Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
  3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
  4 *
  5 * This software is available to you under a choice of one of two
  6 * licenses.  You may choose to be licensed under the terms of the GNU
  7 * General Public License (GPL) Version 2, available from the file
  8 * COPYING in the main directory of this source tree, or the
  9 * OpenIB.org BSD license below:
 10 *
 11 *     Redistribution and use in source and binary forms, with or
 12 *     without modification, are permitted provided that the following
 13 *     conditions are met:
 14 *
 15 *      - Redistributions of source code must retain the above
 16 *        copyright notice, this list of conditions and the following
 17 *        disclaimer.
 18 *
 19 *      - Redistributions in binary form must reproduce the above
 20 *        copyright notice, this list of conditions and the following
 21 *        disclaimer in the documentation and/or other materials
 22 *        provided with the distribution.
 23 *
 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 31 * SOFTWARE.
 32 */
 33
 34#include <linux/module.h>
 35
 36#include <net/tcp.h>
 37#include <net/inet_common.h>
 38#include <linux/highmem.h>
 39#include <linux/netdevice.h>
 40#include <linux/sched/signal.h>
 41#include <linux/inetdevice.h>
 
 42
 
 43#include <net/tls.h>
 
 44
 45MODULE_AUTHOR("Mellanox Technologies");
 46MODULE_DESCRIPTION("Transport Layer Security Support");
 47MODULE_LICENSE("Dual BSD/GPL");
 
 48
 49enum {
 50	TLSV4,
 51	TLSV6,
 52	TLS_NUM_PROTS,
 53};
 54
 55enum {
 56	TLS_BASE,
 57	TLS_SW_TX,
 58	TLS_SW_RX,
 59	TLS_SW_RXTX,
 60	TLS_HW_RECORD,
 61	TLS_NUM_CONFIG,
 62};
 63
 64static struct proto *saved_tcpv6_prot;
 65static DEFINE_MUTEX(tcpv6_prot_mutex);
 66static LIST_HEAD(device_list);
 67static DEFINE_MUTEX(device_mutex);
 68static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG];
 69static struct proto_ops tls_sw_proto_ops;
 
 
 70
 71static inline void update_sk_prot(struct sock *sk, struct tls_context *ctx)
 72{
 73	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
 74
 75	sk->sk_prot = &tls_prots[ip_ver][ctx->conf];
 
 76}
 77
 78int wait_on_pending_writer(struct sock *sk, long *timeo)
 79{
 80	int rc = 0;
 81	DEFINE_WAIT_FUNC(wait, woken_wake_function);
 82
 83	add_wait_queue(sk_sleep(sk), &wait);
 84	while (1) {
 85		if (!*timeo) {
 86			rc = -EAGAIN;
 87			break;
 88		}
 89
 90		if (signal_pending(current)) {
 91			rc = sock_intr_errno(*timeo);
 92			break;
 93		}
 94
 95		if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
 96			break;
 97	}
 98	remove_wait_queue(sk_sleep(sk), &wait);
 99	return rc;
100}
101
102int tls_push_sg(struct sock *sk,
103		struct tls_context *ctx,
104		struct scatterlist *sg,
105		u16 first_offset,
106		int flags)
107{
108	int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
109	int ret = 0;
110	struct page *p;
111	size_t size;
112	int offset = first_offset;
113
114	size = sg->length - offset;
115	offset += sg->offset;
116
117	ctx->in_tcp_sendpages = true;
118	while (1) {
119		if (sg_is_last(sg))
120			sendpage_flags = flags;
121
122		/* is sending application-limited? */
123		tcp_rate_check_app_limited(sk);
124		p = sg_page(sg);
125retry:
126		ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
127
128		if (ret != size) {
129			if (ret > 0) {
130				offset += ret;
131				size -= ret;
132				goto retry;
133			}
134
135			offset -= sg->offset;
136			ctx->partially_sent_offset = offset;
137			ctx->partially_sent_record = (void *)sg;
138			ctx->in_tcp_sendpages = false;
139			return ret;
140		}
141
142		put_page(p);
143		sk_mem_uncharge(sk, sg->length);
144		sg = sg_next(sg);
145		if (!sg)
146			break;
147
148		offset = sg->offset;
149		size = sg->length;
150	}
151
152	clear_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags);
153	ctx->in_tcp_sendpages = false;
154	ctx->sk_write_space(sk);
155
156	return 0;
157}
158
159static int tls_handle_open_record(struct sock *sk, int flags)
160{
161	struct tls_context *ctx = tls_get_ctx(sk);
162
163	if (tls_is_pending_open_record(ctx))
164		return ctx->push_pending_record(sk, flags);
165
166	return 0;
167}
168
169int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
170		      unsigned char *record_type)
171{
172	struct cmsghdr *cmsg;
173	int rc = -EINVAL;
174
175	for_each_cmsghdr(cmsg, msg) {
176		if (!CMSG_OK(msg, cmsg))
177			return -EINVAL;
178		if (cmsg->cmsg_level != SOL_TLS)
179			continue;
180
181		switch (cmsg->cmsg_type) {
182		case TLS_SET_RECORD_TYPE:
183			if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
184				return -EINVAL;
185
186			if (msg->msg_flags & MSG_MORE)
187				return -EINVAL;
188
189			rc = tls_handle_open_record(sk, msg->msg_flags);
190			if (rc)
191				return rc;
192
193			*record_type = *(unsigned char *)CMSG_DATA(cmsg);
194			rc = 0;
195			break;
196		default:
197			return -EINVAL;
198		}
199	}
200
201	return rc;
202}
203
204int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx,
205				   int flags, long *timeo)
206{
207	struct scatterlist *sg;
208	u16 offset;
209
210	if (!tls_is_partially_sent_record(ctx))
211		return ctx->push_pending_record(sk, flags);
212
213	sg = ctx->partially_sent_record;
214	offset = ctx->partially_sent_offset;
215
216	ctx->partially_sent_record = NULL;
217	return tls_push_sg(sk, ctx, sg, offset, flags);
218}
219
 
