw_strparser_done(ctx);
325 if (ctx->rx_conf == TLS_SW)
326 tls_sw_free_ctx_rx(ctx);
327 ctx->sk_proto->close(sk, timeout);
328
329 if (free_ctx)
330 tls_ctx_free(sk, ctx);
331}
332
333static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
334 int __user *optlen)
335{
336 int rc = 0;
337 struct tls_context *ctx = tls_get_ctx(sk);
338 struct tls_crypto_info *crypto_info;
339 int len;
340
341 if (get_user(len, optlen))
342 return -EFAULT;
343
344 if (!optval || (len < sizeof(*crypto_info))) {
345 rc = -EINVAL;
346 goto out;
347 }
348
349 if (!ctx) {
350 rc = -EBUSY;
351 goto out;
352 }
353
354 /* get user crypto info */
355 crypto_info = &ctx->crypto_send.info;
356
357 if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
358 rc = -EBUSY;
359 goto out;
360 }
361
362 if (len == sizeof(*crypto_info)) {
363 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
364 rc = -EFAULT;
365 goto out;
366 }
367
368 switch (crypto_info->cipher_type) {
369 case TLS_CIPHER_AES_GCM_128: {
370 struct tls12_crypto_info_aes_gcm_128 *
371 crypto_info_aes_gcm_128 =
372 container_of(crypto_info,
373 struct tls12_crypto_info_aes_gcm_128,
374 info);
375
376 if (len != sizeof(*crypto_info_aes_gcm_128)) {
377 rc = -EINVAL;
378 goto out;
379 }
380 lock_sock(sk);
381 memcpy(crypto_info_aes_gcm_128->iv,
382 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
383 TLS_CIPHER_AES_GCM_128_IV_SIZE);
384 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
385 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
386 release_sock(sk);
387 if (copy_to_user(optval,
388 crypto_info_aes_gcm_128,
389 sizeof(*crypto_info_aes_gcm_128)))
390 rc = -EFAULT;
391 break;
392 }
393 case TLS_CIPHER_AES_GCM_256: {
394 struct tls12_crypto_info_aes_gcm_256 *
395 crypto_info_aes_gcm_256 =
396 container_of(crypto_info,
397 struct tls12_crypto_info_aes_gcm_256,
398 info);
399
400 if (len != sizeof(*crypto_info_aes_gcm_256)) {
401 rc = -EINVAL;
402 goto out;
403 }
404 lock_sock(sk);
405 memcpy(crypto_info_aes_gcm_256->iv,
406 ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
407 TLS_CIPHER_AES_GCM_256_IV_SIZE);
408 memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq,
409 TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
410 release_sock(sk);
411 if (copy_to_user(optval,
412 crypto_info_aes_gcm_256,
413 sizeof(*crypto_info_aes_gcm_256)))
414 rc = -EFAULT;
415 break;
416 }
417 default:
418 rc = -EINVAL;
419 }
420
421out:
422 return rc;
423}
424
425static int do_tls_getsockopt(struct sock *sk, int optname,
426 char __user *optval, int __user *optlen)
427{
428 int rc = 0;
429
430 switch (optname) {
431 case TLS_TX:
432 rc = do_tls_getsockopt_tx(sk, optval, optlen);
433 break;
434 default:
435 rc = -ENOPROTOOPT;
436 break;
437 }
438 return rc;
439}
440
441static int tls_getsockopt(struct sock *sk, int level, int optname,
442 char __user *optval, int __user *optlen)
443{
444 struct tls_context *ctx = tls_get_ctx(sk);
445
446 if (level != SOL_TLS)
447 return ctx->sk_proto->getsockopt(sk, level,
448 optname, optval, optlen);
449
450 return do_tls_getsockopt(sk, optname, optval, optlen);
451}
452
453static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
454 unsigned int optlen, int tx)
455{
456 struct tls_crypto_info *crypto_info;
457 struct tls_crypto_info *alt_crypto_info;
458 struct tls_context *ctx = tls_get_ctx(sk);
459 size_t optsize;
460 int rc = 0;
461 int conf;
462
463 if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info))) {
464 rc = -EINVAL;
465 goto out;
466 }
467
468 if (tx) {
469 crypto_info = &ctx->crypto_send.info;
470 alt_crypto_info = &ctx->crypto_recv.info;
471 } else {
472 crypto_info = &ctx->crypto_recv.info;
473 alt_crypto_info = &ctx->crypto_send.info;
474 }
475
476 /* Currently we don't support set crypto info more than one time */
477 if (TLS_CRYPTO_INFO_READY(crypto_info)) {
478 rc = -EBUSY;
479 goto out;
480 }
481
482 rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
483 if (rc) {
484 rc = -EFAULT;
485 goto err_crypto_info;
486 }
487
488 /* check version */
489 if (crypto_info->version != TLS_1_2_VERSION &&
490 crypto_info->version != TLS_1_3_VERSION) {
491 rc = -EINVAL;
492 goto err_crypto_info;
493 }
494
495 /* Ensure that TLS version and ciphers are same in both directions */
496 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
497 if (alt_crypto_info->version != crypto_info->version ||
498 alt_crypto_info->cipher_type != crypto_info->cipher_type) {
499 rc = -EINVAL;
500 goto err_crypto_info;
501 }
502 }
503
504 switch (crypto_info->cipher_type) {
505 case TLS_CIPHER_AES_GCM_128:
506 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
507 break;
508 case TLS_CIPHER_AES_GCM_256: {
509 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
510 break;
511 }
512 case TLS_CIPHER_AES_CCM_128:
513 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
514 break;
515 default:
516 rc = -EINVAL;
517 goto err_crypto_info;
518 }
519
520 if (optlen != optsize) {
521 rc = -EINVAL;
522 goto err_crypto_info;
523 }
524
525 rc = copy_from_sockptr_offset(crypto_info + 1, optval,
526 sizeof(*crypto_info),
527 optlen - sizeof(*crypto_info));
528 if (rc) {
529 rc = -EFAULT;
530 goto err_crypto_info;
531 }
532
533 if (tx) {
534 rc = tls_set_device_offload(sk, ctx);
535 conf = TLS_HW;
536 if (!rc) {