 
 
 
 
 
 
 
 
 
 
220static void tls_write_space(struct sock *sk)
221{
222	struct tls_context *ctx = tls_get_ctx(sk);
223
224	/* We are already sending pages, ignore notification */
225	if (ctx->in_tcp_sendpages)
 
 
 
 
226		return;
227
228	if (!sk->sk_write_pending && tls_is_pending_closed_record(ctx)) {
229		gfp_t sk_allocation = sk->sk_allocation;
230		int rc;
231		long timeo = 0;
232
233		sk->sk_allocation = GFP_ATOMIC;
234		rc = tls_push_pending_closed_record(sk, ctx,
235						    MSG_DONTWAIT |
236						    MSG_NOSIGNAL,
237						    &timeo);
238		sk->sk_allocation = sk_allocation;
239
240		if (rc < 0)
241			return;
242	}
243
 
 
 
 
 
 
 
244	ctx->sk_write_space(sk);
245}
246
247static void tls_sk_proto_close(struct sock *sk, long timeout)
 
 
 
 
 
 
 
 
248{
249	struct tls_context *ctx = tls_get_ctx(sk);
250	long timeo = sock_sndtimeo(sk, 0);
251	void (*sk_proto_close)(struct sock *sk, long timeout);
252	bool free_ctx = false;
253
254	lock_sock(sk);
255	sk_proto_close = ctx->sk_proto_close;
 
256
257	if (ctx->conf == TLS_BASE || ctx->conf == TLS_HW_RECORD) {
258		free_ctx = true;
259		goto skip_tx_cleanup;
260	}
 
261
262	if (!tls_complete_pending_work(sk, ctx, 0, &timeo))
 
 
 
 
263		tls_handle_open_record(sk, 0);
264
265	if (ctx->partially_sent_record) {
266		struct scatterlist *sg = ctx->partially_sent_record;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
267
268		while (1) {
269			put_page(sg_page(sg));
270			sk_mem_uncharge(sk, sg->length);
 
 
 
271
272			if (sg_is_last(sg))
273				break;
274			sg++;
275		}
276	}
277
278	kfree(ctx->tx.rec_seq);
279	kfree(ctx->tx.iv);
280	kfree(ctx->rx.rec_seq);
281	kfree(ctx->rx.iv);
282
283	if (ctx->conf == TLS_SW_TX ||
284	    ctx->conf == TLS_SW_RX ||
285	    ctx->conf == TLS_SW_RXTX) {
286		tls_sw_free_resources(sk);
287	}
288
289skip_tx_cleanup:
 
 
 
 
 
 
290	release_sock(sk);
291	sk_proto_close(sk, timeout);
292	/* free ctx for TLS_HW_RECORD, used by tcp_set_state
293	 * for sk->sk_prot->unhash [tls_hw_unhash]
294	 */
 
 
 
 
295	if (free_ctx)
296		kfree(ctx);
297}
298
299static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
300				int __user *optlen)
301{
302	int rc = 0;
303	struct tls_context *ctx = tls_get_ctx(sk);
304	struct tls_crypto_info *crypto_info;
305	int len;
306
307	if (get_user(len, optlen))
308		return -EFAULT;
309
310	if (!optval || (len < sizeof(*crypto_info))) {
311		rc = -EINVAL;
312		goto out;
313	}
314
315	if (!ctx) {
316		rc = -EBUSY;
317		goto out;
318	}
319
320	/* get user crypto info */
321	crypto_info = &ctx->crypto_send;
322
323	if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
324		rc = -EBUSY;
325		goto out;
326	}
327
328	if (len == sizeof(*crypto_info)) {
329		if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
330			rc = -EFAULT;
331		goto out;
332	}
333
334	switch (crypto_info->cipher_type) {
335	case TLS_CIPHER_AES_GCM_128: {
336		struct tls12_crypto_info_aes_gcm_128 *
337		  crypto_info_aes_gcm_128 =
338		  container_of(crypto_info,
339			       struct tls12_crypto_info_aes_gcm_128,
340			       info);
341
342		if (len != sizeof(*crypto_info_aes_gcm_128)) {
343			rc = -EINVAL;
344			goto out;
345		}
346		lock_sock(sk);
347		memcpy(crypto_info_aes_gcm_128->iv,
348		       ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
349		       TLS_CIPHER_AES_GCM_128_IV_SIZE);
350		memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
351		       TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
352		release_sock(sk);
353		if (copy_to_user(optval,
354				 crypto_info_aes_gcm_128,
355				 sizeof(*crypto_info_aes_gcm_128)))
356			rc = -EFAULT;
357		break;
358	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
359	default:
360		rc = -EINVAL;
361	}
362
363out:
364	return rc;
365}
366
367static int do_tls_getsockopt(struct sock *sk, int optname,
368			     char __user *optval, int __user *optlen)
369{
370	int rc = 0;
371
372	switch (optname) {
373	case TLS_TX:
374		rc = do_tls_getsockopt_tx(sk, optval, optlen);
375		break;
376	default:
377		rc = -ENOPROTOOPT;
378		break;
379	}
380	return rc;
381}
382
383static int tls_getsockopt(struct sock *sk, int level, int optname,
384			  char __user *optval, int __user *optlen)
385{
386	struct tls_context *ctx = tls_get_ctx(sk);
387
388	if (level != SOL_TLS)
389		return ctx->getsockopt(sk, level, optname, optval, optlen);
 
390
391	return do_tls_getsockopt(sk, optname, optval, optlen);
392}
393
394static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
395				  unsigned int optlen, int tx)
396{
397	struct tls_crypto_info *crypto_info;
 
398	struct tls_context *ctx = tls_get_ctx(sk);
 
399	int rc = 0;
400	int conf;
401
402	if (!optval || (optlen < sizeof(*crypto_info))) {
403		rc = -EINVAL;
404		goto out;
405	}
406
407	if (tx)
408		crypto_info = &ctx->crypto_send;
409	else
410		crypto_info = &ctx->crypto_recv;
 
 
 
411
412	/* Currently we don't support set crypto info more than one time */
413	if (TLS_CRYPTO_INFO_READY(crypto_info)) {
414		rc = -EBUSY;
415		goto out;
416	}
417
418	rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
419	if (rc) {
420		rc = -EFAULT;
421		goto err_crypto_info;
422	}
423
424	/* check version */
425	if (crypto_info->version != TLS_1_2_VERSION) {
426		rc = -ENOTSUPP;
 
427		goto err_crypto_info;
428	}
429
430	switch (crypto_info->cipher_type) {
431	case TLS_CIPHER_AES_GCM_128: {
432		if (optlen != sizeof(struct tls12_crypto_info_aes_gcm_128)) {
 
433			rc = -EINVAL;
434			goto err_crypto_info;
435		}
436		rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
437				    optlen - sizeof(*crypto_info));
438		if (rc) {
439			rc = -EFAULT;
440			goto err_crypto_info;
441		}
 
 
442		break;
443	}
 
 
 
444	default:
445		rc = -EINVAL;
446		goto err_crypto_info;
447	}
448
449	/* currently SW is default, we will have ethtool in future */
450	if (tx) {
451		rc = tls_set_sw_offload(sk, ctx, 1);
452		if (ctx->conf == TLS_SW_RX)
453			conf = TLS_SW_RXTX;
454		else
455			conf = TLS_SW_TX;
456	} else {
457		rc = tls_set_sw_offload(sk, ctx, 0);
458		if (ctx->conf == TLS_SW_TX)
459			conf = TLS_SW_RXTX;
460		else
461			conf = TLS_SW_RX;
462	}
463
464	if (rc)
 
 
 
 
465		goto err_crypto_info;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
466
467	ctx->conf = conf;
 
 
 
468	update_sk_prot(sk, ctx);
469	if (tx) {
470		ctx->sk_write_space = sk->sk_write_space;
471		sk->sk_write_space = tls_write_space;
472	} else {
473		sk->sk_socket->ops = &tls_sw_proto_ops;
474	}
475	goto out;
476
477err_crypto_info:
478	memset(crypto_info, 0, sizeof(*crypto_info));
479out:
480	return rc;
481}
482
483static int do_tls_setsockopt(struct sock *sk, int optname,
484			     char __user *optval, unsigned int optlen)
485{
486	int rc = 0;
487
488	switch (optname) {
489	case TLS_TX:
490	case TLS_RX:
491		lock_sock(sk);
492		rc = do_tls_setsockopt_conf(sk, optval, optlen,
493					    optname == TLS_TX);
494		release_sock(sk);
495		break;
496	default:
497		rc = -ENOPROTOOPT;
498		break;
499	}
500	return rc;
501}
502
503static int tls_setsockopt(struct sock *sk, int level, int optname,
504			  char __user *optval, unsigned int optlen)
505{
506	struct tls_context *ctx = tls_get_ctx(sk);
507
508	if (level != SOL_TLS)
509		return ctx->setsockopt(sk, level, optname, optval, optlen);
 
510
511	return do_tls_setsockopt(sk, optname, optval, optlen);
512}
513
514static struct tls_context *create_ctx(struct sock *sk)
515{
516	struct inet_connection_sock *icsk = inet_csk(sk);
517	struct tls_context *ctx;
518
519	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
520	if (!ctx)
521		return NULL;
522
523	icsk->icsk_ulp_data = ctx;
 
 
524	return ctx;
525}
526
527static int tls_hw_prot(struct sock *sk)
528{
529	struct tls_context *ctx;
530	struct tls_device *dev;
531	int rc = 0;
532
533	mutex_lock(&device_mutex);
534	list_for_each_entry(dev, &device_list, dev_list) {
535		if (dev->feature && dev->feature(dev)) {
536			ctx = create_ctx(sk);
537			if (!ctx)
538				goto out;
539
540			ctx->hash = sk->sk_prot->hash;
541			ctx->unhash = sk->sk_prot->unhash;
542			ctx->sk_proto_close = sk->sk_prot->close;
543			ctx->conf = TLS_HW_RECORD;
544			update_sk_prot(sk, ctx);
545			rc = 1;
546			break;
547		}
 
548	}
549out:
550	mutex_unlock(&device_mutex);
551	return rc;
552}
553
554static void tls_hw_unhash(struct sock *sk)
555{
556	struct tls_context *ctx = tls_get_ctx(sk);
557	struct tls_device *dev;
558
559	mutex_lock(&device_mutex);
560	list_for_each_entry(dev, &device_list, dev_list) {
561		if (dev->unhash)
562			dev->unhash(dev, sk);
563	}
564	mutex_unlock(&device_mutex);
565	ctx->unhash(sk);
566}
567
568static int tls_hw_hash(struct sock *sk)
 
569{
570	struct tls_context *ctx = tls_get_ctx(sk);
571	struct tls_device *dev;
572	int err;
 
573
574	err = ctx->hash(sk);
575	mutex_lock(&device_mutex);
576	list_for_each_entry(dev, &device_list, dev_list) {
577		if (dev->hash)
578			err |= dev->hash(dev, sk);
579	}
580	mutex_unlock(&device_mutex);
581
582	if (err)
583		tls_hw_unhash(sk);
584	return err;
585}
586
587static void build_protos(struct proto *prot, struct proto *base)
588{
589	prot[TLS_BASE] = *base;
590	prot[TLS_BASE].setsockopt	= tls_setsockopt;
591	prot[TLS_BASE].getsockopt	= tls_getsockopt;
592	prot[TLS_BASE].close		= tls_sk_proto_close;
593
594	prot[TLS_SW_TX] = prot[TLS_BASE];
595	prot[TLS_SW_TX].sendmsg		= tls_sw_sendmsg;
596	prot[TLS_SW_TX].sendpage	= tls_sw_sendpage;
597
598	prot[TLS_SW_RX] = prot[TLS_BASE];
599	prot[TLS_SW_RX].recvmsg		= tls_sw_recvmsg;
600	prot[TLS_SW_RX].close		= tls_sk_proto_close;
601
602	prot[TLS_SW_RXTX] = prot[TLS_SW_TX];
603	prot[TLS_SW_RXTX].recvmsg	= tls_sw_recvmsg;
604	prot[TLS_SW_RXTX].close		= tls_sk_proto_close;
605
606	prot[TLS_HW_RECORD] = *base;
607	prot[TLS_HW_RECORD].hash	= tls_hw_hash;
608	prot[TLS_HW_RECORD].unhash	= tls_hw_unhash;
609	prot[TLS_HW_RECORD].close	= tls_sk_proto_close;
 