537 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
538 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
539 } else {
540 rc = tls_set_sw_offload(sk, ctx, 1);
541 if (rc)
542 goto err_crypto_info;
543 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
544 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
545 conf = TLS_SW;
546 }
547 } else {
548 rc = tls_set_device_offload_rx(sk, ctx);
549 conf = TLS_HW;
550 if (!rc) {
551 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
552 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
553 } else {
554 rc = tls_set_sw_offload(sk, ctx, 0);
555 if (rc)
556 goto err_crypto_info;
557 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
558 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
559 conf = TLS_SW;
560 }
561 tls_sw_strparser_arm(sk, ctx);
562 }
563
564 if (tx)
565 ctx->tx_conf = conf;
566 else
567 ctx->rx_conf = conf;
568 update_sk_prot(sk, ctx);
569 if (tx) {
570 ctx->sk_write_space = sk->sk_write_space;
571 sk->sk_write_space = tls_write_space;
572 } else {
573 sk->sk_socket->ops = &tls_sw_proto_ops;
574 }
575 goto out;
576
577err_crypto_info:
578 memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
579out:
580 return rc;
581}
582
583static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
584 unsigned int optlen)
585{
586 int rc = 0;
587
588 switch (optname) {
589 case TLS_TX:
590 case TLS_RX:
591 lock_sock(sk);
592 rc = do_tls_setsockopt_conf(sk, optval, optlen,
593 optname == TLS_TX);
594 release_sock(sk);
595 break;
596 default:
597 rc = -ENOPROTOOPT;
598 break;
599 }
600 return rc;
601}
602
603static int tls_setsockopt(struct sock *sk, int level, int optname,
604 sockptr_t optval, unsigned int optlen)
605{
606 struct tls_context *ctx = tls_get_ctx(sk);
607
608 if (level != SOL_TLS)
609 return ctx->sk_proto->setsockopt(sk, level, optname, optval,
610 optlen);
611
612 return do_tls_setsockopt(sk, optname, optval, optlen);
613}
614
615struct tls_context *tls_ctx_create(struct sock *sk)
616{
617 struct inet_connection_sock *icsk = inet_csk(sk);
618 struct tls_context *ctx;
619
620 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
621 if (!ctx)
622 return NULL;
623
624 mutex_init(&ctx->tx_lock);
625 rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
626 ctx->sk_proto = READ_ONCE(sk->sk_prot);
627 return ctx;
628}
629
630static void tls_build_proto(struct sock *sk)
631{
632 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
633 struct proto *prot = READ_ONCE(sk->sk_prot);
634
635 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
636 if (ip_ver == TLSV6 &&
637 unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
638 mutex_lock(&tcpv6_prot_mutex);
639 if (likely(prot != saved_tcpv6_prot)) {
640 build_protos(tls_prots[TLSV6], prot);
641 smp_store_release(&saved_tcpv6_prot, prot);
642 }
643 mutex_unlock(&tcpv6_prot_mutex);
644 }
645
646 if (ip_ver == TLSV4 &&
647 unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
648 mutex_lock(&tcpv4_prot_mutex);
649 if (likely(prot != saved_tcpv4_prot)) {
650 build_protos(tls_prots[TLSV4], prot);
651 smp_store_release(&saved_tcpv4_prot, prot);
652 }
653 mutex_unlock(&tcpv4_prot_mutex);
654 }
655}
656
657static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
658 const struct proto *base)
659{
660 prot[TLS_BASE][TLS_BASE] = *base;
661 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt;
662 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt;
663 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close;
664
665 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
666 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg;
667 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage;
668
669 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
670 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg;
671 prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
672 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close;
673
674 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
675 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg;
676 prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read;
677 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close;
678
679#ifdef CONFIG_TLS_DEVICE
680 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
681 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg;
682 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage;
683
684 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
685 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg;
686 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage;
687
688 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
689
690 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
691
692 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
693#endif
694#ifdef CONFIG_TLS_TOE
695 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
696 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_toe_hash;
697 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_toe_unhash;
698#endif
699}
700
701static int tls_init(struct sock *sk)
702{
703 struct tls_context *ctx;
704 int rc = 0;
705
706 tls_build_proto(sk);
707
708#ifdef CONFIG_TLS_TOE
709 if (tls_toe_bypass(sk))
710 return 0;
711#endif
712
713 /* The TLS ulp is currently supported only for TCP sockets
714 * in ESTABLISHED state.