 
610}
611
612static int tls_init(struct sock *sk)
613{
614	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
615	struct tls_context *ctx;
616	int rc = 0;
617
618	if (tls_hw_prot(sk))
619		goto out;
 
 
 
 
620
621	/* The TLS ulp is currently supported only for TCP sockets
622	 * in ESTABLISHED state.
623	 * Supporting sockets in LISTEN state will require us
624	 * to modify the accept implementation to clone rather then
625	 * share the ulp context.
626	 */
627	if (sk->sk_state != TCP_ESTABLISHED)
628		return -ENOTSUPP;
629
630	/* allocate tls context */
631	ctx = create_ctx(sk);
 
632	if (!ctx) {
633		rc = -ENOMEM;
634		goto out;
635	}
636	ctx->setsockopt = sk->sk_prot->setsockopt;
637	ctx->getsockopt = sk->sk_prot->getsockopt;
638	ctx->sk_proto_close = sk->sk_prot->close;
639
640	/* Build IPv6 TLS whenever the address of tcpv6_prot changes */
641	if (ip_ver == TLSV6 &&
642	    unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
643		mutex_lock(&tcpv6_prot_mutex);
644		if (likely(sk->sk_prot != saved_tcpv6_prot)) {
645			build_protos(tls_prots[TLSV6], sk->sk_prot);
646			smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
647		}
648		mutex_unlock(&tcpv6_prot_mutex);
649	}
650
651	ctx->conf = TLS_BASE;
 
652	update_sk_prot(sk, ctx);
653out:
 
654	return rc;
655}
656
657void tls_register_device(struct tls_device *device)
 
658{
659	mutex_lock(&device_mutex);
660	list_add_tail(&device->dev_list, &device_list);
661	mutex_unlock(&device_mutex);
 
 
 
 
 
 
 
 
662}
663EXPORT_SYMBOL(tls_register_device);
664
665void tls_unregister_device(struct tls_device *device)
666{
667	mutex_lock(&device_mutex);
668	list_del(&device->dev_list);
669	mutex_unlock(&device_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
670}
671EXPORT_SYMBOL(tls_unregister_device);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
672
673static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
674	.name			= "tls",
675	.uid			= TCP_ULP_TLS,
676	.user_visible		= true,
677	.owner			= THIS_MODULE,
678	.init			= tls_init,
 
 
 
679};
680
681static int __init tls_register(void)
682{
683	build_protos(tls_prots[TLSV4], &tcp_prot);
 
 
 
 
684
685	tls_sw_proto_ops = inet_stream_ops;
686	tls_sw_proto_ops.poll = tls_sw_poll;
687	tls_sw_proto_ops.splice_read = tls_sw_splice_read;
 
688
 
689	tcp_register_ulp(&tcp_tls_ulp_ops);
690
691	return 0;
692}
693
694static void __exit tls_unregister(void)
695{
696	tcp_unregister_ulp(&tcp_tls_ulp_ops);
 
 
697}
698
699module_init(tls_register);
700module_exit(tls_unregister);
v5.9
  1/*
  2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
  3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
  4 *
  5 * This software is available to you under a choice of one of two
  6 * licenses.  You may choose to be licensed under the terms of the GNU
  7 * General Public License (GPL) Version 2, available from the file
  8 * COPYING in the main directory of this source tree, or the
  9 * OpenIB.org BSD license below:
 10 *
 11 *     Redistribution and use in source and binary forms, with or
 12 *     without modification, are permitted provided that the following
 13 *     conditions are met:
 14 *
 15 *      - Redistributions of source code must retain the above
 16 *        copyright notice, this list of conditions and the following
 17 *        disclaimer.
 18 *
 19 *      - Redistributions in binary form must reproduce the above
 20 *        copyright notice, this list of conditions and the following
 21 *        disclaimer in the documentation and/or other materials
 22 *        provided with the distribution.
 23 *
 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 31 * SOFTWARE.
 32 */
 33
 34#include <linux/module.h>
 35
 36#include <net/tcp.h>
 37#include <net/inet_common.h>
 38#include <linux/highmem.h>
 39#include <linux/netdevice.h>
 40#include <linux/sched/signal.h>
 41#include <linux/inetdevice.h>
 42#include <linux/inet_diag.h>
 43
 44#include <net/snmp.h>
 45#include <net/tls.h>
 46#include <net/tls_toe.h>
 47
 48MODULE_AUTHOR("Mellanox Technologies");
 49MODULE_DESCRIPTION("Transport Layer Security Support");
 50MODULE_LICENSE("Dual BSD/GPL");
 51MODULE_ALIAS_TCP_ULP("tls");
 52
 53enum {
 54	TLSV4,
 55	TLSV6,
 56	TLS_NUM_PROTS,
 57};
 58
 59static const struct proto *saved_tcpv6_prot;
 
 
 
 
 
 
 
 
 
 60static DEFINE_MUTEX(tcpv6_prot_mutex);
 61static const struct proto *saved_tcpv4_prot;
 62static DEFINE_MUTEX(tcpv4_prot_mutex);
 63static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
 64static struct proto_ops tls_sw_proto_ops;
 65static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
 66			 const struct proto *base);
 67
 68void update_sk_prot(struct sock *sk, struct tls_context *ctx)
 69{
 70	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
 71
 72	WRITE_ONCE(sk->sk_prot,
 73		   &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
 74}
 75
 76int wait_on_pending_writer(struct sock *sk, long *timeo)
 77{
 78	int rc = 0;
 79	DEFINE_WAIT_FUNC(wait, woken_wake_function);
 80
 81	add_wait_queue(sk_sleep(sk), &wait);
 82	while (1) {
 83		if (!*timeo) {
 84			rc = -EAGAIN;
 85			break;
 86		}
 87
 88		if (signal_pending(current)) {
 89			rc = sock_intr_errno(*timeo);
 90			break;
 91		}
 92
 93		if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
 94			break;
 95	}
 96	remove_wait_queue(sk_sleep(sk), &wait);
 97	return rc;
 98}
 99
100int tls_push_sg(struct sock *sk,
101		struct tls_context *ctx,
102		struct scatterlist *sg,
103		u16 first_offset,
104		int flags)
105{
106	int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
107	int ret = 0;
108	struct page *p;
109	size_t size;
110	int offset = first_offset;
111
112	size = sg->length - offset;
113	offset += sg->offset;
114
115	ctx->in_tcp_sendpages = true;
116	while (1) {
117		if (sg_is_last(sg))
118			sendpage_flags = flags;
119
120		/* is sending application-limited? */
121		tcp_rate_check_app_limited(sk);
122		p = sg_page(sg);
123retry:
124		ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
125
126		if (ret != size) {
127			if (ret > 0) {
128				offset += ret;
129				size -= ret;
130				goto retry;
131			}
132
133			offset -= sg->offset;
134			ctx->partially_sent_offset = offset;
135			ctx->partially_sent_record = (void *)sg;
136			ctx->in_tcp_sendpages = false;
137			return ret;
138		}
139
140		put_page(p);
141		sk_mem_uncharge(sk, sg->length);
142		sg = sg_next(sg);
143		if (!sg)
144			break;
145
146		offset = sg->offset;
147		size = sg->length;
148	}
149
 
150	ctx->in_tcp_sendpages = false;
 
151
152	return 0;
153}
154
155static int tls_handle_open_record(struct sock *sk, int flags)
156{
157	struct tls_context *ctx = tls_get_ctx(sk);
158
159	if (tls_is_pending_open_record(ctx))
160		return ctx->push_pending_record(sk, flags);
161
162	return 0;
163}
164
165int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
166		      unsigned char *record_type)
167{
168	struct cmsghdr *cmsg;
169	int rc = -EINVAL;
170
171	for_each_cmsghdr(cmsg, msg) {
172		if (!CMSG_OK(msg, cmsg))
173			return -EINVAL;
174		if (cmsg->cmsg_level != SOL_TLS)
175			continue;
176
177		switch (cmsg->cmsg_type) {
178		case TLS_SET_RECORD_TYPE:
179			if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
180				return -EINVAL;
181
182			if (msg->msg_flags & MSG_MORE)
183				return -EINVAL;
184
185			rc = tls_handle_open_record(sk, msg->msg_flags);
186			if (rc)
187				return rc;
188
189			*record_type = *(unsigned char *)CMSG_DATA(cmsg);
190			rc = 0;
191			break;
192		default:
193			return -EINVAL;
194		}
195	}
196
197	return rc;
198}
199
200int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
201			    int flags)
202{
203	struct scatterlist *sg;
204	u16 offset;
205
 
 
 
206	sg = ctx->partially_sent_record;
207	offset = ctx->partially_sent_offset;
208
209	ctx->partially_sent_record = NULL;
210	return tls_push_sg(sk, ctx, sg, offset, flags);
211}
212
213void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
214{
215	struct scatterlist *sg;
216
217	for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
218		put_page(sg_page(sg));
219		sk_mem_uncharge(sk, sg->length);
220	}
221	ctx->partially_sent_record = NULL;
222}
223
224static void tls_write_space(struct sock *sk)
225{
226	struct tls_context *ctx = tls_get_ctx(sk);
227
228	/* If in_tcp_sendpages call lower protocol write space handler
229	 * to ensure we wake up any waiting operations there. For example
230	 * if do_tcp_sendpages where to call sk_wait_event.
231	 */
232	if (ctx->in_tcp_sendpages) {
233		ctx->sk_write_space(sk);
234		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
235	}
236
237#ifdef CONFIG_TLS_DEVICE
238	if (ctx->tx_conf == TLS_HW)
239		tls_device_write_space(sk, ctx);
240	else
241#endif
242		tls_sw_write_space(sk, ctx);
243
244	ctx->sk_write_space(sk);
245}
246
247/**
248 * tls_ctx_free() - free TLS ULP context
249 * @sk:  socket to with @ctx is attached
250 * @ctx: TLS context structure
251 *
252 * Free TLS context. If @sk is %NULL caller guarantees that the socket
253 * to which @ctx was attached has no outstanding references.
254 */
255void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
256{
257	if (!ctx)
258		return;
 
 
259
260	memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
261	memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
262	mutex_destroy(&ctx->tx_lock);
263
264	if (sk)
265		kfree_rcu(ctx, rcu);
266	else
267		kfree(ctx);
268}
269
270static void tls_sk_proto_cleanup(struct sock *sk,
271				 struct tls_context *ctx, long timeo)
272{
273	if (unlikely(sk->sk_write_pending) &&
274	    !wait_on_pending_writer(sk, &timeo))
275		tls_handle_open_record(sk, 0);
276
277	/* We need these for tls_sw_fallback handling of other packets */
278	if (ctx->tx_conf == TLS_SW) {
279		kfree(ctx->tx.rec_seq);
280		kfree(ctx->tx.iv);
281		tls_sw_release_resources_tx(sk);
282		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
283	} else if (ctx->tx_conf == TLS_HW) {
284		tls_device_free_resources_tx(sk);
285		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
286	}
287
288	if (ctx->rx_conf == TLS_SW) {
289		tls_sw_release_resources_rx(sk);
290		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
291	} else if (ctx->rx_conf == TLS_HW) {
292		tls_device_offload_cleanup_rx(sk);
293		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
294	}
295}
296
297static void tls_sk_proto_close(struct sock *sk, long timeout)
298{
299	struct inet_connection_sock *icsk = inet_csk(sk);
300	struct tls_context *ctx = tls_get_ctx(sk);
301	long timeo = sock_sndtimeo(sk, 0);
302	bool free_ctx;
303
304	if (ctx->tx_conf == TLS_SW)
305		tls_sw_cancel_work_tx(ctx);
 