715 * Supporting sockets in LISTEN state will require us
716 * to modify the accept implementation to clone rather then
717 * share the ulp context.
718 */
719 if (sk->sk_state != TCP_ESTABLISHED)
720 return -ENOTCONN;
721
722 /* allocate tls context */
723 write_lock_bh(&sk->sk_callback_lock);
724 ctx = tls_ctx_create(sk);
725 if (!ctx) {
726 rc = -ENOMEM;
727 goto out;
728 }
729
730 ctx->tx_conf = TLS_BASE;
731 ctx->rx_conf = TLS_BASE;
732 update_sk_prot(sk, ctx);
733out:
734 write_unlock_bh(&sk->sk_callback_lock);
735 return rc;
736}
737
738static void tls_update(struct sock *sk, struct proto *p,
739 void (*write_space)(struct sock *sk))
740{
741 struct tls_context *ctx;
742
743 ctx = tls_get_ctx(sk);
744 if (likely(ctx)) {
745 ctx->sk_write_space = write_space;
746 ctx->sk_proto = p;
747 } else {
748 /* Pairs with lockless read in sk_clone_lock(). */
749 WRITE_ONCE(sk->sk_prot, p);
750 sk->sk_write_space = write_space;
751 }
752}
753
754static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
755{
756 u16 version, cipher_type;
757 struct tls_context *ctx;
758 struct nlattr *start;
759 int err;
760
761 start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
762 if (!start)
763 return -EMSGSIZE;
764
765 rcu_read_lock();
766 ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
767 if (!ctx) {
768 err = 0;
769 goto nla_failure;
770 }
771 version = ctx->prot_info.version;
772 if (version) {
773 err = nla_put_u16(skb, TLS_INFO_VERSION, version);
774 if (err)
775 goto nla_failure;
776 }
777 cipher_type = ctx->prot_info.cipher_type;
778 if (cipher_type) {
779 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
780 if (err)
781 goto nla_failure;
782 }
783 err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
784 if (err)
785 goto nla_failure;
786
787 err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
788 if (err)
789 goto nla_failure;
790
791 rcu_read_unlock();
792 nla_nest_end(skb, start);
793 return 0;
794
795nla_failure:
796 rcu_read_unlock();
797 nla_nest_cancel(skb, start);
798 return err;
799}
800
801static size_t tls_get_info_size(const struct sock *sk)
802{
803 size_t size = 0;
804
805 size += nla_total_size(0) + /* INET_ULP_INFO_TLS */
806 nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */
807 nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */
808 nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */
809 nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */
810 0;
811
812 return size;
813}
814
815static int __net_init tls_init_net(struct net *net)
816{
817 int err;
818
819 net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
820 if (!net->mib.tls_statistics)
821 return -ENOMEM;
822
823 err = tls_proc_init(net);
824 if (err)
825 goto err_free_stats;
826
827 return 0;
828err_free_stats:
829 free_percpu(net->mib.tls_statistics);
830 return err;
831}
832
833static void __net_exit tls_exit_net(struct net *net)
834{
835 tls_proc_fini(net);
836 free_percpu(net->mib.tls_statistics);
837}
838
839static struct pernet_operations tls_proc_ops = {
840 .init = tls_init_net,
841 .exit = tls_exit_net,
842};
843
844static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
845 .name = "tls",
846 .owner = THIS_MODULE,
847 .init = tls_init,
848 .update = tls_update,
849 .get_info = tls_get_info,
850 .get_info_size = tls_get_info_size,
851};
852
853static int __init tls_register(void)
854{
855 int err;
856
857 err = register_pernet_subsys(&tls_proc_ops);
858 if (err)
859 return err;
860
861 tls_sw_proto_ops = inet_stream_ops;
862 tls_sw_proto_ops.splice_read = tls_sw_splice_read;
863 tls_sw_proto_ops.sendpage_locked = tls_sw_sendpage_locked,
864
865 tls_device_init();
866 tcp_register_ulp(&tcp_tls_ulp_ops);
867
868 return 0;
869}
870
871static void __exit tls_unregister(void)
872{
873 tcp_unregister_ulp(&tcp_tls_ulp_ops);
874 tls_device_cleanup();
875 unregister_pernet_subsys(&tls_proc_ops);
876}
877
878module_init(tls_register);
879module_exit(tls_unregister);