 
 
306
307	lock_sock(sk);
308	free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
 
 
309
310	if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
311		tls_sk_proto_cleanup(sk, ctx, timeo);
 
 
 
312
313	write_lock_bh(&sk->sk_callback_lock);
314	if (free_ctx)
315		rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
316	WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
317	if (sk->sk_write_space == tls_write_space)
318		sk->sk_write_space = ctx->sk_write_space;
319	write_unlock_bh(&sk->sk_callback_lock);
320	release_sock(sk);
321	if (ctx->tx_conf == TLS_SW)
322		tls_sw_free_ctx_tx(ctx);
323	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
324		tls_sw_strparser_done(ctx);
325	if (ctx->rx_conf == TLS_SW)
326		tls_sw_free_ctx_rx(ctx);
327	ctx->sk_proto->close(sk, timeout);
328
329	if (free_ctx)
330		tls_ctx_free(sk, ctx);
331}
332
333static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
334				int __user *optlen)
335{
336	int rc = 0;
337	struct tls_context *ctx = tls_get_ctx(sk);
338	struct tls_crypto_info *crypto_info;
339	int len;
340
341	if (get_user(len, optlen))
342		return -EFAULT;
343
344	if (!optval || (len < sizeof(*crypto_info))) {
345		rc = -EINVAL;
346		goto out;
347	}
348
349	if (!ctx) {
350		rc = -EBUSY;
351		goto out;
352	}
353
354	/* get user crypto info */
355	crypto_info = &ctx->crypto_send.info;
356
357	if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
358		rc = -EBUSY;
359		goto out;
360	}
361
362	if (len == sizeof(*crypto_info)) {
363		if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
364			rc = -EFAULT;
365		goto out;
366	}
367
368	switch (crypto_info->cipher_type) {
369	case TLS_CIPHER_AES_GCM_128: {
370		struct tls12_crypto_info_aes_gcm_128 *
371		  crypto_info_aes_gcm_128 =
372		  container_of(crypto_info,
373			       struct tls12_crypto_info_aes_gcm_128,
374			       info);
375
376		if (len != sizeof(*crypto_info_aes_gcm_128)) {
377			rc = -EINVAL;
378			goto out;
379		}
380		lock_sock(sk);
381		memcpy(crypto_info_aes_gcm_128->iv,
382		       ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
383		       TLS_CIPHER_AES_GCM_128_IV_SIZE);
384		memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
385		       TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
386		release_sock(sk);
387		if (copy_to_user(optval,
388				 crypto_info_aes_gcm_128,
389				 sizeof(*crypto_info_aes_gcm_128)))
390			rc = -EFAULT;
391		break;
392	}
393	case TLS_CIPHER_AES_GCM_256: {
394		struct tls12_crypto_info_aes_gcm_256 *
395		  crypto_info_aes_gcm_256 =
396		  container_of(crypto_info,
397			       struct tls12_crypto_info_aes_gcm_256,
398			       info);
399
400		if (len != sizeof(*crypto_info_aes_gcm_256)) {
401			rc = -EINVAL;
402			goto out;
403		}
404		lock_sock(sk);
405		memcpy(crypto_info_aes_gcm_256->iv,
406		       ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
407		       TLS_CIPHER_AES_GCM_256_IV_SIZE);
408		memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq,
409		       TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
410		release_sock(sk);
411		if (copy_to_user(optval,
412				 crypto_info_aes_gcm_256,
413				 sizeof(*crypto_info_aes_gcm_256)))
414			rc = -EFAULT;
415		break;
416	}
417	default:
418		rc = -EINVAL;
419	}
420
421out:
422	return rc;
423}
424
425static int do_tls_getsockopt(struct sock *sk, int optname,
426			     char __user *optval, int __user *optlen)
427{
428	int rc = 0;
429
430	switch (optname) {
431	case TLS_TX:
432		rc = do_tls_getsockopt_tx(sk, optval, optlen);
433		break;
434	default:
435		rc = -ENOPROTOOPT;
436		break;
437	}
438	return rc;
439}
440
441static int tls_getsockopt(struct sock *sk, int level, int optname,
442			  char __user *optval, int __user *optlen)
443{
444	struct tls_context *ctx = tls_get_ctx(sk);
445
446	if (level != SOL_TLS)
447		return ctx->sk_proto->getsockopt(sk, level,
448						 optname, optval, optlen);
449
450	return do_tls_getsockopt(sk, optname, optval, optlen);
451}
452
453static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
454				  unsigned int optlen, int tx)
455{
456	struct tls_crypto_info *crypto_info;
457	struct tls_crypto_info *alt_crypto_info;
458	struct tls_context *ctx = tls_get_ctx(sk);
459	size_t optsize;
460	int rc = 0;
461	int conf;
462
463	if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info))) {
464		rc = -EINVAL;
465		goto out;
466	}
467
468	if (tx) {
469		crypto_info = &ctx->crypto_send.info;
470		alt_crypto_info = &ctx->crypto_recv.info;
471	} else {
472		crypto_info = &ctx->crypto_recv.info;
473		alt_crypto_info = &ctx->crypto_send.info;
474	}
475
476	/* Currently we don't support set crypto info more than one time */
477	if (TLS_CRYPTO_INFO_READY(crypto_info)) {
478		rc = -EBUSY;
479		goto out;
480	}
481
482	rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
483	if (rc) {
484		rc = -EFAULT;
485		goto err_crypto_info;
486	}
487
488	/* check version */
489	if (crypto_info->version != TLS_1_2_VERSION &&
490	    crypto_info->version != TLS_1_3_VERSION) {
491		rc = -EINVAL;
492		goto err_crypto_info;
493	}
494
495	/* Ensure that TLS version and ciphers are same in both directions */
496	if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
497		if (alt_crypto_info->version != crypto_info->version ||
498		    alt_crypto_info->cipher_type != crypto_info->cipher_type) {
499			rc = -EINVAL;
500			goto err_crypto_info;
501		}
502	}
503
504	switch (crypto_info->cipher_type) {
505	case TLS_CIPHER_AES_GCM_128:
506		optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
507		break;
508	case TLS_CIPHER_AES_GCM_256: {
509		optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
510		break;
511	}
512	case TLS_CIPHER_AES_CCM_128:
513		optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
514		break;
515	default:
516		rc = -EINVAL;
517		goto err_crypto_info;
518	}
519
520	if (optlen != optsize) {
521		rc = -EINVAL;
522		goto err_crypto_info;
 
 
 
 
 
 
 
 
 
 
523	}
524
525	rc = copy_from_sockptr_offset(crypto_info + 1, optval,
526				      sizeof(*crypto_info),
527				      optlen - sizeof(*crypto_info));
528	if (rc) {
529		rc = -EFAULT;
530		goto err_crypto_info;
531	}
532
533	if (tx) {
534		rc = tls_set_device_offload(sk, ctx);
535		conf = TLS_HW;
536		if (!rc) {
537			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
538			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
539		} else {
540			rc = tls_set_sw_offload(sk, ctx, 1);
541			if (rc)
542				goto err_crypto_info;
543			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
544			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
545			conf = TLS_SW;
546		}
547	} else {
548		rc = tls_set_device_offload_rx(sk, ctx);
549		conf = TLS_HW;
550		if (!rc) {
551			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
552			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
553		} else {
554			rc = tls_set_sw_offload(sk, ctx, 0);
555			if (rc)
556				goto err_crypto_info;
557			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
558			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
559			conf = TLS_SW;
560		}
561		tls_sw_strparser_arm(sk, ctx);
562	}
563
564	if (tx)
565		ctx->tx_conf = conf;
566	else
567		ctx->rx_conf = conf;
568	update_sk_prot(sk, ctx);
569	if (tx) {
570		ctx->sk_write_space = sk->sk_write_space;
571		sk->sk_write_space = tls_write_space;
572	} else {
573		sk->sk_socket->ops = &tls_sw_proto_ops;
574	}
575	goto out;
576
577err_crypto_info:
578	memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
579out:
580	return rc;
581}
582
583static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
584			     unsigned int optlen)
585{
586	int rc = 0;
587
588	switch (optname) {
589	case TLS_TX:
590	case TLS_RX:
591		lock_sock(sk);
592		rc = do_tls_setsockopt_conf(sk, optval, optlen,
593					    optname == TLS_TX);
594		release_sock(sk);
595		break;
596	default:
597		rc = -ENOPROTOOPT;
598		break;
599	}
600	return rc;
601}
602
603static int tls_setsockopt(struct sock *sk, int level, int optname,
604			  sockptr_t optval, unsigned int optlen)
605{
606	struct tls_context *ctx = tls_get_ctx(sk);
607
608	if (level != SOL_TLS)
609		return ctx->sk_proto->setsockopt(sk, level, optname, optval,
610						 optlen);
611
612	return do_tls_setsockopt(sk, optname, optval, optlen);
613}
614
615struct tls_context *tls_ctx_create(struct sock *sk)
616{
617	struct inet_connection_sock *icsk = inet_csk(sk);
618	struct tls_context *ctx;
619
620	ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
621	if (!ctx)
622		return NULL;
623
624	mutex_init(&ctx->tx_lock);
625	rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
626	ctx->sk_proto = READ_ONCE(sk->sk_prot);
627	return ctx;
628}
629
630static void tls_build_proto(struct sock *sk)
631{
632	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
633	struct proto *prot = READ_ONCE(sk->sk_prot);
 
634
635	/* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
636	if (ip_ver == TLSV6 &&
637	    unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
638		mutex_lock(&tcpv6_prot_mutex);
639		if (likely(prot != saved_tcpv6_prot)) {
640			build_protos(tls_prots[TLSV6], prot);
641			smp_store_release(&saved_tcpv6_prot, prot);
 
 
 
 
 
 
 
642		}
643		mutex_unlock(&tcpv6_prot_mutex);
644	}
 
 
 
 
645
646	if (ip_ver == TLSV4 &&
647	    unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
648		mutex_lock(&tcpv4_prot_mutex);
649		if (likely(prot != saved_tcpv4_prot)) {
650			build_protos(tls_prots[TLSV4], prot);
651			smp_store_release(&saved_tcpv4_prot, prot);
652		}
653		mutex_unlock(&tcpv4_prot_mutex);
 
654	}
 
 
655}
656
657static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
658			 const struct proto *base)
659{
660	prot[TLS_BASE][TLS_BASE] = *base;
661	prot[TLS_BASE][TLS_BASE].setsockopt	= tls_setsockopt;
662	prot[TLS_BASE][TLS_BASE].getsockopt	= tls_getsockopt;
663	prot[TLS_BASE][TLS_BASE].close		= tls_sk_proto_close;
664
665	prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
666	prot[TLS_SW][TLS_BASE].sendmsg		= tls_sw_sendmsg;
667	prot[TLS_SW][TLS_BASE].sendpage		= tls_sw_sendpage;
 
 
 
 
668
669	prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
670	prot[TLS_BASE][TLS_SW].recvmsg		  = tls_sw_recvmsg;
671	prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
672	prot[TLS_BASE][TLS_SW].close		  = tls_sk_proto_close;
673
674	prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
675	prot[TLS_SW][TLS_SW].recvmsg		= tls_sw_recvmsg;
676	prot[TLS_SW][TLS_SW].stream_memory_read	= tls_sw_stream_read;
677	prot[TLS_SW][TLS_SW].close		= tls_sk_proto_close;
678
679#ifdef CONFIG_TLS_DEVICE
680	prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
681	prot[TLS_HW][TLS_BASE].sendmsg		= tls_device_sendmsg;
682	prot[TLS_HW][TLS_BASE].sendpage		= tls_device_sendpage;
683
684	prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
685	prot[TLS_HW][TLS_SW].sendmsg		= tls_device_sendmsg;
686	prot[TLS_HW][TLS_SW].sendpage		= tls_device_sendpage;
687
688	prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
689
690	prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
691
692	prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
693#endif
694#ifdef CONFIG_TLS_TOE
695	prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
696	prot[TLS_HW_RECORD][TLS_HW_RECORD].hash		= tls_toe_hash;
697	prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash	= tls_toe_unhash;
698#endif
699}
700
701static int tls_init(struct sock *sk)
702{
 
703	struct tls_context *ctx;
704	int rc = 0;
705
706	tls_build_proto(sk);
707
708#ifdef CONFIG_TLS_TOE
709	if (tls_toe_bypass(sk))
710		return 0;
711#endif
712
713	/* The TLS ulp is currently supported only for TCP sockets
714	 * in ESTABLISHED state.
715	 * Supporting sockets in LISTEN state will require us
716	 * to modify the accept implementation to clone rather then
717	 * share the ulp context.
718	 */
719	if (sk->sk_state != TCP_ESTABLISHED)
720		return -ENOTCONN;
721
722	/* allocate tls context */
723	write_lock_bh(&sk->sk_callback_lock);
724	ctx = tls_ctx_create(sk);
725	if (!ctx) {
726		rc = -ENOMEM;
727		goto out;
728	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
729
730	ctx->tx_conf = TLS_BASE;
731	ctx->rx_conf = TLS_BASE;
732	update_sk_prot(sk, ctx);
733out:
734	write_unlock_bh(&sk->sk_callback_lock);
735	return rc;
736}
737
738static void tls_update(struct sock *sk, struct proto *p,
739		       void (*write_space)(struct sock *sk))
740{
741	struct tls_context *ctx;
742
743	ctx = tls_get_ctx(sk);
744	if (likely(ctx)) {
745		ctx->sk_write_space = write_space;
746		ctx->sk_proto = p;
747	} else {
748		/* Pairs with lockless read in sk_clone_lock(). */
749		WRITE_ONCE(sk->sk_prot, p);
750		sk->sk_write_space = write_space;
751	}
752}
 
753
754static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
755{
756	u16 version, cipher_type;
757	struct tls_context *ctx;
758	struct nlattr *start;
759	int err;
760
761	start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
762	if (!start)
763		return -EMSGSIZE;
764
765	rcu_read_lock();
766	ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
767	if (!ctx) {
768		err = 0;
769		goto nla_failure;
770	}
771	version = ctx->prot_info.version;
772	if (version) {
773		err = nla_put_u16(skb, TLS_INFO_VERSION, version);
774		if (err)
775			goto nla_failure;
776	}
777	cipher_type = ctx->prot_info.cipher_type;
778	if (cipher_type) {
779		err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
780		if (err)
781			goto nla_failure;
782	}
783	err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
784	if (err)
785		goto nla_failure;
786
787	err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
788	if (err)
789		goto nla_failure;
790
791	rcu_read_unlock();
792	nla_nest_end(skb, start);
793	return 0;
794
795nla_failure:
796	rcu_read_unlock();
797	nla_nest_cancel(skb, start);
798	return err;
799}
800
801static size_t tls_get_info_size(const struct sock *sk)
802{
803	size_t size = 0;
804
805	size += nla_total_size(0) +		/* INET_ULP_INFO_TLS */
806		nla_total_size(sizeof(u16)) +	/* TLS_INFO_VERSION */
807		nla_total_size(sizeof(u16)) +	/* TLS_INFO_CIPHER */
808		nla_total_size(sizeof(u16)) +	/* TLS_INFO_RXCONF */
809		nla_total_size(sizeof(u16)) +	/* TLS_INFO_TXCONF */
810		0;
811
812	return size;
813}
814
815static int __net_init tls_init_net(struct net *net)
816{
817	int err;
818
819	net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
820	if (!net->mib.tls_statistics)
821		return -ENOMEM;
822
823	err = tls_proc_init(net);
824	if (err)
825		goto err_free_stats;
826
827	return 0;
828err_free_stats:
829	free_percpu(net->mib.tls_statistics);
830	return err;
831}
832
833static void __net_exit tls_exit_net(struct net *net)
834{
835	tls_proc_fini(net);
836	free_percpu(net->mib.tls_statistics);
837}
838
839static struct pernet_operations tls_proc_ops = {
840	.init = tls_init_net,
841	.exit = tls_exit_net,
842};
843
844static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
845	.name			= "tls",
 
 
846	.owner			= THIS_MODULE,
847	.init			= tls_init,
848	.update			= tls_update,
849	.get_info		= tls_get_info,
850	.get_info_size		= tls_get_info_size,
851};
852
853static int __init tls_register(void)
854{
855	int err;
856
857	err = register_pernet_subsys(&tls_proc_ops);
858	if (err)
859		return err;
860
861	tls_sw_proto_ops = inet_stream_ops;
 
862	tls_sw_proto_ops.splice_read = tls_sw_splice_read;
863	tls_sw_proto_ops.sendpage_locked   = tls_sw_sendpage_locked,
864
865	tls_device_init();
866	tcp_register_ulp(&tcp_tls_ulp_ops);
867
868	return 0;
869}
870
871static void __exit tls_unregister(void)
872{
873	tcp_unregister_ulp(&tcp_tls_ulp_ops);
874	tls_device_cleanup();
875	unregister_pernet_subsys(&tls_proc_ops);
876}
877
878module_init(tls_register);
879module_exit(tls_unregister);